diff --git a/docs/ja/agents.md b/docs/ja/agents.md index e1493b66e..cf5ac5d87 100644 --- a/docs/ja/agents.md +++ b/docs/ja/agents.md @@ -4,15 +4,15 @@ search: --- # エージェント -エージェントはアプリの中核となる基本コンポーネントです。エージェントは instructions と tools で構成された大規模言語モデル( LLM )です。 +エージェントは、アプリにおける中核的な構成要素です。エージェントは、instructions と tools で構成された大規模言語モデル ( LLM ) です。 ## 基本設定 -エージェントで最も一般的に設定するプロパティは次のとおりです。 +エージェントで最も一般的に設定するプロパティは次のとおりです: - `name`: エージェントを識別する必須の文字列。 -- `instructions`: developer メッセージ、または system prompt とも呼ばれます。 -- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定する任意の `model_settings`。 +- `instructions`: developer message または system prompt とも呼ばれます。 +- `model`: 使用する LLM と、temperature、top_p などのモデル調整パラメーターを設定するオプションの `model_settings`。 - `tools`: エージェントがタスクを達成するために使用できるツール。 ```python @@ -33,7 +33,7 @@ agent = Agent( ## コンテキスト -エージェントはその `context` 型に対して汎用です。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係と状態をまとめて保持します。コンテキストには任意の Python オブジェクトを提供できます。 +エージェントは、その `context` 型に対してジェネリックです。コンテキストは依存性注入のためのツールで、あなたが作成して `Runner.run()` に渡すオブジェクトです。これはすべてのエージェント、ツール、ハンドオフなどに渡され、エージェント実行のための依存関係と状態をまとめたものとして機能します。コンテキストとしては任意の Python オブジェクトを提供できます。 ```python @dataclass @@ -52,7 +52,7 @@ agent = Agent[UserContext]( ## 出力タイプ -デフォルトでは、エージェントはプレーンテキスト(すなわち `str`)の出力を生成します。エージェントに特定のタイプの出力を生成させたい場合は、`output_type` パラメーターを使用できます。一般的な選択肢は [Pydantic](https://docs.pydantic.dev/) オブジェクトの使用ですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型(dataclasses、リスト、TypedDict など)をサポートしています。 +デフォルトでは、エージェントはプレーンテキスト (すなわち `str`) を出力します。特定のタイプの出力をエージェントに生成させたい場合は、`output_type` パラメーターを使用できます。一般的な選択肢は [Pydantic](https://docs.pydantic.dev/) オブジェクトですが、Pydantic の [TypeAdapter](https://docs.pydantic.dev/latest/api/type_adapter/) でラップできる任意の型 ( dataclasses、lists、TypedDict など ) をサポートします。 ```python from pydantic import BaseModel @@ -73,11 +73,11 @@ agent = Agent( !!! note - `output_type` を渡すと、モデルに通常のプレーンテキスト応答の代わりに [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するよう指示します。 + `output_type` を渡すと、モデルは通常のプレーンテキスト応答の代わりに [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使用するように指示されます。 ## ハンドオフ -ハンドオフは、エージェントが委譲できるサブエージェントです。ハンドオフのリストを提供すると、エージェントは関連性がある場合にそれらに委譲できます。これは、単一のタスクに特化して優れた、モジュール式の専門エージェントをオーケストレーションする強力なパターンです。詳細は [ハンドオフ](handoffs.md) のドキュメントをご覧ください。 +ハンドオフは、エージェントが委譲できるサブエージェントです。ハンドオフのリストを提供すると、関連がある場合にエージェントがそれらに委譲できます。これは、単一のタスクに特化して優れた、モジュール式の専門エージェントをオーケストレーションする強力なパターンです。詳細は [ハンドオフ](handoffs.md) のドキュメントをご覧ください。 ```python from agents import Agent @@ -98,7 +98,7 @@ triage_agent = Agent( ## 動的 instructions -多くの場合、エージェント作成時に instructions を提供できます。ただし、関数を介して動的な instructions を提供することも可能です。この関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方が受け付けられます。 +多くの場合、エージェント作成時に instructions を提供できます。しかし、関数を通じて動的な instructions を提供することも可能です。その関数はエージェントとコンテキストを受け取り、プロンプトを返す必要があります。通常の関数と `async` 関数の両方が受け付けられます。 ```python def dynamic_instructions( @@ -113,17 +113,17 @@ agent = Agent[UserContext]( ) ``` -## ライフサイクルイベント(フック) +## ライフサイクルイベント (hooks) -場合によっては、エージェントのライフサイクルを観察したくなることがあります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりする場合です。`hooks` プロパティを使うと、エージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。 +場合によっては、エージェントのライフサイクルを観測したいことがあります。たとえば、イベントをログに記録したり、特定のイベント発生時にデータを事前取得したりしたい場合です。`hooks` プロパティでエージェントのライフサイクルにフックできます。[`AgentHooks`][agents.lifecycle.AgentHooks] クラスをサブクラス化し、関心のあるメソッドをオーバーライドしてください。 ## ガードレール -ガードレールでは、エージェントの実行と並行してユーザー入力のチェック/検証を行い、さらにエージェントの出力が生成された後にもチェック/検証を実行できます。たとえば、ユーザー入力やエージェント出力の関連性をスクリーニングできます。詳細は [ガードレール](guardrails.md) のドキュメントをご覧ください。 +ガードレールにより、エージェントの実行と並行してユーザー入力に対するチェック/検証を行い、出力が生成された後にはエージェントの出力に対するチェック/検証を行えます。たとえば、ユーザーの入力やエージェントの出力の関連性をスクリーニングできます。詳細は [ガードレール](guardrails.md) のドキュメントをご覧ください。 ## エージェントのクローン/コピー -エージェントの `clone()` メソッドを使用すると、エージェントを複製し、必要に応じて任意のプロパティを変更できます。 +エージェントの `clone()` メソッドを使用すると、エージェントを複製し、任意のプロパティを変更できます。 ```python pirate_agent = Agent( @@ -140,12 +140,12 @@ robot_agent = pirate_agent.clone( ## ツール使用の強制 -ツールのリストを提供しても、LLM が必ずツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することで、ツール使用を強制できます。有効な値は次のとおりです。 +ツールのリストを指定しても、LLM が必ずツールを使用するとは限りません。[`ModelSettings.tool_choice`][agents.model_settings.ModelSettings.tool_choice] を設定することでツール使用を強制できます。有効な値は次のとおりです: -1. `auto`: LLM がツールを使用するかどうかを決定します。 -2. `required`: LLM にツールの使用を要求します(ただし、どのツールを使うかは賢く判断できます)。 +1. `auto`: ツールを使用するかどうかを LLM に任せます。 +2. `required`: LLM にツールの使用を要求します (ただし、どのツールを使うかは賢く選べます)。 3. `none`: LLM にツールを使用しないことを要求します。 -4. 特定の文字列(例: `my_tool`)を設定し、その特定のツールを LLM に使用させます。 +4. 特定の文字列 (例: `my_tool`) を設定: LLM にその特定のツールの使用を要求します。 ```python from agents import Agent, Runner, function_tool, ModelSettings @@ -163,11 +163,11 @@ agent = Agent( ) ``` -## ツール使用の動作 +## ツール使用時の挙動 -`Agent` 設定の `tool_use_behavior` パラメーターは、ツール出力の扱いを制御します。 +`Agent` の設定にある `tool_use_behavior` パラメーターは、ツールの出力の扱い方を制御します: - `"run_llm_again"`: デフォルト。ツールを実行し、その結果を LLM が処理して最終応答を生成します。 -- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を、追加の LLM 処理なしで最終応答として使用します。 +- `"stop_on_first_tool"`: 最初のツール呼び出しの出力を、その後の LLM 処理なしで最終応答として使用します。 ```python from agents import Agent, Runner, function_tool, ModelSettings @@ -185,7 +185,7 @@ agent = Agent( ) ``` -- `StopAtTools(stop_at_tool_names=[...])`: 指定したいずれかのツールが呼び出された時点で停止し、その出力を最終応答として使用します。 +- `StopAtTools(stop_at_tool_names=[...])`: 指定したいずれかのツールが呼ばれた場合に停止し、その出力を最終応答として使用します。 ```python from agents import Agent, Runner, function_tool from agents.agent import StopAtTools @@ -207,7 +207,7 @@ agent = Agent( tool_use_behavior=StopAtTools(stop_at_tool_names=["get_weather"]) ) ``` -- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM 続行かを判断するカスタム関数。 +- `ToolsToFinalOutputFunction`: ツール結果を処理し、停止するか LLM を続行するかを判断するカスタム関数。 ```python from agents import Agent, Runner, function_tool, FunctionToolResult, RunContextWrapper @@ -245,4 +245,4 @@ agent = Agent( !!! note - 無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この動作は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定可能です。無限ループは、ツール結果が LLM に送られ、`tool_choice` により LLM が再度ツール呼び出しを生成し続けてしまうために発生します。 \ No newline at end of file + 無限ループを防ぐため、フレームワークはツール呼び出し後に `tool_choice` を自動的に "auto" にリセットします。この挙動は [`agent.reset_tool_choice`][agents.agent.Agent.reset_tool_choice] で設定できます。無限ループは、ツール結果が LLM に送られ、`tool_choice` により LLM がさらにツール呼び出しを生成し続けるために発生します。 \ No newline at end of file diff --git a/docs/ja/config.md b/docs/ja/config.md index 96f2ae5c3..f9a334b79 100644 --- a/docs/ja/config.md +++ b/docs/ja/config.md @@ -6,7 +6,7 @@ search: ## API キーとクライアント -デフォルトでは、この SDK はインポートされるとすぐに、LLM リクエストとトレーシングのために `OPENAI_API_KEY` 環境変数を探します。アプリの起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数を使ってキーを設定できます。 +デフォルトでは、SDK はインポートされるとすぐに、LLM リクエストと トレーシング のために `OPENAI_API_KEY` 環境変数を探します。アプリ起動前にその環境変数を設定できない場合は、[set_default_openai_key()][agents.set_default_openai_key] 関数を使用してキーを設定できます。 ```python from agents import set_default_openai_key @@ -14,7 +14,7 @@ from agents import set_default_openai_key set_default_openai_key("sk-...") ``` -また、使用する OpenAI クライアントを構成することもできます。デフォルトでは、この SDK は環境変数または上で設定したデフォルトキーから API キーを使用して `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。 +また、使用する OpenAI クライアントを構成することもできます。デフォルトでは、SDK は環境変数または上で設定したデフォルトキーから API キーを用いて `AsyncOpenAI` インスタンスを作成します。これを変更するには、[set_default_openai_client()][agents.set_default_openai_client] 関数を使用します。 ```python from openai import AsyncOpenAI @@ -24,7 +24,7 @@ custom_client = AsyncOpenAI(base_url="...", api_key="...") set_default_openai_client(custom_client) ``` -最後に、使用する OpenAI API をカスタマイズすることも可能です。デフォルトでは、OpenAI Responses API を使用します。これを上書きして Chat Completions API を使うには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用します。 +最後に、使用する OpenAI API をカスタマイズすることもできます。デフォルトでは OpenAI Responses API を使用します。これをオーバーライドして Chat Completions API を使用するには、[set_default_openai_api()][agents.set_default_openai_api] 関数を使用します。 ```python from agents import set_default_openai_api @@ -34,7 +34,7 @@ set_default_openai_api("chat_completions") ## トレーシング -トレーシングはデフォルトで有効です。デフォルトでは上記の OpenAI API キー(環境変数、または設定したデフォルトキー)を使用します。トレーシングに使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。 +トレーシング はデフォルトで有効です。デフォルトでは、上記の OpenAI API キー(つまり、環境変数または設定したデフォルトキー)を使用します。トレーシング に使用する API キーを個別に設定するには、[`set_tracing_export_api_key`][agents.set_tracing_export_api_key] 関数を使用します。 ```python from agents import set_tracing_export_api_key @@ -42,7 +42,7 @@ from agents import set_tracing_export_api_key set_tracing_export_api_key("sk-...") ``` -また、[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用してトレーシングを完全に無効化することもできます。 +[`set_tracing_disabled()`][agents.set_tracing_disabled] 関数を使用して、トレーシング を完全に無効化することもできます。 ```python from agents import set_tracing_disabled @@ -50,11 +50,11 @@ from agents import set_tracing_disabled set_tracing_disabled(True) ``` -## デバッグ ロギング +## デバッグログ -この SDK には、ハンドラーが設定されていない 2 つの Python ロガーがあります。デフォルトでは、これは警告とエラーが `stdout` に送られ、それ以外のログは抑制されることを意味します。 +SDK には、ハンドラーが設定されていない 2 つの Python ロガーがあります。デフォルトでは、これは警告とエラーが `stdout` に送信され、それ以外のログは抑制されることを意味します。 -詳細なロギングを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。 +詳細なログを有効にするには、[`enable_verbose_stdout_logging()`][agents.enable_verbose_stdout_logging] 関数を使用します。 ```python from agents import enable_verbose_stdout_logging @@ -62,7 +62,7 @@ from agents import enable_verbose_stdout_logging enable_verbose_stdout_logging() ``` -また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズできます。詳細は [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。 +また、ハンドラー、フィルター、フォーマッターなどを追加してログをカスタマイズすることもできます。詳しくは [Python logging guide](https://docs.python.org/3/howto/logging.html) を参照してください。 ```python import logging @@ -81,9 +81,9 @@ logger.setLevel(logging.WARNING) logger.addHandler(logging.StreamHandler()) ``` -### ログ内の機密データ +### ログ内の機微データ -一部のログには機密データ(たとえば、ユーザー データ)が含まれる場合があります。このデータの記録を無効化したい場合は、次の環境変数を設定してください。 +特定のログには機微なデータ(例: ユーザー データ)が含まれる場合があります。これらのデータがログに出力されないようにするには、次の環境変数を設定してください。 LLM の入力と出力のロギングを無効化するには: diff --git a/docs/ja/context.md b/docs/ja/context.md index 47ab613e6..a0c7a0337 100644 --- a/docs/ja/context.md +++ b/docs/ja/context.md @@ -4,30 +4,30 @@ search: --- # コンテキスト管理 -コンテキストという語は多義的です。ここでは主に次の 2 種類のコンテキストがあります。 +コンテキストという語は多義的です。考慮すべきコンテキストには主に 2 つの種類があります。 -1. ローカルにコードから利用できるコンテキスト: これは、ツール関数の実行時、`on_handoff` のようなコールバック、ライフサイクルフックなどで必要になるデータや依存関係です。 -2. LLM に利用可能なコンテキスト: これは、応答生成時に LLM が参照できるデータです。 +1. コードからローカルに利用できるコンテキスト: これは、ツール関数の実行時、`on_handoff` のようなコールバック、ライフサイクルフックなどで必要になる可能性のあるデータや依存関係です。 +2. LLM に利用可能なコンテキスト: これは、応答を生成する際に LLM が目にするデータです。 ## ローカルコンテキスト これは [`RunContextWrapper`][agents.run_context.RunContextWrapper] クラスと、その中の [`context`][agents.run_context.RunContextWrapper.context] プロパティで表現されます。仕組みは次のとおりです。 -1. 任意の Python オブジェクトを作成します。一般的なパターンとしては、 dataclass や Pydantic オブジェクトを使います。 -2. そのオブジェクトを各種実行メソッドに渡します(例: `Runner.run(..., **context=whatever**)`)。 -3. すべてのツール呼び出しやライフサイクルフックなどには、`RunContextWrapper[T]` というラッパーオブジェクトが渡されます。ここで `T` はコンテキストオブジェクトの型を表し、`wrapper.context` でアクセスできます。 +1. 任意の Python オブジェクトを作成します。一般的なパターンは dataclass や Pydantic オブジェクトを使うことです。 +2. そのオブジェクトを各種の実行メソッド(例: `Runner.run(..., **context=whatever**))`)に渡します。 +3. すべてのツール呼び出しやライフサイクルフックなどには、`RunContextWrapper[T]` というラッパーオブジェクトが渡されます。ここで `T` はコンテキストオブジェクトの型を表し、`wrapper.context` からアクセスできます。 -** 最も重要 ** な注意点: 特定のエージェント実行において、そのエージェント、ツール関数、ライフサイクルなどはすべて同じ「型」のコンテキストを使用する必要があります。 + **最重要** な注意点: 特定のエージェント実行におけるすべてのエージェント、ツール関数、ライフサイクルなどは、同じコンテキストの _型_ を使用する必要があります。 -コンテキストは次のような用途に使えます: +コンテキストは次のような用途に使えます。 -- 実行用の文脈データ(例: ユーザー名 / uid など、 ユーザー に関する情報) -- 依存関係(例: ロガーオブジェクト、データ取得器など) +- 実行のためのコンテキストデータ(例: ユーザー名/uid や、ユーザー に関するその他の情報) +- 依存関係(例: ロガーオブジェクト、データフェッチャーなど) - ヘルパー関数 -!!! danger "Note" +!!! danger "注記" - コンテキストオブジェクトは LLM に送信されません。これは純粋にローカルなオブジェクトであり、読み書きやメソッド呼び出しができます。 + コンテキストオブジェクトは LLM には送信されません。これは純粋にローカルのオブジェクトであり、読み書きやメソッド呼び出しが可能です。 ```python import asyncio @@ -66,17 +66,17 @@ if __name__ == "__main__": asyncio.run(main()) ``` -1. これはコンテキストオブジェクトです。ここでは dataclass を使用していますが、任意の型を使えます。 -2. これはツールです。`RunContextWrapper[UserInfo]` を受け取り、ツール実装はコンテキストから読み取ります。 -3. 型チェッカーがエラーを検出できるよう、エージェントにジェネリックの `UserInfo` を指定します(例えば、異なるコンテキスト型を受け取るツールを渡した場合など)。 +1. これがコンテキストオブジェクトです。ここでは dataclass を使用していますが、任意の型を使用できます。 +2. これはツールです。`RunContextWrapper[UserInfo]` を受け取ることがわかります。ツールの実装はコンテキストから読み取ります。 +3. 型チェッカーがエラーを検出できるよう、エージェントにジェネリクス `UserInfo` を付けています(たとえば、異なるコンテキスト型を受け取るツールを渡そうとした場合など)。 4. コンテキストは `run` 関数に渡されます。 5. エージェントはツールを正しく呼び出し、年齢を取得します。 ## エージェント / LLM コンテキスト -LLM が呼び出されるとき、参照できるのは会話履歴にあるデータ **のみ** です。つまり、LLM に新しいデータを利用可能にしたい場合は、そのデータが会話履歴から参照できるようにする必要があります。方法はいくつかあります。 +LLM が呼び出されるとき、LLM が参照できるデータは会話履歴に含まれるものだけです。つまり、新しいデータを LLM に利用可能にしたい場合は、その履歴で参照できる形で提供する必要があります。方法はいくつかあります。 -1. エージェントの `instructions` に追加します。これは「 システムプロンプト 」または「developer message」とも呼ばれます。システムプロンプトは固定文字列でも、コンテキストを受け取って文字列を出力する動的関数でもかまいません。 ユーザー 名や現在の日付のように常に役立つ情報に適した一般的な手法です。 -2. `Runner.run` を呼ぶときの `input` に追加します。これは `instructions` と似ていますが、[chain of command](https://cdn.openai.com/spec/model-spec-2024-05-08.html#follow-the-chain-of-command) の下位にメッセージを配置できます。 -3. 関数ツール 経由で公開します。これはオンデマンドのコンテキストに適しており、LLM が必要に応じてツールを呼び出してデータを取得できます。 -4. リトリーバル (retrieval) や Web 検索 を利用します。これらは、ファイルやデータベース(リトリーバル)または Web( Web 検索 )から関連データを取得できる特別なツールです。関連する文脈データに基づいて応答をグラウンディングするのに役立ちます。 \ No newline at end of file +1. エージェントの `instructions` に追加します。これは「システムプロンプト」または「開発者メッセージ」とも呼ばれます。システムプロンプトは静的な文字列でも、コンテキストを受け取って文字列を出力する動的な関数でも構いません。これは常に有用な情報(例: ユーザー の名前や現在の日付)に一般的な手法です。 +2. `Runner.run` 関数を呼び出すときに `input` に追加します。これは `instructions` の手法に似ていますが、[指揮系統](https://cdn.openai.com/spec/model-spec-2024-05-08.html#follow-the-chain-of-command) の下位に配置されるメッセージにできます。 +3. 関数ツール を通じて公開します。これは _オンデマンド_ のコンテキストに有用です。LLM が必要に応じてデータを取得するタイミングを判断し、ツールを呼び出してそのデータを取得できます。 +4. リトリーバル や Web 検索 を使用します。これらは、ファイルやデータベース(リトリーバル)またはウェブ(Web 検索)から関連データを取得できる特別なツールです。これは、応答を関連するコンテキストデータで「グラウンディング」するのに有用です。 \ No newline at end of file diff --git a/docs/ja/examples.md b/docs/ja/examples.md index 991e84250..edda2d579 100644 --- a/docs/ja/examples.md +++ b/docs/ja/examples.md @@ -4,45 +4,44 @@ search: --- # コード例 -[リポジトリ](https://github.com/openai/openai-agents-python/tree/main/examples) の code examples セクションで、SDK のさまざまなサンプル実装をご覧ください。これらの例は、異なるパターンや機能を示す複数の カテゴリー に整理されています。 +[リポジトリ](https://github.com/openai/openai-agents-python/tree/main/examples) のコード例セクションで、さまざまな サンプル実装 をご覧ください。これらのコード例は、異なるパターンや機能を示す複数の カテゴリー に整理されています。 ## カテゴリー - **[agent_patterns](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns):** - この カテゴリー の例では、一般的な エージェント の設計パターンを示します。例えば、 + このカテゴリーの例では、一般的なエージェント設計パターンを示します。たとえば、 - - 決定論的ワークフロー + - 決定的なワークフロー - ツールとしての エージェント - - エージェント の並列実行 + - エージェントの並列実行 - **[basic](https://github.com/openai/openai-agents-python/tree/main/examples/basic):** - これらの例は、SDK の基礎的な機能を紹介します。例えば、 + このカテゴリーでは、 SDK の基礎的な機能を紹介します。たとえば、 - 動的な システムプロンプト - - 出力の ストリーミング + - ストリーミング出力 - ライフサイクルイベント -- **[tool examples](https://github.com/openai/openai-agents-python/tree/main/examples/tools):** - Web 検索 や ファイル検索 などの OpenAI がホストするツール の実装方法と、 - それらを エージェント に統合する方法を学べます。 +- **[ツールのコード例](https://github.com/openai/openai-agents-python/tree/main/examples/tools):** + Web 検索 や ファイル検索 などの OpenAI がホストするツール の実装方法と、エージェント への統合方法を学べます。 - **[model providers](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers):** - SDK で OpenAI 以外のモデルを使う方法を紹介します。 + SDK と併用して 非 OpenAI モデル を使う方法を紹介します。 - **[handoffs](https://github.com/openai/openai-agents-python/tree/main/examples/handoffs):** - エージェント の ハンドオフ の実用例をご覧ください。 + エージェント の ハンドオフ の実用的な例を確認できます。 - **[mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp):** - MCP で エージェント を構築する方法を学べます。 + MCP で エージェント を構築する方法を学べます。 - **[customer_service](https://github.com/openai/openai-agents-python/tree/main/examples/customer_service)** と **[research_bot](https://github.com/openai/openai-agents-python/tree/main/examples/research_bot):** - 実世界のアプリケーションを示す、さらに作り込まれた 2 つの例です + 実運用のユースケースを示す、さらに作り込まれた 2 つのコード例 - **customer_service**: 航空会社向けのカスタマーサービス システムの例。 - **research_bot**: シンプルな ディープリサーチ のクローン。 - **[voice](https://github.com/openai/openai-agents-python/tree/main/examples/voice):** - 当社の TTS と STT モデルを用いた音声 エージェント の例をご覧ください。 + TTS と STT モデル を用いた音声 エージェント のコード例。 - **[realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime):** - SDK を使ってリアルタイムな体験を構築する例。 \ No newline at end of file + SDK を使ってリアルタイム体験を構築するコード例。 \ No newline at end of file diff --git a/docs/ja/guardrails.md b/docs/ja/guardrails.md index cf3630a4c..a4e4bd000 100644 --- a/docs/ja/guardrails.md +++ b/docs/ja/guardrails.md @@ -4,44 +4,44 @@ search: --- # ガードレール -ガードレールはエージェントと並行して動作し、ユーザー入力のチェックとバリデーションを行います。たとえば、顧客からのリクエスト対応に非常に賢い(そのため遅く/高価な)モデルを使うエージェントがあるとします。悪意のあるユーザーがそのモデルに数学の宿題を手伝わせるようなことは避けたいはずです。そこで、速くて安価なモデルでガードレールを実行できます。ガードレールが不正な使用を検知した場合、直ちにエラーを発生させ、高価なモデルの実行を止め、時間と費用を節約します。 +ガードレールはエージェントと並行して実行され、 ユーザー 入力のチェックや検証を可能にします。たとえば、非常に賢い(つまり遅く/高価な)モデルでカスタマーリクエストを支援するエージェントがあるとします。悪意のある ユーザー がモデルに数学の宿題を手伝わせるよう求めるのは避けたいはずです。そこで、速く/安価なモデルでガードレールを実行できます。ガードレールが悪意のある使用を検出すると、即座にエラーを送出し、高価なモデルの実行を停止して時間やコストを節約します。 ガードレールには 2 つの種類があります: -1. 入力ガードレールは初回のユーザー入力に対して実行されます -2. 出力ガードレールは最終的なエージェント出力に対して実行されます +1. 入力ガードレールは最初の ユーザー 入力で実行されます +2. 出力ガードレールは最終的なエージェント出力で実行されます ## 入力ガードレール -入力ガードレールは次の 3 つのステップで動作します: +入力ガードレールは 3 つの手順で実行されます: -1. まず、ガードレールはエージェントに渡されるものと同じ入力を受け取ります。 -2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、それを [`InputGuardrailResult`][agents.guardrail.InputGuardrailResult] にラップします。 -3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered] 例外が発生し、ユーザーへの適切な応答や例外処理が可能になります。 +1. まず、ガードレールはエージェントに渡されたものと同じ入力を受け取ります。 +2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、これを [`InputGuardrailResult`][agents.guardrail.InputGuardrailResult] にラップします。 +3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered] 例外が送出されるため、適切に ユーザー に応答するか、例外を処理できます。 !!! Note - 入力ガードレールはユーザー入力で実行することを意図しているため、エージェントのガードレールは、そのエージェントが最初のエージェントである場合にのみ実行されます。「なぜ `guardrails` プロパティがエージェント側にあり、`Runner.run` に渡さないのか」と疑問に思うかもしれません。これは、ガードレールが実際のエージェントに密接に関係する傾向があるためです。エージェントごとに異なるガードレールを実行することになるため、コードを同じ場所にまとめると読みやすくなります。 + 入力ガードレールは ユーザー 入力で実行されることを想定しているため、エージェントのガードレールはそのエージェントが最初のエージェントである場合にのみ実行されます。なぜ `guardrails` プロパティがエージェント側にあり、`Runner.run` に渡さないのか不思議に思うかもしれません。これは、ガードレールが実際のエージェントに密接に関連する傾向があるためです。エージェントごとに異なるガードレールを実行するので、コードを同じ場所に置くことで可読性が向上します。 ## 出力ガードレール -出力ガードレールは次の 3 つのステップで動作します: +出力ガードレールは 3 つの手順で実行されます: -1. まず、ガードレールはエージェントが生成した出力を受け取ります。 -2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、それを [`OutputGuardrailResult`][agents.guardrail.OutputGuardrailResult] にラップします。 -3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered] 例外が発生し、ユーザーへの適切な応答や例外処理が可能になります。 +1. まず、ガードレールはエージェントによって生成された出力を受け取ります。 +2. 次に、ガードレール関数が実行され、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を生成し、これを [`OutputGuardrailResult`][agents.guardrail.OutputGuardrailResult] にラップします。 +3. 最後に、[`.tripwire_triggered`][agents.guardrail.GuardrailFunctionOutput.tripwire_triggered] が true かどうかを確認します。true の場合、[`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered] 例外が送出されるため、適切に ユーザー に応答するか、例外を処理できます。 !!! Note - 出力ガードレールは最終的なエージェント出力で実行することを意図しているため、エージェントのガードレールは、そのエージェントが最後のエージェントである場合にのみ実行されます。入力ガードレールと同様、ガードレールは実際のエージェントに密接に関連する傾向があるため、エージェントごとに異なるガードレールを実行します。したがって、コードを同じ場所にまとめると読みやすくなります。 + 出力ガードレールは最終的なエージェント出力で実行されることを想定しているため、エージェントのガードレールはそのエージェントが最後のエージェントである場合にのみ実行されます。入力ガードレールと同様に、ガードレールは実際のエージェントに関連する傾向があるため、エージェントごとに異なるガードレールを実行します。したがってコードを同じ場所に置くことで可読性が向上します。 ## トリップワイヤー -入力または出力がガードレールに不合格となった場合、ガードレールはトリップワイヤーでそれを示せます。トリップワイヤーが発動したガードレールを検知した時点で、直ちに `{Input,Output}GuardrailTripwireTriggered` 例外を発生させ、エージェントの実行を停止します。 +入力または出力がガードレールに失敗した場合、ガードレールはトリップワイヤーでそれを示すことができます。トリップワイヤーが作動したガードレールを検知したらすぐに、`{Input,Output}GuardrailTripwireTriggered` 例外を送出し、エージェント実行を停止します。 ## ガードレールの実装 -入力を受け取り、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を返す関数を用意する必要があります。この例では、内部でエージェントを実行することで実現します。 +入力を受け取り、[`GuardrailFunctionOutput`][agents.guardrail.GuardrailFunctionOutput] を返す関数を用意する必要があります。次の例では、内部でエージェントを実行してこれを行います。 ```python from pydantic import BaseModel diff --git a/docs/ja/handoffs.md b/docs/ja/handoffs.md index 745bdd2e5..fb132874d 100644 --- a/docs/ja/handoffs.md +++ b/docs/ja/handoffs.md @@ -4,19 +4,19 @@ search: --- # ハンドオフ -ハンドオフは、ある エージェント が別の エージェント にタスクを委譲できるようにする機能です。これは、異なる エージェント がそれぞれ異なる分野に特化している状況で特に有用です。たとえば、カスタマーサポートアプリでは、注文状況、返金、FAQ などのタスクをそれぞれ専任で扱う エージェント がいるかもしれません。 +ハンドオフは、ある エージェント が別の エージェント にタスクを委譲することを可能にします。これは、異なる エージェント がそれぞれ別個の分野を専門とするシナリオで特に有用です。例えば、カスタマーサポートアプリでは、注文状況、返金、FAQ などのタスクをそれぞれ専門に扱う エージェント が存在するかもしれません。 -ハンドオフは LLM に対してツールとして表現されます。たとえば、`Refund Agent` という エージェント へのハンドオフがある場合、ツール名は `transfer_to_refund_agent` になります。 +ハンドオフは LLM からはツールとして表現されます。つまり、`Refund Agent` へのハンドオフがある場合、そのツール名は `transfer_to_refund_agent` となります。 ## ハンドオフの作成 -すべての エージェント は [`handoffs`][agents.agent.Agent.handoffs] パラメーターを持ち、これは `Agent` を直接受け取るか、ハンドオフをカスタマイズする `Handoff` オブジェクトを受け取ります。 +すべての エージェント には [`handoffs`][agents.agent.Agent.handoffs] パラメーターがあり、直接 `Agent` を渡すか、ハンドオフをカスタマイズする `Handoff` オブジェクトを渡すことができます。 -OpenAI Agents SDK が提供する [`handoff()`][agents.handoffs.handoff] 関数を使ってハンドオフを作成できます。この関数では、引き渡し先の エージェント に加えて、任意のオーバーライドや入力フィルターを指定できます。 +Agents SDK が提供する [`handoff()`][agents.handoffs.handoff] 関数を使ってハンドオフを作成できます。この関数では、ハンドオフ先の エージェント に加えて、任意のオーバーライドや入力フィルターを指定できます。 -### 基本的な使用方法 +### 基本的な使い方 -シンプルなハンドオフの作成方法は次のとおりです: +シンプルなハンドオフの作成方法は次のとおりです。 ```python from agents import Agent, handoff @@ -28,19 +28,19 @@ refund_agent = Agent(name="Refund agent") triage_agent = Agent(name="Triage agent", handoffs=[billing_agent, handoff(refund_agent)]) ``` -1. `billing_agent` のように エージェント を直接指定することも、`handoff()` 関数を使用することもできます。 +1. `billing_agent` のように エージェント を直接使うことも、`handoff()` 関数を使うこともできます。 ### `handoff()` 関数によるハンドオフのカスタマイズ -[`handoff()`][agents.handoffs.handoff] 関数を使うと、さまざまなカスタマイズが可能です。 +[`handoff()`][agents.handoffs.handoff] 関数では、さまざまなカスタマイズが可能です。 -- `agent`: ハンドオフの引き渡し先となる エージェント です。 +- `agent`: ハンドオフ先の エージェント です。 - `tool_name_override`: 既定では `Handoff.default_tool_name()` が使われ、`transfer_to_` に解決されます。これを上書きできます。 -- `tool_description_override`: `Handoff.default_tool_description()` による既定のツール説明を上書きします。 -- `on_handoff`: ハンドオフが呼び出されたときに実行されるコールバック関数です。ハンドオフが呼ばれたことが分かった時点でデータ取得を開始する、などに有用です。この関数は エージェント のコンテキストを受け取り、任意で LLM が生成した入力も受け取れます。入力データは `input_type` パラメーターで制御します。 -- `input_type`: ハンドオフが想定する入力のタイプ(任意)。 -- `input_filter`: 次の エージェント が受け取る入力をフィルタリングできます。詳細は下記を参照してください。 -- `is_enabled`: ハンドオフを有効にするかどうか。真偽値、または真偽値を返す関数を指定でき、実行時に動的に有効・無効を切り替えられます。 +- `tool_description_override`: `Handoff.default_tool_description()` の既定のツール説明を上書きします。 +- `on_handoff`: ハンドオフが呼び出されたときに実行されるコールバック関数です。ハンドオフが実行されることが分かった時点でデータ取得を開始するなどに役立ちます。この関数はエージェントのコンテキストを受け取り、任意で LLM が生成した入力も受け取れます。入力データは `input_type` パラメーターで制御します。 +- `input_type`: ハンドオフが想定する入力の型(任意)。 +- `input_filter`: 次の エージェント が受け取る入力をフィルタリングできます。詳細は以下を参照してください。 +- `is_enabled`: ハンドオフを有効にするかどうか。真偽値または真偽値を返す関数を指定でき、実行時にハンドオフを動的に有効/無効にできます。 ```python from agents import Agent, handoff, RunContextWrapper @@ -58,9 +58,9 @@ handoff_obj = handoff( ) ``` -## ハンドオフの入力 +## ハンドオフ入力 -状況によっては、ハンドオフの呼び出し時に LLM にいくつかのデータを提供してほしい場合があります。たとえば、「エスカレーション エージェント」へのハンドオフを想定してください。ログのために理由を提供してもらいたいかもしれません。 +状況によっては、ハンドオフを呼び出す際に LLM からいくつかのデータを提供させたい場合があります。例えば「エスカレーション エージェント」へのハンドオフでは、記録のために理由を提供させたいかもしれません。 ```python from pydantic import BaseModel @@ -84,9 +84,9 @@ handoff_obj = handoff( ## 入力フィルター -ハンドオフが発生すると、新しい エージェント が会話を引き継ぎ、これまでの会話履歴全体を閲覧できるようになります。これを変更したい場合は、[`input_filter`][agents.handoffs.Handoff.input_filter] を設定できます。入力フィルターは、既存の入力を [`HandoffInputData`][agents.handoffs.HandoffInputData] として受け取り、新たな `HandoffInputData` を返す関数です。 +ハンドオフが発生すると、新しい エージェント が会話を引き継ぎ、これまでの会話履歴全体を閲覧できるのと同様になります。これを変更したい場合は、[`input_filter`][agents.handoffs.Handoff.input_filter] を設定できます。入力フィルターは、既存の入力を [`HandoffInputData`][agents.handoffs.HandoffInputData] 経由で受け取り、新しい `HandoffInputData` を返す関数です。 -一般的なパターン(たとえば履歴からすべてのツール呼び出しを削除するなど)は、[`agents.extensions.handoff_filters`][] に実装されています。 +いくつかの一般的なパターン(例えば履歴からすべてのツール呼び出しを削除するなど)は、[`agents.extensions.handoff_filters`][] に実装済みです。 ```python from agents import Agent, handoff @@ -100,11 +100,11 @@ handoff_obj = handoff( ) ``` -1. これは、`FAQ agent` が呼び出された際に履歴から自動的にすべてのツールを削除します。 +1. これにより、`FAQ agent` が呼び出されたときに履歴から自動的にすべてのツールが削除されます。 ## 推奨プロンプト -LLM がハンドオフを適切に理解できるようにするため、エージェント にはハンドオフに関する情報を含めることを推奨します。[`agents.extensions.handoff_prompt.RECOMMENDED_PROMPT_PREFIX`][] に推奨のプレフィックスがあり、または [`agents.extensions.handoff_prompt.prompt_with_handoff_instructions`][] を呼び出して、推奨データをプロンプトに自動的に追加できます。 +LLM がハンドオフを正しく理解できるようにするため、エージェント にハンドオフに関する情報を含めることを推奨します。[`agents.extensions.handoff_prompt.RECOMMENDED_PROMPT_PREFIX`][] の推奨プレフィックスを利用するか、[`agents.extensions.handoff_prompt.prompt_with_handoff_instructions`][] を呼び出して、推奨データを自動的にプロンプトへ追加できます。 ```python from agents import Agent diff --git a/docs/ja/index.md b/docs/ja/index.md index ba66e1c6d..3ce414c9a 100644 --- a/docs/ja/index.md +++ b/docs/ja/index.md @@ -4,31 +4,31 @@ search: --- # OpenAI Agents SDK -[OpenAI Agents SDK](https://github.com/openai/openai-agents-python) は、抽象化を最小限に抑えた軽量で使いやすいパッケージで、エージェント指向の AI アプリを構築できます。これは、以前のエージェントに関する実験である [Swarm](https://github.com/openai/swarm/tree/main) の本番運用可能なアップグレードです。Agents SDK には、非常に少数の基本コンポーネントがあります: +[OpenAI Agents SDK](https://github.com/openai/openai-agents-python) は、抽象化を最小限に抑えた軽量で使いやすいパッケージで、エージェント型 AI アプリを構築できるようにするものです。これは、エージェントに関する従来の実験的プロジェクトである [Swarm](https://github.com/openai/swarm/tree/main) を本番運用向けにアップグレードしたものです。Agents SDK にはごく少数の基本コンポーネントがあります。 -- ** エージェント **: instructions と tools を備えた LLM -- ** ハンドオフ **: 特定のタスクについて、エージェントが他のエージェントに委任できる仕組み -- ** ガードレール **: エージェントの入力と出力を検証できる仕組み -- ** セッション **: エージェント実行間で会話履歴を自動的に維持 +- ** エージェント ** , `instructions` とツールを備えた LLM +- ** ハンドオフ ** , エージェントが特定のタスクを他のエージェントに委任できる機能 +- ** ガードレール ** , エージェントの入力と出力を検証できる機能 +- ** セッション ** , エージェントの実行間で会話履歴を自動的に維持する機能 -Python と組み合わせることで、これらの基本コンポーネントはツールとエージェント間の複雑な関係を表現でき、急な学習曲線なしに実運用レベルのアプリケーションを構築できます。さらに、SDK には組み込みの ** トレーシング ** が含まれており、エージェントのフローを可視化・デバッグできるほか、評価を行い、アプリケーション向けにモデルを微調整することもできます。 +Python と組み合わせることで、これらの基本コンポーネントはツールとエージェント間の複雑な関係を表現でき、学習コストを抑えつつ実運用レベルのアプリケーションを構築できます。さらに、SDK には内蔵の ** トレーシング ** があり、エージェントのフローを可視化してデバッグできるほか、評価や、アプリケーション向けのモデルのファインチューニングまで行えます。 ## Agents SDK を使う理由 -この SDK の設計原則は次の 2 点です。 +SDK には次の 2 つの設計原則があります。 -1. 使う価値があるだけの十分な機能を備えつつ、学習が素早く済むよう基本コンポーネントは少数にする。 -2. デフォルトでそのまま高い性能で動作しつつ、動作内容を細かくカスタマイズできる。 +1. 使う価値があるだけの機能を備えつつ、学習を素早くするために基本コンポーネントは少数に保つこと。 +2. そのままでも十分に機能しつつ、動作を細部までカスタマイズできること。 -主な機能は以下のとおりです。 +SDK の主な機能は次のとおりです。 -- エージェントループ: ツール呼び出し、LLM への結果送信、LLM が完了するまでのループ処理を行う組み込みのエージェントループ。 -- Python ファースト: 新しい抽象を学ぶ必要はなく、言語の組み込み機能でエージェントをオーケストレーションし、連鎖できます。 -- ハンドオフ: 複数のエージェント間の調整と委任を行う強力な機能。 -- ガードレール: 入力の検証とチェックをエージェントと並行して実行し、チェックが失敗した場合は早期に打ち切ります。 -- セッション: エージェントの実行をまたいで会話履歴を自動管理し、手動の状態管理を不要にします。 -- 関数ツール: 任意の Python 関数をツールに変換し、スキーマ自動生成と Pydantic ベースの検証を提供。 -- トレーシング: ワークフローの可視化・デバッグ・監視を可能にする組み込みトレーシングに加え、OpenAI の評価、ファインチューニング、蒸留ツール群も活用可能。 +- エージェント ループ: ツールの呼び出し、結果の LLM への送信、LLM の完了までのループ処理を内蔵。 +- Python ファースト: 新しい抽象化を学ぶのではなく、言語の組み込み機能でエージェントのオーケストレーションや連鎖を実現。 +- ハンドオフ: 複数のエージェント間の調整と委任を可能にする強力な機能。 +- ガードレール: エージェントと並行して入力の検証やチェックを実行し、失敗時は早期に中断。 +- セッション: エージェントの実行間で会話履歴を自動管理し、手動の状態管理を不要に。 +- 関数ツール: 任意の Python 関数をツール化し、自動スキーマ生成と Pydantic ベースの検証を提供。 +- トレーシング: ワークフローの可視化、デバッグ、監視を可能にし、OpenAI の評価、ファインチューニング、蒸留ツール群も利用可能。 ## インストール @@ -36,7 +36,7 @@ Python と組み合わせることで、これらの基本コンポーネント pip install openai-agents ``` -## Hello world の例 +## Hello World の例 ```python from agents import Agent, Runner diff --git a/docs/ja/mcp.md b/docs/ja/mcp.md index d2ff957b9..04b367b69 100644 --- a/docs/ja/mcp.md +++ b/docs/ja/mcp.md @@ -4,23 +4,23 @@ search: --- # Model context protocol (MCP) -[Model context protocol](https://modelcontextprotocol.io/introduction)(別名 MCP)は、LLM にツールとコンテキストを提供する方法です。MCP ドキュメントより引用: +[Model context protocol](https://modelcontextprotocol.io/introduction)(別名 MCP)は、LLM にツールとコンテキストを提供する方法です。MCP のドキュメントより: -> MCP は、アプリケーションが LLM にコンテキストを提供する方法を標準化するオープンプロトコルです。MCP は AI アプリケーション向けの USB-C ポートのようなものだと考えてください。USB-C がさまざまな周辺機器やアクセサリーにデバイスを接続する標準化された方法を提供するのと同様に、MCP は AI モデルをさまざまなデータソースやツールに接続する標準化された方法を提供します。 +> MCP は、アプリケーションが LLM にコンテキストを提供する方法を標準化するオープンなプロトコルです。MCP は AI アプリケーションのための USB-C ポートのようなものだと考えてください。USB-C がデバイスをさまざまな周辺機器やアクセサリーに接続する標準化された方法を提供するように、MCP は AI モデルを異なるデータソースやツールに接続する標準化された方法を提供します。 -Agents SDK は MCP をサポートしています。これにより、幅広い MCP サーバーを使用して、エージェントにツールやプロンプトを提供できます。 +Agents SDK は MCP をサポートしています。これにより、幅広い MCP サーバーを利用して、エージェントにツールやプロンプトを提供できます。 ## MCP サーバー -現在、MCP 仕様では使用するトランスポート方式に基づいて 3 種類のサーバーが定義されています: +現在、MCP の仕様は使用するトランスポート機構に基づいて 3 種類のサーバーを定義しています: -1. **stdio** サーバーは、アプリケーションのサブプロセスとして実行されます。ローカルで動作していると考えることができます。 -2. **HTTP over SSE** サーバーはリモートで動作します。URL を介して接続します。 -3. **Streamable HTTP** サーバーは、MCP 仕様で定義された Streamable HTTP トランスポートを使用してリモートで動作します。 +1. **stdio** サーバーは、アプリケーションのサブプロセスとして実行されます。いわゆる「ローカル」で動作します。 +2. **HTTP over SSE** サーバーはリモートで動作します。URL を介して接続します。 +3. **Streamable HTTP** サーバーは、MCP 仕様で定義された Streamable HTTP トランスポートを使用してリモートで動作します。 これらのサーバーには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] クラスを使用して接続できます。 -たとえば、[公式 MCP ファイルシステム サーバー](https://www.npmjs.com/package/@modelcontextprotocol/server-filesystem)を次のように使用します。 +たとえば、[公式の MCP filesystem サーバー](https://www.npmjs.com/package/@modelcontextprotocol/server-filesystem)は次のように使用します。 ```python from agents.run_context import RunContextWrapper @@ -41,7 +41,7 @@ async with MCPServerStdio( ## MCP サーバーの使用 -MCP サーバーはエージェントに追加できます。Agents SDK は、エージェントが実行されるたびに MCP サーバー上で `list_tools()` を呼び出します。これにより、LLM が MCP サーバーのツールを認識します。LLM が MCP サーバーのツールを呼び出すと、SDK はそのサーバーで `call_tool()` を呼び出します。 +MCP サーバーはエージェントに追加できます。Agents SDK は、エージェントが実行されるたびに MCP サーバー上で `list_tools()` を呼び出します。これにより、LLM は MCP サーバーのツールを認識します。LLM が MCP サーバーのツールを呼び出すと、SDK はそのサーバーで `call_tool()` を呼び出します。 ```python @@ -54,11 +54,11 @@ agent=Agent( ## ツールのフィルタリング -MCP サーバーでツールフィルターを設定することで、エージェントで利用可能なツールを絞り込めます。SDK は静的および動的なツールフィルタリングの両方をサポートします。 +MCP サーバーでツールフィルターを構成することで、エージェントで使用可能なツールを絞り込めます。SDK は静的フィルタリングと動的フィルタリングの両方をサポートします。 ### 静的ツールフィルタリング -単純な許可/ブロックリスト(allowlist/blocklist)の場合は、静的フィルタリングを使用できます: +単純な許可/ブロック リストには、静的フィルタリングを使用できます: ```python from agents.mcp import create_static_tool_filter @@ -87,11 +87,11 @@ server = MCPServerStdio( ``` - **`allowed_tool_names` と `blocked_tool_names` が両方設定されている場合の処理順序は次のとおりです:** -1. まず `allowed_tool_names`(allowlist)を適用し、指定したツールだけを保持します -2. 次に `blocked_tool_names`(blocklist)を適用し、残っているツールから指定したツールを除外します +**`allowed_tool_names` と `blocked_tool_names` の両方が構成されている場合、処理順序は次のとおりです:** +1. まず `allowed_tool_names`(allowlist)を適用 — 指定したツールのみを残す +2. 次に `blocked_tool_names`(blocklist)を適用 — 残ったツールから指定したものを除外 -たとえば、`allowed_tool_names=["read_file", "write_file", "delete_file"]` と `blocked_tool_names=["delete_file"]` を設定した場合、`read_file` と `write_file` のツールのみが利用可能になります。 +たとえば、`allowed_tool_names=["read_file", "write_file", "delete_file"]` と `blocked_tool_names=["delete_file"]` を構成した場合、利用可能なのは `read_file` と `write_file` のツールだけになります。 ### 動的ツールフィルタリング @@ -137,18 +137,18 @@ server = MCPServerStdio( `ToolFilterContext` では次にアクセスできます: - `run_context`: 現在の実行コンテキスト - `agent`: ツールを要求しているエージェント -- `server_name`: MCP サーバーの名前 +- `server_name`: MCP サーバー名 ## プロンプト -MCP サーバーは、エージェントの指示を動的に生成するために使用できるプロンプトも提供できます。これにより、パラメーターでカスタマイズ可能な再利用可能な指示テンプレートを作成できます。 +MCP サーバーは、エージェントの instructions を動的に生成するために使用できるプロンプトも提供できます。これにより、パラメーターでカスタマイズ可能な再利用可能な instructions テンプレートを作成できます。 ### プロンプトの使用 -プロンプトをサポートする MCP サーバーは、次の 2 つの主要なメソッドを提供します: +プロンプトをサポートする MCP サーバーは、2 つの主要メソッドを提供します: -- `list_prompts()`: サーバー上で利用可能なすべてのプロンプトを一覧表示します -- `get_prompt(name, arguments)`: 任意のパラメーター付きで特定のプロンプトを取得します +- `list_prompts()`: サーバー上で利用可能なすべてのプロンプトを一覧表示 +- `get_prompt(name, arguments)`: 任意のパラメーター付きで特定のプロンプトを取得 ```python # List available prompts @@ -171,21 +171,21 @@ agent = Agent( ) ``` -## キャッシング +## キャッシュ -エージェントが実行されるたびに、MCP サーバーで `list_tools()` が呼び出されます。特にサーバーがリモートサーバーの場合、これはレイテンシーの原因になります。ツール一覧を自動的にキャッシュするには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] に `cache_tools_list=True` を渡します。ツール一覧が変化しないと確信できる場合にのみ実行してください。 +エージェントが実行されるたびに、MCP サーバーで `list_tools()` が呼び出されます。特にサーバーがリモート サーバーの場合、これはレイテンシの要因になり得ます。ツール一覧を自動的にキャッシュするには、[`MCPServerStdio`][agents.mcp.server.MCPServerStdio]、[`MCPServerSse`][agents.mcp.server.MCPServerSse]、[`MCPServerStreamableHttp`][agents.mcp.server.MCPServerStreamableHttp] に `cache_tools_list=True` を渡します。ツール一覧が変更されないことが確実な場合にのみ実施してください。 -キャッシュを無効化したい場合は、サーバーで `invalidate_tools_cache()` を呼び出します。 +キャッシュを無効化したい場合は、サーバーで `invalidate_tools_cache()` を呼び出せます。 -## エンドツーエンドのコード例 +## エンドツーエンドの code examples -完全に動作するコード例は [examples/mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp) を参照してください。 +動作する完全な code examples は [examples/mcp](https://github.com/openai/openai-agents-python/tree/main/examples/mcp) をご覧ください。 ## トレーシング -[トレーシング](./tracing.md) は MCP の操作を自動的に記録します。含まれる内容: +[トレーシング](./tracing.md) は次の MCP の操作を自動的に捕捉します: -1. MCP サーバーへのツール一覧取得の呼び出し +1. ツール一覧のための MCP サーバーへの呼び出し 2. 関数呼び出しに関する MCP 関連情報 -![MCP トレーシングのスクリーンショット](../assets/images/mcp-tracing.jpg) \ No newline at end of file +![MCP Tracing Screenshot](../assets/images/mcp-tracing.jpg) \ No newline at end of file diff --git a/docs/ja/models/index.md b/docs/ja/models/index.md index 99c0bf851..b73f409a3 100644 --- a/docs/ja/models/index.md +++ b/docs/ja/models/index.md @@ -4,20 +4,20 @@ search: --- # モデル -Agents SDK には、2 種類の OpenAI モデルのサポートが標準で含まれています: +Agents SDK には、OpenAI モデルをすぐに使える形で 2 通りサポートしています: -- **推奨**: 新しい Responses API を使用して OpenAI API を呼び出す [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel]。 -- [Chat Completions API](https://platform.openai.com/docs/api-reference/chat) を使用して OpenAI API を呼び出す [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel]。 +- **推奨**: [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel]。新しい [Responses API](https://platform.openai.com/docs/api-reference/responses) を使って OpenAI API を呼び出します。 +- [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel]。 [Chat Completions API](https://platform.openai.com/docs/api-reference/chat) を使って OpenAI API を呼び出します。 ## OpenAI モデル `Agent` を初期化する際にモデルを指定しない場合、デフォルトのモデルが使用されます。現在のデフォルトは [`gpt-4.1`](https://platform.openai.com/docs/models/gpt-4.1) で、エージェント型ワークフローにおける予測可能性と低レイテンシのバランスに優れています。 -[`gpt-5`](https://platform.openai.com/docs/models/gpt-5) などの他のモデルに切り替えたい場合は、次のセクションの手順に従ってください。 +[`gpt-5`](https://platform.openai.com/docs/models/gpt-5) など他のモデルに切り替えたい場合は、次のセクションの手順に従ってください。 -### 既定の OpenAI モデル +### デフォルトの OpenAI モデル -カスタムモデルを設定していないすべてのエージェントで特定のモデルを一貫して使用したい場合は、エージェントを実行する前に `OPENAI_DEFAULT_MODEL` 環境変数を設定してください。 +カスタムモデルを設定していないすべてのエージェントで特定のモデルを一貫して使いたい場合は、エージェントを実行する前に環境変数 `OPENAI_DEFAULT_MODEL` を設定してください。 ```bash export OPENAI_DEFAULT_MODEL=gpt-5 @@ -26,9 +26,9 @@ python3 my_awesome_agent.py #### GPT-5 モデル -この方法で GPT-5 の推論モデル([`gpt-5`](https://platform.openai.com/docs/models/gpt-5)、[`gpt-5-mini`](https://platform.openai.com/docs/models/gpt-5-mini)、[`gpt-5-nano`](https://platform.openai.com/docs/models/gpt-5-nano))を使用する場合、SDK は既定で妥当な `ModelSettings` を適用します。具体的には、`reasoning.effort` と `verbosity` の両方を `"low"` に設定します。これらの設定を自分で構築したい場合は、`agents.models.get_default_model_settings("gpt-5")` を呼び出してください。 +この方法で GPT-5 の推論モデル([`gpt-5`](https://platform.openai.com/docs/models/gpt-5)、[`gpt-5-mini`](https://platform.openai.com/docs/models/gpt-5-mini)、または [`gpt-5-nano`](https://platform.openai.com/docs/models/gpt-5-nano))を使用する場合、SDK は既定で妥当な `ModelSettings` を適用します。具体的には、`reasoning.effort` と `verbosity` をともに `"low"` に設定します。これらの設定を自分で構成したい場合は、`agents.models.get_default_model_settings("gpt-5")` を呼び出してください。 -さらに低レイテンシや特定の要件がある場合は、別のモデルと設定を選択できます。デフォルトモデルの推論強度を調整するには、独自の `ModelSettings` を渡します: +さらに低レイテンシや特定の要件のために、別のモデルや設定を選ぶこともできます。デフォルトモデルの推論強度を調整するには、独自の `ModelSettings` を渡します: ```python from openai.types.shared import Reasoning @@ -44,44 +44,44 @@ my_agent = Agent( ) ``` -特に低レイテンシを重視する場合、[`gpt-5-mini`](https://platform.openai.com/docs/models/gpt-5-mini) または [`gpt-5-nano`](https://platform.openai.com/docs/models/gpt-5-nano) モデルで `reasoning.effort="minimal"` を指定すると、デフォルト設定より高速に応答が返ることが多いです。ただし、Responses API の一部の組み込みツール(ファイル検索 や 画像生成 など)は `"minimal"` の推論強度をサポートしていないため、本 Agents SDK のデフォルトは `"low"` になっています。 +特に低レイテンシを重視する場合は、[`gpt-5-mini`](https://platform.openai.com/docs/models/gpt-5-mini) または [`gpt-5-nano`](https://platform.openai.com/docs/models/gpt-5-nano) に `reasoning.effort="minimal"` を組み合わせると、デフォルト設定より高速に応答が返ることが多いです。ただし、Responses API の一部の組み込みツール(ファイル検索や画像生成など)は `"minimal"` の推論強度をサポートしていないため、本 Agents SDK では既定値を `"low"` にしています。 #### 非 GPT-5 モデル -カスタムの `model_settings` なしで GPT-5 以外のモデル名を渡した場合、SDK は任意のモデルと互換性のある汎用的な `ModelSettings` にフォールバックします。 +カスタムの `model_settings` なしで GPT-5 以外のモデル名を渡した場合、SDK はあらゆるモデルと互換性のある汎用的な `ModelSettings` にフォールバックします。 ## 非 OpenAI モデル -[LiteLLM 連携](./litellm.md) を通じて、ほとんどの非 OpenAI モデルを利用できます。まず、litellm の依存関係グループをインストールします: +[LiteLLM 連携](../litellm.md) を通じて、ほとんどの非 OpenAI モデルを使用できます。まず、litellm の依存関係グループをインストールしてください: ```bash pip install "openai-agents[litellm]" ``` -次に、`litellm/` プレフィックスを付けて [サポートされているモデル](https://docs.litellm.ai/docs/providers) を使用します: +次に、`litellm/` プレフィックスを付けて、[サポートされているモデル](https://docs.litellm.ai/docs/providers) を使用します: ```python claude_agent = Agent(model="litellm/anthropic/claude-3-5-sonnet-20240620", ...) gemini_agent = Agent(model="litellm/gemini/gemini-2.5-flash-preview-04-17", ...) ``` -### 非 OpenAI モデルを使用する他の方法 +### 非 OpenAI モデルを使う他の方法 -他の LLM プロバイダーは、さらに 3 つの方法で統合できます(code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)): +他の LLM プロバイダーとは、さらに 3 つの方法で連携できます(code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)): -1. [`set_default_openai_client`][agents.set_default_openai_client] は、LLM クライアントとして `AsyncOpenAI` のインスタンスをグローバルに使用したい場合に便利です。これは、LLM プロバイダーの API エンドポイントが OpenAI 互換であり、`base_url` と `api_key` を設定できるケースです。設定可能な例は [examples/model_providers/custom_example_global.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_global.py) を参照してください。 -2. [`ModelProvider`][agents.models.interface.ModelProvider] は `Runner.run` レベルにあります。これにより、「この実行のすべてのエージェントにカスタムのモデルプロバイダーを使用する」と指定できます。設定可能な例は [examples/model_providers/custom_example_provider.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_provider.py) を参照してください。 -3. [`Agent.model`][agents.agent.Agent.model] は、特定の Agent インスタンスでモデルを指定できます。これにより、エージェントごとに異なるプロバイダーを組み合わせて使用できます。設定可能な例は [examples/model_providers/custom_example_agent.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_agent.py) を参照してください。ほとんどの利用可能なモデルを簡単に使用する方法として、[LiteLLM 連携](./litellm.md) があります。 +1. [`set_default_openai_client`][agents.set_default_openai_client] は、LLM クライアントとして `AsyncOpenAI` のインスタンスをグローバルに使用したい場合に有用です。これは、LLM プロバイダーが OpenAI 互換の API エンドポイントを持ち、`base_url` と `api_key` を設定できるケース向けです。設定可能な sample code は [examples/model_providers/custom_example_global.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_global.py) を参照してください。 +2. [`ModelProvider`][agents.models.interface.ModelProvider] は `Runner.run` レベルで指定します。これにより、「この実行中のすべてのエージェントにカスタムモデルプロバイダーを使う」と宣言できます。設定可能な sample code は [examples/model_providers/custom_example_provider.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_provider.py) を参照してください。 +3. [`Agent.model`][agents.agent.Agent.model] では、特定の Agent インスタンスにモデルを指定できます。これにより、エージェントごとに異なるプロバイダーを組み合わせて使えます。設定可能な sample code は [examples/model_providers/custom_example_agent.py](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/custom_example_agent.py) を参照してください。最も多くのモデルを簡単に使う方法は、[LiteLLM 連携](../litellm.md) 経由です。 -`platform.openai.com` の API キーをお持ちでない場合は、`set_tracing_disabled()` でトレーシングを無効にするか、[別のトレーシング プロセッサー](../tracing.md) をセットアップすることをおすすめします。 +`platform.openai.com` の API キーをお持ちでない場合は、`set_tracing_disabled()` によるトレーシングの無効化、または[別のトレーシング プロセッサー](../tracing.md) の設定をおすすめします。 !!! note - これらの code examples では Chat Completions API/モデルを使用しています。これは、ほとんどの LLM プロバイダーがまだ Responses API をサポートしていないためです。LLM プロバイダーがサポートしている場合は、Responses の使用をおすすめします。 + これらの例では、Responses API をまだサポートしていない LLM プロバイダーがほとんどであるため、Chat Completions API/モデルを使用しています。お使いの LLM プロバイダーが対応している場合は、Responses の利用をおすすめします。 ## モデルの組み合わせ -単一のワークフロー内で、エージェントごとに異なるモデルを使用したい場合があります。例えば、トリアージには小型で高速なモデルを、複雑なタスクには大型で高機能なモデルを使用できます。[`Agent`][agents.Agent] を構成する際、以下のいずれかで特定のモデルを選択できます: +単一のワークフロー内で、エージェントごとに異なるモデルを使いたい場合があります。例えば、トリアージには小型で高速なモデルを使い、複雑なタスクにはより大きく高性能なモデルを使うといった形です。[`Agent`][agents.Agent] を構成する際、次のいずれかで特定のモデルを選べます: 1. モデル名を渡す。 2. 任意のモデル名 + その名前を Model インスタンスにマッピングできる [`ModelProvider`][agents.models.interface.ModelProvider] を渡す。 @@ -89,7 +89,7 @@ gemini_agent = Agent(model="litellm/gemini/gemini-2.5-flash-preview-04-17", ...) !!!note - 当社の SDK は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] と [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] の両方の形状をサポートしていますが、両者はサポートする機能やツールのセットが異なるため、各ワークフローでは単一のモデル形状を使用することをおすすめします。ワークフローでモデル形状を混在させる必要がある場合は、使用するすべての機能が両方で利用可能であることを確認してください。 + SDK は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] と [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] の両方の形状をサポートしていますが、両者はサポートする機能やツールのセットが異なるため、各ワークフローでは単一のモデル形状の使用を推奨します。ワークフローでモデル形状を混在させる必要がある場合は、使用するすべての機能が両方で利用可能であることを確認してください。 ```python from agents import Agent, Runner, AsyncOpenAI, OpenAIChatCompletionsModel @@ -125,7 +125,7 @@ async def main(): 1. OpenAI モデルの名前を直接設定します。 2. [`Model`][agents.models.interface.Model] 実装を提供します。 -エージェントで使用するモデルをさらに構成したい場合は、温度などの任意のモデル構成パラメーターを提供する [`ModelSettings`][agents.models.interface.ModelSettings] を渡せます。 +エージェントで使用するモデルをさらに構成したい場合は、[`ModelSettings`][agents.models.interface.ModelSettings] を渡せます。これは、temperature などの任意のモデル構成パラメーターを提供します。 ```python from agents import Agent, ModelSettings @@ -138,7 +138,7 @@ english_agent = Agent( ) ``` -また、OpenAI の Responses API を使用する場合、[他にもいくつかの任意パラメーター](https://platform.openai.com/docs/api-reference/responses/create)(例: `user`、`service_tier` など)があります。トップレベルで指定できない場合は、`extra_args` を使用して渡すこともできます。 +また、OpenAI の Responses API を使用する場合、[他にもいくつかの任意パラメーター](https://platform.openai.com/docs/api-reference/responses/create)(例: `user`、`service_tier` など)があります。トップレベルで指定できない場合は、`extra_args` を使って渡せます。 ```python from agents import Agent, ModelSettings @@ -154,26 +154,26 @@ english_agent = Agent( ) ``` -## 他の LLM プロバイダー使用時の一般的な問題 +## 他社 LLM プロバイダー利用時の一般的な問題 -### トレーシング クライアントのエラー 401 +### トレーシング クライアントエラー 401 -トレーシングに関連するエラーが発生する場合、トレースは OpenAI サーバーにアップロードされ、OpenAI の API キーをお持ちでないことが原因です。解決するには次の 3 つの方法があります: +トレーシングに関連するエラーが発生する場合、これはトレースが OpenAI のサーバーにアップロードされる仕様であり、OpenAI の API キーをお持ちでないためです。解決するには次の 3 つの方法があります: 1. トレーシングを完全に無効化する: [`set_tracing_disabled(True)`][agents.set_tracing_disabled]。 -2. トレーシング用に OpenAI のキーを設定する: [`set_tracing_export_api_key(...)`][agents.set_tracing_export_api_key]。この API キーはトレースのアップロードにのみ使用され、[platform.openai.com](https://platform.openai.com/) のものに限られます。 -3. 非 OpenAI のトレース プロセッサーを使用する。[tracing のドキュメント](../tracing.md#custom-tracing-processors) を参照してください。 +2. トレーシング用に OpenAI のキーを設定する: [`set_tracing_export_api_key(...)`][agents.set_tracing_export_api_key]。この API キーはトレースのアップロードのみに使用され、[platform.openai.com](https://platform.openai.com/) のものが必要です。 +3. 非 OpenAI のトレース プロセッサーを使用する。[トレーシングのドキュメント](../tracing.md#custom-tracing-processors) を参照してください。 ### Responses API のサポート -SDK は既定で Responses API を使用しますが、ほとんどの他の LLM プロバイダーはまだサポートしていません。その結果、404 などの問題が発生することがあります。解決するには次の 2 つの方法があります: +SDK は既定で Responses API を使用しますが、多くの他社 LLM プロバイダーはまだ未対応です。その結果、404 などの問題が発生することがあります。解決策は次の 2 つです: -1. [`set_default_openai_api("chat_completions")`][agents.set_default_openai_api] を呼び出します。これは、環境変数で `OPENAI_API_KEY` と `OPENAI_BASE_URL` を設定している場合に機能します。 +1. [`set_default_openai_api("chat_completions")`][agents.set_default_openai_api] を呼び出します。これは環境変数で `OPENAI_API_KEY` と `OPENAI_BASE_URL` を設定している場合に動作します。 2. [`OpenAIChatCompletionsModel`][agents.models.openai_chatcompletions.OpenAIChatCompletionsModel] を使用します。code examples は[こちら](https://github.com/openai/openai-agents-python/tree/main/examples/model_providers/)にあります。 ### structured outputs のサポート -一部のモデルプロバイダーは [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) をサポートしていません。これにより、次のようなエラーが発生する場合があります: +一部のモデルプロバイダーは [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) をサポートしていません。これにより、次のようなエラーが発生することがあります: ``` @@ -181,12 +181,12 @@ BadRequestError: Error code: 400 - {'error': {'message': "'response_format.type' ``` -これは一部のモデルプロバイダーの制約で、JSON 出力はサポートしているものの、出力に使用する `json_schema` を指定できません。現在この問題の修正に取り組んでいますが、JSON スキーマ出力をサポートするプロバイダーに依存することをおすすめします。そうでないと、JSON の不正形式によりアプリが頻繁に壊れる可能性があります。 +これは一部のモデルプロバイダー側の制約で、JSON 出力自体はサポートしていても、出力に使用する `json_schema` を指定できないというものです。こちらは改善に取り組んでいますが、JSON スキーマ出力をサポートしているプロバイダーを利用することをおすすめします。そうでない場合、JSON の形式が不正になりやすく、アプリが頻繁に壊れる原因となるためです。 -## プロバイダー間でのモデル併用 +## プロバイダーをまたいだモデルの混在 -モデルプロバイダー間の機能差異を理解していないと、エラーに遭遇する可能性があります。例えば、OpenAI は structured outputs、マルチモーダル入力、ホスト型の ファイル検索 および Web 検索 をサポートしていますが、多くの他プロバイダーはこれらの機能をサポートしていません。次の制限に注意してください: +モデルプロバイダー間の機能差に注意しないと、エラーに直面する可能性があります。例えば、OpenAI は structured outputs、マルチモーダル入力、ホスト型のファイル検索および Web 検索をサポートしていますが、多くの他社プロバイダーはこれらの機能をサポートしていません。次の制約に注意してください: -- サポートしていない `tools` を理解しないプロバイダーには送信しない -- テキストのみのモデルを呼び出す前に、マルチモーダル入力をフィルタリングする -- structured JSON 出力をサポートしていないプロバイダーは、無効な JSON を生成することがある点に注意する \ No newline at end of file +- サポートしていない `tools` を理解しないプロバイダーには送らないでください +- テキストのみのモデルを呼び出す前に、マルチモーダル入力をフィルタリングしてください +- 構造化された JSON 出力をサポートしていないプロバイダーでは、無効な JSON が出力されることがあります \ No newline at end of file diff --git a/docs/ja/models/litellm.md b/docs/ja/models/litellm.md index e87a0a3e6..633221380 100644 --- a/docs/ja/models/litellm.md +++ b/docs/ja/models/litellm.md @@ -6,13 +6,13 @@ search: !!! note - LiteLLM の統合は beta です。特に小規模なモデルプロバイダーでは問題が発生する可能性があります。問題がありましたら [GitHub Issues](https://github.com/openai/openai-agents-python/issues) に報告してください。迅速に修正します。 + LiteLLM 統合はベータ版です。特に小規模なモデルプロバイダーで問題が発生する可能性があります。問題は [GitHub Issues](https://github.com/openai/openai-agents-python/issues) に報告してください。迅速に修正します。 -[LiteLLM](https://docs.litellm.ai/docs/) は、単一のインターフェースで 100+ のモデルを利用できるライブラリです。Agents SDK に LiteLLM の統合を追加し、任意の AI モデルを利用できるようにしました。 +[LiteLLM](https://docs.litellm.ai/docs/) は、単一のインターフェースで 100+ のモデルを利用できるライブラリです。Agents SDK に LiteLLM 統合を追加し、任意の AI モデルを利用できるようにしました。 ## セットアップ -`litellm` が利用可能である必要があります。オプションの `litellm` 依存関係グループをインストールしてください。 +`litellm` が利用可能である必要があります。オプションの `litellm` 依存関係グループをインストールしてください: ```bash pip install "openai-agents[litellm]" @@ -22,13 +22,13 @@ pip install "openai-agents[litellm]" ## コード例 -これは完全に動作する例です。実行時にモデル名と API キーの入力を求められます。例えば次のように入力できます。 +これは完全に動作するコード例です。実行すると、モデル名と API キーの入力を求められます。例えば、次を入力できます: -- モデルには `openai/gpt-4.1`、API キーには OpenAI の API キー -- モデルには `anthropic/claude-3-5-sonnet-20240620`、API キーには Anthropic の API キー +- モデルに `openai/gpt-4.1`、API キーに OpenAI の API キー +- モデルに `anthropic/claude-3-5-sonnet-20240620`、API キーに Anthropic の API キー - など -LiteLLM でサポートされているモデルの完全な一覧は、[LiteLLM のプロバイダーのドキュメント](https://docs.litellm.ai/docs/providers)をご覧ください。 +LiteLLM でサポートされているモデルの完全な一覧は、[litellm のプロバイダー ドキュメント](https://docs.litellm.ai/docs/providers)を参照してください。 ```python from __future__ import annotations diff --git a/docs/ja/multi_agent.md b/docs/ja/multi_agent.md index aaab05d53..9889ad6c1 100644 --- a/docs/ja/multi_agent.md +++ b/docs/ja/multi_agent.md @@ -2,40 +2,40 @@ search: exclude: true --- -# 複数の エージェント のオーケストレーション +# 複数のエージェントのオーケストレーション -オーケストレーションとは、アプリ内での エージェント の流れを指します。どの エージェント を、どの順番で実行し、次に何を行うかをどのように決めるのか。エージェント をオーケストレーションする方法は主に 2 つあります。 +オーケストレーションとは、アプリ内でのエージェントの流れを指します。どのエージェントを、どの順序で実行し、その後の判断をどのように行うか、ということです。エージェントをオーケストレーションする主な方法は 2 つあります。 -1. LLM に意思決定させる: LLM の知能を用いて計画・推論し、それに基づいて取るべき手順を決定します。 -2. コードでオーケストレーションする: コードで エージェント の流れを決定します。 +1. LLM に意思決定を任せる: LLM の知性を使って、計画・推論し、それに基づいて次のステップを決定します。 +2. コードでオーケストレーションする: コードでエージェントの流れを決めます。 -これらのパターンは組み合わせて使えます。各手法には以下のようなトレードオフがあります。 +これらのパターンは組み合わせて使えます。それぞれにトレードオフがあり、以下で説明します。 ## LLM によるオーケストレーション -エージェント とは、instructions、tools、ハンドオフ を備えた LLM です。これは、オープンエンドなタスクに対して、LLM が自律的にタスクへの取り組み方を計画し、ツールを使ってアクションを取りデータを取得し、ハンドオフ を使ってサブエージェントにタスクを委譲できることを意味します。たとえば、リサーチ用の エージェント には以下のようなツールを備えられます。 +エージェントは、指示、ツール、ハンドオフを備えた LLM です。これは、オープンエンドなタスクを与えられたときに、LLM が自律的に計画を立て、ツールでアクションやデータ取得を行い、ハンドオフでサブエージェントへタスクを委任できることを意味します。たとえば、リサーチ用のエージェントには次のようなツールを装備できます。 -- Web 検索 によるオンライン情報の収集 -- ファイル検索 と取得による社内データや接続先の横断検索 -- コンピュータ操作 によるコンピュータ上でのアクション実行 -- コード実行 によるデータ分析 -- 計画立案やレポート執筆などに長けた特化型 エージェント への ハンドオフ +- Web 検索でオンライン情報を見つける +- ファイル検索と取得で自社データや接続先を検索する +- コンピュータ操作でコンピュータ上のアクションを実行する +- コード実行でデータ分析を行う +- 計画策定、レポート作成などに長けた専門エージェントへのハンドオフ -このパターンは、タスクがオープンエンドで、LLM の知能に依拠したい場合に有効です。重要な戦術は次のとおりです。 +このパターンは、タスクがオープンエンドで、 LLM の知性に依拠したい場合に有効です。重要な戦術は次のとおりです。 -1. 良いプロンプトに投資しましょう。利用可能なツール、その使い方、そして遵守すべき パラメーター や制約を明確にします。 -2. アプリを監視し、反復改善しましょう。問題が起きる箇所を特定し、プロンプトを改善します。 -3. エージェント に内省と改善を許可しましょう。たとえばループで実行して自己批評させる、あるいはエラーメッセージを提供して改善させます。 -4. 何でもこなす汎用 エージェント を期待するのではなく、特定のタスクに秀でた特化型 エージェント を用意しましょう。 -5. [評価 (evals)](https://platform.openai.com/docs/guides/evals) に投資しましょう。これにより エージェント を訓練し、タスク遂行能力を高められます。 +1. 良いプロンプトに投資する。利用可能なツール、その使い方、運用すべきパラメーターを明確にします。 +2. アプリを監視し、反復改善する。問題が起きる箇所を把握し、プロンプトを改善します。 +3. エージェントに内省と改善を許す。例えばループで実行し、自己批評させる、あるいはエラーメッセージを与えて改善させます。 +4. 何でもこなす汎用エージェントではなく、特定のタスクに特化して卓越したエージェントを用意する。 +5. [evals(評価)](https://platform.openai.com/docs/guides/evals) に投資する。これによりエージェントを訓練し、タスク遂行能力を高められます。 ## コードによるオーケストレーション -LLM によるオーケストレーションは強力ですが、コードによるオーケストレーションは、速度・コスト・パフォーマンスの観点でより決定的で予測可能になります。一般的なパターンは次のとおりです。 +LLM によるオーケストレーションは強力ですが、コードでオーケストレーションすることで、スピード・コスト・パフォーマンスの面で、より決定的かつ予測可能にできます。一般的なパターンは次のとおりです。 -- [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使って、コードで検査できる 適切な形式のデータ を生成する。たとえば、エージェント にタスクをいくつかの カテゴリー に分類させ、その カテゴリー に応じて次に実行する エージェント を選ぶ。 -- 複数の エージェント をチェーンし、前段の出力を後段の入力に変換する。ブログ記事の執筆を、リサーチ→アウトライン作成→本文執筆→批評→改善という一連の手順に分解する。 -- タスクを実行する エージェント と、それを評価してフィードバックする エージェント を `while` ループで回し、評価者が基準を満たしたと判定するまで繰り返す。 -- 複数の エージェント を並列実行する(例: `asyncio.gather` のような Python の基本コンポーネント を用いる)。相互に依存しない複数タスクがある場合、速度向上に有効です。 +- [structured outputs](https://platform.openai.com/docs/guides/structured-outputs) を使って、コードで検査できる 適切な形式のデータ を生成する。例えば、エージェントにタスクをいくつかの カテゴリー に分類させ、その カテゴリー に基づいて次に実行するエージェントを選ぶ、といった具合です。 +- あるエージェントの出力を次のエージェントの入力に変換して連結する。ブログ記事作成のようなタスクを、リサーチ、アウトライン作成、本文執筆、批評、改善という一連のステップに分解できます。 +- タスクを実行するエージェントを、評価とフィードバックを行うエージェントと組み合わせて `while` ループで回し、評価者が出力が一定の基準を満たしたと判断するまで繰り返す。 +- 複数のエージェントを並列実行する(例: `asyncio.gather` のような Python の基本コンポーネントを利用)。互いに依存しない複数のタスクがある場合、スピード向上に有用です。 -[`examples/agent_patterns`](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns) に多数の code examples があります。 \ No newline at end of file +[`examples/agent_patterns`](https://github.com/openai/openai-agents-python/tree/main/examples/agent_patterns) にも多数の code examples を用意しています。 \ No newline at end of file diff --git a/docs/ja/quickstart.md b/docs/ja/quickstart.md index fb26e3eeb..4f816cfe3 100644 --- a/docs/ja/quickstart.md +++ b/docs/ja/quickstart.md @@ -6,7 +6,7 @@ search: ## プロジェクトと仮想環境の作成 -この作業は 1 回だけで済みます。 +これは一度だけ実行すれば大丈夫です。 ```bash mkdir my_project @@ -16,7 +16,7 @@ python -m venv .venv ### 仮想環境の有効化 -新しいターミナル セッションを開始するたびに実行します。 +新しいターミナルセッションを始めるたびに実行します。 ```bash source .venv/bin/activate @@ -30,15 +30,15 @@ pip install openai-agents # or `uv add openai-agents`, etc ### OpenAI API キーの設定 -お持ちでない場合は、OpenAI API キーを作成するために [これらの手順](https://platform.openai.com/docs/quickstart#create-and-export-an-api-key) に従ってください。 +お持ちでない場合は、OpenAI API キーを作成するために [こちらの手順](https://platform.openai.com/docs/quickstart#create-and-export-an-api-key) に従ってください。 ```bash export OPENAI_API_KEY=sk-... ``` -## 最初のエージェントの作成 +## 最初の エージェント の作成 -エージェントは instructions、名前、および任意の config(`model_config` など)で定義します。 +エージェント は instructions、名前、任意の config(例: `model_config`)で定義します。 ```python from agents import Agent @@ -49,9 +49,9 @@ agent = Agent( ) ``` -## エージェントの追加 +## エージェント の追加 -追加のエージェントも同様に定義できます。`handoff_descriptions` は、ハンドオフのルーティングを判断するための追加コンテキストを提供します。 +追加の エージェント も同様に定義できます。`handoff_descriptions` はハンドオフのルーティングを判断するための追加コンテキストを提供します。 ```python from agents import Agent @@ -71,7 +71,7 @@ math_tutor_agent = Agent( ## ハンドオフの定義 -各エージェントで、タスクを進める方法を決定するために選択できる送信側のハンドオフ候補の一覧を定義できます。 +各 エージェント で、タスクを進める方法を決定するために選択できる、発信側のハンドオフ候補の一覧を定義できます。 ```python triage_agent = Agent( @@ -81,9 +81,9 @@ triage_agent = Agent( ) ``` -## エージェントオーケストレーションの実行 +## エージェントのオーケストレーションの実行 -ワークフローが実行され、トリアージ エージェントが 2 つのスペシャリスト エージェント間を正しくルーティングすることを確認しましょう。 +ワークフローが実行でき、トリアージ エージェント が 2 つの専門 エージェント 間を正しくルーティングすることを確認しましょう。 ```python from agents import Runner @@ -95,7 +95,7 @@ async def main(): ## ガードレールの追加 -入力または出力に対して実行するカスタム ガードレールを定義できます。 +入力または出力に対してカスタム ガードレールを定義できます。 ```python from agents import GuardrailFunctionOutput, Agent, Runner @@ -121,9 +121,9 @@ async def homework_guardrail(ctx, agent, input_data): ) ``` -## 全体の統合 +## すべてを統合 -ハンドオフと入力ガードレールを使用して、すべてを組み合わせたワークフロー全体を実行しましょう。 +すべてをまとめて、ハンドオフと入力ガードレールを使ってワークフロー全体を実行しましょう。 ```python from agents import Agent, InputGuardrail, GuardrailFunctionOutput, Runner @@ -192,12 +192,12 @@ if __name__ == "__main__": ## トレースの閲覧 -エージェントの実行中に何が起きたかを確認するには、[OpenAI ダッシュボードの Trace viewer](https://platform.openai.com/traces) に移動してトレースを参照します。 +エージェントの実行中に何が起きたかを確認するには、[OpenAI ダッシュボードの Trace viewer](https://platform.openai.com/traces) に移動して、エージェント実行のトレースを閲覧してください。 ## 次のステップ -より複雑なエージェント フローの構築方法: +より複雑なエージェント フローの作り方を学びましょう: -- [エージェント](agents.md) の設定方法を学びます。 -- [エージェントの実行](running_agents.md) について学びます。 -- [ツール](tools.md)、[ガードレール](guardrails.md)、[モデル](models/index.md) について学びます。 \ No newline at end of file +- [エージェント](agents.md) の設定方法を学ぶ。 +- [エージェントの実行](running_agents.md) について学ぶ。 +- [ツール](tools.md)、[ガードレール](guardrails.md)、[モデル](models/index.md) について学ぶ。 \ No newline at end of file diff --git a/docs/ja/realtime/guide.md b/docs/ja/realtime/guide.md index a709a61b2..ac78ed113 100644 --- a/docs/ja/realtime/guide.md +++ b/docs/ja/realtime/guide.md @@ -4,65 +4,65 @@ search: --- # ガイド -このガイドでは、 OpenAI Agents SDK の realtime 機能を使って音声対応 AI エージェントを構築する方法を詳しく説明します。 +このガイドでは、 OpenAI Agents SDK の realtime 機能を用いて音声対応の AI エージェントを構築する方法を詳しく説明します。 !!! warning "ベータ機能" -Realtime エージェントはベータ版です。実装の改善に伴い、破壊的変更が発生する可能性があります。 +Realtime エージェントはベータ版です。実装の改善に伴い、互換性のない変更が発生する可能性があります。 ## 概要 -Realtime エージェントは、会話型のフローを可能にし、音声とテキストの入力をリアルタイムに処理し、リアルタイム音声で応答します。 OpenAI の Realtime API との永続的な接続を維持し、低遅延で自然な音声対話と、割り込みへの優雅な対応を実現します。 +Realtime エージェントは、会話フローを可能にし、音声とテキストの入力をリアルタイムに処理して、リアルタイム音声で応答します。OpenAI の Realtime API との永続的な接続を維持し、低レイテンシで自然な音声会話と割り込みへの優雅な対応を実現します。 ## アーキテクチャ -### 中核コンポーネント +### コアコンポーネント realtime システムは、いくつかの主要コンポーネントで構成されます。 -- ** RealtimeAgent **: instructions、tools、ハンドオフで構成されたエージェント。 -- ** RealtimeRunner **: 設定を管理します。`runner.run()` を呼び出してセッションを取得できます。 -- ** RealtimeSession **: 1 回の対話セッション。通常、ユーザーが会話を開始するたびに 1 つ作成し、会話が終了するまで存続させます。 -- ** RealtimeModel **: 基盤となるモデルインターフェース(一般的には OpenAI の WebSocket 実装) +- **RealtimeAgent**: instructions、tools、ハンドオフで構成されたエージェント。 +- **RealtimeRunner**: 設定を管理します。`runner.run()` を呼び出してセッションを取得できます。 +- **RealtimeSession**: 単一のインタラクションセッション。通常は ユーザー が会話を開始するたびに作成し、会話が終了するまで保持します。 +- **RealtimeModel**: 基盤となるモデルインターフェース(通常は OpenAI の WebSocket 実装) ### セッションフロー 一般的な realtime セッションは次のフローに従います。 -1. ** RealtimeAgent を作成 **: instructions、tools、ハンドオフを設定します。 -2. ** RealtimeRunner をセットアップ **: エージェントと設定オプションで構成します。 -3. ** セッションを開始 **: `await runner.run()` を使用し、 RealtimeSession が返されます。 -4. ** 音声またはテキストメッセージを送信 **: `send_audio()` または `send_message()` を使用します。 -5. ** イベントをリッスン **: セッションを反復処理してイベントを受け取ります。イベントには音声出力、字幕、ツール呼び出し、ハンドオフ、エラーなどが含まれます。 -6. ** 割り込みへの対応 **: ユーザーがエージェントの発話にかぶせた場合、現在の音声生成は自動的に停止します。 +1. instructions、tools、ハンドオフを用いて **RealtimeAgent を作成** します。 +2. エージェントと構成オプションで **RealtimeRunner をセットアップ** します。 +3. `await runner.run()` を使用して **セッションを開始** し、RealtimeSession を取得します。 +4. `send_audio()` または `send_message()` を使用して **音声またはテキストメッセージを送信** します。 +5. セッションを反復処理して **イベントをリッスン** します。イベントには音声出力、トランスクリプト、ツール呼び出し、ハンドオフ、エラーが含まれます。 +6. ユーザー がエージェントの発話に被せて話す **割り込みを処理** します。これにより、現在の音声生成は自動的に停止します。 -セッションは会話履歴を保持し、 realtime モデルとの永続的な接続を管理します。 +セッションは会話履歴を保持し、realtime モデルとの永続接続を管理します。 -## エージェント設定 +## エージェントの設定 -RealtimeAgent は通常の Agent クラスと同様に動作しますが、いくつかの重要な違いがあります。完全な API の詳細は、[`RealtimeAgent`][agents.realtime.agent.RealtimeAgent] の API リファレンスを参照してください。 +RealtimeAgent は通常の Agent クラスと同様に動作しますが、いくつか重要な違いがあります。API の詳細は、[`RealtimeAgent`][agents.realtime.agent.RealtimeAgent] の API リファレンスをご参照ください。 通常のエージェントとの主な違い: -- モデル選択はエージェントレベルではなく、セッションレベルで設定します。 -- structured outputs のサポートはありません(`outputType` はサポートされていません)。 -- 音声はエージェントごとに設定できますが、最初のエージェントが発話した後は変更できません。 -- それ以外の機能(tools、ハンドオフ、instructions)は同様に動作します。 +- モデルの選択はエージェントレベルではなく、セッションレベルで設定します。 +- structured output のサポートはありません(`outputType` はサポートされません)。 +- 音声はエージェントごとに設定できますが、最初のエージェントが話し始めた後は変更できません。 +- ツール、ハンドオフ、instructions など、その他の機能は同じように動作します。 -## セッション設定 +## セッションの設定 ### モデル設定 -セッション設定では、基盤となる realtime モデルの動作を制御できます。モデル名(例: `gpt-4o-realtime-preview`)、音声選択(alloy、echo、fable、onyx、nova、shimmer)、およびサポートするモダリティ(テキストや音声)を設定できます。音声フォーマットは入力・出力の両方に設定でき、既定は PCM16 です。 +セッション設定では、基礎となる realtime モデルの動作を制御できます。モデル名(`gpt-4o-realtime-preview` など)、音声の選択(alloy、echo、fable、onyx、nova、shimmer)、およびサポートするモダリティ(テキストおよび/または音声)を設定できます。音声フォーマットは入力・出力の両方で設定でき、デフォルトは PCM16 です。 ### 音声設定 -音声設定では、セッションが音声入出力をどのように扱うかを制御します。 Whisper などのモデルを使った入力音声の文字起こし、言語設定、ドメイン固有語の精度向上のための文字起こしプロンプトを設定できます。ターン検出設定では、エージェントが応答を開始・終了するタイミングを制御し、音声活動検出のしきい値、無音の長さ、検出された発話周辺のパディングなどを指定できます。 +音声設定は、セッションが音声入力と出力をどのように扱うかを制御します。Whisper などのモデルを使用した入力音声の文字起こし、言語設定、専門用語の精度を高めるためのトランスクリプションプロンプトを設定できます。ターン検出設定では、エージェントが応答を開始・終了すべきタイミングを制御でき、音声活動検出のしきい値、無音時間、検出された発話周辺のパディングなどのオプションがあります。 ## ツールと関数 ### ツールの追加 -通常のエージェントと同様に、 realtime エージェントは会話中に実行される 関数ツール をサポートします。 +通常のエージェントと同様に、realtime エージェントは会話中に実行される 関数ツール をサポートします。 ```python from agents import function_tool @@ -90,7 +90,7 @@ agent = RealtimeAgent( ### ハンドオフの作成 -ハンドオフにより、専門化されたエージェント間で会話を移譲できます。 +ハンドオフにより、会話を専門化されたエージェント間で引き継ぐことができます。 ```python from agents.realtime import realtime_handoff @@ -119,22 +119,22 @@ main_agent = RealtimeAgent( ## イベント処理 -セッションは、セッションオブジェクトを反復処理することでリッスンできるイベントを ストリーミング します。イベントには、音声出力チャンク、文字起こし結果、ツール実行の開始と終了、エージェントのハンドオフ、エラーが含まれます。重要なイベントは次のとおりです。 +セッションはイベントを ストリーミング し、セッションオブジェクトを反復処理してリッスンできます。イベントには、音声出力チャンク、文字起こし結果、ツール実行の開始と終了、エージェントのハンドオフ、エラーが含まれます。主に処理すべきイベントは次のとおりです。 -- ** audio **: エージェントの応答からの raw な音声データ -- ** audio_end **: エージェントの発話が終了 -- ** audio_interrupted **: ユーザーがエージェントを割り込み -- ** tool_start/tool_end **: ツール実行のライフサイクル -- ** handoff **: エージェントのハンドオフが発生 -- ** error **: 処理中にエラーが発生 +- **audio**: エージェントの応答からの raw の音声データ +- **audio_end**: エージェントの発話が完了 +- **audio_interrupted**: ユーザー がエージェントを割り込み +- **tool_start/tool_end**: ツール実行のライフサイクル +- **handoff**: エージェントのハンドオフが発生 +- **error**: 処理中にエラーが発生 イベントの詳細は [`RealtimeSessionEvent`][agents.realtime.events.RealtimeSessionEvent] を参照してください。 ## ガードレール -realtime エージェントでは出力ガードレールのみがサポートされています。これらのガードレールはデバウンスされ、リアルタイム生成中のパフォーマンス問題を避けるために(毎語ではなく)定期的に実行されます。既定のデバウンス長は 100 文字ですが、設定可能です。 +realtime エージェントでサポートされるのは出力 ガードレール のみです。これらの ガードレール はデバウンスされ、リアルタイム生成中のパフォーマンス問題を避けるために(毎語ではなく)定期的に実行されます。デフォルトのデバウンス長は 100 文字ですが、設定可能です。 -ガードレールは `RealtimeAgent` に直接アタッチするか、セッションの `run_config` を介して提供できます。両方のソースのガードレールは併用されて実行されます。 +ガードレールは `RealtimeAgent` に直接アタッチするか、セッションの `run_config` 経由で提供できます。両方のソースの ガードレール は一緒に実行されます。 ```python from agents.guardrail import GuardrailFunctionOutput, OutputGuardrail @@ -152,25 +152,25 @@ agent = RealtimeAgent( ) ``` -ガードレールがトリガーされると、`guardrail_tripped` イベントが生成され、エージェントの現在の応答を中断できます。デバウンス動作は、安全性とリアルタイム性能要件のバランスを取るのに役立ちます。テキストエージェントと異なり、 realtime エージェントはガードレール発火時に例外をスローしません。 +ガードレール がトリガーされると、`guardrail_tripped` イベントが生成され、エージェントの現在の応答を割り込むことがあります。デバウンスの挙動は、安全性とリアルタイムの性能要件のバランスを取るのに役立ちます。テキストエージェントと異なり、realtime エージェントは ガードレール が作動しても 例外 をスローしません。 ## 音声処理 [`session.send_audio(audio_bytes)`][agents.realtime.session.RealtimeSession.send_audio] を使用して音声をセッションに送信するか、[`session.send_message()`][agents.realtime.session.RealtimeSession.send_message] を使用してテキストを送信します。 -音声出力については、`audio` イベントをリッスンし、任意の音声ライブラリで音声データを再生してください。ユーザーがエージェントを割り込んだ際に即座に再生を停止し、キュー済み音声をクリアするため、`audio_interrupted` イベントも必ずリッスンしてください。 +音声出力については、`audio` イベントをリッスンして、任意の音声ライブラリで音声データを再生します。ユーザー がエージェントを割り込んだ際に、再生を即座に停止してキュー済み音声をクリアするため、`audio_interrupted` イベントを必ずリッスンしてください。 -## モデルへの直接アクセス +## 直接的なモデルアクセス -独自のリスナーを追加したり、高度な操作を行うために、基盤となるモデルへアクセスできます。 +基盤となるモデルにアクセスして、カスタムリスナーを追加したり高度な操作を実行したりできます。 ```python # Add a custom listener to the model session.model.add_listener(my_custom_listener) ``` -これにより、接続をより低レベルに制御する必要がある高度なユースケース向けに、[`RealtimeModel`][agents.realtime.model.RealtimeModel] インターフェースへ直接アクセスできます。 +これにより、接続を低レベルで制御する必要がある高度なユースケース向けに、[`RealtimeModel`][agents.realtime.model.RealtimeModel] インターフェースへ直接アクセスできます。 -## コード例 +## code examples -完全に動作するサンプルは、 UI コンポーネントの有無それぞれのデモを含む [examples/realtime ディレクトリ](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) を参照してください。 \ No newline at end of file +完全な動作する code examples は、UI コンポーネントの有無それぞれのデモを含む [examples/realtime ディレクトリ](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) をご覧ください。 \ No newline at end of file diff --git a/docs/ja/realtime/quickstart.md b/docs/ja/realtime/quickstart.md index edb5f09e5..3e9c42313 100644 --- a/docs/ja/realtime/quickstart.md +++ b/docs/ja/realtime/quickstart.md @@ -4,16 +4,16 @@ search: --- # クイックスタート -Realtime エージェントは、OpenAI の Realtime API を使用して AI エージェントとの音声会話を可能にします。このガイドでは、最初の Realtime 音声エージェントの作成手順を説明します。 +リアルタイム エージェントは、OpenAI の Realtime API を使って AI 音声会話を可能にします。本ガイドでは、最初のリアルタイム音声エージェントの作成手順を説明します。 !!! warning "ベータ機能" -Realtime エージェントはベータ版です。実装の改善に伴い、互換性のない変更が発生する可能性があります。 +Realtime エージェントはベータ版です。実装の改善に伴い、互換性のない変更が発生する場合があります。 ## 前提条件 - Python 3.9 以上 - OpenAI API キー -- OpenAI Agents SDK に関する基本的な知識 +- OpenAI Agents SDK の基本的な知識 ## インストール @@ -23,7 +23,7 @@ Realtime エージェントはベータ版です。実装の改善に伴い、 pip install openai-agents ``` -## 最初の Realtime エージェントの作成 +## 最初の リアルタイム エージェントの作成 ### 1. 必要なコンポーネントのインポート @@ -32,7 +32,7 @@ import asyncio from agents.realtime import RealtimeAgent, RealtimeRunner ``` -### 2. Realtime エージェントの作成 +### 2. リアルタイム エージェントの作成 ```python agent = RealtimeAgent( @@ -41,7 +41,7 @@ agent = RealtimeAgent( ) ``` -### 3. Runner のセットアップ +### 3. ランナーの設定 ```python runner = RealtimeRunner( @@ -79,9 +79,9 @@ async def main(): asyncio.run(main()) ``` -## 完成例 +## 完全なコード例 -以下は完全に動作する例です: +以下は動作する完全な例です: ```python import asyncio @@ -139,30 +139,30 @@ if __name__ == "__main__": ### モデル設定 -- `model_name`: 利用可能な Realtime モデルから選択します(例: `gpt-4o-realtime-preview`) -- `voice`: 音声の選択(`alloy`、`echo`、`fable`、`onyx`、`nova`、`shimmer`) -- `modalities`: テキストおよび/または音声を有効化(`["text", "audio"]`) +- `model_name`: 利用可能なリアルタイムモデルから選択 (例: `gpt-4o-realtime-preview`) +- `voice`: 音声の選択 (`alloy`, `echo`, `fable`, `onyx`, `nova`, `shimmer`) +- `modalities`: テキストや音声の有効化 (`["text", "audio"]`) ### 音声設定 -- `input_audio_format`: 入力音声の形式(`pcm16`、`g711_ulaw`、`g711_alaw`) +- `input_audio_format`: 入力音声の形式 (`pcm16`, `g711_ulaw`, `g711_alaw`) - `output_audio_format`: 出力音声の形式 -- `input_audio_transcription`: 文字起こしの設定 +- `input_audio_transcription`: 音声書き起こしの設定 ### ターン検出 -- `type`: 検出方式(`server_vad`、`semantic_vad`) -- `threshold`: 音声活動のしきい値(0.0–1.0) +- `type`: 検出方法 (`server_vad`, `semantic_vad`) +- `threshold`: 音声活動のしきい値 (0.0–1.0) - `silence_duration_ms`: ターン終了を検出する無音時間 - `prefix_padding_ms`: 発話前の音声パディング ## 次のステップ -- [Realtime エージェントの詳細](guide.md) -- [examples/realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) フォルダにある動作するサンプルコードを確認 +- [リアルタイム エージェントについてさらに学ぶ](guide.md) +- [examples/realtime](https://github.com/openai/openai-agents-python/tree/main/examples/realtime) フォルダーの動作するサンプルを確認 - エージェントにツールを追加 - エージェント間のハンドオフを実装 -- 安全性のためにガードレールを設定 +- 安全のためのガードレールを設定 ## 認証 diff --git a/docs/ja/release.md b/docs/ja/release.md index 795e19238..72e0b8922 100644 --- a/docs/ja/release.md +++ b/docs/ja/release.md @@ -4,29 +4,29 @@ search: --- # リリースプロセス/変更履歴 -このプロジェクトは、`0.Y.Z` という形式のセマンティック バージョニングをやや変更したものに従います。先頭の `0` は、SDK がまだ急速に進化していることを示します。各コンポーネントの増分は以下のとおりです。 +このプロジェクトは、`0.Y.Z` という形式を用いた、やや改変した semantic versioning に従います。先頭の `0` は、 SDK が依然として急速に進化していることを示します。各コンポーネントは次のように増分します。 -## マイナー(`Y`)バージョン +## マイナー (`Y`) バージョン -ベータではないパブリック インターフェースに対する**破壊的変更**がある場合に、マイナー バージョン `Y` を上げます。たとえば、`0.0.x` から `0.1.x` への移行には破壊的変更が含まれる可能性があります。 +ベータではない公開インターフェースに対する、 **互換性のない変更** がある場合に、マイナーバージョン `Y` を上げます。たとえば、`0.0.x` から `0.1.x` への移行には互換性のない変更が含まれる可能性があります。 -破壊的変更を避けたい場合は、プロジェクトで `0.0.x` バージョンに固定することをおすすめします。 +互換性のない変更を避けたい場合は、プロジェクトで `0.0.x` バージョンに固定することをおすすめします。 -## パッチ(`Z`)バージョン +## パッチ (`Z`) バージョン -破壊的でない変更の場合に `Z` を上げます。 +互換性を壊さない変更の場合、`Z` を増分します。 - バグ修正 - 新機能 -- プライベート インターフェースの変更 +- 非公開インターフェースの変更 - ベータ機能の更新 -## 破壊的変更の変更履歴 +## 互換性のない変更の変更履歴 ### 0.2.0 -このバージョンでは、これまで引数として `Agent` を受け取っていたいくつかの場所が、代わりに `AgentBase` を受け取るようになりました。たとえば、MCP サーバーでの `list_tools()` 呼び出しです。これは純粋に型に関する変更のみであり、引き続き `Agent` オブジェクトを受け取ります。更新するには、`Agent` を `AgentBase` に置き換えて型エラーを修正してください。 +このバージョンでは、これまで `Agent` を引数として受け取っていた箇所の一部が、代わりに `AgentBase` を引数として受け取るようになりました。たとえば、 MCP サーバーの `list_tools()` 呼び出しです。これは純粋に型に関する変更のみであり、引き続き `Agent` オブジェクトを受け取ります。更新するには、`Agent` を `AgentBase` に置き換えて型エラーを解消してください。 ### 0.1.0 -このバージョンでは、[`MCPServer.list_tools()`][agents.mcp.server.MCPServer] に新しいパラメーターが 2 つ追加されています: `run_context` と `agent`。`MCPServer` をサブクラス化するすべてのクラスに、これらのパラメーターを追加する必要があります。 \ No newline at end of file +このバージョンでは、[`MCPServer.list_tools()`][agents.mcp.server.MCPServer] に 2 つの新しい パラメーター `run_context` と `agent` が追加されました。`MCPServer` を継承するクラスには、これらの パラメーター を追加する必要があります。 \ No newline at end of file diff --git a/docs/ja/repl.md b/docs/ja/repl.md index 29a294240..1ae0ccff2 100644 --- a/docs/ja/repl.md +++ b/docs/ja/repl.md @@ -4,7 +4,7 @@ search: --- # REPL ユーティリティ -この SDK には、ターミナル上でエージェントの動作をすばやく対話的にテストできる `run_demo_loop` が用意されています。 +この SDK は、ターミナル上でエージェントの動作を素早く対話的にテストできる `run_demo_loop` を提供します。 ```python @@ -19,6 +19,6 @@ if __name__ == "__main__": asyncio.run(main()) ``` -`run_demo_loop` はループでユーザー入力を促し、ターン間で会話履歴を保持します。デフォルトでは、生成されると同時にモデル出力をストリーミングします。上記の例を実行すると、`run_demo_loop` は対話的なチャットセッションを開始します。入力を継続的に求め、ターン間で会話全体の履歴を記憶するため(エージェントが何について話したかを把握できます)、生成と同時にエージェントの応答をリアルタイムで自動的にストリーミングします。 +`run_demo_loop` はループでユーザー入力を促し、ターン間で会話履歴を保持します。既定では、生成中のモデル出力をストリーミングします。上記の例を実行すると、run_demo_loop が対話的なチャットセッションを開始します。あなたの入力を継続的に求め、ターン間で会話全体の履歴を記憶し(そのためエージェントは何が話されたかを把握します)、生成と同時にエージェントの応答をリアルタイムで自動ストリーミングします。 -このチャットセッションを終了するには、`quit` または `exit` と入力して(Enter を押す)、もしくは `Ctrl-D` キーボードショートカットを使用してください。 \ No newline at end of file +このチャットセッションを終了するには、`quit` または `exit` と入力して Enter キーを押すか、`Ctrl-D` のキーボードショートカットを使用してください。 \ No newline at end of file diff --git a/docs/ja/results.md b/docs/ja/results.md index 2c6e1f716..e128835db 100644 --- a/docs/ja/results.md +++ b/docs/ja/results.md @@ -4,53 +4,53 @@ search: --- # 実行結果 -`Runner.run` メソッドを呼び出すと、次のいずれかが得られます: +`Runner.run` メソッドを呼び出すと、次のいずれかが返ります。 -- `run` または `run_sync` を呼び出した場合は [`RunResult`][agents.result.RunResult] -- `run_streamed` を呼び出した場合は [`RunResultStreaming`][agents.result.RunResultStreaming] +- [`RunResult`][agents.result.RunResult](`run` または `run_sync` を呼び出した場合) +- [`RunResultStreaming`][agents.result.RunResultStreaming](`run_streamed` を呼び出した場合) -これらはいずれも [`RunResultBase`][agents.result.RunResultBase] を継承しており、主な有用情報はそこに含まれます。 +これらはいずれも [`RunResultBase`][agents.result.RunResultBase] を継承しており、そこに最も有用な情報が含まれます。 ## 最終出力 -[`final_output`][agents.result.RunResultBase.final_output] プロパティには、最後に実行された エージェント の最終出力が含まれます。これは次のいずれかです: +[`final_output`][agents.result.RunResultBase.final_output] プロパティには、最後に実行されたエージェントの最終出力が含まれます。これは次のいずれかです。 -- 最後の エージェント に `output_type` が定義されていない場合は `str` -- エージェント に出力タイプが定義されている場合は `last_agent.output_type` 型のオブジェクト +- 最後のエージェントに `output_type` が定義されていない場合は `str` +- エージェントに出力型が定義されている場合は `last_agent.output_type` 型のオブジェクト !!! note - `final_output` の型は `Any` です。ハンドオフ があるため、静的な型付けはできません。ハンドオフ が発生する可能性があるということは、どの エージェント でも最後になり得るため、可能な出力タイプの集合を静的には特定できないからです。 + `final_output` の型は `Any` です。これは handoffs のため、静的型付けができません。handoffs が発生する場合、どのエージェントが最後になるかは不定のため、可能な出力型の集合を静的に特定できません。 ## 次ターンの入力 -[`result.to_input_list()`][agents.result.RunResultBase.to_input_list] を使うと、実行結果を、あなたが提供した元の入力と エージェント の実行中に生成されたアイテムを連結した入力リストに変換できます。これにより、ある エージェント 実行の出力を別の実行に渡したり、ループで実行して毎回新しい ユーザー 入力を追加したりするのが容易になります。 +[`result.to_input_list()`][agents.result.RunResultBase.to_input_list] を使うと、エージェントの実行中に生成されたアイテムを、元の入力に連結した入力リストに変換できます。これにより、あるエージェントの実行結果を別の実行に渡したり、ループで実行して毎回新しい ユーザー 入力を追記したりするのが簡単になります。 -## 最後の エージェント +## 最後のエージェント -[`last_agent`][agents.result.RunResultBase.last_agent] プロパティには、最後に実行された エージェント が含まれます。アプリケーションに応じて、これは次回 ユーザー が何か入力する際に役立つことがよくあります。たとえば、一次対応のトリアージ エージェント が言語別の エージェント にハンドオフ する場合、最後の エージェント を保存しておき、次回 ユーザー がメッセージを送るときに再利用できます。 +[`last_agent`][agents.result.RunResultBase.last_agent] プロパティには、最後に実行されたエージェントが含まれます。アプリケーションによっては、次回 ユーザー が何かを入力するときに役立つことがよくあります。たとえば、一次トリアージのエージェントが言語別のエージェントにハンドオフする場合、最後のエージェントを保存しておき、次回 ユーザー がそのエージェントにメッセージを送る際に再利用できます。 ## 新規アイテム -[`new_items`][agents.result.RunResultBase.new_items] プロパティには、実行中に生成された新しいアイテムが含まれます。アイテムは [`RunItem`][agents.items.RunItem] です。run アイテムは、LLM が生成した raw アイテムをラップします。 +[`new_items`][agents.result.RunResultBase.new_items] プロパティには、実行中に生成された新しいアイテムが含まれます。アイテムは [`RunItem`][agents.items.RunItem] です。Run item は、 LLM が生成した raw アイテムをラップします。 -- [`MessageOutputItem`][agents.items.MessageOutputItem] は LLM からのメッセージを示します。raw アイテムは生成されたメッセージです。 -- [`HandoffCallItem`][agents.items.HandoffCallItem] は LLM がハンドオフ ツールを呼び出したことを示します。raw アイテムは LLM からのツール呼び出しアイテムです。 -- [`HandoffOutputItem`][agents.items.HandoffOutputItem] はハンドオフ が発生したことを示します。raw アイテムはハンドオフ ツール呼び出しに対するツールのレスポンスです。アイテムからソース/ターゲットの エージェント にもアクセスできます。 -- [`ToolCallItem`][agents.items.ToolCallItem] は LLM がツールを呼び出したことを示します。 -- [`ToolCallOutputItem`][agents.items.ToolCallOutputItem] はツールが呼び出されたことを示します。raw アイテムはツールのレスポンスです。アイテムからツールの出力にもアクセスできます。 -- [`ReasoningItem`][agents.items.ReasoningItem] は LLM からの推論アイテムを示します。raw アイテムは生成された推論です。 +- [`MessageOutputItem`][agents.items.MessageOutputItem]: LLM からのメッセージを示します。raw アイテムは生成されたメッセージです。 +- [`HandoffCallItem`][agents.items.HandoffCallItem]: LLM がハンドオフ ツールを呼び出したことを示します。raw アイテムは LLM からのツール呼び出しアイテムです。 +- [`HandoffOutputItem`][agents.items.HandoffOutputItem]: ハンドオフが発生したことを示します。raw アイテムはハンドオフ ツール呼び出しへのツール応答です。アイテムからソース/ターゲットのエージェントにもアクセスできます。 +- [`ToolCallItem`][agents.items.ToolCallItem]: LLM がツールを呼び出したことを示します。 +- [`ToolCallOutputItem`][agents.items.ToolCallOutputItem]: ツールが呼び出されたことを示します。raw アイテムはツールの応答です。アイテムからツール出力にもアクセスできます。 +- [`ReasoningItem`][agents.items.ReasoningItem]: LLM からの推論アイテムを示します。raw アイテムは生成された推論です。 ## その他の情報 ### ガードレールの実行結果 -[`input_guardrail_results`][agents.result.RunResultBase.input_guardrail_results] と [`output_guardrail_results`][agents.result.RunResultBase.output_guardrail_results] プロパティには、存在する場合は ガードレール の実行結果が含まれます。ガードレール の結果には、ログや保存をしたい有用な情報が含まれることがあるため、これらを利用できるようにしています。 +[`input_guardrail_results`][agents.result.RunResultBase.input_guardrail_results] と [`output_guardrail_results`][agents.result.RunResultBase.output_guardrail_results] プロパティには、該当する場合に ガードレール の実行結果が含まれます。ガードレールの結果には、記録や保存をしたい有用な情報が含まれることがあるため、利用できるようにしています。 -### raw レスポンス +### raw 応答 -[`raw_responses`][agents.result.RunResultBase.raw_responses] プロパティには、LLM によって生成された [`ModelResponse`][agents.items.ModelResponse] が含まれます。 +[`raw_responses`][agents.result.RunResultBase.raw_responses] プロパティには、 LLM によって生成された [`ModelResponse`][agents.items.ModelResponse] が含まれます。 ### 元の入力 -[`input`][agents.result.RunResultBase.input] プロパティには、`run` メソッドに提供した元の入力が含まれます。ほとんどの場合これは不要ですが、必要に応じて参照できるように用意されています。 \ No newline at end of file +[`input`][agents.result.RunResultBase.input] プロパティには、`run` メソッドに渡した元の入力が含まれます。多くの場合これは不要ですが、必要に応じて参照できるようにしています。 \ No newline at end of file diff --git a/docs/ja/running_agents.md b/docs/ja/running_agents.md index 454bcd1b5..baacb8776 100644 --- a/docs/ja/running_agents.md +++ b/docs/ja/running_agents.md @@ -4,11 +4,11 @@ search: --- # エージェントの実行 -[`Runner`][agents.run.Runner] クラスでエージェントを実行できます。方法は 3 つあります。 +[`Runner`][agents.run.Runner] クラスでエージェントを実行できます。方法は 3 つあります: 1. [`Runner.run()`][agents.run.Runner.run]: 非同期で実行し、[`RunResult`][agents.result.RunResult] を返します。 2. [`Runner.run_sync()`][agents.run.Runner.run_sync]: 同期メソッドで、内部的には `.run()` を実行します。 -3. [`Runner.run_streamed()`][agents.run.Runner.run_streamed]: 非同期で実行し、[`RunResultStreaming`][agents.result.RunResultStreaming] を返します。LLM を ストリーミング モードで呼び出し、受信したイベントを逐次配信します。 +3. [`Runner.run_streamed()`][agents.run.Runner.run_streamed]: 非同期で実行し、[`RunResultStreaming`][agents.result.RunResultStreaming] を返します。LLM をストリーミングモードで呼び出し、受信次第イベントをストリーミングします。 ```python from agents import Agent, Runner @@ -23,55 +23,55 @@ async def main(): # Infinite loop's dance ``` -詳細は [結果ガイド](results.md) を参照してください。 +詳しくは [実行結果ガイド](results.md) を参照してください。 ## エージェントループ -`Runner` の run メソッドを使う際、開始エージェントと入力を渡します。入力は文字列( ユーザー メッセージとして扱われます)または入力アイテムのリスト( OpenAI Responses API のアイテム)です。 +`Runner` の run メソッドを使うとき、開始エージェントと入力を渡します。入力は文字列(ユーザーメッセージとして扱われます)か、OpenAI Responses API のアイテムのリストのいずれかです。 -Runner は次のループを実行します。 +Runner は次のループを実行します: -1. 現在のエージェントと入力で LLM を呼び出します。 +1. 現在のエージェントと現在の入力で LLM を呼び出します。 2. LLM が出力を生成します。 - 1. LLM が `final_output` を返した場合、ループを終了し、結果を返します。 - 2. LLM が ハンドオフ を行った場合、現在のエージェントと入力を更新して、ループを再実行します。 - 3. LLM が ツール呼び出し を生成した場合、それらを実行し、結果を追加して、ループを再実行します。 -3. 渡された `max_turns` を超えた場合は、[`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded] 例外を送出します。 + 1. LLM が `final_output` を返した場合、ループを終了し、実行結果を返します。 + 2. LLM がハンドオフした場合、現在のエージェントと入力を更新して、ループを再実行します。 + 3. LLM がツール呼び出しを生成した場合、それらを実行し、結果を追加して、ループを再実行します。 +3. 渡された `max_turns` を超えた場合、[`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded] 例外を送出します。 !!! note - LLM の出力が「final output」と見なされるルールは、目的の型のテキスト出力を生成し、かつツール呼び出しが存在しないことです。 + LLM の出力が「最終出力」とみなされる条件は、所望の型のテキスト出力を生成し、ツール呼び出しが 1 つもないことです。 ## ストリーミング -ストリーミング を使うと、LLM の実行中に ストリーミング イベントも受け取れます。ストリームが完了すると、[`RunResultStreaming`][agents.result.RunResultStreaming] に、生成されたすべての新しい出力を含む、実行に関する完全な情報が含まれます。ストリーミング イベントは `.stream_events()` を呼び出して取得できます。詳しくは [ストリーミング ガイド](streaming.md) を参照してください。 +ストリーミングを使うと、LLM の実行中にストリーミングイベントも受け取れます。ストリーム完了後、[`RunResultStreaming`][agents.result.RunResultStreaming] には、生成された新しい出力を含む実行全体の情報が含まれます。ストリーミングイベントは `.stream_events()` を呼び出して取得できます。詳しくは [ストリーミングガイド](streaming.md) を参照してください。 ## 実行設定 -`run_config` パラメーターでは、エージェント実行のグローバル設定を構成できます。 +`run_config` パラメーターで、エージェント実行のグローバル設定を構成できます: -- [`model`][agents.run.RunConfig.model]: 各 Agent の `model` 設定に関係なく、使用するグローバルな LLM モデルを設定します。 -- [`model_provider`][agents.run.RunConfig.model_provider]: モデル名を解決するためのモデルプロバイダーで、デフォルトは OpenAI です。 +- [`model`][agents.run.RunConfig.model]: 各 Agent の `model` に関わらず、使用するグローバルな LLM モデルを設定できます。 +- [`model_provider`][agents.run.RunConfig.model_provider]: モデル名のルックアップに使うプロバイダーで、デフォルトは OpenAI です。 - [`model_settings`][agents.run.RunConfig.model_settings]: エージェント固有の設定を上書きします。たとえば、グローバルな `temperature` や `top_p` を設定できます。 -- [`input_guardrails`][agents.run.RunConfig.input_guardrails], [`output_guardrails`][agents.run.RunConfig.output_guardrails]: すべての実行に含める入力/出力 ガードレール のリストです。 -- [`handoff_input_filter`][agents.run.RunConfig.handoff_input_filter]: ハンドオフ に対して、既に入力フィルターが無い場合に適用されるグローバルな入力フィルターです。入力フィルターにより、新しいエージェントへ送る入力を編集できます。詳細は [`Handoff.input_filter`][agents.handoffs.Handoff.input_filter] のドキュメントを参照してください。 -- [`tracing_disabled`][agents.run.RunConfig.tracing_disabled]: 実行全体に対して [トレーシング](tracing.md) を無効化します。 -- [`trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data]: LLM やツール呼び出しの入出力など、機微なデータをトレースに含めるかどうかを設定します。 -- [`workflow_name`][agents.run.RunConfig.workflow_name], [`trace_id`][agents.run.RunConfig.trace_id], [`group_id`][agents.run.RunConfig.group_id]: 実行のトレーシング用ワークフロー名、トレース ID、トレース グループ ID を設定します。少なくとも `workflow_name` の設定を推奨します。グループ ID は任意で、複数の実行にわたるトレースを関連付けられます。 -- [`trace_metadata`][agents.run.RunConfig.trace_metadata]: すべてのトレースに含めるメタデータです。 +- [`input_guardrails`][agents.run.RunConfig.input_guardrails], [`output_guardrails`][agents.run.RunConfig.output_guardrails]: すべての実行に含める入力/出力ガードレールのリスト。 +- [`handoff_input_filter`][agents.run.RunConfig.handoff_input_filter]: ハンドオフに既定のものがない場合に適用するグローバルな入力フィルター。入力フィルターを使うと、新しいエージェントに送る入力を編集できます。詳細は [`Handoff.input_filter`][agents.handoffs.Handoff.input_filter] のドキュメントを参照してください。 +- [`tracing_disabled`][agents.run.RunConfig.tracing_disabled]: 実行全体の [トレーシング](tracing.md) を無効化できます。 +- [`trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data]: トレースに、LLM やツール呼び出しの入出力などの機微なデータを含めるかどうかを設定します。 +- [`workflow_name`][agents.run.RunConfig.workflow_name], [`trace_id`][agents.run.RunConfig.trace_id], [`group_id`][agents.run.RunConfig.group_id]: 実行のトレーシングのワークフロー名、トレース ID、トレースグループ ID を設定します。少なくとも `workflow_name` の設定を推奨します。グループ ID は任意で、複数の実行にまたがるトレースを関連付けるのに使えます。 +- [`trace_metadata`][agents.run.RunConfig.trace_metadata]: すべてのトレースに含めるメタデータ。 ## 会話/チャットスレッド -いずれの run メソッドを呼び出しても、1 つ以上のエージェント(ひいては 1 回以上の LLM 呼び出し)が走る可能性がありますが、チャット会話の 1 つの論理的なターンを表します。例: +いずれの run メソッドを呼び出しても、1 つ以上のエージェント(したがって 1 回以上の LLM 呼び出し)が実行される可能性がありますが、チャット会話における 1 回の論理的なターンを表します。例: -1. ユーザー のターン: ユーザー がテキストを入力 -2. Runner の実行: 最初のエージェントが LLM を呼び出し、ツールを実行し、2 番目のエージェントへ ハンドオフ、2 番目のエージェントがさらにツールを実行し、その後に出力を生成。 +1. ユーザーのターン: ユーザーがテキストを入力 +2. Runner の実行: 最初のエージェントが LLM を呼び出し、ツールを実行し、2 番目のエージェントへハンドオフし、2 番目のエージェントがさらにツールを実行してから出力を生成。 -エージェント実行の終了時に、 ユーザー に何を表示するかを選べます。たとえば、エージェントが生成したすべての新しいアイテムを見せるか、最終出力のみを見せるかです。いずれにしても、その後に ユーザー が追質問をするかもしれず、その場合は再度 run メソッドを呼び出します。 +エージェントの実行が終わったら、ユーザーに何を見せるかを選べます。たとえば、エージェントが生成したすべての新しいアイテムを表示する、または最終出力のみを表示する、といった選択です。いずれの場合でも、ユーザーが追質問をするかもしれません。その場合は再度 run メソッドを呼び出せます。 -### 手動での会話管理 +### 手動の会話管理 -次のターンの入力を得るために、[`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] メソッドを使って会話履歴を手動で管理できます。 +次のターンの入力を取得するために、[`RunResultBase.to_input_list()`][agents.result.RunResultBase.to_input_list] メソッドを使って会話履歴を手動で管理できます: ```python async def main(): @@ -93,7 +93,7 @@ async def main(): ### Sessions による自動会話管理 -より簡単な方法として、[Sessions](sessions.md) を使えば、`.to_input_list()` を手動で呼び出さずに会話履歴を自動的に処理できます。 +より簡単な方法として、[セッション](sessions.md) を使えば `.to_input_list()` を手動で呼び出さずに会話履歴を自動処理できます: ```python from agents import Agent, Runner, SQLiteSession @@ -116,26 +116,26 @@ async def main(): # California ``` -Sessions は自動的に以下を行います。 +セッションは自動的に次を行います: -- 各実行の前に会話履歴を取得 -- 各実行の後に新しいメッセージを保存 +- 各実行前に会話履歴を取得 +- 各実行後に新しいメッセージを保存 - 異なるセッション ID ごとに個別の会話を維持 -詳細は [Sessions のドキュメント](sessions.md) を参照してください。 +詳細は [セッションのドキュメント](sessions.md) を参照してください。 -## 長時間実行のエージェントと human-in-the-loop(人間参加) +## 長時間実行のエージェントとヒューマン・イン・ザ・ループ -Agents SDK の [Temporal](https://temporal.io/) 連携を使うと、human-in-the-loop のタスクを含む、堅牢で長時間実行のワークフローを実行できます。長時間タスクを完了するために Temporal と Agents SDK が連携して動作するデモは、[この動画](https://www.youtube.com/watch?v=fFBZqzT4DD8) をご覧ください。ドキュメントは [こちら](https://github.com/temporalio/sdk-python/tree/main/temporalio/contrib/openai_agents) です。 +Agents SDK の [Temporal](https://temporal.io/) 連携を使うと、ヒューマン・イン・ザ・ループを含む永続的で長時間実行のワークフローを実行できます。長時間タスクを完了させる Temporal と Agents SDK の連携デモは [この動画](https://www.youtube.com/watch?v=fFBZqzT4DD8) を、ドキュメントは [こちら](https://github.com/temporalio/sdk-python/tree/main/temporalio/contrib/openai_agents) をご覧ください。 ## 例外 -SDK は特定の場合に例外を送出します。完全な一覧は [`agents.exceptions`][] にあります。概要は以下のとおりです。 +この SDK は特定の状況で例外を送出します。全リストは [`agents.exceptions`][] にあります。概要: -- [`AgentsException`][agents.exceptions.AgentsException]: SDK 内で送出されるすべての例外の基底クラスです。ほかの特定の例外はすべてこの一般的な型から派生します。 -- [`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded]: エージェントの実行が `Runner.run`、`Runner.run_sync`、`Runner.run_streamed` メソッドに渡した `max_turns` の上限を超えた場合に送出されます。これは、指定された対話ターン数内にエージェントがタスクを完了できなかったことを示します。 -- [`ModelBehaviorError`][agents.exceptions.ModelBehaviorError]: 基盤となるモデル( LLM )が予期しない、または無効な出力を生成した場合に発生します。例: - - JSON の不正形式: 特定の `output_type` が定義されている場合に、ツール呼び出しや直接の出力で不正な JSON 構造を返したとき。 - - 予期しないツール関連の失敗: モデルが期待どおりにツールを使用できなかったとき -- [`UserError`][agents.exceptions.UserError]: SDK を使用するあなた(この SDK を使ってコードを書く人)が、SDK の使用中に誤りを犯した場合に送出されます。これは通常、不正なコード実装、無効な設定、または SDK の API の誤用が原因です。 -- [`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered], [`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered]: 入力 ガードレール または出力 ガードレール の条件が満たされたときに、それぞれ送出されます。入力 ガードレール は処理前に受信メッセージを検査し、出力 ガードレール はエージェントの最終応答を配信前に検査します。 \ No newline at end of file +- [`AgentsException`][agents.exceptions.AgentsException]: SDK 内で送出されるすべての例外の基底クラスです。その他の特定の例外はすべてここから派生します。 +- [`MaxTurnsExceeded`][agents.exceptions.MaxTurnsExceeded]: エージェントの実行が `Runner.run`、`Runner.run_sync`、`Runner.run_streamed` に渡された `max_turns` の上限を超えたときに送出されます。エージェントが指定された対話ターン数内にタスクを完了できなかったことを示します。 +- [`ModelBehaviorError`][agents.exceptions.ModelBehaviorError]: 基盤のモデル(LLM)が予期しない、または無効な出力を生成したときに発生します。例: + - 不正な JSON: モデルがツール呼び出し用、または特定の `output_type` が定義されている場合の直接出力として、不正な JSON 構造を返したとき。 + - 予期しないツール関連の失敗: モデルが期待どおりの方法でツールを使用できなかったとき +- [`UserError`][agents.exceptions.UserError]: SDK を使用する(この SDK を使ってコードを書く)あなたが、SDK の使用中に誤りを犯したときに送出されます。誤ったコード実装、無効な設定、SDK の API の誤用などが典型的な原因です。 +- [`InputGuardrailTripwireTriggered`][agents.exceptions.InputGuardrailTripwireTriggered], [`OutputGuardrailTripwireTriggered`][agents.exceptions.OutputGuardrailTripwireTriggered]: それぞれ入力ガードレールまたは出力ガードレールの条件が満たされたときに送出されます。入力ガードレールは処理前に受信メッセージを確認し、出力ガードレールは配信前にエージェントの最終応答を確認します。 \ No newline at end of file diff --git a/docs/ja/sessions.md b/docs/ja/sessions.md index 1f7a7c6dd..24f5850cb 100644 --- a/docs/ja/sessions.md +++ b/docs/ja/sessions.md @@ -4,9 +4,9 @@ search: --- # セッション -Agents SDK は、複数のエージェント実行にまたがって会話履歴を自動的に維持する組み込みのセッションメモリを提供し、ターン間で手動で `.to_input_list()` を扱う必要をなくします。 +Agents SDK は、複数のエージェント実行にわたって会話履歴を自動的に維持するための組み込みセッションメモリを提供し、ターン間で手動で `.to_input_list()` を扱う必要をなくします。 -Sessions は特定のセッションの会話履歴を保存し、明示的な手動メモリ管理を必要とせずにエージェントがコンテキストを維持できるようにします。これは、エージェントに過去のやりとりを記憶させたいチャットアプリケーションやマルチターンの会話を構築する際に特に有用です。 +セッションは特定のセッションの会話履歴を保存し、明示的な手動メモリ管理なしにエージェントがコンテキストを維持できるようにします。これは、エージェントに過去のやり取りを記憶させたいチャットアプリやマルチターンの会話を構築する際に特に有用です。 ## クイックスタート @@ -51,17 +51,17 @@ print(result.final_output) # "Approximately 39 million" セッションメモリが有効な場合: -1. **各実行の前**: ランナーはセッションの会話履歴を自動的に取得し、入力アイテムの前に付加します。 -2. **各実行の後**: 実行中に生成された新しいアイテム(ユーザー入力、アシスタントの応答、ツール呼び出しなど)はすべて自動的にセッションに保存されます。 -3. **コンテキストの保持**: 同じセッションでの後続の実行には完全な会話履歴が含まれ、エージェントがコンテキストを維持できます。 +1. **各実行前**: ランナーはセッションの会話履歴を自動的に取得し、入力アイテムの先頭に付与します。 +2. **各実行後**: 実行中に生成されたすべての新規アイテム(ユーザー入力、アシスタントの応答、ツール呼び出しなど)が自動的にセッションに保存されます。 +3. **コンテキストの保持**: 同じセッションでの後続の実行には全会話履歴が含まれ、エージェントはコンテキストを維持できます。 -これにより、`.to_input_list()` を手動で呼び出して実行間の会話状態を管理する必要がなくなります。 +これにより、実行間で `.to_input_list()` を手動で呼び出したり会話状態を管理したりする必要がなくなります。 ## メモリ操作 ### 基本操作 -Sessions は会話履歴を管理するためのいくつかの操作をサポートします: +セッションは会話履歴を管理するためにいくつかの操作をサポートします: ```python from agents import SQLiteSession @@ -86,9 +86,9 @@ print(last_item) # {"role": "assistant", "content": "Hi there!"} await session.clear_session() ``` -### 修正のための pop_item の使用 +### 修正のための `pop_item` の使用 -`pop_item` メソッドは、会話の最後のアイテムを取り消したり変更したりしたい場合に特に便利です: +`pop_item` メソッドは、会話の最後のアイテムを取り消したり変更したりしたいときに特に有用です: ```python from agents import Agent, Runner, SQLiteSession @@ -168,13 +168,13 @@ result2 = await Runner.run( ) ``` -### SQLAlchemy ベースのセッション +### SQLAlchemy 対応セッション -さらに高度なユースケースでは、 SQLAlchemy ベースのセッションバックエンドを使用できます。これにより、 SQLAlchemy がサポートする任意のデータベース( PostgreSQL 、 MySQL 、 SQLite など)をセッションストレージに使用できます。 +さらに高度なユースケースでは、SQLAlchemy 対応のセッションバックエンドを使用できます。これにより、SQLAlchemy がサポートする任意のデータベース(PostgreSQL、MySQL、SQLite など)をセッションストレージに利用できます。 -**例 1: `from_url` とインメモリ SQLite の使用** +**例 1: `from_url` を使ったインメモリ SQLite** -これは最も簡単な入門方法で、開発とテストに最適です。 +これは最も簡単な入門方法で、開発やテストに最適です。 ```python import asyncio @@ -195,9 +195,9 @@ if __name__ == "__main__": asyncio.run(main()) ``` -**例 2: 既存の SQLAlchemy エンジンの使用** +**例 2: 既存の SQLAlchemy エンジンを使用** -本番アプリケーションでは、既に SQLAlchemy の `AsyncEngine` インスタンスがある可能性が高いです。これをセッションにそのまま渡せます。 +本番アプリケーションでは、すでに SQLAlchemy の `AsyncEngine` インスタンスを持っている可能性が高いです。これをそのままセッションに渡せます。 ```python import asyncio @@ -275,18 +275,18 @@ result = await Runner.run( ### セッション ID の命名 -会話の整理に役立つ意味のあるセッション ID を使用します: +会話を整理しやすい意味のあるセッション ID を使いましょう: -- ユーザーベース: `"user_12345"` -- スレッドベース: `"thread_abc123"` -- コンテキストベース: `"support_ticket_456"` +- ユーザー基準: `"user_12345"` +- スレッド基準: `"thread_abc123"` +- コンテキスト基準: `"support_ticket_456"` -### メモリ永続化 +### メモリの永続化 -- 一時的な会話にはインメモリ SQLite(`SQLiteSession("session_id")`)を使用します -- 永続的な会話にはファイルベース SQLite(`SQLiteSession("session_id", "path/to/db.sqlite")`)を使用します -- 既存のデータベースを SQLAlchemy がサポートする本番システムには SQLAlchemy ベースのセッション(`SQLAlchemySession("session_id", engine=engine, create_tables=True)`)を使用します -- さらに高度なユースケースでは、他の本番システム( Redis 、 Django など)向けにカスタムセッションバックエンドの実装を検討します +- 一時的な会話にはインメモリ SQLite(`SQLiteSession("session_id")`)を使用 +- 永続的な会話にはファイルベース SQLite(`SQLiteSession("session_id", "path/to/db.sqlite")`)を使用 +- 既存のデータベースを持つ本番システムには SQLAlchemy 対応セッション(`SQLAlchemySession("session_id", engine=engine, create_tables=True)`)を使用 +- さらに高度なユースケースに向けて、他の本番システム(Redis、Django など)用のカスタムセッションバックエンドの実装を検討 ### セッション管理 @@ -314,7 +314,7 @@ result2 = await Runner.run( ## 完全な例 -セッションメモリがどのように動作するかを示す完全な例です: +セッションメモリの動作を示す完全な例です: ```python import asyncio @@ -378,8 +378,8 @@ if __name__ == "__main__": ## API リファレンス -詳細な API ドキュメントは次を参照してください: +詳細な API ドキュメントは以下をご覧ください: - [`Session`][agents.memory.Session] - プロトコルインターフェース - [`SQLiteSession`][agents.memory.SQLiteSession] - SQLite 実装 -- [`SQLAlchemySession`][agents.extensions.memory.sqlalchemy_session.SQLAlchemySession] - SQLAlchemy ベースの実装 \ No newline at end of file +- [`SQLAlchemySession`][agents.extensions.memory.sqlalchemy_session.SQLAlchemySession] - SQLAlchemy 対応実装 \ No newline at end of file diff --git a/docs/ja/streaming.md b/docs/ja/streaming.md index 9b625b2d7..726e16d24 100644 --- a/docs/ja/streaming.md +++ b/docs/ja/streaming.md @@ -4,15 +4,15 @@ search: --- # ストリーミング -ストリーミングを使うと、エージェントの実行が進行するにつれて更新を購読できます。これは、エンドユーザーに進捗や部分的な応答を表示するのに役立ちます。 +ストリーミングを使うと、進行中の エージェント の実行に対する更新を購読できます。これは、エンド ユーザー に進捗や部分的な応答を表示するのに役立ちます。 -ストリーミングするには、[`Runner.run_streamed()`][agents.run.Runner.run_streamed] を呼び出すと、[`RunResultStreaming`][agents.result.RunResultStreaming] が得られます。`result.stream_events()` を呼び出すと、以下で説明する [`StreamEvent`][agents.stream_events.StreamEvent] オブジェクトの非同期ストリームが得られます。 +ストリーミングするには、[`Runner.run_streamed()`][agents.run.Runner.run_streamed] を呼び出します。これは [`RunResultStreaming`][agents.result.RunResultStreaming] を返します。`result.stream_events()` を呼び出すと、以下で説明する [`StreamEvent`][agents.stream_events.StreamEvent] オブジェクトの非同期ストリームが得られます。 ## raw レスポンスイベント -[`RawResponsesStreamEvent`][agents.stream_events.RawResponsesStreamEvent] は、LLM から直接渡される raw なイベントです。OpenAI Responses API 形式であり、各イベントにはタイプ(`response.created`、`response.output_text.delta` など)とデータがあります。これらのイベントは、生成され次第、ユーザーに応答メッセージをストリーミングしたい場合に有用です。 +[`RawResponsesStreamEvent`][agents.stream_events.RawResponsesStreamEvent] は、 LLM から直接渡される raw なイベントです。これらは OpenAI Responses API 形式であり、各イベントには種類(`response.created`、`response.output_text.delta` など)とデータがあります。生成され次第、 ユーザー にレスポンスメッセージをストリーミングしたい場合に有用です。 -例えば、次のコードは LLM が生成したテキストをトークンごとに出力します。 +例えば、次のコードは LLM が生成したテキストをトークン単位で出力します。 ```python import asyncio @@ -35,11 +35,11 @@ if __name__ == "__main__": asyncio.run(main()) ``` -## Run アイテムイベントとエージェントイベント +## Run item イベントと エージェント イベント -[`RunItemStreamEvent`][agents.stream_events.RunItemStreamEvent] は、より高レベルのイベントです。アイテムが完全に生成されたタイミングを通知します。これにより、各トークンではなく「メッセージが生成された」「ツールが実行された」などのレベルで進捗をプッシュできます。同様に、[`AgentUpdatedStreamEvent`][agents.stream_events.AgentUpdatedStreamEvent] は、(ハンドオフの結果などで)現在のエージェントが変更されたときに更新を提供します。 +[`RunItemStreamEvent`][agents.stream_events.RunItemStreamEvent] は、より高レベルなイベントです。アイテムが完全に生成されたタイミングを知らせます。これにより、各トークンごとではなく、「メッセージが生成された」「ツールが実行された」などの粒度で進捗更新をプッシュできます。同様に、[`AgentUpdatedStreamEvent`][agents.stream_events.AgentUpdatedStreamEvent] は、現在の エージェント が変化したとき(例: ハンドオフ の結果として)に更新を提供します。 -例えば、次のコードは raw イベントを無視し、ユーザーに更新をストリーミングします。 +例えば、次のコードは raw イベントを無視し、 ユーザー へ更新をストリーミングします。 ```python import asyncio diff --git a/docs/ja/tools.md b/docs/ja/tools.md index dec52554e..27b5c28ce 100644 --- a/docs/ja/tools.md +++ b/docs/ja/tools.md @@ -4,23 +4,23 @@ search: --- # ツール -ツールはエージェントにアクションを取らせます。たとえばデータ取得、コード実行、外部 API 呼び出し、さらにはコンピュータの使用まで可能です。Agents SDK には 3 つのツールのクラスがあります。 +ツールは エージェント に行動を取らせます。データの取得、コードの実行、外部 API の呼び出し、さらにはコンピュータの使用などです。Agents SDK には 3 つのツールクラスがあります: -- ホスト型ツール: これらは AI モデルと同じ LLM サーバー上で動作します。OpenAI は Retrieval、Web 検索、コンピュータ操作 をホスト型ツールとして提供しています。 -- Function calling: 任意の Python 関数をツールとして使えます。 -- ツールとしてのエージェント: エージェントをツールとして使えます。ハンドオフ せずに、エージェントが他のエージェントを呼び出せます。 +- ホスト型ツール: これらは AI モデルと並んで LLM サーバー 上で動作します。OpenAI は リトリーバル、 Web 検索、そして コンピュータ操作 をホスト型ツールとして提供しています。 +- Function calling: 任意の Python 関数をツールとして使用できます。 +- エージェントをツールとして: エージェントをツールとして使えます。これにより、ハンドオフ せずに エージェント から他の エージェント を呼び出せます。 ## ホスト型ツール -[`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] を使用する場合、OpenAI はいくつかの組み込みツールを提供しています。 +OpenAI は [`OpenAIResponsesModel`][agents.models.openai_responses.OpenAIResponsesModel] を使用する際に、いくつかの組み込みツールを提供しています: -- [`WebSearchTool`][agents.tool.WebSearchTool]: エージェントに Web を検索させます。 -- [`FileSearchTool`][agents.tool.FileSearchTool]: OpenAI ベクトルストア から情報を取得します。 -- [`ComputerTool`][agents.tool.ComputerTool]: コンピュータ操作 の自動化を行います。 -- [`CodeInterpreterTool`][agents.tool.CodeInterpreterTool]: LLM がサンドボックス環境でコードを実行できます。 -- [`HostedMCPTool`][agents.tool.HostedMCPTool]: リモートの MCP サーバーのツールをモデルに公開します。 -- [`ImageGenerationTool`][agents.tool.ImageGenerationTool]: プロンプトから画像を生成します。 -- [`LocalShellTool`][agents.tool.LocalShellTool]: ローカルマシンでシェルコマンドを実行します。 +- [`WebSearchTool`][agents.tool.WebSearchTool] は エージェント に Web を検索させます。 +- [`FileSearchTool`][agents.tool.FileSearchTool] は OpenAI ベクトルストア から情報を取得できます。 +- [`ComputerTool`][agents.tool.ComputerTool] は コンピュータ操作 の自動化を可能にします。 +- [`CodeInterpreterTool`][agents.tool.CodeInterpreterTool] は LLM にサンドボックス環境でコードを実行させます。 +- [`HostedMCPTool`][agents.tool.HostedMCPTool] はリモートの MCP サーバー のツールをモデルに公開します。 +- [`ImageGenerationTool`][agents.tool.ImageGenerationTool] はプロンプトから画像を生成します。 +- [`LocalShellTool`][agents.tool.LocalShellTool] はあなたのマシン上でシェルコマンドを実行します。 ```python from agents import Agent, FileSearchTool, Runner, WebSearchTool @@ -43,12 +43,12 @@ async def main(): ## 関数ツール -任意の Python 関数をツールとして使用できます。Agents SDK がツールを自動でセットアップします。 +任意の Python 関数をツールとして使えます。Agents SDK がツールを自動設定します: -- ツール名は Python 関数名になります(任意で名前を指定できます) -- ツールの説明は関数の docstring から取得します(任意で説明を指定できます) +- ツール名は Python 関数名になります(または任意の名前を指定できます) +- ツールの説明は関数の docstring から取得します(または任意の説明を指定できます) - 関数入力のスキーマは関数の引数から自動生成されます -- 各入力の説明は、無効化しない限り関数の docstring から取得します +- 各入力の説明は、無効化しない限り、関数の docstring から取得します Python の `inspect` モジュールで関数シグネチャを抽出し、[`griffe`](https://mkdocstrings.github.io/griffe/) で docstring を解析し、スキーマ作成には `pydantic` を使用します。 @@ -102,12 +102,12 @@ for tool in agent.tools: ``` -1. 関数の引数には任意の Python 型を使え、関数は同期/非同期どちらでもかまいません。 -2. docstring があれば、説明と引数の説明の取得に使われます。 -3. 関数は任意で `context` を受け取れます(最初の引数である必要があります)。ツール名、説明、docstring スタイルなどの上書き設定も可能です。 +1. 関数の引数には任意の Python 型を使用でき、関数は同期でも非同期でも構いません。 +2. docstring があれば、説明および引数の説明として利用します。 +3. 関数は任意で `context` を受け取れます(最初の引数である必要があります)。ツール名、説明、docstring スタイルなどの上書きも設定できます。 4. デコレートした関数をツールのリストに渡せます。 -??? note "出力を表示するには展開してください" +??? note "出力を表示" ``` fetch_weather @@ -177,14 +177,14 @@ for tool in agent.tools: } ``` -### カスタム関数ツール +### カスタム 関数ツール -Python 関数をツールとして使いたくない場合もあります。必要に応じて [`FunctionTool`][agents.tool.FunctionTool] を直接作成できます。以下を指定する必要があります。 +Python 関数をツールとして使いたくない場合もあります。その場合は、[`FunctionTool`][agents.tool.FunctionTool] を直接作成できます。次を指定する必要があります: - `name` - `description` - `params_json_schema`(引数の JSON スキーマ) -- `on_invoke_tool`([`ToolContext`][agents.tool_context.ToolContext] と引数の JSON 文字列を受け取り、ツールの出力文字列を返す async 関数) +- `on_invoke_tool`([`ToolContext`][agents.tool_context.ToolContext] と引数の JSON 文字列を受け取り、ツール出力の文字列を返す非同期関数) ```python from typing import Any @@ -219,16 +219,16 @@ tool = FunctionTool( ### 引数と docstring の自動解析 -前述のとおり、ツールのスキーマ抽出のために関数シグネチャを自動解析し、ツールおよび各引数の説明を抽出するために docstring を解析します。補足: +前述のとおり、ツールのスキーマを抽出するために関数シグネチャを自動解析し、ツールおよび個々の引数の説明を抽出するために docstring を解析します。注意点: -1. シグネチャ解析は `inspect` モジュールで行います。型アノテーションから引数の型を理解し、全体スキーマを表す Pydantic モデルを動的に構築します。Python の基本型、Pydantic モデル、TypedDicts など、ほとんどの型をサポートします。 -2. docstring の解析には `griffe` を使用します。サポートする docstring 形式は `google`、`sphinx`、`numpy` です。docstring 形式は自動検出を試みますがベストエフォートのため、`function_tool` 呼び出し時に明示的に設定できます。`use_docstring_info` を `False` に設定して docstring 解析を無効化することもできます。 +1. シグネチャ解析は `inspect` モジュール経由で行います。引数の型は型アノテーションから解釈し、全体のスキーマを表す Pydantic モデルを動的に構築します。Python の基本型、Pydantic モデル、TypedDict など、ほとんどの型をサポートします。 +2. docstring の解析には `griffe` を使用します。サポートする docstring 形式は `google`、`sphinx`、`numpy` です。docstring 形式の自動検出を試みますがベストエフォートであり、`function_tool` 呼び出し時に明示的に設定できます。`use_docstring_info` を `False` に設定すると docstring 解析を無効化できます。 スキーマ抽出のコードは [`agents.function_schema`][] にあります。 ## ツールとしてのエージェント -一部のワークフローでは、ハンドオフ せずに、中央のエージェントが専門エージェントのネットワークをオーケストレーションしたい場合があります。エージェントをツールとしてモデリングすることで実現できます。 +一部のワークフローでは、ハンドオフ するのではなく、中央の エージェント が特化した エージェント 群をオーケストレーションしたい場合があります。エージェント をツールとしてモデル化することで実現できます。 ```python from agents import Agent, Runner @@ -269,7 +269,7 @@ async def main(): ### ツール化したエージェントのカスタマイズ -`agent.as_tool` 関数は、エージェントを簡単にツール化するための便宜メソッドです。ただし、すべての設定をサポートしているわけではありません。たとえば `max_turns` は設定できません。高度なユースケースでは、ツール実装内で直接 `Runner.run` を使用してください。 +`agent.as_tool` 関数は、エージェント を簡単にツール化するための便利メソッドです。ただし、すべての設定をサポートしているわけではありません。たとえば、`max_turns` は設定できません。高度なユースケースでは、ツール実装内で直接 `Runner.run` を使用してください: ```python @function_tool @@ -288,15 +288,15 @@ async def run_my_agent() -> str: return str(result.final_output) ``` -### 出力抽出のカスタマイズ +### カスタム出力抽出 -場合によっては、中央エージェントに返す前にツール化したエージェントの出力を加工したいことがあります。たとえば次のような用途です。 +場合によっては、中央の エージェント に返す前にツール化した エージェント の出力を変更したいことがあります。例えば次のような場合に有用です: -- サブエージェントのチャット履歴から特定の情報(例: JSON ペイロード)を抽出する -- エージェントの最終回答を変換・再整形する(例: Markdown をプレーンテキストや CSV に変換) -- 出力を検証し、応答が欠落または不正な場合にフォールバック値を提供する +- サブエージェントのチャット履歴から特定の情報(例: JSON ペイロード)を抽出する。 +- エージェント の最終回答を変換・再整形する(例: Markdown をプレーンテキストや CSV に変換)。 +- 出力を検証し、 エージェント の応答が欠落または不正な場合にフォールバック値を提供する。 -これは `as_tool` メソッドに `custom_output_extractor` 引数を渡すことで行えます。 +これは、`as_tool` メソッドに `custom_output_extractor` 引数を渡すことで行えます: ```python async def extract_json_payload(run_result: RunResult) -> str: @@ -315,9 +315,9 @@ json_tool = data_agent.as_tool( ) ``` -### ツール有効化の条件付き制御 +### ツールの条件付き有効化 -実行時に `is_enabled` パラメーターを使って、エージェントのツールを条件付きで有効/無効化できます。これにより、コンテキスト、ユーザーの嗜好、実行時の条件に応じて LLM に提供するツールを動的に絞り込めます。 +`is_enabled` パラメーター を使用して、実行時に エージェント ツールを条件付きで有効または無効にできます。これにより、コンテキスト、ユーザー の嗜好、または実行時の条件に基づいて、LLM に提供するツールを動的にフィルタリングできます。 ```python import asyncio @@ -372,24 +372,24 @@ async def main(): asyncio.run(main()) ``` -`is_enabled` パラメーターは次を受け付けます。 -- ** ブール値 **: `True`(常に有効)または `False`(常に無効) -- ** 呼び出し可能な関数 **: `(context, agent)` を受け取り、真偽値を返す関数 -- ** 非同期関数 **: 複雑な条件ロジック向けの async 関数 +`is_enabled` パラメーター は次を受け付けます: +- **ブール値**: `True`(常に有効)または `False`(常に無効) +- **呼び出し可能関数**: `(context, agent)` を受け取り、真偽値を返す関数 +- **非同期関数**: 複雑な条件ロジック用の非同期関数 -無効化されたツールは実行時に LLM から完全に隠されるため、次の用途に有用です。 -- ユーザー権限に基づく機能ゲーティング -- 環境別のツール提供(開発 vs 本番、dev vs prod) +無効化されたツールは実行時に LLM から完全に隠蔽されるため、次の用途に有用です: +- ユーザー 権限に基づく機能ゲーティング +- 環境別のツール提供(dev と prod での違い) - 異なるツール構成の A/B テスト - 実行時状態に基づく動的なツールフィルタリング ## 関数ツールでのエラー処理 -`@function_tool` で関数ツールを作成する際、`failure_error_function` を渡せます。これは、ツール呼び出しがクラッシュした場合に LLM へエラーレスポンスを提供する関数です。 +`@function_tool` で関数ツールを作成する際、`failure_error_function` を渡せます。これは、ツール呼び出しがクラッシュした場合に LLM へ返すエラーレスポンスを提供する関数です。 - 既定(何も渡さない場合)では、エラーが発生したことを LLM に伝える `default_tool_error_function` が実行されます。 -- 独自のエラー関数を渡した場合はそれが実行され、そのレスポンスが LLM に送信されます。 -- 明示的に `None` を渡した場合、ツール呼び出し時のエラーは再スローされ、呼び出し側で処理する必要があります。モデルが不正な JSON を生成した場合は `ModelBehaviorError`、コードがクラッシュした場合は `UserError` などになり得ます。 +- 独自のエラー関数を渡すと、それが代わりに実行され、そのレスポンスが LLM に送信されます。 +- 明示的に `None` を渡した場合、ツール呼び出しエラーは再送出され、あなたが処理する必要があります。モデルが不正な JSON を生成した場合は `ModelBehaviorError`、あなたのコードがクラッシュした場合は `UserError` などになり得ます。 ```python from agents import function_tool, RunContextWrapper diff --git a/docs/ja/tracing.md b/docs/ja/tracing.md index f1970b07e..d5e1344ce 100644 --- a/docs/ja/tracing.md +++ b/docs/ja/tracing.md @@ -4,52 +4,52 @@ search: --- # トレーシング -Agents SDK には組み込みのトレーシングが含まれ、エージェントの実行中に発生するイベントの包括的な記録を収集します。LLM 生成、ツール呼び出し、ハンドオフ、ガードレール、さらにはカスタムイベントまで記録します。[Traces ダッシュボード](https://platform.openai.com/traces)を使用すると、開発中や本番環境でワークフローをデバッグ、可視化、監視できます。 +Agents SDK には組み込みのトレーシングが含まれており、エージェントの実行中に発生するイベントの包括的な記録を収集します。LLM 生成、ツール呼び出し、ハンドオフ、ガードレール、さらにはカスタムイベントも含みます。[Traces ダッシュボード](https://platform.openai.com/traces) を使って、開発中および本番環境でワークフローをデバッグ、可視化、監視できます。 !!!note - トレーシングはデフォルトで有効です。無効にする方法は 2 つあります: + トレーシングはデフォルトで有効です。トレーシングを無効化する方法は 2 つあります。 1. 環境変数 `OPENAI_AGENTS_DISABLE_TRACING=1` を設定して、トレーシングをグローバルに無効化できます 2. 単一の実行に対しては、[`agents.run.RunConfig.tracing_disabled`][] を `True` に設定して無効化できます -***OpenAI の API を使用し、Zero Data Retention(ZDR)ポリシーで運用している組織では、トレーシングは利用できません。*** +***OpenAI の API を使用し、Zero Data Retention (ZDR) ポリシーで運用している組織では、トレーシングは利用できません。*** ## トレースとスパン -- **トレース** は「ワークフロー」の単一のエンドツーエンドの操作を表します。スパンで構成されます。トレースには以下のプロパティがあります: +- **トレース** は「ワークフロー」の単一のエンドツーエンド処理を表します。スパンで構成されます。トレースには以下のプロパティがあります。 - `workflow_name`: 論理的なワークフローまたはアプリです。例: "Code generation" や "Customer service" - - `trace_id`: トレースの一意の ID。指定しない場合は自動生成されます。形式は `trace_<32_alphanumeric>` である必要があります。 - - `group_id`: 省略可能なグループ ID。同一の会話に属する複数のトレースを関連付けます。例として、チャットスレッド ID を使用できます。 + - `trace_id`: トレースの一意の ID。渡さない場合は自動生成されます。形式は `trace_<32_alphanumeric>` である必要があります。 + - `group_id`: 省略可能なグループ ID。同一の会話からの複数のトレースを関連付けるために使用します。例えば、チャットスレッドの ID を使えます。 - `disabled`: True の場合、トレースは記録されません。 - - `metadata`: トレースの任意のメタデータ。 -- **スパン** は開始時刻と終了時刻を持つ操作を表します。スパンには以下があります: + - `metadata`: トレースのオプションのメタデータ。 +- **スパン** は開始時刻と終了時刻を持つ操作を表します。スパンには以下があります。 - `started_at` と `ended_at` のタイムスタンプ - - 所属するトレースを示す `trace_id` - - 親スパン(ある場合)を指す `parent_id` - - スパンに関する情報である `span_data`。たとえば、`AgentSpanData` はエージェントに関する情報、`GenerationSpanData` は LLM 生成に関する情報を含みます。 + - 所属するトレースを表す `trace_id` + - 親スパン (あれば) を指す `parent_id` + - スパンに関する情報である `span_data`。例えば、`AgentSpanData` はエージェントに関する情報、`GenerationSpanData` は LLM 生成に関する情報などを含みます。 ## デフォルトのトレーシング -デフォルトでは、SDK は次の内容をトレースします: +デフォルトでは、SDK は次をトレースします。 -- `Runner.{run, run_sync, run_streamed}()` 全体が `trace()` でラップされます -- エージェントが実行されるたびに `agent_span()` でラップされます +- `Runner.{run, run_sync, run_streamed}()` 全体が `trace()` によってラップされます +- エージェントが実行されるたびに、`agent_span()` でラップされます - LLM 生成は `generation_span()` でラップされます - 関数ツールの呼び出しはそれぞれ `function_span()` でラップされます - ガードレールは `guardrail_span()` でラップされます - ハンドオフは `handoff_span()` でラップされます -- 音声入力(音声認識)は `transcription_span()` でラップされます -- 音声出力(音声合成)は `speech_span()` でラップされます -- 関連する音声のスパンは `speech_group_span()` の配下に配置される場合があります +- 音声入力 (speech-to-text) は `transcription_span()` でラップされます +- 音声出力 (text-to-speech) は `speech_span()` でラップされます +- 関連する音声スパンは `speech_group_span()` の下に親子付けされる場合があります -デフォルトでは、トレース名は "Agent workflow" です。`trace` を使用する場合はこの名前を設定できますし、[`RunConfig`][agents.run.RunConfig] を使用して名前やその他のプロパティを構成できます。 +デフォルトでは、トレース名は "Agent workflow" です。`trace` を使用する場合はこの名前を設定できますし、[`RunConfig`][agents.run.RunConfig] で名前やその他のプロパティを構成することもできます。 -さらに、[カスタムトレースプロセッサー](#custom-tracing-processors) を設定して、トレースを別の宛先に送信できます(置き換えまたは二次宛先として)。 +さらに、[カスタムトレースプロセッサー](#custom-tracing-processors) を設定して、トレースを別の送信先にプッシュできます (置き換え、またはセカンダリ送信先として)。 -## より高レベルのトレース +## 上位レベルのトレース -`run()` への複数回の呼び出しを 1 つのトレースにまとめたい場合があります。これは、コード全体を `trace()` でラップすることで実現できます。 +場合によっては、複数の `run()` 呼び出しを 1 つのトレースの一部にしたいことがあります。その場合は、コード全体を `trace()` でラップします。 ```python from agents import Agent, Runner, trace @@ -64,46 +64,46 @@ async def main(): print(f"Rating: {second_result.final_output}") ``` -1. `with trace()` で 2 回の `Runner.run` 呼び出しをラップしているため、個々の実行は 2 つのトレースを作成するのではなく、全体のトレースの一部になります。 +1. `Runner.run` への 2 回の呼び出しが `with trace()` でラップされているため、個々の実行は 2 つのトレースを作成するのではなく、全体のトレースの一部になります。 ## トレースの作成 -[`trace()`][agents.tracing.trace] 関数を使用してトレースを作成できます。トレースは開始と終了が必要です。方法は 2 通りあります: +[`trace()`][agents.tracing.trace] 関数でトレースを作成できます。トレースは開始と終了が必要です。実施方法は 2 つあります。 -1. 【推奨】コンテキストマネージャーとして使用します。すなわち `with trace(...) as my_trace`。これにより適切なタイミングでトレースが自動的に開始・終了されます。 +1. 推奨: トレースをコンテキストマネージャとして使用します。例: `with trace(...) as my_trace`。これにより、適切なタイミングで自動的に開始および終了します。 2. [`trace.start()`][agents.tracing.Trace.start] と [`trace.finish()`][agents.tracing.Trace.finish] を手動で呼び出すこともできます。 -現在のトレースは Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) によって追跡されます。これは、自動的に並行処理で機能することを意味します。トレースを手動で開始/終了する場合、現在のトレースを更新するために `start()`/`finish()` に `mark_as_current` と `reset_current` を渡す必要があります。 +現在のトレースは Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) を通じて追跡されます。これは自動的に並行処理で機能することを意味します。手動でトレースを開始/終了する場合は、現在のトレースを更新するために `start()`/`finish()` に `mark_as_current` と `reset_current` を渡す必要があります。 ## スパンの作成 -各種の [`*_span()`][agents.tracing.create] メソッドを使用してスパンを作成できます。一般的には、スパンを手動で作成する必要はありません。カスタムスパン情報を追跡するための [`custom_span()`][agents.tracing.custom_span] 関数が利用できます。 +さまざまな [`*_span()`][agents.tracing.create] メソッドでスパンを作成できます。一般的には、スパンを手動で作成する必要はありません。カスタムスパン情報を追跡するための [`custom_span()`][agents.tracing.custom_span] 関数が利用できます。 -スパンは自動的に現在のトレースの一部となり、Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) によって追跡される、最も近い現在のスパンの配下にネストされます。 +スパンは自動的に現在のトレースの一部となり、Python の [`contextvar`](https://docs.python.org/3/library/contextvars.html) によって追跡される、最も近い現在のスパンの下にネストされます。 -## 機微情報 +## 機微データ -一部のスパンは、機微なデータを取得する可能性があります。 +一部のスパンは、機微なデータを含む可能性があります。 -`generation_span()` は LLM 生成の入力/出力を、`function_span()` は関数呼び出しの入力/出力を保存します。これらには機微なデータが含まれる場合があるため、[`RunConfig.trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data] によって、そのデータの取得を無効化できます。 +`generation_span()` は LLM 生成の入力/出力を保存し、`function_span()` は関数呼び出しの入力/出力を保存します。機微なデータを含む場合があるため、[`RunConfig.trace_include_sensitive_data`][agents.run.RunConfig.trace_include_sensitive_data] によってそのデータの収集を無効化できます。 -同様に、音声スパンにはデフォルトで入力および出力音声の base64 エンコードされた PCM データが含まれます。[`VoicePipelineConfig.trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data] を構成することで、この音声データの取得を無効化できます。 +同様に、音声スパンにはデフォルトで、入力および出力音声の base64 エンコードされた PCM データが含まれます。[`VoicePipelineConfig.trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data] を設定して、この音声データの収集を無効化できます。 ## カスタムトレーシングプロセッサー -トレーシングの高レベルなアーキテクチャは次のとおりです: +トレーシングの高レベルなアーキテクチャは次のとおりです。 - 初期化時に、トレースを作成する責任を持つグローバルな [`TraceProvider`][agents.tracing.setup.TraceProvider] を作成します。 -- `TraceProvider` は [`BatchTraceProcessor`][agents.tracing.processors.BatchTraceProcessor] で構成され、スパンとトレースをバッチで [`BackendSpanExporter`][agents.tracing.processors.BackendSpanExporter] に送信します。`BackendSpanExporter` はスパンとトレースを OpenAI のバックエンドにバッチでエクスポートします。 +- `TraceProvider` に [`BatchTraceProcessor`][agents.tracing.processors.BatchTraceProcessor] を構成し、これがスパン/トレースをバッチで [`BackendSpanExporter`][agents.tracing.processors.BackendSpanExporter] に送信します。エクスポーターは OpenAI バックエンドにスパンとトレースをバッチでエクスポートします。 -このデフォルト設定をカスタマイズして、代替または追加のバックエンドへ送信したり、エクスポーターの挙動を変更したりするには、次の 2 つの方法があります: +このデフォルト構成をカスタマイズし、代替または追加のバックエンドにトレースを送信したり、エクスポーターの動作を変更するには、次の 2 つの方法があります。 -1. [`add_trace_processor()`][agents.tracing.add_trace_processor] は、トレースおよびスパンが準備され次第受け取る、追加のトレースプロセッサーを追加できます。これにより、OpenAI のバックエンドへの送信に加えて独自の処理を実行できます。 -2. [`set_trace_processors()`][agents.tracing.set_trace_processors] は、デフォルトのプロセッサーを独自のトレースプロセッサーに置き換えることができます。これは、OpenAI のバックエンドにトレースが送信されなくなることを意味します(そのための `TracingProcessor` を含めない限り)。 +1. [`add_trace_processor()`][agents.tracing.add_trace_processor] は、トレースやスパンが準備でき次第受け取る、追加のトレースプロセッサーを追加できます。これにより、OpenAI のバックエンドに送信するのに加えて、独自の処理を実行できます。 +2. [`set_trace_processors()`][agents.tracing.set_trace_processors] は、デフォルトのプロセッサーを独自のトレースプロセッサーに置き換えることができます。つまり、OpenAI バックエンドにトレースを送信するには、そのための `TracingProcessor` を含める必要があります。 -## 非 OpenAI モデルでのトレーシング +## Non-OpenAI モデルでのトレーシング -トレーシングを無効化することなく、OpenAI Traces ダッシュボードで無料のトレーシングを有効にするために、OpenAI の API キーを OpenAI 以外のモデルでも使用できます。 +OpenAI の API キーを Non-OpenAI モデルで使用して、トレーシングを無効化することなく、OpenAI Traces ダッシュボードで無料のトレーシングを有効化できます。 ```python import os @@ -124,7 +124,7 @@ agent = Agent( ) ``` -## 注意事項 +## 注意 - 無料のトレースは Openai Traces ダッシュボードで確認できます。 ## 外部トレーシングプロセッサー一覧 diff --git a/docs/ja/usage.md b/docs/ja/usage.md index 7241e05b2..b5a73de80 100644 --- a/docs/ja/usage.md +++ b/docs/ja/usage.md @@ -4,21 +4,21 @@ search: --- # 使用状況 -Agents SDK は、すべての実行でトークン使用状況を自動的に追跡します。実行コンテキストから参照でき、コストの監視、制限の適用、分析の記録に利用できます。 +Agents SDK は、すべての実行におけるトークン使用状況を自動で追跡します。実行コンテキストから参照でき、コストの監視、上限の適用、分析の記録に使えます。 ## 追跡対象 -- **requests**: 実行された LLM API 呼び出し数 -- **input_tokens**: 送信した入力トークン合計 -- **output_tokens**: 受信した出力トークン合計 -- **total_tokens**: 入力 + 出力 -- **details**: +- **requests** : 実行された LLM API 呼び出し回数 +- **input_tokens** : 送信された合計入力トークン数 +- **output_tokens** : 受信した合計出力トークン数 +- **total_tokens** : 入力 + 出力 +- **details** : - `input_tokens_details.cached_tokens` - `output_tokens_details.reasoning_tokens` ## 実行からの使用状況アクセス -`Runner.run(...)` の後、`result.context_wrapper.usage` から使用状況にアクセスできます。 +`Runner.run(...)` の後、`result.context_wrapper.usage` から使用状況にアクセスします。 ```python result = await Runner.run(agent, "What's the weather in Tokyo?") @@ -34,7 +34,7 @@ print("Total tokens:", usage.total_tokens) ## セッションでの使用状況アクセス -`Session`(例: `SQLiteSession`)を使用する場合、同一の実行内でターンをまたいで使用状況が蓄積され続けます。`Runner.run(...)` の各呼び出しは、その時点での実行の累積使用状況を返します。 +`Session`(例: `SQLiteSession`)を使用する場合、同一の実行内の複数ターンにわたって使用状況が蓄積されます。`Runner.run(...)` の各呼び出しは、その時点での実行の累積使用状況を返します。 ```python session = SQLiteSession("my_conversation") @@ -46,9 +46,9 @@ second = await Runner.run(agent, "Can you elaborate?", session=session) print(second.context_wrapper.usage.total_tokens) # includes both turns ``` -## フックでの使用状況活用 +## フックでの使用状況の利用 -`RunHooks` を使用している場合、各フックに渡される `context` オブジェクトには `usage` が含まれます。これにより、重要なライフサイクルのタイミングで使用状況を記録できます。 +`RunHooks` を使用している場合、各フックに渡される `context` オブジェクトには `usage` が含まれます。これにより、ライフサイクルの要所で使用状況を記録できます。 ```python class MyHooks(RunHooks): diff --git a/docs/ja/visualization.md b/docs/ja/visualization.md index da6b3f9c1..b1ad4499a 100644 --- a/docs/ja/visualization.md +++ b/docs/ja/visualization.md @@ -4,7 +4,7 @@ search: --- # エージェントの可視化 -エージェントの可視化では、 **Graphviz** を使用してエージェントとその関係の構造化されたグラフィカル表現を生成できます。これは、アプリケーション内でエージェント、ツール、ハンドオフがどのように相互作用するかを理解するのに役立ちます。 +エージェントの可視化では、 ** Graphviz ** を使ってエージェントとその関係を構造化したグラフィカル表現として生成できます。これは、アプリケーション内でエージェント、ツール、ハンドオフがどのように相互作用するかを理解するのに役立ちます。 ## インストール @@ -16,12 +16,12 @@ pip install "openai-agents[viz]" ## グラフの生成 -`draw_graph` 関数を使用してエージェントの可視化を生成できます。この関数は次のような有向グラフを作成します: +`draw_graph` 関数を使ってエージェントの可視化を生成できます。この関数は、以下のような有向グラフを作成します: -- ** エージェント ** は黄色のボックスとして表されます。 -- ** MCP サーバー ** はグレーのボックスとして表されます。 -- ** ツール ** は緑色の楕円として表されます。 -- ** ハンドオフ ** は、あるエージェントから別のエージェントへの有向エッジとして表されます。 +- ** エージェント ** は黄色のボックスで表されます。 +- ** MCP サーバー ** は灰色のボックスで表されます。 +- ** ツール ** は緑色の楕円で表されます。 +- ** ハンドオフ ** はあるエージェントから別のエージェントへの有向エッジです。 ### 使用例 @@ -67,31 +67,31 @@ triage_agent = Agent( draw_graph(triage_agent) ``` -![エージェント グラフ](../assets/images/graph.png) +![Agent Graph](../assets/images/graph.png) -これは、 **トリアージ エージェント** の構造と、そのサブエージェントやツールとの接続を視覚的に表すグラフを生成します。 +これは、 ** トリアージ エージェント ** の構造と、サブエージェントおよびツールへの接続を視覚的に表すグラフを生成します。 ## 可視化の理解 生成されたグラフには次が含まれます: -- エントリーポイントを示す **開始ノード**(`__start__`)。 -- 黄色で塗りつぶされた **長方形** で表されるエージェント。 -- 緑色で塗りつぶされた **楕円** で表されるツール。 -- グレーで塗りつぶされた **長方形** で表される MCP サーバー。 +- エントリーポイントを示す ** 開始ノード **(`__start__`)。 +- 黄色で塗りつぶされた ** 長方形 ** で表されるエージェント。 +- 緑色で塗りつぶされた ** 楕円 ** で表されるツール。 +- 灰色で塗りつぶされた ** 長方形 ** で表される MCP サーバー。 - 相互作用を示す有向エッジ: - - エージェント間のハンドオフには **実線の矢印**。 - - ツールの呼び出しには **点線の矢印**。 - - MCP サーバーの呼び出しには **破線の矢印**。 -- 実行が終了する位置を示す **終了ノード**(`__end__`)。 + - エージェント間のハンドオフには ** 実線の矢印 **。 + - ツール呼び出しには ** 点線の矢印 **。 + - MCP サーバー呼び出しには ** 破線の矢印 **。 +- 実行が終了する場所を示す ** 終了ノード **(`__end__`)。 -** 注意:** MCP サーバーは最近の `agents` パッケージ( **v0.2.8** で確認済み)で描画されます。可視化に MCP のボックスが表示されない場合は、最新リリースにアップグレードしてください。 +** 注意: ** MCP サーバーは最近の `agents` パッケージ( ** v0.2.8 ** で確認済み)でレンダリングされます。可視化に MCP ボックスが表示されない場合は、最新のリリースにアップグレードしてください。 ## グラフのカスタマイズ ### グラフの表示 -デフォルトでは、`draw_graph` はグラフをインライン表示します。別ウィンドウで表示するには、次のように記述します: +デフォルトでは、`draw_graph` はグラフをインライン表示します。別ウィンドウでグラフを表示するには、次のように記述します: ```python draw_graph(triage_agent).view() diff --git a/docs/ja/voice/pipeline.md b/docs/ja/voice/pipeline.md index 8d6bf2a82..e6b072230 100644 --- a/docs/ja/voice/pipeline.md +++ b/docs/ja/voice/pipeline.md @@ -4,7 +4,7 @@ search: --- # パイプラインとワークフロー -[`VoicePipeline`][agents.voice.pipeline.VoicePipeline] は、エージェントによるワークフローを音声アプリに変換しやすくするクラスです。実行したいワークフローを渡すと、パイプラインが入力音声の文字起こし、音声終了の検出、適切なタイミングでのワークフロー呼び出し、そしてワークフロー出力の音声化までを処理します。 +[`VoicePipeline`][agents.voice.pipeline.VoicePipeline] は、エージェント型のワークフローをボイスアプリに簡単に変換できるクラスです。実行するワークフローを渡すと、パイプラインが入力音声の書き起こし、音声の終了検出、適切なタイミングでのワークフロー呼び出し、そしてワークフロー出力を音声へ戻す処理までを担当します。 ```mermaid graph LR @@ -34,28 +34,28 @@ graph LR ## パイプラインの設定 -パイプライン作成時には、次の項目を設定できます。 +パイプラインを作成する際に、次の項目を設定できます。 -1. 新しい音声が文字起こしされるたびに実行されるコードである [`workflow`][agents.voice.workflow.VoiceWorkflowBase] -2. 使用する [`speech-to-text`][agents.voice.model.STTModel] と [`text-to-speech`][agents.voice.model.TTSModel] のモデル -3. 次のような設定を行える [`config`][agents.voice.pipeline_config.VoicePipelineConfig] +1. 新しい音声が書き起こされるたびに実行されるコードである [`workflow`][agents.voice.workflow.VoiceWorkflowBase] +2. 使用する [`speech-to-text`][agents.voice.model.STTModel] および [`text-to-speech`][agents.voice.model.TTSModel] のモデル +3. 次のような項目を設定できる [`config`][agents.voice.pipeline_config.VoicePipelineConfig] - モデル名をモデルにマッピングできるモデルプロバイダー - - トレーシング(トレーシングの無効化可否、音声ファイルのアップロード有無、ワークフロー名、トレース ID など) + - トレーシング(トレーシングの無効化、音声ファイルのアップロード可否、ワークフロー名、トレース ID など) - TTS と STT モデルの設定(プロンプト、言語、使用するデータ型など) ## パイプラインの実行 -パイプラインは [`run()`][agents.voice.pipeline.VoicePipeline.run] メソッドで実行でき、音声入力を次の 2 つの形式で渡せます。 +パイプラインは [`run()`][agents.voice.pipeline.VoicePipeline.run] メソッドで実行でき、音声入力を 2 つの形式で渡せます。 -1. [`AudioInput`][agents.voice.input.AudioInput] は、完全な音声の書き起こしがあり、その結果だけを生成したい場合に使用します。話者が話し終えたタイミングを検出する必要がないケース、たとえば事前録音の音声や、ユーザーが話し終えたことが明確なプッシュ・トゥ・トークのアプリに便利です。 -2. [`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] は、ユーザーが話し終えたタイミングを検出する必要がある場合に使用します。検出された音声チャンクを随時プッシュでき、ボイスパイプラインは「アクティビティ検出」と呼ばれるプロセスによって、適切なタイミングでエージェントのワークフローを自動実行します。 +1. [`AudioInput`][agents.voice.input.AudioInput] は、完全な音声の書き起こしがあり、その結果だけを生成したい場合に使います。話者の発話終了を検出する必要がないケースに有用です。たとえば、事前録音の音声や、ユーザーの発話終了が明確なプッシュトゥトークのアプリなどです。 +2. [`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] は、ユーザーの発話終了を検出する必要がある場合に使います。検出された音声チャンクを逐次プッシュでき、パイプラインが「アクティビティ検出」により適切なタイミングでエージェントのワークフローを自動実行します。 ## 結果 -ボイスパイプラインの実行結果は [`StreamedAudioResult`][agents.voice.result.StreamedAudioResult] です。これは、発生したイベントをストリーミングで受け取れるオブジェクトです。いくつかの種類の [`VoiceStreamEvent`][agents.voice.events.VoiceStreamEvent] があり、次を含みます。 +ボイスパイプラインの実行結果は [`StreamedAudioResult`][agents.voice.result.StreamedAudioResult] です。これは、発生したイベントをストリーミングできるオブジェクトです。[`VoiceStreamEvent`][agents.voice.events.VoiceStreamEvent] にはいくつかの種類があり、次のものが含まれます。 1. 音声チャンクを含む [`VoiceStreamEventAudio`][agents.voice.events.VoiceStreamEventAudio] -2. ターンの開始・終了などライフサイクルイベントを通知する [`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] +2. ターンの開始や終了などのライフサイクルイベントを知らせる [`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] 3. エラーイベントである [`VoiceStreamEventError`][agents.voice.events.VoiceStreamEventError] ```python @@ -76,4 +76,4 @@ async for event in result.stream(): ### 割り込み -Agents SDK は現在、[`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] に対する組み込みの割り込みサポートを提供していません。代わりに、検出された各ターンごとに、ワークフローの個別実行がトリガーされます。アプリケーション内で割り込みを扱いたい場合は、[`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] イベントを監視してください。`turn_started` は新しいターンが文字起こしされ処理が開始されたことを示し、`turn_ended` は該当ターンのすべての音声がディスパッチされた後に発火します。モデルがターンを開始した際に話者のマイクをミュートし、そのターンに関連する音声をすべてフラッシュし終えた後にアンミュートする、といった制御にこれらのイベントを利用できます。 \ No newline at end of file +Agents SDK は現在、[`StreamedAudioInput`][agents.voice.input.StreamedAudioInput] に対する組み込みの割り込み機能をサポートしていません。代わりに、検出された各ターンごとにワークフローの個別の実行がトリガーされます。アプリケーション内で割り込みを扱いたい場合は、[`VoiceStreamEventLifecycle`][agents.voice.events.VoiceStreamEventLifecycle] のイベントを監視してください。`turn_started` は新しいターンが書き起こされ、処理が開始されたことを示します。`turn_ended` は該当ターンの音声がすべて送出された後にトリガーされます。モデルがターンを開始したら話者のマイクをミュートし、そのターンに関連する音声の出力をすべて完了した後にアンミュートする、といった制御にこれらのイベントを活用できます。 \ No newline at end of file diff --git a/docs/ja/voice/quickstart.md b/docs/ja/voice/quickstart.md index 27aec3bac..e2a326d1d 100644 --- a/docs/ja/voice/quickstart.md +++ b/docs/ja/voice/quickstart.md @@ -6,7 +6,7 @@ search: ## 前提条件 -Agents SDK の基本的な [クイックスタート手順](../quickstart.md) に従い、仮想環境をセットアップしてください。その後、SDK から音声用のオプション依存関係をインストールします。 +Agents SDK の基本の [クイックスタート手順](../quickstart.md) に従い、仮想環境をセットアップしてください。次に、SDK から音声用のオプション依存関係をインストールします。 ```bash pip install 'openai-agents[voice]' @@ -14,11 +14,11 @@ pip install 'openai-agents[voice]' ## 概念 -主な概念は [`VoicePipeline`][agents.voice.pipeline.VoicePipeline] で、これは 3 段階のプロセスです。 +主に把握しておくべき概念は、[`VoicePipeline`][agents.voice.pipeline.VoicePipeline] です。これは次の 3 ステップのプロセスです。 -1. 音声認識モデルを実行して、音声をテキストに変換します。 -2. 通常はエージェント型ワークフローとなるあなたのコードを実行して、結果を生成します。 -3. 音声合成モデルを実行して、結果のテキストを音声に戻します。 +1. 音声をテキストに変換するために音声認識モデルを実行します。 +2. ふつうはエージェント的なワークフローであるあなたのコードを実行し、結果を生成します。 +3. 結果のテキストを音声に戻すために音声合成モデルを実行します。 ```mermaid graph LR @@ -48,7 +48,7 @@ graph LR ## エージェント -まずはエージェントをいくつか設定します。すでにこの SDK でエージェントを作成したことがあれば、馴染みのあるはずです。ここでは、複数のエージェント、ハンドオフ、そしてツールを用意します。 +まず、いくつかのエージェントをセットアップしましょう。これは、この SDK でエージェントを作成したことがあれば馴染みあるはずです。ここでは複数のエージェント、ハンドオフ、そしてツールを用意します。 ```python import asyncio @@ -92,7 +92,7 @@ agent = Agent( ## 音声パイプライン -ワークフローとして [`SingleAgentVoiceWorkflow`][agents.voice.workflow.SingleAgentVoiceWorkflow] を使い、シンプルな音声パイプラインを設定します。 +ワークフローとして [`SingleAgentVoiceWorkflow`][agents.voice.workflow.SingleAgentVoiceWorkflow] を使い、シンプルな音声パイプラインをセットアップします。 ```python from agents.voice import SingleAgentVoiceWorkflow, VoicePipeline @@ -195,4 +195,4 @@ if __name__ == "__main__": asyncio.run(main()) ``` -このサンプルを実行すると、エージェントがあなたに話しかけます。自分でエージェントに話しかけられるデモは、[examples/voice/static](https://github.com/openai/openai-agents-python/tree/main/examples/voice/static) をご覧ください。 \ No newline at end of file +この例を実行すると、エージェントが話しかけてきます。自分でエージェントに話しかけられるデモは、[examples/voice/static](https://github.com/openai/openai-agents-python/tree/main/examples/voice/static) をご覧ください。 \ No newline at end of file diff --git a/docs/ja/voice/tracing.md b/docs/ja/voice/tracing.md index 615c3cf61..67127da3b 100644 --- a/docs/ja/voice/tracing.md +++ b/docs/ja/voice/tracing.md @@ -6,13 +6,13 @@ search: [エージェントのトレーシング](../tracing.md) と同様に、音声パイプラインも自動的にトレーシングされます。 -基本的なトレーシング情報は上記のドキュメントをご覧ください。加えて、[`VoicePipelineConfig`][agents.voice.pipeline_config.VoicePipelineConfig] を使用してパイプラインのトレーシングを設定できます。 +基本的なトレーシング情報は上記ドキュメントをご参照ください。加えて、パイプラインのトレーシングは [`VoicePipelineConfig`][agents.voice.pipeline_config.VoicePipelineConfig] で設定できます。 -トレーシング関連の主なフィールドは次のとおりです: +トレーシング関連の主要なフィールドは次のとおりです: - [`tracing_disabled`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレーシングを無効にするかどうかを制御します。既定ではトレーシングは有効です。 -- [`trace_include_sensitive_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_data]: 音声書き起こしなど、機微情報となり得るデータをトレースに含めるかどうかを制御します。これは音声パイプラインに固有であり、ワークフロー内部で行われる処理には適用されません。 +- [`trace_include_sensitive_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_data]: 音声書き起こしなど、機微なデータをトレースに含めるかどうかを制御します。これは音声パイプライン専用で、ワークフロー内部で行われる処理には適用されません。 - [`trace_include_sensitive_audio_data`][agents.voice.pipeline_config.VoicePipelineConfig.trace_include_sensitive_audio_data]: トレースに音声データを含めるかどうかを制御します。 - [`workflow_name`][agents.voice.pipeline_config.VoicePipelineConfig.workflow_name]: トレースのワークフロー名です。 -- [`group_id`][agents.voice.pipeline_config.VoicePipelineConfig.group_id]: 複数のトレースを関連付けるための、そのトレースの `group_id` です。 -- [`trace_metadata`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレースに含める追加メタデータ。 \ No newline at end of file +- [`group_id`][agents.voice.pipeline_config.VoicePipelineConfig.group_id]: 複数のトレースを関連付けるための `group_id` です。 +- [`trace_metadata`][agents.voice.pipeline_config.VoicePipelineConfig.tracing_disabled]: トレースに含める追加のメタデータです。 \ No newline at end of file