Skip to content

Commit b307450

Browse files
Update all translated document pages (#2104)
1 parent e93d778 commit b307450

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

90 files changed

+2039
-2002
lines changed

docs/ja/agents.md

Lines changed: 30 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,16 @@ search:
44
---
55
# エージェント
66

7-
エージェントはアプリの中心的な基本コンポーネントです。エージェントはinstructions とツールで構成された大規模言語モデル( LLM )です。
7+
エージェントはアプリの中核となる構成要素です。エージェントは instructions とツールで構成された大規模言語モデル( LLM )です。
88

9-
## 基本構成
9+
## 基本設定
1010

11-
エージェントで一般的に設定するプロパティは次のとおりです
11+
エージェントでよく設定するプロパティは次のとおりです
1212

13-
- `name`: エージェントを識別する必須の文字列。
14-
- `instructions`: developer message または system prompt とも呼ばれます。
15-
- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の `model_settings`
16-
- `tools`: エージェントがタスクを達成するために使用できるツール
13+
- `name`: エージェントを識別する必須の文字列。
14+
- `instructions`: developer message または system prompt とも呼ばれます。
15+
- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の `model_settings`
16+
- `tools`: エージェントがタスク達成に使用できるツール
1717

1818
```python
1919
from agents import Agent, ModelSettings, function_tool
@@ -33,7 +33,7 @@ agent = Agent(
3333

3434
## コンテキスト
3535

36-
エージェントは `context` 型に対してジェネリックです。コンテキストは依存性注入ツールです。あなたが作成して `Runner.run()` に渡すオブジェクトで、すべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係と状態の入れ物として機能します。任意の Python オブジェクトをコンテキストとして提供できます
36+
エージェントはその `context` 型に対してジェネリックです。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係や状態をまとめて保持します。コンテキストには任意の Python オブジェクトを提供できます
3737

3838
```python
3939
@dataclass
@@ -52,7 +52,7 @@ agent = Agent[UserContext](
5252

5353
## 出力タイプ
5454

55-
デフォルトでは、エージェントはプレーンテキスト(すなわち `str`の出力を生成します。特定の型の出力を生成させたい場合は、`output_type` パラメーターを使用できます。一般的な選択肢は [Pydantic](https://docs.pydantic.dev/) オブジェクトの使用ですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型(dataclasses、リスト、TypedDict など)をサポートします。
55+
既定では、エージェントはプレーンテキスト(つまり `str`出力を生成します。特定の型の出力を生成させたい場合は、`output_type` パラメーターを使用できます。一般的には [Pydantic](https://docs.pydantic.dev/) オブジェクトを使いますが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型(dataclasses、lists、TypedDict など)をサポートします。
5656

5757
```python
5858
from pydantic import BaseModel
@@ -73,20 +73,20 @@ agent = Agent(
7373

7474
!!! note
7575

76-
`output_type` を渡すと、モデルに通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するよう指示します
76+
`output_type` を渡すと、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するよう指示されます
7777

7878
## マルチエージェントシステムの設計パターン
7979

80-
マルチエージェントシステムの設計方法は多数ありますが、一般的に広く適用できるパターンとして次の 2 つがあります
80+
マルチ エージェント システムの設計方法は多数ありますが、一般的に広く適用できるパターンを 2 つ紹介します
8181

82-
1. マネージャー(エージェントをツールとして): 中央のマネージャー/オーケストレーターが、ツールとして公開された専門のサブエージェントを呼び出し、会話の制御を保持します。
83-
2. ハンドオフ: 対等なエージェントが制御を専門のエージェントに引き継ぎ、そのエージェントが会話を引き継ぎます。これは分散型です。
82+
1. マネージャー(エージェントをツールとして): 中央のマネージャー/オーケストレーターが、ツールとして公開された特化サブ エージェントを呼び出し、会話の制御を保持します。
83+
2. ハンドオフ: ピア エージェントが制御を特化エージェントに引き渡し、そのエージェントが会話を引き継ぎます。これは分散型です。
8484

85-
詳細は[エージェント構築の実践ガイド](https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf)をご覧ください。
85+
詳細は[エージェント構築の実践ガイド](https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf)をご覧ください。
8686

8787
### マネージャー(エージェントをツールとして)
8888

89-
`customer_facing_agent` はすべてのユーザー対応を行い、ツールとして公開された専門のサブエージェントを呼び出します。詳細は [ツール](tools.md#agents-as-tools) のドキュメントをご覧ください。
89+
`customer_facing_agent` はすべてのユーザーとのやりとりを担当し、ツールとして公開された特化サブ エージェントを呼び出します。詳しくは[ツール](tools.md#agents-as-tools)のドキュメントをご覧ください。
9090

9191
```python
9292
from agents import Agent
@@ -115,7 +115,7 @@ customer_facing_agent = Agent(
115115

116116
### ハンドオフ
117117

118-
ハンドオフは、エージェントが委譲できるサブエージェントです。ハンドオフが発生すると、委譲先のエージェントは会話履歴を受け取り、会話を引き継ぎます。このパターンにより、単一のタスクに特化して優れた性能を発揮する、モジュール式の専門エージェントが可能になります。詳細は [ハンドオフ](handoffs.md) のドキュメントをご覧ください。
118+
ハンドオフは、エージェントが委譲できるサブ エージェントです。ハンドオフが発生すると、委譲先のエージェントは会話履歴を受け取り、会話を引き継ぎます。このパターンにより、単一のタスクに秀でたモジュール型の特化エージェントが実現できます。詳しくは[ハンドオフ](handoffs.md)のドキュメントをご覧ください。
119119

120120
```python
121121
from agents import Agent
@@ -136,7 +136,7 @@ triage_agent = Agent(
136136

137137
## 動的 instructions
138138

139-
多くの場合、エージェントの作成時に instructions を指定できます。ただし、関数を介して動的な instructions を提供することもできます。その関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方が利用可能です
139+
多くの場合、エージェントの作成時に instructions を指定できますが、関数経由で動的に instructions を提供することも可能です。関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方を受け付けます
140140

141141
```python
142142
def dynamic_instructions(
@@ -153,15 +153,15 @@ agent = Agent[UserContext](
153153

154154
## ライフサイクルイベント(フック)
155155

156-
エージェントのライフサイクルを観察したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりできます`hooks` プロパティを使用して、エージェントのライフサイクルにフックできます[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。
156+
エージェントのライフサイクルを観測したい場合があります。例えば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりする場合です`hooks` プロパティでエージェントのライフサイクルにフックできます[`AgentHooks`][agents.lifecycle.AgentHooks] クラスを継承し、関心のあるメソッドをオーバーライドしてください。
157157

158158
## ガードレール
159159

160-
ガードレールにより、エージェントの実行と並行してユーザー入力に対するチェック/検証を実行し、エージェントの出力が生成された後にもチェック/検証を実行できます。たとえば、ユーザーの入力とエージェントの出力の関連性をスクリーニングできます。詳細は [ガードレール](guardrails.md) のドキュメントをご覧ください。
160+
ガードレールにより、エージェントの実行と並行してユーザー入力のチェック/検証を行い、生成後のエージェント出力に対してもチェックを行えます。例えば、ユーザー入力やエージェント出力の関連性をスクリーニングできます。詳しくは[ガードレール](guardrails.md)のドキュメントをご覧ください。
161161

162162
## エージェントのクローン/コピー
163163

164-
エージェントの `clone()` メソッドを使用すると、エージェントを複製し、任意のプロパティを変更できます
164+
エージェントの `clone()` メソッドを使用すると、エージェントを複製し、必要に応じて任意のプロパティを変更できます
165165

166166
```python
167167
pirate_agent = Agent(
@@ -178,12 +178,12 @@ robot_agent = pirate_agent.clone(
178178

179179
## ツール使用の強制
180180

181-
ツールのリストを指定しても、LLM が必ずツールを使用するとは限りません[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。有効な値は次のとおりです。
181+
ツールのリストを指定しても、必ずしも LLM がツールを使用するとは限りません[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。有効な値は次のとおりです。
182182

183-
1. `auto`: LLM にツールを使用するかどうかを判断させます
184-
2. `required`: LLM にツールの使用を要求します(どのツールを使うかは賢く判断できます)。
185-
3. `none`: LLM にツールを _使用しない_ よう要求します
186-
4. 特定の文字列(例: `my_tool`を設定し、その特定のツールを LLM に使用させます
183+
1. `auto`: ツールを使用するかどうかを LLM が判断します
184+
2. `required`: LLM にツールの使用を要求します(ただし、どのツールを使うかは賢く判断します)。
185+
3. `none`: LLM にツールを使用しないことを要求します
186+
4. 特定の文字列(例: `my_tool`を設定: LLM にその特定のツールを使用するよう要求します
187187

188188
```python
189189
from agents import Agent, Runner, function_tool, ModelSettings
@@ -203,10 +203,10 @@ agent = Agent(
203203

204204
## ツール使用の動作
205205

206-
`Agent` の設定にある `tool_use_behavior` パラメーターは、ツールの出力の扱いを制御します
206+
`Agent` の設定にある `tool_use_behavior` パラメーターは、ツール出力の扱い方を制御します
207207

208-
- `"run_llm_again"`: デフォルト。ツールが実行され、その結果を LLM が処理して最終応答を生成します。
209-
- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、以降の LLM 処理は行いません。
208+
- `"run_llm_again"`: 既定。ツールを実行し、その結果を LLM が処理して最終応答を生成します。
209+
- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、追加の LLM 処理は行いません。
210210

211211
```python
212212
from agents import Agent, Runner, function_tool, ModelSettings
@@ -248,7 +248,7 @@ agent = Agent(
248248
)
249249
```
250250

251-
- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を継続するかを判断するカスタム関数です
251+
- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を続行するかを判断するカスタム関数です
252252

253253
```python
254254
from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper
@@ -286,4 +286,4 @@ agent = Agent(
286286

287287
!!! note
288288

289-
無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この動作は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。無限ループは、ツール結果が LLM に送られ、`tool_choice` のために LLM が再びツール呼び出しを生成し続けることによって発生します
289+
無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この動作は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループは、ツール結果が LLM に送られ、`tool_choice` により LLM が再度ツール呼び出しを生成し続けることで発生します

docs/ja/config.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,15 @@ search:
66

77
## API キーとクライアント
88

9-
デフォルトでは、 SDK はインポートされた時点で、 LLM リクエストとトレーシングのために `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、 [set_default_openai_key()][agents.set_default_openai_key] 関数でキーを設定できます。
9+
デフォルトでは、SDK はインポート直後から LLM リクエストと トレーシング 用に `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数でキーを設定できます。
1010

1111
```python
1212
from agents import set_default_openai_key
1313

1414
set_default_openai_key("sk-...")
1515
```
1616

17-
また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、 SDK は環境変数の API キー、または上で設定したデフォルトキーを使用して `AsyncOpenAI` インスタンスを作成します。これを変更するには、 [set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。
17+
また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、SDK は環境変数または上記のデフォルトキーから API キーを使用して `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。
1818

1919
```python
2020
from openai import AsyncOpenAI
@@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...")
2424
set_default_openai_client(custom_client)
2525
```
2626

27-
最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。 [set_default_openai_api()][agents.set_default_openai_api] 関数を使って、 Chat Completions API を使用するように上書きできます
27+
最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。これを上書きして Chat Completions API を使うには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用します
2828

2929
```python
3030
from agents import set_default_openai_api
@@ -34,15 +34,15 @@ set_default_openai_api("chat_completions")
3434

3535
## トレーシング
3636

37-
トレーシングはデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(すなわち、環境変数または設定したデフォルトキー)を使用します。トレーシングに使用する API キーを個別に設定するには、 [`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。
37+
トレーシング はデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(すなわち、環境変数または設定したデフォルトキー)を使用します。トレーシング に使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。
3838

3939
```python
4040
from agents import set_tracing_export_api_key
4141

4242
set_tracing_export_api_key("sk-...")
4343
```
4444

45-
また、 [`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用して、トレーシングを完全に無効化することもできます
45+
また、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用して トレーシング を完全に無効化できます
4646

4747
```python
4848
from agents import set_tracing_disabled
@@ -52,17 +52,17 @@ set_tracing_disabled(True)
5252

5353
## デバッグロギング
5454

55-
SDK には、ハンドラーが設定されていない 2 つの Python ロガーがあります。デフォルトでは、これは警告とエラーが `stdout` に送られ、その他のログは抑制されることを意味します
55+
SDK にはハンドラー未設定の Python ロガーが 2 つあります。デフォルトでは、警告とエラーは `stdout` に出力され、それ以外のログは抑制されます
5656

57-
詳細なロギングを有効にするには、 [`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。
57+
詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。
5858

5959
```python
6060
from agents import enable_verbose_stdout_logging
6161

6262
enable_verbose_stdout_logging()
6363
```
6464

65-
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることもできます。詳細は [Python ロギングガイド](https://docs.python.org/3/howto/logging.html) を参照してください。
65+
また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズできます。詳しくは [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。
6666

6767
```python
6868
import logging
@@ -81,9 +81,9 @@ logger.setLevel(logging.WARNING)
8181
logger.addHandler(logging.StreamHandler())
8282
```
8383

84-
### ログ中の機微情報
84+
### ログ内の機微なデータ
8585

86-
特定のログには(例: ユーザーデータ)機微情報が含まれる場合があります。これらのデータが記録されないようにするには、以下の環境変数を設定してください
86+
一部のログには機微なデータ(例: ユーザー データ)が含まれる場合があります。これらのデータの記録を無効化したい場合は、次の環境変数を設定してください
8787

8888
LLM の入力と出力のロギングを無効化するには:
8989

0 commit comments

Comments
 (0)