|
3 | 3 | from typing import Any, Literal
|
4 | 4 |
|
5 | 5 | import pytest
|
6 |
| -from pydantic import BaseModel, ValidationError |
| 6 | +from pydantic import BaseModel, Field, ValidationError |
7 | 7 | from typing_extensions import TypedDict
|
8 | 8 |
|
9 | 9 | from agents import RunContextWrapper
|
@@ -451,3 +451,220 @@ def foo(x: int) -> int:
|
451 | 451 |
|
452 | 452 | assert fs.name == "custom"
|
453 | 453 | assert fs.params_json_schema.get("title") == "custom_args"
|
| 454 | + |
| 455 | + |
| 456 | +def test_function_with_field_required_constraints(): |
| 457 | + """Test function with required Field parameter that has constraints.""" |
| 458 | + |
| 459 | + def func_with_field_constraints(my_number: int = Field(..., gt=10, le=100)) -> int: |
| 460 | + return my_number * 2 |
| 461 | + |
| 462 | + fs = function_schema(func_with_field_constraints, use_docstring_info=False) |
| 463 | + |
| 464 | + # Check that the schema includes the constraints |
| 465 | + properties = fs.params_json_schema.get("properties", {}) |
| 466 | + my_number_schema = properties.get("my_number", {}) |
| 467 | + assert my_number_schema.get("type") == "integer" |
| 468 | + assert my_number_schema.get("exclusiveMinimum") == 10 # gt=10 |
| 469 | + assert my_number_schema.get("maximum") == 100 # le=100 |
| 470 | + |
| 471 | + # Valid input should work |
| 472 | + valid_input = {"my_number": 50} |
| 473 | + parsed = fs.params_pydantic_model(**valid_input) |
| 474 | + args, kwargs_dict = fs.to_call_args(parsed) |
| 475 | + result = func_with_field_constraints(*args, **kwargs_dict) |
| 476 | + assert result == 100 |
| 477 | + |
| 478 | + # Invalid input: too small (should violate gt=10) |
| 479 | + with pytest.raises(ValidationError): |
| 480 | + fs.params_pydantic_model(**{"my_number": 5}) |
| 481 | + |
| 482 | + # Invalid input: too large (should violate le=100) |
| 483 | + with pytest.raises(ValidationError): |
| 484 | + fs.params_pydantic_model(**{"my_number": 150}) |
| 485 | + |
| 486 | + |
| 487 | +def test_function_with_field_optional_with_default(): |
| 488 | + """Test function with optional Field parameter that has default and constraints.""" |
| 489 | + |
| 490 | + def func_with_optional_field( |
| 491 | + required_param: str, |
| 492 | + optional_param: float = Field(default=5.0, ge=0.0), |
| 493 | + ) -> str: |
| 494 | + return f"{required_param}: {optional_param}" |
| 495 | + |
| 496 | + fs = function_schema(func_with_optional_field, use_docstring_info=False) |
| 497 | + |
| 498 | + # Check that the schema includes the constraints and description |
| 499 | + properties = fs.params_json_schema.get("properties", {}) |
| 500 | + optional_schema = properties.get("optional_param", {}) |
| 501 | + assert optional_schema.get("type") == "number" |
| 502 | + assert optional_schema.get("minimum") == 0.0 # ge=0.0 |
| 503 | + assert optional_schema.get("default") == 5.0 |
| 504 | + |
| 505 | + # Valid input with default |
| 506 | + valid_input = {"required_param": "test"} |
| 507 | + parsed = fs.params_pydantic_model(**valid_input) |
| 508 | + args, kwargs_dict = fs.to_call_args(parsed) |
| 509 | + result = func_with_optional_field(*args, **kwargs_dict) |
| 510 | + assert result == "test: 5.0" |
| 511 | + |
| 512 | + # Valid input with explicit value |
| 513 | + valid_input2 = {"required_param": "test", "optional_param": 10.5} |
| 514 | + parsed2 = fs.params_pydantic_model(**valid_input2) |
| 515 | + args2, kwargs_dict2 = fs.to_call_args(parsed2) |
| 516 | + result2 = func_with_optional_field(*args2, **kwargs_dict2) |
| 517 | + assert result2 == "test: 10.5" |
| 518 | + |
| 519 | + # Invalid input: negative value (should violate ge=0.0) |
| 520 | + with pytest.raises(ValidationError): |
| 521 | + fs.params_pydantic_model(**{"required_param": "test", "optional_param": -1.0}) |
| 522 | + |
| 523 | + |
| 524 | +def test_function_with_field_description_merge(): |
| 525 | + """Test that Field descriptions are merged with docstring descriptions.""" |
| 526 | + |
| 527 | + def func_with_field_and_docstring( |
| 528 | + param_with_field_desc: int = Field(..., description="Field description"), |
| 529 | + param_with_both: str = Field(default="hello", description="Field description"), |
| 530 | + ) -> str: |
| 531 | + """ |
| 532 | + Function with both field and docstring descriptions. |
| 533 | +
|
| 534 | + Args: |
| 535 | + param_with_field_desc: Docstring description |
| 536 | + param_with_both: Docstring description |
| 537 | + """ |
| 538 | + return f"{param_with_field_desc}: {param_with_both}" |
| 539 | + |
| 540 | + fs = function_schema(func_with_field_and_docstring, use_docstring_info=True) |
| 541 | + |
| 542 | + # Check that docstring description takes precedence when both exist |
| 543 | + properties = fs.params_json_schema.get("properties", {}) |
| 544 | + param1_schema = properties.get("param_with_field_desc", {}) |
| 545 | + param2_schema = properties.get("param_with_both", {}) |
| 546 | + |
| 547 | + # The docstring description should be used when both are present |
| 548 | + assert param1_schema.get("description") == "Docstring description" |
| 549 | + assert param2_schema.get("description") == "Docstring description" |
| 550 | + |
| 551 | + |
| 552 | +def func_with_field_desc_only( |
| 553 | + param_with_field_desc: int = Field(..., description="Field description only"), |
| 554 | + param_without_desc: str = Field(default="hello"), |
| 555 | +) -> str: |
| 556 | + return f"{param_with_field_desc}: {param_without_desc}" |
| 557 | + |
| 558 | + |
| 559 | +def test_function_with_field_description_only(): |
| 560 | + """Test that Field descriptions are used when no docstring info.""" |
| 561 | + |
| 562 | + fs = function_schema(func_with_field_desc_only) |
| 563 | + |
| 564 | + # Check that field description is used when no docstring |
| 565 | + properties = fs.params_json_schema.get("properties", {}) |
| 566 | + param1_schema = properties.get("param_with_field_desc", {}) |
| 567 | + param2_schema = properties.get("param_without_desc", {}) |
| 568 | + |
| 569 | + assert param1_schema.get("description") == "Field description only" |
| 570 | + assert param2_schema.get("description") is None |
| 571 | + |
| 572 | + |
| 573 | +def test_function_with_field_string_constraints(): |
| 574 | + """Test function with Field parameter that has string-specific constraints.""" |
| 575 | + |
| 576 | + def func_with_string_field( |
| 577 | + name: str = Field(..., min_length=3, max_length=20, pattern=r"^[A-Za-z]+$"), |
| 578 | + ) -> str: |
| 579 | + return f"Hello, {name}!" |
| 580 | + |
| 581 | + fs = function_schema(func_with_string_field, use_docstring_info=False) |
| 582 | + |
| 583 | + # Check that the schema includes string constraints |
| 584 | + properties = fs.params_json_schema.get("properties", {}) |
| 585 | + name_schema = properties.get("name", {}) |
| 586 | + assert name_schema.get("type") == "string" |
| 587 | + assert name_schema.get("minLength") == 3 |
| 588 | + assert name_schema.get("maxLength") == 20 |
| 589 | + assert name_schema.get("pattern") == r"^[A-Za-z]+$" |
| 590 | + |
| 591 | + # Valid input |
| 592 | + valid_input = {"name": "Alice"} |
| 593 | + parsed = fs.params_pydantic_model(**valid_input) |
| 594 | + args, kwargs_dict = fs.to_call_args(parsed) |
| 595 | + result = func_with_string_field(*args, **kwargs_dict) |
| 596 | + assert result == "Hello, Alice!" |
| 597 | + |
| 598 | + # Invalid input: too short |
| 599 | + with pytest.raises(ValidationError): |
| 600 | + fs.params_pydantic_model(**{"name": "Al"}) |
| 601 | + |
| 602 | + # Invalid input: too long |
| 603 | + with pytest.raises(ValidationError): |
| 604 | + fs.params_pydantic_model(**{"name": "A" * 25}) |
| 605 | + |
| 606 | + # Invalid input: doesn't match pattern (contains numbers) |
| 607 | + with pytest.raises(ValidationError): |
| 608 | + fs.params_pydantic_model(**{"name": "Alice123"}) |
| 609 | + |
| 610 | + |
| 611 | +def test_function_with_field_multiple_constraints(): |
| 612 | + """Test function with multiple Field parameters having different constraint types.""" |
| 613 | + |
| 614 | + def func_with_multiple_field_constraints( |
| 615 | + score: int = Field(..., ge=0, le=100, description="Score from 0 to 100"), |
| 616 | + name: str = Field(default="Unknown", min_length=1, max_length=50), |
| 617 | + factor: float = Field(default=1.0, gt=0.0, description="Positive multiplier"), |
| 618 | + ) -> str: |
| 619 | + final_score = score * factor |
| 620 | + return f"{name} scored {final_score}" |
| 621 | + |
| 622 | + fs = function_schema(func_with_multiple_field_constraints, use_docstring_info=False) |
| 623 | + |
| 624 | + # Check schema structure |
| 625 | + properties = fs.params_json_schema.get("properties", {}) |
| 626 | + |
| 627 | + # Check score field |
| 628 | + score_schema = properties.get("score", {}) |
| 629 | + assert score_schema.get("type") == "integer" |
| 630 | + assert score_schema.get("minimum") == 0 |
| 631 | + assert score_schema.get("maximum") == 100 |
| 632 | + assert score_schema.get("description") == "Score from 0 to 100" |
| 633 | + |
| 634 | + # Check name field |
| 635 | + name_schema = properties.get("name", {}) |
| 636 | + assert name_schema.get("type") == "string" |
| 637 | + assert name_schema.get("minLength") == 1 |
| 638 | + assert name_schema.get("maxLength") == 50 |
| 639 | + assert name_schema.get("default") == "Unknown" |
| 640 | + |
| 641 | + # Check factor field |
| 642 | + factor_schema = properties.get("factor", {}) |
| 643 | + assert factor_schema.get("type") == "number" |
| 644 | + assert factor_schema.get("exclusiveMinimum") == 0.0 |
| 645 | + assert factor_schema.get("default") == 1.0 |
| 646 | + assert factor_schema.get("description") == "Positive multiplier" |
| 647 | + |
| 648 | + # Valid input with defaults |
| 649 | + valid_input = {"score": 85} |
| 650 | + parsed = fs.params_pydantic_model(**valid_input) |
| 651 | + args, kwargs_dict = fs.to_call_args(parsed) |
| 652 | + result = func_with_multiple_field_constraints(*args, **kwargs_dict) |
| 653 | + assert result == "Unknown scored 85.0" |
| 654 | + |
| 655 | + # Valid input with all parameters |
| 656 | + valid_input2 = {"score": 90, "name": "Alice", "factor": 1.5} |
| 657 | + parsed2 = fs.params_pydantic_model(**valid_input2) |
| 658 | + args2, kwargs_dict2 = fs.to_call_args(parsed2) |
| 659 | + result2 = func_with_multiple_field_constraints(*args2, **kwargs_dict2) |
| 660 | + assert result2 == "Alice scored 135.0" |
| 661 | + |
| 662 | + # Test various validation errors |
| 663 | + with pytest.raises(ValidationError): # score too high |
| 664 | + fs.params_pydantic_model(**{"score": 150}) |
| 665 | + |
| 666 | + with pytest.raises(ValidationError): # empty name |
| 667 | + fs.params_pydantic_model(**{"score": 50, "name": ""}) |
| 668 | + |
| 669 | + with pytest.raises(ValidationError): # zero factor |
| 670 | + fs.params_pydantic_model(**{"score": 50, "factor": 0.0}) |
0 commit comments