diff --git a/docs/ja/agents.md b/docs/ja/agents.md index c2d7ced57..472c09546 100644 --- a/docs/ja/agents.md +++ b/docs/ja/agents.md @@ -4,16 +4,16 @@ search: --- # エージェント -エージェントはアプリの中核となる基本コンポーネントです。エージェントは、instructions と tools で構成された大規模言語モデル(LLM)です。 +エージェントは、アプリの中核となる構成要素です。エージェントは、instructions とツールを設定した大規模言語モデル ( LLM ) です。 ## 基本設定 エージェントで最も一般的に設定するプロパティは次のとおりです。 -- `name`: エージェントを識別する必須の文字列です。 -- `instructions`: developer message または system prompt とも呼ばれます。 -- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の `model_settings` です。 -- `tools`: エージェントがタスク達成のために使用できるツールです。 +- `name`: エージェントを識別する必須の文字列。 +- `instructions`: developer message または システムプロンプト とも呼ばれます。 +- `model`: どの LLM を使用するか、またオプションの `model_settings` で temperature、top_p などのモデル調整パラメーターを設定します。 +- `tools`: エージェントがタスクを達成するために使用できるツール。 ```python from agents import Agent, ModelSettings, function_tool @@ -33,7 +33,7 @@ agent = Agent( ## コンテキスト -エージェントは `context` 型に対して汎用です。コンテキストは依存性注入のツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係と状態をひとまとめにして提供します。コンテキストには任意の Python オブジェクトを指定できます。 +エージェントは `context` 型に対して汎用的です。コンテキストは依存性注入のツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェントの実行に必要な依存関係や状態をまとめて保持します。コンテキストには任意の Python オブジェクトを渡せます。 ```python @dataclass @@ -52,7 +52,7 @@ agent = Agent[UserContext]( ## 出力タイプ -デフォルトでは、エージェントはプレーンテキスト(すなわち `str`)の出力を生成します。特定の型の出力を生成させたい場合は、`output_type` パラメーターを使用できます。一般的な選択肢は [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップ可能な任意の型(dataclasses、lists、TypedDict など)をサポートします。 +デフォルトでは、エージェントはプレーンテキスト (すなわち `str`) を出力します。特定のタイプの出力を生成させたい場合は、`output_type` パラメーターを使用できます。一般的な選択は [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型 (dataclasses、リスト、TypedDict など) をサポートします。 ```python from pydantic import BaseModel @@ -73,11 +73,11 @@ agent = Agent( !!! note - `output_type` を渡すと、通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するようモデルに指示します。 + `output_type` を指定すると、モデルは通常のプレーンテキスト応答ではなく [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用します。 ## ハンドオフ -ハンドオフは、エージェントが委任できるサブエージェントです。ハンドオフのリストを提供すると、エージェントは関連があればそれらに委任できます。これは、単一のタスクに特化して優れた能力を発揮する、モジュール式の専門エージェントをオーケストレーションできる強力なパターンです。詳しくは [handoffs](handoffs.md) ドキュメントをご覧ください。 +ハンドオフは、エージェントが委譲できるサブエージェントです。ハンドオフのリストを提供すると、エージェントは関連性がある場合にそれらへ委譲できます。これは、単一のタスクに特化したモジュール式のエージェントをオーケストレーションする強力なパターンです。詳しくは [handoffs](handoffs.md) ドキュメントをご覧ください。 ```python from agents import Agent @@ -98,7 +98,7 @@ triage_agent = Agent( ## 動的 instructions -多くの場合、エージェントの作成時に instructions を指定できますが、関数を介して動的な instructions を提供することもできます。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数のどちらも使用できます。 +多くの場合、エージェントの作成時に instructions を指定できますが、関数を使って動的に instructions を提供することもできます。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方が使用できます。 ```python def dynamic_instructions( @@ -113,17 +113,17 @@ agent = Agent[UserContext]( ) ``` -## ライフサイクルイベント(フック) +## ライフサイクルイベント (フック) -エージェントのライフサイクルを観測したい場合があります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりできます。`hooks` プロパティを使ってエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。 +エージェントのライフサイクルを観測したい場合があります。例えば、イベントをログに記録したり、特定のイベントが発生したときにデータを事前取得したりする場合です。`hooks` プロパティでエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。 ## ガードレール -ガードレールにより、エージェントの実行と並行してユーザー入力に対するチェック/バリデーションを行えます。たとえば、ユーザーの入力を関連性でスクリーニングできます。詳しくは [guardrails](guardrails.md) ドキュメントをご覧ください。 +ガードレールにより、エージェントの実行と並行して ユーザー 入力に対するチェック/バリデーションを実行できます。例えば、ユーザー の入力の関連性をスクリーニングできます。詳しくは [guardrails](guardrails.md) ドキュメントをご覧ください。 ## エージェントのクローン/コピー -エージェントの `clone()` メソッドを使用すると、エージェントを複製し、必要に応じて任意のプロパティを変更できます。 +エージェントの `clone()` メソッドを使うと、エージェントを複製し、必要に応じて任意のプロパティを変更できます。 ```python pirate_agent = Agent( @@ -140,12 +140,12 @@ robot_agent = pirate_agent.clone( ## ツール使用の強制 -ツールのリストを提供しても、LLM が必ずツールを使うとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。有効な値は次のとおりです。 +ツールのリストを指定しても、LLM が必ずツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定してツール使用を強制できます。有効な値は次のとおりです。 -1. `auto`: ツールを使うかどうかを LLM に任せます。 -2. `required`: LLM にツールの使用を要求します(どのツールを使うかは賢く選択します)。 -3. `none`: LLM にツールを使用しないことを要求します。 -4. 具体的な文字列(例: `my_tool`)を設定すると、LLM にその特定のツールの使用を要求します。 +1. `auto`: ツールを使用するかどうかを LLM が判断します。 +2. `required`: LLM にツールの使用を要求します (ただし、どのツールを使うかは賢く判断します)。 +3. `none`: LLM にツールを使用「しない」ことを要求します。 +4. 特定の文字列 (例: `my_tool`) を設定: LLM にその特定のツールを使用させます。 ```python from agents import Agent, Runner, function_tool, ModelSettings @@ -163,11 +163,11 @@ agent = Agent( ) ``` -## ツール使用時の挙動 +## ツール使用の挙動 -`Agent` 構成の `tool_use_behavior` パラメーターは、ツール出力の扱い方を制御します。 +`Agent` 設定の `tool_use_behavior` パラメーターは、ツール出力の扱い方を制御します。 - `"run_llm_again"`: デフォルト。ツールを実行し、その結果を LLM が処理して最終応答を生成します。 -- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を、追加の LLM 処理なしで最終応答として使用します。 +- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を最終応答として使用し、以降の LLM 処理は行いません。 ```python from agents import Agent, Runner, function_tool, ModelSettings @@ -207,7 +207,7 @@ agent = Agent( tool_use_behavior=StopAtTools(stop_at_tool_names=["get_weather"]) ) ``` -- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM 続行かを判断するカスタム関数です。 +- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を続行するかを判断するカスタム関数。 ```python from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper @@ -245,4 +245,4 @@ agent = Agent( !!! note - 無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループは、ツール結果が LLM に送られ、`tool_choice` により LLM が再びツール呼び出しを生成し続けるために発生します。 \ No newline at end of file + 無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。無限ループは、ツール結果が LLM に送られ、`tool_choice` のために LLM がさらに別のツール呼び出しを生成し続けることで発生します。 \ No newline at end of file diff --git a/docs/ja/config.md b/docs/ja/config.md index 4665d346a..a4c374779 100644 --- a/docs/ja/config.md +++ b/docs/ja/config.md @@ -6,7 +6,7 @@ search: ## API キーとクライアント -デフォルトでは、SDK はインポートされるとすぐに、LLM リクエストとトレーシングのために `OPENAI_API_KEY` 環境変数を探します。アプリの起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数でキーを設定できます。 +デフォルトでは、SDK はインポートされた時点で、LLM リクエストおよび トレーシング 用に `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数を使ってキーを設定できます。 ```python from agents import set_default_openai_key @@ -14,7 +14,7 @@ from agents import set_default_openai_key set_default_openai_key("sk-...") ``` -また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、SDK は環境変数の API キー、または上記で設定したデフォルトキーを使って `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用してください。 +また、使用する OpenAI クライアントを設定することもできます。デフォルトでは、SDK は環境変数または上記で設定したデフォルトキーを使って `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。 ```python from openai import AsyncOpenAI @@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...") set_default_openai_client(custom_client) ``` -最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。これを上書きして Chat Completions API を使うには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用してください。 +最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。これを上書きして Chat Completions API を使うには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用します。 ```python from agents import set_default_openai_api @@ -34,7 +34,7 @@ set_default_openai_api("chat_completions") ## トレーシング -トレーシングはデフォルトで有効です。デフォルトでは上記の OpenAI API キー(つまり環境変数、または設定したデフォルトキー)を使用します。トレーシングに使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用してください。 +トレーシング はデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(つまり、環境変数または設定したデフォルトキー)を使用します。トレーシング に使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。 ```python from agents import set_tracing_export_api_key @@ -42,7 +42,7 @@ from agents import set_tracing_export_api_key set_tracing_export_api_key("sk-...") ``` -[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用すると、トレーシングを完全に無効化することもできます。 +[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使って、トレーシング を完全に無効化することもできます。 ```python from agents import set_tracing_disabled @@ -52,9 +52,9 @@ set_tracing_disabled(True) ## デバッグログ -SDK には、ハンドラーが設定されていない 2 つの Python ロガーがあります。デフォルトでは、これにより warnings と errors が `stdout` に送られ、その他のログは抑制されます。 +SDK には、ハンドラーが設定されていない 2 つの Python ロガーがあります。デフォルトでは、警告とエラーは `stdout` に送られますが、その他のログは抑制されます。 -詳細なログ出力を有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用してください。 +冗長なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。 ```python from agents import enable_verbose_stdout_logging @@ -62,7 +62,7 @@ from agents import enable_verbose_stdout_logging enable_verbose_stdout_logging() ``` -また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることもできます。詳しくは [Python ロギングガイド](https://docs.python.org/3/howto/logging.html) を参照してください。 +また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) をご覧ください。 ```python import logging @@ -81,9 +81,9 @@ logger.setLevel(logging.WARNING) logger.addHandler(logging.StreamHandler()) ``` -### ログ内の機微データ +### ログ中の機微情報 -一部のログには機微データ(例: ユーザー データ)が含まれる場合があります。このデータの記録を無効化したい場合は、次の環境変数を設定してください。 +一部のログには機微情報(例: ユーザー データ)が含まれる場合があります。これらのデータがログに出力されないようにするには、次の環境変数を設定します。 LLM の入力と出力のロギングを無効化するには: diff --git a/docs/ja/context.md b/docs/ja/context.md index 022ba9d83..8c2e4ff0b 100644 --- a/docs/ja/context.md +++ b/docs/ja/context.md @@ -4,30 +4,30 @@ search: --- # コンテキスト管理 -コンテキストは多義的な用語です。重要になるコンテキストには、主に次の 2 つの種類があります。 +コンテキストは多義的な用語です。ここで扱う主なコンテキストは 2 つあります。 -1. コードからローカルに利用できるコンテキスト: ツール関数の実行時、`on_handoff` のようなコールバック、ライフサイクルフックなどで必要となるデータや依存関係です。 -2. LLMs に提供されるコンテキスト: 応答生成時に LLM が参照できるデータです。 +1. コードでローカルに利用可能なコンテキスト: ツール関数の実行時、`on_handoff` のようなコールバック、ライフサイクルフックなどで必要となるデータや依存関係です。 +2. LLM に対して利用可能なコンテキスト: 応答生成時に LLM が参照できるデータです。 ## ローカルコンテキスト -これは [`RunContextWrapper`][agents.run_context.RunContextWrapper] クラスと、その中の [`context`][agents.run_context.RunContextWrapper.context] プロパティによって表現されます。仕組みは次のとおりです。 +これは [`RunContextWrapper`][agents.run_context.RunContextWrapper] クラスと、その内部の [`context`][agents.run_context.RunContextWrapper.context] プロパティで表現されます。動作は次のとおりです。 -1. 任意の Python オブジェクトを作成します。よくあるパターンは dataclass や Pydantic オブジェクトを使うことです。 -2. そのオブジェクトを各種の実行メソッドに渡します(例: `Runner.run(..., **context=whatever**)`)。 -3. すべてのツール呼び出し、ライフサイクルフックなどにはラッパーオブジェクト `RunContextWrapper[T]` が渡されます。`T` はコンテキストオブジェクトの型で、`wrapper.context` からアクセスできます。 +1. 任意の Python オブジェクトを作成します。一般的には dataclass や Pydantic オブジェクトを使います。 +2. そのオブジェクトを各種の実行メソッド(例: `Runner.run(..., **context=whatever**)`)に渡します。 +3. すべてのツール呼び出しやライフサイクルフックなどに、`RunContextWrapper[T]` というラッパーオブジェクトが渡されます。ここで `T` はコンテキストオブジェクトの型を表し、`wrapper.context` からアクセスできます。 -** 最重要 ** な注意点: 特定のエージェント実行においては、そのエージェント、ツール関数、ライフサイクルなどのすべてが同じ「型」のコンテキストを使用しなければなりません。 + **最も重要な点** は、特定のエージェント実行において、あらゆるエージェント、ツール関数、ライフサイクルなどが同一のコンテキストの型を使用しなければならないことです。 -コンテキストは次のような用途に使えます: +コンテキストは次のような用途に使えます。 -- 実行のためのコンテキストデータ(例: ユーザー名 / uid など、ユーザーに関する情報) +- 実行のための文脈データ(例: ユーザー名 / uid などの ユーザー に関する情報) - 依存関係(例: ロガーオブジェクト、データフェッチャーなど) - ヘルパー関数 -!!! danger "注意" +!!! danger "Note" - コンテキストオブジェクトは LLM に **送信されません**。これは純粋にローカルなオブジェクトで、読み書きやメソッド呼び出しが可能です。 + コンテキストオブジェクトは LLM に送信されません。これは純粋にローカルなオブジェクトであり、読み書きやメソッド呼び出しができます。 ```python import asyncio @@ -66,17 +66,17 @@ if __name__ == "__main__": asyncio.run(main()) ``` -1. これはコンテキストオブジェクトです。ここでは dataclass を使用していますが、任意の型を使用できます。 -2. これはツールです。`RunContextWrapper[UserInfo]` を受け取っていることがわかります。ツールの実装ではコンテキストから読み取ります。 -3. 型チェッカーがエラーを検出できるよう、エージェントにジェネリックの `UserInfo` を指定します(たとえば、異なるコンテキスト型を受け取るツールを渡そうとした場合など)。 -4. `run` 関数にコンテキストを渡します。 +1. これはコンテキストオブジェクトです。ここでは dataclass を使用していますが、任意の型を使えます。 +2. これはツールです。`RunContextWrapper[UserInfo]` を受け取り、ツール実装はコンテキストから読み取ります。 +3. エージェントにジェネリックな `UserInfo` を付与して、型チェッカーがエラーを検出できるようにします(例えば、異なるコンテキスト型を受け取るツールを渡そうとした場合)。 +4. コンテキストは `run` 関数に渡されます。 5. エージェントはツールを正しく呼び出し、年齢を取得します。 ## エージェント / LLM コンテキスト -LLM が呼び出されるとき、LLM が参照できるデータは会話履歴にあるものだけです。したがって、新しいデータを LLM に利用可能にするには、そのデータを会話履歴で参照できる形にする必要があります。方法はいくつかあります。 +LLM が呼び出される際、参照できるデータは会話履歴に含まれるもの だけ です。そのため、LLM に新しいデータを利用可能にしたい場合は、その履歴で参照できる形で提供する必要があります。方法はいくつかあります。 -1. エージェントの `instructions` に追加します。これは "system prompt" や "developer message" とも呼ばれます。System prompt は静的な文字列でも、コンテキストを受け取って文字列を出力する動的関数でも構いません。常に有用な情報(例: ユーザー名や現在の日付)に適した一般的な手法です。 -2. `Runner.run` を呼び出すときの `input` に追加します。これは `instructions` と似た手法ですが、[指揮系統](https://cdn.openai.com/spec/model-spec-2024-05-08.html#follow-the-chain-of-command) の下位にメッセージを配置できます。 -3. 関数ツールで公開します。これはオンデマンドのコンテキストに有用です。LLM が必要なタイミングを判断し、ツールを呼び出してそのデータを取得できます。 -4. 検索(retrieval)や Web 検索を使用します。これらは、ファイルやデータベースから関連データを取得(retrieval)したり、Web から取得(Web 検索)したりできる特別なツールです。関連するコンテキストデータに基づいて応答をグラウンディングするのに有用です。 \ No newline at end of file +1. Agent の `instructions` に追加します。これは「システムプロンプト」または「開発者メッセージ」とも呼ばれます。システムプロンプトは静的な文字列でも、コンテキストを受け取って文字列を出力する動的関数でもかまいません。常に有用な情報(例: ユーザー名や現在の日付)に適した一般的な手法です。 +2. `Runner.run` 関数を呼び出すときに `input` に追加します。これは `instructions` の手法に似ていますが、[指揮系統](https://cdn.openai.com/spec/model-spec-2024-05-08.html#follow-the-chain-of-command) の下位に配置されるメッセージを使えます。 +3. 関数ツール を介して公開します。これはオンデマンドのコンテキストに有用で、LLM が必要に応じてツールを呼び出し、そのデータを取得できます。 +4. リトリーバルや Web 検索 を使用します。これらは、ファイルやデータベースから関連データを取得(リトリーバル)したり、Web から取得(Web 検索)したりできる特別なツールです。関連する文脈データに基づいて応答をグラウンディングするのに役立ちます。 \ No newline at end of file diff --git a/docs/ja/examples.md b/docs/ja/examples.md index 84296ced4..ca0e64fde 100644 --- a/docs/ja/examples.md +++ b/docs/ja/examples.md @@ -4,46 +4,44 @@ search: --- # コード例 -[repo](https://github.com/openai/openai-agents-python/tree/main/examples) の examples セクションで、 SDK のさまざまなサンプル実装をご覧ください。これらの例は、異なるパターンや機能を示す複数の カテゴリー に整理されています。 - +[repo](https://github.com/openai/openai-agents-python/tree/main/examples) の examples セクションで、SDK のさまざまなサンプル実装をご覧ください。これらの例は、異なるパターンや機能を示すいくつかのカテゴリーに整理されています。 ## カテゴリー -- **[agent_patterns](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns):** - このカテゴリーの例では、次のような一般的な エージェント の設計パターンを示します +- **[agent_patterns](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns):** + このカテゴリーの例は、一般的な エージェント の設計パターンを示します。例えば - 決定的なワークフロー - ツールとしての エージェント - エージェント の並列実行 -- **[basic](https://github.com/openai/openai-agents-python/tree/main/examples/basic):** - これらの例では、次のような SDK の基礎的な機能を紹介します +- **[basic](https://github.com/openai/openai-agents-python/tree/main/examples/basic):** + これらの例は、SDK の基礎的な機能を紹介します。例えば - - 動的な system prompt + - 動的な システムプロンプト - ストリーミング出力 - ライフサイクルイベント -- **[tool examples](https://github.com/openai/openai-agents-python/tree/main/examples/tools):** - Web 検索 や ファイル検索 などの OpenAI がホストするツール の実装方法を学び、 - それらを エージェント に統合する方法を確認できます。 +- **[tool examples](https://github.com/openai/openai-agents-python/tree/main/examples/tools):** + Web 検索 や ファイル検索 などの OpenAI がホストするツール の実装方法と、それらを エージェント に統合する方法を学びます。 -- **[model providers](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers):** - SDK で OpenAI 以外のモデルを使用する方法を探求します。 +- **[model_providers](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers):** + OpenAI 以外のモデルを SDK で使う方法を探ります。 -- **[handoffs](https://github.com/openai/openai-agents-python/tree/main/examples/handoffs):** - エージェントの ハンドオフ の実用例をご覧ください。 +- **[handoffs](https://github.com/openai/openai-agents-python/tree/main/examples/handoffs):** + エージェント の ハンドオフ の実用的な例をご覧ください。 -- **[mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp):** +- **[mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp):** MCP で エージェント を構築する方法を学びます。 -- **[customer_service](https://github.com/openai/openai-agents-python/tree/main/examples/customer_service)** と **[research_bot](https://github.com/openai/openai-agents-python/tree/main/examples/research_bot):** - 実世界のアプリケーションを示す、より作り込まれた 2 つの例 +- **[customer_service](https://github.com/openai/openai-agents-python/tree/main/examples/customer_service)** と **[research_bot](https://github.com/openai/openai-agents-python/tree/main/examples/research_bot):** + 実世界のアプリケーションを示す、さらに作り込まれた 2 つの例 - - **customer_service**: 航空会社向けのカスタマーサービスシステム。 - - **research_bot**: シンプルな ディープリサーチ のクローン。 + - **customer_service**: 航空会社向けのカスタマーサービス システムの例。 + - **research_bot**: シンプルな ディープリサーチ のクローン。 -- **[voice](https://github.com/openai/openai-agents-python/tree/main/examples/voice):** - 当社の TTS と STT モデルを用いた音声 エージェント の例をご覧ください。 +- **[voice](https://github.com/openai/openai-agents-python/tree/main/examples/voice):** + TTS と STT モデルを用いた音声 エージェント の例。 -- **[realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime):** - SDK を使ってリアルタイムな体験を構築する例。 \ No newline at end of file +- **[realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime):** + SDK を用いて リアルタイム 体験を構築する方法の例。 \ No newline at end of file diff --git a/docs/ja/guardrails.md b/docs/ja/guardrails.md index 91cab83dd..e49f1d0ba 100644 --- a/docs/ja/guardrails.md +++ b/docs/ja/guardrails.md @@ -4,44 +4,44 @@ search: --- # ガードレール -ガードレールはエージェントと _並行して_ 実行され、ユーザー入力のチェックや検証を行います。たとえば、非常に高性能(そのぶん遅く/高価)なモデルでカスタマーリクエストを支援するエージェントがあるとします。悪意のあるユーザーが、そのモデルに数学の宿題を手伝わせるよう求めることは避けたいはずです。そのため、速く/安価なモデルでガードレールを実行できます。ガードレールが悪意ある使用を検知すると、即座にエラーを送出し、高価なモデルの実行を止め、時間とコストを節約できます。 +ガードレールはエージェントと _並行して_ 動作し、ユーザー入力のチェックと検証を可能にします。たとえば、カスタマーリクエストに対応するために非常に賢い(つまり遅く/高価な)モデルを使うエージェントを想像してください。悪意のあるユーザーがそのモデルに宿題の手伝いをさせるのは避けたいはずです。そこで、速く/安価なモデルでガードレールを走らせることができます。ガードレールが悪意のある利用を検知した場合、即座にエラーを発生させ、高価なモデルの実行を止めることで時間やコストを節約できます。 -ガードレールには 2 種類あります: +ガードレールには 2 つの種類があります。 -1. 入力ガードレールは最初のユーザー入力で実行されます -2. 出力ガードレールは最終的なエージェント出力で実行されます +1. 入力ガードレールは初期のユーザー入力に対して実行されます +2. 出力ガードレールは最終的なエージェント出力に対して実行されます ## 入力ガードレール -入力ガードレールは 3 つの手順で実行されます: +入力ガードレールは 3 ステップで動作します。 1. まず、ガードレールはエージェントに渡されたものと同じ入力を受け取ります。 2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、これが [`InputGuardrailResult`][agents.guardrail.InputGuardrailResult] にラップされます。 -3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true か確認します。true の場合、[`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered] 例外が送出され、ユーザーへの適切な応答や例外処理が行えます。 +3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered] 例外が送出され、適切にユーザーへ応答するか、例外を処理できます。 !!! Note - 入力ガードレールはユーザー入力での実行を想定しているため、あるエージェントのガードレールは、そのエージェントが _最初の_ エージェントのときにのみ実行されます。「なぜ `guardrails` プロパティがエージェント側にあり、`Runner.run` に渡さないのか」と疑問に思うかもしれません。これは、ガードレールが実際のエージェントと密接に関連する傾向があるためです。エージェントごとに異なるガードレールを実行するため、コードを同じ場所に配置することで可読性が向上します。 + 入力ガードレールはユーザー入力に対して実行されることを想定しているため、エージェントのガードレールはそのエージェントが _最初の_ エージェントである場合にのみ実行されます。「なぜ `guardrails` プロパティはエージェント側にあり、`Runner.run` へ渡さないのか」と疑問に思うかもしれません。これは、ガードレールは実際のエージェントに密接に関係する傾向があるためです。エージェントごとに異なるガードレールを実行するため、コードを同じ場所に置くことで可読性が向上します。 ## 出力ガードレール -出力ガードレールは 3 つの手順で実行されます: +出力ガードレールは 3 ステップで動作します。 -1. まず、ガードレールはエージェントが生成した出力を受け取ります。 +1. まず、ガードレールはエージェントによって生成された出力を受け取ります。 2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、これが [`OutputGuardrailResult`][agents.guardrail.OutputGuardrailResult] にラップされます。 -3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true か確認します。true の場合、[`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered] 例外が送出され、ユーザーへの適切な応答や例外処理が行えます。 +3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered] 例外が送出され、適切にユーザーへ応答するか、例外を処理できます。 !!! Note - 出力ガードレールは最終的なエージェント出力での実行を想定しているため、あるエージェントのガードレールは、そのエージェントが _最後の_ エージェントのときにのみ実行されます。入力ガードレールと同様に、ガードレールは実際のエージェントと密接に関連する傾向があるため、コードを同じ場所に配置することで可読性が向上します。 + 出力ガードレールは最終的なエージェント出力に対して実行されることを想定しているため、エージェントのガードレールはそのエージェントが _最後の_ エージェントである場合にのみ実行されます。入力ガードレールと同様に、ガードレールは実際のエージェントに密接に関係する傾向があるため、コードを同じ場所に置くことで可読性が向上します。 ## トリップワイヤー -入力または出力がガードレールに不合格となった場合、ガードレールはトリップワイヤーでそれを通知できます。トリップワイヤーが発火したガードレールが確認されしだい、`{Input,Output}GuardrailTripwireTriggered` 例外を直ちに送出し、エージェントの実行を停止します。 +入力または出力がガードレールに不合格となった場合、ガードレールはトリップワイヤーでそれを通知できます。トリップワイヤーが作動したガードレールを検出するとすぐに、`{Input,Output}GuardrailTripwireTriggered` 例外を送出し、エージェントの実行を停止します。 ## ガードレールの実装 -入力を受け取り、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を返す関数を用意する必要があります。次の例では、内部でエージェントを実行してこれを行います。 +入力を受け取り、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を返す関数を用意する必要があります。次の例では、その裏側でエージェントを実行して実現します。 ```python from pydantic import BaseModel @@ -94,9 +94,9 @@ async def main(): print("Math homework guardrail tripped") ``` -1. このエージェントをガードレール関数内で使用します。 +1. このエージェントをガードレール関数で使用します。 2. これはエージェントの入力/コンテキストを受け取り、結果を返すガードレール関数です。 -3. ガードレール結果に追加情報を含めることができます。 +3. ガードレールの結果に追加情報を含めることができます。 4. これはワークフローを定義する実際のエージェントです。 出力ガードレールも同様です。 diff --git a/docs/ja/handoffs.md b/docs/ja/handoffs.md index 8385bfcfc..0ba14c6b8 100644 --- a/docs/ja/handoffs.md +++ b/docs/ja/handoffs.md @@ -4,19 +4,19 @@ search: --- # Handoffs -Handoffs により、ある エージェント が別の エージェント にタスクを委譲できます。これは、異なる エージェント がそれぞれ異なる分野を専門とするシナリオで特に有用です。例えば、カスタマーサポートアプリでは、注文状況、返金、FAQ などのタスクをそれぞれ担当する エージェント がいるかもしれません。 +Handoffs は、あるエージェントが別のエージェントにタスクを委譲できるようにするものです。これは、異なるエージェントがそれぞれ別分野を専門とするシナリオで特に有用です。たとえばカスタマーサポートアプリでは、注文状況、返金、FAQ などのタスクを個別に担当するエージェントがいるかもしれません。 -Handoffs は LLM に対してツールとして表現されます。例えば `Refund Agent` という エージェント にハンドオフする場合、そのツール名は `transfer_to_refund_agent` になります。 +Handoffs は LLM に対してはツールとして表現されます。たとえば `Refund Agent` というエージェントへの handoff がある場合、ツール名は `transfer_to_refund_agent` になります。 ## Handoff の作成 -すべての エージェント には [`handoffs`][agents.agent.Agent.handoffs] パラメーターがあり、これは直接 `Agent` を受け取るか、Handoff をカスタマイズする `Handoff` オブジェクトを受け取ります。 +すべてのエージェントには [`handoffs`][agents.agent.Agent.handoffs] パラメーターがあり、これは直接 `Agent` を受け取ることも、Handoff をカスタマイズする `Handoff` オブジェクトを受け取ることもできます。 -Agents SDK が提供する [`handoff()`][agents.handoffs.handoff] 関数を使って handoff を作成できます。この関数では、ハンドオフ先の エージェント を指定し、任意でオーバーライドや入力フィルターを設定できます。 +Agents SDK によって提供される [`handoff()`][agents.handoffs.handoff] 関数を使って handoff を作成できます。この関数では、引き渡し先のエージェントに加えて、任意指定のオーバーライドや入力フィルターを指定できます。 ### 基本的な使い方 -簡単な handoff の作成方法は次のとおりです。 +簡単な handoff の作成方法は次のとおりです: ```python from agents import Agent, handoff @@ -28,18 +28,19 @@ refund_agent = Agent(name="Refund agent") triage_agent = Agent(name="Triage agent", handoffs=[billing_agent, handoff(refund_agent)]) ``` -1. `billing_agent` のように エージェント を直接渡すことも、`handoff()` 関数を使うこともできます。 +1. エージェントを直接使用することもできます(`billing_agent` のように)。あるいは `handoff()` 関数を使用できます。 -### `handoff()` 関数による handoff のカスタマイズ +### `handoff()` 関数による handoffs のカスタマイズ -[`handoff()`][agents.handoffs.handoff] 関数では、さまざまなカスタマイズが可能です。 +[`handoff()`][agents.handoffs.handoff] 関数で詳細をカスタマイズできます。 -- `agent`: ハンドオフ先の エージェント です。 +- `agent`: 引き渡し先のエージェントです。 - `tool_name_override`: 既定では `Handoff.default_tool_name()` 関数が使用され、`transfer_to_` に解決されます。これを上書きできます。 -- `tool_description_override`: `Handoff.default_tool_description()` の既定のツール説明を上書きします。 -- `on_handoff`: handoff が呼び出されたときに実行されるコールバック関数です。これは、handoff が実行されることが分かった時点でデータ取得を開始するなどに便利です。この関数は エージェント のコンテキストを受け取り、任意で LLM が生成した入力も受け取れます。入力データは `input_type` パラメーターで制御します。 -- `input_type`: handoff が期待する入力の型(任意)。 -- `input_filter`: 次の エージェント が受け取る入力をフィルタリングできます。詳細は以下を参照してください。 +- `tool_description_override`: `Handoff.default_tool_description()` の既定ツール説明を上書きします。 +- `on_handoff`: handoff が呼び出されたときに実行されるコールバック関数です。handoff が呼ばれたと分かったらすぐにデータ取得を開始するような用途に便利です。この関数はエージェントコンテキストを受け取り、オプションで LLM が生成した入力も受け取れます。入力データは `input_type` パラメーターで制御します。 +- `input_type`: handoff が想定する入力の型(任意)。 +- `input_filter`: 次のエージェントが受け取る入力をフィルタリングできます。詳細は下記を参照してください。 +- `is_enabled`: handoff が有効かどうか。真偽値、または真偽値を返す関数を指定でき、実行時に handoff を動的に有効・無効化できます。 ```python from agents import Agent, handoff, RunContextWrapper @@ -59,7 +60,7 @@ handoff_obj = handoff( ## Handoff の入力 -状況によっては、handoff を呼び出す際に LLM にデータの提供を求めたい場合があります。例えば「エスカレーション エージェント」への handoff を想定してください。記録のために理由を提供してほしい、というようなケースです。 +状況によっては、LLM が handoff を呼び出す際にデータを提供することを望む場合があります。たとえば「エスカレーションエージェント」への handoff を考えてみてください。理由を提供してもらい、記録したいかもしれません。 ```python from pydantic import BaseModel @@ -83,9 +84,9 @@ handoff_obj = handoff( ## 入力フィルター -handoff が発生すると、新しい エージェント が会話を引き継ぎ、これまでの会話履歴全体を参照できるかのように振る舞います。これを変更したい場合は、[`input_filter`][agents.handoffs.Handoff.input_filter] を設定できます。入力フィルターは、[`HandoffInputData`][agents.handoffs.HandoffInputData] を介して既存の入力を受け取り、新しい `HandoffInputData` を返す関数です。 +handoff が発生すると、新しいエージェントが会話を引き継ぎ、これまでの会話履歴全体を閲覧できるかのように動作します。これを変更したい場合は、[`input_filter`][agents.handoffs.Handoff.input_filter] を設定できます。入力フィルターは、既存の入力を [`HandoffInputData`][agents.handoffs.HandoffInputData] として受け取り、新しい `HandoffInputData` を返す関数です。 -一般的なパターン(例えば履歴からすべてのツール呼び出しを削除するなど)は、[`agents.extensions.handoff_filters`][] に実装済みです。 +いくつかの一般的なパターン(たとえば履歴からすべてのツール呼び出しを削除するなど)は、[`agents.extensions.handoff_filters`][] に実装済みです。 ```python from agents import Agent, handoff @@ -99,11 +100,11 @@ handoff_obj = handoff( ) ``` -1. これは、`FAQ agent` が呼び出されたときに履歴から自動的にすべてのツールを削除します。 +1. これは `FAQ agent` が呼び出されたときに、履歴からツールを自動的にすべて削除します。 ## 推奨プロンプト -LLM が handoffs を正しく理解できるようにするため、エージェント に handoffs に関する情報を含めることを推奨します。[`agents.extensions.handoff_prompt.RECOMMENDED_PROMPT_PREFIX`][] に推奨のプレフィックスがあり、または [`agents.extensions.handoff_prompt.prompt_with_handoff_instructions`][] を呼び出して、推奨データをプロンプトに自動追加できます。 +LLM が handoffs を正しく理解できるようにするため、エージェントに handoffs に関する情報を含めることを推奨します。[`agents.extensions.handoff_prompt.RECOMMENDED_PROMPT_PREFIX`][] に推奨のプレフィックスがあり、または [`agents.extensions.handoff_prompt.prompt_with_handoff_instructions`][] を呼び出して、推奨データをプロンプトに自動的に追加できます。 ```python from agents import Agent diff --git a/docs/ja/index.md b/docs/ja/index.md index d42e28452..0e087879a 100644 --- a/docs/ja/index.md +++ b/docs/ja/index.md @@ -4,31 +4,31 @@ search: --- # OpenAI Agents SDK -[OpenAI Agents SDK](https://github.com/openai/openai-agents-python) は、抽象化をほとんど用いずに軽量で使いやすいパッケージで、エージェント型の AI アプリを構築できるようにします。これは、エージェントに関する以前の実験 [Swarm](https://github.com/openai/swarm/tree/main) を本番運用可能な形にアップグレードしたものです。Agents SDK はごく少数の基本コンポーネントから成ります。 +[OpenAI Agents SDK](https://github.com/openai/openai-agents-python) は、抽象化を最小限に抑えた軽量で使いやすいパッケージで、エージェント型の AI アプリを構築できるようにします。これはエージェントに関する以前の実験 [Swarm](https://github.com/openai/swarm/tree/main) のプロダクション対応のアップグレード版です。Agents SDK には、次の小さな基本コンポーネントのセットがあります: - **エージェント**: instructions と tools を備えた LLM -- **ハンドオフ**: 特定のタスクを他のエージェントへ委譲できる機能 -- **ガードレール**: エージェントの入力・出力の検証を可能にする機能 -- **セッション**: エージェントの実行間で会話履歴を自動的に保持する仕組み +- **ハンドオフ**: 特定のタスクを別のエージェントに委任できる機能 +- **ガードレール**: エージェントの入力および出力の検証を可能にする機能 +- **セッション**: エージェント実行間で会話履歴を自動的に維持する機能 -これらの基本コンポーネントは、Python と組み合わせることで、ツールとエージェント間の複雑な関係を表現でき、学習コストをかけずに実用的なアプリケーションを構築できます。さらに、SDK には組み込みの **トレーシング** があり、エージェントのフローを可視化・デバッグできるほか、評価やアプリケーション向けのモデルのファインチューニングも可能です。 +Python と組み合わせることで、これらの基本コンポーネントはツールとエージェント間の複雑な関係を表現でき、学習コストを高めることなく実アプリケーションを構築できます。さらに、SDK には組み込みの **トレーシング** が付属しており、エージェントフローの可視化とデバッグに加えて、評価や、アプリケーション向けモデルのファインチューニングも行えます。 ## Agents SDK を使う理由 -SDK の設計方針は次の 2 点です。 +SDK には次の 2 つの設計原則があります: -1. 使う価値のある十分な機能を備えつつ、学習が容易なように基本コンポーネントは少数に保つこと。 -2. そのまま使っても優れた体験を提供しつつ、挙動を細かくカスタマイズできること。 +1. 使う価値があるだけの十分な機能を備えつつ、学習を速くするために基本コンポーネントは少数であること。 +2. すぐに使えて優れた体験を提供しつつ、挙動を細部までカスタマイズできること。 -SDK の主な機能は次のとおりです。 +SDK の主な機能は次のとおりです: -- エージェントループ: ツールの呼び出し、結果の LLM への送信、LLM の完了までのループを内蔵で処理。 -- Python ファースト: 新しい抽象化を学ぶのではなく、言語の標準機能でエージェントのオーケストレーションや連携を実現。 -- ハンドオフ: 複数エージェント間の調整と委譲を可能にする強力な機能。 -- ガードレール: エージェントと並行して入力検証やチェックを実行し、失敗時は早期に中断。 -- セッション: エージェントの実行間での会話履歴を自動管理し、手動での状態管理を不要に。 -- 関数ツール: 任意の Python 関数をツール化し、自動スキーマ生成と Pydantic ベースの検証を提供。 -- トレーシング: ワークフローの可視化・デバッグ・監視を可能にし、OpenAI の評価、ファインチューニング、蒸留ツール群も活用可能。 +- エージェントループ: ツールの呼び出し、結果の LLM への送信、LLM が完了するまでのループ処理を行う組み込みのループ。 +- Python ファースト: 新しい抽象を学ぶ必要はなく、言語の組み込み機能でエージェントのオーケストレーションや連鎖を実現。 +- ハンドオフ: 複数のエージェント間での調整と委任を可能にする強力な機能。 +- ガードレール: エージェントと並行して入力の検証やチェックを実行し、チェックが失敗した場合は早期に中断。 +- セッション: エージェント実行間の会話履歴を自動管理し、手動の状態管理を不要に。 +- 関数ツール: 任意の Python 関数をツール化し、自動スキーマ生成と Pydantic によるバリデーションを提供。 +- トレーシング: ワークフローの可視化、デバッグ、監視を可能にし、OpenAI の評価、ファインチューニング、蒸留ツールも利用可能。 ## インストール diff --git a/docs/ja/mcp.md b/docs/ja/mcp.md index ac7715b54..ee6ed0161 100644 --- a/docs/ja/mcp.md +++ b/docs/ja/mcp.md @@ -4,23 +4,23 @@ search: --- # Model context protocol (MCP) -[Model context protocol](https://modelcontextprotocol.io/introduction)(aka MCP)は、LLM にツールとコンテキストを提供する方法です。MCP のドキュメントより引用します: +[Model context protocol](https://modelcontextprotocol.io/introduction)(別名 MCP)は、LLM にツールやコンテキストを提供するための方法です。MCP のドキュメントより: -> MCP は、アプリケーションが LLM にコンテキストを提供する方法を標準化するオープンなプロトコルです。MCP は AI アプリケーション向けの USB-C ポートのようなものだと考えてください。USB-C がさまざまな周辺機器やアクセサリにデバイスを接続する標準化された方法を提供するのと同様に、MCP は AI モデルをさまざまなデータソースやツールに接続する標準化された方法を提供します。 +> MCP は、アプリケーションが LLM にコンテキストを提供する方法を標準化するオープンプロトコルです。MCP は、AI アプリケーションのための USB‑C ポートのようなものだと考えてください。USB‑C がデバイスをさまざまな周辺機器やアクセサリに接続する標準化された方法を提供するのと同様に、MCP は AI モデルをさまざまなデータソースやツールに接続する標準化された方法を提供します。 Agents SDK は MCP をサポートしています。これにより、幅広い MCP サーバーを使用して、エージェントにツールやプロンプトを提供できます。 -## MCP サーバー +## MCP servers -現在、MCP の仕様は、使用するトランスポート方式に基づいて 3 種類のサーバーを定義しています: +現在、MCP の仕様では使用するトランスポート方式に基づいて 3 種類のサーバーが定義されています: -1. **stdio** サーバーは、アプリケーションのサブプロセスとして実行されます。いわば「ローカル」で動作します。 +1. **stdio** サーバーはアプリケーションのサブプロセスとして実行されます。いわば「ローカル」で動作します。 2. **HTTP over SSE** サーバーはリモートで実行されます。URL で接続します。 3. **Streamable HTTP** サーバーは、MCP 仕様で定義された Streamable HTTP トランスポートを使用してリモートで実行されます。 -これらのサーバーに接続するには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] クラスを使用できます。 +これらのサーバーには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] クラスを使用して接続できます。 -例として、[official MCP filesystem server](https://www.npmjs.com/package/@modelcontextprotocol/server-filesystem) を使用する方法は次のとおりです。 +たとえば、[公式の MCP filesystem サーバー](https://www.npmjs.com/package/@modelcontextprotocol/server-filesystem)を次のように使用します。 ```python from agents.run_context import RunContextWrapper @@ -39,9 +39,9 @@ async with MCPServerStdio( tools = await server.list_tools(run_context, agent) ``` -## MCP サーバーの使用 +## Using MCP servers -MCP サーバーはエージェントに追加できます。Agents SDK は、エージェントが実行されるたびに MCP サーバー上で `list_tools()` を呼び出します。これにより、LLM は MCP サーバーのツールを認識します。LLM が MCP サーバーのツールを呼び出すと、SDK はそのサーバー上で `call_tool()` を呼び出します。 +MCP サーバーはエージェントに追加できます。Agents SDK は、エージェントが実行されるたびに MCP サーバー上で `list_tools()` を呼び出します。これにより、LLM は MCP サーバーのツールを認識できます。LLM が MCP サーバーのツールを呼び出すと、SDK はそのサーバーで `call_tool()` を呼び出します。 ```python @@ -52,13 +52,13 @@ agent=Agent( ) ``` -## ツールのフィルタリング +## Tool filtering -MCP サーバーでツールフィルターを設定することで、エージェントで使用可能なツールを絞り込めます。SDK は静的フィルタリングと動的フィルタリングの両方をサポートします。 +MCP サーバーでツールフィルターを設定することで、エージェントで利用可能なツールを絞り込めます。SDK は静的および動的の両方のツールフィルタリングをサポートします。 -### 静的ツールフィルタリング +### Static tool filtering -単純な許可/ブロック リストには、静的フィルタリングを使用できます: +単純な allow/block リストには、静的フィルタリングを使用できます: ```python from agents.mcp import create_static_tool_filter @@ -87,15 +87,15 @@ server = MCPServerStdio( ``` - **`allowed_tool_names` と `blocked_tool_names` の両方が設定されている場合の処理順序は:** -1. まず `allowed_tool_names`(許可リスト)を適用して、指定したツールのみを残します -2. 次に `blocked_tool_names`(ブロックリスト)を適用して、残った中から指定したツールを除外します +**`allowed_tool_names` と `blocked_tool_names` の両方が設定されている場合、処理順序は次のとおりです:** +1. まず `allowed_tool_names`(許可リスト)を適用 — 指定したツールのみを残します +2. 次に `blocked_tool_names`(ブロックリスト)を適用 — 残ったツールから指定したツールを除外します -たとえば、`allowed_tool_names=["read_file", "write_file", "delete_file"]` と `blocked_tool_names=["delete_file"]` を設定した場合、利用可能なのは `read_file` と `write_file` のツールのみになります。 +たとえば、`allowed_tool_names=["read_file", "write_file", "delete_file"]` と `blocked_tool_names=["delete_file"]` を設定すると、`read_file` と `write_file` のツールのみが利用可能になります。 -### 動的ツールフィルタリング +### Dynamic tool filtering -より複雑なフィルタリング ロジックには、関数を用いた動的フィルターを使用できます: +より複雑なフィルタリングロジックには、関数を用いた動的フィルターを使用できます: ```python from agents.mcp import ToolFilterContext @@ -134,18 +134,18 @@ server = MCPServerStdio( ) ``` -`ToolFilterContext` では次の情報にアクセスできます: +`ToolFilterContext` では次にアクセスできます: - `run_context`: 現在の実行コンテキスト - `agent`: ツールを要求しているエージェント -- `server_name`: MCP サーバー名 +- `server_name`: MCP サーバーの名前 -## プロンプト +## Prompts -MCP サーバーは、エージェントの instructions を動的に生成するために使用できるプロンプトも提供できます。これにより、パラメーターでカスタマイズ可能な再利用可能な instructions テンプレートを作成できます。 +MCP サーバーは、エージェントの instructions を動的に生成するために使用できるプロンプトも提供できます。これにより、パラメーターでカスタマイズ可能な再利用可能なインストラクション テンプレートを作成できます。 -### プロンプトの使用 +### Using prompts -プロンプトをサポートする MCP サーバーは、次の 2 つの主要メソッドを提供します: +プロンプトをサポートする MCP サーバーは、2 つの主要なメソッドを提供します: - `list_prompts()`: サーバー上で利用可能なすべてのプロンプトを一覧表示します - `get_prompt(name, arguments)`: 任意のパラメーター付きで特定のプロンプトを取得します @@ -171,19 +171,19 @@ agent = Agent( ) ``` -## キャッシュ +## Caching -エージェントが実行されるたびに、MCP サーバーで `list_tools()` が呼び出されます。これは、特にサーバーがリモート サーバーの場合、レイテンシの増加につながる可能性があります。ツール一覧を自動的にキャッシュするには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] に `cache_tools_list=True` を渡します。ツール一覧が変更されないことが確実な場合にのみ実施してください。 +エージェントが実行されるたびに、MCP サーバー上で `list_tools()` が呼び出されます。サーバーがリモート サーバーである場合、これはレイテンシーの増加につながり得ます。ツール一覧を自動的にキャッシュするには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] に `cache_tools_list=True` を渡します。ツール一覧が変更されないことが確実な場合にのみ使用してください。 -キャッシュを無効化したい場合は、サーバーで `invalidate_tools_cache()` を呼び出します。 +キャッシュを無効化したい場合は、サーバーで `invalidate_tools_cache()` を呼び出せます。 -## エンドツーエンドの code examples +## End-to-end examples -[examples/mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp) で、完全に動作する code examples を参照してください。 +完成した動作する例は [examples/mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp) を参照してください。 -## トレーシング +## Tracing -[Tracing](./tracing.md) は、以下を含む MCP の操作を自動的に取得します: +[Tracing](./tracing.md) は、次を含む MCP の操作を自動的に記録します: 1. ツール一覧取得のための MCP サーバーへの呼び出し 2. 関数呼び出しに関する MCP 関連情報 diff --git a/docs/ja/models/index.md b/docs/ja/models/index.md index da5e00ab2..7ec255334 100644 --- a/docs/ja/models/index.md +++ b/docs/ja/models/index.md @@ -4,43 +4,43 @@ search: --- # モデル -Agents SDK には、2 種類の OpenAI モデルへのすぐに使えるサポートが含まれます: +Agents SDK には、OpenAI モデルのサポートが次の 2 つの形で同梱されています。 -- ** 推奨 **: [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel]。新しい [Responses API](https://platform.openai.com/docs/api-reference/responses) を使って OpenAI API を呼び出します。 -- [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel]。 [Chat Completions API](https://platform.openai.com/docs/api-reference/chat) を使って OpenAI API を呼び出します。 +- **推奨**: 新しい Responses API を使って OpenAI API を呼び出す [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel]。 +- Chat Completions API を使って OpenAI API を呼び出す [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel]。 ## 非 OpenAI モデル -[LiteLLM 連携](./litellm.md) を通じて、ほとんどの非 OpenAI モデルを使用できます。まず、 litellm の依存関係グループをインストールします: +[LiteLLM 統合](../litellm.md) を通じて、ほとんどのその他の非 OpenAI モデルを利用できます。まず、litellm の依存関係グループをインストールします。 ```bash pip install "openai-agents[litellm]" ``` -次に、`litellm/` プレフィックスを付けて [対応モデル](https://docs.litellm.ai/docs/providers) のいずれかを使用します: +次に、`litellm/` プレフィックスを付けて、[対応モデル](https://docs.litellm.ai/docs/providers) を使用します。 ```python claude_agent = Agent(model="litellm/anthropic/claude-3-5-sonnet-20240620", ...) gemini_agent = Agent(model="litellm/gemini/gemini-2.5-flash-preview-04-17", ...) ``` -### 非 OpenAI モデルを使う他の方法 +### 非 OpenAI モデルを使う別の方法 -他の LLM プロバイダーは、さらに 3 つの方法で統合できます(code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)): +他の LLM プロバイダーは、さらに 3 つの方法で統合できます(code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/))。 -1. [`set_default_openai_client`][agents.set_default_openai_client] は、グローバルに `AsyncOpenAI` のインスタンスを LLM クライアントとして使いたい場合に便利です。これは、 LLM プロバイダーが OpenAI 互換の API エンドポイントを持ち、`base_url` と `api_key` を設定できる場合に使用します。設定可能な例は [examples/model_providers/custom_example_global.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_global.py) を参照してください。 +1. [`set_default_openai_client`][agents.set_default_openai_client] は、`AsyncOpenAI` のインスタンスを LLM クライアントとしてグローバルに使用したい場合に便利です。これは、LLM プロバイダーが OpenAI 互換の API エンドポイントを持ち、`base_url` と `api_key` を設定できる場合に該当します。設定可能な例は [examples/model_providers/custom_example_global.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_global.py) を参照してください。 2. [`ModelProvider`][agents.models.interface.ModelProvider] は `Runner.run` レベルにあります。これにより、「この実行のすべての エージェント にカスタムのモデルプロバイダーを使う」と指定できます。設定可能な例は [examples/model_providers/custom_example_provider.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_provider.py) を参照してください。 -3. [`Agent.model`][agents.agent.Agent.model] は、特定の Agent インスタンス上でモデルを指定できます。これにより、異なる エージェント に対して異なるプロバイダーを組み合わせて使用できます。設定可能な例は [examples/model_providers/custom_example_agent.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_agent.py) を参照してください。最も手軽に多くのモデルを使う方法は [LiteLLM 連携](./litellm.md) です。 +3. [`Agent.model`][agents.agent.Agent.model] は、特定の Agent インスタンスでモデルを指定できます。これにより、異なる エージェント で異なるプロバイダーを組み合わせて使用できます。設定可能な例は [examples/model_providers/custom_example_agent.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_agent.py) を参照してください。利用可能なほとんどのモデルを簡単に使う方法として、[LiteLLM 統合](../litellm.md) があります。 -`platform.openai.com` の API キーをお持ちでない場合は、`set_tracing_disabled()` で トレーシング を無効化するか、[別の トレーシング プロセッサー](../tracing.md) を設定することをおすすめします。 +`platform.openai.com` の API キーがない場合は、`set_tracing_disabled()` でトレーシングを無効にするか、[別のトレーシング プロセッサー](../tracing.md) を設定することをおすすめします。 !!! note - これらの例では Chat Completions API/モデルを使用しています。多くの LLM プロバイダーはまだ Responses API をサポートしていないためです。プロバイダーが対応している場合は、 Responses の使用をおすすめします。 + これらの例では、Responses API をまだサポートしていない LLM プロバイダーが多いため、Chat Completions API/モデルを使用しています。ご利用の LLM プロバイダーが Responses をサポートしている場合は、Responses の使用をおすすめします。 ## モデルの組み合わせ -単一のワークフロー内で、エージェント ごとに異なるモデルを使いたい場合があります。例えば、振り分けには小さく高速なモデルを、複雑なタスクにはより大きく高性能なモデルを使う、といった使い分けです。[`Agent`][agents.Agent] を設定する際、次のいずれかで特定のモデルを選べます: +単一のワークフロー内で、各 エージェント に異なるモデルを使用したい場合があります。たとえば、トリアージには小さく高速なモデルを使い、複雑なタスクにはより大きく高機能なモデルを使う、といった形です。[`Agent`][agents.Agent] を設定する際、次のいずれかで特定のモデルを選択できます。 1. モデル名を渡す。 2. 任意のモデル名と、それを Model インスタンスにマッピングできる [`ModelProvider`][agents.models.interface.ModelProvider] を渡す。 @@ -48,7 +48,7 @@ gemini_agent = Agent(model="litellm/gemini/gemini-2.5-flash-preview-04-17", ...) !!!note - この SDK は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] と [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] の両方の形状をサポートしますが、ワークフローごとに単一のモデル形状を使うことを推奨します。両者は対応する機能やツールのセットが異なるためです。ワークフローでモデル形状を混在させる必要がある場合は、使用するすべての機能が両方で利用可能であることを確認してください。 + SDK は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] と [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] の両方の形に対応していますが、2 つの形はサポートする機能やツールが異なるため、各ワークフローでは単一のモデルの形を使うことをおすすめします。ワークフローでモデルの形を混在させる必要がある場合は、利用するすべての機能が両方で利用可能であることを確認してください。 ```python from agents import Agent, Runner, AsyncOpenAI, OpenAIChatCompletionsModel @@ -81,10 +81,10 @@ async def main(): print(result.final_output) ``` -1. OpenAI モデルの名前を直接設定します。 -2. [`Model`][agents.models.interface.Model] 実装を提供します。 +1. OpenAI のモデル名を直接設定します。 +2. [`Model`][agents.models.interface.Model] 実装を提供します。 -エージェント で使用するモデルをさらに設定したい場合は、[`ModelSettings`][agents.models.interface.ModelSettings] を渡せます。これは、 temperature などの任意のモデル設定 パラメーター を提供します。 +エージェントで使用するモデルをさらに詳細に設定したい場合は、[`ModelSettings`][agents.models.interface.ModelSettings] を渡せます。これは temperature などの任意のモデル設定パラメーターを提供します。 ```python from agents import Agent, ModelSettings @@ -97,7 +97,7 @@ english_agent = Agent( ) ``` -また、 OpenAI の Responses API を使用する場合、[他にもいくつかの任意 パラメーター](https://platform.openai.com/docs/api-reference/responses/create)(例: `user`、`service_tier` など)があります。トップレベルで指定できない場合は、`extra_args` を使って渡せます。 +また、OpenAI の Responses API を使用する場合、[いくつかの他の任意パラメーター](https://platform.openai.com/docs/api-reference/responses/create)(例: `user`、`service_tier` など)があります。トップレベルで指定できない場合は、`extra_args` を使って渡すことができます。 ```python from agents import Agent, ModelSettings @@ -115,24 +115,24 @@ english_agent = Agent( ## 他の LLM プロバイダー利用時の一般的な問題 -### トレーシング クライアントの 401 エラー +### トレーシング クライアントのエラー 401 -トレーシング に関連するエラーが発生する場合は、トレースが OpenAI の サーバー にアップロードされる一方で、 OpenAI の API キーをお持ちでないことが原因です。解決方法は次の 3 つです: +トレーシングに関連するエラーが発生する場合、トレースは OpenAI の サーバー にアップロードされる一方で、OpenAI の API キーをお持ちでないことが原因です。解決策は次の 3 つです。 -1. トレーシング を完全に無効化する: [`set_tracing_disabled(True)`][agents.set_tracing_disabled]。 -2. トレーシング 用に OpenAI キーを設定する: [`set_tracing_export_api_key(...)`][agents.set_tracing_export_api_key]。この API キーはトレースのアップロードのみに使用され、[platform.openai.com](https://platform.openai.com/) のものが必要です。 -3. 非 OpenAI のトレース プロセッサーを使用する。[トレーシング ドキュメント](../tracing.md#custom-tracing-processors) を参照してください。 +1. トレーシングを完全に無効化する: [`set_tracing_disabled(True)`][agents.set_tracing_disabled]。 +2. トレーシング用に OpenAI のキーを設定する: [`set_tracing_export_api_key(...)`][agents.set_tracing_export_api_key]。この API キーはトレースのアップロードにのみ使用され、[platform.openai.com](https://platform.openai.com/) のものが必要です。 +3. 非 OpenAI のトレース プロセッサーを使用する。[tracing ドキュメント](../tracing.md#custom-tracing-processors) を参照してください。 ### Responses API のサポート -SDK はデフォルトで Responses API を使用しますが、他の多くの LLM プロバイダーはまだ対応していません。その結果、 404s などの問題が発生することがあります。解決するには次の 2 つの方法があります: +SDK はデフォルトで Responses API を使用しますが、他の多くの LLM プロバイダーはまだサポートしていません。その結果、404 などの問題が発生することがあります。解決するには次の 2 つの方法があります。 1. [`set_default_openai_api("chat_completions")`][agents.set_default_openai_api] を呼び出します。これは、環境変数で `OPENAI_API_KEY` と `OPENAI_BASE_URL` を設定している場合に機能します。 -2. [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] を使用します。code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)にあります。 +2. [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] を使用します。code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)。 -### structured outputs のサポート +### Structured outputs のサポート -一部のモデルプロバイダーは [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) をサポートしていません。この場合、次のようなエラーが発生することがあります: +一部のモデルプロバイダーは [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) をサポートしていません。これにより、次のようなエラーが発生することがあります。 ``` @@ -140,12 +140,12 @@ BadRequestError: Error code: 400 - {'error': {'message': "'response_format.type' ``` -これは一部のモデルプロバイダーの弱点で、 JSON 出力はサポートしていても、出力に使用する `json_schema` を指定できないというものです。現在この点の改善に取り組んでいますが、 JSON schema 出力をサポートするプロバイダーに依存することをおすすめします。さもないと、 JSON の形式不備により、アプリが頻繁に動作しなくなる可能性があります。 +これは一部のモデルプロバイダーの弱点で、JSON 出力はサポートしていても、出力に使用する `json_schema` を指定できません。現在この問題の修正に取り組んでいますが、JSON スキーマ出力をサポートするプロバイダーに依存することをおすすめします。そうでない場合、JSON の不正形式によりアプリが頻繁に壊れてしまう可能性があります。 -## プロバイダー間でのモデルの組み合わせ +## プロバイダーをまたぐモデルの組み合わせ -モデルプロバイダー間の機能差に注意しないと、エラーに直面する可能性があります。例えば、 OpenAI は structured outputs、マルチモーダル入力、ホスト型の ファイル検索 と Web 検索 をサポートしますが、他の多くのプロバイダーはこれらをサポートしていません。次の制約に注意してください: +モデルプロバイダー間の機能差に注意しないと、エラーに遭遇する可能性があります。たとえば、OpenAI は structured outputs、マルチモーダル入力、ホスト型の ファイル検索 と Web 検索 をサポートしていますが、他の多くのプロバイダーはこれらの機能をサポートしていません。次の制約に注意してください。 -- サポートしていないプロバイダーに、理解しない `tools` を送らないでください -- テキスト専用モデルを呼び出す前に、マルチモーダル入力を除外してください -- structured JSON 出力をサポートしないプロバイダーは、無効な JSON を出力することがあります \ No newline at end of file +- サポートされない `tools` を理解しないプロバイダーには送らないでください +- テキストのみのモデルを呼び出す前に、マルチモーダル入力を除外してください +- structured JSON 出力をサポートしないプロバイダーでは、無効な JSON が出力される場合があることに注意してください。 \ No newline at end of file diff --git a/docs/ja/models/litellm.md b/docs/ja/models/litellm.md index 5332d7a52..deb6dbd79 100644 --- a/docs/ja/models/litellm.md +++ b/docs/ja/models/litellm.md @@ -2,17 +2,17 @@ search: exclude: true --- -# LiteLLM による任意のモデルの利用 +# LiteLLM による任意モデルの利用 !!! note - LiteLLM 連携はベータ版です。特に小規模なモデルプロバイダーでは問題が発生する可能性があります。問題があれば [GitHub issues](https://github.com/openai/openai-agents-python/issues) からご報告ください。迅速に修正します。 + LiteLLM との統合はベータ版です。特に規模の小さいモデルプロバイダーでは問題が発生する可能性があります。問題があれば [GitHub Issues](https://github.com/openai/openai-agents-python/issues) にご報告ください。迅速に修正します。 -[LiteLLM](https://docs.litellm.ai/docs/) は、単一のインターフェースで 100+ モデルを利用できるライブラリです。Agents SDK で任意の AI モデルを使えるように、LiteLLM 連携を追加しました。 +[LiteLLM](https://docs.litellm.ai/docs/) は、単一のインターフェースで 100 以上のモデルを利用できるライブラリです。Agents SDK に LiteLLM との統合を追加し、任意の AI モデルを利用できるようにしました。 ## セットアップ -`litellm` が利用可能である必要があります。オプションの `litellm` 依存関係グループをインストールしてください: +`litellm` が利用可能である必要があります。オプションの `litellm` 依存関係グループをインストールしてください。 ```bash pip install "openai-agents[litellm]" @@ -20,15 +20,15 @@ pip install "openai-agents[litellm]" 完了したら、任意のエージェントで [`LitellmModel`][agents.extensions.models.litellm_model.LitellmModel] を使用できます。 -## 例 +## コード例 -これは完全に動作する例です。実行すると、モデル名と API キーの入力を求められます。たとえば次のように入力できます: +これは完全に動作する例です。実行すると、モデル名と API キーの入力を求められます。たとえば次のように入力できます。 - モデルに `openai/gpt-4.1`、API キーに OpenAI の API キー - モデルに `anthropic/claude-3-5-sonnet-20240620`、API キーに Anthropic の API キー - など -LiteLLM でサポートされているモデルの一覧は、[litellm providers docs](https://docs.litellm.ai/docs/providers) を参照してください。 +LiteLLM でサポートされているモデルの完全な一覧は、[litellm providers docs](https://docs.litellm.ai/docs/providers) を参照してください。 ```python from __future__ import annotations diff --git a/docs/ja/multi_agent.md b/docs/ja/multi_agent.md index cdb036972..f44874344 100644 --- a/docs/ja/multi_agent.md +++ b/docs/ja/multi_agent.md @@ -2,40 +2,40 @@ search: exclude: true --- -# 複数エージェントのオーケストレーション +# 複数のエージェントのオーケストレーション -オーケストレーションとは、アプリ内でのエージェントの流れを指します。どのエージェントが、どの順序で実行され、次に何をするかをどう判断するか、ということです。エージェントをオーケストレーションする方法は主に 2 つあります。 +オーケストレーションとは、アプリ内でのエージェントの流れを指します。どのエージェントが、どの順序で実行され、次に何をするかをどのように決めるのか。エージェントをオーケストレーションする方法は主に 2 つあります。 -1. LLM に意思決定させる方法: これは、LLM の知性を使って計画・推論し、それに基づいて取るべきステップを決定します。 -2. コードでオーケストレーションする方法: コードでエージェントのフローを決めます。 +1. LLM に意思決定させる: LLM の知能を使って、計画・推論し、それに基づいて次に取るべきステップを決めます。 +2. コードでオーケストレーションする: コードでエージェントの流れを決定します。 -これらのパターンは組み合わせて使えます。それぞれにトレードオフがあり、以下で説明します。 +これらのパターンは組み合わせて使えます。それぞれにトレードオフがあります(以下参照)。 ## LLM によるオーケストレーション -エージェントとは、instructions、tools、ハンドオフを備えた LLM です。これは、オープンエンドなタスクが与えられたときに、LLM が自律的に計画を立て、ツールでアクションを実行してデータを取得し、ハンドオフでサブエージェントにタスクを委譲できることを意味します。たとえば、リサーチ用エージェントは次のようなツールを備えられます。 +エージェントは、instructions、tools、ハンドオフ を備えた LLM です。これは、オープンエンドのタスクが与えられたとき、LLM が自律的にタスクへの取り組み方を計画し、ツールを使って行動やデータ取得を行い、ハンドオフでサブエージェントにタスクを委譲できることを意味します。たとえば、リサーチ用のエージェントには次のようなツールを備えられます。 -- オンライン情報を見つけるための Web 検索 -- 企業データや接続を検索するためのファイル検索と取得 -- コンピュータでアクションを実行するためのコンピュータ操作 -- データ分析を行うためのコードの実行 -- 計画やレポート作成などが得意な専門エージェントへのハンドオフ +- Web 検索でオンライン情報を探す +- ファイル検索と取得で、社内データや接続を横断的に検索する +- コンピュータ操作 でコンピュータ上のアクションを実行する +- コード実行でデータ分析を行う +- 企画立案、レポート作成などに長けた専門エージェントへのハンドオフ -このパターンは、タスクがオープンエンドで、LLM の知性に依存したい場合に最適です。ここで重要な戦術は次のとおりです。 +このパターンは、タスクがオープンエンドで、LLM の知能に頼りたい場合に最適です。重要な戦術は次のとおりです。 -1. 良いプロンプトに投資すること。利用可能なツール、その使い方、そして遵守すべきパラメーターを明確にします。 -2. アプリを監視して改善を繰り返すこと。問題が起きる箇所を把握し、プロンプトを反復改善します。 -3. エージェントに内省と改善を許すこと。たとえばループで実行し、自己批評させる、あるいはエラーメッセージを与えて改善させます。 -4. 何でもできる汎用エージェントではなく、1 つのタスクに特化して卓越した専門エージェントを用意すること。 -5. [evals](https://platform.openai.com/docs/guides/evals) に投資すること。これによりエージェントを訓練して、タスクの上達と改善が可能になります。 +1. 良いプロンプトに投資します。利用可能なツール、その使い方、そして守るべきパラメーター を明確にします。 +2. アプリを監視し、反復改善します。どこで問題が起きるかを観察し、プロンプトを改善します。 +3. エージェントに内省と改善を許可します。たとえばループで実行して自己批評させる、あるいはエラーメッセージを与えて改善させます。 +4. なんでもできる汎用エージェントではなく、1 つのタスクに卓越した専門エージェントを用意します。 +5. [evals](https://platform.openai.com/docs/guides/evals) に投資します。これにより、エージェントを訓練してタスクの熟達度を高められます。 ## コードによるオーケストレーション -LLM によるオーケストレーションは強力ですが、コードによるオーケストレーションは速度・コスト・性能の観点で、より決定的かつ予測可能になります。一般的なパターンは次のとおりです。 +LLM によるオーケストレーションは強力ですが、コードによるオーケストレーションは、速度・コスト・性能の面で、より決定的かつ予測可能にできます。一般的なパターンは次のとおりです。 -- [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使って、コードで検査できる適切な形式のデータを生成する。たとえば、エージェントにタスクをいくつかのカテゴリーに分類させ、そのカテゴリーに基づいて次のエージェントを選ぶ、といった方法です。 -- 複数のエージェントをチェーンし、前段の出力を次段の入力に変換する。ブログ記事の執筆のようなタスクを、リサーチ→アウトライン作成→本文執筆→批評→改善という一連のステップに分解できます。 -- タスクを実行するエージェントと、評価・フィードバックを行うエージェントを `while` ループで回し、評価者が一定の基準を満たしたと判断するまで続ける。 -- 複数のエージェントを並行実行する(例: Python の基本コンポーネントである `asyncio.gather` を利用)。互いに依存しない複数のタスクがある場合、速度向上に有用です。 +- [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を用いて、コードで検査可能な 適切な形式のデータ を生成します。たとえば、エージェントにタスクをいくつかの カテゴリー に分類させ、カテゴリー に基づいて次のエージェントを選ぶといった使い方です。 +- あるエージェントの出力を次のエージェントの入力へ変換して、複数のエージェントを連鎖させます。ブログ記事の執筆を、リサーチ→アウトライン作成→本文執筆→批評→改善という一連のステップに分解できます。 +- 実行役のエージェントと、評価とフィードバックを行うエージェントを組み合わせ、評価者が出力が一定の基準を満たしたと判断するまで、`while` ループで回します。 +- 複数のエージェントを並列実行します(例: `asyncio.gather` のような Python の基本コンポーネント 経由)。相互依存しない複数タスクがある場合、速度向上に有用です。 -[`examples/agent_patterns`](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns) に複数の code examples があります。 \ No newline at end of file +[`examples/agent_patterns`](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns) には多数の code examples があります。 \ No newline at end of file diff --git a/docs/ja/quickstart.md b/docs/ja/quickstart.md index 9cb0f80a2..fa3ff2eb2 100644 --- a/docs/ja/quickstart.md +++ b/docs/ja/quickstart.md @@ -6,7 +6,7 @@ search: ## プロジェクトと仮想環境の作成 -これは一度だけ実施すれば十分です。 +これは最初の 1 回だけ実行します。 ```bash mkdir my_project @@ -16,7 +16,7 @@ python -m venv .venv ### 仮想環境の有効化 -新しいターミナルセッションを開始するたびに実行します。 +新しいターミナル セッションを開始するたびに実行します。 ```bash source .venv/bin/activate @@ -30,7 +30,7 @@ pip install openai-agents # or `uv add openai-agents`, etc ### OpenAI API キーの設定 -お持ちでない場合は、[こちらの手順](https://platform.openai.com/docs/quickstart#create-and-export-an-api-key) に従って OpenAI API キーを作成してください。 +まだお持ちでない場合は、[こちらの手順](https://platform.openai.com/docs/quickstart#create-and-export-an-api-key)に従って OpenAI API キーを作成してください。 ```bash export OPENAI_API_KEY=sk-... @@ -38,7 +38,7 @@ export OPENAI_API_KEY=sk-... ## 最初のエージェントの作成 -エージェントは instructions、名前、および任意の設定(`model_config` など)で定義します。 +エージェントは instructions、名前、任意の構成(`model_config` など)で定義します。 ```python from agents import Agent @@ -71,7 +71,7 @@ math_tutor_agent = Agent( ## ハンドオフの定義 -各エージェントで、タスクを前進させる方法を決める際に選択できる、送信側ハンドオフのオプション一覧を定義できます。 +各エージェントで、タスクを進める方法を決定するために選択可能な送信側ハンドオフ オプションのインベントリを定義できます。 ```python triage_agent = Agent( @@ -83,7 +83,7 @@ triage_agent = Agent( ## エージェントオーケストレーションの実行 -ワークフローが実行され、トリアージ用エージェントが 2 つの専門エージェント間を正しくルーティングすることを確認しましょう。 +ワークフローが実行され、トリアージ エージェントが 2 つの専門エージェント間で正しくルーティングすることを確認しましょう。 ```python from agents import Runner @@ -95,7 +95,7 @@ async def main(): ## ガードレールの追加 -入力または出力に対して実行するカスタム ガードレールを定義できます。 +入力または出力に対してカスタム ガードレールを定義できます。 ```python from agents import GuardrailFunctionOutput, Agent, Runner @@ -121,9 +121,9 @@ async def homework_guardrail(ctx, agent, input_data): ) ``` -## 統合して実行 +## 全体の統合 -すべてを組み合わせて、ハンドオフと入力用ガードレールを使用し、ワークフロー全体を実行しましょう。 +ハンドオフと入力ガードレールを使用して、すべてを組み合わせてワークフロー全体を実行しましょう。 ```python from agents import Agent, InputGuardrail, GuardrailFunctionOutput, Runner @@ -192,12 +192,12 @@ if __name__ == "__main__": ## トレースの表示 -エージェントの実行中に何が起きたかを確認するには、 OpenAI ダッシュボードの Trace ビューアに移動し、エージェント実行のトレースを表示します。 +エージェントの実行中に何が起きたかを確認するには、[OpenAI Dashboard の Trace viewer](https://platform.openai.com/traces) に移動してトレースを表示します。 ## 次のステップ -より複雑なエージェント フローの構築方法を学びましょう: +より複雑なエージェント フローの構築方法を学びましょう。 -- [エージェント](agents.md) の設定について学びましょう。 -- [エージェントの実行](running_agents.md) について学びましょう。 -- [ツール](tools.md)、[ガードレール](guardrails.md)、および [モデル](models/index.md) について学びましょう。 \ No newline at end of file +- [エージェント](agents.md)の設定方法を学ぶ。 +- [エージェントの実行](running_agents.md)について学ぶ。 +- [ツール](tools.md)、[ガードレール](guardrails.md)、[モデル](models/index.md)について学ぶ。 \ No newline at end of file diff --git a/docs/ja/realtime/guide.md b/docs/ja/realtime/guide.md index dd1a89cde..d336dfbef 100644 --- a/docs/ja/realtime/guide.md +++ b/docs/ja/realtime/guide.md @@ -4,65 +4,65 @@ search: --- # ガイド -このガイドでは、OpenAI Agents SDK の realtime 機能を用いた音声対応 AI エージェントの構築について詳しく説明します。 +このガイドでは、 OpenAI Agents SDK のリアルタイム機能を用いて音声対応の AI エージェントを構築する方法を詳しく説明します。 !!! warning "ベータ機能" -Realtime エージェントはベータ版です。実装の改善に伴い、破壊的な変更が発生する可能性があります。 +リアルタイム エージェントはベータ版です。実装の改善に伴い、破壊的な変更が発生する可能性があります。 ## 概要 -Realtime エージェントは、会話フローを実現し、音声とテキストの入力をリアルタイムに処理して realtime 音声で応答します。OpenAI の Realtime API との永続接続を維持し、低遅延で自然な音声会話と、割り込みへのスムーズな対応を可能にします。 +リアルタイム エージェントは、会話型のフローを可能にし、音声とテキストの入力をリアルタイムに処理して、リアルタイム音声で応答します。これらは OpenAI の Realtime API との永続的な接続を維持し、低遅延で自然な音声会話や割り込みへのスムーズな対応を実現します。 ## アーキテクチャ -### 中核コンポーネント +### コアコンポーネント -realtime システムは、いくつかの主要コンポーネントで構成されます: +リアルタイム システムはいくつかの重要なコンポーネントで構成されます。 -- **RealtimeAgent**: instructions、tools、handoffs で構成されたエージェントです。 -- **RealtimeRunner**: 設定を管理します。`runner.run()` を呼び出してセッションを取得できます。 -- **RealtimeSession**: 単一の対話セッションです。通常、ユーザーが会話を開始するたびに作成し、会話が完了するまで維持します。 -- **RealtimeModel**: 基盤となるモデルのインターフェースです (通常は OpenAI の WebSocket 実装)。 +- **RealtimeAgent** : instructions、tools、ハンドオフで構成されたエージェント。 +- **RealtimeRunner** : 構成を管理します。`runner.run()` を呼び出してセッションを取得できます。 +- **RealtimeSession** : 単一の対話セッション。通常は ユーザー が会話を開始するたびに作成し、会話が終了するまで生かしておきます。 +- **RealtimeModel** : 基盤となるモデル インターフェース(一般的には OpenAI の WebSocket 実装) ### セッションフロー -一般的な realtime セッションは次のフローに従います: +一般的なリアルタイム セッションは次のフローに従います。 -1. instructions、tools、handoffs を用いて **RealtimeAgent を作成** します。 -2. エージェントと設定オプションで **RealtimeRunner をセットアップ** します。 -3. `await runner.run()` を使用して **セッションを開始** し、RealtimeSession が返されます。 -4. `send_audio()` または `send_message()` を使って **音声またはテキストのメッセージを送信** します。 -5. セッションを反復処理して **イベントを監視** します。イベントには音声出力、書き起こし、ツール呼び出し、ハンドオフ、エラーなどが含まれます。 -6. ユーザーがエージェントの発話にかぶせて話した場合の **割り込みを処理** します。これにより、現在の音声生成は自動的に停止します。 +1. **RealtimeAgent を作成**: instructions、tools、ハンドオフを設定します。 +2. **RealtimeRunner を設定**: エージェントと構成オプションを指定します。 +3. **セッションを開始**: `await runner.run()` を使用して開始し、RealtimeSession が返されます。 +4. **音声またはテキストの送信**: `send_audio()` または `send_message()` を使用してセッションに送信します。 +5. **イベントの受信**: セッションを反復処理してイベントを待ち受けます。音声出力、文字起こし、ツール呼び出し、ハンドオフ、エラーなどが含まれます。 +6. **割り込みの処理**: ユーザー がエージェントの発話に割り込んだ場合、現在の音声生成が自動的に停止します。 -セッションは会話履歴を保持し、realtime モデルとの永続接続を管理します。 +セッションは会話履歴を維持し、リアルタイム モデルとの永続接続を管理します。 -## エージェントの設定 +## エージェント構成 -RealtimeAgent は通常の Agent クラスとほぼ同様に動作しますが、いくつか重要な違いがあります。API の詳細は、[`RealtimeAgent`][agents.realtime.agent.RealtimeAgent] の API リファレンスをご覧ください。 +RealtimeAgent は通常の Agent クラスとほぼ同様に動作しますが、いくつか重要な相違点があります。完全な API の詳細は [`RealtimeAgent`][agents.realtime.agent.RealtimeAgent] を参照してください。 -通常のエージェントとの主な違い: +通常のエージェントとの主な相違点: -- モデルの選択はエージェントレベルではなくセッションレベルで設定します。 -- structured outputs のサポートはありません ( `outputType` は未対応です )。 -- 音声はエージェントごとに設定できますが、最初のエージェントが話し始めた後は変更できません。 -- tools、handoffs、instructions などのその他の機能は同様に動作します。 +- モデルの選択はエージェント レベルではなく、セッション レベルで構成します。 +- structured output はサポートされません(`outputType` はサポートされません)。 +- ボイスはエージェントごとに設定できますが、最初のエージェントが話し始めた後に変更することはできません。 +- tools、ハンドオフ、instructions などのその他の機能は同じように動作します。 -## セッションの設定 +## セッション構成 ### モデル設定 -セッション設定では、基盤となる realtime モデルの動作を制御できます。モデル名 (例: `gpt-4o-realtime-preview`) の設定、音声の選択 ( alloy、echo、fable、onyx、nova、shimmer )、およびサポートするモダリティ (テキストや音声) を構成できます。音声フォーマットは入力・出力の両方に対して指定でき、既定値は PCM16 です。 +セッション構成では、基盤となるリアルタイム モデルの動作を制御できます。モデル名(`gpt-4o-realtime-preview` など)、ボイス選択( alloy、echo、fable、onyx、nova、shimmer)、およびサポートされるモダリティ(テキストや音声)を構成できます。音声フォーマットは入力と出力の両方に設定でき、既定は PCM16 です。 -### オーディオ設定 +### 音声設定 -オーディオ設定では、セッションが音声の入出力をどのように扱うかを制御します。Whisper などのモデルを用いた入力音声の書き起こし、言語設定、専門用語の精度を高めるための書き起こしプロンプトを指定できます。ターン検出の設定では、音声活動検出 (VAD) のしきい値、無音時間、検出された発話の前後パディングなどにより、エージェントがいつ応答を開始・終了すべきかを制御します。 +音声設定は、セッションが音声入出力をどのように扱うかを制御します。 Whisper などのモデルを使用した入力音声の文字起こし、言語設定、ドメイン特有の用語の精度向上のための文字起こしプロンプトを構成できます。ターン検出設定では、エージェントがいつ応答を開始・停止すべきかを制御し、音声活動検出のしきい値、無音時間、検出された発話の前後のパディングなどを調整できます。 ## ツールと関数 ### ツールの追加 -通常のエージェントと同様に、realtime エージェントは会話中に実行される 関数ツール をサポートします: +通常のエージェントと同様に、リアルタイム エージェントは会話中に実行される 関数ツール をサポートします。 ```python from agents import function_tool @@ -90,7 +90,7 @@ agent = RealtimeAgent( ### ハンドオフの作成 -ハンドオフにより、専門特化したエージェント間で会話を転送できます。 +ハンドオフにより、専門特化したエージェント間で会話を引き継ぐことができます。 ```python from agents.realtime import realtime_handoff @@ -119,22 +119,22 @@ main_agent = RealtimeAgent( ## イベント処理 -セッションはイベントをストリーミングし、セッションオブジェクトを反復処理することで監視できます。イベントには音声出力チャンク、書き起こし結果、ツール実行の開始と終了、エージェントのハンドオフ、エラーなどが含まれます。主要なイベントは次のとおりです: +セッションは、セッション オブジェクトを反復処理することで待ち受け可能なイベントを ストリーミング します。イベントには、音声出力チャンク、文字起こし結果、ツール実行の開始・終了、エージェントのハンドオフ、エラーなどが含まれます。特に扱うべき主なイベントは次のとおりです。 -- **audio**: エージェントの応答からの raw オーディオデータ -- **audio_end**: エージェントの発話が完了 -- **audio_interrupted**: ユーザーがエージェントを割り込み -- **tool_start/tool_end**: ツール実行のライフサイクル -- **handoff**: エージェントのハンドオフが発生 -- **error**: 処理中にエラーが発生 +- **audio** : エージェントの応答からの raw 音声データ +- **audio_end** : エージェントの発話が終了 +- **audio_interrupted** : ユーザー によるエージェントの割り込み +- **tool_start/tool_end** : ツール実行のライフサイクル +- **handoff** : エージェントのハンドオフが発生 +- **error** : 処理中にエラーが発生 -イベントの詳細は [`RealtimeSessionEvent`][agents.realtime.events.RealtimeSessionEvent] を参照してください。 +完全なイベントの詳細は [`RealtimeSessionEvent`][agents.realtime.events.RealtimeSessionEvent] を参照してください。 ## ガードレール -Realtime エージェントでサポートされるのは出力ガードレールのみです。パフォーマンス問題を避けるため、これらのガードレールはデバウンスされ、リアルタイム生成中に毎単語ではなく一定間隔で実行されます。既定のデバウンス長は 100 文字ですが、設定可能です。 +リアルタイム エージェントでサポートされるのは出力 ガードレール のみです。リアルタイム生成中のパフォーマンス問題を避けるため、これらのガードレールはデバウンスされ、(毎語ではなく)定期的に実行されます。既定のデバウンス長は 100 文字ですが、設定可能です。 -ガードレールは `RealtimeAgent` に直接アタッチするか、セッションの `run_config` 経由で提供できます。両方の経路からのガードレールは併用されます。 +ガードレールは `RealtimeAgent` に直接アタッチするか、セッションの `run_config` から提供できます。両方のソースからのガードレールは併せて実行されます。 ```python from agents.guardrail import GuardrailFunctionOutput, OutputGuardrail @@ -152,25 +152,25 @@ agent = RealtimeAgent( ) ``` -ガードレールがトリガーされると、`guardrail_tripped` イベントが生成され、エージェントの現在の応答を中断する場合があります。デバウンス動作により、安全性とリアルタイム性能要件のバランスを取ります。テキストエージェントと異なり、realtime エージェントはガードレール作動時に Exception をスローしません。 +ガードレールがトリガーされると、`guardrail_tripped` イベントを生成し、エージェントの現在の応答を中断することがあります。デバウンス動作により、安全性とリアルタイム パフォーマンス要件のバランスが取られます。テキスト エージェントと異なり、リアルタイム エージェントはガードレールがトリップしても例外を発生させません。 ## 音声処理 -[`session.send_audio(audio_bytes)`][agents.realtime.session.RealtimeSession.send_audio] を使って音声をセッションに送信するか、[`session.send_message()`][agents.realtime.session.RealtimeSession.send_message] を使ってテキストを送信します。 +[`session.send_audio(audio_bytes)`][agents.realtime.session.RealtimeSession.send_audio] を使用して音声をセッションに送信するか、[`session.send_message()`][agents.realtime.session.RealtimeSession.send_message] を使用してテキストを送信します。 -音声出力については、`audio` イベントを監視し、任意の音声ライブラリで再生してください。ユーザーがエージェントを割り込んだ際にはすぐに再生を停止し、キューにある音声をクリアするために `audio_interrupted` イベントを必ず監視してください。 +音声出力については、`audio` イベントを待ち受け、好みの音声ライブラリで再生してください。ユーザー がエージェントを割り込んだ際に即座に再生を停止し、キューにある音声をクリアできるよう、`audio_interrupted` イベントを必ず監視してください。 ## モデルへの直接アクセス -基盤となるモデルにアクセスして、カスタムリスナーの追加や高度な操作を実行できます: +基盤となるモデルにアクセスして、カスタム リスナーの追加や高度な操作を実行できます。 ```python # Add a custom listener to the model session.model.add_listener(my_custom_listener) ``` -これにより、接続を低レベルで制御する必要がある高度なユースケースに向けて、[`RealtimeModel`][agents.realtime.model.RealtimeModel] インターフェースへ直接アクセスできます。 +これにより、接続を低レベルで制御する必要がある高度なユースケース向けに、[`RealtimeModel`][agents.realtime.model.RealtimeModel] インターフェースへ直接アクセスできます。 -## 例 +## コード例 -完全な動作する code examples は、UI コンポーネントの有無それぞれのデモを含む [examples/realtime ディレクトリ](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) を参照してください。 \ No newline at end of file +完全な動作するコード例については、 UI コンポーネントあり/なしのデモを含む [examples/realtime ディレクトリ](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) を参照してください。 \ No newline at end of file diff --git a/docs/ja/realtime/quickstart.md b/docs/ja/realtime/quickstart.md index 0c087d4fc..47abfbd59 100644 --- a/docs/ja/realtime/quickstart.md +++ b/docs/ja/realtime/quickstart.md @@ -4,26 +4,26 @@ search: --- # クイックスタート -Realtime エージェントは、OpenAI の Realtime API を使用して AI エージェントとの音声対話を可能にします。このガイドでは、最初のリアルタイム音声エージェントの作成手順を説明します。 +リアルタイム エージェントは、 OpenAI の Realtime API を使用して AI エージェントと音声での会話を可能にします。ここでは最初のリアルタイム音声エージェントの作成手順を説明します。 !!! warning "ベータ機能" -Realtime エージェントはベータ版です。実装の改善に伴い、非互換の変更が発生する可能性があります。 +Realtime agents はベータ版です。改善の過程で互換性が壊れる変更が発生する可能性があります。 ## 前提条件 - Python 3.9 以上 - OpenAI API キー -- OpenAI Agents SDK の基本的な理解 +- OpenAI Agents SDK の基本的な知識 ## インストール -未インストールの場合は、OpenAI Agents SDK をインストールします: +まだの場合は、 OpenAI Agents SDK をインストールします: ```bash pip install openai-agents ``` -## 初めての Realtime エージェントの作成 +## 最初のリアルタイム エージェントの作成 ### 1. 必要なコンポーネントのインポート @@ -32,7 +32,7 @@ import asyncio from agents.realtime import RealtimeAgent, RealtimeRunner ``` -### 2. Realtime エージェントの作成 +### 2. リアルタイム エージェントの作成 ```python agent = RealtimeAgent( @@ -41,7 +41,7 @@ agent = RealtimeAgent( ) ``` -### 3. runner のセットアップ +### 3. Runner のセットアップ ```python runner = RealtimeRunner( @@ -81,7 +81,7 @@ asyncio.run(main()) ## 完全なコード例 -完全に動作するコード例はこちらです: +動作する完全なコード例です: ```python import asyncio @@ -135,38 +135,38 @@ if __name__ == "__main__": asyncio.run(main()) ``` -## 構成オプション +## 設定オプション ### モデル設定 -- `model_name`: 利用可能な Realtime モデルから選択します (例: `gpt-4o-realtime-preview`) -- `voice`: 音声を選択します (`alloy`, `echo`, `fable`, `onyx`, `nova`, `shimmer`) -- `modalities`: テキストおよび/または音声を有効化します (`["text", "audio"]`) +- `model_name`: 利用可能なリアルタイム モデルから選択(例: `gpt-4o-realtime-preview`) +- `voice`: 音声を選択(`alloy`, `echo`, `fable`, `onyx`, `nova`, `shimmer`) +- `modalities`: テキストや音声を有効化(`["text", "audio"]`) -### 音声設定 +### オーディオ設定 -- `input_audio_format`: 入力音声の形式 (`pcm16`, `g711_ulaw`, `g711_alaw`) -- `output_audio_format`: 出力音声の形式 +- `input_audio_format`: 入力音声のフォーマット(`pcm16`, `g711_ulaw`, `g711_alaw`) +- `output_audio_format`: 出力音声のフォーマット - `input_audio_transcription`: 文字起こしの設定 ### ターン検出 -- `type`: 検出方式 (`server_vad`, `semantic_vad`) -- `threshold`: 音声活動のしきい値 (0.0-1.0) -- `silence_duration_ms`: ターン終了を検出する無音継続時間 +- `type`: 検出方法(`server_vad`, `semantic_vad`) +- `threshold`: 音声活動のしきい値(0.0-1.0) +- `silence_duration_ms`: ターン終了を検出する無音時間 - `prefix_padding_ms`: 発話前の音声パディング ## 次のステップ -- [Realtime エージェントの詳細](guide.md) -- 動作する code examples は [examples/realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) フォルダを参照してください +- [リアルタイム エージェントの詳細を見る](guide.md) +- 動作する sample code は [examples/realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) フォルダにあります - エージェントにツールを追加する - エージェント間のハンドオフを実装する -- 安全性のためにガードレールを設定する +- 安全性のためのガードレールを設定する ## 認証 -環境に OpenAI API キーを設定してください: +OpenAI API キーが環境に設定されていることを確認してください: ```bash export OPENAI_API_KEY="your-api-key-here" diff --git a/docs/ja/release.md b/docs/ja/release.md index ce52bc6a5..36be87f18 100644 --- a/docs/ja/release.md +++ b/docs/ja/release.md @@ -2,19 +2,19 @@ search: exclude: true --- -# リリースプロセス / 変更履歴 +# リリースプロセス/変更履歴 -このプロジェクトは、形式 `0.Y.Z` を用いた、やや修正したセマンティックバージョニングに従います。先頭の `0` は、この SDK が依然として急速に進化していることを示します。各コンポーネントの増やし方は次のとおりです。 +このプロジェクトは、`0.Y.Z` の形式を用いた、やや調整したセマンティックバージョニングに従います。先頭の `0` は、SDK が依然として急速に進化していることを示します。各コンポーネントの増分は以下のとおりです。 -## マイナー(`Y`)バージョン +## マイナー (`Y`) バージョン -ベータではないパブリック インターフェースに対する ** 破壊的変更 ** がある場合に、マイナー バージョン `Y` を増やします。たとえば、`0.0.x` から `0.1.x` への移行には、破壊的変更が含まれる可能性があります。 +ベータと明示されていない公開インターフェースに対する**破壊的変更**がある場合、マイナー バージョン `Y` を上げます。たとえば、`0.0.x` から `0.1.x` への更新には破壊的変更が含まれる可能性があります。 -破壊的変更を避けたい場合は、プロジェクトで `0.0.x` に固定することをおすすめします。 +破壊的変更を避けたい場合は、プロジェクトで `0.0.x` バージョンに固定することをおすすめします。 -## パッチ(`Z`)バージョン +## パッチ (`Z`) バージョン -破壊的でない変更では `Z` を増やします。 +破壊的でない変更については `Z` を増分します。 - バグ修正 - 新機能 @@ -25,8 +25,8 @@ search: ### 0.2.0 -このバージョンでは、以前は引数として `Agent` を受け取っていた箇所の一部が、代わりに `AgentBase` を引数として受け取るようになりました。たとえば、 MCP サーバーでの `list_tools()` 呼び出しです。これは純粋に型付け上の変更であり、引き続き `Agent` オブジェクトが渡されます。更新するには、`Agent` を `AgentBase` に置き換えて型エラーを修正するだけです。 +このバージョンでは、これまで引数として `Agent` を受け取っていたいくつかの箇所が、代わりに `AgentBase` を引数として受け取るようになりました。たとえば、MCP サーバーでの `list_tools()` 呼び出しです。これは型に関する変更のみであり、引き続き `Agent` オブジェクトを受け取ります。更新の際は、`Agent` を `AgentBase` に置き換えて型エラーを修正してください。 ### 0.1.0 -このバージョンでは、[`MCPServer.list_tools()`][agents.mcp.server.MCPServer] に新たに 2 つのパラメーター `run_context` と `agent` が追加されました。`MCPServer` をサブクラス化する任意のクラスに、これらのパラメーターを追加する必要があります。 \ No newline at end of file +このバージョンでは、[`MCPServer.list_tools()`][agents.mcp.server.MCPServer] に新しいパラメーター `run_context` と `agent` が追加されました。`MCPServer` をサブクラス化しているすべてのクラスに、これらのパラメーターを追加する必要があります。 \ No newline at end of file diff --git a/docs/ja/repl.md b/docs/ja/repl.md index 41749b82f..463271ad0 100644 --- a/docs/ja/repl.md +++ b/docs/ja/repl.md @@ -4,7 +4,7 @@ search: --- # REPL ユーティリティ -この SDK は、`run_demo_loop` を提供しており、ターミナル上でエージェントの挙動を素早く対話的にテストできます。 +この SDK には、`run_demo_loop` が用意されており、端末上でエージェントの動作を素早く対話的にテストできます。 ```python import asyncio @@ -18,6 +18,6 @@ if __name__ == "__main__": asyncio.run(main()) ``` -`run_demo_loop` はループでユーザー入力を促し、各ターン間で会話履歴を保持します。デフォルトでは、生成と同時にモデル出力をストリーミングします。上記の例を実行すると、 run_demo_loop は対話型のチャットセッションを開始します。入力を継続的に求め、各ターン間で会話全体の履歴を記憶し(そのためエージェントは何が話されたかを把握します)、生成と同時にエージェントの応答をリアルタイムで自動的にストリーミングします。 +`run_demo_loop` は、ループでユーザー入力を促し、ターン間の会話履歴を保持します。デフォルトでは、生成され次第モデル出力をストリーミングします。上記の例を実行すると、`run_demo_loop` が対話型チャットセッションを開始します。継続的に入力を求め、ターン間の会話履歴全体を記憶し(これによりエージェントは何が議論されたかを把握できます)、生成と同時にエージェントの応答をリアルタイムで自動的にストリーミングします。 -このチャットセッションを終了するには、`quit` または `exit` と入力する(そして Enter を押します)か、`Ctrl-D` のキーボードショートカットを使用します。 \ No newline at end of file +このチャットセッションを終了するには、`quit` または `exit` と入力して Enter を押すか、`Ctrl-D` のキーボードショートカットを使用します。 \ No newline at end of file diff --git a/docs/ja/results.md b/docs/ja/results.md index da696fd84..69cc788a7 100644 --- a/docs/ja/results.md +++ b/docs/ja/results.md @@ -4,53 +4,53 @@ search: --- # 実行結果 -`Runner.run` メソッドを呼び出すと、次のいずれかが返ります: +`Runner.run` メソッドを呼び出すと、以下のいずれかが返ります。 -- `run` または `run_sync` を呼び出した場合は [`RunResult`][agents.result.RunResult] -- `run_streamed` を呼び出した場合は [`RunResultStreaming`][agents.result.RunResultStreaming] +- [`RunResult`][agents.result.RunResult](`run` または `run_sync` を呼び出した場合) +- [`RunResultStreaming`][agents.result.RunResultStreaming](`run_streamed` を呼び出した場合) -いずれも [`RunResultBase`][agents.result.RunResultBase] を継承しており、ほとんどの有用な情報はここに含まれます。 +いずれも [`RunResultBase`][agents.result.RunResultBase] を継承しており、有用な情報の多くはそこに含まれます。 ## 最終出力 -[`final_output`][agents.result.RunResultBase.final_output] プロパティには、最後に実行されたエージェントの最終出力が含まれます。これは次のいずれかです: +[`final_output`][agents.result.RunResultBase.final_output] プロパティには、最後に実行されたエージェントの最終出力が含まれます。これは次のいずれかです。 -- 最後のエージェントで `output_type` が定義されていなかった場合は `str` -- エージェントで出力タイプが定義されていた場合は `last_agent.output_type` 型のオブジェクト +- 最後のエージェントに `output_type` が定義されていない場合は `str` +- エージェントに出力タイプが定義されている場合は `last_agent.output_type` 型のオブジェクト !!! note - `final_output` は `Any` 型です。ハンドオフがあるため、静的型付けはできません。ハンドオフが発生する場合、最後のエージェントになり得るのは任意のエージェントであり、可能な出力タイプの集合を静的には特定できないためです。 + `final_output` の型は `Any` です。ハンドオフのため、静的型付けはできません。ハンドオフが発生すると、どのエージェントが最後になるか分からないため、可能な出力タイプの集合を静的には特定できません。 -## 次ターンの入力 +## 次のターンの入力 -[`result.to_input_list()`][agents.result.RunResultBase.to_input_list] を使うと、実行結果を入力リストに変換し、提供した元の入力に、エージェントの実行中に生成されたアイテムを連結できます。これにより、あるエージェント実行の出力を別の実行に渡したり、ループで実行して毎回新しい ユーザー 入力を追加したりするのが容易になります。 +[`result.to_input_list()`][agents.result.RunResultBase.to_input_list] を使うと、実行結果を、あなたが提供した元の入力とエージェント実行中に生成されたアイテムを連結した入力リストに変換できます。これにより、あるエージェント実行の出力を別の実行に渡したり、ループで実行して毎回新しい ユーザー 入力を追記したりするのが簡単になります。 ## 最後のエージェント -[`last_agent`][agents.result.RunResultBase.last_agent] プロパティには、最後に実行されたエージェントが含まれます。アプリケーションによっては、次回 ユーザー が入力する際に役立つことがよくあります。たとえば、フロントラインのトリアージ エージェントが言語別のエージェントにハンドオフする場合、最後のエージェントを保存しておき、次回 ユーザー がメッセージを送るときに再利用できます。 +[`last_agent`][agents.result.RunResultBase.last_agent] プロパティには、最後に実行されたエージェントが含まれます。アプリケーションによっては、次回 ユーザー が何かを入力する際に便利です。たとえば、フロントラインのトリアージ エージェントが言語別のエージェントにハンドオフする場合、最後のエージェントを保存して、次回 ユーザー がエージェントにメッセージを送るときに再利用できます。 ## 新規アイテム -[`new_items`][agents.result.RunResultBase.new_items] プロパティには、実行中に生成された新規アイテムが含まれます。アイテムは [`RunItem`][agents.items.RunItem] です。実行アイテムは、LLM が生成した raw なアイテムをラップします。 +[`new_items`][agents.result.RunResultBase.new_items] プロパティには、実行中に生成された新しいアイテムが含まれます。アイテムは [`RunItem`][agents.items.RunItem] です。実行アイテムは、LLM が生成した raw アイテムをラップします。 - [`MessageOutputItem`][agents.items.MessageOutputItem]: LLM からのメッセージを示します。raw アイテムは生成されたメッセージです。 - [`HandoffCallItem`][agents.items.HandoffCallItem]: LLM がハンドオフ ツールを呼び出したことを示します。raw アイテムは LLM からのツール呼び出しアイテムです。 - [`HandoffOutputItem`][agents.items.HandoffOutputItem]: ハンドオフが発生したことを示します。raw アイテムはハンドオフ ツール呼び出しへのツール応答です。アイテムからソース/ターゲットのエージェントにもアクセスできます。 -- [`ToolCallItem`][agents.items.ToolCallItem]: LLM がツールを呼び出したことを示します。 -- [`ToolCallOutputItem`][agents.items.ToolCallOutputItem]: ツールが呼び出されたことを示します。raw アイテムはツールの応答です。アイテムからツールの出力にもアクセスできます。 +- [`ToolCallItem`][agents.items.ToolCallItem]: LLM がツールを起動したことを示します。 +- [`ToolCallOutputItem`][agents.items.ToolCallOutputItem]: ツールが呼び出されたことを示します。raw アイテムはツールのレスポンスです。アイテムからツールの出力にもアクセスできます。 - [`ReasoningItem`][agents.items.ReasoningItem]: LLM からの推論アイテムを示します。raw アイテムは生成された推論です。 ## その他の情報 ### ガードレールの実行結果 -[`input_guardrail_results`][agents.result.RunResultBase.input_guardrail_results] と [`output_guardrail_results`][agents.result.RunResultBase.output_guardrail_results] プロパティには、ガードレールの実行結果がある場合に含まれます。ガードレールの実行結果には、ログや保存に役立つ情報が含まれることがあるため、参照できるように提供しています。 +[`input_guardrail_results`][agents.result.RunResultBase.input_guardrail_results] と [`output_guardrail_results`][agents.result.RunResultBase.output_guardrail_results] プロパティには、ガードレールの実行結果(存在する場合)が含まれます。ガードレールの実行結果には、記録や保存に有用な情報が含まれることがあるため、参照できるようにしています。 -### raw レスポンス +### Raw 応答 [`raw_responses`][agents.result.RunResultBase.raw_responses] プロパティには、LLM によって生成された [`ModelResponse`][agents.items.ModelResponse] が含まれます。 ### 元の入力 -[`input`][agents.result.RunResultBase.input] プロパティには、`run` メソッドに提供した元の入力が含まれます。多くの場合は不要ですが、必要に応じて参照できます。 \ No newline at end of file +[`input`][agents.result.RunResultBase.input] プロパティには、`run` メソッドに提供した元の入力が含まれます。ほとんどの場合これは不要ですが、必要に応じて参照できます。 \ No newline at end of file diff --git a/docs/ja/running_agents.md b/docs/ja/running_agents.md index e32f37381..b4a7ab0d4 100644 --- a/docs/ja/running_agents.md +++ b/docs/ja/running_agents.md @@ -4,11 +4,11 @@ search: --- # エージェントの実行 -エージェントは [`Runner`][agents.run.Runner] クラスで実行できます。オプションは 3 つあります。 +エージェントは [`Runner`][agents.run.Runner] クラスで実行できます。方法は 3 つあります: 1. [`Runner.run()`][agents.run.Runner.run]: 非同期で実行し、[`RunResult`][agents.result.RunResult] を返します。 2. [`Runner.run_sync()`][agents.run.Runner.run_sync]: 同期メソッドで、内部的には `.run()` を実行します。 -3. [`Runner.run_streamed()`][agents.run.Runner.run_streamed]: 非同期で実行し、[`RunResultStreaming`][agents.result.RunResultStreaming] を返します。LLM をストリーミングモードで呼び出し、受信したイベントをそのままストリーミングします。 +3. [`Runner.run_streamed()`][agents.run.Runner.run_streamed]: 非同期で実行し、[`RunResultStreaming`][agents.result.RunResultStreaming] を返します。LLM をストリーミングモードで呼び出し、受信したイベントを逐次ストリーミングします。 ```python from agents import Agent, Runner @@ -23,55 +23,55 @@ async def main(): # Infinite loop's dance ``` -詳細は [結果ガイド](results.md) を参照してください。 +詳しくは [実行結果ガイド](results.md) をご覧ください。 ## エージェントループ -`Runner` の run メソッドを使うとき、開始エージェントと入力を渡します。入力は文字列(ユーザーのメッセージと見なされます)か、OpenAI Responses API のアイテムのリストのいずれかです。 +`Runner` の run メソッドを使うときは、開始エージェントと入力を渡します。入力は文字列(ユーザーからのメッセージとみなされます)か、OpenAI Responses API のアイテムのリストのいずれかです。 -runner は次のループを実行します。 +その後 Runner はループを実行します: 1. 現在のエージェントに対して、現在の入力で LLM を呼び出します。 2. LLM が出力を生成します。 - 1. LLM が `final_output` を返した場合、ループを終了し、結果を返します。 - 2. LLM が ハンドオフ を行った場合、現在のエージェントと入力を更新して、ループを再実行します。 - 3. LLM が ツール呼び出し を生成した場合、それらを実行し、結果を追加して、ループを再実行します。 -3. 渡された `max_turns` を超えた場合、[`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded] 例外を送出します。 + 1. LLM が `final_output` を返した場合、ループは終了し、結果を返します。 + 2. LLM がハンドオフを行った場合、現在のエージェントと入力を更新し、ループを再実行します。 + 3. LLM がツール呼び出しを生成した場合、それらを実行して結果を追加し、ループを再実行します。 +3. 渡した `max_turns` を超えた場合、[`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded] 例外を送出します。 !!! note - LLM の出力が「final output」と見なされるルールは、目的の型のテキスト出力を生成し、かつツール呼び出しがない場合です。 + LLM の出力が「最終出力」とみなされるルールは、所望の型のテキスト出力を生成しており、ツール呼び出しがないことです。 ## ストリーミング -ストリーミングでは、LLM の実行中にストリーミングイベントを受け取れます。ストリーム完了後、[`RunResultStreaming`][agents.result.RunResultStreaming] には、生成されたすべての新しい出力を含む実行の完全な情報が入ります。ストリーミングイベントは `.stream_events()` を呼び出すことで受け取れます。詳細は [ストリーミングガイド](streaming.md) を参照してください。 +ストリーミングを使うと、LLM の実行中にストリーミングイベントも受け取れます。ストリーム完了後、[`RunResultStreaming`][agents.result.RunResultStreaming] には、生成されたすべての新しい出力を含む、実行に関する完全な情報が含まれます。ストリーミングイベントは `.stream_events()` を呼び出してください。詳しくは [ストリーミングガイド](streaming.md) をご覧ください。 ## 実行設定 -`run_config` パラメーターで、エージェント実行のグローバル設定を構成できます。 +`run_config` パラメーターでエージェント実行のグローバル設定を構成できます: -- [`model`][agents.run.RunConfig.model]: 各 Agent の `model` 設定に関係なく、グローバルな LLM モデルを設定できます。 -- [`model_provider`][agents.run.RunConfig.model_provider]: モデル名を解決するモデルプロバイダーで、デフォルトは OpenAI です。 +- [`model`][agents.run.RunConfig.model]: 各 Agent の `model` 設定に関わらず、使用するグローバルな LLM モデルを設定します。 +- [`model_provider`][agents.run.RunConfig.model_provider]: モデル名を解決するためのモデルプロバイダーで、デフォルトは OpenAI です。 - [`model_settings`][agents.run.RunConfig.model_settings]: エージェント固有の設定を上書きします。たとえば、グローバルな `temperature` や `top_p` を設定できます。 -- [`input_guardrails`][agents.run.RunConfig.input_guardrails], [`output_guardrails`][agents.run.RunConfig.output_guardrails]: すべての実行に含める入力または出力の ガードレール のリストです。 -- [`handoff_input_filter`][agents.run.RunConfig.handoff_input_filter]: ハンドオフ に入力フィルターがない場合に適用するグローバル入力フィルターです。入力フィルターにより、新しいエージェントへ送る入力を編集できます。詳細は [`Handoff.input_filter`][agents.handoffs.Handoff.input_filter] のドキュメントを参照してください。 -- [`tracing_disabled`][agents.run.RunConfig.tracing_disabled]: 実行全体の [トレーシング](tracing.md) を無効化できます。 -- [`trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data]: LLM やツール呼び出しの入出力など、機微なデータをトレースに含めるかどうかを設定します。 -- [`workflow_name`][agents.run.RunConfig.workflow_name], [`trace_id`][agents.run.RunConfig.trace_id], [`group_id`][agents.run.RunConfig.group_id]: 実行のトレーシングのワークフロー名、トレース ID、トレースグループ ID を設定します。少なくとも `workflow_name` の設定を推奨します。グループ ID は任意で、複数の実行にまたがるトレースを関連付けるのに使えます。 -- [`trace_metadata`][agents.run.RunConfig.trace_metadata]: すべてのトレースに含めるメタデータです。 +- [`input_guardrails`][agents.run.RunConfig.input_guardrails], [`output_guardrails`][agents.run.RunConfig.output_guardrails]: すべての実行に含める入力/出力ガードレールのリスト。 +- [`handoff_input_filter`][agents.run.RunConfig.handoff_input_filter]: ハンドオフに既存のフィルターがない場合に適用するグローバルな入力フィルター。入力フィルターにより、新しいエージェントに送る入力を編集できます。詳細は [`Handoff.input_filter`][agents.handoffs.Handoff.input_filter] のドキュメントをご覧ください。 +- [`tracing_disabled`][agents.run.RunConfig.tracing_disabled]: 実行全体に対して [トレーシング](tracing.md) を無効にできます。 +- [`trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data]: LLM やツール呼び出しの入出力など、機微情報をトレースに含めるかどうかを設定します。 +- [`workflow_name`][agents.run.RunConfig.workflow_name], [`trace_id`][agents.run.RunConfig.trace_id], [`group_id`][agents.run.RunConfig.group_id]: 実行のトレーシング用のワークフロー名、トレース ID、トレースグループ ID を設定します。少なくとも `workflow_name` の設定を推奨します。グループ ID は任意で、複数の実行にまたがるトレースの関連付けに使えます。 +- [`trace_metadata`][agents.run.RunConfig.trace_metadata]: すべてのトレースに含めるメタデータ。 -## 会話 / チャットスレッド +## 会話/チャットスレッド -いずれかの run メソッドを呼び出すと、1 つ以上のエージェント(したがって 1 回以上の LLM 呼び出し)が実行される可能性がありますが、チャット会話の単一の論理ターンを表します。例: +いずれの run メソッドを呼び出しても、1 つ以上のエージェント(したがって 1 回以上の LLM 呼び出し)が走る可能性がありますが、チャット会話における 1 回の論理的なターンを表します。例: -1. ユーザーターン: ユーザーがテキストを入力 -2. Runner の実行: 最初のエージェントが LLM を呼び出し、ツールを実行し、2 番目のエージェントに ハンドオフ、2 番目のエージェントがさらにツールを実行し、その後に出力を生成。 +1. ユーザーのターン: ユーザーがテキストを入力 +2. Runner の実行: 最初のエージェントが LLM を呼び出し、ツールを実行し、2 番目のエージェントへハンドオフ。2 番目のエージェントがさらにツールを実行し、出力を生成。 -エージェントの実行が終わったら、ユーザーに何を表示するかを選べます。たとえば、エージェントが生成したすべての新しいアイテムを表示するか、最終出力のみを表示するかです。いずれの場合も、ユーザーが続けて質問するかもしれません。そのときは再度 run メソッドを呼び出せます。 +エージェントの実行が終わったら、ユーザーに何を見せるかを選べます。たとえば、エージェントが生成したすべての新しいアイテムを見せるか、最終出力だけを見せるかです。いずれの場合も、ユーザーが後続の質問をするかもしれないので、その場合は再度 run メソッドを呼び出せます。 ### 手動での会話管理 -[`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] メソッドを使って、次のターンの入力を取得し、会話履歴を手動で管理できます。 +[`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] メソッドを使って、次のターンの入力を取得することで、会話履歴を手動管理できます: ```python async def main(): @@ -93,7 +93,7 @@ async def main(): ### Sessions による自動会話管理 -より簡単な方法として、[Sessions](sessions.md) を使うと、`.to_input_list()` を手動で呼び出さずに会話履歴を自動的に処理できます。 +より簡単な方法として、[Sessions](sessions.md) を使うと、`.to_input_list()` を手動で呼び出さずに会話履歴を自動的に扱えます: ```python from agents import Agent, Runner, SQLiteSession @@ -116,26 +116,26 @@ async def main(): # California ``` -Sessions は自動的に次を行います。 +Sessions は自動で次を行います: - 各実行の前に会話履歴を取得 -- 各実行の後に新しいメッセージを保存 -- 異なるセッション ID ごとに個別の会話を維持 +- 各実行の後に新規メッセージを保存 +- セッション ID ごとに別々の会話を維持 -詳細は [Sessions のドキュメント](sessions.md) を参照してください。 +詳細は [Sessions のドキュメント](sessions.md) をご覧ください。 -## 長時間実行エージェントと human-in-the-loop +## 長時間実行エージェントと人間参加 (human-in-the-loop) -Agents SDK の [Temporal](https://temporal.io/) 連携を使うと、human-in-the-loop(人間参加型)タスクを含む、堅牢で長時間実行のワークフローを動かせます。長時間タスクを完了するために Temporal と Agents SDK が連携するデモは [この動画](https://www.youtube.com/watch?v=fFBZqzT4DD8) を参照し、[こちらのドキュメント](https://github.com/temporalio/sdk-python/tree/main/temporalio/contrib/openai_agents) もご覧ください。 +Agents SDK の [Temporal](https://temporal.io/) 連携を使用すると、人間参加のタスクを含む、永続的で長時間実行のワークフローを実行できます。Temporal と Agents SDK が連携して長時間タスクを完了するデモは [この動画](https://www.youtube.com/watch?v=fFBZqzT4DD8) を、ドキュメントは [こちら](https://github.com/temporalio/sdk-python/tree/main/temporalio/contrib/openai_agents) をご覧ください。 ## 例外 -この SDK は特定のケースで例外を送出します。完全な一覧は [`agents.exceptions`][] にあります。概要は以下のとおりです。 +SDK は特定の状況で例外を送出します。完全な一覧は [`agents.exceptions`][] にあります。概要は次のとおりです: -- [`AgentsException`][agents.exceptions.AgentsException]: SDK 内で送出されるすべての例外の基底クラスです。他の特定の例外はすべてここから派生します。 -- [`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded]: エージェントの実行が `Runner.run`、`Runner.run_sync`、`Runner.run_streamed` メソッドに渡された `max_turns` 制限を超えたときに送出されます。指定された対話ターン数内にエージェントがタスクを完了できなかったことを示します。 -- [`ModelBehaviorError`][agents.exceptions.ModelBehaviorError]: 基盤となるモデル(LLM)が予期しない、または無効な出力を生成した場合に発生します。たとえば次が含まれます。 - - 不正な JSON: 特定の `output_type` が定義されている場合などに、ツール呼び出しや直接の出力で JSON 構造が不正な場合。 - - 予期しないツール関連の失敗: モデルが想定どおりにツールを使用できなかった場合 -- [`UserError`][agents.exceptions.UserError]: SDK を使用する(この SDK でコードを書く)あなたが誤りを犯した場合に送出されます。誤ったコード実装、無効な設定、SDK の API の誤用が典型的な原因です。 -- [`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered], [`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered]: 入力ガードレール または 出力ガードレール の条件が満たされた場合に、それぞれ送出されます。入力ガードレールは処理前に受信メッセージを検査し、出力ガードレールは配信前にエージェントの最終応答を検査します。 \ No newline at end of file +- [`AgentsException`][agents.exceptions.AgentsException]: SDK 内で送出されるすべての例外の基底クラスです。すべての特定の例外がこの汎用型から派生します。 +- [`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded]: エージェントの実行が `Runner.run`、`Runner.run_sync`、または `Runner.run_streamed` メソッドに渡した `max_turns` 制限を超えたときに送出されます。指定したインタラクション回数内にタスクを完了できなかったことを示します。 +- [`ModelBehaviorError`][agents.exceptions.ModelBehaviorError]: 基盤となるモデル (LLM) が予期しない、または無効な出力を生成したときに発生します。例: + - 不正な JSON: 特定の `output_type` が定義されている場合に、ツール呼び出しや直接の出力で不正な JSON 構造を返した場合。 + - 予期しないツール関連の失敗: モデルが期待される方法でツールを使用できなかった場合 +- [`UserError`][agents.exceptions.UserError]: SDK を使用するあなた(SDK を使ってコードを書く人)が誤った使い方をしたときに送出されます。これは通常、不正なコード実装、無効な構成、または SDK の API の誤用に起因します。 +- [`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered], [`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered]: それぞれ、入力ガードレールまたは出力ガードレールの条件が満たされたときに送出されます。入力ガードレールは処理前に着信メッセージをチェックし、出力ガードレールは配信前にエージェントの最終応答をチェックします。 \ No newline at end of file diff --git a/docs/ja/sessions.md b/docs/ja/sessions.md index b04b2da4e..1713aafdd 100644 --- a/docs/ja/sessions.md +++ b/docs/ja/sessions.md @@ -4,9 +4,9 @@ search: --- # セッション -Agents SDK は、複数のエージェント実行にわたって会話履歴を自動的に維持する組み込みのセッションメモリを提供し、ターン間で `.to_input_list()` を手動で扱う必要をなくします。 +Agents SDK は、複数回のエージェント実行にわたって会話履歴を自動的に保持する組み込みのセッションメモリを提供し、ターン間で `.to_input_list()` を手動で扱う必要をなくします。 -セッションは特定のセッションの会話履歴を保存し、明示的な手動メモリ管理を行わなくてもエージェントがコンテキストを維持できるようにします。これは、エージェントに過去のやり取りを記憶させたいチャットアプリケーションやマルチターンの会話を構築する際に特に役立ちます。 +セッションは特定のセッションに対して会話履歴を保存し、エージェントが明示的な手動メモリ管理なしでコンテキストを維持できるようにします。これは、チャットアプリケーションや、エージェントに以前のやり取りを記憶させたいマルチターンの会話を構築する際に特に有用です。 ## クイックスタート @@ -51,17 +51,17 @@ print(result.final_output) # "Approximately 39 million" セッションメモリが有効な場合: -1. **各実行の前**: runner はセッションの会話履歴を自動的に取得し、入力アイテムの前に付加します。 -2. **各実行の後**: 実行中に生成されたすべての新規アイテム(ユーザー入力、アシスタントの応答、ツール呼び出しなど)は、自動的にセッションに保存されます。 -3. **コンテキストの保持**: 同じセッションでの後続の実行には、完全な会話履歴が含まれ、エージェントはコンテキストを維持できます。 +1. **各実行の前**: ランナーがセッションの会話履歴を自動的に取得し、入力アイテムの先頭に付加します。 +2. **各実行の後**: 実行中に生成されたすべての新しいアイテム(ユーザー入力、アシスタントの応答、ツールコールなど)が自動的にセッションに保存されます。 +3. **コンテキストの保持**: 同じセッションでの後続の実行では完全な会話履歴が含まれ、エージェントはコンテキストを維持できます。 -これにより、実行間で `.to_input_list()` を手動で呼び出したり会話状態を管理したりする必要がなくなります。 +これにより、`.to_input_list()` を手動で呼び出して実行間の会話状態を管理する必要がなくなります。 ## メモリ操作 ### 基本操作 -セッションは会話履歴を管理するためのいくつかの操作をサポートします: +セッションは、会話履歴を管理するためのいくつかの操作をサポートします: ```python from agents import SQLiteSession @@ -86,9 +86,9 @@ print(last_item) # {"role": "assistant", "content": "Hi there!"} await session.clear_session() ``` -### `pop_item` の活用による修正 +### 修正のための `pop_item` の使用 -`pop_item` メソッドは、会話内の最後のアイテムを取り消したり修正したりしたい場合に特に有用です: +`pop_item` メソッドは、会話内の最後のアイテムを取り消したり変更したりしたい場合に特に便利です: ```python from agents import Agent, Runner, SQLiteSession @@ -170,7 +170,7 @@ result2 = await Runner.run( ## カスタムメモリ実装 -[`Session`][agents.memory.session.Session] プロトコルに従うクラスを作成することで、独自のセッションメモリを実装できます: +[`Session`][agents.memory.session.Session] プロトコルに準拠するクラスを作成することで、独自のセッションメモリを実装できます: ```python from agents.memory import Session @@ -216,17 +216,17 @@ result = await Runner.run( ### セッション ID の命名 -会話の整理に役立つ意味のあるセッション ID を使用します: +会話を整理するのに役立つ意味のあるセッション ID を使用します: -- ユーザーベース: `"user_12345"` -- スレッドベース: `"thread_abc123"` -- コンテキストベース: `"support_ticket_456"` +- ユーザー単位: `"user_12345"` +- スレッド単位: `"thread_abc123"` +- コンテキスト単位: `"support_ticket_456"` ### メモリの永続化 -- 一時的な会話にはメモリ内 SQLite(`SQLiteSession("session_id")`)を使用します -- 永続的な会話にはファイルベース SQLite(`SQLiteSession("session_id", "path/to/db.sqlite")`)を使用します -- 本番システム向けにはカスタムセッションバックエンド( Redis、PostgreSQL など)の実装を検討します +- 一時的な会話にはインメモリ SQLite(`SQLiteSession("session_id")`)を使用します +- 永続的な会話にはファイルベースの SQLite(`SQLiteSession("session_id", "path/to/db.sqlite")`)を使用します +- 本番システムではカスタムセッションバックエンド(Redis、PostgreSQL など)の実装を検討します ### セッション管理 @@ -252,7 +252,7 @@ result2 = await Runner.run( ) ``` -## 完全な例 +## 完全なコード例 セッションメモリの動作を示す完全な例です: @@ -318,7 +318,7 @@ if __name__ == "__main__": ## API リファレンス -詳細な API ドキュメントは以下をご覧ください: +詳細な API ドキュメントは以下を参照してください: - [`Session`][agents.memory.Session] - プロトコルインターフェース - [`SQLiteSession`][agents.memory.SQLiteSession] - SQLite 実装 \ No newline at end of file diff --git a/docs/ja/streaming.md b/docs/ja/streaming.md index cc7da4a10..0c00dcdf6 100644 --- a/docs/ja/streaming.md +++ b/docs/ja/streaming.md @@ -4,15 +4,15 @@ search: --- # ストリーミング -ストリーミングは、エージェントの実行が進むにつれて更新に購読できるようにします。これは、エンドユーザーに進捗や部分的な応答を表示するのに役立ちます。 +ストリーミングを使うと、エージェントの実行の進行に合わせて更新を購読できます。これは、エンドユーザーに進捗更新や部分的な応答を表示するのに役立ちます。 -ストリーミングするには、[`Runner.run_streamed()`][agents.run.Runner.run_streamed] を呼び出します。これにより [`RunResultStreaming`][agents.result.RunResultStreaming] が得られます。`result.stream_events()` を呼び出すと、以下で説明する [`StreamEvent`][agents.stream_events.StreamEvent] オブジェクトの非同期ストリームを取得できます。 +ストリーミングするには [`Runner.run_streamed()`][agents.run.Runner.run_streamed] を呼び出します。これにより [`RunResultStreaming`][agents.result.RunResultStreaming] が得られます。`result.stream_events()` を呼び出すと、以下で説明する [`StreamEvent`][agents.stream_events.StreamEvent] オブジェクトの非同期ストリームが得られます。 ## raw レスポンスイベント -[`RawResponsesStreamEvent`][agents.stream_events.RawResponsesStreamEvent] は、LLM から直接渡される raw なイベントです。形式は OpenAI Responses API で、各イベントには `response.created` や `response.output_text.delta` などの type とデータが含まれます。これらのイベントは、生成され次第、応答メッセージをユーザーにストリーミングしたい場合に有用です。 +[`RawResponsesStreamEvent`][agents.stream_events.RawResponsesStreamEvent] は、LLM から直接渡される raw なイベントです。OpenAI Responses API 形式であり、各イベントにはタイプ(`response.created`、`response.output_text.delta` など)とデータがあります。これらのイベントは、生成され次第レスポンスメッセージをユーザーにストリーミングしたい場合に有用です。 -例えば、次の例は LLM が生成したテキストをトークンごとに出力します。 +例えば、次のコードは LLM が生成したテキストをトークンごとに出力します。 ```python import asyncio @@ -37,9 +37,9 @@ if __name__ == "__main__": ## 実行アイテムイベントとエージェントイベント -[`RunItemStreamEvent`][agents.stream_events.RunItemStreamEvent] は、より高レベルのイベントです。アイテムが完全に生成されたタイミングを知らせます。これにより、各トークン単位ではなく、「メッセージが生成された」「ツールが実行された」といったレベルで進捗更新を配信できます。同様に、[`AgentUpdatedStreamEvent`][agents.stream_events.AgentUpdatedStreamEvent] は、現在のエージェントが変更されたとき(例: ハンドオフ の結果として)に更新を提供します。 +[`RunItemStreamEvent`][agents.stream_events.RunItemStreamEvent] は、より高レベルのイベントです。アイテムが完全に生成されたタイミングを知らせます。これにより、各トークンごとではなく、「メッセージが生成された」「ツールが実行された」などのレベルで進捗更新を送信できます。同様に、[`AgentUpdatedStreamEvent`][agents.stream_events.AgentUpdatedStreamEvent] は、現在のエージェントが変更されたとき(例: ハンドオフの結果として)に更新を提供します。 -例えば、次の例は raw イベントを無視し、ユーザーに更新をストリーミングします。 +例えば、次のコードは raw イベントを無視し、ユーザーに更新をストリーミングします。 ```python import asyncio diff --git a/docs/ja/tools.md b/docs/ja/tools.md index ce58eedb4..34b967cdc 100644 --- a/docs/ja/tools.md +++ b/docs/ja/tools.md @@ -4,23 +4,23 @@ search: --- # ツール -ツールは エージェント に行動を取らせます。データの取得、コードの実行、外部 API の呼び出し、さらにはコンピュータの使用などです。Agents SDK には 3 種類のツールがあります。 +ツールは エージェント にアクションを実行させます。データ取得、コード実行、外部 API 呼び出し、さらにはコンピュータの使用などです。Agents SDK には 3 つのクラスのツールがあります: -- Hosted tools: これらは AI モデルと同じ LLM サーバー 上で動作します。OpenAI は retrieval、Web 検索、コンピュータ操作 を Hosted tools として提供します。 -- Function calling: 任意の Python 関数をツールとして利用できます。 -- Agents as tools: エージェント をツールとして利用でき、ハンドオフ せずに エージェント から他の エージェント を呼び出せます。 +- ホスト型ツール: これらは AI モデルと同じ LLM サーバー 上で動作します。OpenAI は retrieval、Web 検索、コンピュータ操作 を OpenAI がホストするツール として提供しています。 +- Function Calling: 任意の Python 関数をツールとして使えます。 +- エージェントをツールとして: エージェントをツールとして使えるため、エージェントがハンドオフなしで他の エージェント を呼び出せます。 ## ホスト型ツール -OpenAI は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] を使用する際に、いくつかの組み込みツールを提供します。 +OpenAI は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] を使用する際に、いくつかの組み込みツールを提供します: - [`WebSearchTool`][agents.tool.WebSearchTool] は エージェント に Web を検索させます。 -- [`FileSearchTool`][agents.tool.FileSearchTool] は OpenAI ベクトルストア から情報を取得します。 -- [`ComputerTool`][agents.tool.ComputerTool] は コンピュータ操作 のタスクを自動化します。 +- [`FileSearchTool`][agents.tool.FileSearchTool] は OpenAI の ベクトルストア から情報を取得できます。 +- [`ComputerTool`][agents.tool.ComputerTool] は コンピュータ操作 の自動化を可能にします。 - [`CodeInterpreterTool`][agents.tool.CodeInterpreterTool] は LLM にサンドボックス環境でコードを実行させます。 - [`HostedMCPTool`][agents.tool.HostedMCPTool] はリモートの MCP サーバー のツールをモデルに公開します。 - [`ImageGenerationTool`][agents.tool.ImageGenerationTool] はプロンプトから画像を生成します。 -- [`LocalShellTool`][agents.tool.LocalShellTool] はあなたのマシン上でシェルコマンドを実行します。 +- [`LocalShellTool`][agents.tool.LocalShellTool] はローカルマシン上でシェルコマンドを実行します。 ```python from agents import Agent, FileSearchTool, Runner, WebSearchTool @@ -43,14 +43,14 @@ async def main(): ## 関数ツール -任意の Python 関数をツールとして使用できます。Agents SDK がツールを自動的にセットアップします。 +任意の Python 関数をツールとして使えます。Agents SDK がツールを自動的に設定します: -- ツール名は Python 関数名になります(任意で名前を指定可能) -- ツールの説明は関数の docstring から取得します(任意で説明を指定可能) -- 関数の入力スキーマは関数の引数から自動生成されます -- 各入力の説明は、無効化しない限り関数の docstring から取得されます +- ツール名は Python 関数名になります(名前を指定することも可能) +- ツールの説明は関数の docstring から取得されます(説明を指定することも可能) +- 関数入力のスキーマは関数の引数から自動生成されます +- 各入力の説明は、無効化しない限り、関数の docstring から取得されます -Python の `inspect` モジュールを使って関数シグネチャを抽出し、[`griffe`](https://mkdocstrings.github.io/griffe/) で docstring を解析、`pydantic` でスキーマを作成します。 +Python の `inspect` モジュールで関数シグネチャを抽出し、[`griffe`](https://mkdocstrings.github.io/griffe/) で docstring を解析し、スキーマ生成には `pydantic` を使用します。 ```python import json @@ -102,14 +102,14 @@ for tool in agent.tools: ``` -1. 関数の引数には任意の Python 型が使用でき、関数は同期/非同期どちらでも構いません。 -2. docstring があれば、説明や引数説明の取得に使用されます。 -3. 関数は任意で `context`(最初の引数である必要があります)を受け取れます。ツール名や説明、docstring スタイルなどの上書き設定も可能です。 -4. デコレートした関数は tools のリストに渡せます。 +1. 関数の引数には任意の Python 型を使用でき、関数は sync でも async でも構いません。 +2. docstring が存在する場合、説明と引数の説明の取得に使用します。 +3. 関数は任意で `context` を受け取れます(先頭の引数である必要があります)。ツール名、説明、docstring スタイルなどの上書きも設定できます。 +4. デコレートした関数をツールのリストに渡せます。 -??? note "出力を表示" +??? note "出力を展開して表示" - ``` + ``` fetch_weather Fetch the weather for a given location. { @@ -179,12 +179,12 @@ for tool in agent.tools: ### カスタム関数ツール -Python 関数をツールとして使いたくない場合もあります。必要に応じて [`FunctionTool`][agents.tool.FunctionTool] を直接作成できます。指定が必要なものは次のとおりです。 +Python 関数をツールとして使いたくない場合もあります。その場合は、直接 [`FunctionTool`][agents.tool.FunctionTool] を作成できます。以下を指定する必要があります: - `name` - `description` -- 引数用の JSON スキーマである `params_json_schema` -- [`ToolContext`][agents.tool_context.ToolContext] と引数(JSON 文字列)を受け取り、ツールの出力を文字列で返す非同期関数 `on_invoke_tool` +- `params_json_schema`(引数の JSON スキーマ) +- `on_invoke_tool`([`ToolContext`][agents.tool_context.ToolContext] と JSON 文字列の引数を受け取り、ツールの出力を文字列で返す async 関数) ```python from typing import Any @@ -217,18 +217,18 @@ tool = FunctionTool( ) ``` -### 引数と docstring の自動解析 +### 自動引数および docstring 解析 -前述のとおり、関数シグネチャを自動解析してツール用のスキーマを抽出し、docstring を解析してツールおよび各引数の説明を抽出します。補足事項は以下のとおりです。 +前述のとおり、ツールのスキーマを抽出するために関数シグネチャを自動解析し、ツールおよび各引数の説明を抽出するために docstring を解析します。注意点: -1. シグネチャ解析は `inspect` モジュールで行います。型アノテーションから引数の型を理解し、全体スキーマを表現する Pydantic モデルを動的に構築します。Python の基本型、Pydantic モデル、TypedDict などほとんどの型をサポートします。 -2. docstring の解析には `griffe` を使用します。サポートしている docstring 形式は `google`、`sphinx`、`numpy` です。docstring 形式は自動検出を試みますがベストエフォートであり、`function_tool` 呼び出し時に明示的に設定できます。`use_docstring_info` を `False` に設定して docstring 解析を無効化することもできます。 +1. シグネチャの解析は `inspect` モジュールで行います。型アノテーションを使って引数の型を理解し、全体のスキーマを表す Pydantic モデルを動的に構築します。Python の基本型、Pydantic モデル、TypedDicts などほとんどの型をサポートします。 +2. `griffe` を使って docstring を解析します。サポートする docstring 形式は `google`、`sphinx`、`numpy` です。docstring の形式は自動検出を試みますがベストエフォートであり、`function_tool` 呼び出し時に明示的に設定できます。`use_docstring_info` を `False` に設定すると docstring 解析を無効化できます。 スキーマ抽出のコードは [`agents.function_schema`][] にあります。 -## ツールとしてのエージェント +## エージェントをツールとして -一部のワークフローでは、ハンドオフ せずに中央の エージェント が特化した エージェント 群をオーケストレーションしたいことがあります。これは エージェント をツールとしてモデリングすることで実現できます。 +一部のワークフローでは、ハンドオフではなく、中央の エージェント が専門特化した エージェント 群のオーケストレーションを行いたい場合があります。エージェントをツールとしてモデリングすることで実現できます。 ```python from agents import Agent, Runner @@ -267,9 +267,9 @@ async def main(): print(result.final_output) ``` -### ツール化エージェントのカスタマイズ +### ツール化したエージェントのカスタマイズ -`agent.as_tool` 関数は、エージェント をツールへ簡単に変換するためのユーティリティです。ただし、すべての設定をサポートしているわけではありません。例えば `max_turns` は設定できません。高度なユースケースでは、ツール実装内で直接 `Runner.run` を使用してください。 +`agent.as_tool` 関数は エージェント をツールに変換するための簡便メソッドです。ただし、すべての設定をサポートするわけではありません。例えば、`max_turns` は設定できません。高度なユースケースでは、ツール実装内で直接 `Runner.run` を使用してください: ```python @function_tool @@ -288,15 +288,15 @@ async def run_my_agent() -> str: return str(result.final_output) ``` -### 出力のカスタム抽出 +### カスタム出力抽出 -場合によっては、中央の エージェント に返す前にツール化した エージェント の出力を変更したいことがあります。次のような場合に有用です。 +場合によっては、中央の エージェント に返す前にツール化した エージェント の出力を加工したいことがあります。たとえば次のような場合に有用です: - サブエージェントのチャット履歴から特定の情報(例: JSON ペイロード)を抽出する。 -- エージェント の最終回答を変換・再整形する(例: Markdown をプレーンテキストや CSV に変換)。 -- 応答が欠落している、または不正な形式のときに、出力を検証したりフォールバック値を提供する。 +- エージェントの最終回答を変換・再整形する(例: Markdown をプレーンテキストや CSV に変換)。 +- エージェントの応答が欠落または不正な場合に検証やフォールバック値を提供する。 -これは `as_tool` の `custom_output_extractor` 引数を指定することで行えます。 +これは `as_tool` メソッドに `custom_output_extractor` 引数を渡すことで実現できます: ```python async def extract_json_payload(run_result: RunResult) -> str: @@ -315,13 +315,13 @@ json_tool = data_agent.as_tool( ) ``` -## 関数ツールでのエラー処理 +## 関数ツールのエラー処理 -`@function_tool` で関数ツールを作成する際、`failure_error_function` を渡せます。これは、ツール呼び出しがクラッシュした場合に LLM へ返すエラー応答を生成する関数です。 +`@function_tool` で関数ツールを作成する際、`failure_error_function` を渡せます。これは、ツール呼び出しがクラッシュした場合に LLM へ返すエラー応答を提供する関数です。 -- 既定では(何も渡さない場合)、`default_tool_error_function` が実行され、エラーが発生したことを LLM に伝えます。 -- 独自のエラー関数を渡した場合はそれが実行され、その応答が LLM に送られます。 -- 明示的に `None` を渡すと、ツール呼び出しのエラーは再スローされ、あなたの側で処理する必要があります。例えば、モデルが不正な JSON を生成した場合は `ModelBehaviorError`、あなたのコードがクラッシュした場合は `UserError` などになり得ます。 +- 既定では(何も渡さない場合)、エラーが発生したことを LLM に伝える `default_tool_error_function` が実行されます。 +- 独自のエラー関数を渡した場合はそれが実行され、その応答が LLM に送信されます。 +- 明示的に `None` を渡した場合、ツール呼び出しのエラーは再スローされ、呼び出し側で処理する必要があります。モデルが不正な JSON を生成した場合は `ModelBehaviorError`、コードがクラッシュした場合は `UserError` などになり得ます。 ```python from agents import function_tool, RunContextWrapper diff --git a/docs/ja/tracing.md b/docs/ja/tracing.md index 39d12083c..a6d7a17f1 100644 --- a/docs/ja/tracing.md +++ b/docs/ja/tracing.md @@ -4,52 +4,52 @@ search: --- # トレーシング -Agents SDK には組み込みのトレーシングが含まれており、 エージェント 実行中に発生するイベントの包括的な記録を収集します。LLM 生成、ツール呼び出し、ハンドオフ、ガードレール、そしてカスタムイベントまで記録します。[Traces ダッシュボード](https://platform.openai.com/traces) を使うと、開発時や本番環境でワークフローをデバッグ、可視化、監視できます。 +Agents SDK にはトレーシングが組み込まれており、エージェント実行中に発生するイベントの包括的な記録を収集します。たとえば、LLM 生成、ツール呼び出し、ハンドオフ、ガードレール、さらにはカスタム イベントなどです。 [Traces ダッシュボード](https://platform.openai.com/traces) を使用すると、開発中および本番環境でワークフローのデバッグ、可視化、監視ができます。 !!!note - トレーシングは既定で有効です。トレーシングを無効化する方法は次の 2 つです。 + トレーシングはデフォルトで有効です。トレーシングを無効にする方法は 2 つあります。 - 1. 環境変数 `OPENAI_AGENTS_DISABLE_TRACING=1` を設定して、トレーシングをグローバルに無効化できます - 2. 1 回の実行に対してのみ無効化するには、[`agents.run.RunConfig.tracing_disabled`][] を `True` に設定します + 1. 環境変数 `OPENAI_AGENTS_DISABLE_TRACING=1` を設定して、トレーシングをグローバルに無効化できます。 + 2. 単一の実行に対しては、[`agents.run.RunConfig.tracing_disabled`][] を `True` に設定して無効化できます。 ***OpenAI の API を使用し、Zero Data Retention (ZDR) ポリシーで運用している組織では、トレーシングは利用できません。*** ## トレースとスパン -- **トレース (Traces)** は「ワークフロー」の単一のエンドツーエンドの処理を表します。スパンで構成されます。トレースには次のプロパティがあります: - - `workflow_name`: 論理的なワークフローまたはアプリです。例: "Code generation" や "Customer service" - - `trace_id`: トレースの一意の ID。指定しない場合は自動生成されます。形式は `trace_<32_alphanumeric>` である必要があります。 - - `group_id`: 同じ会話からの複数トレースを関連付けるためのオプションのグループ ID。たとえばチャットスレッド ID を使えます。 +- **トレース** は「ワークフロー」の単一のエンドツーエンド処理を表します。スパンで構成されます。トレースには次のプロパティがあります。 + - `workflow_name`: 論理的なワークフローまたはアプリです。例: "Code generation" や "Customer service"。 + - `trace_id`: トレースの一意の ID。指定しない場合は自動生成されます。フォーマットは `trace_<32_alphanumeric>` である必要があります。 + - `group_id`: オプションのグループ ID。同じ会話からの複数のトレースを関連付けるために使用します。たとえば、チャット スレッド ID を使用できます。 - `disabled`: True の場合、このトレースは記録されません。 - `metadata`: トレースのオプションのメタデータ。 -- **スパン (Spans)** は開始時刻と終了時刻を持つ処理を表します。スパンには次があります: +- **スパン** は開始時刻と終了時刻を持つ処理を表します。スパンには次の情報があります。 - `started_at` と `ended_at` のタイムスタンプ - 所属するトレースを表す `trace_id` - - このスパンの親スパン (あれば) を指す `parent_id` - - スパンに関する情報である `span_data`。たとえば、`AgentSpanData` には エージェント に関する情報が、`GenerationSpanData` には LLM 生成に関する情報が含まれます。 + - このスパンの親スパン (存在する場合) を指す `parent_id` + - スパンに関する情報である `span_data`。たとえば、`AgentSpanData` はエージェントに関する情報を、`GenerationSpanData` は LLM 生成に関する情報を含みます。 -## 既定のトレーシング +## デフォルトのトレーシング -既定では、SDK は次をトレースします: +デフォルトで、SDK は次をトレースします。 -- `Runner.{run, run_sync, run_streamed}()` 全体が `trace()` でラップされます -- エージェント が実行されるたびに `agent_span()` でラップされます -- LLM の生成は `generation_span()` でラップされます -- 関数ツール の呼び出しはそれぞれ `function_span()` でラップされます +- `Runner.{run, run_sync, run_streamed}()` 全体が `trace()` でラップされます。 +- エージェントが実行されるたびに、`agent_span()` でラップされます +- LLM 生成は `generation_span()` でラップされます +- 関数ツールの呼び出しはそれぞれ `function_span()` でラップされます - ガードレールは `guardrail_span()` でラップされます - ハンドオフは `handoff_span()` でラップされます - 音声入力 (音声認識) は `transcription_span()` でラップされます - 音声出力 (音声合成) は `speech_span()` でラップされます - 関連する音声スパンは `speech_group_span()` の下に親子付けされる場合があります -既定では、トレース名は "エージェント ワークフロー" です。`trace` を使用する場合はこの名前を設定できますし、[`RunConfig`][agents.run.RunConfig] で名前やその他のプロパティを構成することもできます。 +デフォルトでは、トレース名は「Agent workflow」です。`trace` を使用する場合はこの名前を設定できますし、[`RunConfig`][agents.run.RunConfig] で名前やその他のプロパティを設定することもできます。 -さらに、[カスタム トレーシング プロセッサー](#custom-tracing-processors) を設定して、トレースを他の送信先へ送ることができます (置き換えまたは第 2 の送信先として)。 +さらに、[カスタム トレース プロセッサー](#custom-tracing-processors) を設定して、トレースを別の宛先に送信できます (置き換え、または副次的な宛先として)。 -## より高レベルのトレース +## 高レベルのトレース -複数回の `run()` 呼び出しを単一のトレースの一部にしたい場合があります。その場合は、コード全体を `trace()` でラップします。 +`run()` への複数回の呼び出しを単一のトレースの一部にしたいことがあります。これには、コード全体を `trace()` でラップします。 ```python from agents import Agent, Runner, trace @@ -64,46 +64,46 @@ async def main(): print(f"Rating: {second_result.final_output}") ``` -1. `with trace()` で 2 回の `Runner.run` 呼び出しをラップしているため、個々の実行は 2 つのトレースを作成するのではなく、全体のトレースの一部になります。 +1. `with trace()` で `Runner.run` への 2 回の呼び出しをラップしているため、個々の実行は 2 つのトレースを作成するのではなく、全体のトレースの一部になります。 ## トレースの作成 -[`trace()`][agents.tracing.trace] 関数を使ってトレースを作成できます。トレースは開始と終了が必要です。方法は 2 つあります: +[`trace()`][agents.tracing.trace] 関数を使用してトレースを作成できます。トレースは開始と終了が必要です。次の 2 つの方法があります。 -1. 推奨: `with trace(...) as my_trace` のように、トレースをコンテキストマネージャーとして使います。これにより、適切なタイミングでトレースが自動的に開始・終了します。 -2. [`trace.start()`][agents.tracing.Trace.start] と [`trace.finish()`][agents.tracing.Trace.finish] を手動で呼び出すこともできます。 +1. 推奨: コンテキスト マネージャーとしてトレースを使用します。つまり、`with trace(...) as my_trace` のようにします。これにより、適切なタイミングでトレースが自動的に開始・終了されます。 +2. 手動で [`trace.start()`][agents.tracing.Trace.start] および [`trace.finish()`][agents.tracing.Trace.finish] を呼び出すこともできます。 -現在のトレースは Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) で追跡されます。これにより、自動的に並行実行でも機能します。トレースを手動で開始/終了する場合は、現在のトレースを更新するために `start()`/`finish()` に `mark_as_current` と `reset_current` を渡す必要があります。 +現在のトレースは Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) によって追跡されます。これは、自動的に並行処理で動作することを意味します。トレースを手動で開始/終了する場合は、現在のトレースを更新するために `start()`/`finish()` に `mark_as_current` と `reset_current` を渡す必要があります。 ## スパンの作成 -さまざまな [`*_span()`][agents.tracing.create] メソッドを使ってスパンを作成できます。一般的には、スパンを手動で作成する必要はありません。カスタムのスパン情報を追跡するために [`custom_span()`][agents.tracing.custom_span] 関数を利用できます。 +さまざまな [`*_span()`][agents.tracing.create] メソッドを使用してスパンを作成できます。一般に、スパンを手動で作成する必要はありません。カスタム スパン情報を追跡するための [`custom_span()`][agents.tracing.custom_span] 関数が利用できます。 -スパンは自動的に現在のトレースの一部となり、Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) で追跡される、最も近い現在のスパンの下にネストされます。 +スパンは自動的に現在のトレースの一部となり、Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) で追跡される最も近い現在のスパンの下にネストされます。 -## センシティブなデータ +## 機微なデータ -特定のスパンは、機微なデータを含む可能性があります。 +一部のスパンは機微なデータを取得する可能性があります。 -`generation_span()` は LLM 生成の入出力を、`function_span()` は関数呼び出しの入出力を保存します。これらにはセンシティブなデータが含まれる場合があるため、[`RunConfig.trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data] によってそれらのデータの取得を無効化できます。 +`generation_span()` は LLM 生成の入力/出力を保存し、`function_span()` は関数呼び出しの入力/出力を保存します。これらには機微なデータが含まれる可能性があるため、[`RunConfig.trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data] でその取得を無効化できます。 -同様に、音声スパンには、既定で入力および出力音声の base64 エンコードされた PCM データが含まれます。[`VoicePipelineConfig.trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data] を構成することで、この音声データの取得を無効化できます。 +同様に、音声スパンにはデフォルトで、入力および出力音声の base64 エンコードされた PCM データが含まれます。[`VoicePipelineConfig.trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data] を設定して、この音声データの取得を無効化できます。 ## カスタム トレーシング プロセッサー -トレーシングの高レベルなアーキテクチャは次のとおりです: +トレーシングの高レベル アーキテクチャは次のとおりです。 - 初期化時に、トレースを作成する役割を持つグローバルな [`TraceProvider`][agents.tracing.setup.TraceProvider] を作成します。 -- `TraceProvider` には [`BatchTraceProcessor`][agents.tracing.processors.BatchTraceProcessor] を設定し、これがトレース/スパンをバッチで [`BackendSpanExporter`][agents.tracing.processors.BackendSpanExporter] に送信します。エクスポーターはスパンとトレースを OpenAI バックエンドにバッチでエクスポートします。 +- `TraceProvider` に [`BatchTraceProcessor`][agents.tracing.processors.BatchTraceProcessor] を設定します。これは、トレース/スパンをバッチで [`BackendSpanExporter`][agents.tracing.processors.BackendSpanExporter] に送信し、OpenAI のバックエンドへバッチでエクスポートします。 -既定のセットアップをカスタマイズし、別のバックエンドへの送信や追加のバックエンドへの送信、またはエクスポーターの動作を変更するには、次の 2 つの方法があります: +デフォルト設定をカスタマイズして、別のバックエンドへ送信したり、追加のバックエンドに送信したり、エクスポーターの挙動を変更するには、次の 2 つの方法があります。 -1. [`add_trace_processor()`][agents.tracing.add_trace_processor] は、トレースやスパンが準備でき次第受け取る、追加のトレースプロセッサーを追加できます。これにより、OpenAI のバックエンドへの送信に加えて、独自の処理を実行できます。 -2. [`set_trace_processors()`][agents.tracing.set_trace_processors] は、既定のプロセッサーを独自のトレースプロセッサーに置き換えることができます。つまり、OpenAI バックエンドにトレースを送信する `TracingProcessor` を含めない限り、トレースは OpenAI バックエンドに送信されません。 +1. [`add_trace_processor()`][agents.tracing.add_trace_processor] は、トレースやスパンが準備できたタイミングで受け取る「追加の」トレース プロセッサーを追加できます。これにより、OpenAI のバックエンドへの送信に加えて独自の処理を実行できます。 +2. [`set_trace_processors()`][agents.tracing.set_trace_processors] は、デフォルトのプロセッサーを独自のトレース プロセッサーに「置き換え」ます。つまり、OpenAI のバックエンドに送信する `TracingProcessor` を含めない限り、トレースは OpenAI のバックエンドに送信されません。 ## 非 OpenAI モデルでのトレーシング -OpenAI の API キーを、非 OpenAI モデルと一緒に使用して、トレーシングを無効化することなく、OpenAI Traces ダッシュボードで無料トレーシングを有効にできます。 +OpenAI の API キーを、OpenAI 以外のモデルと併用して、トレーシングを無効化することなく OpenAI の Traces ダッシュボードで無料のトレーシングを有効にできます。 ```python import os @@ -125,7 +125,7 @@ agent = Agent( ``` ## 注意 -- 無料トレースは OpenAI Traces ダッシュボードで閲覧できます。 +- 無料のトレースは OpenAI の Traces ダッシュボードで確認できます。 ## 外部トレーシング プロセッサー一覧 diff --git a/docs/ja/visualization.md b/docs/ja/visualization.md index 1f6d257ef..cb8eb9792 100644 --- a/docs/ja/visualization.md +++ b/docs/ja/visualization.md @@ -4,7 +4,7 @@ search: --- # エージェントの可視化 -エージェントの可視化では、 ** Graphviz ** を用いてエージェントとその関係を構造化されたグラフィカル表現として生成できます。これは、アプリケーション内でエージェント、ツール、ハンドオフがどのように連携するかを理解するのに役立ちます。 +エージェントの可視化では、 **Graphviz** を使用してエージェントとその関係の構造化されたグラフィカル表現を生成できます。これは、アプリケーション内でエージェント、ツール、ハンドオフがどのように相互作用するかを理解するのに役立ちます。 ## インストール @@ -16,12 +16,12 @@ pip install "openai-agents[viz]" ## グラフの生成 -`draw_graph` 関数を使用してエージェントの可視化を生成できます。この関数は次の要素を持つ有向グラフを作成します: +`draw_graph` 関数を使用してエージェントの可視化を生成できます。この関数は次のような有向グラフを作成します: -- ** エージェント ** は黄色のボックスで表されます。 -- ** MCP サーバー ** は灰色のボックスで表されます。 -- ** ツール ** は緑色の楕円で表されます。 -- ** ハンドオフ ** はあるエージェントから別のエージェントへの有向エッジとして表されます。 +- **エージェント** は黄色のボックスで表されます。 +- **MCP サーバー** は灰色のボックスで表されます。 +- **ツール** は緑の楕円で表されます。 +- **ハンドオフ** はあるエージェントから別のエージェントへの有向エッジで表されます。 ### 使用例 @@ -69,34 +69,34 @@ draw_graph(triage_agent) ![エージェント グラフ](../assets/images/graph.png) -これは、 ** トリアージ エージェント ** とそのサブエージェントおよびツールへの接続を視覚的に表すグラフを生成します。 +これは、 **トリアージ エージェント** とそのサブエージェントやツールへの接続を視覚的に表すグラフを生成します。 ## 可視化の理解 -生成されるグラフには以下が含まれます: +生成されるグラフには次が含まれます: -- エントリーポイントを示す ** スタート ノード **(`__start__`)。 -- 黄色で塗りつぶされた ** 長方形 ** で表されるエージェント。 -- 緑色で塗りつぶされた ** 楕円 ** で表されるツール。 -- 灰色で塗りつぶされた ** 長方形 ** で表される MCP サーバー。 +- エントリポイントを示す **開始ノード** (`__start__`)。 +- 黄色で塗りつぶされた **長方形** として表されるエージェント。 +- 緑で塗りつぶされた **楕円** として表されるツール。 +- 灰色で塗りつぶされた **長方形** として表される MCP サーバー。 - 相互作用を示す有向エッジ: - - エージェント間のハンドオフには ** 実線の矢印 **。 - - ツール呼び出しには ** 点線の矢印 **。 - - MCP サーバー呼び出しには ** 破線の矢印 **。 -- 実行の終了点を示す ** エンド ノード **(`__end__`)。 + - エージェント間のハンドオフには **実線の矢印**。 + - ツール呼び出しには **点線の矢印**。 + - MCP サーバー呼び出しには **破線の矢印**。 +- 実行の終了地点を示す **終了ノード** (`__end__`)。 ## グラフのカスタマイズ ### グラフの表示 -デフォルトでは、`draw_graph` はグラフをインライン表示します。別ウィンドウで表示するには、次のように記述します: +デフォルトでは、`draw_graph` はグラフをインラインで表示します。グラフを別ウィンドウで表示するには、次のように記述します: ```python draw_graph(triage_agent).view() ``` ### グラフの保存 -デフォルトでは、`draw_graph` はグラフをインライン表示します。ファイルとして保存するには、ファイル名を指定します: +デフォルトでは、`draw_graph` はグラフをインラインで表示します。ファイルとして保存するには、ファイル名を指定します: ```python draw_graph(triage_agent, filename="agent_graph") diff --git a/docs/ja/voice/pipeline.md b/docs/ja/voice/pipeline.md index df758a06d..139261005 100644 --- a/docs/ja/voice/pipeline.md +++ b/docs/ja/voice/pipeline.md @@ -4,7 +4,7 @@ search: --- # パイプラインとワークフロー -[`VoicePipeline`][agents.voice.pipeline.VoicePipeline] は、エージェントのワークフローを音声アプリに簡単に変換できるクラスです。実行するワークフローを渡すと、パイプラインが入力音声の文字起こし、音声終了の検出、適切なタイミングでのワークフロー呼び出し、そしてワークフロー出力を音声に戻す処理を行います。 +[`VoicePipeline`][agents.voice.pipeline.VoicePipeline] は、エージェント指向のワークフローを音声アプリに変換するのを容易にするクラスです。実行するワークフローを渡すと、パイプラインが入力音声の文字起こし、音声終了の検出、適切なタイミングでのワークフロー呼び出し、そしてワークフロー出力を音声に戻す処理を引き受けます。 ```mermaid graph LR @@ -34,28 +34,28 @@ graph LR ## パイプラインの設定 -パイプラインの作成時に、次の項目を設定できます。 +パイプライン作成時には、次の項目を設定できます。 1. 新しい音声が文字起こしされるたびに実行されるコードである [`workflow`][agents.voice.workflow.VoiceWorkflowBase] 2. 使用する [`speech-to-text`][agents.voice.model.STTModel] と [`text-to-speech`][agents.voice.model.TTSModel] のモデル 3. 次のような設定が可能な [`config`][agents.voice.pipeline_config.VoicePipelineConfig] - モデル名をモデルにマッピングできるモデルプロバイダー - - トレーシング(トレーシングの無効化、音声ファイルのアップロード可否、ワークフロー名、トレース ID など) - - TTS と STT モデルの設定(プロンプト、言語、使用するデータ型など) + - トレーシング(トレーシングの無効化、音声ファイルのアップロード可否、ワークフロー名、trace ID など) + - プロンプト、言語、使用するデータ型など、TTS と STT のモデル設定 ## パイプラインの実行 -パイプラインは [`run()`][agents.voice.pipeline.VoicePipeline.run] メソッドで実行でき、音声入力を次の 2 つの形式で渡せます。 +パイプラインは [`run()`][agents.voice.pipeline.VoicePipeline.run] メソッドで実行できます。音声入力は 2 つの形式で渡せます。 -1. [`AudioInput`][agents.voice.input.AudioInput] は、完全な音声の文字起こしがあり、その結果だけを生成したい場合に使用します。話者の発話終了を検出する必要がないケース、例えば、事前録音の音声や、ユーザーの発話終了が明確なプッシュトゥトーク アプリに適しています。 -2. [`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] は、ユーザーの発話終了を検出する必要がある場合に使用します。検出された音声チャンクを順次プッシュでき、音声パイプラインは「アクティビティ検出」と呼ばれるプロセスを通じて、適切なタイミングでエージェントのワークフローを自動的に実行します。 +1. [`AudioInput`][agents.voice.input.AudioInput] は、完全な音声全文があり、その結果だけを生成したい場合に使用します。発話の終了検出が不要なケース、例えば事前録音の音声や、ユーザーの発話終了が明確なプッシュ・トゥ・トークのアプリで有用です。 +2. [`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] は、ユーザーの発話終了を検出する必要がある場合に使用します。検出された音声チャンクを逐次プッシュでき、ボイスパイプラインは「アクティビティ検出」と呼ばれる処理により、適切なタイミングでエージェントのワークフローを自動実行します。 ## 結果 -音声パイプライン実行の結果は [`StreamedAudioResult`][agents.voice.result.StreamedAudioResult] です。これは、発生するイベントを順次ストリーミングできるオブジェクトです。いくつかの種類の [`VoiceStreamEvent`][agents.voice.events.VoiceStreamEvent] があり、次を含みます。 +ボイスパイプライン実行の結果は [`StreamedAudioResult`][agents.voice.result.StreamedAudioResult] です。これは、発生するイベントをストリーミングできるオブジェクトです。いくつかの種類の [`VoiceStreamEvent`][agents.voice.events.VoiceStreamEvent] があり、次のものが含まれます。 1. 音声チャンクを含む [`VoiceStreamEventAudio`][agents.voice.events.VoiceStreamEventAudio] -2. ターンの開始や終了などのライフサイクルイベントを通知する [`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] +2. ターンの開始・終了などのライフサイクルイベントを通知する [`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] 3. エラーイベントである [`VoiceStreamEventError`][agents.voice.events.VoiceStreamEventError] ```python @@ -76,4 +76,4 @@ async for event in result.stream(): ### 割り込み -Agents SDK は現在、[`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] に対する組み込みの割り込みサポートを提供していません。代わりに、検出された各ターンごとに、ワークフローの個別の実行がトリガーされます。アプリケーション内で割り込みを扱いたい場合は、[`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] イベントをリッスンしてください。`turn_started` は新しいターンが文字起こしされ、処理が開始されたことを示します。`turn_ended` は該当ターンのすべての音声がディスパッチされた後にトリガーされます。モデルがターンを開始した際に話者のマイクをミュートし、ターンに関連する音声をすべてフラッシュした後にミュートを解除する、といった制御にこれらのイベントを利用できます。 \ No newline at end of file +Agents SDK は現在、[`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] に対する組み込みの割り込みサポートを提供していません。代わりに、検出された各ターンごとに、ワークフローの個別の実行をトリガーします。アプリケーション内で割り込みを扱いたい場合は、[`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] イベントを監視してください。`turn_started` は新しいターンが文字起こしされ処理が開始したことを示します。`turn_ended` は当該ターンのすべての音声がディスパッチされた後に発火します。これらのイベントを使い、モデルがターンを開始したときに話者のマイクをミュートし、ターンに関連する音声をすべてフラッシュした後にミュート解除する、といった制御が可能です。 \ No newline at end of file diff --git a/docs/ja/voice/quickstart.md b/docs/ja/voice/quickstart.md index bad5568eb..a81a9d4b6 100644 --- a/docs/ja/voice/quickstart.md +++ b/docs/ja/voice/quickstart.md @@ -6,15 +6,15 @@ search: ## 前提条件 -Agents SDK の基本 [クイックスタート手順](../quickstart.md) に従い、仮想環境をセットアップしてください。次に、SDK から音声用のオプション依存関係をインストールします: +Agents SDK の基本の [クイックスタート手順](../quickstart.md) を実施し、仮想環境をセットアップしてください。次に、SDK から音声のオプション依存関係をインストールします。 ```bash pip install 'openai-agents[voice]' ``` -## コンセプト +## 概念 -主なコンセプトは [`VoicePipeline`][agents.voice.pipeline.VoicePipeline] で、これは 3 段階のプロセスです: +知っておくべき主な概念は [`VoicePipeline`][agents.voice.pipeline.VoicePipeline] で、これは 3 段階のプロセスです。 1. 音声をテキストに変換するために音声認識モデルを実行します。 2. 通常はエージェント的なワークフローであるあなたのコードを実行して、結果を生成します。 @@ -48,7 +48,7 @@ graph LR ## エージェント -まず、いくつかのエージェントをセットアップしましょう。これは、この SDK でエージェントを作成したことがあれば見覚えがあるはずです。ここでは、複数のエージェント、ハンドオフ、そしてツールを用意します。 +まず、いくつかのエージェントをセットアップします。これは、この SDK でエージェントを作成したことがあれば馴染みがあるはずです。ここでは、複数のエージェントとハンドオフ、そしてツールを用意します。 ```python import asyncio @@ -92,7 +92,7 @@ agent = Agent( ## 音声パイプライン -ワークフローとして [`SingleAgentVoiceWorkflow`][agents.voice.workflow.SingleAgentVoiceWorkflow] を使用し、シンプルな音声パイプラインをセットアップします。 +[`SingleAgentVoiceWorkflow`][agents.voice.workflow.SingleAgentVoiceWorkflow] をワークフローとして使い、シンプルな音声パイプラインをセットアップします。 ```python from agents.voice import SingleAgentVoiceWorkflow, VoicePipeline @@ -195,4 +195,4 @@ if __name__ == "__main__": asyncio.run(main()) ``` -この例を実行すると、エージェントがあなたに話しかけます。自分でエージェントに話しかけられるデモは、[examples/voice/static](https://github.com/openai/openai-agents-python/tree/main/examples/voice/static) の例をご覧ください。 \ No newline at end of file +このサンプルを実行すると、エージェントがあなたに話しかけます。自分でエージェントに話しかけられるデモについては、[examples/voice/static](https://github.com/openai/openai-agents-python/tree/main/examples/voice/static) をご覧ください。 \ No newline at end of file diff --git a/docs/ja/voice/tracing.md b/docs/ja/voice/tracing.md index 2e6dc3fe6..7eccc1b7c 100644 --- a/docs/ja/voice/tracing.md +++ b/docs/ja/voice/tracing.md @@ -6,13 +6,13 @@ search: [エージェントのトレーシング](../tracing.md) と同様に、音声パイプラインも自動的にトレーシングされます。 -上記のトレーシングのドキュメントで基本的な情報を確認できますが、さらに [`VoicePipelineConfig`][agents.voice.pipeline_config.VoicePipelineConfig] を通じてパイプラインのトレーシングを設定できます。 +上記のトレーシングドキュメントで基本情報を確認できますが、さらに [`VoicePipelineConfig`][agents.voice.pipeline_config.VoicePipelineConfig] を通じてパイプラインのトレーシングを設定できます。 -トレーシングに関連する主なフィールドは次のとおりです: +トレーシング関連の主なフィールドは次のとおりです: -- [`tracing_disabled`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレーシングを無効にするかどうかを制御します。デフォルトではトレーシングは有効です。 -- [`trace_include_sensitive_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_data]: 音声書き起こしのような、機微な可能性のあるデータをトレースに含めるかどうかを制御します。これは音声パイプラインに特有の設定であり、ワークフロー内部で行われる処理には適用されません。 -- [`trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data]: 音声データをトレースに含めるかどうかを制御します。 -- [`workflow_name`][agents.voice.pipeline_config.VoicePipelineConfig.workflow_name]: トレースのワークフロー名。 -- [`group_id`][agents.voice.pipeline_config.VoicePipelineConfig.group_id]: 複数のトレースを関連付けるためのトレースの `group_id`。 -- [`trace_metadata`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレースに含める追加のメタデータ。 \ No newline at end of file +- [`tracing_disabled`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレーシングを無効化するかどうかを制御します。既定ではトレーシングは有効です。 +- [`trace_include_sensitive_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_data]: 音声文字起こしなど、機微になり得るデータをトレースに含めるかどうかを制御します。これは音声パイプラインに限定され、あなたのワークフロー内部で発生する処理には適用されません。 +- [`trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data]: トレースに音声データを含めるかどうかを制御します。 +- [`workflow_name`][agents.voice.pipeline_config.VoicePipelineConfig.workflow_name]: トレースのワークフロー名です。 +- [`group_id`][agents.voice.pipeline_config.VoicePipelineConfig.group_id]: 複数のトレースを関連付けるための、そのトレースの `group_id` です。 +- [`trace_metadata`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレースに含める追加のメタデータです。 \ No newline at end of file