|
| 1 | +""" |
| 2 | +Background search index refresh that runs after server startup. |
| 3 | +Ensures indexes stay consistent with the database even when repopulated on deploy. |
| 4 | +""" |
| 5 | +import threading |
| 6 | +import time |
| 7 | +import logging |
| 8 | +import gc |
| 9 | +import pickle |
| 10 | +from pathlib import Path |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +logger = logging.getLogger(__name__) |
| 15 | + |
| 16 | +_indexing_lock = threading.Lock() |
| 17 | +_indexing_in_progress = False |
| 18 | +_last_index_time = None |
| 19 | + |
| 20 | + |
| 21 | +def is_indexing_in_progress(): |
| 22 | + return _indexing_in_progress |
| 23 | + |
| 24 | + |
| 25 | +def get_last_index_time(): |
| 26 | + return _last_index_time |
| 27 | + |
| 28 | + |
| 29 | +def schedule_background_reindex(delay_seconds=60, rebuild_vector=True): |
| 30 | + if delay_seconds <= 0: |
| 31 | + return |
| 32 | + |
| 33 | + def _delayed_reindex(): |
| 34 | + global _indexing_in_progress, _last_index_time |
| 35 | + |
| 36 | + logger.info(f"Background re-index scheduled in {delay_seconds}s") |
| 37 | + time.sleep(delay_seconds) |
| 38 | + |
| 39 | + if not _indexing_lock.acquire(blocking=False): |
| 40 | + logger.warning("Background re-index skipped - already in progress") |
| 41 | + return |
| 42 | + |
| 43 | + try: |
| 44 | + _indexing_in_progress = True |
| 45 | + logger.info("Starting background search index refresh...") |
| 46 | + start_time = time.time() |
| 47 | + |
| 48 | + _run_reindex(rebuild_vector=rebuild_vector) |
| 49 | + |
| 50 | + elapsed = time.time() - start_time |
| 51 | + _last_index_time = time.time() |
| 52 | + logger.info(f"Background re-index completed in {elapsed:.1f}s") |
| 53 | + |
| 54 | + except Exception as e: |
| 55 | + logger.error(f"Background re-index failed: {e}", exc_info=True) |
| 56 | + finally: |
| 57 | + _indexing_in_progress = False |
| 58 | + _indexing_lock.release() |
| 59 | + |
| 60 | + thread = threading.Thread(target=_delayed_reindex, daemon=True, name="search-reindex") |
| 61 | + thread.start() |
| 62 | + |
| 63 | + |
| 64 | +def _run_reindex(rebuild_vector=True): |
| 65 | + from django.core.management import call_command |
| 66 | + |
| 67 | + logger.info("Updating Whoosh index...") |
| 68 | + try: |
| 69 | + call_command('update_index', '--remove', verbosity=1) |
| 70 | + except Exception as e: |
| 71 | + logger.error(f"Whoosh update failed: {e}") |
| 72 | + try: |
| 73 | + call_command('rebuild_index', '--noinput', verbosity=1) |
| 74 | + except Exception as e2: |
| 75 | + logger.error(f"Whoosh rebuild failed: {e2}") |
| 76 | + |
| 77 | + if rebuild_vector: |
| 78 | + logger.info("Rebuilding vector index...") |
| 79 | + try: |
| 80 | + _rebuild_vector_index() |
| 81 | + except Exception as e: |
| 82 | + logger.error(f"Vector index rebuild failed: {e}") |
| 83 | + |
| 84 | + |
| 85 | +def _rebuild_vector_index(): |
| 86 | + from django.conf import settings |
| 87 | + from api import models as v1 |
| 88 | + from api_v2 import models as v2 |
| 89 | + |
| 90 | + try: |
| 91 | + import spacy |
| 92 | + except ImportError: |
| 93 | + logger.warning("spaCy not installed - skipping vector index") |
| 94 | + return |
| 95 | + |
| 96 | + try: |
| 97 | + nlp = spacy.load("en_core_web_md") |
| 98 | + except OSError: |
| 99 | + logger.warning("spaCy model not found - skipping vector index") |
| 100 | + return |
| 101 | + |
| 102 | + nlp.select_pipes(disable=["ner", "parser"]) |
| 103 | + |
| 104 | + all_embeddings = [] |
| 105 | + all_names = [] |
| 106 | + all_metadata = [] |
| 107 | + |
| 108 | + v1_models = [ |
| 109 | + (v1.MagicItem, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 110 | + (v1.Spell, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 111 | + (v1.Monster, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 112 | + (v1.CharClass, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 113 | + (v1.Race, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 114 | + (v1.Feat, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 115 | + (v1.Condition, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 116 | + (v1.Background, lambda o: o.name + " " + (o.desc or "")[:200]), |
| 117 | + ] |
| 118 | + |
| 119 | + v2_models = [ |
| 120 | + (v2.Item, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 121 | + (v2.Spell, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 122 | + (v2.Creature, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 123 | + (v2.CharacterClass, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 124 | + (v2.Species, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 125 | + (v2.Feat, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 126 | + (v2.Background, lambda o: o.name + " " + (o.as_text() or "")[:200]), |
| 127 | + ] |
| 128 | + |
| 129 | + def process_model(model, text_func, schema_version): |
| 130 | + texts = [] |
| 131 | + for obj in model.objects.all(): |
| 132 | + try: |
| 133 | + text = text_func(obj) |
| 134 | + texts.append(text) |
| 135 | + all_names.append(obj.name) |
| 136 | + |
| 137 | + doc_key = obj.document.slug if schema_version == 'v1' else obj.document.key |
| 138 | + all_metadata.append({ |
| 139 | + 'object_type': model.__name__, |
| 140 | + 'document_pk': doc_key, |
| 141 | + 'schema_version': schema_version, |
| 142 | + 'description': text[:500] if text else '' |
| 143 | + }) |
| 144 | + except Exception as e: |
| 145 | + logger.debug(f"Skipping {model.__name__} object: {e}") |
| 146 | + |
| 147 | + for doc in nlp.pipe(texts, batch_size=50): |
| 148 | + vectors = [token.vector for token in doc if token.has_vector] |
| 149 | + if vectors: |
| 150 | + avg_vector = np.mean(vectors, axis=0) |
| 151 | + norm = np.linalg.norm(avg_vector) |
| 152 | + if norm > 0: |
| 153 | + avg_vector = avg_vector / norm |
| 154 | + all_embeddings.append(avg_vector) |
| 155 | + else: |
| 156 | + all_embeddings.append(np.zeros(nlp.vocab.vectors_length)) |
| 157 | + |
| 158 | + for model, text_func in v1_models: |
| 159 | + try: |
| 160 | + process_model(model, text_func, 'v1') |
| 161 | + except Exception as e: |
| 162 | + logger.warning(f"Error processing {model.__name__}: {e}") |
| 163 | + |
| 164 | + for model, text_func in v2_models: |
| 165 | + try: |
| 166 | + process_model(model, text_func, 'v2') |
| 167 | + except Exception as e: |
| 168 | + logger.warning(f"Error processing {model.__name__}: {e}") |
| 169 | + |
| 170 | + if not all_embeddings: |
| 171 | + logger.warning("No documents found for vector indexing") |
| 172 | + return |
| 173 | + |
| 174 | + embeddings = np.array(all_embeddings) |
| 175 | + logger.info(f"Vector index: {len(all_names)} documents, shape {embeddings.shape}") |
| 176 | + |
| 177 | + index_data = { |
| 178 | + "names": all_names, |
| 179 | + "metadata": all_metadata, |
| 180 | + "embeddings": embeddings, |
| 181 | + "vector_size": nlp.vocab.vectors_length |
| 182 | + } |
| 183 | + |
| 184 | + index_path = Path(settings.BASE_DIR) / "server" / "vector_index.pkl" |
| 185 | + with index_path.open("wb") as fh: |
| 186 | + pickle.dump(index_data, fh) |
| 187 | + |
| 188 | + # Invalidate cached index |
| 189 | + from search import services |
| 190 | + services._vector_index = None |
| 191 | + services._vector_index_loaded = False |
| 192 | + services._fuzzy_search_cache.clear() |
| 193 | + |
| 194 | + del all_embeddings, all_names, all_metadata, embeddings, index_data, nlp |
| 195 | + gc.collect() |
| 196 | + |
| 197 | + |
| 198 | +def trigger_reindex_now(rebuild_vector=True): |
| 199 | + """Trigger immediate re-index. Returns True if started, False if already running.""" |
| 200 | + global _indexing_in_progress, _last_index_time |
| 201 | + |
| 202 | + if not _indexing_lock.acquire(blocking=False): |
| 203 | + return False |
| 204 | + |
| 205 | + def _run(): |
| 206 | + global _indexing_in_progress, _last_index_time |
| 207 | + try: |
| 208 | + _indexing_in_progress = True |
| 209 | + start_time = time.time() |
| 210 | + _run_reindex(rebuild_vector=rebuild_vector) |
| 211 | + _last_index_time = time.time() |
| 212 | + logger.info(f"Manual re-index completed in {time.time() - start_time:.1f}s") |
| 213 | + except Exception as e: |
| 214 | + logger.error(f"Manual re-index failed: {e}", exc_info=True) |
| 215 | + finally: |
| 216 | + _indexing_in_progress = False |
| 217 | + _indexing_lock.release() |
| 218 | + |
| 219 | + thread = threading.Thread(target=_run, daemon=True, name="search-reindex-manual") |
| 220 | + thread.start() |
| 221 | + return True |
0 commit comments