Skip to content

Commit b09d37d

Browse files
Update all translated document pages (#1221)
Automated update of translated documentation
1 parent 4350c34 commit b09d37d

26 files changed

+609
-607
lines changed

docs/ja/agents.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,16 @@ search:
44
---
55
# エージェント
66

7-
エージェントはアプリの中心的な構成要素です。エージェントは、instructions と tools で設定された大規模言語モデル ( LLM ) です。
7+
エージェントはアプリケーションの主要な構成要素です。エージェントとは、instructions と tools で構成された大規模言語モデル (LLM) です。
88

99
## 基本設定
1010

1111
エージェントでよく設定するプロパティは次のとおりです。
1212

13-
- `name`: エージェントを識別する必須の文字列です。
14-
- `instructions`: developer message(開発者メッセージ)または システムプロンプト とも呼ばれます。
15-
- `model`: 使用する LLM を指定します。また、temperature や top_p などのモデル調整パラメーターを設定する `model_settings` を任意で指定できます。
16-
- `tools`: エージェントがタスクを達成するために使用できる tools です。
13+
- `name`: エージェントを識別する必須の文字列です。
14+
- `instructions`: developer メッセージまたは system prompt とも呼ばれます。
15+
- `model`: 使用する LLM を指定します。任意の `model_settings` で temperature、top_p などのモデル調整パラメーターを設定できます。
16+
- `tools`: エージェントがタスクを達成するために使用できる tools です。
1717

1818
```python
1919
from agents import Agent, ModelSettings, function_tool
@@ -32,7 +32,7 @@ agent = Agent(
3232

3333
## コンテキスト
3434

35-
エージェントは汎用的な `context` 型を取ります。コンテキストは依存性注入用のツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、tool、handoff などに渡され、実行時に必要な依存関係や状態を格納する入れ物として機能します。コンテキストには任意の Python オブジェクトを渡せます。
35+
エージェントは汎用的に `context` 型を取り込みます。コンテキストは dependency-injection (依存性注入) 用のオブジェクトで、あなたが作成して `Runner.run()` に渡すことで、すべてのエージェント、tool、ハンドオフなどに共有されます。実行中の依存関係や状態をまとめて保持する入れ物として機能し、任意の Python オブジェクトを渡せます。
3636

3737
```python
3838
@dataclass
@@ -50,7 +50,7 @@ agent = Agent[UserContext](
5050

5151
## 出力タイプ
5252

53-
デフォルトでは、エージェントはプレーンテキストつまり `str` を出力します。特定の型で出力させたい場合は、`output_type` パラメーターを使用します。一般的には [Pydantic](https://docs.pydantic.dev/) オブジェクトを使うことが多いですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型であれば何でもサポートされています。たとえば dataclass、list、TypedDict などです
53+
デフォルトでは、エージェントはプレーンテキスト (つまり `str`) を出力します。特定の型で出力させたい場合は、`output_type` パラメーターを使用してください。よく使われる選択肢として [Pydantic](https://docs.pydantic.dev/) オブジェクトがありますが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる型であれば、dataclass、list、TypedDict など何でも対応しています
5454

5555
```python
5656
from pydantic import BaseModel
@@ -71,11 +71,11 @@ agent = Agent(
7171

7272
!!! note
7373

74-
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく structured outputs を使用するよう指示されます
74+
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく、[structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するようになります
7575

7676
## ハンドオフ
7777

78-
ハンドオフは、エージェントが委譲できるサブエージェントです。ハンドオフのリストを渡すと、エージェントは関連性がある場合にそれらへ委譲できます。これは、単一タスクに特化したモジュール型エージェントを編成する強力なパターンです。詳細は [ハンドオフ](handoffs.md) のドキュメントをご覧ください。
78+
ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを渡すと、エージェントは必要に応じてそれらに委任できます。これは、単一タスクに特化したモジュール化されたエージェントをオーケストレーションする強力なパターンです。詳しくは [ハンドオフ](handoffs.md) のドキュメントをご覧ください。
7979

8080
```python
8181
from agents import Agent
@@ -96,7 +96,7 @@ triage_agent = Agent(
9696

9797
## 動的 instructions
9898

99-
通常はエージェント作成時に instructions を渡しますが、関数を通じて動的に instructions を提供することもできます。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。同期関数でも `async` 関数でも利用可能です
99+
多くの場合、エージェント作成時に instructions を渡せますが、関数を介して動的に instructions を生成することも可能です。その関数は agent と context を受け取り、プロンプトを返さなければなりません。同期関数と `async` 関数のどちらも利用できます
100100

101101
```python
102102
def dynamic_instructions(
@@ -113,15 +113,15 @@ agent = Agent[UserContext](
113113

114114
## ライフサイクルイベント (hooks)
115115

116-
エージェントのライフサイクルを監視したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりするケースです`hooks` プロパティを使うことでエージェントのライフサイクルにフックを追加できます[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、必要なメソッドをオーバーライドしてください
116+
エージェントのライフサイクルを監視したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりできます`hooks` プロパティを使ってエージェントのライフサイクルにフックできます[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、関心のあるメソッドをオーバーライドしてください
117117

118118
## ガードレール
119119

120-
ガードレールを使うと、エージェントの実行と並行してユーザー入力に対するチェック/バリデーションを実行できます。たとえば、ユーザー入力の関連性をフィルタリングすることが可能です。詳細は [guardrails](guardrails.md) のドキュメントをご参照ください
120+
ガードレールを利用すると、エージェントの実行と並行してユーザー入力のチェックやバリデーションを行えます。たとえば、ユーザー入力の関連性をスクリーニングできます。詳細は [ガードレール](guardrails.md) のドキュメントをご覧ください
121121

122-
## エージェントのクローンとコピー
122+
## エージェントのクローン/コピー
123123

124-
エージェントの `clone()` メソッドを使用すると、エージェントを複製し、必要に応じて任意のプロパティを変更できます。
124+
エージェントの `clone()` メソッドを使うと、既存のエージェントを複製し、必要に応じて任意のプロパティを変更できます。
125125

126126
```python
127127
pirate_agent = Agent(
@@ -138,15 +138,15 @@ robot_agent = pirate_agent.clone(
138138

139139
## ツール使用の強制
140140

141-
tools のリストを渡しても、LLM が必ずツールを使用するわけではありません。`ModelSettings.tool_choice` を設定することでツール使用を強制できます。設定可能な値は次のとおりです
141+
tools のリストを渡しても、LLM が必ずしもツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することで、ツール使用を強制できます。有効な値は次のとおりです
142142

143-
1. `auto` : LLM がツールを使用するかどうかを判断します
144-
2. `required` : LLM にツールの使用を必須とします (どのツールを使うかは LLM が判断)。
145-
3. `none` : LLM にツールを使用しないことを要求します
146-
4. 特定の文字列 (例: `my_tool`) を設定すると、そのツールの使用を必須とします
143+
1. `auto`LLM がツールを使うかどうかを判断します
144+
2. `required`LLM にツール使用を必須とします (ただしどのツールを使うかは賢く選択します)。
145+
3. `none`LLM にツールを使用しないことを必須とします
146+
4. 具体的な文字列 (例: `my_tool`) を設定すると、LLM はそのツールを必ず使用します
147147

148148
!!! note
149149

150-
無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループが発生するのは、ツールの結果が LLM へ送られ、`tool_choice` により再びツール呼び出しが生成されるというサイクルが続くためです
150+
無限ループを防ぐため、フレームワークはツール呼び出し後に自動で `tool_choice` "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。ツールの実行結果が再び LLM に送られ、`tool_choice` の設定により新たなツール呼び出しが発生し続けるのが無限ループの原因です
151151

152-
ツール呼び出し後に自動モードへ移行せず完全に処理を終了したい場合は、[`Agent.tool_use_behavior="stop_on_first_tool"`] を設定してください。これにより、ツールの出力をそのまま最終応答として使用し、追加の LLM 処理を行いません。
152+
ツール呼び出し後に自動モードで継続せず完全に停止したい場合は、[`Agent.tool_use_behavior="stop_on_first_tool"`] を設定してください。ツールの出力をそのまま最終応答として使用し、追加の LLM 処理を行いません。

docs/ja/config.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,15 @@ search:
66

77
## API キーとクライアント
88

9-
デフォルトでは、 SDK はインポートされるとすぐに LLM リクエストとトレーシング用に `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、 [set_default_openai_key()][agents.set_default_openai_key] 関数を使用してキーを設定できます
9+
デフォルトでは、 SDK は import された時点で、 LLM リクエストとトレーシング用に `OPENAI_API_KEY` 環境変数を探します。アプリを起動する前にその環境変数を設定できない場合は、[`set_default_openai_key()`][agents.set_default_openai_key] 関数を使ってキーを設定できます
1010

1111
```python
1212
from agents import set_default_openai_key
1313

1414
set_default_openai_key("sk-...")
1515
```
1616

17-
また、使用する OpenAIクライアントを設定することもできます。デフォルトでは、 SDK は環境変数または上記で設定したデフォルトキーを用いて `AsyncOpenAI` インスタンスを作成します。これを変更したい場合は、 [set_default_openai_client()][agents.set_default_openai_client] 関数を使用してください。
17+
別の方法として、使用する OpenAI クライアントを設定することもできます。デフォルトでは、 SDK は環境変数または上記で設定したデフォルトキーを用いて `AsyncOpenAI` インスタンスを生成します。これを変更したい場合は、[`set_default_openai_client()`][agents.set_default_openai_client] 関数を使用してください。
1818

1919
```python
2020
from openai import AsyncOpenAI
@@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...")
2424
set_default_openai_client(custom_client)
2525
```
2626

27-
さらに、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用しますが、 [set_default_openai_api()][agents.set_default_openai_api] 関数を使用して Chat Completions API に切り替えることができます
27+
最後に、使用する OpenAI API をカスタマイズすることも可能です。デフォルトでは OpenAI Responses API を使用します。これを Chat Completions API に変更したい場合は、[`set_default_openai_api()`][agents.set_default_openai_api] 関数をご利用ください
2828

2929
```python
3030
from agents import set_default_openai_api
@@ -34,15 +34,15 @@ set_default_openai_api("chat_completions")
3434

3535
## トレーシング
3636

37-
トレーシングはデフォルトで有効になっています。上記セクションの OpenAI API キー (環境変数または設定済みのデフォルトキー) が自動的に使用されます。トレーシング専用の API キーを設定したい場合は、 [`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用してください
37+
トレーシングはデフォルトで有効になっています。デフォルトでは、上記のセクションで設定した OpenAI API キー(環境変数またはデフォルトキー)を使用します。トレーシングで使用する API キーを個別に設定したい場合は、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用できます
3838

3939
```python
4040
from agents import set_tracing_export_api_key
4141

4242
set_tracing_export_api_key("sk-...")
4343
```
4444

45-
トレーシングを完全に無効化したい場合は、 [`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用できます
45+
さらに、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使うことで、トレーシングを完全に無効化できます
4646

4747
```python
4848
from agents import set_tracing_disabled
@@ -52,17 +52,17 @@ set_tracing_disabled(True)
5252

5353
## デバッグログ
5454

55-
SDK にはハンドラーが設定されていない 2 つの Python ロガーが用意されています。デフォルトでは、 warning と error は `stdout` に出力されますが、それ以外のログは抑制されます。
55+
SDK には、ハンドラーが設定されていない Python ロガーが 2 つあります。デフォルトでは、警告とエラーのみが `stdout` に出力され、それ以外のログは抑制されます。
5656

57-
詳細なログを有効にするには、 [`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください。
57+
詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください。
5858

5959
```python
6060
from agents import enable_verbose_stdout_logging
6161

6262
enable_verbose_stdout_logging()
6363
```
6464

65-
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることも可能です。詳しくは [Python logging guide](https://docs.python.org/3/howto/logging.html) をご覧ください。
65+
ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることもできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) をご覧ください。
6666

6767
```python
6868
import logging
@@ -81,17 +81,17 @@ logger.setLevel(logging.WARNING)
8181
logger.addHandler(logging.StreamHandler())
8282
```
8383

84-
### ログに含まれる機密データ
84+
### ログに含まれる機微なデータ
8585

86-
ログの中には機密データ (例: ユーザーデータ) を含むものがあります。これらのデータを記録しないようにする場合は、次の環境変数を設定してください
86+
一部のログには機微なデータ(例: ユーザー データ)が含まれる場合があります。これらのデータの記録を無効化したい場合は、以下の環境変数を設定してください
8787

88-
LLM の入力および出力のロギングを無効化する:
88+
LLM の入力および出力のロギングを無効にするには:
8989

9090
```bash
9191
export OPENAI_AGENTS_DONT_LOG_MODEL_DATA=1
9292
```
9393

94-
ツールの入力および出力のロギングを無効化する:
94+
ツールの入力および出力のロギングを無効にするには:
9595

9696
```bash
9797
export OPENAI_AGENTS_DONT_LOG_TOOL_DATA=1

0 commit comments

Comments
 (0)