Skip to content

Commit ffaf0a5

Browse files
authored
Merge branch 'main' into enhancement/add-streaming-inner-events
2 parents a7598a4 + 6b94ad0 commit ffaf0a5

19 files changed

+1461
-29
lines changed

README.md

Lines changed: 110 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,10 +12,119 @@ The OpenAI Agents SDK is a lightweight yet powerful framework for building multi
1212
1. [**Agents**](https://openai.github.io/openai-agents-python/agents): LLMs configured with instructions, tools, guardrails, and handoffs
1313
2. [**Handoffs**](https://openai.github.io/openai-agents-python/handoffs/): A specialized tool call used by the Agents SDK for transferring control between agents
1414
3. [**Guardrails**](https://openai.github.io/openai-agents-python/guardrails/): Configurable safety checks for input and output validation
15-
4. [**Tracing**](https://openai.github.io/openai-agents-python/tracing/): Built-in tracking of agent runs, allowing you to view, debug and optimize your workflows
15+
4. [**Sessions**](#sessions): Automatic conversation history management across agent runs
16+
5. [**Tracing**](https://openai.github.io/openai-agents-python/tracing/): Built-in tracking of agent runs, allowing you to view, debug and optimize your workflows
1617

1718
Explore the [examples](examples) directory to see the SDK in action, and read our [documentation](https://openai.github.io/openai-agents-python/) for more details.
1819

20+
## Sessions
21+
22+
The Agents SDK provides built-in session memory to automatically maintain conversation history across multiple agent runs, eliminating the need to manually handle `.to_input_list()` between turns.
23+
24+
### Quick start
25+
26+
```python
27+
from agents import Agent, Runner, SQLiteSession
28+
29+
# Create agent
30+
agent = Agent(
31+
name="Assistant",
32+
instructions="Reply very concisely.",
33+
)
34+
35+
# Create a session instance
36+
session = SQLiteSession("conversation_123")
37+
38+
# First turn
39+
result = await Runner.run(
40+
agent,
41+
"What city is the Golden Gate Bridge in?",
42+
session=session
43+
)
44+
print(result.final_output) # "San Francisco"
45+
46+
# Second turn - agent automatically remembers previous context
47+
result = await Runner.run(
48+
agent,
49+
"What state is it in?",
50+
session=session
51+
)
52+
print(result.final_output) # "California"
53+
54+
# Also works with synchronous runner
55+
result = Runner.run_sync(
56+
agent,
57+
"What's the population?",
58+
session=session
59+
)
60+
print(result.final_output) # "Approximately 39 million"
61+
```
62+
63+
### Session options
64+
65+
- **No memory** (default): No session memory when session parameter is omitted
66+
- **`session: Session = DatabaseSession(...)`**: Use a Session instance to manage conversation history
67+
68+
```python
69+
from agents import Agent, Runner, SQLiteSession
70+
71+
# Custom SQLite database file
72+
session = SQLiteSession("user_123", "conversations.db")
73+
agent = Agent(name="Assistant")
74+
75+
# Different session IDs maintain separate conversation histories
76+
result1 = await Runner.run(
77+
agent,
78+
"Hello",
79+
session=session
80+
)
81+
result2 = await Runner.run(
82+
agent,
83+
"Hello",
84+
session=SQLiteSession("user_456", "conversations.db")
85+
)
86+
```
87+
88+
### Custom session implementations
89+
90+
You can implement your own session memory by creating a class that follows the `Session` protocol:
91+
92+
```python
93+
from agents.memory import Session
94+
from typing import List
95+
96+
class MyCustomSession:
97+
"""Custom session implementation following the Session protocol."""
98+
99+
def __init__(self, session_id: str):
100+
self.session_id = session_id
101+
# Your initialization here
102+
103+
async def get_items(self, limit: int | None = None) -> List[dict]:
104+
# Retrieve conversation history for the session
105+
pass
106+
107+
async def add_items(self, items: List[dict]) -> None:
108+
# Store new items for the session
109+
pass
110+
111+
async def pop_item(self) -> dict | None:
112+
# Remove and return the most recent item from the session
113+
pass
114+
115+
async def clear_session(self) -> None:
116+
# Clear all items for the session
117+
pass
118+
119+
# Use your custom session
120+
agent = Agent(name="Assistant")
121+
result = await Runner.run(
122+
agent,
123+
"Hello",
124+
session=MyCustomSession("my_session")
125+
)
126+
```
127+
19128
## Get started
20129

21130
1. Set up your Python environment

docs/index.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ The [OpenAI Agents SDK](https://github.com/openai/openai-agents-python) enables
55
- **Agents**, which are LLMs equipped with instructions and tools
66
- **Handoffs**, which allow agents to delegate to other agents for specific tasks
77
- **Guardrails**, which enable the inputs to agents to be validated
8+
- **Sessions**, which automatically maintains conversation history across agent runs
89

910
In combination with Python, these primitives are powerful enough to express complex relationships between tools and agents, and allow you to build real-world applications without a steep learning curve. In addition, the SDK comes with built-in **tracing** that lets you visualize and debug your agentic flows, as well as evaluate them and even fine-tune models for your application.
1011

@@ -21,6 +22,7 @@ Here are the main features of the SDK:
2122
- Python-first: Use built-in language features to orchestrate and chain agents, rather than needing to learn new abstractions.
2223
- Handoffs: A powerful feature to coordinate and delegate between multiple agents.
2324
- Guardrails: Run input validations and checks in parallel to your agents, breaking early if the checks fail.
25+
- Sessions: Automatic conversation history management across agent runs, eliminating manual state handling.
2426
- Function tools: Turn any Python function into a tool, with automatic schema generation and Pydantic-powered validation.
2527
- Tracing: Built-in tracing that lets you visualize, debug and monitor your workflows, as well as use the OpenAI suite of evaluation, fine-tuning and distillation tools.
2628

docs/ref/memory.md

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
# Memory
2+
3+
::: agents.memory
4+
5+
options:
6+
members:
7+
- Session
8+
- SQLiteSession

docs/running_agents.md

Lines changed: 36 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,9 @@ Calling any of the run methods can result in one or more agents running (and hen
6565

6666
At the end of the agent run, you can choose what to show to the user. For example, you might show the user every new item generated by the agents, or just the final output. Either way, the user might then ask a followup question, in which case you can call the run method again.
6767

68-
You can use the base [`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] method to get the inputs for the next turn.
68+
### Manual conversation management
69+
70+
You can manually manage conversation history using the [`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] method to get the inputs for the next turn:
6971

7072
```python
7173
async def main():
@@ -84,6 +86,39 @@ async def main():
8486
# California
8587
```
8688

89+
### Automatic conversation management with Sessions
90+
91+
For a simpler approach, you can use [Sessions](sessions.md) to automatically handle conversation history without manually calling `.to_input_list()`:
92+
93+
```python
94+
from agents import Agent, Runner, SQLiteSession
95+
96+
async def main():
97+
agent = Agent(name="Assistant", instructions="Reply very concisely.")
98+
99+
# Create session instance
100+
session = SQLiteSession("conversation_123")
101+
102+
with trace(workflow_name="Conversation", group_id=thread_id):
103+
# First turn
104+
result = await Runner.run(agent, "What city is the Golden Gate Bridge in?", session=session)
105+
print(result.final_output)
106+
# San Francisco
107+
108+
# Second turn - agent automatically remembers previous context
109+
result = await Runner.run(agent, "What state is it in?", session=session)
110+
print(result.final_output)
111+
# California
112+
```
113+
114+
Sessions automatically:
115+
116+
- Retrieves conversation history before each run
117+
- Stores new messages after each run
118+
- Maintains separate conversations for different session IDs
119+
120+
See the [Sessions documentation](sessions.md) for more details.
121+
87122
## Exceptions
88123

89124
The SDK raises exceptions in certain cases. The full list is in [`agents.exceptions`][]. As an overview:

docs/scripts/translate_docs.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -266,7 +266,9 @@ def translate_single_source_file(file_path: str) -> None:
266266

267267
def main():
268268
parser = argparse.ArgumentParser(description="Translate documentation files")
269-
parser.add_argument("--file", type=str, help="Specific file to translate (relative to docs directory)")
269+
parser.add_argument(
270+
"--file", type=str, help="Specific file to translate (relative to docs directory)"
271+
)
270272
args = parser.parse_args()
271273

272274
if args.file:

0 commit comments

Comments
 (0)