|
| 1 | +import argparse |
| 2 | + |
| 3 | +from langchain_core.language_models import BaseLLM, BaseChatModel |
| 4 | +from langchain_core.language_models.base import BaseLanguageModel |
| 5 | + |
| 6 | +# important note: if you import these after patching, the patch won't apply! |
| 7 | +# mitigation will be added to patch_abc in a future change |
| 8 | +from langchain_huggingface import HuggingFaceEndpoint |
| 9 | +from langchain_ollama import OllamaLLM |
| 10 | +from langchain_openai import ChatOpenAI |
| 11 | + |
| 12 | +from opentelemetry.util._wrap import patch_abc |
| 13 | + |
| 14 | + |
| 15 | +def parse_args(): |
| 16 | + parser = argparse.ArgumentParser(description="LangChain model comparison") |
| 17 | + parser.add_argument("--provider", choices=["ollama", "openai", "huggingface"], default="ollama", |
| 18 | + help="Choose model provider (default: ollama)") |
| 19 | + parser.add_argument("--model", type=str, help="Specify model name") |
| 20 | + parser.add_argument("--prompt", type=str, default="What is the capital of France?", |
| 21 | + help="Input prompt") |
| 22 | + |
| 23 | + return parser.parse_args() |
| 24 | + |
| 25 | + |
| 26 | +def chat_with_model(model: BaseLanguageModel, prompt: str) -> str: |
| 27 | + try: |
| 28 | + response = model.invoke(prompt) |
| 29 | + if hasattr(response, 'content'): |
| 30 | + return response.content |
| 31 | + else: |
| 32 | + return str(response) |
| 33 | + except Exception as e: |
| 34 | + return f"Error: {str(e)}" |
| 35 | + |
| 36 | + |
| 37 | +def create_huggingface_model(model: str = "google/flan-t5-small"): |
| 38 | + return HuggingFaceEndpoint( |
| 39 | + repo_id=model, |
| 40 | + temperature=0.7 |
| 41 | + ) |
| 42 | + |
| 43 | + |
| 44 | +def create_openai_model(model: str = "gpt-3.5-turbo"): |
| 45 | + return ChatOpenAI( |
| 46 | + model=model, |
| 47 | + temperature=0.7 |
| 48 | + ) |
| 49 | + |
| 50 | + |
| 51 | +def create_ollama_model(model: str = "llama2"): |
| 52 | + return OllamaLLM( |
| 53 | + model=model, |
| 54 | + temperature=0.7 |
| 55 | + ) |
| 56 | + |
| 57 | + |
| 58 | +def patch_llm(): |
| 59 | + def my_wrapper(orig_fcn): |
| 60 | + def wrapped_fcn(self, *args, **kwargs): |
| 61 | + print("wrapper starting") |
| 62 | + print(f"Arguments: {args}") |
| 63 | + print(f"Keyword arguments: {kwargs}") |
| 64 | + return orig_fcn(self, *args, **kwargs) |
| 65 | + |
| 66 | + return wrapped_fcn |
| 67 | + |
| 68 | + patch_abc(BaseLLM, "_generate", my_wrapper) |
| 69 | + |
| 70 | + # this is for OpenAI, which is a weird case. The _generate method is in a differnt base class and gets called twice. |
| 71 | + patch_abc(BaseChatModel, "_generate", my_wrapper) |
| 72 | + |
| 73 | + |
| 74 | +def main(): |
| 75 | + args = parse_args() |
| 76 | + |
| 77 | + patch_llm() |
| 78 | + |
| 79 | + if args.provider == "ollama": |
| 80 | + model = create_ollama_model(args.model or "llama2") |
| 81 | + elif args.provider == "openai": |
| 82 | + model = create_openai_model(args.model or "gpt-3.5-turbo") |
| 83 | + elif args.provider == "huggingface": |
| 84 | + model = create_huggingface_model(args.model or "google/flan-t5-small") |
| 85 | + else: |
| 86 | + raise ValueError(f"Unsupported provider: {args.provider}") |
| 87 | + |
| 88 | + response = chat_with_model(model, args.prompt) |
| 89 | + print(f"{args.provider.title()} Response: {response}") |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == "__main__": |
| 93 | + main() |
0 commit comments