diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/Appendix.ipynb b/examples/partners/temporal_agents_with_knowledge_graphs/Appendix.ipynb new file mode 100644 index 0000000000..308fe7f973 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/Appendix.ipynb @@ -0,0 +1,671 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "dd2b3250-1764-4cef-b3e0-b5fa1be924e9", + "metadata": {}, + "source": [ + "

Appendix: Temporal Agents with Knowledge Graphs

" + ] + }, + { + "cell_type": "markdown", + "id": "82627a01-5e76-4046-982d-bc59a1d768fd", + "metadata": {}, + "source": [ + "This notebook contains an appendix to the **Temporal Agents with Knowledge Graphs** cookbook. \n", + "\n", + "Within this appendix, you'll find a more in-depth *Prototype to Production* section. " + ] + }, + { + "cell_type": "markdown", + "id": "3f70ab4a-e04a-44aa-8e75-f9c15be22c5f", + "metadata": {}, + "source": [ + "# A. Prototype to Production\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "b97b1677-7c77-4bad-bdfe-b541901c3b81", + "metadata": {}, + "source": [ + "## A.1. Storing and Retrieving High-Volume Graph Data" + ] + }, + { + "cell_type": "markdown", + "id": "ada5b662-f493-41e3-a5f5-85f92dec61c0", + "metadata": {}, + "source": [ + "### A.1.1. Data Volume & Schema Complexity" + ] + }, + { + "cell_type": "markdown", + "id": "8a1009ec-9885-486a-ab69-5d86720389a6", + "metadata": {}, + "source": [ + "As your dataset scales to millions or even billions of nodes and edges, managing performance and maintainability becomes critical. This requires thoughtful approaches to both schema design and data partitioning:\n", + "\n", + "
    \n", + "
  1. \n", + " Schema design for growth and change
    \n", + "

    \n", + " Clearly define core entity types (e.g., Person, Organization, Event) and relationships. Design the schema with versioning and flexibility in mind, enabling future schema evolution with minimal downtime.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Sharding & partitioning
    \n", + "

    \n", + " Use high-cardinality fields (such as timestamps or unique entity IDs) for partitioning to preserve query performance as data volume grows. This is particularly important for temporally-aware data. For example:\n", + "

    \n", + " \n", + " ```sql \n", + " CREATE TABLE statements (\n", + " statement_id UUID PRIMARY KEY,\n", + " entity_id UUID NOT NULL,\n", + " text TEXT NOT NULL,\n", + " valid_from TIMESTAMP NOT NULL,\n", + " valid_to TIMESTAMP,\n", + " status VARCHAR(16) DEFAULT 'active',\n", + " embedding VECTOR(1536),\n", + " ...\n", + " ) PARTITION BY RANGE (valid_from);\n", + " ```\n", + "
  4. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "f91fa408-9b9c-4fc5-9471-c0ccbc49bbae", + "metadata": {}, + "source": [ + "### A.1.2. Temporal Validity & Versioning" + ] + }, + { + "cell_type": "markdown", + "id": "cb172a41-c085-4fc3-b7b4-80d22c3dbabf", + "metadata": {}, + "source": [ + "In our temporal knowledge graph, each statement includes temporal markers (e.g., `valid_from`, `valid_to`). \n", + "\n", + "
    \n", + "
  1. \n", + " Preserve history non-destructively
    \n", + "

    \n", + " Avoid deleting or overwriting records. Instead mark outdated facts as inactive by setting a status (e.g., inactive).\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Optimize for temporal access
    \n", + "

    \n", + " Index temporal fields (valid_from, valid_to) to support efficient querying of both current and historical states.\n", + "

    \n", + "
  4. \n", + "
\n", + "\n", + "\n", + "#### Example: Non-Destructive Updates\n", + "\n", + "Rather than removing or overwriting a record, update its status and close its validity window:\n", + "\n", + "```sql\n", + "UPDATE statements\n", + "SET status = 'inactive', valid_to = '2025-03-15T00:00:00Z'\n", + "WHERE statement_id = '...' AND entity_id = '...';\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "58caf1c8-49ae-46a9-bb16-8c767c21a362", + "metadata": {}, + "source": [ + "### A.1.3. Indexing & Semantic Search" + ] + }, + { + "cell_type": "markdown", + "id": "e982b9c7-611c-4e29-9b56-d52fbdc844b1", + "metadata": {}, + "source": [ + "##### Temporal Indexes\n", + "To support efficient temporal queries create B-tree indexes on `valid_from` and `valid_to`. A 'B-tree' index is a tree data structure that keeps data sorted to facilitate fast lookups, range queries, and ordered scans in logarithmic time. It's the default index type in many relational databases. \n", + "\n", + "```sql\n", + "CREATE INDEX ON statements (valid_from);\n", + "CREATE INDEX ON statements (valid_to);\n", + "```\n", + "##### Semantic search with pgvector\n", + "Storing vector embeddings in PostgreSQL (via the `pgvector` extension) enables similarity-based retrieval via semantic search. This follows a two-step process:\n", + "1. Store high-dimensional vectors that represent the semantic meaning of the text. These can be created with embedding models such as OpenAI's `text-embedding-3-small` and `text-embedding-3-large`\n", + "2. Use Approximate Nearest-Neighbour (ANN) for efficient similarity matching at scale\n", + "\n", + "There are several different indexing options available in pgvector, each with different purposes. These indexing options are described in more detail, along with in-depth implementation steps in the [README on the Github repository for pgvector](https://github.com/pgvector/pgvector/blob/master/README.md).\n", + "|
Index Type
|
Build Time
|
Query Speed
|
Memory Usage
|
Accuracy
|
Recommended Scale
| Notes |\n", + "|-------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------------|-------|\n", + "|
**flat**
|
Minimal
|
Slow
(linear scan)
|
Low
|
100%
(exact)
|
Very small
(< 100 K vectors)
| No approximate indexing—scans all vectors. Best for exact recall on small collections |\n", + "|
**ivfflat**
|
Moderate
|
Fast when tuned
|
Moderate
|
High
(tunable)
|
Small to Medium
(100 K–200 M)
| Uses inverted file indexing. Query-time parameters control trade-offs |\n", + "|
**ivfpq**
|
High
|
Very fast
|
Low
(quantized)
|
Slightly lower
than ivfflat
|
Medium to Large
(1 M–500 M)
| Combines inverted files with product quantization for lower memory use |\n", + "|
**hnsw**
|
Highest
|
Fastest
(esp. at scale)
|
High
(in-memory)
|
Very high
|
Large to Very Large
(100 M–Billions+)
| Builds a hierarchical navigable graph. Ideal for latency-sensitive, high-scale systems |\n", + "\n", + "\n", + "##### Tuning parameters for vector indexing\n", + "\n", + "`ivfflat`\n", + "* `lists`: Number of partitions (e.g., 100)\n", + "* `probes`: Number of partitions to scan at query time (e.g., 10-20), controls recall vs. latency\n", + "\n", + "`ivfpq`\n", + "* `subvectors`: Number of blocks to quantize (e.g., 16)\n", + "* `bits`: Number of bits per block (e.g., 8)\n", + "* `probes`: Same as in `ivfflat`\n", + "\n", + "`hnsw`\n", + "* `M`: Max connections per node (e.g., 16)\n", + "* `ef_construction`: Build-time dynamic candidate list size (e.g., 200)\n", + "* `ef_search`: Queyr-time candidate pool (e.g., 64-128)\n", + "\n", + "##### Best practices\n", + "- `flat` for debugging or small datasets\n", + "- `ivfflat` when you want tunable accuracy with good speed\n", + "- `ivfpq` when memory efficieny is critical\n", + "- `hnsw` when optimizing for lowest latency on massive collections\n", + "\n", + "##### Other vector database options in the ecosystem\n", + "\n", + "| Vector DB | Key Features | Pros | Cons |\n", + "| ------------ | ------------------------------------------------------------ | ------------------------------------------- | --------------------------------------------------------------- |\n", + "| **Pinecone** | Fully managed, serverless; supports HNSW and SPANN | Auto-scaling, SLA-backed, easy to integrate | Vendor lock-in; cost escalates at scale |\n", + "| **Weaviate** | GraphQL API, built-in modules for encoding and vectorization | Hybrid queries (metadata + vector), modular | Production deployment requires Kubernetes |\n", + "| **Milvus** | Supports GPU indexing; IVF, HNSW, ANNOY | High performance at scale, dynamic indexing | Operational complexity; separate system |\n", + "| **Qdrant** | Lightweight, real-time updates, payload filtering | Simple setup, good hybrid query support | Lacks native relational joins; eventual consistency in clusters |\n", + "| **Vectara** | Managed with semantic ranking and re-ranking | Strong relevance features; easy integration | Proprietary; limited index control |\n", + "\n", + "##### Choosing the Right Vector Store\n", + "\n", + "|
Scale
|
Recommendation
| Details |\n", + "|--------------------------------|------------------------------------------|---------|\n", + "|
**Small to Medium Scale**
(less than 100M vectors)
|
PostgreSQL + pgvector
with `ivfflat` index
| Often sufficient for moderate workloads. Recommended settings: `lists = 100–200`, `probes = 10–20`. |\n", + "|
**Large Scale**
(100M – 1B+ vectors)
|
Milvus or Qdrant
| Suitable for high-throughput workloads, especially when GPU-accelerated indexing or sub-millisecond latency is needed. |\n", + "|
**Hybrid Scenarios**
|
PostgreSQL for metadata
+ dedicated vector DB
| Use PostgreSQL for entity metadata storage and a vector DB (e.g., Milvus, Qdrant) for similarity search. Synchronize embeddings using CDC pipelines (e.g., Debezium). |\n", + "\n", + "For more detailed information, check out the [OpenAI cookbook on vector databases](https://cookbook.openai.com/examples/vector_databases/readme).\n", + "\n", + "##### Durable disk storage and backup\n", + "For some cases, especially those requiring high availability or state recovery across restarts, it may be worth persisting state to reliable disk storage and implementing a backup strategy. \n", + "\n", + "If durability is a concern, consider using persistent disks with regular backups or syncing state to external storage. While not necessary for all deployments, it can provide a valuable safeguard against data loss or operational disruption in environments where consistency and fault tolerance matter." + ] + }, + { + "cell_type": "markdown", + "id": "7e12f78a-eb4f-44ab-9dc1-2fea0e4d7090", + "metadata": {}, + "source": [ + "## A.2. Managing and Pruning Datasets" + ] + }, + { + "cell_type": "markdown", + "id": "52acca83-7a99-436f-86ac-5cfe6b93ba86", + "metadata": {}, + "source": [ + "### A.2.1. TTL (Time-to-Live) and Archival Policies" + ] + }, + { + "cell_type": "markdown", + "id": "6e6bbf33-4f3e-4536-a806-1b1a7d84add7", + "metadata": {}, + "source": [ + "Establish clear policies to determine which facts should be retained indefinitely (e.g., legally required records for regulators) and which can be archived after a defined period (e.g., statements sourced from social media more than one year old).\n", + "\n", + "Key practices to include:\n", + "
    \n", + "
  1. \n", + " Automated Archival Jobs
    \n", + "

    \n", + " Set up a background task that periodically queries for records with e.g., valid_to < NOW() - INTERVAL 'X days' and moves them to an archival table for long-term storage.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Source-Specific Retention Policies
    \n", + "

    \n", + " Tailor retention durations by data source or entity type. For example, high-authority sources like government publications may warrant longer retention than less reliable data such as scraped news headlines or user-generated content.\n", + "

    \n", + "
  4. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9eefcbf8-8cba-40b3-888f-58b7f723ce5a", + "metadata": {}, + "source": [ + "### A.2.2. Relevance Scoring and Intelligent Pruning" + ] + }, + { + "cell_type": "markdown", + "id": "0c6e905c-b91a-48d0-a84b-cff5e8f6dbf1", + "metadata": {}, + "source": [ + "As your knowledge graph grows, the utility of many facts will decline. To keep the graph focused and maximise performance: \n", + "
    \n", + "
  1. \n", + " Index a Relevance Score
    \n", + "

    \n", + " Introduce a numeric relevance_score column (or columns) that incorporate metrics such as recency, source trustworthiness, and production query frequency.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Automated Pruning Logic
    \n", + "

    \n", + " Schedule a routine job to prune or archive facts falling below a predefined relevance threshold.\n", + "

    \n", + "
  4. \n", + "
\n", + "\n", + "\n", + "#### Advanced Relevance-Based Graph Reduction\n", + "\n", + "Efficiently reducing the size of a knowledge graph is important when scaling. [A 2024 survey](https://arxiv.org/pdf/2402.03358) categorizes techniques into **sparsification**, **coarsening**, and **condensation**—all aimed at shrinking the graph while preserving task-critical semantics. These methods offer substantial runtime and memory gains on large-scale KGs.\n", + "\n", + "Example implementation pattern:\n", + "
    \n", + "
  1. \n", + " Score Each Triple
    \n", + "

    \n", + " Compute a composite relevance_score, for example:\n", + "

    \n", + "
    relevance_score = β1 * recency_score + β2 * source_trust_score + β3 * retrieval_count
    \n", + "

    \n", + " Where:\n", + "

    \n", + " \n", + "
  2. \n", + "\n", + "
  3. \n", + " Apply a Reduction Strategy
    \n", + " \n", + "
  4. \n", + "\n", + "
  5. \n", + " Validate in Shadow Mode
    \n", + "

    \n", + " Log and compare outputs from the pruned vs. original graph before routing production traffic.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Re-Score Regularly
    \n", + "

    \n", + " Recompute relevance (e.g., nightly) to ensure new or frequently accessed facts surface back to the top.\n", + "

    \n", + "
  8. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "c98d8110-9ac9-4247-bd54-a4dccd3cf61d", + "metadata": {}, + "source": [ + "## A.3. Implementing Concurrency in the Ingestion Pipeline" + ] + }, + { + "cell_type": "markdown", + "id": "66e144a0-9837-478a-b112-cfa297eb664a", + "metadata": {}, + "source": [ + "Moving from prototype to production often requires you to transform your linear processing pipeline into a concurrent, scalable pipeline. Instead of processing documents sequentially (document → chunking → statement extraction → entity extraction → statement invalidation → entity resolution), implement a staged pipeline where each phase can scale independently.\n", + "\n", + "Design your pipeline with a series of specialized stages, each with its own queue and worker pool. This allows you to scale bottlenecks independently and maintain system reliability under varying loads. \n", + "\n", + "
    \n", + "
  1. \n", + " Batch Chunking
    \n", + "

    \n", + " Begin by collecting documents in batches of e.g., 100–500 using a job queue like Redis or Amazon SQS. Process these documents in parallel, splitting each into their respective chunks. The chunking stage should often optimize for I/O parallelization as document reading is often the bottleneck. You can then store the chunks and their respective metadata in your chunk_store table, using bulk insert operations to minimize overhead.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Statement and Entity Extraction
    \n", + "

    \n", + " Pull chunks in batches of e.g., 50–100 and send them to your chosen LLM (e.g., GPT-4.1-mini) using parallel API requests. Implement rate limiting with semaphores or other methods to stay safely within OpenAI's API limits whilst maximizing your throughputs. We've covered rate limiting in more detail in our cookbook on How to handle rate limits. Once extracted, you can then write these to the relevant table in your database.\n", + "

    \n", + "

    \n", + " You can then similarly group the statements we've just extracted into batches, and run the entity extraction processes in a similar vein before storing them.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Statement Invalidation
    \n", + "

    \n", + " Group extracted statement IDs by their associated entity clusters (e.g., all statements related to a specific entity like “Acme Corp.”). Send each cluster to your LLM (e.g., GPT-4.1-mini) in parallel to assess which statements are outdated or superseded. Use the model’s output to update the status field in your statements table—e.g., setting status = 'inactive'. Parallelize invalidation jobs for performance and consider scheduling periodic sweeps for consistency.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Entity Resolution
    \n", + "

    \n", + " Take batches of newly extracted entity mentions and compute embeddings using your model’s embedding endpoint. Insert these into your entity_registry table, assigning each a provisional or canonical entity_id. Perform approximate nearest-neighbor (ANN) searches using pgvector to identify near-duplicates or aliases. You can then update the entities table with resolved canonical IDs, ensuring downstream tasks reference unified representations.\n", + "

    \n", + "
  8. \n", + "
\n", + "\n", + "\n", + "### Advantages of Batch Processing\n", + "* Throughput – Batching reduces the overhead of individual API calls and database transactions.\n", + "\n", + "* Parallelism – Each stage can horizontally scale: you can run multiple worker processes for chunking, extraction, invalidation, etc., each reading from a queue.\n", + "\n", + "* Backpressure & Reliability – If one stage becomes slow (e.g., statement invalidation during a sudden data surge), upstream stages can buffer more items in the queue until capacity frees up.\n" + ] + }, + { + "cell_type": "markdown", + "id": "43cc5595-ae38-47e9-b90f-7b3f1bd004dc", + "metadata": {}, + "source": [ + "## A.4. Minimizing Token Cost" + ] + }, + { + "cell_type": "markdown", + "id": "23ff03de-eeed-4bcf-9c1b-18bb8b449353", + "metadata": {}, + "source": [ + "### A.4.1. Prompt Caching" + ] + }, + { + "cell_type": "markdown", + "id": "0f5a4127-058a-4cf9-9a35-a928658a99fd", + "metadata": {}, + "source": [ + "Avoid redundant API calls by memoizing responses to brittle sub-prompts.\n", + "\n", + "Implementation Strategy:\n", + "- **Cache Frequent Queries**: For example, repeated prompts like \"Extract entities from this statement\" on identicial statements\n", + "- **Use Hash Keys**: Generate a unique cache key using the MD5 hash of the statement text: `md5(statement_text)`\n", + "- **Storage Options**: Redis for scalable persistence or in-memory LRU cache for simplicity and speed\n", + "- **Bypass API Calls**: If a statement is found in cache, skip the API call" + ] + }, + { + "cell_type": "markdown", + "id": "81de3bdc-8cc3-4016-8cd7-01754dd4b04d", + "metadata": {}, + "source": [ + "### A.4.2. Service Tier: Flex" + ] + }, + { + "cell_type": "markdown", + "id": "664765a2-6274-4285-b0c0-b1fb620cdb5a", + "metadata": {}, + "source": [ + "Utilize the `service_tier=flex` parameter in the OpenAI Responses SDK to enable partial completions and reduce costs.\n", + "\n", + "API Configuration:\n", + "```json\n", + "{\n", + " \"model\": \"o4-mini\",\n", + " \"prompt\": \"\",\n", + " \"service_tier\": \"flex\"\n", + "}\n", + "```\n", + "\n", + "Cost Benefits:\n", + "- Charges only for generated tokens, not prompt tokens\n", + "- Can reduce costs by up to 40% for short extractions (e.g., single-sentence entity lists)\n", + "\n", + "You can learn more about the power of Flex processing and how to utilise it in the [API documentation for Flex processing](https://platform.openai.com/docs/guides/flex-processing?api-mode=responses)." + ] + }, + { + "cell_type": "markdown", + "id": "12c39a74-8e08-4d62-bf09-8603c397b6f2", + "metadata": {}, + "source": [ + "### A.4.3. Minimize \"Chattiness\"" + ] + }, + { + "cell_type": "markdown", + "id": "05891cac-6f02-40c9-91e8-e19e0fb11e3a", + "metadata": {}, + "source": [ + "Replace expensive text-generation calls with more efficient alternatives where possible.\n", + "\n", + "Alternative approach:\n", + "- Use embeddings endpoint (cheaper per token) combined with pgvector nearest-neighbor search\n", + "- Instead of asking the model \"Which existing statement is most similar?\", compute embeddings once and query directly in Postgres\n", + "- This approach is particularly effective for semantic similarity tasks\n", + "\n", + "**Benefits:**\n", + "- Lower cost per operation\n", + "- Faster query response times\n", + "- Reduced API dependency for similarity searches" + ] + }, + { + "cell_type": "markdown", + "id": "22affb30-4da1-41aa-9ae4-a285b7f2e060", + "metadata": {}, + "source": [ + "## A.5. Scaling and Productionizing our Retrieval Agent" + ] + }, + { + "cell_type": "markdown", + "id": "c8fb79ab-d623-4d11-bdff-70af141cf16b", + "metadata": {}, + "source": [ + "Once your graph is populated, you need a mechanism to answer multi-hop queries at scale. This requires:\n", + "\n", + "
    \n", + "
  1. \n", + " Agent Architecture
    \n", + "
      \n", + "
    • Controller Agent (Frontend): Receives a user question (e.g., “What events led to Acme Corp.’s IPO?”), then decomposes it into sub-questions or traversal steps.
    • \n", + "
    • Traversal Worker Agents: Each worker can perform a local graph traversal (e.g., “Find all facts where Acme Corp. has EventType = Acquisition between 2020–2025”), possibly in parallel on different partitions of the graph.
    • \n", + "
    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Parallel Subgraph Extraction
    \n", + "
      \n", + "
    • Partition the graph by entity ID hash (e.g., modulo 16). For a given query, identify which partitions are likely to contain relevant edges, then dispatch traversal tasks in parallel to each worker.
    • \n", + "
    • Workers return partial subgraphs (nodes + edges), and the Controller Agent merges them.
    • \n", + "
    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Chained LLM Reasoning
    \n", + "

    \n", + " For multi-hop questions, the Controller can prompt a model (e.g., GPT-4.1) with the partial subgraph and ask “Which next edge should I traverse?” This allows dynamic, context-aware traversal rather than blind breadth-first search.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Caching and Memoization
    \n", + "

    \n", + " For frequently asked queries or subgraph patterns, cache the results (e.g., in Redis or a Postgres Materialized View) with a TTL equal to the fact’s valid_to date, so that subsequent requests hit the cache instead of re-traversing.\n", + "

    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Load Balancing & Autoscaling
    \n", + "

    \n", + " Deploy the Traversal Worker Agents in a Kubernetes cluster with Horizontal Pod Autoscalers. Use CPU and memory metrics (and average queue length) to scale out during peak usage.\n", + "

    \n", + "
  10. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "id": "28442f85-dfe6-444b-8e19-a9c84e1b23d5", + "metadata": {}, + "source": [ + "## A.6. Safeguards" + ] + }, + { + "cell_type": "markdown", + "id": "21583d8e-06e1-4e56-a304-0bf2a4095dc0", + "metadata": {}, + "source": [ + "### A.6.1 Multi-Layered Output Verification" + ] + }, + { + "cell_type": "markdown", + "id": "40f741a4-ff66-4e2d-a3bc-db6ef1f04a26", + "metadata": {}, + "source": [ + "Run a lightweight validation pipeline to ensure outputs are as desired. Some examples of what can be included in this:\n", + "* Check that dates conform to `ISO-8601`\n", + "* Verify that entity types match your controlled vocabulary (e.g., if the model outputs an unexpected label, flag for manual review)\n", + "* Deploy a \"sanity-check\" function call to a smaller, cheaper model to verify the consistency of outputs (for example, “Does this statement parse correctly as a Fact? Yes/No.”)" + ] + }, + { + "cell_type": "markdown", + "id": "1ebdc4fd-bba2-49d2-9e58-18a79c7af467", + "metadata": {}, + "source": [ + "### A.6.2. Audit Logging & Monitoring" + ] + }, + { + "cell_type": "markdown", + "id": "5157ecd3-67af-485b-9d0a-a86f5d51d110", + "metadata": {}, + "source": [ + "- Implement structured logging with configurable verbosity levels (e.g., debug, info, warn, error)\n", + "- Store input pre-processing steps, intermediate outputs, and final results with full tracing, such as that offered via [OpenAI's tracing](https://platform.openai.com/traces)\n", + "- Track token throughput, latency, and error rates\n", + "- Monitor data quality metrics where possible, such as document or statement coverage, temporal resolution rates, and more\n", + "- Measure business-related metrics such as user numbers, average message volume, and user satisfaction" + ] + }, + { + "cell_type": "markdown", + "id": "b65f7222-cf56-4b35-a052-a5bf0ab99984", + "metadata": {}, + "source": [ + "## A.7. Prompt Optimization" + ] + }, + { + "cell_type": "markdown", + "id": "f0dc981e-2a27-4ebe-8917-8eebf725f344", + "metadata": {}, + "source": [ + "
    \n", + "
  1. \n", + " Personas
    \n", + "

    \n", + " Introducing a persona to the model is an effective way to drive performance. Once you have narrowed down the specialism of the component you are developing the prompt for, you can create a persona in the system prompt that helps to shape the model's behaviour. We used this in our planner model to create a system prompt like this:\n", + "

    \n", + "
    initial_planner_system_prompt = (\n",
    +    "    \"You work for the leading financial firm, ABC Incorporated, one of the largest financial firms in the world. \"\n",
    +    "    \"Due to your long and esteemed tenure at the firm, various equity research teams will often come to you \"\n",
    +    "    \"for guidance on research tasks they are performing. Your expertise is particularly strong in the area of \"\n",
    +    "    \"ABC Incorporated's proprietary knowledge base of earnings call transcripts. This contains details that have been \"\n",
    +    "    \"extracted from the earnings call transcripts of various companies with labelling for when these statements are, or \"\n",
    +    "    \"were, valid. You are an expert at providing instructions to teams on how to use this knowledge graph to answer \"\n",
    +    "    \"their research queries. \\n\"\n",
    +    ")
    \n", + "

    \n", + " Persona prompts can become much more developed and specific than this, but this should provide an insight into what this looks like in practice.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Few-Shot Prompting and Chain-of-Thought
    \n", + "

    \n", + " For extraction-related tasks, such as statement extraction, a concise few-shot prompt (2–5 examples) will typically deliver higher precision than a zero-shot prompt at a marginal increase in cost.\n", + "

    \n", + "

    \n", + " For e.g., temporal reconciliation tasks, chain-of-thought methods where you guide the model through comparison logic are more appropriate. This can look like:\n", + "

    \n", + "
    Example 1: [Old fact], [New fact] → Invalidate\n",
    +    "Example 2: [Old fact], [New fact] → Coexist\n",
    +    "Now: [Old fact], [New fact] →
    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Dynamic Prompting & Context Management
    \n", + "

    \n", + " You can also lean on other LLMs or more structured methods to prune and prepare material that will be dynamically passed to prompts. We saw an example of this when building the tools for our retriever above, where the timeline_generation tool sorts the retrieved material before passing it back to the central orchestrator.\n", + "

    \n", + "

    \n", + " Steps to clean up the context or compress it mid-run can also be highly effective for longer-running queries.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Template Library & A/B Testing
    \n", + "

    \n", + " Maintain a set of prompt templates in a version-controlled directory (e.g., prompts/statement_extraction.json, prompts/entity_extraction.json) to enable you to audit past changes and revert if necessary. You can utilize OpenAI's reusuable prompts for this. In the OpenAI dashboard, you can develop reusable prompts to use in API requests. This enables you to build and evaluate your prompts, deploying updated and improved versions without ever changing the code.\n", + "

    \n", + "

    \n", + " Automate A/B testing by periodically sampling extracted facts from the pipeline, re-running them through alternative prompts, and comparing performance scores (you can track this in a separate evaluation harness).\n", + "

    \n", + "

    \n", + " Track key performance indicators (KPIs) such as extraction latency, error rates, and invalidation accuracy.\n", + "

    \n", + "

    \n", + " If any metric drifts beyond a threshold (e.g., invalidation accuracy drops below 90%), trigger an alert and roll back to a previous prompt version.\n", + "

    \n", + "
  8. \n", + "
\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/cb_functions.py b/examples/partners/temporal_agents_with_knowledge_graphs/cb_functions.py new file mode 100644 index 0000000000..87d582a563 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/cb_functions.py @@ -0,0 +1,204 @@ +"""Reusable functions for the cookbook.""" + +import sqlite3 +import networkx as nx +from typing import Any +from datasets import load_dataset + +from db_interface import get_all_triplets + + +def load_db_from_hf(db_path: str = "temporal_graph.db", hf_dataset_name: str = "TomoroAI/temporal_cookbook_db") -> sqlite3.Connection: + """Load the pre-processed database from HuggingFace.""" + conn = sqlite3.connect(db_path) + table_names = [ + "transcripts", + "chunks", + "events", + "triplets", + "entities", + ] + + for table in table_names: + print(f"Loading {table}...") + ds = load_dataset(hf_dataset_name, name=table, split="train") + df = ds.to_pandas() + df.to_sql(table, conn, if_exists="replace", index=False) + + conn.commit() + print("✅ All tables written to SQLite.") + + return conn + +def build_graph( + conn: sqlite3.Connection, + *, + nodes_as_names: bool = False + ) -> nx.MultiDiGraph: + """Build graph using canonical entity IDs and names.""" + graph = nx.MultiDiGraph() + + # Always load canonical mappings + entity_to_canonical, canonical_names = _load_entity_maps(conn) + event_temporal_map = _load_event_temporal(conn) + + for t in get_all_triplets(conn): + if not t["subject_id"]: + continue + + event_attrs = event_temporal_map.get(t["event_id"]) + _add_triplet_edge( + graph, + t, + entity_to_canonical, + canonical_names, + event_attrs, + nodes_as_names, + ) + + return graph + +def _load_entity_maps(conn: sqlite3.Connection) -> tuple[dict[bytes, bytes], dict[bytes, str]]: + """ + Return mappings for canonical entities: + • entity_to_canonical: maps entity ID → canonical ID (using resolved_id) + • canonical_names: maps canonical ID → canonical name. + """ + cur = conn.cursor() + + # Get all entities with their resolved IDs + cur.execute(""" + SELECT id, name, resolved_id + FROM entities + """) + + entity_to_canonical: dict[bytes, bytes] = {} + canonical_names: dict[bytes, str] = {} + + for row in cur.fetchall(): + entity_id = row[0] + name = row[1] + resolved_id = row[2] + + if resolved_id: + # If entity has a resolved_id, map to that + entity_to_canonical[entity_id] = resolved_id + # Store name of the canonical entity + canonical_names[resolved_id] = name + else: + # If no resolved_id, entity is its own canonical version + entity_to_canonical[entity_id] = entity_id + canonical_names[entity_id] = name + + return entity_to_canonical, canonical_names + +def _load_event_temporal(conn: sqlite3.Connection) -> dict[bytes, dict[str, Any]]: + """ + Read the `events` table once and build a mapping + event_id (bytes) → dict of temporal / descriptive attributes. + Only the columns that are useful on the graph edges are pulled; + extend this list freely if you need more. + """ + cur = conn.cursor() + cur.execute(""" + SELECT id, + statement, + statement_type, + temporal_type, + created_at, + valid_at, + expired_at, + invalid_at, + invalidated_by + FROM events + """) + event_map: dict[bytes, dict[str, Any]] = {} + for ( + eid, + statement, + statement_type, + temporal_type, + created_at, + valid_at, + expired_at, + invalid_at, + invalidated_by, + ) in cur.fetchall(): + event_map[eid] = { + "statement": statement, + "statement_type": statement_type, + "temporal_type": temporal_type, + "created_at": created_at, + "valid_at": valid_at, + "expired_at": expired_at, + "invalid_at": invalid_at, + "invalidated_by": invalidated_by, + } + return event_map + + +def _add_triplet_edge( + graph: nx.MultiDiGraph, t: dict, + entity_to_canonical: dict[bytes, bytes], + canonical_names: dict[bytes, str], + event_attrs: dict[str, Any] | None = None, + use_names: bool = False, + ) -> None: + """Add one edge using canonical IDs and names.""" + subj_id = t["subject_id"] + obj_id = t["object_id"] + + if subj_id is None: + return + + # Get canonical IDs + canonical_subj = entity_to_canonical.get(subj_id, subj_id) + canonical_obj = entity_to_canonical.get(obj_id, obj_id) if obj_id else None + + # Get canonical names + subj_name = canonical_names.get(canonical_subj, t["subject_name"]) if canonical_subj is not None else t["subject_name"] + obj_name = canonical_names.get(canonical_obj, t["object_name"]) if canonical_obj is not None else t["object_name"] + + subj_node = subj_name if use_names else canonical_subj + obj_node = obj_name if use_names else canonical_obj + + # Add nodes with canonical names + graph.add_node( + subj_node, + canonical_id=canonical_subj, + name=subj_name, + ) + + # Core edge attributes (triplet-specific) + edge_attrs: dict[str, Any] = { + "predicate": t["predicate"], + "triplet_id": t["id"], + "event_id": t["event_id"], + "value": t["value"], + "canonical_subject_name": subj_name, + "canonical_object_name": obj_name, + } + + # Merge in temporal data, if we have it + if event_attrs: + edge_attrs.update(event_attrs) + + if canonical_obj is None: + # Handle self-loops for null objects + graph.add_edge( + subj_node, subj_node, + key=t["predicate"], + **edge_attrs, + literal_object=t["object_name"], + ) + else: + graph.add_node( + obj_node, + canonical_id=canonical_obj, + name=obj_name, + ) + graph.add_edge( + subj_node, obj_node, + key=t["predicate"], + **edge_attrs, + ) diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/db_interface.py b/examples/partners/temporal_agents_with_knowledge_graphs/db_interface.py new file mode 100644 index 0000000000..d2b09c95b0 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/db_interface.py @@ -0,0 +1,429 @@ +import os +import sqlite3 +import uuid +from typing import Any + +import pandas as pd + +from models import Entity, TemporalEvent +from utils import safe_iso + + +def make_connection( + db_path: str = "my_database.db", + memory: bool = False, + refresh: bool = False, +) -> sqlite3.Connection: + """Make a connection to the database. + + Args: + db_path (str, optional): The path to the database file. Defaults to "my_database.db". + memory (bool, optional): Whether to create a memory database. Defaults to False. + refresh (bool, optional): Whether to refresh the database. Defaults to False. + Returns: + sqlite3.Connection: The database connection. + """ + if not memory and refresh: + if os.path.exists(db_path): + try: + os.remove(db_path) + except PermissionError as e: + raise RuntimeError( + "Could not delete the database file. Please ensure all connections are closed." + ) from e + conn = sqlite3.connect(":memory:") if memory else sqlite3.connect(db_path) + if memory and refresh: + _drop_all_tables(conn) + _create_lite_tables(conn) + return conn + + +def _drop_all_tables(conn: sqlite3.Connection, tables: list[str] | None = None) -> None: + """Drop all tables in the database. + + Args: + conn (sqlite3.Connection): The database connection. + """ + c = conn.cursor() + if not tables: + c.execute( + "SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%';" + ) + tables = [row[0] for row in c.fetchall()] + for table in tables: + c.execute(f"DROP TABLE IF EXISTS {table}") + conn.commit() + + +def _create_lite_tables(conn: sqlite3.Connection) -> None: + """Create all tables for the database if they do not exist. + + Args: + conn (sqlite3.Connection): The database connection. + """ + c = conn.cursor() + + c.execute( + """ + CREATE TABLE IF NOT EXISTS transcripts ( + id BLOB PRIMARY KEY, + text TEXT, + company TEXT, + date TEXT, + quarter TEXT + ) + """ + ) + + c.execute( + """ + CREATE TABLE IF NOT EXISTS chunks ( + id BLOB PRIMARY KEY, + transcript_id BLOB, + text TEXT, + metadata TEXT, + FOREIGN KEY(transcript_id) REFERENCES transcripts(id) + ) + """ + ) + c.execute( + """CREATE INDEX IF NOT EXISTS idx_chunks_transcript_id ON chunks (transcript_id)""" + ) + + c.execute( + """ + CREATE TABLE IF NOT EXISTS events ( + id BLOB PRIMARY KEY, + chunk_id BLOB, + statement TEXT, + triplets TEXT, + statement_type TEXT, + temporal_type TEXT, + created_at TEXT, + valid_at TEXT, + expired_at TEXT, + invalid_at TEXT, + invalidated_by BLOB, + embedding BLOB, + FOREIGN KEY(chunk_id) REFERENCES chunks(id), + FOREIGN KEY(invalidated_by) REFERENCES events(id) + ) + """ + ) + c.execute("CREATE INDEX IF NOT EXISTS idx_events_chunk_id ON events (chunk_id)") + + c.execute( + """ + CREATE TABLE IF NOT EXISTS triplets ( + id BLOB PRIMARY KEY, + event_id BLOB, + subject_name TEXT, + subject_id BLOB, + predicate TEXT, + object_name TEXT, + object_id BLOB, + value TEXT, + FOREIGN KEY(event_id) REFERENCES events(id) + ) + """ + ) + c.execute("CREATE INDEX IF NOT EXISTS idx_triplets_event_id ON triplets (event_id)") + + c.execute( + """ + CREATE TABLE IF NOT EXISTS entities ( + id BLOB PRIMARY KEY, + event_id BLOB, + name TEXT, + type TEXT, + description TEXT, + resolved_id BLOB, + FOREIGN KEY(event_id) REFERENCES events(id), + FOREIGN KEY(resolved_id) REFERENCES entities(id) + ) + """ + ) + + conn.commit() + + +def view_db_table( + conn: sqlite3.Connection, table_name: str, max_rows: int | None = None +) -> pd.DataFrame: + """View a table in the database as a pandas DataFrame. + + Args: + conn (sqlite3.Connection): The database connection. + table_name (str): The name of the table to view. + max_rows (int, optional): Maximum number of rows to return. Defaults to 10. + + Returns: + pd.DataFrame: The table data as a DataFrame. + """ + if max_rows: + query = f"SELECT * FROM {table_name} LIMIT {max_rows}" + else: + query = f"SELECT * FROM {table_name}" + return pd.read_sql_query(query, conn) + + +def insert_transcript(conn: sqlite3.Connection, transcript: dict[str, Any]) -> None: + """Insert a transcript into the database. + + Args: + conn (sqlite3.Connection): The database connection. + transcript (dict[str, Any]): The transcript to insert. + """ + c = conn.cursor() + c.execute( + """ + INSERT INTO transcripts + (id, text, company, date, quarter) + VALUES (?, ?, ?, ?, ?) + """, + ( + transcript["id"], + transcript["text"], + transcript["company"], + transcript["date"].isoformat(), + transcript.get("quarter"), + ), + ) + + +def insert_chunk(conn: sqlite3.Connection, chunk: dict[str, Any]) -> None: + """Insert a chunk into the database. + + Args: + conn (sqlite3.Connection): The database connection. + chunk (dict[str, Any]): The chunk to insert. + """ + c = conn.cursor() + c.execute( + "INSERT INTO chunks (id, transcript_id, text, metadata) VALUES (?, ?, ?, ?)", + (chunk["id"], chunk["transcript_id"], chunk["text"], chunk.get("metadata")), + ) + + +# ====================== +# TRIPLET INTERACTIONS +# ====================== + + +def insert_triplet(conn: sqlite3.Connection, triplet: dict[str, Any]) -> None: + """Insert a triplet with both names and resolved IDs.""" + conn.execute( + """ + INSERT INTO triplets + (id, event_id, subject_name, subject_id, predicate, object_name, object_id, value) + VALUES (?, ?, ?, ?, ?, ?, ?, ?) + """, + ( + triplet["id"], + triplet["event_id"], + triplet["subject_name"], + triplet.get("subject_id"), + triplet["predicate"], + triplet["object_name"], + triplet.get("object_id"), + triplet.get("value"), + ), + ) + + +def get_all_triplets(conn: sqlite3.Connection) -> list[dict[str, Any]]: + """Get all triplets with both names and resolved IDs.""" + c = conn.cursor() + c.execute( + """ + SELECT + id, event_id, + subject_name, subject_id, + predicate, + object_name, object_id, + value + FROM triplets + """ + ) + return [ + { + "id": row[0], + "event_id": row[1], + "subject_name": row[2], + "subject_id": row[3], + "predicate": row[4], + "object_name": row[5], + "object_id": row[6], + "value": row[7], + } + for row in c.fetchall() + ] + + +def get_all_unique_predicates(conn: sqlite3.Connection) -> list[str]: + """Get all unique predicates from the triplets table. + + Args: + conn (sqlite3.Connection): The database connection. + + Returns: + list[str]: List of unique predicates. + """ + c = conn.cursor() + c.execute("SELECT DISTINCT predicate FROM triplets") + rows = c.fetchall() + return [row[0] for row in rows] + + +# ===================== +# ENTITY INTERACTIONS +# ===================== + + +def insert_entity(conn: sqlite3.Connection, entity: dict[str, Any]) -> None: + """Insert an entity into the database. + + Args: + conn (sqlite3.Connection): The database connection. + entity (dict[str, Any]): The entity to insert. + """ + c = conn.cursor() + c.execute( + """ + INSERT OR IGNORE INTO entities (id, name, type, description) + VALUES (?, ?, ?, ?)""", + (entity["id"], entity["name"], entity.get("type"), entity.get("description")), + ) + + +def get_all_canonical_entities(conn: sqlite3.Connection) -> list[Entity]: + """ + Get all canonical entities from the entities table. + Returns a list of dicts with id, name, type, and description. + """ + c = conn.cursor() + c.execute("SELECT id, name, type, description FROM entities") + rows = c.fetchall() + return [ + Entity( + id=uuid.UUID(row[0]), + name=row[1], + type=row[2] or "", + description=row[3] or "", + ) + for row in rows + ] + + +def insert_canonical_entity(conn: sqlite3.Connection, entity: dict[str, Any]) -> None: + """ + Insert a new canonical entity into the entities table. + entity: dict with keys 'id', 'name', 'type', 'description'. + """ + c = conn.cursor() + c.execute( + "INSERT OR IGNORE INTO entities (id, name, type, description) VALUES (?, ?, ?, ?)", + (entity["id"], entity["name"], entity.get("type"), entity.get("description")), + ) + + +def update_entity_references( + conn: sqlite3.Connection, old_id: str, new_id: str +) -> None: + """ + Update all references from old_id to new_id in the database. + """ + conn.execute( + "UPDATE entities SET resolved_id = ? WHERE resolved_id = ?", (new_id, old_id) + ) + conn.execute( + "UPDATE triplets SET subject_id = ? WHERE subject_id = ?", (new_id, old_id) + ) + conn.execute( + "UPDATE triplets SET object_id = ? WHERE object_id = ?", (new_id, old_id) + ) + conn.commit() + + +def remove_entity(conn: sqlite3.Connection, entity_id: str) -> None: + """ + Remove the entity from the entities table. + """ + conn.execute("DELETE FROM entities WHERE id = ?", (entity_id,)) + conn.commit() + + +# ==================== +# EVENT INTERACTIONS +# ==================== + + +def insert_event(conn: sqlite3.Connection, event_dict: dict[str, Any]) -> None: + """Insert an event into the database. + + Args: + conn (sqlite3.Connection): The database connection. + event (dict[str, Any]): The event to insert, preprocessed as a dict. + """ + c = conn.cursor() + c.execute( + """ + INSERT INTO events + (id, chunk_id, statement, embedding, triplets, statement_type, temporal_type, + created_at, valid_at, expired_at, invalid_at, invalidated_by) + VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) + """, + ( + (event_dict["id"]), + event_dict["chunk_id"], + event_dict["statement"], + event_dict["embedding"], + event_dict["triplets"], + event_dict["statement_type"], + event_dict["temporal_type"], + event_dict["created_at"], + event_dict["valid_at"], + event_dict["expired_at"], + event_dict["invalid_at"], + event_dict.get("invalidated_by"), + ), + ) + + +def has_events(conn: sqlite3.Connection) -> bool: + """Check if there are any FACT events in the database to validate against.""" + cursor = conn.cursor() + cursor.execute("SELECT COUNT(*) FROM events WHERE statement_type = ?", ("FACT",)) + count = cursor.fetchone()[0] + return count > 0 # type: ignore + + +def update_events_batch(conn: sqlite3.Connection, events: list[TemporalEvent]) -> None: + """Batch update multiple events.""" + if not events: + return + + c = conn.cursor() + update_data = [ + ( + safe_iso(event.invalid_at) if hasattr(event, "invalid_at") else None, + safe_iso(event.expired_at) if hasattr(event, "expired_at") else None, + ( + str(event.invalidated_by) + if hasattr(event, "invalidated_by") and event.invalidated_by + else None + ), + str(event.id) if hasattr(event, "id") else event.id, + ) + for event in events + ] + + c.executemany( + """UPDATE events SET + invalid_at = ?, + expired_at = ?, + invalidated_by = ? + WHERE id = ?""", + update_data, + ) + conn.commit() diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/models.py b/examples/partners/temporal_agents_with_knowledge_graphs/models.py new file mode 100644 index 0000000000..6e835c7da1 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/models.py @@ -0,0 +1,97 @@ +"""Models used when interacting with the database interface.""" +import json +import uuid +from datetime import datetime +from enum import StrEnum + +from pydantic import BaseModel, Field, model_validator + +class RawEntity(BaseModel): + """Model representing an entity (for entity resolution).""" + + entity_idx: int + name: str + type: str = "" + description: str = "" + + +class Entity(BaseModel): + """ + Model representing an entity (for entity resolution). + 'id' is the canonical entity id if this is a canonical entity. + 'resolved_id' is set to the canonical id if this is an alias. + """ + + id: uuid.UUID = Field(default_factory=uuid.uuid4) + event_id: uuid.UUID | None = None + name: str + type: str + description: str + resolved_id: uuid.UUID | None = None + + @classmethod + def from_raw( + cls, raw_entity: "RawEntity", event_id: uuid.UUID | None = None + ) -> "Entity": + """Create an Entity instance from a RawEntity, optionally associating it with an event_id.""" + return cls( + id=uuid.uuid4(), + event_id=event_id, + name=raw_entity.name, + type=raw_entity.type, + description=raw_entity.description, + resolved_id=None, + ) + +class TemporalType(StrEnum): + """Enumeration of temporal types for statements.""" + + ATEMPORAL = "ATEMPORAL" + STATIC = "STATIC" + DYNAMIC = "DYNAMIC" + +class StatementType(StrEnum): + """Enumeration of statement types for statements.""" + + FACT = "FACT" + OPINION = "OPINION" + PREDICTION = "PREDICTION" + +class TemporalEvent(BaseModel): + """Model representing a temporal event with statement, triplet, and validity information.""" + + id: uuid.UUID = Field(default_factory=uuid.uuid4) + chunk_id: uuid.UUID + statement: str + embedding: list[float] = Field(default_factory=lambda: [0.0] * 256) + triplets: list[uuid.UUID] + valid_at: datetime | None = None + invalid_at: datetime | None = None + temporal_type: TemporalType + statement_type: StatementType + created_at: datetime = Field(default_factory=datetime.now) + expired_at: datetime | None = None + invalidated_by: uuid.UUID | None = None + + @property + def triplets_json(self) -> str: + """Convert triplets list to JSON string.""" + return json.dumps([str(t) for t in self.triplets]) if self.triplets else "[]" + + @classmethod + def parse_triplets_json(cls, triplets_str: str) -> list[uuid.UUID]: + """Parse JSON string back into list of UUIDs.""" + if not triplets_str or triplets_str == "[]": + return [] + return [uuid.UUID(t) for t in json.loads(triplets_str)] + + @model_validator(mode="after") + def set_expired_at(self) -> "TemporalEvent": + """Set expired_at if invalid_at is set and temporal_type is DYNAMIC.""" + self.expired_at = ( + self.created_at + if (self.invalid_at is not None) + and (self.temporal_type == TemporalType.DYNAMIC) + else None + ) + return self diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/temporal_agents_with_knowledge_graphs.ipynb b/examples/partners/temporal_agents_with_knowledge_graphs/temporal_agents_with_knowledge_graphs.ipynb new file mode 100644 index 0000000000..32f9386bc7 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/temporal_agents_with_knowledge_graphs.ipynb @@ -0,0 +1,6444 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Temporal Agents with Knowledge Graphs

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Table of Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. **[Executive Summary](#1-executive-summary)**\n", + " - 1.1. Purpose and Audience\n", + " - 1.2. Key Takeaways\n", + "2. **[How to Use this Cookbook](#2-how-to-use-this-cookbook)**\n", + " - 2.1. Pre-requisites\n", + "3. **[Creating a Temporally-Aware Knowledge Graph with a Temporal Agent](#3-creating-a-temporally-aware-knowledge-graph-with-a-temporal-agent)**\n", + " - 3.1. Introducing our Temporal Agent\n", + " - 3.1.1. Key enhancements introduced in this cookbook\n", + " - 3.1.2. The Temporal Agent Pipeline\n", + " - 3.1.3. Selecting the right model for a Temporal Agent \n", + " - 3.2. Building our Temporal Agent Pipeline\n", + " - 3.2.1. Load transcripts\n", + " - 3.2.2. Creating a Semantic Chunker\n", + " - 3.2.3. Laying the Foundations for our Temporal Agent\n", + " - 3.2.4. Statement Extraction\n", + " - 3.2.5. Temporal Range Extraction\n", + " - 3.2.6. Creating our Triplets\n", + " - 3.2.7. Temporal Event\n", + " - 3.2.8. Defining our Temporal Agent\n", + " - 3.2.9. Entity Resolution\n", + " - 3.2.10. Invalidation agent\n", + " - 3.2.11. Putting it all together\n", + " - 3.3. Knowledge Graphs\n", + " - 3.3.1. Building our Knowledge Graph with NetworkX\n", + " - 3.3.2. NetworkX versus Neo4j in Production\n", + " - 3.4. Evaluation and Suggested Feature Additions\n", + " - 3.4.1. Temporal Agent\n", + " - 3.4.2. Invalidation Agent\n", + "4. **[Multi-Step Retrieval Over a Knowledge Graph](#4-multi-step-retrieval-over-a-knowledge-graph)**\n", + " - 4.1. Building our Retrieval Agent\n", + " - 4.1.1. Imports\n", + " - 4.1.2. (Re-)Initialize OpenAI Client\n", + " - 4.1.3. (Re-)Load our Temporal Knowledge Graph\n", + " - 4.1.4. Planner\n", + " - 4.1.5. Function Calling\n", + " - 4.1.6. Retriever\n", + " - 4.1.7. Selecting the right model for Multi-Step Knowledge-Graph Retrieval\n", + " - 4.2. Elevating your Retrieval System\n", + "5. **[Prototype to Production](#5-prototype-to-production)**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Executive summary\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.1. Purpose and Audience" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "This notebook provides a hands-on guide for building **temporally-aware knowledge graphs** and performing **multi-hop retrieval directly over those graphs**. \n", + "\n", + "It's designed for engineers, architects, and analysts working on temporally-aware knowledge graphs. Whether you’re prototyping, deploying at scale, or exploring new ways to use structured data, you’ll find practical workflows, best practices, and decision frameworks to accelerate your work.\n", + "\n", + "This cookbook presents two hands-on workflows you can use, extend, and deploy right away:\n", + "\n", + "
    \n", + "
  1. \n", + " Temporally-aware knowledge graph (KG) construction
    \n", + "

    \n", + " A key challenge in developing knowledge-driven AI systems is maintaining a database that stays current and relevant. While much attention is given to boosting retrieval accuracy with techniques like semantic similarity and re-ranking, this guide focuses on a fundamental—yet frequently overlooked—aspect: systematically updating and validating your knowledge base as new data arrives.\n", + "

    \n", + "

    \n", + " No matter how advanced your retrieval algorithms are, their effectiveness is limited by the quality and freshness of your database. This cookbook demonstrates how to routinely validate and update knowledge graph entries as new data arrives, helping ensure that your knowledge base remains accurate and up to date.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Multi-hop retrieval using knowledge graphs
    \n", + "

    \n", + " Learn how to combine OpenAI models (such as o3, o4-mini, GPT-4.1, and GPT-4.1-mini) with structured graph queries via tool calls, enabling the model to traverse your graph in multiple steps across entities and relationships.\n", + "

    \n", + "

    \n", + " This method lets your system answer complex, multi-faceted questions that require reasoning over several linked facts, going well beyond what single-hop retrieval can accomplish.\n", + "

    \n", + "
  4. \n", + "
\n", + "\n", + "Inside, you'll discover:\n", + "\n", + "* **Practical decision frameworks** for choosing models and prompting techniques at each stage\n", + "* **Plug-and-play code examples** for easy integration into your ML and data pipelines\n", + "* **Links to in-depth resources** on OpenAI tool use, fine-tuning, graph backend selection, and more\n", + "* **A clear path from prototype to production**, with actionable best practices for scaling and reliability\n", + "\n", + "> **Note:** All benchmarks and recommendations are based on the best available models and practices as of June 2025. As the ecosystem evolves, periodically revisit your approach to stay current with new capabilities and improvements." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.2. Key takeaways" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a Temporally-Aware Knowledge Graph with a Temporal Agent\n", + "
    \n", + "
  1. \n", + " Why make your knowledge graph temporal?
    \n", + "

    \n", + " Traditional knowledge graphs treat facts as static, but real-world information evolves constantly. What was true last quarter may be outdated today, risking errors or misinformed decisions if the graph does not capture change over time. Temporal knowledge graphs allow you to precisely answer questions like “What was true on a given date?” or analyse how facts and relationships have shifted, ensuring decisions are always based on the most relevant context.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " What is a Temporal Agent?
    \n", + "

    \n", + " A Temporal Agent is a pipeline component that ingests raw data and produces time-stamped triplets for your knowledge graph. This enables precise time-based querying, timeline construction, trend analysis, and more.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " How does the pipeline work?
    \n", + "

    \n", + " The pipeline starts by semantically chunking your raw documents. These chunks are decomposed into statements ready for our Temporal Agent, which then creates time-aware triplets. An Invalidation Agent can then perform temporal validity checks, spotting and handling any statements that are invalidated by new statements that are incident on the graph.\n", + "

    \n", + "
  6. \n", + "
\n", + "\n", + "### Multi-Step Retrieval Over a Knowledge Graph\n", + "
    \n", + "
  1. \n", + " Why use multi-step retrieval?
    \n", + "

    \n", + " Direct, single-hop queries frequently miss salient facts distributed across a graph's topology. Multi-step (multi-hop) retrieval enables iterative traversal, following relationships and aggregating evidence across several hops. This methodology surfaces complex dependencies and latent connections that would remain hidden with one-shot lookups, providing more comprehensive and nuanced answers to sophisticated queries.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Planners
    \n", + "

    \n", + " Planners orchestrate the retrieval process. Task-orientated planners decompose queries into concrete, sequential subtasks. Hypothesis-orientated planners, by contrast, propose claims to confirm, refute, or evolve. Choosing the optimal strategy depends on where the problem lies on the spectrum from deterministic reporting (well-defined paths) to exploratory research (open-ended inference).\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Tool Design Paradigms
    \n", + "

    \n", + " Tool design spans a continuum: Fixed tools provide consistent, predictable outputs for specific queries (e.g., a service that always returns today’s weather for San Francisco). At the other end, Free-form tools offer broad flexibility, such as code execution or open-ended data retrieval. Semi-structured tools fall between these extremes, restricting certain actions while allowing tailored flexibility—specialized sub-agents are a typical example. Selecting the appropriate paradigm is a trade-off between control, adaptability, and complexity.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Evaluating Retrieval Systems
    \n", + "

    \n", + " High-fidelity evaluation hinges on expert-curated \"golden\" answers, though these are costly and labor-intensive to produce. Automated judgments, such as those from LLMs or tool traces, can be quickly generated to supplement or pre-screen, but may lack the precision of human evaluation. As your system matures, transition towards leveraging real user feedback to measure and optimize retrieval quality in production.\n", + "

    \n", + "

    \n", + " A proven workflow: Start with synthetic tests, benchmark on your curated human-annotated \"golden\" dataset, and iteratively refine using live user feedback and ratings.\n", + "

    \n", + "
  8. \n", + "
\n", + "\n", + "### Prototype to Production\n", + "
    \n", + "
  1. \n", + " Keep the graph lean
    \n", + "

    \n", + " Established archival policies and assign numeric relevance scores to each edge (e.g., recency x trust x query-frequency). Automate the archival or sparsification of low-value nodes and edges, ensuring only the most critical and frequently accessed facts remain for rapid retrieval.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Parallelize the ingestion pipeline
    \n", + "

    \n", + " Transition from a linear document → chunk → extraction → resolution pipeline to a staged, asynchronous architecture. Assign each processing phase its own queue and dedicated worker pool. Apply clustering or network-based batching for invalidation jobs to maximize efficiency. Batch external API requests (e.g., OpenAI) and database writes wherever possible. This design increases throughput, introduces backpressure for reliability, and allows you to scale each pipeline stage independently.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Integrate Robust Production Safeguards
    \n", + "

    \n", + " Enforce rigorous output validation: standardise temporal fields (e.g., ISO-8601 date formatting), constrain entity types to your controlled vocabulary, and apply lightweight model-based sanity checks for output consistency. Employ structured logging with traceable identifiers and monitor real-time quality and performance metrics in real lime to proactively detect data drift, regressions, or pipeline anomalised before they impact downstream applications.\n", + "

    \n", + "
  6. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. How to Use This Cookbook\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This cookbook is designed for flexible engagement:\n", + "\n", + "1. Use it as a comprehensive technical guide—read from start to finish for a deep understanding of temporally-aware knowledge graph systems.\n", + "2. Skim for advanced concepts, methodologies, and implementation patterns if you prefer a high-level overview.\n", + "3. Jump into any of the three modular sections; each is self-contained and directly applicable to real-world scenarios.\n", + "\n", + "Inside, you'll find:\n", + "\n", + "
    \n", + "
  1. \n", + " Creating a Temporally-Aware Knowledge Graph with a Temporal Agent
    \n", + "

    \n", + " Build a pipeline that extracts entities and relations from unstructured text, resolves temporal conflicts, and keeps your graph up-to-date as new information arrives.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Multi-Step Retrieval Over a Knowledge Graph
    \n", + "

    \n", + " Use structured queries and language model reasoning to chain multiple hops across your graph and answer complex questions.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Prototype to Production
    \n", + "

    \n", + " Move from experimentation to deployment. This section covers architectural tips, integration patterns, and considerations for scaling reliably.\n", + "

    \n", + "
  6. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.1. Pre-requisites" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before diving into building temporal agents and knowledge graphs, let's set up your environment. Install all required dependencies with pip, and set your OpenAI API key as an environment variable. Python 3.12 or later is required." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.12.8\n", + "Requirement already satisfied: pip in ./.venv/lib/python3.12/site-packages (25.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!python -V\n", + "%pip install --upgrade pip\n", + "%pip install -qU chonkie datetime ipykernel jinja2 matplotlib networkx numpy openai plotly pydantic rapidfuzz scipy tenacity tiktoken pandas\n", + "%pip install -q \"datasets<3.0\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " import getpass\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Paste your OpenAI API key here: \")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Creating a Temporally-Aware Knowledge Graph with a Temporal Agent\n", + "---" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "**Accurate data is the foundation of any good business decision.** \n", + "OpenAI’s latest models like o3, o4-mini, and the GPT-4.1 family are enabling businesses to build state-of-the-art retrieval systems for their most important workflows. However, information evolves rapidly: facts ingested confidently yesterday may already be outdated today.\n", + "\n", + "\n", + "\n", + "\n", + "Without the ability to track when each fact was valid, retrieval systems risk returning answers that are outdated, non-compliant, or misleading. The consequences of missing temporal context can be severe in any industry, as illustrated by the following examples.\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IndustryExample questionRisk if database is not temporal
Financial Services\"How has Moody’s long‑term rating for Bank YY evolved since Feb 2023?\"Mispricing credit risk by mixing historical & current ratings
\"Who was the CFO of Retailer ZZ when the FY‑22 guidance was issued?\"Governance/insider‑trading analysis may blame the wrong executive
\"Was Fund AA sanctioned under Article BB at the time it bought Stock CC in Jan 2024?\"Compliance report could miss an infraction if rules changed later
Manufacturing / Automotive\"Which ECU firmware was deployed in model Q3 cars shipped between 2022‑05 and 2023‑03?\"Misdiagnosing field failures due to firmware drift
\"Which robot‑controller software revision ran on Assembly Line 7 during Lot 8421?\"Root‑cause analysis may blame the wrong software revision
\"What torque specification applied to steering‑column bolts in builds produced in May 2024?\"Safety recall may miss affected vehicles
\n", + "\n", + "\n", + "While we've called out some specific examples here, this theme is true across many industries including pharmaceuticals, law, consumer goods, and more.\n", + "\n", + "**Looking beyond standard retrieval**\n", + "\n", + "A temporally-aware knowledge graph allows you to go beyond static fact lookup. It enables richer retrieval workflows such as factual Q&A grounded in time, timeline generation, change tracking, counterfactual analysis, and more. We dive into these in more detail in our retrieval section later in the cookbook.\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.1. Introducing our Temporal Agent\n", + "---" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A **temporal agent** is a specialized pipeline that converts raw, free-form statements into time-aware triplets ready for ingesting into a knowledge graph that can then be queried with the questions of the character *“What was true at time T?”*. \n", + "\n", + "Triplets are the basic building blocks of knowledge graphs. It's a way to represent a single fact or piece of knowledge using three parts (hence, *\"triplet\"*): \n", + "- **Subject** - the entity you are talking about\n", + "- **Predicate** - the type of relationship or property\n", + "- **Object** - the value or other entity that the subject is connected to\n", + "\n", + "You can thinking of this like a sentence with a structure `[Subject] - [Predicate] - [Object]`. As a more clear example:\n", + "```\n", + "\"London\" - \"isCapitalOf\" - \"United Kingdom\"\n", + "```\n", + "\n", + "The Temporal Agent implemented in this cookbook draws inspiration from [Zep](https://arxiv.org/abs/2501.13956) and [Graphiti](https://github.com/getzep/graphiti), while introducing tighter control over fact invalidation and a more nuanced approach to episodic typing.\n", + "\n", + "### 3.1.1. Key enhancements introduced in this cookbook\n", + "\n", + "
    \n", + "
  1. \n", + " Temporal validity extraction
    \n", + "

    \n", + " Builds on Graphiti's prompt design to identify temporal spans and episodic context without requiring auxiliary reference statements.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Fact invalidation logic
    \n", + "

    \n", + " Introduces bidirectionality checks and constrains comparisons by episodic type. This retains Zep's non-lossy approach while reducing unnecessary evaluations.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Temporal & episodic typing
    \n", + "

    \n", + " Differentiates between Fact, Opinion, Prediction, as well as between temporal classes Static, Dynamic, Atemporal.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Multi‑event extraction
    \n", + "

    \n", + " Handles compound sentences and nested date references in a single pass.\n", + "

    \n", + "
  8. \n", + "
\n", + "\n", + "\n", + "\n", + "This process allows us to update our sources of truth efficiently and reliably:\n", + "\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "> **Note**: While the implementation in this cookbook is focused on a graph-based implementation, this approach is generalizable to other knowledge base structures e.g., pgvector-based systems.\n", + "---" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1.2. The Temporal Agent Pipeline\n", + "\n", + "The Temporal Agent processes incoming statements through a three-stage pipeline:\n", + "\n", + "
    \n", + "
  1. \n", + " Temporal Classification
    \n", + "

    \n", + " Labels each statement as Atemporal, Static, or Dynamic:\n", + "

    \n", + "
      \n", + "
    • Atemporal statements never change (e.g., “The speed of light in a vaccuum is ≈3×10⁸ m s⁻¹”).
    • \n", + "
    • Static statements are valid from a point in time but do not change afterwards (e.g., \"Person YY was CEO of Company XX on October 23rd 2014.\").
    • \n", + "
    • Dynamic statements evolve (e.g., \"Person YY is CEO of Company XX.\").
    • \n", + "
    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Temporal Event Extraction
    \n", + "

    \n", + " Identifies relative or partial dates (e.g., “Tuesday”, “three months ago”) and resolves them to an absolute date using the document timestamp or fallback heuristics (e.g., default to the 1st or last of the month if only the month is known).\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Temporal Validity Check
    \n", + "

    \n", + " Ensures every statement includes a t_created timestamp and, when applicable, a t_expired timestamp. The agent then compares the candidate triplet to existing knowledge graph entries to:\n", + "

    \n", + "
      \n", + "
    • Detect contradictions and mark outdated entries with t_invalid
    • \n", + "
    • Link newer statements to those they invalidate with invalidated_by
    • \n", + "
    \n", + "
  6. \n", + "
\n", + "\n", + "\n" + ] + }, + { + "attachments": { + "4d2883b2-99d8-460f-939d-6333d49d3cce.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAisCAYAAAAdq15EAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAGRqADAAQAAAABAAAIrAAAAABBU0NJSQAAAFNjcmVlbnNob3TneKKjAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMjIwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE2MDY8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K15DDjwAAABxpRE9UAAAAAgAAAAAAAARWAAAAKAAABFYAAARWAAKnJVAh4W4AAEAASURBVHgB7N11oBzF4Qfwwb24lBCkQJHilCTIDyjeUlyKBS2eBC0QEqBocEmCE6BQvLi7S3D3Fie0BYpbgf52DvbYvXfv5b2XTbJ5+5k/crd7u3M7n9ncH/t9MzPeF59+8r+gECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqIDCeYKQCvayJBAgQIECAAAECBAgQIECAAAECBAgQIECAQE1AMOJGIECAAAECBAgQIECAAAECBAgQIECAAAECBCojIBipTFdrKAECBAgQIECAAAECBAgQIECAAAECBAgQICAYcQ8QIECAAAECBAgQIECAAAECBAgQIECAAAEClREQjFSmqzWUAAECBAgQIECAAAECBAgQIECAAAECBAgQEIy4BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHKCAhGKtPVGkqAAAECBAgQIECAAAECBAgQIECAAAECBAgIRtwDBAgQIECAAAECBAgQIECAAAECBAgQIECAQGUEBCOV6WoNJUCAAAECBAgQIECAAAECBAgQIECAAAECBAQj7gECBAgQIECAAAECBAgQIECAAAECBAgQIECgMgKCkcp0tYYSIECAAAECBAgQIECAAAECBAgQIECAAAECghH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIFAZAcFIZbpaQwkQIECAAAECBAgQIECAAAECBAgQIECAAAHBiHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIyAYKQyXa2hBAgQIECAAAECBAgQIECAAAECBAgQIECAgGDEPUCAAAECBAgQIECAAAECBAgQIECAAAECBAhURkAwUpmu1lACBAgQIECAAAECBAgQIECAAAECBAgQIEBAMOIeIECAAAECBAgQIECAAAECBAgQIECAAAECBCojIBipTFdrKAECBAgQIECAAAECBAgQIECAAAECBAgQICAYcQ8QIECAAAECBAgQIECAAAECBAgQIECAAAEClREQjFSmqzWUAAECBAgQIECAAAECBAgQIECAAAECBAgQEIy4BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHKCAhGKtPVGkqAAAECBAgQIECAAAECBAgQIECAAAECBAgIRtwDBAgQIECAAAECBAgQIECAAAECBAgQIECAQGUEBCOV6WoNJUCAAAECBAgQIECAAAECBAgQIECAAAECBAQj7gECBAgQIECAAAECBAgQIECAAAECBAgQIECgMgKCkcp0tYYSIECAAAECBAgQIECAAAECBAgQIECAAAECghH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIFAZAcFIZbpaQwkQIECAAAECBAgQIECAAAECBAgQIECAAAHBiHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIyAYKQyXa2hBAgQIECAAAECBAgQIECAAAECBAgQIECAgGDEPUCAAAECBAgQIECAAAECBAgQIECAAAECBAhURkAwUpmu1lACBAgQIECAAAECBAgQIECAAAECBAgQIEBAMOIeIECAAAECBAgQIECAAAECBAgQIECAAAECBCojIBipTFdrKAECBAgQIECAAAECBAgQIECAAAECBAgQICAYcQ8QIECAAAECBAgQIECAAAECBAgQIECAAAEClREQjFSmqzWUAAECBAgQIECAAAECBAgQIECAAAECBAgQEIy4BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHKCAhGKtPVGkqAAAECBAgQIECAAAECBAgQIECAAAECBAgIRtwDBAgQIECAAAECBAgQIECAAAECBAgQIECAQGUEBCOV6WoNJUCAAAECBAgQIECAAAECBAgQIECAAAECBAQj7gECBAgQIECAAAECBAgQIECAAAECBAgQIECgMgKCkcp0tYYSIECAAAECBAgQIECAAAECBAgQIECAAAECghH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIFAZAcFIZbpaQwkQIECAAAECBAgQIECAAAECBAgQIECAAAHBiHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIyAYKQyXa2hBAgQIECAAAECBAgQIECAAAECBAgQIECAgGDEPUCAAAECBAgQIECAAAECBAgQIECAAAECBAhURkAwUpmu1lACBAgQIECAAAECBAgQIECAAAECBAgQIEBAMOIeIECAAAECBAgQIECAAAECBAgQIECAAAECBCojIBipTFdrKAECBAgQIECAAAECBAgQIECAAAECBAgQICAYcQ8QIECAAAECBAgQIECAAAECBAgQIECAAAEClREQjFSmqzWUAAECBAgQIECAAAECBAgQIECAAAECBAgQEIy4BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHKCAhGKtPVGkqAAAECBAgQIECAAAECBAgQIECAAAECBAgIRtwDBAgQIECAAAECBAgQIECAAAECBAgQIECAQGUEBCOV6WoNJUCAAAECBAgQIECAAAECBAgQIECAAAECBAQj7gECBAgQIECAAAECBAgQIECAAAECBAgQIECgMgKCkcp0tYYSIECAAAECBAgQIECAAAECBAgQIECAAAECghH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIFAZAcFIZbpaQwkQIECAAAECBAgQIECAAAECBAgQIECAAAHBiHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIyAYKQyXa2hBAgQIECAAAECBAgQIECAAAECBAgQIECAgGDEPUCAAAECBAgQIECAAAECBAgQIECAAAECBAhURkAwUpmu1lACBAgQIECAAAECBAgQIECAAAECBAgQIEBAMOIeIECAAAECBAgQIECAAAECBAgQIECAAAECBCojIBipTFdrKAECBAgQIECAAAECBAgQIECAAAECBAgQICAYcQ8QIECAAAECBAgQIECAAAECBAgQIECAAAEClREQjFSmqzWUAAECBAgQIECAAAECBAgQIECAAAECBAgQEIy4BwgQIECAAAECBAgQIECAAAECBAgQIECAAIHKCAhGKtPVGkqAAAECBAgQIECAAAECBAgQIECAAAECBAgIRtwDBAgQIECAAAECBAgQIECAAAECBAgQIECAQGUEKheM/O9//wsff/xxoR08wYQThqmmnLLQOlXWtQW+/fbb8Nlnn+UaOfEkk4TJJ5sst29UNr777rvw6aeftlnFhBNNFKacYoo2j/EhAQIECBAgQIAAAQIECBAgQIAAAQIEupJA5YKRGIos2aNnoX24wPzzh2uvvqrQOlXWtQXuvvuesN0OO+Qa2XvzzcNBBx6Q2zcqG9ffcEPYbY8926xi9u7dwx233drmMT4kQIAAAQIECBAgQIAAAQIECBAgQIBAVxIQjBTQm4KRAhArVsWYCEYGHnBguPjSS0cqe/cdd4Ru3WYd6XEOGLnAN998E0a8917uwDgKaMYZZ8zts0GAAAECBAgQIECAAAECBAgQIECAwNgTEIwUYC8YKQCxYlWMiWBkpVVWDW++9dZIZQcdfljYaMMNR3qcA0Yu8Nxzz4d11l8/d+Aaq68ehg4+KbfPBgECBAgQIECAAAECBAgQIECAAAECY09AMFKAvWCkAMSKVTG6g5G33n47/GblVXKqv5x33rDdttuEffvvn9u/1u/XDCccd1xun43OCQhGOufmLAIECBAgQIAAAQIECBAgQIAAAQJjUqBywciXX34Vjju+9YfAH/7nP+Gaa6/L9cEkyaLYm/5h49y+7MbMM88ctv/jH7O7vCfQpsDoDkYuveyysP/A/HolW/XeIuy+++5hyaV6hO+//75+fTPMMEN48L57w3jjjVff503nBAQjnXNzFgECBAgQIECAAAECBAgQIECAAIExKVC5YGRkuC++9FL4/drr5A6bZpppwqPDH8rts0FgVARGdzCy+557heuuvz53iScPGRxWX2212lRP8QF+tlx/7TVhvl/+MrvL+04ICEY6geYUAgQIECBAgAABAgQIECBAgAABAmNYQDDSAC4YaQCxOVoERmcw8r///S/0Wna58MEHH9SvPY4GefjBB8K0004bjjjyyHD2OefWP4tvBvbvH7beeqvcPhsdFxCMdNzMGQQIECBAgAABAgQIECBAgAABAgTGtIBgpEG8qGDkm2++CbffcUd48cWXwoj3RoRPPv4kzDTTTKFbt1nD0r2WDosssnDDNzfffP2NN8KXX36Z+zCuaZKWTz/7LDz5xJPh5ZdfDtNON22Iny2wwALpx7nXJ596Krz66qvh448+DvPNN19YbPHFwpRTTJE7ptnGyK4hfn7DDTeEd955t/Yw/mdT/yzM1m22sPzy/xcWW3TRZlW2a9/TzzwTHnjggfDee/8M//zXv0Kc0mzmmWcKs3fvHlZZeeXk/cztquff//53eD8TEsST5phjjjD5ZJPVzv/vf/8bXnjhxfD5F5/XppPq1bNnq/V+/fXX4ZVXXg0vvfxSiPfK22+/E34+y8xh9tnnCHPNOWdYdtllwoQTTtjq+ekHozMYeSm5F9Zca+30q2qvcTRIHBUSyx133hl22Gnn2vv0n5VWXDGccfpp6Wa7Xr/99ttw2+23h2eeeTa8/c47IW7PPNOM4ZfJd6255pphqimnrNUT79G3kzVPsmWmGWcM008/fXZX0/cx5Hn4kUfCY489FkaMeC/EvowjuGadddaw0EK/Cissv3yYYIIJmp6b3Tmye/jjjz8Ojzz6aPhXcp998cUXyb01S9KOeUc6iibeA/Ea0/L3v/89xNE62bLM0kuH/vvtm90Vxh9//JHWnTvBBgECBAgQIECAAAECBAgQIECAAAEChQkIRhooRzUYiWuYnJRMWXTZ3y4P8WFra2XhhRcKu/ftF1ZYYfnWDqntX3+jjcLTTz+TO+bVl14MH374Ydg1Of+xxx/PrRcRD+yx1FLh9FNPCVNNNVXtvHffHZE8CN+p9iA/W1F8oPyrXy1YW3h7jtlnz36Ue9/aNcR1Kg7688HhoksuyR2f3Yj1HzhwYFhyiSWyu1t9Hx8yX3jRReGcc/8S4sPs1kp8sBwDjL323CMsusgirR1W23/U0ceEM4cNyx1zwfnn1UKb3ffYM9x7//3hq6++qn0eQ40Xn3s2d2zciNd1bnJNxxx/fIihV2slOu69157ht2us0dohtf2jMxiJ13nYoEG5799yi83DgQf8sObIp59+Gpbs0TN338QQ45Fkurj2hDqx4r+cd3447YwzakFF7ot+3Jhi8snDUUcOCmusvnq46eabQ59+u+UO+1NitOMOO+T2NW5cnNxXZ541LLzx5puNH9W3f/7zn4fttt46bLXVlm2ukdLaPRxDsaOOPjpcfOll9XugXnnyJgZ7A/bvHxZfbLHs7vr7eedfIBeM1D8YyZv4f/OJRx8ZyVE+JkCAAAECBAgQIECAAAECBAgQIEBgdAgIRhpURyUYee3110OfJKyIf7HfnhKnN9pjt35h5yS0aG3h62YPdG+/9Zawy6592vyeGET85Zyzaw97/7DpZuHv//hHq5cUR7LEoCCOeGhWml3DS88/F/bbf/9w5VVXNzslty8+bD9w4ICw2aab5vY3bsTRAHvvs2+4Pxkl0t4Sw51dEr++fXat/RV+s/OaBSPR5vIrrgjXXHtd7pRmwUi8rn322y/ce9/9uWPb2lh3nbXDsckD99bK6AxGtt9hx3Dn3Xfnvnro4JNqIUW6c+311g/PP59fZ+SySy5uNQBIz/siGb20z7771cKOdF9rr9Hy2KOPqoUtHQlG4giT/vsPaNd3pN+92qqrhmOS74qBTLPS7B5+5cUXwg477tTCqvH8GBpd+Nfzm47EEow0atkmQIAAAQIECBAgQIAAAQIECBAgUH4BwUhDH3U2GPnPf/4T1kwWbY9T8XS0tPXX880e6La3/jhd11fJCJaXX3llpKfMmExtdM2VV4T42liaXUMMUzra1rPOOD2suMIKjdXXtuMD9402/kObYU/TE3/cucMf/xj2+dPeTQ9pFow0PTDZ2RiMxJEiG2y8cYtRO62dn91/zFFHhfXWXSe7q/5+dAUjcTqrXyejQT77/PP6d2XXF0l3Hp6MKImjcrIlhnS77rJLdleL93/ad992hWHpiTG4iuuavP/+++mu2mtr93z0/mMykuTue+7NHd+ejRWSqduGnXlm00Ob3cPLLrNMu0O4GWaYIVxy0YWhcWSVYKQpt50ECBAgQIAAAQIECBAgQIAAAQIESi0gGGnons4GI/Evz++4666G2kL4xVxz1dZCmC55OPzmm2/V1kvIPrSOJ8SH8VdcdmlYcMEFW5zf7IFuPCg+7P71kkuG2WbrFh58aHiyDsd7Lc7N7ohTDi2x+OIhBjgPDR+em0YpPa61h9WtXUN6XhxpEtc1iW18NVlj4dlnn809mE+Pm2666cJN118X4mtj2S2Z0ur6ZJ2SxhKnzIr1zzvvvMnaD5+HF5I1W+IIjmalcVREesyoBCPXXnd92GOv/JoRsb82ScKSXr161ta7ePfdd2tTp8U1KrIlrt9y79131ac0y342uoKRx594Imy8SX5kzi8Tuxuuuzb79bX1b3bcOR+C9OzRozZyKHdgZuPqa64Ne/3pT5k9P72Na+csuMCCYdafz1Kb+urZ555vEYb8dHQIrd1rw4adHQY1GWkT1yOJo6C6zfrzZL2Zf4cnnnwyWXNkRLbK2vuDkunCeifThjWWtu7heI/FwCOuu/PVV1+G55P1ZpqFfnMm69LcctONuZFJv13z97mptOIaNG81rKcS74NZZpkld0lTJPsuT/7PKwQIECBAgAABAgQIECBAgAABAgQIjHkBwUiDeWeCkbjOR5yuKlviw/PDDz0kGTGwbu5Balwb5ICD/hxuvuWW7OHJSIrlw1nJmg2NpdkD3ckmmzScdsopIf7Feyzxr+yHP/xwbVqgOPKisayz9lrhiMMOqy1eHj+LwcLBhx7WYqqiuI5CnE6psTS7hnhMfFh9wID9w++ThbazJbbxsCOOaDFNVTym2QPxF154Iay17nrZKmrv4zosRyb1xIXDsyU+oD/08MPDRx99lN1de7h92y03t5iWrLVgZNJJJw1b9e4dVl55pdB9ttnqPj/72c/q9W61zbYtRhUcdsjBYZM//KF+TPpmlz59wy233ppu1l7jFGUxcGgsoysYGXryyeHEwUNyX9d7883DQQf+sL5I+sEnn3wSft2zVy4gm2iiicLjyULn8f5qVuKC7o3TxMVppuKaKptusknuPo/rsJxy6mm1dUjiKJbG0uw+iOu8LL3sciFOpZUtW/XeIuy55565abLi2iBnJKNDTjhpcPbQEPtu+AP3h9iWbGntHo6B4UknHF8LDdPj4/WenvxfbKw7ft5af6bnPpcEQuusv366WXuN66zE0E4hQIAAAQIECBAgQIAAAQIECBAgQKAcAoKRhn7oTDAy8IADk8Wb83/9PSBZk2KbbbZuqP2HzfhX5etvuFHuIXMMUu6/5+5a2JA9qdkD3R233z78ae/8KIZ4zhFHHhnOPufc7Om1EQ133n5biA+wsyX+Rfwy/5df+D0+JL73rjuzh9XeN7uGOEXSFZddVlu8vcUJP+7Yfc+9wnXXX5/7eJ655w433ZDfd8CBB7VYwD2GIVcnU3tFl2YlPqBfJ1kno/Ghe1w7JA2M0vOaBSPx+i+64K+5B+Lp8Y2v8WH3DTfeGG686abaA/c4+iKe31gefeyxsMlm+dEKrY1gGF3ByGZb9K6NSspeW2sjaWIYFUOpbDk3WaR+ueWWze6qvX/mmWfDehtu2GJ/W9OjxYPPPvuccEQypVhjaRaMxPVe9tw7Px3aKiutFE479ZTG0+vbzf7vnTxkcFh9tdXqx8Q3ze7heG/FESCzd++eOzbd2DlZx+fW225LN2uv2227TeifTCfWWhGMtCZjPwECBAgQIECAAAECBAgQIECAAIHyCAhGGvqiM8HIUr2Wrk1RlVYV/+L+4QcfavUv7+NxzR4YDzr8sLBRw8PnZg9041oHcVqhxvK3yy9PFkQfkNsdF6U+ZWh+BEF6wOK/Xip8+umn6WaYeOKJw/PPPF3fTt80u4Zttt4qDOjfPz2k6esHH3wQVllt9RYjAO6+444Qp15KS4+llwlxlEm2XHrxRSMNLQYlD9yHJQ/es2XzZIH3g/98UHZXaBaMbLDeeuGoIwfljmvPRhxpkR1Rkj2nWdjU7HriOaMjGImjhZZcqkeIoynSEqdciyMomk1f1mydke232y7su0/L6bLi6Iyjjz0urbb2+rvf/jYMPvGE3L7Gje+++64WYMX/V9nSLBiJC7TfdPPN2cNGOkLj2WefC+tusEHunGYL3ze7hzdLRrkccvCfc+dmN+64886ww047Z3eFkbVZMJLjskGAAAECBAgQIECAAAECBAgQIECglAKCkYZu6WgwEh9GL7LY4rlaYjAyzzzz5PY1bnz6yafh9TfeyO3eZaedwp577J7b1+yB7n3JuhWNaxbEk+IaHXGtjmxpK8CII0ayaynEv6B/8blns6fX3je7hmYjM1qcmOzovdXWyRooD+U+ygY7XyaLwy+cTOGVLfEh/sMPPpDd1fR9XNNj0823yH3WbEqyZsHIAQMGhK227J07d2QbcW2YV5KF7F9KHvK/+uqryXoUX+dO+errr8JVV1+T29daADM6gpF7770vbJMsQp8t8yb34Y3Jui7Nym233x522mXX3Ee/+tWC4eorrsjtixuHHHpoOO+vF+T2H3HYoWHjjTbK7Wu2cXgyHdo5fzkv91GzYKTZfRbX3ZlggvFz52Y3vv/++xDDiGyJoWG8x7KlWd2nnXJyWGXllbOH5d7H9XLW+F1+mrgeSy0VLvzr+bnjshuCkayG9wQIECBAgAABAgQIECBAgAABAgTKKSAYaeiXjgYjr73+elh19TUaauncZrOH6M0e6D7y0INh2mSh88YSp62K01dly0477FBbAyK7L30/KsFIa+FMWnf6etCfDw4XXHRRull7HXLSieG3a/xg1swvLip/8YX5h/C5Cn7ceP/990OvZE2KbIlTcF1/bT6caBaMtDa9VLau9H0cVbPPfv1bTKuUft7Wa7M+jcePjmDkyGTR8rOSxcuzZeaZZw5x7ZhmJS5mf08SpmRLXIg83l9TTz11dndotn5KNuDKHdywcfEll4SByXRp2dIsGFl6uf+rrX+TPa4z72fr1i3cdcftuVOb/T+K90nj+jXZk+JaPPGasmWJxRcPcTRTa0Uw0pqM/QQIECBAgAABAgQIECBAgAABAgTKIyAYaeiLjgYjTz/zTG29kIZqOrW5avLX66cmf8WeLc0e6JYhGIkjS1pb/yN7/Scni8Q3LmKdHWnw1NNPhw022jh7SmjvYtVx0fn5FvxVbgHxZuukjEowEqdq6rvbbuGtt9/OXWN7N8ZkMLJ2subK88/nR0+09zqzxzULjbbfYcdw5913Zw8L1159VVhg/vlz+5ptxFE0e++zT+6jZsHIQosulozC+Sp3XGc24no6Tzz2aO7UZv+P4qikZlOMpScKRlIJrwQIECBAgAABAgQIECBAgAABAgS6loBgpKE/OxqMvP3OO2HFlfLT8cSptLrN2q2h5pFvLt2rVzjowANyBzZ7oFuGYOT2W28Jc8w+e+5am23sP2BguPRvf8t9dOrJQ8Oqq6xS2xcDh9+s/MP79KBFFlm4trB7ut3a67vvjgjL/+Y3uY+bTQXV2WDko48+Civ8ZqXw+Rdf5L6jIxtjKhiJ1xrXuolh0aiWZmtvNOvHuL5IXHNjZOWEE08KJ596au6wZsHICslC6++8827uuLl/8YsQ10npSJl8islb3D8d+X+UfpdgJJXwSoAAAQIECBAgQIAAAQIECBAgQKBrCQhGGvqzo8FIXOh6wYUXyT2QnnXWn4d7koWbiygdeaA7JqfSOuuM08OKK6ww0iZustnm4dHHHssdd8XfLguLLLxwbV8zv2Z/8Z+r4MeN++9/IGy17ba5j2LgEoOXbOlsMHLa6aeHY4/PLy4+wwwzhJ223z4su9yyYfbu3bNfE955992w2hr5oGBMBSNx0fK4eHkRZc455gi33ZJfBP2kwUPCkJPzo5namqYtex077LhTuOOuu7K7QrNgZONNNg2PP/FE7rg7b78tdJ9ttty+zmx05P9RWr9gJJXwSoAAAQIECBAgQIAAAQIECBAgQKBrCQhGGvqzo8FIPD2OGIkjR7JlZCMq4l/4x/Udfr/m70Jc16G10pEHumMyGIlrhMS1Qtoq/3jttbDmWmuHGH5ky0P33xdiwJCWZiMFsuuQpMc1vvbdbfdw40035XZvt+02of++++b2dTYY6bf7HuGGG2/M1TWwf/+w9dZb5falG3cmD/+3T0KAbBlTwcgByRoeFyVreRRV7r3rzhCnJUtLs+BlisknDzdcd13o1m3W9LAWrw8NHx56b7V1LjiMBzULRvZN1nG5/Morc3Vkp13LffDjRhwhc3myWPxvk5Er8XpaKx35f5TWIRhJJbwSIECAAAECBAgQIECAAAECBAgQ6FoCgpGG/uxMMHJcMqrg1GR0QbbERZov/Ov5TdfhiA9z41/RxzUb4uLPe+y+W1glWV+kWenIA90xGYzEaz0tWQ+ltev+7rvvwpZbbxOGP/xwrlnNFq8+/oQTwymnnZY7bsYZZwzXX3N1q2tA3HrbbWHnXfvkzokb11x5RVhwwQVz+zsbjGzee8sW13/DddeGX847b67+dGOnnXcJt91xR7pZe11v3XXCMUcdldsXN4pefH3lVVcLb7z5Zu574lRXK664Ym5fs43Ne/cOzzzzbO6jo48cFNZfb736vm+++aa20P0nn3xS3xffLLboouGkE05oGo7E9Vl27de3xfRY8bxmwch9990ftt5uu/hxvUwzzTTh2quuzIU09Q+TN2eedVY46phja/fJLjvuGDbbbNMw8cQTZw+pve/I/6P05KKCkdVWXTWcMnRIWq1XAgQIECBAgAABAgQIECBAgAABAgTGsoBgpKEDOhOMvPb667UplBrXd1hyiSXCnw86MLdAdXywfOxxx4cLL744983LLrNMOPfsYS3WU+jIA90xHYzExdf/mExltcsuO4fJJ5us3p74QHxAslbKc8+1XAj8sEMODpv84Q/1Y+ObONpmpVVWzS2iHvfHhbEPGDAgWY9k5TDppJPGXeGDDz4Ip51xRvjLeee3OD5OzxWn6WosnQ1G/pSMPLnyqqtz1W2z1ZZhwP775/Z9/fXX4cSTBoczhw3L7Y8bcVqqv573l9oImQkmmKDev0UGI3FdjjjqJlviuhyPDn8oTD311NndTd8fefTR4axhZ+c+W2fttcJxxxyT23f4oEHhnHP/ktsXN2Lfb7H55mHhhReqBRivvfZ6eCyZPu2yyy8PMSBrVpoFI99//33SjpXDiBEjcqfEqekGJCN1Vl9ttfr+b7/9NlyWrF1z8KGHhfg+LXGUyxWXXRpisJYtHfl/lJ7XmWDkhRdeCGut+1OgFOuaZZZZwiUXXhhmnnmmtOraKLG2RorVD/SGAAECBAgQIECAAAECBAgQIECAAIHCBQQjDaSdCUZiFc0eLqdVzzTTTGGuOecMcfqs+Ff9X331VfpR/TWOKoijCxpLRx7ojulgJL3W+MA/LsQ+7bTThlf//vfw8ccfpx/lXueZe+5w1RWX10OO7IfNRo2kn8cHyHE9j88+/zy8//776e7caxwlcNEFfw2LLrJIbn/c6GwwcnEyNdXAZIqqxjLzzDOH5ZdbLsT2xP68+957mo6KaDwvBiS9evas7S4yGIlTSe3bPx/WzD/ffOG6ZMRNe0qzKcBisPDgfffmTv/iyy/DuuutH+IUaaNamgUjsc5m15J+11RTTVUz//a7b8Mbb7wZGkevxOM22mCDMOiIw9NT6q8d+X+UntSZYOTTzz4Liy/567SKVl9ba3+rJ/iAAAECBAgQIECAAAECBAgQIECAAIHCBAQjDZSdDUbiX63HhcaffOqphhpHvrnh+uuHIwcd0fTAjjzQHZPBSAwFYgjS3hKDi8svvSQssMACTU+JowV22GmncNfd9zT9fGQ7Bx1+WNhoww2bHtbZYCSOBFll9TVajGBo+iXJzjgyYK0112w6ciSeM7qCkT333jtcc+11ucvaqvcW4YCBA3P7Wtv49NNPw5I9erYYgXPj9deFeeeZJ3da/P8Rp0j78MMPc/tb21i6V69aaHbxpZfmDmkrGBiUhITDzj4nd3x7NuK0dJcl91h29FJ6Xkf+H6XndCYYief+fu11QnRqq7TV/rbO8xkBAgQIECBAgAABAgQIECBAgAABAqMuIBhpMOxsMBKriX9Rf8CBB4arr7m2odbmmxNNNFHYN3mo3dpi3vGsjjzQHZPByCMPPRji2iqND7ybtXT66acPcb2Lnj16NPu4vi+uY3Hs8cfXpmtqnJasflDDmzhKJU7PlZ1mqeGQTo8YifX861//Cjvtsmt4+plnGqvNbcdRMyedcHxYLhlJEtf7iFN+NZbRFYwsvdz/hfgQP1uGDj4prLH66tldbb5fOxkJ8vzz+anPDkyClS2TgKWxvPfee6FPv91GGgL2WGqpcPppp4brr7++xcibkQUDZyfByNHHHZebJqvxOrLb66+3bjJt3UFNQ5F4XEf+H6X1djYYeezxx0NcnyY7xVdaZ/o6svanx3klQIAAAQIECBAgQIAAAQIECBAgQKB4AcFIg+moBCNpVTfdfHM4/68XhIcfeSS09oB/kUUWDgcn0zTFdRnaKh15oDumg5Gf/exn4ZJkJMBJQ4Y2DQLiuiC//93vwu679auNpmirndnPHnn00doaInFapThqo1mJUz2t9fs1w/bJYt2N60k0Ht/ZESNpPfEaDj7k0HDNddc1nQYtBj8nHn9ciKMjYnnl1VfDpZddFu666+4Q159Jy+gIRl5+5ZXwu9+vlX5F/fXhBx9odeH6+kGZN83WD1klWbfktFNPyRz109t4X8fF0mMwFkOjf/7zn7X1U7rNOmuYa645awu3r5n0fSzNpiRrTzAQF4Qfds454ZZbbw0xNGtWunWbNeyehDTNpqHLHt+R/0fpeZ0NRuL5L738cjj22OPCs0nY1Bhaxc/b0/54nEKAAAECBAgQIECAAAECBAgQIECAQPECgpHiTes1vvnWWyEuxjxixHu1qYemSRbCni55iP7rXy8ZZuvWrX5c2d+M7KFyHCnz4osv1tZ9ePvtt8JUU04Vus3WLcQRA+1Z/Lu19sf1Gh5/7PEw4r0RyciNf4dJJpk4zDTTzGH22buHxRZdNMRRGmOyxIXE//6PfyQjK14IryeBx1RTThl+MfcvwjJLL51c2yRj8lJK913p6IgJJ5ywxbV1NhhJK4pr1jz55FO1++C99/4ZJpts0hDDqPnnmz8stNCv0sO8EiBAgAABAgQIECBAgAABAgQIECBAoF0CgpF2MVX7oJEFI9XW0fqRCYxqMDKy+n1OgAABAgQIECBAgAABAgQIECBAgACBjggIRjqiVdFjBSMV7fiCmn3a6acna8eckKvNVFI5DhsECBAgQIAAAQIECBAgQIAAAQIECIxBAcHIGMQeV79KMDKu9tzoue64hk6cTqw95cuvvgzXXHtdizVoBvbvH7beeqv2VOEYAgQIECBAgAABAgQIECBAgAABAgQIFCogGCmUs2tWJhjpmv3a2Vbts99+4Yorr+rs6bXzhp1xRlhhheVHqQ4nEyBAgAABAgQIECBAgAABAgQIECBAoDMCgpHOqFXsHMFIxTp8JM0d1WBkhhlmCLfefFNt8fqRfJWPCRAgQIAAAQIECBAgQIAAAQIECBAgULiAYKRw0q5XoWCk6/XpqLRoVIKRySebLJx04gnhNyuuOCqX4FwCBAgQIECAAAECBAgQIECAAAECBAh0WkAw0mm66pz454MPCf947bVcg08eOsRf/OdEqrNx1rBh4Z577+tQg6eccsowz9xzh4022jB0n222Dp3rYAIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBQpIBgpUlNdBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkFBCOl7h4XR4AAAQIECBAYswLDH344DB/+cP1L+/XtU3sf9w8eMrS+/4Lzz6u/37z3lvX3Y2t/vM6ePXrUriNeZ7zeWMbW/ngtzezsL9c9VIZ7JXuPZv+fuVd+uFeyDvH/dOPvTdqHWcd4nEKAAAECBAgQIECgLQHBSFs6PiNAgAABAgQIVEAgPoyNDx9jie/TB49xXxp0ZPfH41596cX4UivzzDd/+nas7Y/XmbYhXn+83ljG1v5+ffrUg5H44Hbw0B8e8o6t/a315djaH/umDPdQGe6V7D1ahnsle49m/9+PrXsl+73xvmn8vcluZy3jsQoBAgQIECBAgACB1gQEI63J2E+AAAECBAgQ6OIC8aFnOjokHd0Qm5w+aMw+kMw+II3HlOGhdnqd8XqyD0TL8LA7+3C5DA+7W+vLsbW/LPdQGe6V7L1bhnsle+9m/9+PrXsl+73xvsn+v4+/Q43b8ZhYYt/Gc7O/bT984l8CBAgQIECAAAECIQhG3AUECBAgQIAAgQoKZB94xuZng44hP45u6JE8VIwPFtMSz0mL/T9IjCsO8WrHlWt1neW5t+KVlP3/fby+h3/8beqbjNRKrzkGI7Fkg57aDv8QIECAAAECBAgQSAQEI24DAgQIECBAgEBFBVr7a/mKcmg2AQJdRCA78iYGbXFUjkKAAAECBAgQIEAgKyAYyWp4T4AAAQIECBComEAMRyxaXLFO11wCFRCI4UgcTSIUqUBnayIBAgQIECBAoBMCgpFOoDmFAAECBAgQIDCuCsQgxIPCcbX3XDcBAgQIECBAgAABAgQIFCEgGClCUR0ECBAgQIAAgXFAIJ1eJk4tY5TIONBhLpEAgUIE4m9fLIOT9ZOy6ykVUrlKCBAgQIAAAQIExkkBwcg42W0umgABAgQIECDQcYF55pu/flIcNZJd5Lr+gTcECBDoYgLZ3z6LsXexztUcAgQIECBAgEAnBQQjnYRzGgECBAgQIEBgXBPIjhgxnda41nuulwCBzgqkv33x/N369gl9+/TpbFXOI0CAAAECBAgQ6CICgpEu0pGaQYAAAQIECBBor0BckNhokfZqOY4Aga4gMCSZRksg0hV6UhsIECBAgAABAsUICEaKcVQLAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMA4ICEbGgU5yiQQIECBAgACBURGII0SyxWiRrIb3BAgQIECAAAECBAgQIFA1AcFI1XpcewkQIECAAIHKCcRgZPPxanEaAABAAElEQVTeW9baHUMR64tU7hbQYAKVF4i/g3GtkXQqQb+Dlb8lABAgQIAAAQIVFxCMVPwG0HwCBAgQIECg6wsIRrp+H2shAQJtC/gdbNvHpwQIECBAgACBqgkIRqrW49pLgAABAgQIVE4g/Uvp2PBePXtYgLhyd4AGEyAgGHEPECBAgAABAgQIZAUEI1kN7wkQIECAAAECBAgQIECgSwrEcCQt1lpKJbwSIECAAAECBKopIBipZr9rNQECBAgQIECAAAECBAgQIECAAAECBAgQqKSAYKSS3a7RBAgQIECAQNUE/KV01XpcewkQIECAAAECBAgQIECgNQHBSGsy9hMgQIAAAQIEuoiAufW7SEdqBgECnRaIv4ODhwytnR+n0erXt0+n63IiAQIECBAgQIDAuC8gGBn3+1ALCBAgQIAAAQJtCghG2uTxIQECFRDwO1iBTtZEAgQIECBAgEAHBAQjHcByKAECBAgQIEBgXBTI/qV0r549Qt8+/lJ6XOxH10yAQOcFBCOdt3MmAQIECBAgQKArCghGumKvahMBAgQIECBAgAABAgQI5ARiOJKWOJ2WQoAAAQIECBAgUF0BwUh1+17LCRAgQIAAAQIECBAgQIAAAQIECBAgQIBA5QQEI5Xrcg0mQIAAAQIEqijgL6Wr2OvaTIAAAQIECBAgQIAAAQLNBAQjzVTsI0CAAAECBAh0IQFz63ehztQUAgQ6JRB/BwcPGVo7N06j1a+vtZY6BekkAgQIECBAgEAXERCMdJGO1AwCBAgQIECAQGsCgpHWZOwnQKAqAn4Hq9LT2kmAAAECBAgQaJ+AYKR9To4iQIAAAQIECIyzAtm/lO7Vs0fo28dfSo+znenCCRDolIBgpFNsTiJAgAABAgQIdFkBwUiX7VoNI0CAAAECBAgQIECAAIFUIIYjaYnTaSkECBAgQIAAAQLVFRCMVLfvtZwAAQIECBAgQIAAAQIECBAgQIAAAQIECFROQDBSuS7XYAIECBAgQKCKAv5Suoq9rs0ECBAgQIAAAQIECBAg0ExAMNJMxT4CBAgQIECAQBcSMLd+F+pMTSFAoFMC8Xdw8JChtXPjNFr9+lprqVOQTiJAgAABAgQIdBEBwUgX6UjNIECAAAECBAi0JiAYaU3GfgIEqiLgd7AqPa2dBAgQIECAAIH2CQhG2ufkKAIECBAgQIDAOCuQ/UvpXj17hL59/KX0ONuZLpwAgU4JCEY6xeYkAgQIECBAgECXFRCMdNmu1TACBAgQIECAAAECBAgQSAViOJKWOJ2WQoAAAQIECBAgUF0BwUh1+17LCRAgQIAAAQIECBAgQIAAAQIECBAgQIBA5QQEI5Xrcg0mQIAAAQIEqijgL6Wr2OvaTIAAAQIECBAgQIAAAQLNBAQjzVTsI0CAAAECBAh0IQFz63ehztQUAgQ6JRB/BwcPGVo7N06j1a+vtZY6BekkAgQIECBAgEAXERCMdJGO1AwCBAgQIECAQGsCgpHWZOwnQKAqAn4Hq9LT2kmAAAECBAgQaJ+AYKR9To4iQIAAAQIECIyzAtm/lO7Vs0fo28dfSo+znenCCRDolIBgpFNsTiJAgAABAgQIdFkBwUiX7VoNI0CAAAECBAgQIECAAIFUIIYjaYnTaSkECBAgQIAAAQLVFRCMVLfvtZwAAQIECBAgQIAAAQIECBAgQIAAAQIECFROQDBSuS7XYAIECBAgQIAAAQIECBAgQIAAAQIECBAgUF0BwUh1+17LCRAgQIAAgYoImFu/Ih2tmQQItCqQXWspTqPVr6+1llrF8gEBAgQIECBAoAICgpEKdLImEiBAgAABAtUWEIxUu/+1ngCBEPwOugsIECBAgAABAgSyAoKRrIb3BAgQIECAAIEuKOCBYBfsVE0iQKBDAn4HO8TlYAIECBAgQIBAlxcQjHT5LtZAAgQIECBAgAABAgQIEIjhSFridFoKAQIECBAgQIBAdQUEI9Xtey0nQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVExCMVK7LNZgAAQIECBAgQIAAAQIECBAgQIAAAQIECFRXQDBS3b7XcgIECBAgQKAiAubWr0hHayYBAq0KxN/BwUOG1j6P02j169un1WN9QIAAAQIECBAg0PUFBCNdv4+1kAABAgQIEKi4gGCk4jeA5hMgEPwOugkIECBAgAABAgSyAoKRrIb3BAgQIECAAIEuKOCBYBfsVE0iQKBDAn4HO8TlYAIECBAgQIBAlxcQjHT5LtZAAgQIECBAgAABAgQIEBgy9IeptKJE3z6m0nJHECBAgAABAgSqLCAYqXLvazsBAgQIECBAgAABAgQIECBAgAABAgQIEKiYgGCkYh2uuQQIECBAgAABAgQIECBAgAABAgQIECBAoMoCgpEq9762EyBAgAABApUQMLd+JbpZIwkQaEMg/g4OH/5w7YiePXuEnj16tHG0jwgQIECAAAECBLq6gGCkq/ew9hEgQIAAAQKVFxCMVP4WAECg8gJ+Byt/CwAgQIAAAQIECOQEBCM5DhsECBAgQIAAga4n4IFg1+tTLSJAoGMCfgc75uVoAgQIECBAgEBXFxCMdPUe1j4CBAgQIECAAAECBAgQCEOGDq0r9O3Tp/7eGwIECBAgQIAAgeoJCEaq1+daTIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKisgGKls12s4AQIECBAgQIAAAQIECBAgQIAAAQIECBConoBgpHp9rsUECBAgQIBAxQTMrV+xDtdcAgRaCMTfweHDH67t79mzR+jZo0eLY+wgQIAAAQIECBCojoBgpDp9raUECBAgQIBARQUEIxXteM0mQKAu4HewTuENAQIECBAgQIBAIiAYcRsQIECAAAECBLq4gAeCXbyDNY8AgZEK+B0cKZEDCBAgQIAAAQKVEhCMVKq7NZYAAQIECBAgQIAAAQLVFBgydGi94X379Km/94YAAQIECBAgQKB6AoKR6vW5FhMgQIAAAQIECBAgQIAAAQIECBAgQIAAgcoKCEYq2/UaToAAAQIECBAgQIAAAQIECBAgQIAAAQIEqicgGKlen2sxAQIECBAgUDEBc+tXrMM1lwCBFgLxd3D48Idr+3v27BF69ujR4hg7CBAgQIAAAQIEqiMgGKlOX2spAQIECBAgUFEBwUhFO16zCRCoC/gdrFN4Q4AAAQIECBAgkAgIRtwGBAgQIECAAIEuLuCBYBfvYM0jQGCkAn4HR0rkAAIECBAgQIBApQQEI5Xqbo0lQIAAAQIECBAgQIBANQWGDB1ab3jfPn3q770hQIAAAQIECBConoBgpHp9rsUECBAgQIAAAQIECBAgQIAAAQIECBAgQKCyAoKRyna9hhMgQIAAAQIECBAgQIAAAQIECBAgQIAAgeoJCEaq1+daTIAAAQIECFRMwNz6FetwzSVAoIVA/B0cPvzh2v6ePXuEnj16tDjGDgIECBAgQIAAgeoICEaq09daSoAAAQIECFRUQDBS0Y7XbAIE6gJ+B+sU3hAgQIAAAQIECCQCghG3AQECBAgQIECgiwt4INjFO1jzCBAYqYDfwZESOYAAAQIECBAgUCkBwUilultjCRAgQIAAgaoKxIeCaTGFTCrhlQCBKgkMGTq03ty+ffrU33tDgAABAgQIECBQPQHBSPX6XIsJECBAgAABAgQIECBAgAABAgQIECBAgEBlBQQjle16DSdAgAABAgQIECBAgAABAgQIECBAgAABAtUTEIxUr8+1mAABAgQIEKiYQJxGa/CQH6aQidNo9etrCpmK3QKaS6DyAvF3cPjwH6YU7NmzRzClYOVvCQAECBAgQIBAxQUEIxW/ATSfAAECBAgQ6PoCFh3u+n2shQQItC3gd7BtH58SIECAAAECBKomIBipWo9rLwECBAgQIFA5AQ8EK9flGkyAQIOA38EGEJsECBAgQIAAgYoLCEYqfgNoPgECBAgQIFANgfhQMC2mkEklvBIgUCWBIUN/mFIwtrlvH1MKVqnvtZUAAQIECBAg0CggGGkUsU2AAAECBAgQIECAAAECBAgQIECAAAECBAh0WQHBSJftWg0jQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGgUEI40itgkQIECAAAECXUwgTqM1eMgPU8jEabT69TWFTBfrYs0hQKAdAqYUbAeSQwgQIECAAAECFREQjFSkozWTAAECBAgQqK6ARYfHTt+//8EH4c033wxvvfV2eHfEiDD99NOFObrPHrrP3j3MMvPMYfzxxx87F+ZbCVRQwO9gBTtdkwkQIECAAAECbQgIRtrA8REBAgQIECBAoCsIeCA4Znvxiy++CKefeWZ49rnnW/3iGJL03WWX0L1791aP8QEBAsUJ+B0szlJNBAgQIECAAIGuICAY6Qq9qA0ECBAgQIAAgZEIxIeCaYnTaSmjRyCODBky9OTwr3//e6RfMMnEE4c/brdtWGLxxZseG0ecHHf8CfXPVl5ppbDKyivVt0fHm7HxnaOjHWWu85LLLgtPPvlU/RKPOOzQMN5449W3vRk9AvE3MJ1SsFfPHqFvH1MKjh5ptRIgQIAAAQIExg0Bwci40U+ukgABAgQIECBAoOQC33//feg/YGCI4UJaJphggjDXnHOGn/3sZ+HD/3wYRrw7Inz9zTfpx7UH4nvuvltYcIEF6vvSN//817/C/gMPSDfDWmuuGdZdZ+369uh4Mza+c3S0o8x1njlsWHho+E9B5VmnnyYYKXOHuTYCBAgQIECAAIEuKSAY6ZLdqlEECBAgQIAAAQJjWuDpZ54NJw0ZUv/aWX/+87DHbv3CdNNNV9/31ddfh7POGhaeeOqnEQML/WrB5Ljd6sekb8ZGSDE2vjNtb1VeBSNV6WntJECAAAECBAgQKLOAYKTMvePaCBAgQIAAAQIFCGSnkInTaPXrawqZAlhbVHHzLbeES/92eX3/jtv/MfRYaqn6dvrmu+++C313270+cmTiZEqtU4f+FKikx42NkGJsfGfa3qq8CkbGXk+bUnDs2ftmAgQIECBAgEDZBAQjZesR10OAAAECBAgQKFggPgzcvPeWtVpjMHLB+ecV/A2qiwI33XxzuOzyK+oYO2y3XeiZrGXQrBx3wonh+RdeqH904nHHhqmmmirEUScff/xRbf8nn3wSrrjq6voxiy68cFh88cXq23PNNVeYrVu3+nb6Jq5v8tJLL4W33347vJNM3TXpJJOEGWeaMcw7zzxN1zMp4js//vjjZHqo4eH1N94MH330UZh00knCDNPPEJZccokw/3zzpZfW4vX+Bx4IcQqyWGaaaaYw3y9/mbT/4/DSyy+H115/vVbHL+edJ8w222z16aa+SaYi+8drr4VXXnklfPvtd2GepF3zzDN3mGzSSVvUn93xv//9LzF/MTzxxBPhgw8/CF9++VWYdtppw5xzzBGWXWbpMOWUU2YPr79/8623whtvvFHfXioJu6Lp2++8E55KRv589NHHYfrpp0+mQ5s/dO/evX6d6QmxPU8/80y6Ge6+595a29IdW/Xeon7OBONPEJZJrkUpXsDvYPGmaiRAgAABAgQIjMsCgpFxufdcOwECBAgQIECgHQIeCLYDqYBDXn/9jXDoEUfUa/pFElz067NrLfCo7/zxzXXXXx+eefa5+u6dd9whTDPNNOGY444PLyahRnvKRhtsENZYfbX6ofHB/+133Bn+dsUV4b///W99f/ZNXO9k2222DnGar7SMynfGOh544MFw7vnnhzgSplmJwchuySilODKmsey0a5/6tS6zdK+wwvLLhxNOPCnEKceyJX627dZbhxgWHXHkUbl1XOJxMeD40157hpmTcKVZ+fLLL8NxJ54YXnvt9WYfh4kmmijEET6LL/ZT8JQeeONNNyWmV6ab4ahBR4THH38ixEXUG0sMt/ZK1oyJAUlaXk4CnKOOOTbdbPN1ksTolCajh9o8yYftEvA72C4mBxEgQIAAAQIEKiMgGKlMV2soAQIECBAgUGWB+FAwLXHUiFK8QAwm+u2xZ/jiiy/qlcdF15fu1TMsusgiIQYl8QF8W2VUQoqLL7kk3Hr7HW1VX/vs57PMEg4YMCBMMskPQcWofOfwZBHxM88+O8S2t1UWWXih0GeXXUJcjD5bssHIZJNNlowe+S58/fVPi9Nnj43Tkr377ru1kRrZ/en7qaeeOhywf/9aSJLui69ffvVVOO74E3KjNLKfp+9j38QAZ4H550931V4bg5EY0jz40PBW2xzDkf777lMPaQQjOc6xthF/AwcPGVr7/l7JSK6+fUwpONY6wxcTIECAAAECBEogIBgpQSe4BAIECBAgQIAAga4hcM+994a/XnhR09ETMYhYcIEFwxLJqIRFF10kTDHFFC0aHafjenfEiNr+ONXT48m0T2mZPRmF0L37bOlmWOrXS4WFF/pVbXvEe++Fgw4+pP69MSRYdumlw6+Shd1jmDD84UfCq3//e/3c9dddJ6z5u9/Vtjv7nU8m00idfOpp9amwYmVzzjlHWCwJgeJaJU899XT4IhmpkZb4MHr7ZHqxbMkGI+n+OJ3WPHPPXWt7bFdjidNYLd2rV7JGy9e1kRvZ0SVbbrF5bdRJek4cxXL0scfl2h4DmMUXWzTMNOOM4YmkDW8k03+lJda9z957hznmmD3dFRqDkfjBeOONF+LUZrPPPnsShH0eHnviyfCf//ynfs5cc80ZBvbvX9t+75//DDfceGP9s5deejk34iVO45WWiSacKPRO2qAQIECAAAECBAgQIDB6BQQjo9dX7QQIECBAgAABAhUTeOHFF8Opp58RPv/881ZbHkdOLJM83N90k03qIzcaD+7IQuhxHYzbbrs9PP7kk8naGV+G3fv1q4cmsd4YHuy51971Bd8XX3TR0GfXXRq/shZo7D/wgPr+tdZcM6y7ztr17eybgw89LMTvTcu+f9o7/HLeedPNZP2Pb2tTg2UDmYMPOjC3LkpjMLLTDtsngc+v63XEsCeu5ZGW6aefLhzy5z/X1viI+1559dVw5NHHpB/X1gqJU26l5YnEY+gpp6abYaEkKOqXjBTIjlyJ63+c9ONIgnjgkkssEXbZacf6OY3BSAxF4hRpiyTBSFqi7+FHDKqHWuOPP34YctKJ9etMj4uvFl/PanhPgAABAgQIECBAYOwICEbGjrtvJUCAAAECBAiMMYHsFDJxGq1+yXRByugV+Oyzz8Jjjz8eHn3s8dpC4q2tvxEXT985eQg/y8wzt7igjgQj6ckxjIhBRLMFz0857fTaNcVj42iJQYcflp5Wf23vd8ZREAMOOLB+3hKLLx523Xmn+nb6Ji4wHxeaT0tj0JINRuL6GiedcHxuurG4FsuVV1+Tnh5W/s2KYbNNN61vxym89t53v9qC73Fnt1lnTYKTg+qfn37mWeHhRx6pbcdA48CBA0IcedNYBh11dH1USZxS66Tjj68HVo3BSJxKa7tttmmsItx3//3hnL+cV98f1zxp1g+CkTrRGH9jSsExTu4LCRAgQIAAAQKlFRCMlLZrXBgBAgQIECBAoBiB+DBw895b1iqLwcgF5//08LaYb1BLWwJx5Mizzz0fXkhCgmeffz435VI8L65JERf0jsFAtrQ3pMie8+/33w+vvvJqbZTFP5Pw4vvvv69//Obbb9e/O659csKxP420SA9q73c2jrKIU3dNNumkaTW51xiipCWuExIXOU9LNhiJozn22G239KPa6/0PPBDOPvcv9X19k1EuiyWjXbLlsEGD6ouqzzjDDOHIIw6vf3zoEUeE119/o7YdR4nEz5uVz5I+imFWWg4/9JB6WNUYjMTrj+1oLDGQigFLWjbZeOOw6iorp5v1V8FInWKMvvE7OEa5fRkBAgQIECBAoPQCgpHSd5ELJECAAAECBAiMmoAHgqPm156z48iFO+68q37oNNNMXZuSqb4j8+bRxx4LF158Sfj444/re7fqvUVY/v/+r74d37Q3pEhPuvuee8JFl1wa/vvf/6a7Wn0d1WDk3vvuC+eed36r9bf2QVw/ZJ+996p/nA1GFk/WXumzy871z+KbxmAkBicxQMmWtoKROJoku/ZH9ry23mdHezQGIwP67xd+MddcLU6Pa5UccvhPoczGG24QVl9ttRbHCUZakIyRHX4HxwizLyFAgAABAgQIjDMCgpFxpqtcKAECBAgQIECg8wLxoWBa4qgRpViBGIzsuMuu9cXP55rrp8W3m31T4wP/VVdeKWzyhz/kDu1IMHJrsr7IxZdemju/rY1RDUaGD384nDFsWP0r4qiXiSeeqL7d2ps5Zp8jN+XW6A5G+g8YGP7173/XLieOGImBVXvKH7fdtr5eSmMwctABA5tOxyUYaY/s2Dsm/gYO/nEtmV49e4S+yVozCgECBAgQIECAQHUFBCPV7XstJ0CAAAECBAgQKFBgn/79wwcffFircdJJJglDB58U4roWzcpbyaLlf04WL0/LCslokS2TUSPZ0pFg5Igjjwp//8c/aqfHNTK22XLLsOCCC4TJJ5+8XuVpZ5wZHn/iidr2qAYjL770Um1h9bTy1qaNSj9v7XV0ByNHH3tcbY2X+P3RYnCyhklrfdLaNQpGWpOxnwABAgQIECBAgMC4KyAYGXf7zpUTIECAAAECBAiUSGDI0JPDk08/Xb+izZNFwldKFgtvVq5KFhS/NllYPC0bbbB+WGP11dPN2mt7g5Evvvwy9Nt9jxBHrcQS/xp+++22q71P/4mLv/cfOLAe3IxqMPJl8p177P2n+rRdc8wxe9h/333DhBNOmH5l7TVOF3bGWcPCKsmImDhVVmMZ3cHI3y6/Itx48831r90lWeh+ySWWqG+nb66/4Yba1GZr/u53Ia6Xki2CkayG9wQIECBAgAABAgS6hoBgpGv0o1YQIECAAAECBFoVyE4hE6fR6tfXFDKtYo3CB08/82w4aciQeg1x6qYYjMS1Q+Ki33GkwvsffBDuuffecMutt9WDjLj/iMMODTPNOGP93PgmTgEVp4JKS3yg/8dttwmx3ljS17jA+m577hW++OKL2v7pp58uHHHoofWQIq45csmll4U777679nl6bvzOaaeZpl5P3N/e74zHnn7mWeHhRx6Jb2tl8WRR9M032zRMO+20te2PPvqodszLr7xS255rzjlDvz67hhjKpGV0ByMj3nsvDDzwoPTrwuSTTRa22Gyz0DMJj2KJYdJDDw0Pw849t/Z+kkkmDhuuv37Sb7+pnzO6g5EDBwwIs83WrfZ9448/fodHtNQv1JuRCphScKREDiBAgAABAgQIVEZAMFKZrtZQAgQIECBAoKoC8WHg5r23rDU/BiMXnH9eVSlGa7vjQ/YLL7o43HHXXS2+J52+KR3VkT3gt8lIkQ2TESONJQYaO/fpWw9QGj8/9qgj6yFEnCbrkUcfrR8yxRRThAXmnz8JRyYIr7z6an2kSP2AH9/EEOXoQYPquzvynZ9++mltOq133n23fn5sZzYEiiNV0tJscfXRHYzE777jzjvDBUm/ZMtkk04app9++vBRMqLls88+q38Uw6b+++wT5pprzvq+ooORK668Klx/4431+rNvll9uubDVlr2zu7wvSMDvYEGQqiFAgAABAgQIdBEBwUgX6UjNIECAAAECBAi0JuCBYGsyo2d/XAj9kssuazXQSL81PoTffNNNwgrLL5/uavHaOCoje0A2GPnHa6+FEwcPCZ9//nn2kPr7GFjsv9++4by/XhDi+iZpaQxG4v72fmc89pNPPqmFI++OGBE3Wy0LLrBA2GmH7UMMbLJlTAQj8ftuu/2OcNEll2S/usX7SSaeOAkltgw9eyyV+6zoYOTtd94Jhxx2eMiGRukXCkZSieJf/Q4Wb6pGAgQIECBAgMC4LCAYGZd7z7UTIECAAAECBNopEB8KpuX/2bsP+CiK94/jjwWk2Dug/uwNRGwBFQtiBQsgVlSaNAm99w4iIl0E6YhdEUFEUamCYENQsffeqWL/zzP+59xc7pLL5XK53f3s6wW57O3tzrxn75LMd2dWR42wFK3A+g0b5Mn5C+TjTz7JdSCdSupwc0+OSy6+WI4/7rhcz3tX/Lpjhzz66GPy2rp1NoTwPucNRnT99z/8IPdMniyffPKpdzN70/FmTZtI5ZNOkg8+/FDmL1hgbkj+vr0/SKxgpCDH1APpfUTuf/AhWffGG/Lnn3/mOPbeZqqummY6scsuvTTmFFHpCka0UC+uWiULnlpopwvzFlJvVn/kEUfILTffJAcfdJD3Kfs41cGI7vTNt96Wx+bOla/MaBuvGcFILv6UrdDPwLHjxtv96X142mQzpWDKcNkRAggggAACCCDgQwGCER82GkVGAAEEEEAAAQQQ8IfAzz//LHqfi82bNkvpMqXlsEMPjUx/VVQ10HuNfPrZZyZI2SIVKpSXcgcfnOM+IkV1XB2t8vkXX8jPP/0se5jw53+HHSp77LFHUR0u6f1+ZkbM/PTTT/Lbjt+kvPEpX65cWnySLjAvRAABBBBAAAEEEEAAgZQLEIyknJQdIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKYKEIxkastQLgQQQAABBBBAIEUC3ilkdBqttm2YQiZFtOwGAQR8JMCUgj5qLIqKAAIIIIAAAggUsQDBSBEDs3sEEEAAAQQQQKC4BbQzsMHNt9hiaDAyZ/as4i4Sx0cAAQTSKsDnYFq5ORgCCCCAAAIIIJDxAgQjGd9EFBABBBBAAAEEECicAB2ChfPj1Qgg4H8BPgf934bUAAEEEEAAAQQQSKUAwUgqNdkXAggggAACCCCQoQLjxo+PlKxNNlNpRTB4gAACoRDQYGTsuH8/B6tVzRI+B0PR7FQSAQQQQAABBBCIK0AwEpeGJxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBoAgQjQWtR6oMAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJxBQhG4tLwBAIIIIAAAgggEAwBnUJmzZq1tjJVzRQyegN2FgQQQCBsAvpZ6BY+B50EXxFAAAEEEEAAgXAKEIyEs92pNQIIIIAAAgiESICbDoeosakqAgjEFOBzMCYLKxFAAAEEEEAAgdAKEIyEtumpOAIIIIAAAgiERYAOwbC0NPVEAIF4AnwOxpNhPQIIIIAAAgggEE4BgpFwtju1RgABBBBAAIGQCYwbPz5S4zbZ2ZHHPEAAAQTCIKDByNhx/34OVjNTCvI5GIZWp44IIIAAAggggEB8AYKR+DY8gwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgETIBgJWINSHQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIgvQDAS34ZnEEAAAQQQQACBQAjoFDJr1qy1dalqppCpmpUViHpRCQQQQAABBBBAAAEEEEAAAQSSESAYSUaN1yCAAAIIIIAAAj4S4KbDPmosiooAAkUiwOdgkbCyUwQQQAABBBBAwLcCBCO+bToKjgACCCCAAAIIJCZAh2BiTmyFAALBFeBzMLhtS80QQAABBBBAAIFkBAhGklHjNQgggAACCCCAgM8Exo0fHylxm+zsyGMeIIAAAmEQIBgJQytTRwQQQAABBBBAIHEBgpHErdgSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfC5AMOLzBqT4CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkLgAwUjiVmyJAAIIIIAAAgj4UkCnkFmzZq0te9WqWVI1K8uX9aDQCCCAAAIIIIAAAggggAACCKRCgGAkFYrsAwEEEEAAAQQQyGAB5tbP4MahaAggkBYBPgfTwsxBEEAAAQQQQAAB3wgQjPimqSgoAggggAACCCCQnAAdgsm58SoEEAiOAJ+DwWlLaoIAAggggAACCKRCgGAkFYrsAwEEEEAAAQQQyHCBcePHR0rYJjs78pgHCCCAQBgECEbC0MrUEQEEEEAAAQQQSFyAYCRxK7ZEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABnwsQjPi8ASk+AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJC5AMJK4FVsigAACCCCAAAK+FNApZNasWWvLXrVqllTNyvJlPSg0AggggAACCCCAAAIIIIAAAqkQIBhJhSL7QAABBBBAAAEEMliAufUzuHEoGgIIpEWAz8G0MHMQBBBAAAEEEEDANwIEI75pKgqKAAIIIIAAAggkJ0CHYHJuvAoBBIIjwOdgcNqSmiCAAAIIIIAAAqkQIBhJhSL7QAABBBBAAAEEMlxg3PjxkRK2yc6OPOYBAgggEAYBgpEwtDJ1RAABBBBAAAEEEhcgGEncii0RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDA5wIEIz5vQIqPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACiQsQjCRuxZYIIIAAAggggIAvBXQKmTVr1tqyV62aJVWzsnxZDwqNAAIIIIAAAggggAACCCCAQCoECEZSocg+EEAAAQQQQACBDBZgbv0MbhyKhgACaRHgczAtzBwEAQQQQAABBBDwjQDBiG+aioIigAACCCCAAALJCdAhmJwbr0IAgeAI8DkYnLakJggggAACCCCAQCoECEZSocg+EEAAAQQQQACBDBcYN358pIRtsrMjj3mAAAIIhEGAYCQMrUwdEUAAAQQQQACBxAUIRhK3YksEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwuQDBiM8bkOIjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA4gIEI4lbsSUCCCCAAAIIIOBLAZ1CZs2atbbsVatmSdWsLF/Wg0IjgAACCCCAAAIIIIAAAgggkAoBgpFUKLIPBBBAAAEEEEAggwWYWz+DG4eiIYBAWgT4HEwLMwdBAAEEEEAAAQR8I0Aw4pumoqAIIIAAAggggEByAnQIJufGqxBAIDgCfA4Gpy2pCQIIIIAAAgggkAoBgpFUKLIPBBBAAAEEEEAggwW0Q3DsuPG2hNXMVFptsrMzuLQUDQEEEEi9AMFI6k3ZIwIIIIAAAggg4GcBghE/tx5lRwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQIJEIwUiIuNEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwM8CBCN+bj3KjgACCCCAAAIIJCig08i4pWpWlnvIVwQQQAABBBBAAAEEEEAAAQRCJ0AwEromp8IIIIAAAgggEDYB5tYPW4tTXwQQiBbgczBahO8RQAABBBBAAIFwCxCMhLv9qT0CCCCAAAIIhECADsEQNDJVRACBPAX4HMyThycRQAABBBBAAIHQCRCMhK7JqTACCCCAAAIIhE1AOwTHjhtvq12tapa0yc4OGwH1RQCBkAsQjIT8BKD6CCCAAAIIIIBAlADBSBQI3yKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBwBQhGgtu21AwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSiBAhGokD4FgEEEEAAAQQQCKKATiPjlqpZWe4hXxFAAAEEEEAAAQQQQAABBBAInQDBSOianAojgAACCCCAQNgEmFs/bC1OfRFAIFrAe68lDYfbtuFeS9FGfI8AAggggAACCIRJgGAkTK1NXRFAAAEEEEAglAIEI6FsdiqNAAIeAT4HPRg8RAABBBBAAAEEEBCCEU4CBBBAAAEEEEAg4ALeK6WrVc2SNtlcKR3wJqd6CCAQJUAwEgXCtwgggAACCCCAQMgFCEZCfgJQfQQQQAABBBBAAAEEEEAgDAIajriFey05Cb4igAACCCCAAALhFCAYCWe7U2sEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEIpQDASyman0ggggAACCCAQNgGulA5bi1NfBBBAAAEEEEAAAQQQQACBeAIEI/FkWI8AAggggAACCAREgLn1A9KQVAMBBJIW0M/BsePG29frNFpt23CvpaQxeSECCCCAAAIIIBAAAYKRADQiVUAAAQQQQAABBPISIBjJS4fnEEAgDAJ8DoahlakjAggggAACCCCQuADBSOJWbIkAAggggAACCPhSwHuldLWqWdImmyulfdmQFBoBBJIWIBhJmo4XIoAAAggggAACgRQgGAlks1IpBBBAAAEEEEAAAQQQQAABr4CGI27R6bRYEEAAAQQQQAABBMIrQDAS3ran5ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhE6AYCR0TU6FEUAAAQQQQCCMAlwpHcZWp84IIIAAAggggAACCCCAAAKxBAhGYqmwDgEEEEAAAQQQCJAAc+sHqDGpCgIIJCWgn4Njx423r9VptNq24V5LSUHyIgQQQAABBBBAICACBCMBaUiqgQACCCCAAAIIxBMgGIknw3oEEAiLAJ+DYWlp6okAAggggAACCCQmQDCSmBNbIYAAAggggAACvhXwXildrWqWtMnmSmnfNiYFRwCBpAQIRpJi40UIIIAAAggggEBgBQhGAtu0VAwBBBBAAAEEEEAAAQQQQMAJaDjiFp1OiwUBBBBAAAEEEEAgvAIEI+Fte2qOAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDoBAhGQtfkVBgBBBBAAAEEwijAldJhbHXqjAACCCCAAAIIIIAAAgggEEuAYCSWCusQQAABBBBAAIEACTC3foAak6oggEBSAvo5OHbcePtanUarbRvutZQUJC9CAAEEEEAAAQQCIkAwEpCGpBoIIIAAAggggEA8AYKReDKsRwCBsAjwORiWlqaeCCCAAAIIIIBAYgIEI4k5sRUCCCCAAAIIIOBbAe+V0tWqZkmbbK6U9m1jUnAEEEhKgGAkKTZehAACCCCAAAIIBFaAYCSwTUvFEEAAAQQQQAABBBBAAAEEnICGI27R6bRYEEAAAQQQQAABBMIrQDAS3ran5ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhE6AYCR0TU6FEUAAAQQQQCDMAnrzYW46HOYzgLojgAACCCCAAAIIIIAAAggQjHAOIIAAAggggAACIRDQQGTs+PG2pm3NPUYIR0LQ6FQRAQQiAkcfd7y46bPmzJ4VWc8DBBBAAAEEEEAAgXAKEIyEs92pNQIIIIAAAgiETMAbjGjVP3j3nZAJUF0EEAirgPfzT8MRgpGwngnUGwEEEEAAAQQQ+E+AYOQ/Cx4hgAACCCCAAAKBFtArptu1ybZ1bGNGjbAggAACYRDwBiMairiRI2GoO3VEAAEEEEAAAQQQiC1AMBLbhbUIIIAAAggggEDgBNasXUuHYOBalQohgECiAnwGJirFdggggAACCCCAQPAFCEaC38bUEAEEEEAAAQQQiCnQ4OZbbFDC/UZi8rASAQR8LkAQ4vMGpPgIIIAAAggggEARChCMFCEuu0YAAQQQQAABBDJVQEMR7TTUhZuxZ2orUS4EEEhWwH3G8fmWrCCvQwABBBBAAAEEgi1AMBLs9qV2CCCAAAIIIIBATAHXaahPMud+TCJWIoCAjwX0nkpu4TPOSfAVAQQQQAABBBBAwAkQjDgJviKAAAIIIIAAAiET0HBEF+00dItbp9NruRsU68iSNWv+HV1StWpWINdr/b1TiunNmt0S5vVhaPvCnNN6jnCu/PtO8ToUxjTZc05fp59Z7v3qbrjeznyWtcnOdm9nviKAAAIIIIAAAgggYAUIRjgREEAAAQQQQACBEAu4zkQlcB2J+tg7/UxRrNcOTBfIaBlcIFNc67XOH7z7jn6xi/dq8+Ja773KPd4In6JeXxRtX5hzKxPOFe85qidLJpwr3nO0qM+JRPZfmDZO1TmnbTNu/HhCEYVgQQABBBBAAAEEEMglQDCSi4QVCCCAAAIIIIBAOAW8HbxF3bHp7VzOhM5ubXFv57LXorjWE4z8O2rHey5mwrniPXf1vMmEc8V7jiYSXBT1ueVts1QFHYnsJ7pttH1YEEAAAQQQQAABBBCIJUAwEkuFdQgggAACCCCAQEgFtOPZLdrJqIuuW/v/67PMulSs1/16p7fRK7vdwvp/JVJlnQn7mTR5stwz+V5bsZbNm0mL5s3t44KeW/oizhVLF9ehoKZB2t772fGvEv8jgAACCCCAAAIIIBBbgGAktgtrEUAAAQQQQAABBBBAIEUCr69bJ23bd7B7O6VKFRk7elSK9sxuEEAAAQQQQAABBBBAAIGCCxCMFNyMVyCAAAIIIIAAAggggEABBAhGCoDFpggggAACCCCAAAIIIFDkAgQjRU7MARBAAAEEEEAAAQQQCLcAwUi425/aI4AAAggggAACCCCQaQIEI5nWIpQHAQQQQAABBBBAAIGACRCMBKxBqQ4CCCCAAAIIIIAAAj4XIBjxeQNSfAQQQAABBBBAAAEEMl2AYCTTW4jyIYAAAggggAACCCAQLgGCkXC1N7VFAAEEEEAAAQQQQCDtAgQjaSfngAgggAACCCCAAAIIIJCHAMFIHjg8hQACCCCAAAIIIIAAAoUXIBgpvCF7QAABBBBAAAEEEEAAgdQJEIykzpI9IYAAAggggAACCCCAQAwBgpEYKKxCAAEEEEAAAQQQQACBYhMgGCk2eg6MAAIIIIAAAggggEA4BAhGwtHO1BIBBBBAAAEEEEAAAb8IEIz4paUoJwIIIIAAAggggAACPhUgGPFpw1FsBBBAAAEEEEAAAQQCKkAwEtCGpVoIIIAAAggggAACCGSKAMFIprQE5UAAAQQQQAABBBBAAAEVIBjhPEAAAQQQQAABBBBAAIEiFSAYKVJedo4AAggggAACCCCAAAIFFCAYKSAYmyOAAAIIIIAAAggggEDBBAhGCubF1ggggAACCCCAAAIIIFC0AgQjRevL3hFAAAEEEEAAAQQQCL0AwUjoTwEAEEAAAQQQQAABBBDIKAGCkYxqDgqDAAIIIIAAAggggEDwBAhGgtem1AgBBBBAAAEEEEAAAT8LEIz4ufUoOwIIIIAAAggggAACPhAgGPFBI1FEBBBAAAEEEEAAAQRCJEAwEqLGpqoIIIAAAggggAACCBSHAMFIcahzTAQQQAABBBBAAAEEEIgnQDAST4b1CCCAAAIIIIAAAgggkBIBgpGUMLITBBBAAAEEEEAAAQQQSJEAwUiKINkNAggggAACCCCAAAIIxBYgGIntwloEEEAAAQQQQAABBBAoHgGCkeJx56gIIIAAAggggAACCIRGgGAkNE1NRRFAAAEEEEAAAQQQ8IUAwYgvmolCIoAAAggggAACCCDgXwGCEf+2HSVHAAEEEEAAAQQQQCCIAgQjQWxV6oQAAggggAACCCCAQAYJEIxkUGNQFAQQQAABBBBAAAEEEBCCEU4CBBBAAAEEEEAAAQQQKFIBgpEi5WXnCCCAAAIIIIAAAgggUEABgpECgrE5AggggAACCCCAAAIIFEyAYKRgXmyNAAIIIIAAAggggAACRStAMFK0vuwdAQQQQAABBBBAAIHQCxCMhP4UAAABBBBAAAEEEEAAgYwSIBjJqOagMAgggAACCCCAAAIIBE+AYCR4bUqNEEAAAQQQQAABBBDwswDBiJ9bj7IjgAACCCCAAAIIIOADAYIRHzQSRUQAAQQQQAABBBBAIEQCBCMhamyqigACCCCAAAIIIIBAcQgQjBSHOsdEAAEEEEAAAQQQQACBeAIEI/FkWI8AAggggAACCCCAAAIpESAYSQkjO0EAAQQQQAABBBBAAIEUCRCMpAiS3SCAAAIIIIAAAggggEBsAYKR2C6sRQABBBBAAAEEEEAAgeIRIBgpHneOigACCCCAAAIIIIBAaAQIRkLT1FQUAQQQQAABBBBAAAFfCBCM+KKZKCQCCCCAAAIIIIAAAv4VIBjxb9tRcgQQQAABBBBAAAEEgihAMBLEVqVOCCCAAAIIIIAAAghkkADBSAY1BkVBAAEEEEAAAQQQQAABIRjhJEAAAQQQQAABBBBAAIEiFWjbvoNoOOKWFUuXuId8RQABBBBAAAEEEEAAAQTSLkAwknZyDogAAggggAACCCCAQHgEps+YIdNmzMxR4VOqVJHGjRqKfmVBAAEEEEAAAQQQQAABBNItQDCSbnGOhwACCCCAAAJpEdDO2NfXvZGWY3EQBBDILeAdIZL72f/WEI78Z8EjBIpDgJCyONQ5JgIIIIAAAggUtwDBSHG3AMdHAAEEEEAAgZQKxLo6PaUHYGcIIJCUgAYgp1Q5OdfokaR2xosQQCClAvr+HDt6VEr3yc4QQAABBBBAAIFMFiAYyeTWoWwIIIAAAgggUCABQpECcbExAmkTaGKmzWrcqJE9no4kmW6m1kp0REnaCsmBEAi5AOFIyE8Aqo8AAggggEDIBAhGQtbgVBcBBBBAAIEgC5xzfo1I9dzV6VW4h0HEhAcIpFtA34d5LYQjeenwHAJFLxAdUnpDzKI/OkdAAAEEEEAAAQSKT4BgpPjsOTICCCCAAAIIpFBAO1jbtu9g98hVrymEZVcIIIAAAoEW8I62JBgJdFNTOQQQQAABBBDwCBCMeDB4iAACCCCAAAL+FfB27BCM+LcdKTkCCCCAQHoFuLAgvd4cDQEEEEAAAQQyQ4BgJDPagVIggAACCCCAQCEFvMEIV7wWEpOXI4AAAgiESsA7FeWKpUtCVXcqiwACCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggUBgBgpHC6PFaBBBAAIEwCxCMhLn1qTsCCCCAAALhFCAYCWe7U2sEEEAAAQQCJ0AwErgmpUIIIIAAAmkSIBhJEzSHQQABBBBAAIGMESAYyZimoCAIIIAAAgggkKiAhiBVqlSRU8w/t+QVjLy+bp3dzLu9ex1fEUAAAQQQCJOA/kyM/nmYVzASa/sweVFXBBBAAAEEEAimAMFIMNuVWiGAAAIIIBBYAW8AMnb0qEjnjnd9k0YNpXGjRtZAO3Tatu9gH3u3DywQFUMAAQQQQCCOgP481J+L3p+Tumm8YMT9bI3ePs7uWY0AAggggAACCPhGgGDEN01FQRFAAAEEEEBABbydN/q9Cztc542ucx043lBE1+uyYumSfx/wPwIIIIAAAiES8P6c1Gq7n5X62Puz1f2cjN7e/bzV7VkQQAABBBBAAAG/CxCM+L0FKT8CCCCAAAIhE4gVdmhnzTpzBey0GTOthnb26FRbbqSII6JTx0nwFQEEEEAgjAJuxIiruwtHooOR6FDEbedex1cEEEAAAQQQQMDvAgQjfm9Byo8AAggggEAIBWKFIzpfuq7XxfvY8RCKOAm+IoAAAgiEWSBWOOIuLFAXDUGiv3fTU4bZjbojgAACCCCAQLAECEaC1Z7UBgEEEEAAgdAIxApH4lWeUCSeDOsRQAABBMIoEB2OxDNgpEg8GdYjgAACCCCAgN8FCEb83oKUHwEEEEAAgRALJBKOEIqE+ASh6ggggAACcQXyC0cIReLS8QQCCCCAAAIIBECAYCQAjUgVEEAAAQQQCLNAXuEIoUiYzwzqjgACCCCQn0C8cIRQJD85nkcAAQQQQAABvwsQjPi9BSk/AggggAACCNh7i2jnjnchFPFq8BgBBBBAAIHYAtHhCKFIbCfWIoAAAggggECwBAhGgtWe1AYBBBBAAIHQCnhHjhCKhPY0oOIIIIAAAkkIuHCEUCQJPF6CAAIIIIAAAr4UIBjxZbNRaAQQQMD/AmvWrvV/JahBxgmsW7fOlqlKlSoZVzYK5H+BqllZ/q8ENQiEAD9DA9GMGVeJ6TNmSuNGDTOuXBTI/wL8/PR/G1IDBBBAIIgCBCNBbFXqhAACCGSowNhx40U7c+jQydAGolgIIJCvgHbutG2TLXTy5EvFBikU0J+fuowd/+/XFO6aXSGAAAJpEXA/N/kZmhZuDoIAAgggkIAAwUgCSGyCAAIIIFA4Ae3QoTOncIa8GgEEMkuAgCSz2iOopSEQCWrLUi8Ewi3Az9Bwtz+1RwABBDJFgGAkU1qCciCAAAIBFWhw8y1xR4i4K8cCWnWqhQACARKIN9JNP8fmzJ4VoJpSlUwRyOuiAn5+ZkorUQ4EEEhEIN7P0LbZ2XYUZiL7YBsEEEAAAQRSLUAwkmpR9ocAAgggEBGIFYq0M1PQtDF/BLEggAACfhOwUwGuWZtrBBzhiN9aMvPLGysU0Z+fWSaIIxTJ/PajhAggkFtAf4bqZ1t0SEI4ktuKNQgggAAC6REgGEmPM0dBAAEEQicQHYoQiITuFKDCCARaILrjmnAk0M2d1spFn1v8/EwrPwdDAIEiFogVkBCOFDE6u0cAAQQQiClAMBKThZUIIIAAAoURIBQpjB6vRQABvwhEd2ATjvil5TK3nNHnFKFI5rYVJUMAgcIJRP+9QDhSOE9ejQACCCBQcAGCkYKb8QoEEEAAgTwE6NTJA4enEEAgcALRn3l07ASuidNWIb2KWjsK3UIo4iT4igACQRWIDkc+ePedoFaVeiGAAAIIZKAAwUgGNgpFQgABBPwscPRxx0eKT6dOhIIHCCAQYIHocISOnQA3dhFWzdtByOijIoRm1wggkFEC3r8duLggo5qGwiCAAAKBFyAYCXwTU0EEEEAgfQLezkE6ddLnzpEQQKD4BejYKf428HMJokeLzJk9i5us+7lBKTsCCCQs4P37QV/ExQUJ07EhAggggEAhBQhGCgnIyxFAAAEE/hPwdgzSqfOfC48QQCD4At6OHYLh4Ld3qmvI+ZNqUfaHAAJ+EuBvCD+1FmVFAAEEgiNAJ/MP9QAAQABJREFUMBKctqQmCCCAQLEKRF/tytVexdocHBwBBIpBwNuxw2dgMTSAjw/pnUaLCwt83JAUHQEEkhLwhsNMp5UUIS9CAAEEEEhCgGAkCTReggACCCCQW8AbjHC1dG4f1iCAQPAF6NwOfhsXVQ05d4pKlv0igIAfBAhG/NBKlBEBBBAIngDBSPDalBohgAACxSLAHzTFws5BEUAggwTo3M6gxvBZURht5LMGo7gIIJBSAS6wSiknO0MAAQQQSFCAYCRBKDZDAAEEEMhbgGAkbx+eRQCB4At4gxGmAgl+e6eyhgQjqdRkXwgg4DcBghG/tRjlRQABBIIhQDASjHakFggggECxCxCMFHsTUAAEEChmAYKRYm4AHx+eYMTHjUfREUCg0AIEI4UmZAcIIIAAAkkIEIwkgcZLEEAAAQRyCxCM5DZhDQIIhEuAYCRc7Z3K2hKMpFKTfSGAgN8ECEb81mKUFwEEEAiGAMFIMNqRWiCAAALFLkAwUuxNQAEQQKCYBQhGirkBfHx4ghEfNx5FRwCBQgsQjBSakB0ggAACCCQhQDCSBBovQQABBBDILUAwktuENQggEC4BgpFwtXcqa0swkkpN9oUAAn4TIBjxW4tRXgQQQCAYAgQjwWhHaoEAAggUuwDBSLE3AQVAAIFiFiAYKeYG8PHhCUZ83HgUHQEECi1AMFJoQnaAAAIIIJCEAMFIEmi8BAEEEEAgtwDBSG4T1iCAQLgECEbC1d6prC3BSCo12RcCCPhNgGDEby1GeRFAAIFgCBCMBKMdqQUCCCBQ7AIEI8XeBBQAAQSKWYBgpJgbwMeHJxjxceNRdAQQKLQAwUihCdkBAggggEASAgQjSaDxEgQQQACB3AIEI7lNWIMAAuESIBgJV3unsrYEI6nUZF8IIOA3AYIRv7UY5UUAAQSCIUAwEox2pBYIIIBAsQsQjBR7E1AABBAoZgGCkWJuAB8fnmDEx41H0RFAoNACBCOFJmQHCCCAAAJJCBCMJIHGSxBAAAEEcgsQjOQ2YQ0CCIRLgGAkXO2dytoSjKRSk30hgIDfBAhG/NZilBcBBBAIhgDBSDDakVoggAACxS5AMFLsTUABEECgmAUIRoq5AXx8eIIRHzceRUcAgUILEIwUmpAdIIAAAggkIUAwkgQaL0EAAQQQyC1AMJLbhDUIIBAuAYKRcLV3KmtLMJJKTfaFAAJ+E/BTMPL5F1/I3nvvLXvsvntKmf/55x/5+JNP5H+HHSa77LJLSvb9/fffy5atW+Pu65AKFaRkyZJxn/fjE2q46667yqGHHJKr+D/99JP8smlTrvU77bSTHHH44bnWF+eK7b/+Kt98803MIpQvV05KlSoV87lMXblt+3ZZv369nH7aaVKiRIlMLWaxlEvb+scff4x5zhZLgUJ2UIKRkDU41UUAAQSKSoBgpKhk2S8CCPhFgGDELy2VeeUkGMm8NqFECCCQPgE/BSOX1qotzZvdKvXq1k0a6Msvv5J7p0yR/v36RvahnaOVq5wiq1eukAMOOCCyvjAPOnTqJPMXPBV3FwuenCfHH3dc3Of9+MRxJ1aUw//3P3nm6YW5ij/8jhFy79SpudZrEPXu22/lWl9UKz77/HNZunSZnHxyZTm5cuWYh1m2bLk0bd485nMP3j/HBgwxn4xaqe+td999Ty65+CI56KCDop4tmm+fnL9AfvnlF7nl5psiB+jVu4889Mgj0rVzJ/P+aRZZn+4Hsd576SzDzFmz5agjj5Tq1c+OHHbpsmUyZOgwWfzMosg6HqRPgGAkfdYcCQEEEAi0AMFIoJuXyiGAQAICBCMJILFJTAGCkZgsrEQAgZAIhC0Yeeutt6XBzTfLutdejbRwUQQjjz3+uLlKf4M9xrLly+WLL780HeQXy/777WfX3daqZdo6yyMVLeIHiQQjZ1arJkcecUSkJLvssrP07dMn8n1RP3jm2WeldZu20jY7W9q2yY55OBeMaCd6tapVc2zTtGkTOezQQ3Osi/fNoMGDZebs+2TO7FlSNSsr3mYpXV/7iivl3ffekw/efSey38fnzpXxE+6WQQMGyNlnnxVZn+4Hsd576SxDi5atbHs2btwocliCkQhFsTwgGCkWdg6KAAIIBE+AYCR4bUqNEECgYAIEIwXzYuv/BAhG/rPgEQIIhE/Ar8HI77//LtvNFEE6tdaff/4pn3z6qR2toFM5xVp0+82bN9sr+Fu1bi0vPLfYbrbXXnvJH+b1bsTIHnvsIZ9+9pkcYqaDKlumTKxdiY462Lxps5xwwvEJTb3VstVt8twLL8ijDz8kVU4+Occ+dfqpd955x+zrBFt+96ROxaX/DjXTe20zU3LpMStWrGjLtMlMSfXOu+/KMUcfLfvuu697ibz99tuym5nmSacEe3vjRvnqq6/s6Ib9998/so17oNOSvfnmm1K+fHk50RzbO8WS248GAO+9975UqFA+4vyWOYbu94zTT5fo/SYSjNxx++1mxE8dVwz7VYOpTz7+WHY39t7QQdt0+7ZtcqQJKNz0VfG83D7UQ8v19tsbpUzZMnL0UUfZY/zxxx/y/vvvy+rVL8mwO+6QG667Tm64/jo58MADc9XDBSNXm5FJw28flqOs+o2W4Vdz7h1qfPR80UWnq/rUrC9hpkc70Iw6+tIEYZPunSJPLVwogwcOkMonnSSHm0CoTOnSkXYqqK8e59dfd8j6DevtqJCTKp1k2q+crjbH+0o2bfpF2rRrb8/feSaY23nnnex55c4lPaf33HNPu73+pyNLXl+3TkqWKCmVzQga7xR1+h7Q8+44M6pJp0H7yLRPpUqV4r4n3E61HfR8Pv74421ddX1e7z133v3999+yceM7Unb3sjneB/r6reYc0GX3smVtWfS8qHjiibLbbrvZ9fn9p/XUz4gu3brJKWZk2I03XG/Pd33ve4MR/Xz42kyhpoFYrM+RHTt22PeVvr/2+/+AM79j83zeAgQjefvwLAIIIIBAggIEIwlCsRkCCARWgGAksE1b5BUjGClyYg6AAAIZLODXYEQ7NEfcOVKuqV9fxk2YYDvOt5iOzZF3jpCLLrwwl/iSpUulR6/etoNUgwXXsTl29Cjb4avByPBhQ2XIsNtlL9N5rB2kzZo2lU4dO0T2peFEk6a3yiZzHN3mhx9+kDGjRsl5550b2SbWg1jBiHYgN2veQtTfLeeeU10mTZxoO23vNl/vGj3G1uWFJUvkr7/+sh34Hdq1lYGDh8hvv/1m71Eycfz4yPE1mCh38MFy9NFHmQ7f5Xa3eg8P7Zi/7tpr7ff6uram8/x5s0+3aJgw3UwvVrHiiXaV7uffwGA/2bDhTVEjHenRtFlz0yn/7yiYnXfe2a675+67pXTpf++5kWwwoh3SWWeeJQeb6aaWvvC8LYN2lFc7u7oJArbLyy+9JH+b+8Dk5fXKq6/K9Tc2kItq1pT3TACiHfu66EiNqfdONveR+EnOu+ACu877X2fTvi1btPCukvyCEQ072nXoaEcfzJ45Q9S4bfsOsvDpp6Vv796yu7kHTtfu3XPsU7955KEHTcd8FUnWd8WKlXKbGeWi4YhbmjZpLN26dJEePXvJY2ZkiHfR0GHjmxvEnUtjRt0ltWvVspu4dW57DQKGDh4UmabulkaNZdXq1aL7nzptut1Mtxk/doxcaIxjLaPM+Tp33hM2jHrv/Q+k1mWXSk/jkNd7L+uMM+zzHTt1tu9JfW/tacKmGdOnRe77cbsJsnaYOm/avEleXLXanm8//PCj9O7Zw4Rb18cqSo51+jfChx99ZIPRksaklAmnTjZB1aR7JkaCEQ3rJt4zSfYw7+utW7bIXSPvlJqe80XrplPBHWWCto9NSHSmGUk0ftzYhMOZHAXim4gAwUiEggcIIIAAAoURIBgpjB6vRQCBIAgQjAShFYunDgQjxePOURFAIDME/ByMtLyttdSrU0e6duksevX3w+Y+CoOGDJXXX3k5xwgIr3Ss6Xw0pNBgRK/q1w5RvU+Gdq5fWaeu3Ddrph11ocFEzYsuNkHM1dLC3H9CO4mXL18hrcyUTIsXLYpcue89lnscKxjp1r2H7ci+0XTsapCz6Jln7H0gmphpfrQz2XVc66iQ9iYMWfDUQnnaHEevku/bu5fpvN1qRz5ox/L99822h9IOdy2nhgE339RAPjEjGCZPmSpbzZX/T81/0o4w6d2nrzz48MNy9llnmbDkGht8zJw9W3YzIx1WrVxpO529+7n4ooukRo3z5ZVXXpE+/fpL44YNpU6dq2TGjJl2P/379pGbGjSIHD+/e4xoiKD/3HJzgxuljwkTGjVpIitfXGXvT6JX7Os0ZPWuucZOPzbBdEDn5+WCEd2vjgbRKaNm3zfHBk89unaVBuY4K0z9Xn99nTGZYgOCy2vXMiHS0blu/u6CEd2XBkBu0bZQR1269+gpj5pRGb179jSB1X7SvmMnueD882XypHvk66+/ljffekseMs4aUHVs306OOeYY0bbS8zQZX52K7aJLLpVSpv31fNd7lkyafK+8+tprJpy7y9bhSzOSZ9CQIWZEz9cyccJ4W3bt3HfnkgtG9D4kHTt3tlOa6fmmocO906bJd999Jw/Muc+e7y4Y0dERLVs0tyOkRtx1l5Q2I5JeWbsm10gpHZVR/bzz5flnn7Fl22LOuVqXXyHTptxrzzs1i/Xe++DDD6VOvatlsgkpzjrzTBtcjhs/QXTKs0UL/71HjwYjM2bOkh5mxIeO9tD70ixfsUJamJFYs2ZMT3iasnhTaTVr0VLq16sn3bp2ifk58uhjj8moMWPlURNslStXTrRubdu1M6ObDpMB/ftp1ViSFCAYSRKOlyGAAAII5BQgGMnpwXcIIBA+AYKR8LV5qmpMMJIqSfaDAAJ+FPBzMHKrGXHx7KKnI/es0Cl7sqqdKTNNZ2m8G2vH6px1wYiOrLjedKq7RTvrtbNWb1i90UxNdUODm+yV7HrVuVs6du5ig5K6JiyIt8QKRs4651zZsmWzdDYd6tr5/peZ6uf2ESPsND7a+e46s3UEgt5I+4316+Xqa64VHVUyzXTs63J61Wo2ZHj5pdX2e+1w15EWy5e8YDtwdeUdI+60QcBA04F74w032M7rH3/8UdauXhWZBkpHP+goCO1k1vrqfmxQ8uJKO32R3bn5T6eQ+shceb9t23b54ovP7YiWRrfcLL179bKb6OvyC0Y09PBOwaWhUKOGt8gDDz5og5fePXpIo0YNzT0xJsjoseNkpDG56sorJD8vF4zo/Uv0nNDFmV16ySV2pIOuK8g9Rg4wU2J574dySIUKkam19Jy5ygRnGkaUMCFZmbJlZaFpt3322UcPY5d49xhJxlc757ubUSHORw+gI5hGjxkjV1x+udQwoYwuse4x4s4lF4x0NkHRE/OelKmTJ0dGGzn/1q1aSQcT5LhgZPRdI+Xy2rXtvpua98EyEwbq+Xncscfade4/napKg5ErLq8t9a++2oYh0SFYrPeeBmwLTeCnAZtbNHho2LiJvLB4sQ0cNRiZv+ApWbF0SY6gSn/31/e5BkWJLPGCkfw+R1qZAFanLLvahCduefmVV01YM1OWPP+cW8XXJAQIRpJA4yUIIIAAArkFCEZym7AGAQTCJUAwEq72TmVtCUZSqcm+EEDAbwJ+Dkb69u9vQoD/poRS+xo1L7Q3ma5e/eyYTRGrc9YFI9rJeai5D4NbdFSAdo7rdFp6lX2fvn3ttFvuefdVO4O9gYpb775GByPueHrlu95zwrvsZEKSV80V+RPvuccGD64zW4OZK0xHfJ2rrpQ7TUexLhoW6H0PXnv53+m4tMP9oIMOzGHyvLm3iV5ZryMD2pur3HVkzAnm/g/zzZRHbtGr8QcPHWo7p3X0R6yAQ+vfzYQWeq8O73Kz2b7f/3dqx3qd23b4HSPsVESx7jGi2+h9MLQ+Z591pswwoxfqX3udHXWhoc8uJnjQcuflpSMndCqta+vXl6FDBtvD6j7PrH6OVDejR3SfuhQkGIl3jxG7I/Pf1KnT7Kgd/V6nXdMRB94lr2AkOkDKz9f5ecMM77Hc40SCkbrGSKdI05FV7h4pG819Qa64qo64EMkFIyuXLZWDzfRsuvTp208eeOghefjBB+TUU05xh4x81fucTDJhi07B9dPPP0vtyy6TrsbE3bsk1ntPRzAtXb7c3hcnsqP/f6CeOopLg5FvvvlWNKTxLmNMcKb3w9EpsRJZ4gUj+X2OXHjxJXaklt7PKHqZMW1q3NFp0dvyfW4BgpHcJqxBAAEEEEhCgGAkCTReggACgRIgGAlUc6a1MgQjaeXmYAggkGECfg5GhgwdJoufWZRDtDDByOqVK2wQ4nboDUZ0aq2r6tYT7Sh29yfR7XQKoVgdpm4f+jU6GNF1Oi3St99+KyvM/nR6JV30HhI6BZSOIIm+yj/RYESn0vJe0e86s0cMHy46quXSWrXt/Ra8o0rcNFaPPfKwvQI/VsCh0yLpTa/nzX3cjqJ4auHTdjqmVAUjWv9rr7/BhiE6HdN5F9S0gYYbHZOflxsxolOTDRzQX3dnw5aiCkb05vVXmiBB71eh00t9Y9rysYcfsjc7twc3/xUkGMnPV+9fovcxua1lS+nYob09xMtmejO9t0hjM8KmwY032nWJBCP9+g+QOQ88EBmNoy/UIG7kqNHStXMnO0LKBSMvmVFDboSPO5diBSP6/tDgw42c0unEWrdtKzXOO0/amOnmdIkVjNw3Z46ZQu5Rmf9EzvujeN9XGow8PvcJWbVieY6bousIKp0SznnYg+TxX7xgJL/Pkey27cwIrIOllwkG3aL3edGb2yd6A3j3Or7mFCAYyenBdwgggAACSQoQjCQJx8sQQCAwAgQjgWnKtFeEYCTt5BwQAQQySCBswYheGa8dqmtWvRi5Wt6N4MgrGPnH3Pz78iuvslewa0esjiRZbW4KrqHHk2b0hd6LId4SKxhxf7/p6A29SfUbb6yX58zoDjeVUWGCEb0PQt2rrrJTXy1+7jl7Xwq9X4Ne+T/B3Cxd75dQoUJ5udyEJBvefNPWQ0cwPP3UAtvxHCsY0REc6954w3acly5dRqZNny4aDugUQ4NMR7vegD7W65yJG/FwtLl5tdp5l4l3T7BTdrkRGDVr1LA3h/dObZafV6LBiDvfdYqsWmZEw5Vmmi7vdFlaLnePES2nlte7tDU3P9cbqOu0aq+vW2eno9p7n71tqKOGT5j7jrib0bsy6/RnlU+qLK1va2VHF8Ryys+3cuWT5NLal8vPZiSGjorZ09wkfN78+TZcc1OgaTnd78N6n5UTTzzB3pw8+lx6ac0ac0+XpjbQ0Wmyft3xq7l/zTOyiwnkHn/sUVvnggYjP/zwgx3RpCModJotfb9oEKFTs+nUaLrEeu/pdGA6JZmOyrra3GukRIldZaYZwaTBjU6Jpvfy0WBk1uz77KgcHfmkYcT8BWYEV7/+8tAD99swT0ep6HRjA8woMjdCxR7U81+r1tm2rbuY8MctS5ctk/yCEb3/T8/efWTcmNFyZrVqsm37dhtIlSlTWnQEFEvyAgQjydvxSgQQQAABj4D7pUtXtTVXZOgvbCwIIIBAmATcH4JaZz4Hw9Tyha8rwUjhDdkDAgj4V8B1FGsN9Kbdc2bPytjK6GiH5s1ulXp165qbWuffoRmrInovBJ1yaf2GDVK2TBl5/dVXJJFgRPel9+bQq/a1Q1w7pvWeJnrvDncPhljH03WxghFdP8yM4nj44UfszZx1miidkmvggAF2eq3ozuxER4yUN6HIhTUvkBmzZtvOab1J9yhzQ3m98bdbdAoiveH65s2bbcfz6aedZqcpciMDYnXca/CgV85rB7gunUw49N1339uplfQG6r3MTchjvc4d0wUj7nvvV506TEfNaCf5BRdeZJ/SUTMvLl+WI0TJyyvRYETvwdI6u428sHSpvVG93vT7AhPEeBcXjHjXucd6I/i3394oEyZOzDFt18i7RsnESZPsjd8HmXvV6KL1adu+vbz55lv2+3WvvWoDoFhOifjqPV7ad+xoj6/Bg97PRG/+rvdgccsSU6++JqjSERsVK54o80xQE30u6bY6xdrAwYNFp7/SRcOhO4bfLlVOPtl+X9BgRF8094l5MmXqVNnZnMv6XtGb1d9jgjgXFMV67+nr9P3UtVt3O8JH70ty4IEH2vPxhBNO0KdtMLJl8xY7kmruvHn2ni4lTTjSt3cvqV2rlt3GjXjJa6oxvU9J33797Pu9h7nPigY2iX6O3G+CmrHmpvDqru8bnfJNp7TLb7SYLRz/xRUgGIlLwxMIIIAAAgURIBgpiBbbIoBAEAUIRoLYqumpE8FIepw5CgIIZKaAn4KRTBHUK8a141fvR6IduYVZtKNeO9DLmdEchZ2Wx9vhriML9CbWhx16aMziaQevjvg4YP8DIh3XMTf0rNSy6mv2Mfda0GCoOJZUehVH+fM6ZqK+W7ZskU2mc15vBl/Y5bvvvrOjWLw3jS/sPnWKuD333Cvh88odT+8Jo0v0iCIdMbJt6zbRwEnrrvcv0fM6+r2nU31deukldnott89Uf9X3qlrFG5WS6uMFfX8EI0FvYeqHAAIIpEmAYCRN0BwGAQQyVoBgJGObJuMLRjCS8U1EARFAoAgFCEaKEDfNu/YGI2k+NIdDoMgEvMFIvIPoSJkn5j0pw4cNlVLmni8s/hAgGPFHO1FKBBBAIOMFCEYyvokoIAIIFLEAwUgRAwd49wQjAW5cqoYAAvkKEIzkS+SbDaqfd74dxfLAnPt8U2YKikB+AnpfnK1mxEi3rl3y25TnfSZAMOKzBqO4CCCAQKYKEIxkastQLgQQSJcAwUi6pIN3HIKR4LUpNUIAgcQFCEYSt2JLBBBAAIHUCRCMpM6SPSGAAAKhFiAYCXXzU3kEEDACBCOcBskKEIwkK8frEEAgCAIEI0FoReqAAAII+E+AYMR/bUaJEUAAgYwUIBjJyGahUAggkEYBgpE0YgfsUAQjAWtQqoMAAgUSIBgpEBcbI4AAAgikSIBgJEWQ7AYBBBAIuwDBSNjPAOqPAAIEI5wDyQoQjCQrx+sQQCAIAgQjQWhF6oAAAgj4T4BgxH9tRokRQACBjBQgGMnIZqFQCCCQRgGCkTRiB+xQBCMBa1CqgwACBRIgGCkQFxsjgAACCKRIgGAkRZDsBgEEEAi7AMFI2M8A6o8AAgQjnAPJChCMJCvH6xBAIAgCBCNBaMXg1mH7r7/Kjz/+KIceckhwK5khNfvnn3/kyfkLZN26dXLYoYdK48aNMqRkFCOoAgQjQW1Z6oUAAgikWYBgJM3gHA4BBDJOgGAk45rENwUiGPFNU1FQBBAoAgGCkZyoK1e+KB9+9JE0vOXmnE/wXbEILF22TIYMHSaLn1mU0uP3HzBQmt16q1SoUL5A+/Xj+TFz1mw56sgjpXr1s+PWVUOR3n36yhvr10sTE4iceuqpcvj//hd3e55AIBUCBCOpUGQfCCCAAAJCMMJJgAACYRcgGAn7GZB8/QlGkrfjlQgg4H8BgpGcbTh9+gx5ac0amXTPxJxP8F2xCBRVMFLl1NNkzuzZUrHiiQWqlx/PjxYtW0m1qlXzHAHy+Ny5MvGeSbJwwXwpUaJEgUzYGIFkBQhGkpXjdQgggAACOQQIRnJw8A0CCIRQgGAkhI2eoioTjKQIkt0ggIAvBfwWjPz111/y1ltvS7lyB8sBBxwQMdf1P//8s+y///6Rdfpgy5YtsuuuJaR06VKR9T/88IN89dXXtlN8l112seu3btsmO8y0TQ88+KC8+tprcucdd9j13v39/fffsnHjO1J297K5rqb/5ZdfpEyZMrLzzjvLp599Zp93+/7mm29EH3vLGylM1AMdraKLXuEfa/nyy6/ku++/kxOOP15KlfqvTm5brZsev1LFirLbbru51aIjAnRKqv3228+u++TTT215di9bNrKNe6DTV73zzjtyvDlGmdKl3eq4X9X9o48/lhNOOCHm9tu2b5d3331Xjjj8cNlnn31i7idevbzByObNm+VrY6k2u+66a8z9uJWxzhNnoNvUvOhimTBunKnjcVLatFtZ808X3ebzL76QTb9skkqVKspOO+1k1xfX+ZHXOadl0kXbcMvWrbZ9vaM89Jz8888/pUu3bnJKlVPkxhuut6HHXnvtZV/n/a9P335y9NFHxxwppWV47/33rcWxxxwTMdHX//7777LdtO/ee+9t33+7mlBlj9139+6axwjEFSAYiUvDEwgggAACBREgGCmIFtsigEAQBQhGgtiq6akTwUh6nDkKAghkpoCfgpEXliyRPv36245xDRs0tJg5fZrt7P3s88/lggsvknfffsuGEE771ubNpfpZZ0ujRg1tp3fDxk3ku+++s6GAdub37N5NateqJSPvGiWPPPaYDUd+/+MP2XPPPe0uVi5bajvhlyxdKh07dbbBwibTQb/nHnvIDHNsd++LuvXrS5XKJ8uiZ5+14ciOHTtk+tQpMnrMGPnkk0/lq6+/lnp16siQwYNydCy7cn777bdyQ4ObZN999xXtiNZO7alT7rVhgm6jwYHW5ScTQhx00EHy8ccfSacOHaVRw1vsLrRDf8DAQbYOFU880YYj9evVky6dO9nnNeyobDrHJ5uRMD169bYBhpapWdOm0rlTR7uN/jdq9BiZO+8JOfqoo0xn+AdS67JLjVH3yPPeB1rH7LZtzQibtXLEEUfIBx98IK1atJC2bbIjmz0+9wnp27+/HHvsMfL119/I8ccda8pwT2RUQn71csFIvbp17IiGPUy7bDVh110j75SaF1wQOY73QbzzRDvwL6lV226qIZEGBBqwNDaGLYytBjytWmfbqdS0Xb83IVP3rl2K7fzI75y73YR3v+34TX7Z9IusfmmNebzD1knPSw1I9HdjDdo0UCppAotSJuQ6+aSTYo6GqnfNNdIuu42cd965XkpZtmy5dOjc2YZsGjbpuTluzGg5s1o1u522z8BBg+17Uj9LOrZvb99rOXbCNwjEESAYiQPDagQQQACBggkQjBTMi60RQCB4AgQjwWvTdNWIYCRd0hwHAQQyUcBPwYiGD00aNZYrLv+3c7tps2Zy6SWXyDVmfSLBiHbiDh12uzzz9EIbTrxubjLdpWs3O31QyZIlbfPEmirpgw8/lDr1rrahwllnnmmvwh83foI8Y0KQRQufsq/Tsukya8YMewV/9x495fEnnpC77rzTlldHcVx0yaUy34QOxx17rN3W+592cm/buk0GDRxgV0+aPFn0uCOGD7ed0Rr6XF67tnTq2MGWXZ+7/sYGZtTDWKmalSXPPf+89DZX/T9jyqMd/hqs1Kh5oTy76GkbArlg5DRz74jhtw+zHec6CuDKOnVl9swZcsbpp9vXVD/vfHn+2Wds+KKjEGpdfoVMMwHNMWY0QfSiIxF0ZMVIE1LoKAEdhVPn6qulf98+JlC5zI5gOLfGBcZkuuhxtWNdwx+9h4W2m3ay51cvbbNmLVqKhjzdTEihdXv4kUdk0JCh8vorL0cCFm/Z8jpP3HaxptIaMmyYfGSCBA1udISPhgLDR4yw54d7XbrOj0TOOT1nZs2+T3r16C7XmmBDwzEd+aGBl7apWxKZSuvcGjVk7OjRUuXkk93L7Pmn58eQQYPsOaz7n2vO6YGDh1gTvUG7ts+tzVvIYHPe1jdtn99InsjOeYCAESAY4TRAAAEEEEiJAMFIShjZCQII+FiAYMTHjVfMRScYKeYG4PAIIFCsAn4KRlq3aSu//rpdWrVsKSdVqmSvYndTHSUSjGzcuFHqX3e99OnVU84951wpX76c7Ux2+9CGiNXxPWPGTFm4aJHt8HeNpaGBjj55YfFiux/tjL/KhAg6MkWXxc89Z0dmrFn1YmQEy+VXXiW3tWppQwO3H/dVO7hnzJwpPcwIlqwzzrAjVly5NppprW40gcKrL6+1o1Hca/S+EOXKlYtcva8jHjR8+GXTJruJhjPXXXuNDY5cMKId2Ndfd53bhTRq0kQ07GluQiaddkmDEQ2etJNbwxAtgytH5EXmgXaSn3pGlvTt3dsEPcdEnppu6rDLzrvI7cOG2nU//fSTlDRTeukIH10eNFOVafl0qrJE6uU63jXgOdKMStFFp2/KqnamzDSBy8mVK9t13v/yOk/cdrGCEa2/jirZbEak6GgYDW40GNBjawigS7rOj0TOOQ1Gnpy/QF5cvizSRq+9/ro5LxvLG2Y6OJ3WTZdEg5Exo0aZKbeq2Nfof1qGx8w5pmGed7n40stsuKXnkbZPl27dRc9zdzzvtjxGIC8BgpG8dHgOAQQQQCBhAYKRhKnYEAEEAipAMBLQhk1DtQhG0oDMIRBAIGMF/BSM/PrrDrl3yhR5YekS+fijj+X000+T3r162emm4gUj+vvBRTVrRgKLtS+/LLPvmyMvv/KKlCxZQhredLM0adI40rEcq+O7d5++snT5cvnfYYflakcdxVDZTE8UPUpBp0Eadvtw26nuXnSVGfXQ/NZb7dRMbp3362OPPy7znpwvGzZskENMR3znDh3s1EbzFzwl00wIMPfRR72b53j8vpnGqk3bdrLdBEfly5W3z+mIkI7t28lNDRqY9f9OpbXk+eci03/pRhqe6L1PdCSKLjq1lY5WWbV6tZ22q7YZ+dHV1DH6vhE6HdlZJlw6/bTTIsGP3YH5T6fhGtC/n73vRScz/dgrppNe12nHuQYklUyoNX7sGEmkXtrxrlNxLTfTqHkXHQ0zaMAAqV79bO9q+ziv88RtHCsY0RFAPXv3kYPNVGV7mKnSdNGgYcGT80TvraFLus6PRM45DUZ0SjAdVeQWHbWjoz82vrkhMpom2WBEy1Cq1G72Peb2r1+967V9hgwdJoufWeTdhMcIJCRAMJIQExshgAACCOQnQDCSnxDPI4BA0AUIRoLewkVXP4KRorNlzwggkPkCfglG9CbqemP0ZiZY0BEMOmLjjjtG2Jt+z5k9y95H4bSsqraD1t2AWu+tkHXmWdK9SxcbjOjUSKXLlLYjMrRlNmx4U25u2NDec0Gno9IlVsf3fXPmyEOPPCrzn5hrt3H/6XRVetNpXQobjGhYc9GFNeXggw+2IzeemDdPBpgpjNaufkm+/OpLqWtGcLxuwhzvVEVTpk6VQ8y9MHRaKp3WareSu8ngQQNtedzoj+zbWuUIRlavXGGDELuR+c8bjGiQoje2r1vnKvv012ZKptbmHiI1zjtP2mT/d98Q91q1HWrumXKhCZ7cssmMBtH7s2gbPWru2TJl6jR5av6TkfBER3PocxqM6HRR+dUrXsd7vGAkv/PElTNWMKKBQueOneTKKy63m7373ntS+4or7bRReQUjRXF+JLLP6OnXtNCpDEa0DDqSSUfMuEVHCp1v2rtN69Z2VFG89nHb8xWBvAQIRvLS4TkEEEAAgYQFCEYSpmJDBBAIqADBSEAbNg3VIhhJAzKHQACBjBXwSzCiHbL1r71OGtx4g9SrW9d6TjWd7q+8+qpMvHuC/V47sfVeFl26dLY3UR8/4W551IzC6NLR3KTcTHGlwchIcx+F2Wb0hd6rYuu2bfa+H1MnT5ITzQ3LdZkxc5YseOopeeShByOjSHQ0ylVmSiUdVXG1uddIiRK7ykyz3ZwHHrCdxhpWFDYYuWPEnfYeH3qPEb2/xfr1G6TFbbfJUjPCYzczFZVOw6XTh/Xr28eMdCkpL764Slqazmm9l8Spp5wiXc0N0v8wN40fae6JoaHInDn3yzAzoqBN69tsqOFGjOQVjPxgbjZ+hannjGlT7X1Q1FxHG+hUW26KMIv0//8NNMHNujfWy7ChQ+z2OtpEp3HS6cK0jXSqL70Xy8IFC+zIAx2t07RZc3sfi/tmzbR7ya9e8Tre4wUjiZwneuBTTj9Dxtx1l5x77jn/XxuR88zN3FuYKcVuvOEG2xYDBw8258JCa+yCs3SdH4mcc4kGI3pDeZ2GrEvnTpG6Rj9QzztH3GHfP+45LcOVV9WRbHMOXWemzfrHTC025/775V7zvltowi4N8eK1j9sHXxHIS4BgJC8dnkMAAQQQSFiAYCRhKjZEAIGAChCMBLRh01AtgpE0IHMIBBDIWAG/BCMK+Oabb9lRFFvNaJHffvtNypobfg83nfIu1PjQ3Dhbp5P65NNP7bRNTU0n/VtvvyXVzzo70rGvN9hesmSplClbVr7//nu5vNZl0qtnz0j76CiGJmZUyrffficXnH9+JHTRG7V3NfdS0NfoiIcDDzxQRt81Uk444QT72sIGIzoCRqed0jqUKlXK3uuibZs2kdEbev+Qtu07mCBinQlKStky6P093I3o9XUtW91m79+hwchpp55ibtZ+ufTt188EI62lgZlOq3KVUySvYEQrMveJeWaUx1TZ2YQzOk2T3mfknrvvltKlS0WM3AO9n0m//gPMfS7my+5m6iktY6NbbrEd8Dpt1jZzv472psyr16yxI2tKmYBngClPp65dpVLFE2WKmbIrv3rF63iPF4xo2fI7T3QbPQ90lI4GKY+bm7lXNOXRG9h36dpN9txrT9POP0irFs3t/UZ0uwfvn2MDnXSeH/mdc4kGIzplmZ4HGo71MPaxQq5bmze3YVYtM3Wad1n3xhvW5JtvvzFWIodUqGDvD1OpUkW7Wbz28e6DxwjEEyAYiSfDegQQQACBAgkQjBSIi40RQCCAAgQjAWzUNFWJYCRN0BwGAQQyUsBPwYgD1OmS9Abc++23n1uV46tO51TWBB86kkM7fL3BiG6oneGff/GFVChfPjLFU44d5PGNBiO66H05imLRUR/fmvt3aAd0rEXDBr2h+aFmCq1YyxdffiklS5SwwU2s5xNd9+2335opsfaKGYhE70ODGPXUMpcwx45eNPzQ4Eefj3eD7vzqFb3PRL7P7zyJtQ+ti46UOGD//SP3GYm1Xbx1RXF+FMU+o8s/avQY2bZta677ibjtdDSRtt2+++7rVvEVgUILEIwUmpAdIIAAAgioAMEI5wECCIRdgGAk7GdA8vUnGEnejlcigID/BfwYjMRT105t14ms2/z99z/SvGVLMzXS9WYKrhvjvYz1CIReQEfZNGzSRO4eP07ctGGhRwGgyAUIRoqcmAMggAAC4RAgGAlHO1NLBBCIL0AwEt+GZ/IWIBjJ24dnEUAg2AJBCkb05uENGzfJ0WA6SmG0uZdEhQrlc6znGwQQyCnwkpnyrNVtreVoM33atdfUl2vq18+5Ad8hkGIBgpEUg7I7BBBAIKwCBCNhbXnqjQACToBgxEnwtaACBCMFFWN7BBAIkkCQgpEgtQt1QaA4BPS+Me9/8IH8/tvvUrnyScVRBI4ZIgGCkRA1NlVFAAEEilKAYKQoddk3Agj4QYBgxA+tlJllJBjJzHahVAggkB4BgpH0OHMUBBBAAIGcAgQjOT34DgEEEEAgSQGCkSTheBkCCARGgGAkME2Z9ooQjKSdnAMigEAGCRCMZFBjUBQEEEAgRAIEIyFqbKqKAAIIFKUAwUhR6rJvBBDwgwDBiB9aKTPLSDCSme1CqRBAID0CBCPpceYoCCCAAAI5BQhGcnrwHQIIIIBAkgIEI0nC8TIEEAiMAMFIYJoy7RUhGEk7OQdEAIEMEiAYyaDGoCgIIIBAiARCGYx8/sUXsvfee8seu++e0qb+559/5ONPPpH/HXaY7LLLLinZ9/fffy9btm6Nu69DKlSQkiVLxn3ej0+o4a677iqHHnJI3OJv3bZN3nvvPfnxxx/lMON97DHHyE477WS337Fjh3z19dey5x57yP777x93H6l64ttvv7XHO6VKlRy71HbT9tt7r71k3333lQ8/+kj2M1/13CvK5e+//5aXX3lFjj/uONnLHJulaAR++uknUet0nGNFU4PU75VgJPWm7BEBBPwlQDDir/bKpNISjGRSa1AWBBBIt4CfghH9u37Hrzvk6KOPktUvvSRnnXmm7/pkfjXl//6H7+WwQw9NqKk/+/xz2b59uxxz9NGy9uWXpcrJVWTV6lXy7LOL5aSTKkmdOnVk97Jl892X9sX98ccf9rja58OSGQKu70r7SA844IDMKFQIS1EUfcohZCxwlUMZjFxaq7Y0b3ar1Ktbt8Bg7gVffvmV3DtlivTv19etku2//iqVq5wiq1euSNmHSYdOnWT+gqcix4h+sODJebYDPHq9n78/7sSKcvj//ifPPL0wZjUen/uEDB46VDZv3hx5/rRTT5VRI0dK+fLl5JVXX5Xrb2wgN15/vQwc0D+yTVE9qHnRxfLpZ5/JY488LCdXrmwPM/eJedKrTx/5/fffpVnTpuYXhauk9hVX2rBnyfPPpawo+gvku+++J5dcfJEcdNBBdr/znpwvnbp0kfPOPUem3ntvyo5V0B3Feo8UdB+ZvP3td9wh27Zuk0EDB2RyMdNaNoKRtHJzMAQQyEABgpEMbBSfFIlgxCcNRTERQKBIBPwSjGgHct16V8tdI++UpUuX2Qs1e/XskbJgRPsRpkydKo8+/LCULl2qSKx1pxrodOnWXVYuW5rQMepcfbV8/NHHcueIO6RV62zp1KG9XFO/vg1J5s17Un7+5ReZNnVKnuGI9m0tW75CDjrwQNtPoX03QVj6DxgozW69VSpUKB+pTr/+A2Trtq0ycsSIyLpMfbDxnXek/rXXSfly5eTiiy6SLp07ZWpRA1+uouhTDjxaCipIMJIk4ltvvS0Nbr5Z1r32amQPRXESP/b447J+/QZ7jGXLl8sXX35pOsEvlv3328+uu61Vy0iHeKQgPn+QVzCyYcObUv+66+zokAtr1jRBxEky/6mF8vbbb8vZZ50lM6dPS3swoj/0dISGHtul665jpFuXzrZcB5of/ldfe62cVOkkGT92TMpaaNDgwTJz9n0yZ/YsqZqVZfe7ceNGyW7bTq69pr60aN48Zccq6I5ivUcKuo9M3p5gJHfrEIzkNmENAgiES8D9/Ndat83OlrZtssMFQG2TFiAYSZqOFyIQCIFt5mr8xYufMx3Hy+Trr7+xMw/07d1bzjvv3KTqp38PfmJmYjjggP3lGDO7Qu1atSIX8SW1wyJ+kV+CER0t0qJlK+lnLoJ8csF8KbFrCenVq6eULVMmJUIrVqyUB00oMmbUXXYWjZTsNMZOChqMvPraa9LVBCkPPXC/TJ02Xf7860/p1aNHZM/tOnS0M2UM6N8vsi76wZnVz5E7hg2Tc86pHv2Ur7+vcupppj9mtlSseGKkHpPNBarbtm2XDu3bRdZl6oMHH3pIHn3scRPGPZSpRQxNuYqiTzk0eIWoaOiDEb2iX4cE6vRGf/75p3zy6ad2tEK8YX26vY5U0Kv0W7VuLS88t9jy65RFf5jXuxEje5hpnHQUwSFmOqh4PyR1OOLmTZvlhBOOT2jqrZatbpPnXnjBfmBVOfnkHM2u00+9Y5LeE044wZbfPalTOem/Q810U9vM1Q16zIoVK9oybdq0Sd559107HFKnenKLhgy7lSplpwR723Syf/XVV3L6aafFnDJIh0K++eabZqRGeTnRHLtEiRJuNzas0P3o8Mz33nvfJujO+S1zDN3vGaefnmu/eQUjmsbfd//9dhRGt65d7LF0KGbWmWfJli1b5JU1L8kHH34Yc8SIrtfpt4499lg5+qijIuV0D9RDh4Vqm+k0VG5qLve81vWtt96SyidVtiNT3HptZ7XV/X777XeyadMvZsRGV3n/gw9sW5X8fxMz05qU3b1sjvb566+/zLn0rp2CTX9h1XLtvPPObtf2nIxlpWX90oRkk+6dIk8tXCiDzaiFyiedJIcfcYR97Scffyz77LOPlDOpv1t0irH1GzbIL+ZqDj1/NKxxi/c80eNrPY84/PBI0OO2i/6qH9x63h1//PFSpnRp+3Re7xF3fugUVBs3vpPLQ3eg06TpokNxdboqfU9WPPFE2W233ez6gvyX33vshx9+sO/TSuY9EWv/Ws53zTmj54IOG/ZOkecNRr755hvZ8dtvOdq2IOUMyrYEI5nTkvqefmP9+qQLpO857+dH0jvihUUq8MKSJXZKPz2IfqbrzwGW4hUgGClefz8fPRODEX6W+PmMSrzsyf4s0b/B9MK9giz6d8YFNWoU5CWB31b/HtTfoadOny7695p3mThhvFx04YXeVQk/9v48ci/Sv+9G3DHc/i3o1mXKV78EI9oXVO3s6vY8PurII2XCxIkyz1zM6u0Uj/c3aCJ/5+rf0tvM38P6t7x30UBGFz1mrEVna9CpsbRPJtZU6zpFz3vvvy+/mb9ZjzP9Fq+9/nrMESM///yzfGT6ErRfyf19r8dzI1numzXTXoRZ34wgqWtmxXDL6+vWSV9zwej8J+a6VfarHlenP9el9pVX2X4LnYK8jPlb37v/eOX39tdp2XY1fSvxpsTXcFH7VvQ8j/bz2uuoHy2TzlLiXbTvQfvxXJ+FPqdTjv355x92vXdbb710BpEJ48aZPpHjpLQJyLT/T4+n22hZ3bb7mYubtYx6HDeFmT6n/R36e3ysfkP9TNA+OZ2uX18fb8nPKdY5qWXcYfpznpg3TxY/97ypw1i7e+9U4fHOB2+dtE9I9+MtX6zj6c695cyv/1XPVa27XnystxCItcQrn9tW+3u++upr+/709uW455P5Gm+fBTl/tD9P34/ax+Sdat8bjCTSp5xM+XlNboHQByNLly2TEXeOtMMAx02YIKVMR/4W88Nu5J0jYv4SsmTpUunRq7ftsNaT2b35x44eJZUqVbLByPBhQ2XIsNtlrz33lK9Nh6lOpdSpY4eIvn5INGl6q2wyx9Ft9I01ZtSofK8GiRWM6BunWfMWor9IuOVck8BPMj+g9QP9bvP1rtFjbF30l179xUs/6Dq0aysDBw+xPxj1B+fE8eMjx9dgotzBB9s5M5cu+/eXXe0Y1s7368yoB130Q6ptu/byvNmnWzRcmW6mF3O/FOh+9AN+//33Ex3poUZnVqsmTZs1tx30+jr95VjX3XP33ZGhonkFI7c0amzmslydY9oq3c/Djzxig4imjRvbUTXRU2n16NlLHnnsMd3ULkeaAGG8+eDXe5PootOijRh5V6SDSe9volNjucBIjZeYc8UtNc0v9PdMvNt2mLsyvfTiSnsuPTY35y8D7jX6VYOgB+bcZ1fp6J9bGjayYZXbRi30B9Ke5rzQD/l4Vk8vWiRdu3d3L4t8feShB20bR9d/5coX5TZz5aqeL265wYy80Ss6tA3cedLghhtEy+9+Kddz1wVQ7nXu6yhzXs2d94QNc957/wOpddml0tOUKa/3SNYZZ9jnO3bqbN87+h7Qe8HMMKNt3D1lNHDQOVs3bd4kL65abc+LH374UXqbIco3mOnRElnye4/pD/IBAwfZc0I7gDXcql+vXo5ho3q1TruOHWVf80upnv9aVh3to3XQRcv5y8+/2HZ6zfwi+Kf541B/AZs+bar9xSWRcgZtG4KRzGlR/bxvbq5mS3YZMXx4jj92kt0PrytagRNNUK9/YOiiHSfagcJSvALejihGjBRvW/jt6JkYjPCzxG9nUXLlTfZniXYC6cVpBVn07863NyR/4UZBjuWHbfXCvmYtWtoZD2KVN9XBiB5DLwDtY0Y4NLjxxliHLLZ1fglGFEg71V0H+nfffReZwSO/v0ET+TtX+6eGDB0mi59ZZNtC72d6Q4ObbL+EXrSnFzlOnXKv7fzXDbRPoemtzeRLc9HpgaYD+VtTnnZmtGrzZs3s6/U/DVUaNWlqXvuzVChfwXba69/595opu9xUWvr3f3bbtvLSmrVyhOkr+cBc5NmqRYvIyFetm06Bpct3euGt6S/xLtp3oSNC1r/+Wo5gRvvMLjFT2evi7TjWfTe85eZ8y68eAwcNtoGQniMd27eXRo0aeg9tH+t063379zcXqx5jR1wdf9yxMvmeeyIhh9r/tuM3+cVcxLr6pTXm8Q57P1bth3AByTnn1xDty9N7xrhFpzV79dXXZOLdE9wq+9VbLz0f9EJpfW81bniLnbVDj+em3Xad3c3NdFtPLlggW837/jATyowYfru0uq213Z/eI3fIoIFytemTcIv2t2gbHWUunv3YhFVnVq1q+7BiXdAZzymvc3LkXaNsf4ha6EWeWgftQ1yxdIntD8rrfHB1uuWmBvLQI49KjfPPt30leR1P65Vo/6v2T02cNEkOP/wI21+q4ci990yMvNfyO1+1v6dh4yai7099rYZ9Pbt3syPnnG9Bv+a3z0TOH+1Hbd+xk6xatUqOMvco0unpLrightxubhWg9s41vz7lgpad7fMWIBgxH7QtzYdRPXOzqK5m2iP9MNBO9kFDhsrrr7wc+SCNZow1TZA7ifWKTZ1zUj9gNQW8sk5d0WRdR11oMKGJ8jX1r7YfmPrhuXz5CmllOq0Xm87uvOZZjBWMdOvew3Zk6/00tFNk0TPPmA+mR6RJ40a2k9p1eGsS2d6EIQvMtFPaqa4fpn179zIfyltlmPnQ1s7e+++bbaupwYSWU6dmutl80OkQ3MlTpspWk6w/Nf9Jm2r27tPXDvHU6auuu/YaG3zMNMMHdzO/7K5audJ2Znv3o3MV1qhxvrxippzq06+/+YHR0N53Y8aMmXY//fv2kZsaNIgcP949Rq657nrRqxF0pI5L2aPbJvoeI3rF/023NLTTbnXp3FleM8NAtQyXXXqpjBsz2n7on33ueXbUyz0mHFuzdo0MG36HdOnU0UxHdY0NcerVv0auM4+zW98m90yaLCtffNHe06SymcrLG4zoB6/+UnK7eb12tuv+tY23b//V3vfDG4xcePEl9uqAlma6K/XXtnv40Ucj90Z53AQU8axqXnCBvGlGdTxkhtlqeNXRDNHUESe6Hx2p4g1G9Jeliy651IZ+Tc15ccghh8os01Y6ekTnBm3VsmUkGNErGm5t2sRYVJAxY8faX1TmmjLpDdW8i/5CVv288+X5Z5+xP5z0qotal18h08wvaXqu6RLrPaKjduqYOVknmx9q+guHXiUwbvwEeebZZ2XRwqfs6/SXiBkzZ0mPbt3kxhuut6M0lq9YIS3MiKlZM6ZHpgyzG8f4L5H32HPPPy+9+/aTZ8wx9T2v9alR80J5dtHT9gen/vJY7+r69n2s1rro+0YDthdXrrBXc2g5p02fYYZR97bnif6g7GP2qWGoljOMC8FI5rQ6nVmZ0xZFWZJkO7OKskxh3zfBSNjPgOTrTzCSvB2vLJxAsj9LCEZyu197/Q22E0+fOfnkyvbvxdxb/bdG7wup94f0Lvo3UtYZp5uLFI+2FxDq3yrJLDoLhP6996H5+2vBwqftLBJuP3rl9IP3zxG9cj9TFj8FI7HMEvkbNJG/c6ODEW8Hux530uTJdoYMvYhJg5ILLrxIapqO1fbt2tmwRvtC9O/m/n37yhWX17b9OufWuEAuNn1FHc3Fuvr3vl602rxVK/t3tgtGupi/vTf9sklGmn4s3Uavstf7img/Ta3LLotV5Rzr9O/64ytWyvN+uxqc6BRh7kLDRMqvHreai1T1Il0dpaJ9K9GLBhNaR/0bXO89q22hYZL2iV16ySV2c3WcNfs+M/1X9xx/u2sgMXvmDLtNIh3b0cfW72NNpeVtN9dPeJMJI3ubUFKttI/w62++loUmKNGQ6VFzEe/wEXfK2tWr7EWZ+v2oMWPlUXPhq47i1/6WtqaNDzv0MHtxa3Q5Yjklck7qfnQqLe0n1D5Lt+R3Prg6XWPapKe5gFXPmUSOp+XMr/9VbyegF3dr/6SOlNFFL2rVvlWdQl6X/MqnxxlqLlbX+xbrRa7ah9ilazfjPT9HcGd3luB/+e0zkfNHy61TJd5rQh+9h5CO2mloLv6ucf55pq+xdSQYyatPOcHislkBBAhG/v+DVjtEdRSBLnr1ZRG/tXYAAEAASURBVFa1M2Wm+WB1N9OONo3V6es+HPRD+3pzNb5bGjVpYjuBNbXX+z/oh7Qm026KJd2uY+cuNijxDkd0r3dfYwUjZ51zrplCarN07tjJXvn/l/mQvd3c4EmHWGqI4YIRnZ/0lptvslOrXH3NtaKjSqaZURK6nF61mv2wePml1fZ7DTT0h9TyJS9EplK5w3xITzbbDzQjDG40owq0U1x/AOkHt14toYvOK6nTOukPJP2FTvdjgxIzkkKnRXKLTvv1kel41jkXv/jic/uh18hcLdC7Vy+7ib4ulcGI7lSHvOovCXpM7cDu3rOnbW+9eb3WVYMRvWLnOnNfjjNMuKChkBt+qZ3kl1xWy1roqILTTz/NjvxwQ1S9wYgbdljX3IhMf+F4a/0bNoTSfZ9y+hmRESOapOsvMReZ+6S4qw+0XPpBWcnU310FkZ9VrHuMRAdDj5hgQ0c56RUKGv7p4uqkYZ3+UuzOEx1F4m4mrvNi3mFGU+n8qRqQeRf9Ya7ngP6ypb+gaBiiP3D0n1tivUc0CFtoAgb9Bcst+kNe0/wXFi+2waD+EjF/wVP2SgUdzeIW7WzS96Org1sf/TXR95he1aI/vH8xV7Ho0r1HTxvy6U3kNJh50YRf906elGP3Y8aOk3r16tpfXrScT85fIC+aeYBdvXVIckMzaukNE755y55jJwH+hmAkcxqXYCRz2qIoS5JsZ1ZRlins+yYYCfsZkHz9CUaSt+OVhRNI9mcJwUhud/3bXC+U08V7QVzuLUWeN1Nkawe2W7RjsY/5m71e3TpuVcq+6tXtesHdwqefjuxT/97WC9NidTRHNkrjA78HI4n8DZrI37na+eodMaKd+TNmzpQe5mp3DRR0Zgn3t6ces665gHPViuWRmS60yfRiPf0be/RdI+3FivXMBZ4agLj7oeo2g4cMkUXPLrbrtR/i1DOyzIWzvc00W//OqKHbTDfH3WXnXeR2M4oivyWZYCSR8quH3iR+zaoX8/z7Wj+PSpqLf3WKa10efPBB+3f+neZvdl0S+ds9kY5tu7Oo/xINRp6c+7icaGar0GWIGSHwxRdfRvqCtL9K20DrqbPS6EgSvWjaO4Lk5VdetefCkuefiyrBvyMxop0SOSd1R9HBSCLng+v71P40nYZel0SOp+2pQVde/a+tWmfL6Sbgamou2HWLXsg6afK9diYeDXbzO1+1LPXNRdU6Ou5c87msllov997R/jAdjZXIcoKZNl77BvPbZ37njx5f+15nmFFA3guP9f4975vQR/uQnWtefcqJlJltCiZAMGLemDrkbrlnSigl1KvHBw0YINWrnx1TNFanrzuJ9YPKO7RQO1z1h5BOp6UdqX1Meq/TbkUv2snsDVSin48ORtzx9IPBOz+jvm4n06H8qhn5MNEMH9S0VZN5veGavpmvMOl0nauuFPdDQn+B06For7281h5Sg4mDDjowh4n7xU1Td70aQe+loh8Q881USm7RzuTB5gPejf6IFXBo/buZm3TpnLTe5WYzWqTf/3eWx3qd27apCZeWmRE2murrtFNu0R/++oEy1ozQ0A9N74gJvY9KYzN1mc6T7F10Gi1NjHXZaO6Tob+AaKigP9Q1vdWrLNwPIh0toCMbNKXWRVP7CWZERfSIkUSDkWVmlEdTM1LEG1bYHXv+S8QqkWBEfwmYMnWanWJFRxXpoh/Kp2VVtVeJaCDmghE9J/Tc0EXDiQ6dOkVGldiVnv90HlC9YkWnNvvJhAy1zZUkXbt2sVcL6Gax3iM60mipmYvYJf+e3dkpuzQZ1/J+88239hc57/MaSuiVT5PMaJO8lkTeYzqqpo25IeH2X7dL+XLl7e60bXXkjY5c0vNJ7wfTvWvXuIfScmo4qFfruEWvrDnXTLO28c0NcUebuW2D+JVgJHNaVa8+0fs4RS+LTQCpVx+5RYfR143xB7h+xukf6CyZLZBsZ1Zm18rfpSMY8Xf7FWfpMzEY4WdJcZ4R6Tt2sj9LooMR+3t8Ph2o2inlRpenr4b/x955wF1RXH9/ogEBsSQmCthjpYoiKkVQBOldVJCO9N6l9ya99w5SpTdFpAsWkCpYEoxiN/8Igho1ed/zHZjL3GXvvfs8z4WnzeHDs3d3Z2dnz5aZOb9zfufynSkhwEgTodB6U2i6jUCnXPrpp83qJVnCorD37bdDdc8VZ00YIFKCpHZgJMgcNMg81wuMcG/woCey6LBEAN1y662qU/v2mgadc+LMiHHaFns7x00R7/SN69fZRTRbxUCxfwCYAObx7OI0iW3JFnKgRkuobsomBhix22nqYWlv99OHXZbfgEAdhar7PbEHmZytACTY3KDCRoLM3f0M28xvsaEZZ1ZdmedPUGBkjzBPGHBqiNgQfhKnXeOUSn9LPdCzY1OCXQSWFzv/hDntnFkzL7I1+OkJPQaxPXqBkSDPg7FF2tcU5Hy0M5b9FbaTHhKF8kTx4uaSw5ZB2scB5A+ev2CheldYazJmzKDq1a6jGjZsoMER7KSvv3ExwBR2ovMr0MUDdCPR6oz1/GCP1HRzB96/yH57/lQhYCSaTdmUdcv4acABI/Ji2oi8UW1SgBH740B9NjCC8bVy1Wq6AzL5SSiDMd/vo8c+I15ghO18NEA6d0qHZsJsyY1QpEjhsNwRCQVG8KQn4oTEXAiG4kUSYmd458sITyQoqx1VQmTMrt1vhfJ/+AEc0C2RXGq1oOVE6KyXsN4OQm8VFBgZPHSopi8iZG/I4EG6bXSEjxUuovOeHNi/TycDt4ERwu7mL1yoXh46RFWqWFE6/u/UkwIQEFUDMAI6D7XS7eI1QwL1d4S7spOE2ZFvhntJdMebW95U5cuX04DCegkzHCTtqFC+vDbeJyZihLwyJG0j1JOIDSYJXEd18fjgozto4ABNTRVLV0GAETyD2rRrr6nAqBchsoFQ7+LFHlczZTBlgBHznFAmGjDCcwzwYSKcvpIQ1JbCSfqkdF6thRYO8QNGFsh9gIPSm5TNfv4ZtMARiueL7cFEpBMD9w5C/xVNgrxjROZclfEqNVB4PBETAdOqRXMNjLyyaJF6XQzIc2bNCp0KMIn3oI5EXvFe0E7DG2oKOWBkghon+YoQx61vnoqUtSQs+yWhhDPSQwZ6DQTwdpI6NZBYY1bqvNrU0WoHjKSO+5QSW5kSgZFIenJ9SSTNpM7tie1LvMDIY8J/b1OxpE5tJK3VQYEREjAXFM9hkycML/LVK14NeTMnrRWRj8ZACHuFEah9+vbpbVaTdZnagZEgc9Ag81yvgRvDbqmST6lskgOWOSuJsvsNGCDMHXvV5yc/VxUkoTk5IW666abQ/WOui2C7gVacMtvE3nHzzeccAtlnHBYBRhDyBQ0WW0FJYbQwQqSRHaFitvstEwOMoLNY7ffqw+/c9Ek4gmK/MsBOy9Zt9PtkAyOx5u44ENeuVTOUV5dzwQSS7cabLjsw0kqcOLNnzybUX91Cl0wi+Cuu+IMGTEIbz//w01OQZ5LDvcAI22I9D37ASJDz+bWT89n2V2xXOSWRPZTvRgC6RowaJZRq/bWdLlb7cETOnCVziLYNNpc69eppJ1vYYRIjseoM8vxgA5w0Ybx66MEHQ02g3sPiWGtTaUWzKYcOdD/ipgEHjCQSGCHCAEMtoW6GSsrv48CdsoERjKt8/PGowcALYrxn714F6LFGoi/8POnN3fYDRoyHNtEbJL8+ePCQekPCclsKZ2R78X73GryDRowAjOAxXLVyZQWd02ZBUzMJYk24LZ3yxEmTtNcxnWsFAUkOHzmir4OQXLwRMGj7ASPPPPucOnDwoOrSqaNEZWQRkGO2dOgndWjbgL79tOeD33FGB4AU5QXcoFMg4gM9gvQCbpgoGC+V1AhJqj5FIhsw4heWDh9qKZBekht1FVAGb+lSZcpqui+ien799TfVV6KFrv/T9Wq76JIBZC1Bl4sK2FS3Th11RK51rHgOEOb8sgAkiQFGuJ469eprnQFO5H/gAbVZwBciIsy9C6Irc/+hRssnSXhbimH/4KFDYREzUEaVKV9Bg28lnnhCvExu0V4YJtoBvXifE9oXDRgB2OHDj7cCIAHPdVNJ9AyFmqEB83tHuH+V5Tj0XF1yjWTI8Ec1VyKNFgJECJ0dzw0DRkKG8WQnQglPibXCvUn495JFr2g6LaJUGAD1k2gvr1d7kHeMxPVELY0U2jkGcQsXvqJz7bSWHDIAO+RlqVi5ikSMdJZ8QM/oZGQLFizQuXZ2yMCTCC0HjPCUhIt5HtnqgJFw3aSUtcQYs/BuWb1mjeQ1+kAD8VdfnUXdcvMtqkyZ0gojSCTBu42+BAF4ZhBKXUx8+U7dKvmOCgo14X0Sfm2o54hepI8gHxXfYjzXHnzowYvec+rEIAOobQQaxDvvuEMn11smAOzHn3wsFIln9ETx0UcKqsrSn9m0juY47xJjxetCLbBX+uavxfGAbwVRlLnFaAEgTh8YSfyuGecF+pFvv/lW3X7H7cIDXSLscL5BOyU313EZVxw7/qGORLvl5pvVHVKWqMUbzye6DDvo/EpijVl+dblt8dGAA0bio8f0WEtaB0ZcX5L2+pKkACPMQ2AkMHKreMHbbABmO0uena1WZMUd0tebHAWmHOP/t97aox2bvvjyC8mNeVb31/nEY5y5nqFINuXNklyfX39zjnonS5Ysup+nrl27dmsmAQzDuXLlVIVkjmMzQpjjmbuR99HIkKHDtLMb68yLmzR+0ezSUeqGjQJHxgZCc2xkyKCBes5h1iMtccJiLHfi0xOap/46oVW65Zab1dMSaRLU2IctAkYFBEdF5mApQVI7MBJkDhpknus1HENpjhMhkQUY/Q8dOqyatmghQMcbOlcC9/N+MSK3b9dOZRNwhLExeTFHjhiuSgiTAbTh0IJD3QP9umYGkfydfcTe8b//ybN+HhjpL2DLAbEl4XzK/B52CCiiWzRvJnaPqjEfEUA+xqWGCsrvAG+OEaOzaO336sOvXnKzwu5Bvo5Mma7Stp5GjZtoG4sBa4PM3XE6RQeAKddf/yexmazRuYcfL1IkKjACZfpYMdoXE7uOEft8fnbCWBEj5J/t3rOXzlnLt5H5Cfc1ixj7sUF5xU9PRr+xbI9+wEis58HvmoKcz6+dXIsNjHDtPYRpZOb0afoe0gf0HzhIaPHPhNIBxGofYMPIMWPUfKH5x4GciBycymcKVbqhM/PqMNZ6rDqhp3v/wMGw54fcw8yXTcQRZd4RSjTagS0Y4LKtAEHY5JoKo4yfXmmXbVOO1U63P+EacMBIIoERDBlEJZDQ7GoZRL2/773ADzEDQVBQEgCBwNOJkLsDg0s08QNGKM9HdenSZXoQRmcJJVd/6egw3noN3kGBkRwCipR8qoSaM2++NnrjgTBaEnHZg1CojUi4DiiBQRsDFjyWhk7KD+AAtAD9xrCOkPybCA6iUeq8UEtC5rr7Aiq68Pk/DJr69uuvk4yzCYMaAE7Pnj208cwLjBBq10wSGTGIQAAioBXrP2CgYhAOHRh8/GPketAP0Rt5ZRANcGVCiwm1WyI6xmBOJMljjz6iqdYAjxILjPDRIwEUA32eAeol2XhXScLHfQyiK4CGNjIIOnLk3IDcL2KGaybypF2HDgK8HNODI+5R29atVM3nn2f3Rc8J26IBI+xfuWq1eGbMVFdIW3mmCYufIoAZNGSI3zvCdp77LsITSgeHrjH68dzkzJmT3Rpw+PH0j/q+rhSPmAzybMEX2lvuL/cN4X6MHD1GOpRpGkzTG60/sd4xop14n8gvQjsLiOG1goBHvfv0EWCkpWosExXe7U6du6jv5Fn9/fff9GRm7JjRIQ5Ne7BjTu0iRlzEiHkWUuoyocAI0VvdhW+Y98RPGOjNkIEd3y+v2EZ7BntQRTYUWkMG9rawjwE+/UIN4YLlO2sL/Q+J9jAw2AKAAoBsZJjQd/BNbiqOAYDnXuG7RxI/k0/Mu591QHNAXiL4/IT+pptQ7EWKsvFeMxNJqByN/qDIgCrDCI4B7WWSyrX4Cd/TZjJIbikTYD+xzwdV4uSJ5yK2/Mq6bZdHAw4YuTx6TotnScvAiOtLwp/YtNKXJAUYoZ9+pNBjof4a58Atm18PV9T5tZniCT5EHKeMeLnXyeVYT5gLzFzPlDNL8kISFW8ohc12lg1lzL9DQAoEDvqt4nDXum07DbDojdYfjItQTxmnSHZNmDhRzyGtYhF/Ellv8hfyTuCoZYRxTixgY7TQY0+VSH8zpjDHmiWOdowDDFWP2e5dtmjVOnR9OJhhx0gJktqBEXQYaw7K/DHWPNdrODY0UcxfGW//JOPoNq1bh5gbzDlhhMgs9h+cCjtpJ8RqodsKu0Nzcf47duy4ZikB5GvapLFEngwMASM4M/URR9U1a9eqrJJDFufK+nXrqs7i0GocmEIV+vxgTFtFHB+hc48kXmCEcrHa79WHX93MLdqJfW2P0MTBwoJDbz+Z13eUMXue3LlkrjItkFOjqWen5BolH/Aj4lhFjlNsKMaw7Xf+QUOGaMomgIEVy5ap3HJO21bgZ+yOBYxwHlgsxgngQ73Y3IoULqTp8P2YZiLpyeg3mu3RDxiJ9Tz4XRNtjnW+SO20gRHqWbJ0qXbExl7Es8i1jx45UttP2R+rfZThvmzduk1lkXzH2J4qlCur7Y3sS6xEq5Pnp73kXd4hDm/0EzhW582dRzvImeeHdsNow3uWWezIZ878qHM4YwPkPYukVweMJPaOBTsuXQIjwVRz6Uvx4vDhoGPihU+K4AmAkTy7eLLSGSZFbECDjxCd8W0CIPgJH2k6wb/+5a8hg7hfOXsbbeWYP0mnBTCUWMFz4l/iMYz+TCL0aHXhtUt7o3n7Uif3wtCSeevD8H3DDX9Oso7tevFG/kJyAXAdJvTT7I+Xrkx93MvTp06HhdGafYldotdrr70u8P0356FzQryDd3sQwUSH/CU8f953BForPNYNeGXqtZex3jEMsAx6onlkY6zl3Db1nX0O9/uCBlzEyAVdpNRfCQFG4IntJBMKvkPR5InixTQoalPfUd422jM4BGD0Aywoi2PAxxJOj9eMn/CdWPXq8jCaAC8wgsGC4//zn//4VaG38f2HvpCIDK/gBQQlIFErscRE9nnL2dfMN+NXaYsNstjACJ54FSpVCtvvrc+sA/qYnFdmG0v7fA4YsTWTfL8dMJJ8uk/tZ06rwIjrSyI/mam9L0kKMIJWbAM96wAjfuwJJsqeMhiOoNs1jnj0sfXqN9AOTeyPJMwV8T72RqXYwAggAQ4fm61oVG990CBDtWscwRILjOBcNvTl4aHqvXzyoR3nfywVYyve47EE/a0SympvRL19HEmfZ0vEvpGUkhsxLQAjRqeR5qBB57mmHnuJzeAbcfj0G8NSDoMq72Sk/ZTB9oS9wc+wzn4E4A1bDfXAsBFUyGWyctXKMCrqoMdSLkj7Y9VnbFe0PQiYE6k+2oLgaMy7um/f/qjASKR64rUdOx9Rb9He61jnivRMxjousc9DYs/nbQ/PInMqb05lUy5W+4y98uYcOS6ytZk6ErqMVSfPD8690d4f2o0timfVO4dOaHtc+aRrwAEjSddhmqvBBkbS3MW5C0rxGrAHjJEaS5TNqtVrFMZCP0/1SMe57ZdWAw4YubT6jUftQYER6C0wWODVYoQQ/KckJJ8ItC1C/Wcb/CtVrKBGjRhhiuqlbbQ3O/CGhFOVHD54vnkFqqvKAhb89PNPavPmN3TYsynj9RD1AiOmHNFrTwpt4I0Cpnzy979rKj4G50YAWtdJaLw9wAYUgZaAQaoRKCqJDoT28egHR9V2oduwhUiOTh072JvCgAp7BwN6eIILCZ941y6d9a6O4hnEJNIIVIeAvTfdeI4GAQ5po2MiU9/Zu+ciUN7WsQNGjCaTd+mAkeTVf2o+e1oERlxfooQnPe32JV5gBEcir5OX950kBwB5HhGiz00uBNZ7S4Rq3ToX8l+wjf774Uce1bSWrMNQgIMDQp8N3TGe8kZwxID1AIAAgIOch0boS18Raly8uY3YwIjZxlikVKmSuo6TJ79Q6zZsCHOagO7X9OXQFjGmMbJh46ZQWcAb6I6N5Lo/pzKUw9AjTZsxw+xSx48eiWocI6IWj28EUAZveBJLnzhxQrzKF6vdb70VqgtGBpubP7Tj/I9Zs2arwcI4YcTLZW+2X+5lWgJGIukuyDw30rEpeTuG+/oNGuocCdCNp2bB6dN2CoOii/H4+LFjUvNlubY7DTgNRNGAA0aiKCe97ipa/AkdvbBo4YL0qgJ33cmoAfLXwAtsJhzJ2BR36gRqwAEjCVRYMhQPCoyQY4c8QUagoLKpFPFaq123ntq3f78pohMewklsxDbas22cUNGVK1vW7JZ8UZXCIkTIWQU3MIYLxNAimgNMXiez7geMkES0Z4/uYcYFIv0wfACSGIG6y564kViRpHxG2rdto40KtrcZuY2aCM2WiSjB+3T3ju1hvOXea4Y2o7Hwi2PIsevC02jOnLlqreTtgvoD+ovlS5eY0+sldJXjhaLDyBrxAPVy4trnc8CI0VTyLh0wkrz6T81nT4vAiOtL0nZf4gVGgrx/r23cEAJGoIYhga5xSiACFcobWwAemrVoGdrUQ+inDJ0lOTCbt2wV2gcIMU3odm3vW2hbXmzSNFSmTOnSmv/dbPACI1Byzp87J4y+k4TCUASZROlEqK5YvsxUEbYMmnwdGp2ZAlAgjA8+OnYBwAmr8PxK/ocKhJxFvNcA40FJ4c7H8YMk3eQbMeCTX10k8yZ5txESd3PdyS3pARhJa/Nc7tnESZNlDH1Y5zjxApvJ/Uwl5vxPS+5Z45jE8dcK2NpdvjvF5fvkxGnAaSBtasABI2nzvrqrchpwGnAauOwacMDIZVd5gk8YBBj5h3gfMikwYtM/mW0s8U6sJ95hRlpJxEU7ARSM2EZ7ojPeE85hm/aQyeHosRfybdSt/YLq3esCTQTgQZFixSUP1be6ynvvuUeAkwsRFl5ghNwheKL6hS3jZYm3pZGSkgB9yuRJetV7vdBomESNprxZmvxGZn1Av76hXE1ss68ZmoIdYmywI1PMcfaSEHEic7w5VKAFAzwyMkJ4qatUvrDOdvt8DhgxmkrepQNGklf/qfnsaQ0Y8X5bXV9y4elMK31JUoERNFJfcoPs2n0u2oEocPIT2LTQUOeSi9KITTnVTnJ0rVu/Xu8CXFgtDgRE6HjluZq1Qo4cjEP2iTHXUGF5gZFI1JVEthDhgjDOOLh/X9iYxpzzUgEjtp44P+MP+n1D/wyNqK030x6/pQNG/LTitiVGA0SRQ1/Fe+dYHBKjQXeM04DTQErQgANGUsJdcG1wGnAacBpIAxpwwEjKv4lBgBGvdyX5PaCV8JMTn34a2kyekDGjRobWbaP940WLqNnC0WvLqytWqK7duoc2TZk0Uegvngqt86NajRqhZKp4Qr75xgW6Ci8w0qB+PdWjW7ew4+2Vx4oU1Qne2cYEbu3qVXo3NFqNhBbLSN/evVTtF14wq2FL6L9Kly0X2taoYQPVTYwlRuxrjgawmPJ4ye7Zs1d9JCDI8Y8+VD/8+wezS/0suU72ShJJI14Qhu32+RwwYjSVvEsHjCSv/lPz2dMaMOL6krTfl3iBEbjSq1erGvU1pH+FK9/IosWLVa8+fc2qmi30Uo9b9FPFxZGBnFxIzpw51VrJYWDEjvYkSoR8jX7yw6lT2nhr9r2+aaPCmQLxAiN7d+8K5S8x5Vl6wSzaQXu8cqmAEZIj9xSQyBbAIK4DmtJCksievIt2Yni7rP3bASO2NtxvpwGnAacBp4H0rgEHjKT3J8Bdv9OA04DTQJw04ICROCnyElYTBBgJmuDT20wm5gvnzwttjmW09wIjcwQ4KSoAii0JAUb69+2jatWsaR8e9vv5Wi9oei42wvuN8QNZsnSp6tGrt/7NH792mJ0AGTnz5FVEsyDRwKBYQAUcxm3atQ95sZpzRFo6YCSSZlLWdgeMpKz7kZpak9aAEdeXXNynmecxrfQlXmAkiEOA0YFZfvfddwowwfSrDerVVT26n3OagAKzTLnypqiC5rKlRKcaIaqUvjShwliFMQtiAyN4vB85eMC3utmz56hBQsNpZIUkQ8+XL69ZDS0vFTBCZCngzAShLTLUY6GTnv8BKNKj20vqmerVvbvC1h0wEqYOt+I04DTgNOA0kM414ICRdP4AuMt3GnAacBqIlwYcMBIvTV66eoIAIyQEJzG4kT//+c8hygmzzW+ZJ3ceNXH8BWqsyw2MdO3cSTWWXCKRpGKVqurYsWN6N/lMtkuCeWTV6jWqU5cu+jd/Jowbq+Dv9hP40B8qeM6Ywv5nqlVTQ4cMDhWNdc2mIJQXxUs8FYpgMdujLR0wEk07KWefA0ZSzr1IbS1Ja8CI60vSfl8SD2CE9/TZ52uGEqjfeccdavNrm/Tr6wUjoMu0c5k9Vepp9c/PPtNliRi56aYb9e9Yf6CmLPjww7qYDYwALLz/3ru+h3vbcrmBEdOoI0eOqmXLl6ttkuPMRNKYfWb5YqOG6iVrXGO2m6UDRowm3NJpwGnAacBpwGlAKQeMuKfgkmuAQdt1118XkYrF24CElvcezzpeR1C83H7bberKK6/0KxJ4GxzJULjYifwCH5yAgnhM2Ym+vIcSng6H55dffaUezJ/fuztu6+gtWjh63E4UoCKMhx999LH67vvv1D2SXyBSiHyAqgIV+d///qfefe89df9994U4ewMd6AppDThgJOU/CEGAETv5JVfUU+ip6gtNVUIlFkgQ74gRb3J2u714WuaXBOg///yL3sw3dNmSxfq393rbtWmtWrVsaR8e+u1NCN9ayrWV8kZiXbMpt2vXblW/USOzqnnCmzdtqu6//75QknbotSpVrRYq44CRkCpS9A8HjKTo25OiG5fWgBHvt9X1JRcev7TSl8QLGJk5c5YaImCFEWgzmXuRx4x8Zgh5uN54/TVTRC/t7+21116r85P84Q9/CCsTayW1ASPMFa/JmlVfFnPU999/X23e/IbavnOn+u233/R2omLf2rkjNJ7w6sABI16NuPVYGiAfHs9XPGwrkc6FnYNoKCh8U5r8+OOPOsfQ4SOHVZVKlVWBAg+pPXv3qseLFlXo5syPZ1TevHlCzfbadW4QJzOTDyhUKI384JvE9WI/4rsdVM6cPauOHDmi+GbnyZNHXZ0ly0WHEhF4/PiH6qpMV6lcQl3Id94rSa2He/uBOM4RRXjo8GGVPVs2edZ/V4MlQjBvntyqbNmyCboub/vceurQgANGItynvv36a89TvEoTIhg74CCvV7dOQg5L1rJz581Xd/3tbxdRmJhG0UHVeP557Rn7Qq1aZnPgJfyvDes3UBUrXAiFjnZwQsv71fXTzz+rfPkfVHt27UxS54qh/N6cuTSvfUI+9H5tirWtfceOau26cwkE/cquW7NatWzVWntGvbpsqXogXz6/Yknedl+u3Hry8drGDUmuKykV7JZEjK3btVN4aBt5pGBB7ZFuuIkBTpYsXaY9xEjqmRBhwv7hhx+p0k+XkuNv0oca78bixR5XM6dPT0h1rqxowAEjKf8xCAKMMEAkHwfvF5I7dy61XLitvUnNGQS379hJ93fQRnklFkgQb2CEpKN4k3qTmNMur9HlBaHc6ifUWwjfmEJFHw9dLxEym4V/3G8CYyc/5dgZ06aqJ4oX56eWWNdsyjHYniW0HEa2bH5dTzbNOksvn7gDRmztpNzftqGuTatWqk3rVim3sa5lKUoDaQ0YcX1J2u9L4gWMfPb556pEyVKh97Ffn96qatWq6uFHHlW//vqr3t5EIkK7SGSoLcNHjFRTrfF6pIhPKKgYszRv1uyieWFqAEY+FEcJxm/kJINejIgar7PYhIkT1Zhx40PqiRTRQgEHjITU5H5YGohk88FGsX3HTnXTjTdqylxy/I0eM1YtmDfXd6xsVZmgn2PGjlMnvzipiOgKKrHsWEHriVaOeULdBg1Ujuw5tD0LykDG8D/9dFa1E1tF1WrV1fCXh4U5rvaSfEBr161T2KSYP3Vo21Y1kkiutCgtW7dRAEaACdjegsgrixapfgMGKhx/sbd99fXXinlODbEbGhkqzwF6pgzgy68yL+3Vs0cYVWA86hkybJiaOWu2plJu2LixKvTYY2r61CkalH9rzx61fsNGNXf2LHXP3XebprllGtSAA0Yi3NT8DxWQD/98bRCKUMR3M2G2JEudOmWy7/6UuLFps+aKD3yDBvV9m0f0RYdOnTS1SEKNz1SYUKAjoeX9Gp0agRGMhIcOHdaXs33HDhkYfCFG+6fVX264QW9r0byZmjR5io5o4ON8qbwpUgIwwsCMydAv0gE2koHIXXf9TW15c6t67fXX9XPIxAc5JckUC0g5b24DvTPGnwEDB6q58xfoAZ7hGYZmp1WbturZGs+oplYy5hhVud3nNeCAkZT/KAQBRriKdh06qnXrLwC1pSQpel8xVBgQ8dtvv9Vl3nn3HOVEvrx51TTp9/BSNBILJIg3MMJ58WQbPGhgiDucb8k8Af9HjhkTAj4ot3TxIvXQgw/yUwtUWlBqGSE5+8AB/RXXhSfT1zJgHzx0mNqwcaMponLkyK62vvFGWFRirGs2B3spOQb276eef+45s1t98MEHqo44FPCNMwKY07NHd+2RZTxig57P1OGWl14DDhi59DpOq2dIa8AI98n1JWm7L/ECIxjrGUPHEvKBeZ0PKogX9vEPP9SHlnjiCfX888+pJjJHNeLnFIYzYumy5UwRHUnRr29fValiBb2NOSx9e1eJfMX4ljlzJtVVqEJJAG8k3sCInfeEccKalStV1vMRHrAYmP4bo98MiZRB2PbhB0cjRngQzV7zhdqmyXouNFyMeVyPEa/DxbY3t2iDotlvL+fMmasGDhkS2rRbaLnM+C60MRl+2FFmiZnbJUOT09QpI9l8cB56WZ6Xxx8vqq+Xsf80ASTHytjaz8s/sUpJDDASy46V2LbYx3V56SX1B/k3bOiFd6Zt+w7qWqHeq137BdW8RUvVu1fPMEcpczzfp6ZNGqtqAvSmRdm3f79q9GJjcTbrq/imBQFGeM/ryhxn8SsLQ2DS9u07VCOxvaxdvUoxB1uzdp3q06+fdogFqGA+t2btWp0Tcs2qlepeYRKJVz3Y3PpI++kXfpTInzkC+AEsG1m0eLECgNu04cK82Oxzy7SjgXQLjECrcfToByp79mwhAzOdwb/+9S99d+EsnTh+vKa1yCxhXeajz0v58ccfK7bZXqmEcP0iiDAvDh8Ig3TbRiIGZMeOHVdXZ7067FhO+MMPP6gsUucVV1yhIwKo21BAYZDht58hPEidGTNm1InpqNuug3NyPZ27dpWP0oOStPZ5jWh7B6qmfZkzZ1Z45BoBfDh+/Ljo6H6VRfZFEj+g4/vvv9fXmSd37rA6qcOUL1umtPboZ1vOnPf7DhZ/+eUXHfqGMeyG8wAC5SMBI9H0xXEI+iYkkg8uXLOxIkYiPRPnajv3l4E7QmROEGnWvIV6Q/jvly9dovI/8EDoEHh0zwpifu+992rjmL1OOPUvQhOTK1dOvY+P/FdCuwXvvz1wpjL0v19Cr7PdlE2Df+ZZY58fMHL2p5/UgfcPaIqyAkJH460Pby4G7dRT4KGHLvIsR59Hjx4VI2M+bUzkPNEE/twqkjjwieLFxCN7mi7K+1nwsUKKd3ffO29rjykmZLXr1tPXMESAjqtl4sGzgHBfjopx8csvv9Q8wuZdxND4hehm6vQZ4gGwQWGQxPh5x5136uM+FT0SkZI9e3a9zh/odw4dPqTf07x58ga6htDB53/gfU+YZjaJTrHrZjffD4TvDAZnzs97m9rEASMp/44FBUbMu/WR9HdG6EPw2mHJ94V3zIhfovFYRvtLAYyY9tCP3Sih+J/+858hagmzz44WMdv4JjZo9KI6Jn2aLbyTmaR/M2MDs4++Yeb0aWHgCvtiXbM53ptQFqMIkTl5JGKP7yXh+fRXfjJMcppUl9wmSNDz+dXjtl0aDThg5NLoNT3UmhaBEdeXnHty02pf4gVGgr6nUGLZ82iOGz9hgho7foKugiToROqbMQhG+13bt4VABfs8CxYuVH37D7A3aYAkR44c6luJEoGexwhUL0vFU9lOmh5vYMTOl2LOa5Yjhw9XlStV1KtTpk5VI0aNNrtUNHCCORAGVuZ6RgChcGy8+uosav+BA0JJczQ0bsgmVDDoK5IMe3m4mj5zZmj3YTneO7cL7byMP1IbMBJvG0Ak24qZJ2a9+mrFO8fYNneuXBfZUMytIgLr9KnT2n5iz/HNfjMnxS7EuN4W7EPYfJiHmrFveQEtmS/bVN7MBYiwtoU5Nu8snvXXX3+9vcv3N9RcR8Q+gA0Mu8tYiXjyRoxgg/hQANM7JfeQYYygsiB2LN593pmcQsHkZ6uKpG9vY58uU1aNGztGU22bfeYdwtGqnjhxFilUWE2ZPMnsDi39gJFI18RBxiYYyX6HHYTrMnYNcyIiNP/4xwxh73GQ83Afv/32O23bwK7Gs+G1BfIcsM2PVr7Gc89re03+B/KrTmJTDAKMjJTv3rHjx0I2HnMN1FVGnIKJrGnStJnKek1WNWrECLNbL0s+XVqA74o6Gjte9UCf1U6Arvlz5wpYPVOhhyGDB4XOy3uOw+5O+aYy/4skRBbx/JMHy1vO3Fdb35HqcduTRwPpEhh5c+tW1atPX22kxgjOhwUP/J/kw1u63Dm6J/sD0KBeXe09zoCjmfCJZxJwgIcakGDkiOH6Q86LuUxCXAFHfpWPvOG/Y1DCR2Trtm2qg1COYLw/JS8NCPMcOacJgwUMyJ/vAbVJPOKpmxdy9swZaszYserTT/+p80pUq1JFDRo4IDQoDFLnczVqqIWLFovX6Q/6o1fosUfVRBl40jkwecdgz0ucUUL8MP48IAZiv2gXA1YYOizCJ1cKonv3XXfJB+ATVa5sGdVd0HQ/sY9lYNdPBq/oig4dwz7Jazt36hg6lPJlJfHtsuWv6gEeA4AM0jkT0mbTR9EGBnV3SRtOSKdXSAaHEyTxL/fFDxiJpS86D7wO8IKgc/5cBhX9BakmCbHhug018vyPaM8EReBFxMOHgQNGLj6KM2dM1527ty57PRIwArpOSN/e3bv0c2vWSRS86bVzvLsPC3DBQHnCpHOdM0b4RQsXhAY+JlzQnA+6uEULFoaM/V5g5PXNm1Wbdu1DRlD0O0XCtW2vkUYSdmi4+xlYA2aYKIzGTZqqrdu3m9Opp558Ug8cjMdUaIf1gwEgHRDvGh7ST5cqpd+pzeKdzaCrcqVKqlTpMto4ax0mPJ9F5L2ZqQcMjRo30TyR7Oedwttgiuhk46ZNCs8Pr5BvgMHG87VeULWEOq6/hHMiO3fuUi2ECsVcH9saNWygPc6oN4gw2Zs8dZqE4GbXoaJMBjGqMnFB8LA48Y8TujPlGZk7e3bYpC3IOVJCGQeMpIS7EL0NQYERagEsAHjEiB9NihQurMaNGX3RQDqW0T7ewEjVKpXV4cNHoraXMi8LjZXf94dJBd8NQONowpiB/hmPJq/Euma7fCz6RCIGy5crq7+/9nEOGLG1kfJ+O2Ak5d2T1NKitAiMoHvXl/g/gWmhL4knMEK0CFEjflJHPHn79O7lt0tvw5t3wKALhiy/gsx9B4kTlZnLmjLxBka8NJjmPCxtYIQE6t169AztZh5iG55DO87/wNjNnJK5ZTSBtmf+3DmK+WAkwdsd5zAEvRw6EH3cE6meeG9PTcBIvG0A0WwrzBNxfjx1+pTQ++zRxu/vv/+X6tm9m6opc1YjPCMNxckHW9N1kouBb+/Y0aNVcXE0NDJp8mSZk05Vd9xxp94PODJdIr5NxJCx2xST6BBjF+M9x9BrKHUBNLBvvf3Wbl0txnSiA9+SfEB33S12GZnTlijxpBo6eHDoGHN+s2Q+3vWlbtqpkTE5QCg5OjD6GwfjFStXqd7iyX/vvfeIs+fXAkzcK9HpU3Sd0exY2NFatWkjLC7vqDvF8fGTTz5R5PGzqU2j6du0kSX2oQcLPKwOiuOzDR5i14GeD72hH6LC/JwavcBItGvifOg/mv2OewztIBFmNuj1okRbFC1cJJQTMsh5cgtd/GqhIM6a9RoNaDBHXP7qCh3JQVuM5JW8jADKAEy2YHuCDutNsRXtF/0EBUb41l8tIJ+xg5o6K4tNkG/9M+Ici96gPqxSuZLZrZeD5Jn6t9hKeEbiVQ92X3QJmIdt9G/yzHjnieUqVNRRQdjYvMLz31ZsZdi7OBYwDofB0SNHhJ5/7qtX39563HryaiBdAiPmg28GRhh1MSzbnHZ+VFokQS1b+mn9knLbXh4+QoylP4cN1PyotDAqVRHuQWhGChcqpA3M4ydM1LRAJiSLNiHz5szRScpf6tZdrVi1SqOktBMAAUMw4WWgkEHrPHnyCx2CRm4GDMoMqDC0tGzRQp+PP0FCEG2dYbgtWvwJtUW8fegM4PzjYzFLDP5+3Hv2sW9s2aJ6CufiaxKKBvJMXU8+VVK9LnzuJpqF8n//5O9qhhiOaTcGacI158ybp3Zs26q9gPhwjx47TnjvF2vve9rQRrgbb7v1NgVvvBcYCaIvOnSAMgatgAVffvmVNqBDjRYJGIn1TDCQOXvmrBogXhbIVAEMaAvhz9EkocAINDfPPFNdjRo9RsFDS9QEYBP6JoTcJAimkwQUACRoKNRpDFyGCRJPwt/VQuWF2MAIzx0dE1EO7YVDE2BrpAywfvjh35pChkkdHfEuyQeyasWrmge4afMWqmSJEvqaQeCrPVNDd/CtWrZQUwQc2LV7t3QUI2Ma/uGM7D9wkH5fACCgveFdYADIOvl8vpMBHxFPAFnt27XVwCPlVkjYOuBng3r1VBUxhBIyvnjpUtVXJlVPSdvwTlki69skbLODHEdid561j2XgZAMjeMXz3gHQwGvM8z512nQdFTZ29Ch5ly6E70e6nzyreIRNnjhBT3h4D0eMHKXDP3nuEZ6TBQtfUa8IfZ/txRapzpS63QEjKfXOXGhXQoARjmLQz3vIt8Qk9TS13Shcw3VeqKUdB/xAwlggQbyBkZ7du0tf/rQiRxgRd7YwmXlW+pbuQqdhTyTsMvym7xgyZKimEaNfsYVJYNEihQWs7XGRp6spF+uaTTmzpE8AxLaBV/YxJhkqkSF4GfN9eP31zTqShH0OGEELKVccMJJy701Kb1laBUbQu+tLLjx9aakviScwgoYw+GH488q8ObP1HNq73V5nTAHlMHMXWzBWAjgwF8No5ZV4AyPMlZh3zJdIFiJAWTdiAyM4atpUYWNGjVQVykfPx8k8FY9mnAcx2HqFMUqb1q0vimb1lsMz+32JEkEwTm7d8oa3SLKspyZgJJ42gFi2FcaBc+bOU91kzgvDB+PYHTt3KubcvBs4I+LcB+NJDbEHQAfNd2bHjp2queQ62ywgBLRuvCOjxLH0lQXzQwwLOKzi5b5w/jx9z227jXkIoNJi3stcGYEdpYXkPTXACHNxgIvpArgw3sbBsZ44cz75RHHVSpyKvYKtorLY1YYImMncHiM0eRxwRiWiCqM3xupiT5bQ1wcbBdeHHQv7BWNkI352LNpz6odTaqQYpq8RwAKbDkwU2AHKlS2r7U9BbVm8w9hCPjh8yJwyQUsbGAlyTeg/mv0uCDAS9DyAO5PFJsmzgSQUGMGmxXOGwye5YYMCI14FMr9kPjRTUhJsEKAGp95i4kjbX0AxO48jx+FsevzDj7R981LV462X9edq1tJUW8Z+bJfheeMZY97G95Q+qHOXrtpma2yA3Fevvu063O/k10C6BEZIEPTzzz9pgCNvnjw6wsCLCvoBIxhJMP5AdcPHGSqu4WLgtUNV/YARBkcbpEPiY2yEuuo1aKgRVj5GvCyVBVyoX7+eLoJnPF4kdDjGiIMXDXkm+KAHrZMPFUZoIySfe2/fvrDE0n4diilvlnYnSTgZnQkfBhBdwBD059Wh37FswxMA/f0gBmIEEOi5Z2uEgCnOdftttysGiEYwVj0mIYrjJYIGrwe4HNGboROh3Lvv7ZNBw1w9uPMCI7H0lS3bTapAwUc0N33ZMmXMaRXREnT8kYCRWM/EvPkLdJu6vdRVDyaIJIqkp9BJ5UdCgRESDgOYASC9PGKk6tyxgx4UMfAoX7GSHkCQl4NcMXA2ksDQ0DnNE2P8iU8/Ve/u3aNDVG1gBPCgR6/eOteJQch3SP4TEHGT4NB4HTFIgfrqERmcmUT1hvuXcxEZ9PDDBTStlZ9HhX395vcXX3ypXhNvBM7Hc0vHadNrATJEyjHCNf1DUP+zZ3+SAcbneiBYv24dbdSkfr8cI5zDBkaMEblnt26hd5MBCZFcFStUkAHfE6apEZc8q7fccrPqIUZbI3xDeIcARpmkMeD97LPP1aQJ402RVLl0wEiqvG2BGs2kDc8cJj7kPYKyz6YvDFRJnAuR/PGZZy/k5QAYqS8Rngig5qcnPtU0GjfddKOmy/OGNUdrDt4/AKh4Zv7nP79KdNdN+hvrpQ2IVkfQfQyU8S6CmhKagPvvuy/ZdRu07a7cxRpwwMjFOnFbgmkgNQEjwa7o4lKuL3F9ycVPRXy3QIkJZS7j//vEwxx2A4x3KU3w5i/8eLEQ/ZU9v4nVVkARxjhffvWlOiMOeMyJmXuZuV2045kflRGGDObiCPN521YQ7dhLvS81ASPxtAHEsq0wT1y7br3aKQ6itiMS4w3YNHDeI08mwAGMJDCBGOnQqbO2CRAx3bxlK/WwgAx2EnC+yTj9dezQXr8nts3H1BENGAH4e/jRx3TiaiI+jACeQD9v588z+7CXLZWIqY3r15lNeomtC2dNEzEC8JpRnBMBBJHFQlmP/cjsZ5vXjkV7HhKbTu+ePWXcfg9FtMwWG9GVV1ypjdex9G2OYQkwApXWMUkunhixgRGOj3VN6D+a/S4IMBL0PFVE3/XENmIkocCIOY5lYoAR7FRLxda0fuMmcT69UQ2W6BNohZGEACPxqkefOMKfSMCIed5elvwzRIkYIU/nIHG0M9Ri3Fevvk1Zt0wZGkiXwAiemdNnzFBvSueCxzzGWjxA77zjjtBd8QNG8MbH8H73PXdLh5NRBlxn1ddiNMGgbMQPGOkphuVtYkw2uQ9MWZZdu3TWBhtvJwTt0xBJ9Go8yilLeBkGbbzUg9ZZu1atMPBg5arVCk98wnWNeDsUs91eetuHwRpkF1qn/xOgo7yANV3kWkDlvWIfi0d+a0lu/ZMAUzmy59BF8VLAa98kwqM8IYTejrRW7TqKyIgG4ikAvyCUTn78lXNmzVS/CXiTL/+D+mNEJEosfd0kns8ky3tnz1thfJkMFujsIwEjQZ4JvDNWr1krFC+H1S0yaO3Uvn1YSKtXX6wnFBgx1FoAQCTTGyLJh4mAgoMUXUFFhdG9muiVBO9+94kIHTwybGDE8GcSZm0AOtPe5s2aqiYSbQXQRcI/PJqN91JNSSJsEHJCZYmQ4j4jDNonjhsXNTKCwd/qNavFG712SFcMJOrUq68jYl7buEFT4UUCRgB/SLTo9XC3Q/GDACPm+mfKs26HIRsdBFmifwas3ANb7O0MeO3IIrtcavrtgJHUdLdSf1ujASOp/+rcFaRWDThgJLXeueRvd3oARpJfyxe3wPUlF+vEbbk8GsDYhgHZiDe3pNkezyVe+cxLjYyX3Am2U6DZnhzL1ASMxNsGEM22wjzx66+/CXMa5f6Qk+MDyacJDTpz3169e6s84vTrFcAv7CqwIPQQ+q0nihf3Fgmt23YbszEaMEI0IPuhY8NeEER69OylKYb69ukdVrz/gAHqtNDaAnwAPHXs2Em9J+8H4CaAEAAJ14dzphGvHQvnQwBHqOS8tgvqgVkEiaZvUzfLhAAjjP+g6zJ04hxvAyNBrgn9R7PfRQJGODd2Mpysg56noUT12BEQfsAItpS8YlNbuXzZRVRaXJ+RhAAjOIT1EgaZjeL8WlWosiqIs6mXRhDH3rp1aovz9LPmFHrJceS2HSZARLzqCTtBhJVIwIh53va/+04olQJVeLf7vVcRTuU2J5MG0h0wAoc4CdIbC8CA5z4fjpdfHq69NU0IIffCC4zwEQItJlmcSVJFNMB4ybUQCxghKdySZcvV2lUrw24zRndj2Pe+LLGAkcTUycnjAYxg4CZaBs8DhATfLYXH8UnpZFtLuKZX7Gsj1OyqjFepgQP662IGsW/VonkYMEJScKiHjHCfHpWIkRnTpupQ6lYCrmTPnk31EOO3EQCvK674g2+OkSD6AgChPnNd1MsggygLP2AkyDMxX3J3lCr5lM4lwbWuWr1auBgHCACzN4yn0lyDWV4qYITOZNGSJWq2AIMmRwhJ03NJvhcoWxAbGAGggAe/mYTkdpIoFIT7n/XqrNo7iWviWf3ll/9oChuoswYK9yM8/4B6eGi9ueVNVb58OR1Kvn79BjVIQBRCxe2IIF2x9We7UFw1knN6vaeMwWmV0FPlyZNb08P5RYxA7QYotHrlCh2RQXgu9zGhwMiGjRs1v38L4bjs0L6dbiH66ta9h2ogA48XBHiMJTyrfxLOSgMUUZ5BFhRy5rlywEgsLbr9TgMXa8AZsy7WiduS/Bow/RQtaSNjIpvTOvlb51qQkjXggJHkuTuuL0kevbuzKu2s2LvvObpl9EEUOfMj5mXxFoyIsySHIcwC/EZgMti5fVtoDhjvcya0vtQCjMTbBhDLtsI8ETrst3buCIt+ql7jWUWeP+ao1AE9FUwmdkS3bW8iZ2hOicggd4MRwIYRo0ZJcvX+KlOmTJrFxGswjwaMUM9jRYpqB0zorI0wlz8sURZ+VFrYR2YLfTzzYFsAbh54IJ8GRjDSz5g5S8GKYQAOWF+w30UDRqjvEbEZDZa8vCUFKDCCM6Vh7oilb3MMy4QAIxjzARqaST4TBAM+0StLXnlFR0IEuSbbbqYrkT+2/Q5bJnVufm1TiNaXfMFc80sCegKMJPY80Cb3FWo1IpMMw8k2Ye14sUlTbcf05hgx7WOZEGAERpLZ4sxLDlwi5f2Ee/0/iWqbPGli2G4cmWvXqqmf4XjVE3aCCCuRgBGKo/vePXuEUSHiGD1GgEt0ifjdV73D/UkxGkh3wAjhTlBvvCAvVLWqVfWNmCkfXSh07BfvwYcLqrHSSRQr9rguAy0HvI1rBNyAsgijayt5YU+KgXP3rp2hAQX8j4ROEZFhPih0npWrVNUhitUl10iGDH9Uc6XcQoncMMZj78sSCxhJTJ1ciP1h1RcmfwirZCBmJ0A3+8zSbh+hvxXleojMQBfoFLSe/CmGCswcx9I+lvwWIM9wrGJUXyh5FYZIZ99a8k8YUIXyn39+UngF++iQNDqyiZMmq9eE1gpgCm8Ekj11F28DvFzIl0GkAsbqLFky68S6XiqtIPrCe+GwUKcM7NdPRzOQVI1E5QzSjAHbvq4gzwR5aBiQYBSnUydao6nkd9kmXK5EvESSSwWM7JakaA1fbKyjYqrL839GACdyb+R/4IFQoi0bGIGjspx08kRHVRI0n+gbQl9/EWoz+GgB9kgA/754iXQWrw7oZogOIYyd/Qy2iPSB87ZunTrqyJEjauz4CfLuVdEJ2QBqHpP7Z3sroBPuHxEVeKHgQfDgg/nl2KP6XhAqvmXz6/r9IrkawMiV4kVSv149TdMF4MM7zkS3i+RZyZw5i54IMLAh1HyATECI/jDRDSSXy5c3n+Tdaa4OHjoURqVFNEyZ8hV0VAz5CRhQrV67VtPrGL5j463gdx1cCxEz5NUhiqeE8GV+KUAiOUY+P/m5eF8sp4im0nIRI1oV7o/TQGANOGNWYFW5gpdRAw4YuYzKTmOncsBj6wrzAABAAElEQVRI8txQ15ckj97dWZUGKKDw3f/+heTnOJU1rF9fqIkLqrvEwx2HTGNTSKjOcBr8u+QBIBcARkScu2yBQss7B7P3X+7fqQUYibcNIJZtBWAEh9zGjRrpHBvYENaukwgRyae5ZNErmk4LewxUVPny5tVACXP2PXv3ahaKNZKjFuYS7CdQZM8Ulgjm/ib309mzZyRX7Ax9u227jbn/sYCRgZIr5B2hNJ8pDqycF2ojklHjbEq+E69gR6tYubJqK/lwnpNIFp7v5eJEPFqoqkuVKqmBEfKFYlPYINeZKdNV6p1331WNGjfR7V4wb26oSj87FpEnBw4eUkMGD9K2KqJD6jVooCnpsf/F0neocvlB7ogSwvpw/OgRe7Pv70HC2rF16zYdzXD//feLvW+uWirXte3NLbp8kGvy07/Xfsd9xj7SpUtnbZPBTrZ6zRqtT2xxiT0Pdh+Ah0HiwFy5UiX93RgqtrDdb+1Ra8TZNCHAyNx583XUhJ99EUdpwDs757FRKHldMwgVHDarZmIzI69OxYoVhVnjjM7HCgU89tNs2bLpPLPxqMecO9oS2xL5bUhp4BXy9Lx/8ICkTeitn0+iAMl3WUTsXy916aKL+91Xbz1uPXk1kO6AEdSNgRWvfYzC8IhfLfRPw+TDaXtn8GEDzaaTWbFsmUZ5CZmcJp1GDqECwmA6csRwNWHiJEnY/LE6fD6BGQMPkrh98823qsQTT4TAFhKcden6ku6A+PiTtBaPEPOB8b4ssYARriOhdXKM98PKNqICevc5l7C8m7y8scANUw/J364QYz8fUfKMTJEEsiTc8op9beScwOgPPyTASIGHHhR0tYI+f+tWLXUkD+WhUOIDj4EdFByaswnjx2n6JFM/lGDjpMPkHlGmSOFCuiPFWO8FRjgmlr4AbDrLPWLQQGL4q67KKPdolDbs8wE2eTPM+VnGeiZMKCPXjRfGTwLgkBTPjkqx6zO/LxUwQv3cbwZYcOcjcJOOlmfRXJ8NjLCfwU0HAT3wrkDXJCAfKgMgE3FCgimoyhjU8z7BiwktmuH6J6/NkqXLNOc/Onjs0UfUAAGfrhGQobgkVbv99tv0O8a5bAFU6di5iw4x51lhokDSt5HDX9aDLlN20uTJkltlhk70RofVXcA3gE4iNRj4IB3Fk+bbb7/T0TIkiybfB2BZG0koz/cAObB/n+b4t3OMsB0u3nYdOkio8jF9/Xg2kMuA5HAICeaiXQdliFIDEMJz5GcBfR6Vyc5YSWLPc4a4iBGtBvfHaSBBGnDGrASpyxW+TBpwwMhlUnQaPI0DRpLnprq+JHn07s56TgPMR5h7QL3iJzAo2Nz1fmUibbP7I28ZaKsHiVd9SpLUAoygs3jbALDRRLKtME/88fSPmk5qpbBPZJA5Mbk38FKHYt0INhmiQrB54MzHvBNHU5gajACQjR47ToMR2LOwnwCQUR6x7TbmmFjACPlqMA6vEefBzMJAcebMj5IkvqbqKhEMdk4UUx9LDN9dJc/sqVM/qIzCJlKyRAl122236nk3VFo4vbaTa9nz9tvaERODeT+xV3UUW1UeyUMxQ2iuET87Fu3pI46QtCfrNddou139unW1E7BpTzR964rP/8EB8sECD2snWTsSxy5jfmP36dSps9qydau2W5DrZaDYHCtVrKCLBLkmP/177XfkJcRBG4AJW0IDya94UJxvCwp9GHa8xJ6HRmIH6yNG/Z9F/xkyZtSOndDvLRW7m7Fbmuu1l96IkfoNG6pdkpAdG6nXPkieZe6/n/QQOw60+chiYTkZJk7Gv//+mzzLv2kbLN8snLGReNWjK4vxh5wn06dO1UCbtyjPG0AItkvey9/FpogTMKkazPPmd1+99bj15NVAugRGjMoJRaPDiPWRM+VZYnCHOgrvjWge//Yx9m+QeQQ0PV5yKeoM2jaM69dee91FH7xYx+NpQWcBQBRN6GD4MEcrx4ASY7Vf3gy/umPpi3v8w79/0NEFfsd7twV5JgBdvpEBr6Fh89aRHOt4T1xzTdbQQChWG4h8wagfKbEfoAh5QCLtx+Pihhv+HPbeGPDDprHztgPdEe1x6y23aA8C7/5I6wxkOA4aKzPYi1Q2yHa+F6cEgPO7h0Gug3PQnr/c8JcEvy9B2pcSypgoHNriKGRSwh1J220AtCUK0ciLDRulKM9H0y63TF8asA1R7juYvu59Uq/WASNJ1WDijnd9SeL05o6KnwYwUONFvU3oh7wSb2AE+0WvHt0vyuXpPW9yrKcmYAT9XAobgJ9txXagYz5KflccGiNFEmEYByRh7hypDHNSbGBB84IEeR5wZMTGw1wZh8YgQvm//uUvYfYB+zjeDexB1GmMzPb+aL9pD9fJsUQh+Imfvr3lAC5xvvTmC/WWM+vYTP4lNhH0n1HABa8k5ZrsungWsoqDd6R7nJTzYNPBvkbdeSU6JRYwYreL3+i+avVnFHmTEmMzNfVhz+EZARiLZg805SMtk1IPNqyyAi7ukzwi0Z5rrvmLL7/Uz5uhf4vUHrc95WkgXQMjKe92uBY5DaQvDbRu2048XcpKfpLSqfrC08p1JPUmOGAkqRp0xzsNOA2kdg04YCS138Hka78DRpJP9+7MTgMpQQNQ+kLJDR3P1+J8CGVwUoERKIjwKr/3nntCc66EOIVeTr2kNmDkcunGBkYu1zndeS5oAOYH6PJnzpiujd4X9qS9X4Bqp4XZxQggT9Vnaqi1QscGQ0xQmShMMv/97/9SfZ49mEE6dOioaeiHDhkc9PJduVSoAQeMpMKb5prsNOA04DSQEjXggJGUeFdcm5wGnAYupwYcMHI5tZ22zuWAkbR1P93VOA0kVQN4ykObBBVxYgSjJh7l0bycE1PvpTrGASP+msXIfObMWdVVcko4SR4NTBc6/UmTp0ge2nyqfbu2OpdE8rTk0p4VqjWShttS4KGHdF7fSJEpdtm08puIq+49eqqDhw9LPuNHNV2/iwJJK3fX/zocMOKvF7fVacBpwGnAaSCBGnDASAIV5oo7DTgNpDkNOGAkzd3Sy3ZBDhi5bKp2J3IacBpIgRpwwEgKvCmuSSEN/PzzL+qDYx9oSidospykXQ0ASh88cFDlzZsnlBM27V6tuzI04IAR9xw4DTgNOA04DcRFAw4YiYsaXSVOA04DqVgDDhhJxTcvmZvugJFkvgHu9E4DTgPJqgEHjCSr+t3JnQacBpwG0q0GHDCSbm+9u3CnAacBp4H4asABI/HVp6vNacBpIPVpwAEjqe+epZQWO2AkpdwJ1w6nAaeB5NCAA0aSQ+vunE4DTgNOA04DDhhxz4DTgNOA04DTQFw04ICRuKjRVeI04DSQijXggJFUfPOSuekOGEnmG+BO7zTgNJCsGnDASLKq353cacBpwGkg3WrAASPp9ta7C3cacBpwGoivBhwwEl99utqcBpwGUp8GHDCS+u5ZSmmxA0ZSyp1w7XAacBpIDg04YCQ5tO7O6TTgNOA04DSQ7oCRM2fPqm+//TZ05//whz+ov/zlL+qarFlD21L6j2+++UZ9+dVX6sH8+RPV1P/3//6fOvHpp+r2225TV155ZaLquJQH/fvf/1a///67+utf/3opTxNW9//93/+p//3vf/pZCNvhVpwGnAYCa8ABI4FV5Qo6DTgNpFENOGAkjd7Yy3BZDhi5DEp2p3AacBpIsRpI68BISrfBxHowvhL7U9ZrrkmRdjNsW5s2bVKHjxxVgwb013ad4x9+qAoXKqT2v/++ypE9u8ou/1OSYO/67PPPIzYJ++TltId5G/KPEyfUbbfeqv74xz96d8Vl/eChQ/q+ZMqcWX3wwQfqkYIFFbZZr/z9H/9Qv0ji+7vvvkvt2btX39OMGTN6i7l1p4EkaSDdASMb5YPZum27i5SWLVs21a5Na/VM9eoX7UtpG54q9bT652efqVeXLVUP5MuX4Ob99PPPKl/+B9WeXTuT9WMbqeFjxo5TJ784qUa8/HKkInHfPlTOdfbMWTWgf7+41x20wj59+6kzZ8+okcOHhw6ZO2++uutvf1NFixYJbUspP+jMazz/vHqmWjX1Qq1agZr1xRdfqukzZqi+fXoHKu8KpS4NOGAkdd0v11qnAaeB+GvAASPx12l6qdEBI+nlTrvrdBpwGvDTQFoHRhJjg/GbOydmDu6n74Ruq/lCbVWtahVV45lnAh/at19/1fjFF9XNN+cIfExCCx47dkw1eLGxqlypoir8WCFVpEhhVa9BQ23Xy5Eju2J+OnzYMMXvyym7du1WGPXr1a3je1qctZ8uUza0j+cjQ4YMKsN5IKJC+fJqoIA8ySE4DN+bM5d6843NGhyJdxt+PHNGFSj4iCpSuJC6/7771fSZM9WSRa+oAg89FHYqylWtVl2NGjlCbdu2Xf3rX/9SPbp3U1dccUWC7VBhFcdYSa53LEaz3O5LqIF0B4x8+NFHau3adWrKtGnqqquu0kbd9w8e1Cgleh43ZrQqV/bCB+oS6j7RVWNAf/e999Tc2bMSBWwkplNOdGMTcWB6BUamTZ+uzp79SbVv1zaktabNmqvHHn1UNWhQP7QtpfzA66VDp06qTOnSqvTTTwdq1tGjH6gX6tRRB/bvC1TeFUpdGnDASOq6X661TgNOA/HXgANG4q/T9FKjA0bSy5121+k04DTgpwEHjFysFb+5c2Lm4BfXnPAtiQFG8j9UQC2cP1/lzp0r4ScMeETxEiVU29ZtNGhjDsGRuE7t2ipr1qvVylWrVf9+fbWzqdl/OZazZ89Re99+W02dMjnQ6QBJmjVtGnYdgQ68BIUuNTBCk1evWavmybMxbswY1Ufuz/PPPadKPvVU2NUALGEP69Orl1qzbq2ARhlUjx7dVRaJMkmoHSqs4hgryfWOxWiW230JNZDugBGjSyYff/7zn9U7e97Sm1asXKm6vNRN5cmTW6169VUFOvm5RGVAs3XjjTfqMr/++qv65JNP1DXXXqtuveUW9d133+n/twolFajl0aNH1Z133HERWAHieFTCw7788ktV8OGHL6JrInTsqkyZNBp7ROq47rrr1N/uvFOHAALk/Pf3/6qcOe8P0V4RLXJW2nfvvfeGhbYRinfkyBEdJpgrZ04N/JjrtZc2MELo2kdyDsL0CJXzCm3/+OOPVeYsWdQdt9/u3a3X+WAhRDb4CdRYhOLllDbxEfPKb7/9prjuLHKOe++5R40dNz5QxAgeFN99/53iWu1wOu7TTz/9pK6//npNyfXpP/+p2x4tDNCOGPn666/VL//5T8TrPX36tPpIdHKf6P8aCSc1gq5OnTqlbrjhBr3pv//9r+LaQf65pwhtOyt0bn/605/0uv0Hmjc+woRN/vDDD7rtnbt2Fcq0B1Wtms+H1eM9jvWsV1+toATjenPnyuV7/+nkjh07rq6WQYL3fnJ+5Gq5D3gw0Eaj1++//16e36/0oMamX6OdmeWeAjIa4fk6fvy4uv/++0P3m+tGbx9++JFq3rKl9j6gPHpBP4jfcXpHhD//kXv0gXiIZLvpprDQWO5BxoxXSbsyhY7kutEN7zzvKhJNF1wXzyNlv/32u8vuYRJqeCr74YCRVHbDXHOdBpwG4q4BB4zEXaXppkIHjKSbW+0u1GnAacBHA6kJGIk2V/zll1/0HBXacmMX4HJtG4yhSGLu//nJk+rUD6e0HcpQCcWaO9tzcObp2D1sWwfzZOwhts0hlk3Ge0uwh2GnuvWWW/Vc2A8Y4dzYpvLkzh2yB3BNePYjABQTx48Xu8B92p6EncFIrPZEsj+Y41lijytXsZJ6+63doTk+26vVqKGwFY0SJo56DRuqnt26qfr162lbTFA7USRbATaNP4iNwEvFT3uxDf0mNqFfxB6yaPFitW///hALCnbFaOIHjGC/oE5jL+H4n4VW6vfffwuzQ7EdW+DpU6fD7IZsNxJLn9jAeBaxx3FOb8RIpGeV+nnmeeaMzcuck+eAbfazafbh7I39DECkXYcOao44fWNjtQVdP1akqCrx5JPa1jhx8mS1esUKbZOy3wHzzJn3DXsY7xj2sVgSyZZp1x/rntu2sFjnc/tTpgYcMHIeGDkrHUfBRx/ToWsH39+vtm/foRo1aaKaNm6sOnfqqO8eL03psuW0h/yEcWPVJHkxR40Zq16oWVO9KsAKHwSkcaNGqmuXzvo3H/xGjZuoQ4cP63UMrYUee0xNmTQpZLi9L1du/eLeJAAMXHtIvTq11cmTX6gtW7fq9SKFC6sZ06bqj2Ld+g3UW3v2qL27d2mQhY9QK0HJt27frsvyh3DFqdK++++7L7TN/DCd8rAhg9XAwUPUzTlyqE/+/nd13333qjkSxmY60CPC0dhMjNiZxOhNu3nhR44Yrj+W1EWuEzpIjM10HHw8Zs6YrsEh9qOPVm3aCFL+jrpTgB5ApeaCgrdp3YrdWqA26yqA1NUCBjAQAJzJmzePBhQiUWmd/OIL1UjCJb8QoOlG+eB9I0b8tlJnE7lXyDbRw/ARI3WY5/iJE1UmAZ1+lI8qbS9VsqQu4/0DMPLDv3/Q591/4ID6XcAa9DB71kydi4Xy6Lltu/ZazwBXgD3UN1pC++is6Ewef+JJHQ1Bp88z1EU6YXQHbRmyYOFCtfmNLTraR2+w/tjgDIYVnjc+whmlbgCsB/Lm9fU44Dh4F0+dPqV2v7VHP1fff/8v1VPCDGsK1ZWRrdu2qQ4dO+kB2imp91rp8OwOiHpO/OOEBn24l3Nnz9b3glBUgBI6F665+0tdVfly5XS1VSWUtqE8jxUrlNfro+V9WLl6lbr7rruknk8k+qqMlH9Jce5uPXrqzs8Gj4jQgk8y0nGm7d7l+AkT1OSp0zQv5Veid0CemdOnKSjxBgwcqE7/+KMOmTXHvSnvUc/efdSu7dv0/YilC64rt4SPrl67RjxNrgndP1OfW/prwAEj/nqJ11aeY761CIB9PvkmpAVhMLtjx0616bXX1MMPF5DvRrlQ/+h3fYDpALzffvdtaPctMpA2/R3739iyRX0mE7VKFSuGAaehA1LhD6gClovjBt/i6kJhaCbVqfBS0nSTHTCSpm/vJb04B4xcUvWGKqeP2L5jR2g9yA/G8hhmnFx6DSR0THDpW+TOcLk0kJqAkUhzRea00ALdJXPhEzJvLiTMDxPGj9N2FGODMXTm2Imat2yl5/za6VYM6y+JDYl5dqy5sz0HLy/AQAMx+tuU8IOHDtXOfWNGjQxkk/He40FDhog3/wI9x8bG8WyNZ8SR9YMQlRbvab/+A9QyGZfikAk4Ar02djPm+qXLnbMN2IbxBvXqqqZiX4tlI6LuaPYHu63YW8YK8LJi+TJ7swahfhPHTIzytP8mcaTE1hTUThTNVsB8BbsCBnpDETZnzlw1b8ECtWrFq0IbPlPrBXDkV+lvrhWnagQ7hB9AYBruB4xgW8JmR64UIzPk+dq3b7+aPGmi3gQg0rDRi2ILOq2uk3MBgIwdPVoVL15M74+lT+ygRGW88+672s73udTXv18/1bFz5xCVVrRnlZMwP1n+6gq1+JWF+pzmT17Jibx00SLtIG22mSW2Lmxq1M29MTZIs98seYYMOIRNinuJ2O+AebemSXQONiecscnJjF22U8cOpqqwZSxbpl1/rHtu7nHYCdxKqtKAA0bOAyPctSLFimtj//GjR9Tu3W8FBkZAi19s1FCQ9Jsl2oH8GF+olcuXa6MykSi9+vRVDerVU1WqVFZ8NBcvXar69u6lar/wgn5YAEaILmjRrJkGJ7p176E/5sWLPS6RAjUVxn1AigXz5mpaJS8w0rNXb10nRvrnnq2hIzxGjh6jO7JNG9Zf9ECaDwchjXw0MSqDtvfo2UvxYVw4f54+plLVaqps6adVc2kX8vLwEYJQ/6z6SNsR25DP+lShJwNggcMRIdoB74eRAhygIyIOqkgOF64dujKiYSrLOYYMGqQN63wQ12/YqD/CcET6ASMYBUuULKWeKvGkate2rf5Ivrdvn2ravIXU21vXQ4fXrEVLVa1KFdWlcyfdIS5dtkwNGDRYvf/eu2GIu26o/OFaZkm4Y59ePaXjr6EjN3pJh4fRfd6c2boY18M1DJXOicELA4DOXbrqyBGTm+TRwkUE9JooUR75NTgDYMKAgXt35x13aB3z0ff7QHv1yUmDUGlx3Jy581Q3aR+RJUR07Ni5U+uEtj/6yCP6vlQRfkY6CzpW0PnxEyaq115/XZlnhHoWLHxFvSIhjfnynTO4osvBQ4aq1zZu0B3W+wIacc0bJJSRaBK7wwBMKVr8CbXl9dd0h4WXSbkKFdUsAcvuufturUO/cOAgx+mDz/+h4x0xarSaPHGC1jODrxEjRykG069v2qjBxfoC5uwVzxGD3hNqiRERHfGMxtIF18WzNll0dLn5SO1rTW2/HTByae9Yrrz5tKcTZ+F7zzuQFoTvzItNmoYuhb6wQ/uLc4FRgEF0M/nek2TRltqS58jkLmrbvoP0JRv0br7BTESMB5F9TGr6zXey8OPFQvf/oQcfVEsXL0pNl5Bu2uqAkXRzq+N+oQ4YibtKfSvEA/eRQoV990XayJj3g8PnnNcilXHb46OBhIwJ4nNGV0tK0UBqA0a8c0XmqKPHjlPLlyzWTjnMhduIveK2W29T/fr2uShiBPDhHzKunTZlip6/Y+QfJhEOzLON+M2d2WfPwaHjxml2zqxZ+jAM4RjUBwg90ZNPPBHTJmPOZZaLlyzRc23m8DhhwSoxduxYNUdynw4eOEA7n+KABDjwmtiaAB8Ypz75VEk9F7cdd/yotGLZiGLZH0w7Wb4q4ARj/lmSwzSIUHcsO1EQWwFOuHve3qsWi9MrzCc47S4SUMA4adGWeFBpxQJGsCESlVPjmeoadAJ4wdmseatWarM4IGPHiKXPdh06avCIPLcAPdi7uohjKzRgJsdIrGc1McBIkPsVrYz9Dhj7JjlKhg0dou2bMLxUqlJVzZ87R7P2eOvy2t68tky7fo4Ncs+953DrqUcDDhiJAzBSU8K/jGGcjull+VDCg1en9jngAwMOnR75I06e/FxHmdSXJEw9e/TQTwrACCgjtF6AA40k8mG7fNCWL12i8j/wgJq/YKHqN2BACEzxAiN8MAEsCCE0NEcTJSLlzJmzqkWL5heF+ZkPx8D+/XTomnlcGYxQ934BD4h4oDPHQwpklo8uHfPwkSO1kYlj8CKYM3eu6iYRBHj9cw20H6FDfkgSKvXu2VOAg3v0Nv7MlvJXXnGlBhfoLJYKgLRx/brQfn5UqFRZh1v6ASN4zFZ9poZ6a+cOHaliDgTEoL14RZgBNUZyUGiEcNRHJBnXXAEK/BLW82Fcs3ad2r1je+ga9r//vngrNFAHJQSS6+J6XpYPLQZJI+vWr1eDBDgwESEvihcEHmUAWjWee17nC6HDRj/PPfusDutsIgnIyMvhFe/Hmf1BgZG169arndu26vtl6sU4w7UCDgHIbZDOEVDKCPrCG+PNzZt1p8n5P/vsczVpwnhTRLyyj6ln5Dp6CZdjMTHK0blyb819tjsMwBaAEaJH8FgBDKGcKUulfoO7IMeFGiQ/mgvodcstN0vire6hzTyjnBuQh3vOAIGoradLldJeKY/KBBgPBujcguiC66oiz2GkZGmhE7sfYRpwwEiYOuK+klaBESZI8P8agXpgy+bXzWrY8vlaLyjAcK8YYITvGtGffFeM0A/VlSjMlCjPPl9Te3bRtgceyCcRiCN9m8mE4yVxmrCF/sp4Tdnb3e/k1YADRpJX/6n57A4YuTx3L6UBIxj1RorDjxGSzDL/S0uC02DdevVDl1RX8g3WF+9xP0nImMDveLct9WogtQEj3rkic1TmykT1Gnn3vX3aXrJ1yxsXASOMVaF1gumAKAqAFgy52DAMxbnf3Jm67Tn4V+IZ/6Q4jhr7CONkIlGwT2AbimWTMW01S+wP2bNnDzkcsZ3vJg46gC0m+Tqe/tiIfhAnReSlbt21k67ZzzYvMBLERhTL/kC9RrCzYI+ZLVEUQSSInSiIrYDrbihgCA6v5P7tKtEVlSpWCGvC5QBG0BUMLrCAwDJipEOnzhooqSqO2dH0yTNHEvTBgwaqsmXKmMPV62IfatGqdQgYifWsphRgxGvfrC80ajgFG2aZ0AXKj2i2TMrZ7xjrQe455ZykTg04YOQ8MMKHHf66q4WHbv+77yhDpYURG8MyQtQGEQ8YtW0qLQz4VSpX0mUwULfv2FF1FG9XIi0wtnft1k0Rtm1LHYkWMZEXACNEbeCVj9CpbhYU3iC0SyTCpIdEhfQSIAVDrQ2MZJH25sv/oEbzvSGE9vns3wYYsYED9tPGvFLXq3I+oklGSdQJwMfd99wtH9qMOjfG10Kf9e7ePaHq6IxInHRYqMJuufVW1al9ex22h6GazvPhAgVCYI05CJolvCaIUMGb13j5mv39BQRigOAHjKBPwKd1ay4Y0TjO3k6H17tvX7XjPA2ZqRcvhgESFli0aBGzKbQEFCBMz0S7sAO0vJiAHMeOHNYhflwPz4YdKmeu02wncTz1dOv2knpMjPFvi/fGGqFjIjTxZQlpfUASkAEEefkTOV9SgJGvv/5Gg0LUY4RcLfCCkvCLqKJtQhuAwdErAAh4g/idn7K0HXCOTj9jxgyqXu06qmHDBhrw8HYYcHmCtuO18n/yTpWXyKAuUr/h4Iw0uIt1nN3mkk+X1u8koIct9nYM9Hh7QNVF6CO6MABcEF14r8s+j/sdWQMOGImsm3jsSavAiMnxZXT0vIDIAwf0N6uhJQA3fRQDUwQPXvJ2MRF48sknNCDN9rLlK6iPhbrRyKKFC3w9hcz+5FzSr9CPIFwLbfUTwuQBfJlQIkQgbn5tk19Rty2ZNeCAkWS+Aan49A4YuTw3L6UBI2aeZ64e71Zol9OSwPfOON1IqxYtJPK/jVkNWwYdE4Qd5FbShAZSGzBi00lzA3jGYSsg34dX5syaqXNPYLcxVFowN3QXewj5MqEKQnDMxM5Bngck0tzZO1dl7FG+XFk9FobiivEiNhZjq4hmk9Ensv4w3oTdwjaUsxvKLgBNgA/G2a3btBWw5yehts6hj8ZDv0O7tiFWFDZ6gZGg7Ylmf9AnO/8nMcBILDtREFsBpweAwmELZ1CifGxnUPZfKmCE+TZgB1Ra2MB6CWtKnjx5OGWY4KxK/g4kkj65H7Dm4KANPb4RIoAeFkczY4+M9az6ASPGtrhy+TJfKi1zrsQu7XfA2DcBIG07G2AdEUwdO7T3PU0kWyaF7frNwbHuuSnnlqlPAw4YkY8AxpbJU6Zqyio8+19ZMD8EgjxRvJjk9pim76yJBvECI2NHjwrlXPACI1AJMRhcvXKF9mSHKgpan3gBIyRxKiMcjiR23yXeo8ZoD9JPAnEiKLx8febD0VM87m1vHcLumjRvrg7se0+4279T8By+IbRIt9x8s75+UFVovQwwgrG8VMmndF4HUORVq1fryJZ39uzV/PCEqRNuWfKpp0JvBrRHJrKE42fPmaM/uKEC8qNU6TLac9YPGKHDJaKE6AjbUxbvIgRgA2Bk0OAhFxmNYgEjZyXCxkT+UJcNjADgcD29e/ZQFcqf48ykDB/TMWJ0pz0IYaU8S9DA0GktWfSKpnwBzJo9c4Z6rmYtte+dt3VZ7x8/YCJoxMiKlau0l4jNW1m9xrOK3DS0hdwmS5YtV2tXrQw7LZ2eGbz5nR+AMHOWzDrihQMPHz6i6ggtHGALFF12h8G9YfCGZwKC90pLyTHzZPHiqrWEcyJ+g7sgx+mDz/9pJYOwP8mA075XJArj/prOm3euUuUqaq+83126viQJ4XKpZpLfBgmiC/u6zp/WLQJowAEjAZSUhCJpFRghf9PUadM1tR8Tt2ZNm/jmBQF0hq7QCFzGUBt6BWAWjme+C9WrVg3lCfOWSwnrQYER2sp3/hXh6SW/DPSd0Gk5SXkacMBIyrsnqaVFDhi5PHfKC4xo5yCfvsRuDQYvQwtrb4/HbweMhGsx6Jgg/Ci3lhY0kNqBEeao2bNnUz3EKdYIibKvuOIPvjlGcMDsJDRGJtIAmnHAB4zsCQVGoA3HWRUabQzdhnKadsSyyZi2miXXQdJqe4xtcqkaKi1sL1dlvCrkyIQtCPaGVsJWYujiqc8LjLAtVnti2R+ow0higJFYdqIgtgIi1KsLiwngw+Ytb6qSJUqE5dGlffEARipKBFHtWjU184i5ZuwU2W68SQMj2FGgpvfSBts2nlj6BADhmTU2HM4D4ILN0thWYj2r2MD6CiCHTcwARCY6B/sTrB3xFtteY+ybBnQ054oGjMSyZdr1U1+Qe27O65apTwPpDhgBhZ8xc5YOD8OIjBHmqHjV/ygRCrzE5ILA4MvHnQiSM/LRo7PK8McMkoh5rQ5zTAgw8syzz6kDBw+qLpKIKnPmLJLHYrY21hBmOaBvPx1dkZSIEYARaLPgs6QDJdn1oUOH1ZuS7Jpr8yZA4hE1Hw6SnPMRpBwdcf8BA3VCbtBnQp7xFlgjH7L77r1XgzskeD8phqbdEpYJ1RY5R/joYqAmTJPzNhUPoG2C1OItQeTHgYOH1JDBg3QdRAVATdWieTNJ3FVV11mxcmVJnN5aPSdoNvpfLsb70cJhWapUSd+IEbwfDNVW+3bttIcFH2LyspBcHRqrSwWM4H3x/sEDOpcJIe77hGKrb7/+qkiRwpIorYt++xk0lJIwxPp16+nrMTz5hYo+ruoKtRoDPsP/6f1c+AEThMFCDUUis0jCcYBWJJdq2KC+1v3adeI90KevBmag08LbuLJ0rKDl1SXXSIYMf1RzJS/JQjGyETnEu+B3fjrSkWPGqPkyyII/FI5RgKuZ06aqXJJoze4wSPRF541HDM8M9wpgh/DF+pIQDjl2/LgCsIH2zXjGBDnOvvaNQgkGp+kQCfnkfpNYixwjn5/8XOf2MWU5Dzl3BgwapDat3xBKjhZEF/Z1mfrcMrYGHDASW0dJKZFWgZGgOvECIyRxtCn1vPXwDTKDc+++lLKeEGAkpbTZtSO6BhwwEl0/bm9kDThgJLJu4rnHC4w8JsmRmf8llzhgJLk0786b0jSQ2oERWAqIABk/doyO+iJ3KzaKLOJkCHOEscEY421xMaY3bdxYR3lgU+k/cKDQQm3QORGwRyF+c2e2e+eq2LKwN8COMX7ChDDH01g2GeqzBYClr9QzYvjLqnixYjoXLfaZTZteU73ESZSIEXJQEBFAXgrsZgslT+kQsUm0btki5BBJnQ8+XFCNHTVKFSv2eOgUsdoTy/4Qqkh+QMWLc+5coZIKIkHsRLFsBdi9oJlijgEFOeWrVn9GbFfDFDldjJADFpqvZZJzJsh8xC/5+kCxY7x/4KBmq7n++j9pJpKhw17WeYex2RnbGAA/dieiI/bs3avzMa5ZvUqzhcTSJywuhyVPykC55+SZhSVniDgb8z4aYCTWs8ocDUBukET8V65USTN3DJU6dr8l7CniIA4wguMakSX9hNnFsIkYXSVmab8D3nfL1BcNGIlly7TrR89B7rk5r1umPg2kO2AEo2rrtuFJXfmAACq0btVSgwTmNgJodOrcRRvwibogNBBjc0KAEcKtQN0x/iJQbH377XdqkSS1qvNCLW3USSowQr1QOM1bsECdPn1agxRFxVhPR2WiAShjxHw4oOygswb9pDN+vGgRNVaM4IAeCFRa0ySRVQ7hmIRqDOBhwsRJEjr5sTosSbg5rmPHTjoZbqZMmTRHZhsBOQzaDN1JHwF/1giglFXCQ6mjft262shP7hJk91tvCdVYd3Xq1A9Ci3KVRttvu+1WHWXhFzHCMXx427Rrr0NNM2fOrIGATtrgf47PM0iHRz22+IEC3ogRrgcgZPWaNSqjAD+/y2CgWtUqOleMuR7qxKP5V/GAnjBunAZN2EZSq+0SyfJCrVq+idcp49cGIpB69zmXrK2bgC8GYKC8EY778fSPOr/IShkYZBCQg/YR3VK+XDlTTDrVAzp64juJBqJzxuuYiCKD4Pudn4NJtrV16zYFbRvHVpAwXWOMtDsMyjI4mSEcn1fIgIH7hHfdFAHuMmfOxG49cCLk9JBQr/GcvS/RSUis43Qh68+ixYvVWInIIdqL/DqPPiKDrtGjNXhjigEWvTxihMoroaVeeppYuvBel6nTLaNrwAEj0fVj9hJNBXh59INjOsSd6LcHZECbO09uTWvH99RPggIj//zsM/W2JMz78MMP1Ucff6LftVvluwpVk5eCzu88fPsYuJ749IREfn2trpP8UbfccrN6+umnteOA3zFmG5PAV19doWn8ANj/+Mcr1c05blYFJRqzQvlyGoQ1Zc0SIxUAt5H8+fOHPOUYzH/z7Td6F1F9g2RiaQTQlTpjCTmP7G+0XT6x98LUQRTkzl27RNcfqeMC/P72+28yCbld58mqWqWK8t5L6A1J0mhkyNBhui9lHUrNJo1fNLs0NYFN/YhXnKERu1kiOYkIjCSE2G/YuEn948QJPf64VvpgjgFMBsw3+ci8xzMBhxrTSHmJkORbjfPEm2++qb755lsdol6o0GNyjfdH1Ks5Pj0uHTCSHu96fK7ZASPx0WOsWpICjGAIZB4AL7uR0tI34jzkFb7XGOzMd5v9T4kh9IYbblDLJMcihhYEqlo7z1ajhg3UXX/7m97Hn1IlS4ai//2+0VcJrSTjaoxZzE2qytzEyxbAuPegOKsxLmCMwNwXel3qxlEuiCS0v7T7b+YEI2VeaaSEGA9LCuuAkQfE4QynKiTamMCUN0t0+5YY3rZI//SFjDmgYsZpELpJnAVx4ookMCV8/c3XencW6edgBOCe7Nq1W1Pk0L/nypVTFZKxhk3NEqk+tz3pGkjtwAgaILJ33IRzBmvsMkUKF9LOnthkjA3GACOMfTt36aquve5amWN/r5pLxDTPMJ7sOLfiiAno4Dd39purthQn1u1Cnf2i5FWwqep4T2LZZLx3D6YUWDD+KKwZvBc4sm55c4u2LQCM/F3y5zZr3kLnF6GNBR56UN6hCtpugU2tsdDRI9gRuB7qWCFRLdC1B2lPNPuD3Va+fbBDkGc0iAS1E0WzFUyeMkXmSSvUKjH4GwP/m0Lh3knuJdT2jOcRaL0bih4YO/PNA8iIJn7ACPOq9u07qB0y18CpFBtf3tx5dL9h6jO2MdoMMwv2kf5CW2+znETTJ/1aZ3QowB592VVXZRQb0ShVS+jTTb6bIM8qx/cRW9nP0uYM0i/hxNpRcq8slXcCexN6ox+YKWw8xYWVJ6livwPed8vUHQ0YiWXLtOsPes/Ned0y9Wkg3QEjiblFIPBZs2bVkR4lSpYKASNB62LwDKUH9D+G6irosQkpR4cDYn3jX28MGaKDHP+N5A3B6G0+7PYxfGQYCEOnRRSIn/Ax/Ub4CQ3llrcMnSXXz34oqfwEA9pfZSAb6Rx+x9A2Bs+Rzut3TDy2cT1fCHUZ541kXIrHeYLWYQMaPKvk9iBhWyTPBMANhElRUOHZ4h7enCNHoGvmmbr22usS9BzSloQeR5v+csNfEnwec92J0YU51i0v1oADRi7WiXfLrFmztUcV75Sf8O5OmzpFkYvJK7GAEeqcO2++BgQZFPsJHkXDhg6JSAkCBdVUmQzxnfMTJmmE5/t9Pza/8YYGupkI+gkAEHl/Cjz0UNhunBCIrjRi0zzWlui7vQLyJEXIE+XX9yTlXtAePJ+YBJkcId42ZsuWTSIMe4XRSU4QOkroF4MINITTJTrPSKz7TznuW0dx6CCZbyQBsCayz6ajNGXJETVcIvCMwNW75Y0taqBMbL2CcW+OUEQacN27P72uO2Akvd75pF+3A0aSrsMgNSQFGKH+YS8PV9OtRL84IUGr7BVjBDLboWeePnWqHp/fc3/OEDBi9kdarhQQxYAX3m/0ls2va8/unWLMN7JechsakIG50gBhBFgmzg5+wlyB9pPXC+qcSJKY/jIh/TfOX40aNdSnjzYmsNtH31u/YSNxAPnY3hz2mxwJo8Sxz28MgMFyx85dujxMDltlDIPzJEmHvcLYCY90E+3u3e/W46OB1ASMxLpibDIAlH72FftYxm2UxQ5yqZ8vzhXLJmO3DQDD2DwiORhhwyHXHw6XCZVY7Qlif4B6r6BQQfEt9JubJLRN3vIpxVbAtxznV79vmWkzIAogCUCunx0olj45xw///kHxPfSToM8qfSzPPm3IK85uBhihzl7C+lGmTOmozl1+576U22LZMi/luV3dKUcDDhiJci8w8uD5aoSOAU+denVqSxhhT7PZLZ0GklUDNjCSrA1xJ0/3GnDASPRHANBh4uTJ0QvJXiZRREDZYeccFMswPmjwYDVbwrZjCZ6oqyT6wERymfLwE0MBEEvwMrW9pCh/XLxQawglIlzK0YRzLhTwhlBtI9GMIAkxrJj6vEs/YCSp94IkhESDRgK4TBuIGFn56vIQEHUpgRF036pNa/EW3GlOH3EJsD9XKBK5l7Z4jW5EgK5avSbidQKOkEvLeMfZdaXX3w4YSa93PunX7YCRpOswSA1JBUYwDtV4/nmdd8+cjwhs2zuXqL2qwj9PWYQohvWSUJlvJhIvYIRvOBEgthhgBKNmtRo1dH4/e7/fb7715Gn0k8T2lwnpvxMKjGBIrle/gTby+rXZ3lbs8aJqokSZe8c8NjDCuAtKtc1W9KpdB79x6oAO2VuPt5xbT7wG0hIwkngtuCMTqoG2ElHB9+7lYUNVFmETcZI8GgCYOS2RdkZgpKEfXCuUXjhlbRWqf+YUwySnlzei3hzjlk4DyaUBB4xE0Tx0PYRC2sJL3Uc8QO0QZ3u/++00cLk1QI6ZM0Ix07VL58t9anc+p4EwDThgJEwdYStQE06SEGIjeF5B81aw4MMScvyzDom2vR6JLtwt4fD2BDwaMEJIOwkbjREGrykSjz8uBoGPxZuSJHrk2DICrWPzZs3Mql7WeO55TbnHCuftJzR+eaSNJ4SO6ZVFizX1oTnAe/zIUaPVZPGENdKyeXNN0XHm7Bm1USidyGdkBAoomws4GjBCKD+h6Mh//vNrWCQEUTU2wGLqf++9fdr7zqx7gZGk3gs8iwh3x+sOySjh4lUlX9ZTT5XQechee31zWDvt6yUU3fZGhe7ql1/OgUkYzjDgGMklHsU2fWK0+09kKgZ5KFmMMOko+dRTMl65U4fxb5PniTxYRnhGlgut58035zCblBcYYQceX1AAQEly+vQptUmuj+g+I9wD6BGcnNOAA0bck5BYDThgJLGaS9hxXmCEb1ysCHDABnvuBxhRqXIVhSEIgX5k0/p12mOZiE345qEgRKh/lvRl9MdGur7UTf0/+YecOPFpqO9lnX6A/sAINMUmOt7vG005xhTMUTNkzKAdKwBMvM4ORPdVqVhR5Xsgn9orHPTQdwEwGAHk9kZ0JqW/tPtv5il235dTqBhz5rzfnFpoesuHnEGijQk4ALrP6s8+q+l9TQV4qxNlmS3bTZpCkr7WdtTgul5ZMD/sPtvAiKmHqBnyXKK/kye/UOsk+tL00ZQhn6ObbxltxX/pgJH46zQ91MjcB3CEeQ7UxMMlN0qsSJ30oJfLfY3ky/JGxfPtJecO/aATp4GUrAEHjKTku+Pa5jTgNOA0kIo04IAR/5uFxwxJtg29FQaYkTJot71LMWz3lhxWi2VQaWTwwAHqWfH2NBLNME4045w5c9XrEukIpR5GGDvi5MzZs6pwkaKa35j6SpYooaZMnmSq1sv8DxVQlENMLi29In+4hpKly2iavlLCC06+EdtI1LRZc7VF+HURPGL37t4VNgjGWAwtI+ABxnqTVJLysYwglEEIDyeHk5FIydc7d+0axtduAyPxuBfky5o+Y6bk8NiooBAgcWbnTh1Ns/QSXt533n1X/2ZyZvIphRWSlYQkX492/+FMfrFJ01D1RHDMmD4tLJKDe4sxjmgXIw0b1FfdJYGmEa/RDWPbtCmT1RNicDJCPc/UeDYEWPE873/v3VB+MlMuvS4dMJJe73zSr9sBI0nXYZAavMBIkGNe27ghrM/jmBUrV+kExOZ4qLJmCB0hCV3J0WikUcMGqpv0S5EkIcnXvd9onBiom/xhNpjCuQAHlixZqnbu3q0yCR0ySXT//Oc/h5oBTSVRHUZ6dusWBsbHo780dX/6z3+qkk+XNquqVYsWYTkQQjvkR6wxAZHyM2ZeSLTMeMZrCAXwaSx9Ik4jRujLyLNlxAuMZJecmvPnzgnrN3FYqVKtemj8BqUWOQScXBoNOGDk0ug1vdTK+Pzw4SM6r6HtWJZert9dp9OA00DiNeCAkcTrzh3pNOA04DTgNGBpwAEjljKsn4vFK7+ncKoaIZqifbu2ZjW0xOPpkUKFxSv/XI4OkqKSz8NINMO4KUM0Ax5TNvBg9kH9RGI8hFwmGElsqS/JGnftfktvgsN2QL++OurDJJWFxzdSHigvl/qLwhVeq2ZNfR4qjHZsLCOIaWM8gJF43QvTJpI+3nnnnRd5ppFost+AAaaY2rV9m3iyZgutmx/xAkbadeio1q1fb6pVC+fP830GeLYAuDAMIhjSALGMeI1ukehVlgtf/Uvde5jD1IJ5czUNSWhDOv7hgJF0fPOTeOkOGEmiAgMeHi9ghNN16NRJR2SaUz8lhvetAlSb5Ox58uRWy4SBIBovfFKAkc4dO6imTZqY0/sucZYgKsUbYQkVJGMOjInIs5JQebAkyzUSz/4ynsBIoaKPh6JFSGj9xmubFEuvvLdvn05abbZ7c8F4gRHoXapXq2aKh5a2swX38eD+fTpSNFTA/YibBhwwEjdVuoqcBpwGnAacBhKgAQeMJEBZrqjTgNOA04DTQGQNOGDEXzfeRK3QOTxSsKBvYYCLzJkyawMGietsCQKM4CW5b99+9ZFQeHz66achai3q+UCiSgwFktcgzn6vEYRtRAz8TQz/AC2FCj2mk+X5JYf8h9BtQS/lFcCAgg8XUIULFZL/hcNom0zZywmMxOte0PZTwqOLxy26/ujjT9QvkrTQyFdCWUXeFSN+3sbsixcwAo/8oUOH9el4bt7du8ec+qIldAN2cvaD7+8PRXt4gRESCmNM8sq+/fvVczVrhTZ7PY1DO9LhDweMpMObHqdLdsBInBQZoxovMAJNVfVqVf8/e2cBL1XV9eFlgBJio4BdKCW2qJ/dRdii0iLdJd0qHbaUiOgLCgIqiApSJoqJjUUbKCH2t9fGM547d+reiXvi2fy4M3Nix7P2mVj/s9dKeNYtdevaZLLRB23essWG1HJCK7r3lypZ0ubjOvyww9yb8z1PRxhJ9H3CaUg/Gz748AP55JNP7cpNd26sV81nmBMqKlo4yOTnZaaEEU0OXK36Cc7Q8q1ujez498npZqXs999/b1+pSDXTlYQ+WhjRmwSiV93oidE3fsyeOcOEATvu3xZ4yCQBhJFM0qQuCEAAAhBIlQDCSKqkOA4CEIAABBISQBiJjSf6jtL3V6zIkzsk9ln5tyYTRlTY6DdgYCTkQ/4a/tsSSxjRxIXqABh73/15BJX/zjKJ4ffYQ7p36yrXXnONe7N9rvHDNXm7ht+IVTTkUv16t0m7Nm3yJN3LpTCSKVuoMNC6bbuI0BRrvO5t2RZG3ALLCdWry7Qnn3A3n+d5dMz4F+Y+b8UvPShaGHlq2v/k+GrV8pyvLz788COp6bqztqvJcdXYxF6niM31os4dLa1btpTWrVqCBQIpEUAYSQlT2gdFCyOadFtXvRW2uJ257jp69+wpt95S170p5vN0hBFNaqv5OmIVDd/Z33wnmGq+G6RSooWRTH1eatuZEkai62nWtKl0aN8u7vBUwNfPay2aV+vVJYsjx7qFEc3J9cG7KyL73E8mTJgoA++6K7JJc2pFr76J7ORJWgTc15LekKOrXykQgAAEIACBbBNAGMk2YeqHAAQgEBICCCOxDd3diAVPupJTxwurFPvs/7YmEkY0v8iAwYP/OzjJs1jCiHPKBx98KNOmT5eFi16R1avXOJvzPGqorK6dO+fZpi82btwoj0153J770UcrxX1nqnNw1apVZIap3ym5FEYyYQu9+/Z6EybMSXTvjCPRY7aFkfMvvCiSRLfiMceIJgqOVwYMHCgTH50c2b3I5IYpX76cfR0tjMRzuiGMRPDle8KKkXxI2JAiAYSRFEGleVimhZGBgwbJhEn5Hbi6UnLShPF58m3F6nq2hJFmzVvIfJNnJNUSLYxk4vPSaTta0ChsjpF1ZjXmWeec61QrtxnhqZcRoOKVK6+uGVm9efBBB8mCl16MHOoWRvSmj3dMrqxYBWEkFpXsbEMYKTxX/b69yqwUP/SQQ0RvRCpM0VXn27Ztk6OPOsrmyat+fHVZ9uoyeeGF+aLf3WvVqiWlS5UqTNVJz9H3ZQ1BGGvVVtKTQ3KArpjTsML6XkbJLQHn2ji2YsUCN8zcLjCyIjkhtMLIkiVLbUK2erfdGgH/2eefi36JHD50KHeCRKjwBAIQgEBqBBBGYnMaM3asjBrzX66QsaNH2fAPsY5u3rKV/GHu8jzllJPl5JNPlhNP+C9kRCJh5LobbpR3zEoULcWLF5e7jKPmzDNqiJMfRLfrCgdd1aElkTCioUE0YbgWDZH1jslZMn/+i/LK4sWiOUy06PnLFi+yobbshn///PrrdhNLfVfZddddrUiioseCBQtlnmlXQ0855fln59gfXvo6l8JIJmwxbPgIuf/BB52hiOaMqWPCsFQoXz6y7TGTY8QtVGVbGHE74zUPzIrlb8WNaX9b/Qbmh+6OUFv64/nD99619tLOI4xETFjoJ25bsGKk0BhDeSLCSG7Mnklh5JVXFkmjBDk+unTqKE0aN044sGwII1u2bpWTTz0tIuAfdeSRZrVnNznxpBNlN/MdwSmnnXFm5LM5WhjJxOel006mhBFd2arfhfRRS6LVPnrzQvWTTo6ECtMQphp6zCkIIw4J7zwijKRmi1h+LCfMnK6K0tVRhSm1zGrwVV+ukqFD7pFmLVpKh3Zt5TqTe+iNN9+UZ56ZJT+ZFeHjxz2Stjgyydycc+QRR8hZZ50Z6eZd99wjW7dslf79+ka2hflJLBsvNPmrBg4aLPNNXqVcFr1J7uFHHpE+vXsVuNlYti5wJTk+oU/ffvZzu0KF/37XOdfG8jffiPxmSrVbzO1USRXtcaEVRvTuD40N/uAD90cssGbNWundp490M2FCNKY6BQIQgAAEUieAMBKbVbTjRO8iHffwQ/kc1ypsqMDhFD3u0YkTnJfWGaChMbS4E7OrkHHSKadGkr3WvPoqGTZkSOQ8faIOgvMvukj0c05LtDDyicmToQm1X331Nfn8iy/sl+7oO5LG3nuvjBw9xp6vf5xwEho6a/Jjj8mrr71uxZlBAwaIJu12F/1RdfMt/92I4A69lEthJBO20BBSumJCS7ly5WTRgpfz3RHcrkMHmT3nv2To2RZG7hkyVB4yP1qc0r5tG2luBJvooslob6p7S2QlT/TqHYSRaGIFf40wUnBmnLGDAMJIbmZCpoQRzV1xhVmRoHfwailZooQ8/NCD0rXbneLkHNGbBDT5ur7XxivZEEZeNisBb7/jv8+AQQP6y/UmF5W76N3lF11yaWRTtDCSic9Lp/JMCSNaX51rTU6t93fk1Nppp51suKVYeduic4NEr3RFGHGs451HhJHUbBHLj5UJYUTDznXu0lWenPq4jBs/Qf78608rqDq90hx1e+25p/Tt09vZVKjHpua9SUXNBg3qR87HeRxBYZ/EsnFRCSP6m6furbfKireX5+1kCq9i2TqF04r0kOonnmQ+VyZL5cqVIv1wro1ZJnyl5g8rSGFuF4RW0R0bOmFE76DRBKlTzZdUneBDjTqtRZ1EugRRv9zus88+9i5YPVaLLhnU5cJ4GAAAQABJREFUL3Rly5a1X3p1mzqi9Iu1LleMVXS51S8//2KSsx1b6OWMseplGwQgAAGvEkAYiW0ZXRp+3oUX5glLdf6550qHDu3lmKOPtk71lSYxuv4Y0UenTBw3Ls/dVPFWjOidk6ecXkN++eUXe6qGRXrphRciwouKKQMGDpLHzeeeU9RZo3cclTPJ0fX5m2+9ZR3mzv5LL7lEhtx9d55cKINMjO3x5qYCpyx8+SXRpLW6SuT0M86QrWb5vRa9C2yC6bsTnkm3RTtp7rlrsNSpXVt35XTFSCZsoV/yXzJOJy2anP65ObNF78Z1ytMzZkoXc2euO4zYiGHD5LJLL8l3l9GZZ58TyVOivGbNmCGl/12to6s51OnjlHj21/1ff/ONXHjxJZE21abN77hDGjZsYL/DqDA2z8yJvv0H2O8uTp3RzjKEEYdM4R8RRgrPLuxnIozkZgZECyN6E8D1112btPGbTQhFZxWmvr83atJEFi1eEjmvr7mbtu7NN4s6d2+5rV7k/fiwQw+VZ0zC7njOlP+ZUJuan8sp3bt2lVtvvcW+1M8Ad1icwr5HX3nFFTJy+DCnCZuQ/A4TJUFvTHCKOoEee/RR20/9bMvE56VTt35GXXDRxc5Lu2p26D13Rz4T9TPLKclultBQn92693AOt7/be/XobuvUevS7yPjx4+Xe+x+IrJhRjppP6/DDDouchzASQeGZJ34SRvSmoJLGQarXis5vvc6da1VDvunzWCs39Lr69LPP7Pc75zeAYwD9vq6hrPbaay87d9X/pPU610ciP5ZbGNHQcNqng8x7W6z3HT32Y/N741iTn0gFXafMmPmMPGK+v2vOpZat29h8gu4bnfQGrl59+sps835WmKLM9Ptopy5d5ITqJ8jNN91of6vo+6rbeaz8tv/2mx17rHa2b98uH61caf1w++67b+QQx5fnbFN+aoNE4b+0rt9MW857u1OZ+gR1m8Net3/x5Zd2t/7OiVV++uknu9L+uOOOy8PVOVbFdL1BTd9rnbni7HMeE9nYLYzob761hpP2xd1Hpx6dZytXfiylSpeKy9E5Vh9jzQmdj9rOJ598alYQtZCXX9wRdUC5FCtWzJ6u9vzMzOcS5lrQueqURLZ2jknFjvp+rp/Zhxx8sD1Nbez4ZWPN7VTq1Iqi54Yzd3SfflbdO2aMuT4q2nFpO8614Q5VHIuZnh9d3HNbIzHoeKpUrpwn36Zzjs4RvXZ1v0YAiC7J2iyo3aPrD/Pr0AkjGgJjmrkrVsWR301IkDJlylj7a8x3fV3NvEk7SxB1En/99Tfm/9d2Ga6++eiX3nXr1sv/zJeyLZs3y+FHHC6TzJcvpx4VRBo2aiw/mzeRPU3dOrlHjRgh55xzdpjnGWOHAARCQABhJL6R9cdEw8ZNZLP53HAX/ezQL2PR22Ml0E7kGNcwWc89/3ykav3SqitONKyVrhJwVopEDvj3iTrjNceE9uGSyy63X+idY9RZpHd0lSpVUt42/dfcI/qFS8uBRlDRz02n9OzVO0+CVw3Fdc4555jjDrBfzN9+520roOjx+iNSV1A4DopkThCnDf2RomE/nNLAJHLvfuedzsvIo/7g0i+wTln5wfuRL/C6LV1bPD51qv1h6NSvoctOMWHPNJTWBx99JB+Z//GKxjd3r8S5/sab5G0TqixW0VU/uvrHKYnsr8dov3r37Rdxxuk2dQbpTR3KTn+8uMvVV10p9xixy/2DqrBON/cKIHcbYXyOMBJGq2dmzAgjmeGYrJZoYSTZ8c7+F1+YF3H86N287oTc0flEovOOXGNuBLjb3BAQqyxdukzqNWwYa5d1/L00/4XIvlTfo/UzvcZZ/2d/hzon62ePJrTW36ivvfaavcnP2ed+VEeo3hihJd3PS6dedTxWNb+xne8QznbncanJaXbAAQfYl8m+E+hnWVfz2T/ThPZxF/0s0xsd169fn+9zsHfPHnJL3bruw813ssYRYYscI3nQFNkLPwkjtU2IqerVjpe55qYT/V6rDtkJJszUyFGj5KuvvpY1a9dKHZOTY6BZraXfxbToKqx2HTtah6fe1KTXw5hRI6XG6afb/er4HjJ0mA1fNcas0t59991ls7lehw0dYleKp+LHunvwIBk4+C7rh1LfVZNGjaRD+3a2fv0zYuQomWHuetcbej797HO5/LJL5U4jxmpRP9YB5jujlg0mZ6D7+6puU8e/vq+8Z77T63ffghb9fqTigjrbixvH+u5GlDm+alUbwUX9bpt+2mTb0N8cfxq/3N577y0Txo/LcyOy9v9hI94cafq/yjiZa5jfKWPHjLZM1WmsvryHTEQYFU9V9FE7KIOO5ma0WEVXy09/6ml54vEpeXZXrV5d/me+V6vIoe8putpab55Wm6nTf9wjD0d+x6jtW7ZubaLRvCGHm6gzn2t4/qZNpXWrlrZOfT+u16ChbNiwwQo16hy/s2sX0VV60SWRjZcsXWpDadWpXUvuf+BB2cP8hlR/5PBhQ+WC88+PVLVg4UJp36GjqECk7/dljFA20eS7iranc0K8OaH1KEd9z9VwyI7gNHrkCNFVevq78A4jmOxuHPh6DagjX+eqCn6JbK3tpmLH28179Kw5c+wYDzGiy5C777JpD/R8tevA/v3kGrOK3ymp1Blvbuj4Lrn8CluVWxTT35pNTbhM59pwxIp4zJy+uB+j53bJkiVMuOnvzWqsrvZmCj1W50jffv2tn7pypUpWHLnWjK1Txw6RqpK1WVC7RyrmiSUQOmHEsXus5WnOm6lbGJls4oRrLHRVKZ96+mnzRay73GLuBurR/U4ba/3qWrXl1ltuMf/r2ninqjBed+019gLSL2iLFi2WZi1byvy5c/PcPev0g0cIQAACQSGAMJLYkroapH7DRpGwG/GO1tUkw82dndF3OCVyjKsjoVGT2yOxwqPr1i+s0558QnoYAWOlucvKKY4woq/1S59+8dcfAImK3iU0edJEOfmkkyKH6Y+CJk3vMOG0Xotsi/ck2omezAni1JMpYUTrS8cW6lTTPB0ff/KJ07V8jz3MipFvvv1GHjXfIdwlWhh54sknrU3cxzjPCyqM6HnPzJptV6tEiyBOnc5jXXPnc+9ePe0PGWebPqbqdCP5upta3ucII3l58Cp1AggjqbNK58h0hREVv6+5/oZIzi29EeDZ2bPz/M7Tz8SratayyZCdvo4aMTymI0xXXV5x1VX2M9g51nnUyASFEUb0fBXLdZWgk4/DqdN51FCQ441zr1ada+wd0852tzCi29L5vHTq1Me27TvInGf/CzHp3lcQYUTPUydSPzO2yVPyfsa669Tn+ltcc67Vqnl19C6EkXxEin6D34QRJfboxIn2+7qG0Ht65kybq/aqK6+wjk0NVTfbiBAVjznGhqlVv9HA/v1F9+scnmGO7zdgoF15rL4mFUZ0JZcKKp1NfiK9yUlXlPU3q77feevNyE0+ifxY1YzQoI5yvXtfV6Zom7oCRL+zq0P/rHPONavK51khUiOgXH7lVfZ9QBOuJyv63fLYylUiNxEnOz7e/ljhldR5rKvSVcTUsH/KR2+6UnHHCSusIsaIUaNluvk9o+9f2v/WbdoYP90hNryX48s76cQTrRDtZqC/W/QmpuiSijCifXPnP9Hvyhp22BGQ9Yasnzf9LMMMd/080JvRNCdFH/M9+/LLLrN2HWTEKr0pTEUyFZw7de5i7R5PYIplY50f+ltLHeZdOneKOT+0X/qergKACvZqszFj77Wrxuc+l//9N5U5ES+U1tW168hll1wszcwKdS0a1vdXI07p7wunxLJ1qnZ0fK46Bp3Ha9etNczmWIFH67jbtPfGq8ss01TrTGVuxAql5YxHH1Nh5j5e54+GputhBH1dJaWrhRaZvJ1NmzW3c1tvWHjxpZfs78F5xkZ63Wsb511woV3pqKuekrVZULu7+8fzHQQQRlw5Rpw3U7cw8tWqr+SB+++ztPSO3hNOPsUuH1T1WMuAgQPNF+M/7ZuxOpvUqaSKrKrgTmnfsZMVStxLEZ19PEIAAhAICgGEkeSW1Jje+rmxxNwh6nZW6Bdl/QKv4S5atWyRz2GtNScSRnS/Chtt2rWT99//QF9Giq5KGW7u4DnXrODQ1QmaK0TvatIl0m5hRE/Q5eu6jH7a9KciobEiFZknZ515hrkDqlWepPDOfnXuPP744zLRxGVda+7kiS663PsOcwdV9GdhUQgj2rd0bKHfF7r36CHPz52XZyWGClDt2rS241QhR8OPvWJukHASz0cLI/rDb+LESda5ozHp9bVTCiOM6Ll6R+KI0aPsnVxOXc6j/pCsb+IEN2oU++5khBGHVOEfEUYKzy7sZyKM5GYGpCOMHFD2AKlpVn/oHb9OGTxwgL3D23ntPOpn2w033Rz5rFeH2ZxZs8Sd0NU51vk8Wr78bXFCOeu+dIQRPX+xCfXV2Qj1G83d3+6ijlq9y1pXbuqNf4+Zz269+1c/g6KFET3P6V9hvrs47aoT8557hsh84wDSiAruUlBhxDl3vHE2TZz8aMxVsVWqVJZ2JhxQvKgNrBhxKHrn0W/CSE0jKtSvX88CnP/ii/bu+teXLY2ESbrS5CBq3uwO6xzX73pPmXCpKpS4y8WXXiYNG9SXG2+4wTrQG9/e1DpDnXy3+l39VBMud5LJOXh8tWr21FhOc8ePNaBfX1uX00Z9sxpNHeS3m9B/6mBWYUSFmWuN417FEP394axocc6J9+gWRtR5qyvSUykaIlYFG6fEcpar83jW7Dmi7wVOf/Q3S70GDeRdE/5ev183M6KR/m5xrxJ4863lMnHSJNHv16kwcPrgPKYijDw6+THbRjezykNXSujvKqeP+p55osnz2Mv8Jqh4zNFOtTLB9GmXnXeRu8wKHvURXmtySPY0N1af/X9n2zHoeU4dkZNcT2LZWIWRZPND59lz5oZsFWWcou+9umLl5fnz8wj4uj+VORFPGNF61S66EkZ/0+pxQ0zo4CWuiAKxbJ2qHWfNeFoqmdUTWnQV5nffrZb777vXvtZVR8pdrzddyZJqnYmuD1ux+ZNMGEmFmVOXPurc1ryTixcuyPP7Xn8v6DWtIqgWXZGlHDeZ1StaVGy94frr7PeLZG0W1O62Af7kIYAwkkQYcavDGuPu+BNOzKOSq9Nju3EG9evbx76Z9+zVS6pUyZ9gTz+A9AOPAgEIQCCoBBBGUresOs014fn69RtsuCn93FCnSSaKfln80NzR+v33P8gx5kt6vPizidrSzzu9MWDN2jWyZctW+0Va72ZTx3qyol/e1ImyZvUa+eHHH2S/ffeTCgdVsA4Y/QLttZKOLTQ8iNpxlWF1yCEHG97HxIznXBRjVqFs1ZerrA00TIiG+tKbOhL9ECuKfgatTYSRoFk0d+NBGMkd67C1pDcraEx+DQOjeQU0P1hhPgvS+bzMFnN1MGq+hNVr1tgQPfvus68Nde3EpM9Wu9SbeQJ+E0YamtXD6uPRomFsBt91txU1HDI1zZ39Gg5IQyb16NnLhMbazUQd6e7sto/u7er47tWnjw1x6z5I7xzv37dvJO9gLKe5IwpE34CjzlW949wJp7XafDfXm2CWvfqq/GgcsVeYFQ2dzeqDVH6D6Pd7Z8WI3vXeyIQYSqXo7xAnr68eH8tZrs5jfX9xVmHocbry4uzzzhMnJK7m0tNQRpqDJbpMNCG3/jD901BayRi4z40ljPxhwnhp6L8Z06fZ7816vArIuir7/fffl4PM76GO5kY0FV1VFDjDiB26Iic6b4iGK3MS1b/x5puikWg0p2Px4sWk3i232jyA8d6HY9k4lfmh82nhokV5wo8549VVJm6BytmebE7EE0aGjxhpBaOjjj7K3BReXLZu3SrrTNSBN1971ak6pq1TtaNzs7pWNtiEd9y2dZv0N8KfFr2BQAWM15YusSEUU60zlbmRTBjR9pMx02OconNbUzG483zpvlGjx9jwyw8af/RnJvxaKyPkb/t1m5QvV96eqiu+2rdtEwkDmajNwtjd6R+POwggjGRQGNHJW9MsKVOV1InBp5h16VOsN3AmIQQgAIEgEUAYCZI1GQsEIFAYAggjhaHGOUoAYYR5AAEIhJlAkIWRx0zYN1158MLc//IBqqh37gUXSCuTp0FXcKjje+CgwTJ/3tw806AgwojbmayVuIUR9VWpk9tZua2CaQuTG+M8s6K8lQn9nqy4hREVWwpb4gkj7huSte5oYUQTwpcrd6DJzdAt0rSuVt95553y5BhJxCBy4r9PNISR5udT/50jUjgrMzTJvN5QpILGRRdeYPMrKoOZzzxjwhT2N2GcXpMSJXaXU2ucIYNMLpkLjS2doivFnZUlupK7hMkroatNtOjK/lvr1bO5VTSMUqwSTxhJNj90nj05bbqNcOOuN54/MpU5EUsY0ZuvdLWT5t5SoV2Lzm/NjZNMGCmMHZMJI4WpU/vsvj70tZZkwkgqzHbUtOOvCiNPz5gpyxYvypPX8ZrrrjeRGM6Udkb80HBsuxXfTQaYvCladJ7p6q6WzZtZYSRZmwW1+46e8ddNILTCyMRJj9o4pxpz3XkTdJR2581UJ7H7DTrZihH9cNMlk6rEtm/X1qrzGm/9DhM/bpZZNnmoiROr7a5eszrPG7rbIDyHAAQg4FcCCCN+tRz9hgAEMkUAYSRTJMNXD8JI+GzOiCEAgf8IBFkYUUfy1SbvUMsWzeUGE0XkH7N6a4oJYffwuPHy3OxZ1umeqjCSih/Loep2/GoIu6tMrgZdXaHh9NR3pSKFhtpyQoI558V61LBeGtbXCV8U65hUtjVr0VI0VJg7sXS0303riRZG5s6bJ3f26BlJWK++uW4m/68ms77HRHGJ9uU5fXEzcLY5jxpaUVd8aCLvmldfbXOHDDXhoBYvWSozn5puhRHNnaHCgq5W0FUh7733vjRt3lwWmvBduoKlnxFJVrz7ngweNNBy1Tv7NQSYhlGrY0IvqjAybORImWzCoWkIMl3toPlnxj30YCRUlNMf5zGWjVOZHzrPahob6wqha0yukWLFdpVJxv84ZepUK8pp3iV3SWVOaJ4pdeKr3XUFupbvVq8Wza08y4hHOpe++vpradmqtQl39Z0sXbI4sno+lq0LY8dkwkhh6tRxxJobmjph1PDhcvbZ/6eH5CupMHOfpHN76tQnpL4RwzRsns6Z2SZXSs/efeR/T0y1vuPOXbvavGUaRllFkSlTHpfB5rxW5v1CRctkbRbU7u7+8XwHgdAKI5qgRmOLahgTTXSr8eqi30yj36CTCSOKVJcAtm7bziZVUpVYP0D69elt48br/utvvMmGGNE3Fi+GFNE+UiAAAQgUhgDCSGGocQ4EIBAkAggjQbJmbseCMJJb3rQGAQh4i0CQhRElrXmHNOn2uvXrjCgh9k57DTGl+XC0pOL41uNS8WPpcVqiHb8zZj5jcwnubBz86rfSPCMP3HefXfmw44z4fzUXnib2Xv7G6/EPSmGP5lvo1bu39b1169zZijLRfjetJloY0W2PGwf/aJNMXEUdDR185hk1bJgujc4S7cvT47VEM9ix9b+/8154wYQw6yu/GqFFV8L0NX1r0769PGYStuuKEc2l0aFDR/niyy9NOLTdZZs5TvMtOitvNC9Eb3P+rNmzpbQRDjRXRP3bbrPCj+PvGzh4sCxYsFBKliplcz5defll0t0k445XYtk41fmhyd07d+lq29EbwMuWLWvDODk5kqPbTDYn1FF/48115T0TRqxUyZLyzvK3bBUaSuuhRx4xoZ/K2TEPM/ksx957nwkL9Zm8b/qgJZatdXtB7ZhMGClMnXpOrLmhttJVQjrHnp42TSpX3pHnRI93SjJmznH6qHP7D+MT1mvuqadnWFF0NzOPNA/MpZdcYg/VuaU302t+EeV90oknGP/xlfY60dyjTYzfOlmbBbW7u488FwmtMJJt46uIoh82Bx90UGRFira5fft2K5aoaEKBAAQgECQCCCNBsiZjgQAECkMAYaQw1DhHCSCMMA8gAIEwE/CTMJKOnfTub3WY77PPPulUk9a5600uiDJl9kxJEHEa0hwbM8wKgYnjxzubiuxR75Dfe++9U8qNkmonVWhJ5KPT3CPrTU4RJ3RUdL3q0FbxSPcXK1Yserd1tOv+CibnX3Q+knwHZ2DDxo0bbS2phj0rzJxQMUpDsumYdSVEQUs27JiNOuONq6DMdA6tXbdO4uXA0pU4xc3cUTErXknWZkHtHq+dsG1HGAmbxRkvBCAAgSwRQBjJEliqhQAEfEMAYcQ3pvJcRxFGPGcSOgQBCOSQQFiEkRwizVhT6myu36ChCQXWwoSHqpWxeqkIAhCAgBcIIIx4wQr0AQIQgEAACCCMBMCIDAECEEiLAMJIWvhCfTLCSKjNz+AhEHoCCCPemwJqk3vvu98kDH/fJIluK7fdeov3OkmPIAABCKRJAGEkTYCcDgEIQAACOwggjDATIACBsBNAGAn7DCj8+BFGCs+OMyEAAf8TQBjxng01qbbmzDju2GNtfg3v9ZAeQQACEEifAMJI+gypAQIQgAAEDAGEEaYBBCAQdgIII2GfAYUfP8JI4dlxJgQg4H8CCCP+tyEjgAAEIOBHAggjfrQafYYABCDgQQIIIx40Cl2CAARySgBhJKe4A9UYwkigzMlgIACBAhJAGCkgMA6HAAQgAIGMEEAYyQhGKoEABCAAAYQR5gAEIBB2AggjYZ8BhR8/wkjh2XEmBCDgfwIII/63ISOAAAQg4EcCCCN+tBp9hgAEIOBBAggjHjQKXYIABHJKAGEkp7gD1RjCSKDMyWAgAIECEkAYKSAwDocABCAAgYwQQBjJCEYqgQAEIAABhBHmAAQgEHYCCCNhnwGFHz/CSOHZcSYEIOB/AkEQRr5ctUoOOfhg2XXXXf1vkKgReGlsP/74o/z999+y3377RfWSl0VJYPXqNbLnXntK6VKliqwb//zzj6z66is59JBDZJdddimyftCwvwggjPjLXvQWAhCAgGcJIIx41jR0DAIQyBEBhJEcgQ5gMwgjATQqQ4IABFIm4HdhRB31xxxXSV5+cb4VR1IZuDqSH37kEenTu1cqhyc8ZsmSpfLFl19KvdtuTXhcYXZGj613n76yZesWGTZkSGGqS/ucu+65R7Zu2Sr9+/WNW9dnn38uzZq3kOFDh0q1alXjHpeNHZm0azb6l606a197rTSs30CuuvKKbDWRp95Yc37br79KteonyKtLFsv++++f53heQCAeAYSReGTYDgEIQAACBSKAMFIgXBwMAQgEkADCSACNmqMhIYzkCDTNQAACniQQRmHkww8/krq33ior3l6etk0mTJgor73+ujz4wP1p1xVdQbQw8tDDD8vWrdukXds20Yfm5HUqwsiaNWuld58+0q1bVzni8MNz0i+nkUza1anTD4+5FkZizXmEET/MFO/1EWHEezahRxCAAAR8SQBhxJdmo9MQgEAGCSCMZBBmyKpCGAmZwRkuBCCQh4AfhZF169bJt999J8ccfbTsscce+VaMaFgf3f/zpp+lSpXKstNOO9kx//777/LLL7/IJ598Ks1atLCrTHTHnnvuKcWKFbPHqBixcuXHUqp0KTns0EPttlh/tmzdKtvNXfJTn3hClr/9tgw1qym0uMNM/fbbb/LRypVy4AEHSLly5WJVk29borFpmzq2PUqXjpz3119/iQoC5codGPNO/e+//16+/uYbqVK5suy2226R87SeH374Qfbdd1/Zum2baJgsDUemRfd99fXXUrZsWSlVsmTkHLcwoiG+9Bytd/fdd48c49S7zz77yM477xzZvnnLFvn000+lYsWKNuST2kH7o/+3b98uykrt4C7aP93mDpEWazyp2FXr/ebbb+WXn3+R4447NqVwT9rHTz/7TCoec4ydZ+6+bdq0SUoaNjrGDRs2Svnyse2rPGLNRa1L+73NsN9rr73kzz//tMx1zrnH67Sp8/ITw0/n8tFHHZWn/44wcvlll9oxakiteKs20hlTojnvFkb0mtQ5d9BBB+WZP85Y9FFX92z8fqNUOu44KV68uHuXfa52VpGtcuVKecbqHKhzRq8tDd2lc5jiTwIII/60G72GAAQg4DkCCCOeMwkdggAEckwAYSTHwAPUHMJIgIzJUCAAgQIT8JMwog78pnc0kzfefNOKIt8aR3e/vn2lQ6dOkVBaP/30kxE9WtrwVgcbx+xG42Dt2rmTXHH55bJg4ULp1r2HdUL//PPPEYfq6JEj5NRTTrH723foaLf/bJziZYyDd+KE8aL1RJdhw0fItKeesuLI73/8IWXKlLGHLHlloXVsjxk7Vu5/8CEpbwSRtUbIUYf3uIcfkgMPPDC6Kvs6lbG5hQk96eUFC6Rn7z5y5BFHiAoqKspMMv1VkUcd8n379bd9rFypknVUX1unjnTq2MG25ziyb2/cWGbNmSNbNm+WQ0wfh9x9lw2FpQetWbtWBvbvJ9eY87Ro+5t+2iTK+O0VK4wwUEI2bvxeupvVIXVvvtke49TrDqk0cNAgefSxKZbBhg0bTNix22TFuyukdq3aUvPqq2S64Tj9qaflicen2DqcP1WrV5f/TZ1qhIzjEo4nmV1VEGnYqLGoTfc0dlKn+6gRI+Scc852msrzqCJNm7btZMErr9hVLyoCXXThhTJi2NCIgKZiRGUTwu2Z2bOkdOk9bAipPJWYF4nmoh670NQ/ZOgwuc7UNebee63AtNn0cdjQIbY9p77Fi5dIm/btZZ+997bCiI5j7OhRds7qMdqXSy++WJ56eoZs/227FWrOqHG63DtmrJQosUO0ysSYEs15vQY0lNbdgwfJwMF3Wc4675s0aiQd2rdzhiLfrV4tjRo3kdVr1khZE3JrvZkPbVq1lNubNLHH6Lyt16ChGcMGK+4o+zu7drHXr1PJiJGj5OFx4+TII4+UVWZ/jdNOk7FjRucR/pxjefQ2AYQRb9uH3kEAAhDwDQGEEd+Yio5CAAJZIoAwkiWwIagWYSQERmaIEIBAXAJ+Ekbatu9gBQDNsVGhQnl7R3nnrl1tKCsnx8jAwYPlS5Pz46EHHrB3mr/yyiK52xz/3JzZEQaxQi59/sUXUqvONea8++WMGjWseDJm7L0y74UXZO5zz0bOjX4SK6yQOvqHGuHk/nvHygnGua8izNBhw0VZvzD3+egq7OtUxhYtjDgrBZzcEo2Mc/nSSy6xjvYXX3pJevTqLfNM33XVha5wOO+CC237uprAETBuMYJGj+532vFebYSKtevWGlZzrBik47h7yFB549Vl1iGv7Y8bP0F63Hmn3HzTjZbvosWLpWmz5vLoxAly2qmnRup1hJHJRhBRp/+4hx6SqlWr2NUpo0aPlkcnP2ac6INTFkaSjUchxrKrrqi54KKLDZNrpOntt1vRatGixdKsZUuZP3duzJUenbp0sXPrLuPkV1FMVz906tzFrhxx8qsoe13Fcb+ZI/FWiySbiyqM3GHysdSpVUs6d+po7fS/adOk/8BB8s5bb1oRRvPX1LnmWhluRJkLzj/fzpXnTb+73dldlpp8HrqiR/vy1aqvbDg3Ffh0vt1U9xa58orLpXmzZvacTI1JK4s15535VK1qVdtXFQJ1tY3OqccenSQnn3SS5XX+hReZcZwnbdu0satw3lq+3M6fPr162RwpymSQEVbmPf+cnXPvGAFO2ev1qytLdE6OGDVapj/5hF2FpSuRWpu6Djn4EOnbp7cdK3/8QwBhxD+2oqcQgAAEPE0AYcTT5qFzEIBADgggjOQAckCbQBgJqGEZFgQgkBIBvwgj6oQ+6ZRTZdDAAXLZpZdGxvbC/PnSvGWryIoRDUmk4Yl+MSsgNNyOnqfOWRUknFBRsRzoEydOkueMw7lPr56RutXpqnevv2zaiOf8juUk1uTjBx1UQbobAcEpegf8Weeca0WW6NwbqY4tWhhp0aq1/PrrNml2xx1StUoVe8e8EzZM29UVCyoMbDKOci1du90pN1x/nRVOHEf2rBlPSyWzokSLruz47rvVcv9999rXGnbpRMP89WVL7SoabX/2nGdl8cIFecJk6Xew46tVs859p15HGGlsxAh1kvfo3t3WqX9UpDn9zLMKJIzoeYnGo/tj2XWlCbekIoGu/Cn+b7g0PbZ9x05WKKldq6a+jBRdsaBjvueuwXlWbcx59lm7EkLHpUXFiFpX1zSrX26NnBv9JNlcVBGg8e1N7dx05oSG1zr19BoyyQhNynTipEdl6dKl8vBDD+apftToMVKnTm0r3GhflPGIYcMix9xvhEEVHcaZvDSZHJM2EGvOO3Yf0K+v3HjDDZF+1G/Y0AqNuiJEbVH72utk2eJFoqHWnNLTCHh6rY0cPswec+0NN0pPI9ad/X9n2+tO++/Ma7229Fp0VjFpHW++tdxwmiQLXnrRqZJHnxBAGPGJoegmBCAAAa8TQBjxuoXoHwQgkG0CCCPZJhzc+hFGgmtbRgYBCCQn4BdhZP369XLm2efY1Qtup6o62U8+7fSIMKIrPO7s0dPm9dBcB1refucdmTPrGRt+S1/HcqD36NlLFi5aZHMW6DHu0sWE4tI74WOVWE7iCy++xIoEF190UZ5T4m1PdWzRwsivv26Xhx95RF42QsWqL1fJySefZAWIww87TD77/HNp1bqNWcGxzYTzKm/7oXfwtzeJ22+pWzffyg49YPDdd8s2k9zdWRWhOSWqn3iSvLZ0iQ3Tpe2vW7feOrDdA1Mn/UcffWRXLDgOckcY0TFrsngNZeYul11xpdzRtGncFSN/mNBMVU1ophnTp9lQWsnGo3XHsuus2XOkp1mNUMUIR9FFV9q4nfi6XwWsM4xD/u0334iER4u1XcWIhvUb2FUO0fU6r5PNRRVGeplE9YtMSDR30ZU9/U2IuLPOOtP0vbfNd9O1c2f3IXmea1905Y9bLJgx8xl53IQhm2ZWVmRyTNpwrDnv2F3FCXfoORXjdIWShtNSWzxkhBq9Ft0leruGytOVRm++9ZZZJVJM6t1yqzRs2MCKIzqfNC+N5mWJLhPHj4uEOovex2tvEkAY8aZd6BUEIAAB3xFAGPGdyegwBCCQYQIIIxkGGqLqEEZCZGyGCgEI5CPgF2FEO64CSPdu3Uxuiv/u8lenavuOHSPCyNnnnScdTcitq6+60o5VE1ZfcdXVNhSPJmvXEsuB/tiUKfLktOkye+YMe4zzR4WXWE5YZ38sJ3FLI0jsbRy3jsCgx2oCbnV4OyG/nPOdx1TG5hZGNpsVMZr4vYnJEaJ30+sd9/fcM0Q0J8OUyY+Khk7arfhuMsDkCNGiqxd0xUrL5s3SEkaenjHT3vHvThB+zXXXy1lnnmkFEMdB7ggjGiJMi64GcIrm/NCQShoSTXOMaJis3n37ieZncVYGOKsp1B6aYyTZeLTuWHZVMahm7Tq2bneS7kR2PbXGGdKrR3cTiuoKp8smf8fTMtIIQLpaRksqwkiyuahjHDhosMyfNzfSjj5xCyMqbuiqqInjx0eO0RUUKpjceustNrxXrL64hRE9MVNj0rpizflou+txWtzCiNriSrPKRhkecMABOw4wf9W2WoYYYU5D35UwuWs0JJiW99//QG6tV8+KbhqqTa+tcuUOtO8D9gDzRwXCnXfeiRwjDhAfPSKM+MhYdBUCEICAlwkgjHjZOvQNAhDIBQGEkVxQDmYbCCPBtCujggAEUiPgJ2Gku1kJ8v6HH8oAczd9tWpV5YMPPrSrHHQMjuBwjsnD0LRJE5MD4yYbsqnfgAEy59nnZPKkiTYHhlJZ+fHHos58DRHlrCpRZ31NE3JL72y/xuQaKVZsV5lkwhhNUce0CcPlFgLcZDXUkYZZ0jvzHae+5oDQ/B6DTdiv841Qo0nMNcfIt999a1ZATHefHnmeytjcwog6x6+9/gaT9PwmqVO7tq1n3LjxNnyShsLS3Cu66kLFBxVFpkx5XAabFR+tWjSXVia/RixHdiorRqZOfULqG0d1wwb1rSN6tslHogng//fEVLuqJrpedf63btPWcG1vRRAVbh544EG7GqBP7952248//mhXaWii95pXXy2a72WoCQu1eMlSmfnUdCuMJBuPAohlV+Wkznhd8dO+XVu7euHV116TO0xelFnPzIy5QkiT1r/z7goTVq2XVD/+eFn+9tvSxwg3Z555hjgrN2KJERFj/vsk2VxMRRjRZOVX1axl2u1kQ6BtN4nhH3vsMXnokXGyyAgMJUuUiCnSRAsjmRqTDi3WnI+2u8PCLYw4tjj22IpGRGtrV3WpKKb5UjThvF4rKowMGzlSJptQYpobR1ctXXTJpSZHzYM25NvcefPsirAxo0ZKjdNPtzlr9PySRky55667nGZ59AkBhBGfGIpuQgACEPA6AYQRr1uI/kEAAtkmgDCSbcLBrR9hJLi2ZWQQgEByAn4SRtTR36lLV1HnqDpNd9utuFmJMFxuNqF2nBwi6mjVZM1l9iwjGzd+L82a3m7zjWhonicen2Id3SoU3HhzXXnv/fdt8up3lr9lQWmi586m/o0bN1qRo2zZsnalg65YiFfUid/QrNpYv36DnH/uuZH8HLqaY9SYsaI5I3799Vcjypwio0aMsP2OVVcqY3MLI1qHCkN9+/eXLWa1yG/GYV6qdGm5e9BA60DWpN3q/Nf8Ijrek048wayAuFJ6GTGiVcsWUteE06pmQlU5Kzu0vlSEkT/MeHbeZRezgmKG/GPyt+y2++42L4smfdcSy0GueUkeePBBK3jst99+VlzQlRAaxkpXjGjRsFO9+vSVX01+GA291Nf0s40RUx4zgpbyTzYeXTkTz64//PCDtG7bTtS+ZcqUsTbpZxJ1u1eE2E78+0fzsqgQ8sysWVLchG3608y7OrVr2TBlO++8sz0qFWEk2VzUVSvJVoxoYzpPO3bqLBu//96M8Q8bGm3UyBFybMWKcfsSLYxkakzaYKw5H8vueqxbGNHXji00vF0JI+poWKyOVoyso7tt0aT1CxYslJKlStlr8crLL8uTr0fnzmiT9F6FFs2Dc+YZNWSoEf0Srexy6ubRWwQQRrxlD3oDAQhAwLcEEEZ8azo6DgEIZIgAwkiGQIawGoSREBqdIUMAAhECfhJGnE6rE3bTT5viJkRXB7muANnfOOGdFSHOuak8qjCiRR306RYNobXfvvsZJ/DuKVWVbGyxKtGwWirAuENFOcfpigNNOq4iTyaLCjlr162LJLRPpW49p9i/CdA1IbpbGHHOV0e3ihfxSjrj2WpEF3XMaw4MZ3VPvHZ0u86j1WvWyEEVKsguRgwqTEl3Lrrb/N4II9rvWHZ2H5foeSbGlKj+VPfpPNeVQso2VlHRQ6+dCuXLx2Wv1/jee+8texhBkOJPAggj/rQbvYYABCDgOQIII54zCR2CAARyTABhJMfAA9QcwkiAjMlQIACBAhPwozBS4EFyQpES+Omnn2T79u2RPvxhBIf6DRpKxw7t5fLLLots5wkEIBAuAggj4bI3o4UABCCQNQIII1lDS8UQgIBPCCCM+MRQHuwmwogHjUKXIACBnBFAGMkZ6tA2pMm1lyxdlmf8hx16qNw3doy94z/PDl5AAAKhIYAwEhpTM1AIQAAC2SWAMJJdvtQOAQh4nwDCiPdt5NUeIox41TL0CwIQyAUBhJFcUKYNCEAAAhCIJoAwEk2E1xCAAAQgUCgCCCOFwsZJEIBAgAggjATImDkeCsJIjoHTHAQg4CkCCCOeMgedgQAEIBAaAggjoTE1A4UABCCQXQIII9nlS+0QgID3CSCMeN9GXu0hwohXLUO/IACBXBBAGMkFZdqAAAQgAIFoAggj0UR4DQEIQAAChSKAMFIobJwEAQgEiADCSICMmeOhIIzkGDjNQQACniKAMOIpc9AZCEAAAqEhgDASGlMzUAhAAALZJYAwkl2+1A4BCHifAMKI923k1R4ijHjVMvQLAhDIBQGEkVxQpg0IQAACEIgmgDASTYTXEIAABCBQKAIII4XCxkkQgECACCCMBMiYOR4KwkiOgdMcBCDgKQJhEka+/e47+eOPP+SQgw+WXXfd1VN2oDPhJrB69RrZc689pXSpUlkH8eWqVTm5Bn79dbts/H6jbSvrg6IBXxJAGPGl2eg0BCAAAe8RQBjxnk3oEQQgkFsCCCO55R2k1hBGgmRNxgIBCBSUQFiEkXYdOsgrixbLAWXLyriHH5by5csVFFUgju/Tt580adxYKlQoH4jxpDKIGTOfkUfGjZPp//uflCixeyqn5PyY2tdeKw3rN5Crrrwiq23//fffcsxxleTlF+dnXbB49bXXpFOXrrLklYUpj2nJkqXyxZdfSr3bbk35HA70LwGEEf/ajp5DAAIQ8BQBhBFPmYPOQAACRUAAYaQIoAekSYSRgBiSYUAAAoUiEBZhpMZZ/yf3DB4s//d/ZxWKU1BOqn7iSTJl8mSpXLlSUIaUdByLFy+RJ4woMmrEcM+uFEIY2WHGCRMmymuvvy4PPnB/UrtygP8JIIz434aMAAIQgIAnCCCMeMIMdAICEChCAggjRQjf500jjPjcgHQfAhBIi4CfhJFNmzZJyZIlZeedd5YNGzbmWfWxfft2+WjlSjn0kENk3333tUz++ecf+eGHH+zzK66uKQP69ZUTqleXkiZcUckSJex2vYN+5cqPpVTpUnLYoYfmYbll61b7upRpc8OGDbL33ntL8eLF7bZY7TknO/3UY9evX2/7u//++zu78zxqCKUNGzfIccceK7vvnn81Q6L+aUV//fWXfPjhR1Ku3IESrw03hwsuuljuHTNGjj22opQw49KxOUX7oqGPKh13XGSczr5Yj99//718/c03UqVyZdltt91iHWK3/f7777Jt2zbZa6+9RMMrrfx4pRxx+OH2tfskh1uq9nWfq8/jsdT2txpbqv2ckoxbMu5OPe7Hn3/+WT797DM5+qij8o1Nj0vEK5YwkqgPDqtU5ti6detEw8gdc/TRsscee+RbMaLzQ/f/vOlnqVKlsuy0006RYTlzR6+pbb/+KtvNf+f6ihz07xM9Vsf/22+/ScVjjpG333kn34qReG3ptaZ1T33iCVn+9tsy9J57bK377bdfpJlEPCIH8cRXBBBGfGUuOgsBCEDAuwQQRrxrG3oGAQjkhgDCSG44B7EVhJEgWpUxQQACqRLwkzCizuPKJgzQM7NnSenSe8irSxbbYY4YOUoeNqGSjjzySFll8ifUOO00GTtmtKh4ccnlO0IT/fjjj9YpXKxYMWnWtKkN1bNg4UJp36GjdfT+/MsvUsY4jSdOGC8HH3SQrfcu45xd9eUq6+xVR/SkCROkWrWqEq89RxzQft5w3XUyZeoT8vPPm6yIU+P00+TesWMjgow68Rvffrv8+NNPcsABB5h+fykd2rWX+vVui5guWf9eXrBAevbuI0cecYSo81udyJNM/3WM7qIOe4eDCkV77rmnXTnRwLTV1PThu9WrpVHjJrJ6zRopawSc9UYEatOqpdzepIm7mshzdW737ddfpj31lFSuVMmKI9fWqSOdOnaIHON+svCVV2TI0GFyvWEyYuRII2iVl8+/+EJq16wpgwcNtMKRHl9Q+zq8k7HU9gcOGizz58213UrGLRl399j0uQoBbdt3kGXLlsmRR5k5aObM+eefJ3cNGmRtkQqvaGEkWR9SmWNbjRjV9I5m8sabb1pR5Ntvv5V+fftKh06dIqG0fjLzr1mLljZ8lc77jUbs6tq5k1xx+eV2mCqGVKt+gtx2S115ctp0Oe/cc2Xs6FHRCOz59Rs2kk2bfpIK5SuICh1NGjWy16UTSitRW8OGj7DzScWR300eoDJlytg29FzNB5SMR74OscEXBBBGfGEmOgkBCEDA+wQQRrxvI3oIAQhklwDCSHb5Brl2hJEgW5exQQACyQj4TRjRu8bvH3tvZLXIdOOcHzFqtEx/8gmzaqKcbN6yRVq3aWPyJxwiffv0jgxfQ2lpKKVTTznFblPHfK0618hDJmTPGTVqyJ9//iljTL3zXnhB5j73rD1GhZHHpjwuj5vQUyqIaEmlPXVaf/fdarMyY7RtT4WJm+reYpzNl0mL5s1Fx3D+hRfJlVdcIR3at7N36Gt/bry5rj3ntFNPtcJBsv5FO9MbGSHj0ksuketM+/FKdCgtpy8XGEd+W8NNVxS8tXy5NG3WXPr06hUz58WLL70kPXr1lnmGk4osKhqdd8GF8sLc52OuWlFhQuurefVVcmfXrnY1xSeffip3mG3X1KktLVu0sN3V8RTUvk7/E7GMFkYScUtlXkSz7dSli6xdu04efvBBm8NERYF6Jl/IeeeeY8eWCi93n1Lpgx6faI5pH1WsUcFs2JAhNqfMmjVrpbPhr6GqnBwjA014uS9NTo+HHnhAdtllF3nllUVytzn+uTmz7TAdYeS6a66RO+/sJnuULh09fLtq6ezzzpeLL7xQ2pv5rMe8//4HcnuzZrZORxhJ1pZWHCuUVio88nWKDb4ggDDiCzPRSQhAAALeJ4Aw4n0b0UMIQCC7BBBGsss3yLUjjATZuowNAhBIRsBvwkgtExLLnZi5WfMWViS5xqxYcMqbby2XiZMmyYKXXnQ2SbQwMnHiJHlu7lzj/O8ZOUZFlXoNGsrL8+fbOlUY+eabb+W+sWMix6TSnjqtNSzXiGHDIufdbxzPKjho4veVH38sNxuhZPmbb0RWS+iBT8+YYcWdGqefLqn0r0Wr1iY01TZpdscdUrVKFRvOyh0GKdK460m0MLLShB+rfe11smzxItlnn30iR/Y0wofyGDn8vzFEdponeve/hqPaZEQfLV273Sk3XH9dTFFGhYnGtze1womG0HKK/obVfU9Pn2Y3KbeC2jcVltHCSCJuqXB3+q+Puhrk5NOMvcyKpapVq0R2aTioz0xYqRtvuMFuS8bLLYyk0odkc0wFo5NOOVUGDRwgl116aaRfL5i53bxlq4gwooKghjn7ZfNmu8JKz7u6Vm1rq0MOPtiGz9IVI3NmPSPHVqwYqcf9REO51TGrgVQAcYdzGzBwoMx9YX4k+XqytrTOWMJIKjzc/eG5fwggjPjHVvQUAhCAgKcJIIx42jx0DgIQyAEBhJEcQA5oEwgjATUsw4IABFIi4DdhpKG5E/+qK3eEx9IBXnjxJVYQ0PwV0WXi+HGRsFLRwkiPnr1k4aJFNidJ9HldTCihalWrigojW7dslf4mN4lTUmlPnda33HyzWQ3xn1gzY+Yz8vjUqTLNrGyZPedZGT9xgsyYPt2pNt9jKv3TfB0PP/KIvLxwgQ3fdPLJJ0mP7t3l8MMOy1efsyFaGJk1e448ZMQadXy7S7ztesxnn38urVq3MU7zbVK+XHl7muaWaN+2jdxSt667GvtchYlu3XtEQp85B+jKBV01suLt5XaTWxxwjknGe+68F5KyjBZGEnFLhbvTN33cuHGjFd3eW/FOJEyae78+T4WXe+yp9CHZHNPcNmeefY688eqyPIKXru5RIcdZMaIrpO7s0VMONOHcdLWQFs0NovNBc5I4K0Y0bJ1b9LAH/vvnmVmz5QGzWub5Z+e4N8vcefNkwKDBEWEkWVt6cixhJBUeeRrmhW8IIIz4xlR0FAIQgIC3CSCMeNs+9A4CEMg+AYSR7DMOagsII0G1LOOCAARSIeB3YaSlcdBr4vHu3bpFhquO75133ilPQvBoYeSxKVNszoTZM2dEztMn6jh2RJZYwkgq7bmd3E7lbmFEQwPVNqGJ3nnrLZs/wTnmEbPq4CCT50HDYSXr32Zzh78mqm7SuLENxaWrO+65Z4h8aXKsTJn8qFNlvsdoYUQFjSvNKpzFRlzRXCdO0fBQWobcfbezKfKo+3YrvpsM6N/PbtOVAGedc660bN4srjCiK0ZmPzPTJpl3KtK8I7qK5smpj9tNsbgl450KS7cwkoxbMu5O392Pp595ll1VdOIJJ0Q2a0iq9z9434bSSoWXe+yp9MF9vNOoe47pNhVA9LqoXaumc4io4NW+Y8eIMHL2eedJRxNy6+qrrrTHaIizK6662obSSlUY0XN0Di00IdYqVNghlGlljqDhhNJK1paeE0sYSYWHnkvxHwGEEf/ZjB5DAAIQ8CQBhBFPmoVOQQACOSSAMJJD2AFrCmEkYAZlOBCAQIEI+F0Y0bvS9Y73MaNGioag0oTT3e7sLiVLlpB77rorwiJaGPnGJKKuaUIGaY6Pa0yukWLFdpVJkx41CdOn2jBCmvA5ljCSSnupOK3Vkazhr3qbUF7FixeXpUuXyR0m18bkSRNFHezJ+qf5IK69/gape/NNUqd2bTvOcePGW6Hh/vvujYw7+skJJ58io4YPl7PP/j+7S0NBaV+OPbaitGvb1q4c0JwYynDY0CFyvnGcRxfNU/GHSZCtuStUFJli8rAMNqtrWrVoLq1atow+3IbLusOEPNO6dDWOhmhatuxV6WTqadKwoTRoUN+eE4tbKryTsXQLIzreRNyScdd5EV00ZNQbJnzbuIcetKsqVCho07adFSQ0uX0qvNxjT6UP7uOd/kQLI93NdfH+hx/KAJNwXXPkfPDBhzLYCF16zTsrRs45/3xpanLT3HzTTVYU7DdggMx59jk7DzXXTSorRjT81iWXXW5DianIcsABZWXR4sXS27T799//RFaMJGtLxzHRXINznn3WrqxywsIl46HXwp1mRdKppr9uEcjhwqN3CSCMeNc29AwCEICArwggjPjKXHQWAhDIAgGEkSxADUmVCCMhMTTDhAAEYhLwuzCig9IQVaNN4nR1ev/yyy9y5hk1ZKhx1DsrP/SYaGFEt72zYoV07tLVhkNSJ2zZsmVtTo3jjjtOd8cURnR7svZScVprzonWxnm+4t0VZmXL7nbVR68ePfKECUvWP3V09+3fX7aY1SK//fablDJJr+8eNFAqVaqk3YxZNAH25MemWFZPT5smlStXkh9++MH2RUMolShRwq606WgFo/9Cgbkr+8Ik69YQWJpfRIWRk048wSSSv1J69e5thJEWdhWL+3hHmGjSuJEMGDhIdjdtaG6UuibcWNfOnSOHxuKmO5PxTsbSaX/+vLm2rWTcknGPdPjfJ5prpW+//mY1xmwpUbKkscdmKzR06dTJ5pBJhVf02JP1Ifp47Uq0MKLiVSczv1Vc2nPPPY1di5v5PVxuvuXWSA4RFcE6de4iZfYsY66D76VZ09ttvhGdI088PkWOOeYY0RwjiUJpadtr166VZkYUW7nyY3vdHWxWPjW9vYmZnwMiwkiytqoff7zoCqCGZhXU+vUb5PxzzxVH5EvEQ1dLnX7GmXLO2WfnyQek/aJ4mwDCiLftQ+8gAAEI+IYAwohvTEVHIQCBLBFAGMkS2BBUizASAiMzRAhAIC4BPwkjcQfx7w69s3zvvfeWPYxAUJCieSK0xMuhEK+uwrbnrk9XuPz444+ijuR4JVn/NDzU77//Lvvuu2+8KlLarqsDtC8HVaiQ0vHfrV4txYsVs4JSohPcwoQKOKvXrLGrRmKtvkhUTzLeqbB015+MWzLu7rr0uYpEykT5xRpbqrzc9Ra0D+5znedq100/bZLy5cs5m/I8ar+V7f777RfJM5LngAK8UJFNV3C4RUn36em2FY+HimOlzXVfzMxHin8IIIz4x1b0FAIQgICnCSCMeNo8dA4CEMgBAYSRHEAOaBMIIwE1LMOCAARSIhAkYSSlAXNQzgm4hZGcN06DEICAZwkgjHjWNHQMAhCAgL8IIIz4y170FgIQyDwBhJHMMw1LjQgjYbE044QABGIRQBiJRYVtmSSwdNkyGWNCnWloJgoEIAABhwDCiEOCRwhAAAIQSIsAwkha+DgZAhAIAAGEkQAYsYiGgDBSROBpFgIQ8AQBhBFPmIFOQAACEAgdAUsMtDQAAEAASURBVISR0JmcAUMAAhDIDgGEkexwpVYIQMA/BBBG/GMrr/UUYcRrFqE/EIBALgkgjOSSNm1BAAIQgIBDAGHEIcEjBCAAAQikRQBhJC18nAwBCASAAMJIAIxYRENAGCki8DQLAQh4ggDCiCfMQCcgAAEIhI4AwkjoTM6AIQABCGSHAMJIdrhSKwQg4B8CCCP+sZXXeoow4jWL0B8IQCCXBBBGckmbtiAAAQhAwCGAMOKQ4BECEIAABNIigDCSFj5OhgAEAkAAYSQARiyiISCMFBF4moUABDxBAGHEE2agExCAAARCRwBhJHQmZ8AQgAAEskMAYSQ7XKkVAhDwDwGEEf/Yyms9RRjxmkXoDwQgkEsCCCO5pE1bEIAABCDgEEAYcUjwCAEIQAACaRFAGEkLHydDAAIBIIAwEgAjFtEQEEaKCDzNQgACniCAMOIJM9AJCEAAAqEjgDASOpMzYAhAAALZIYAwkh2u1AoBCPiHAMKIf2zltZ4ijHjNIvQHAhDIJQGEkVzSpi0IQAACEHAIIIw4JHiEAAQgAIG0CCCMpIWPkyEAgQAQcAsjUyY/KqedemoARsUQckEAYSQXlGkDAhDwKgGEEa9ahn5BAAIQCDYBhJFg25fRQQACEMgZAYSRnKGmIQhAwKMEEEY8ahgfdAthxAdGoosQgEDWCCCMZA0tFUMAAhCAQAICCCMJ4LALAhCAAARSJ8APmtRZcSQEIBBMAggjwbRrLkbF3MkFZdqAAAS8SsB9g5WuttRVlxQIQAACEIBAtgkgjGSbMPVDAAIQCBEB7ngNkbEZKgQgkIeAWxzWHZ9/8nGe/byAQCICbqdg65YtpXWrlokOZx8EIACBQBFAHA6UORkMBCAAAd8QQBjxjanoKAQgAAHvE3D/qMGx43170UMIQCBzBNzvf9ztmjmuYanJLYzomBHWwmJ5xgkBCETfWECOLuYEBCAAAQjkigDCSK5I0w4EIACBEBDAsRMCIzNECEAgHwGcOvmQsKEQBNyrLrm5oBAAOQUCEPAlAW4s8KXZ6DQEIACBQBBAGAmEGRkEBCAAAe8QwLHjHVvQEwhAIDcEcOrkhnPQW4m+uYC7poNuccYHAQjwvsccgAAEIACBoiSAMFKU9GkbAhCAQAAJRP/A4a7XABqZIUEAAhEC0e95OLMjaHhSCALumwv0dOZTISByCgQg4AsC0Z+fhKH0hdnoJAQgAIFAEUAYCZQ5GQwEIAABbxCI/qGDOOINu9ALCEAgswSi3+vamITZrUzibAoECksgOiyb1oM4UlianAcBCHiVQPTnp/aT9zqvWot+QQACEAguAYSR4NqWkUEAAhAoUgLRP3j0LrDWxmmojxQIQAACfiag729aRo/d8ajPEUWUAiUTBGKJI9xgkAmy1AEBCHiBQPRvBO0ToogXLEMfIAABCISPAMJI+GzOiCEAAQjkjECsHz6OQKKdQCTJmSloCAIQSJOAOqtff93810fz310QRdw0eJ4JArHEEa3X+Qzl8zMTlKkDAhDIFYFYNxQ4bSOKOCR4hAAEIACBXBNAGMk1cdqDAAQgEDICscSRkCFguBCAQIAJIIoE2LhFPDQVR/QzNFqIK+Ju0TwEIACBjBFAFMkYSiqCAAQgAIFCEEAYKQQ0ToEABCAAgYIRwLlTMF4cDQEIeJ8Agoj3bRSUHvIZGhRLMg4IQEAJ6OenFnJyWQz8gQAEIACBIiSAMFKE8GkaAhCAQNgIqHPnDfP/NROORgt3wYZtBjBeCPibAM4cf9vP7713BBIdB5+ffrcm/YdAuAho+L/TT9uRZxBBJFy2Z7QQgAAEvEwAYcTL1qFvEIAABCAAAQikTGDCxIkyfuIke3zD+vWkQf36KZ/LgRCAAAQgAIEwE/i/c8+LDH/xwgWR5zyBAAQgAAEIQAACQSWAMBJUyzIuCEAAAhCAQMgIIIyEzOAMFwIQgAAEMkYAYSRjKKkIAhCAAAQgAAGfEEAY8Ymh6CYEIAABCEAAAokJIIwk5sNeCEAAAhCAQDwCCCPxyLAdAhCAAAQgAIGgEkAYCaplGRcEIAABCEAgZAQQRkJmcIYLAQhAAAIZI4AwkjGUVAQBCEAAAhCAgE8IIIz4xFB0EwIQgAAEIACBxAQQRhLzYS8EIAABCEAgHgGEkXhk2A4BCEAAAhCAQFAJIIwE1bKMCwIQgAAEIBAyAggjITM4w4UABCAAgYwRQBjJGEoqggAEIAABCEDAJwQQRnxiKLoJAQhAAAIQgEBiAggjifmwFwIQgAAEIBCPAMJIPDJshwAEIAABCEAgqAQQRoJqWcYFAQhAAAIQCBkBhJGQGZzhQgACEIBAxgggjGQMJRVBAAIQgAAEIOATAggjPjEU3YQABCAAAQhAIDEBhJHEfNgLAQhAAAIQiEcAYSQeGbZDAAIQgAAEIBBUAggjQbUs44IABCAAAQiEjADCSMgMznAhAAEIQCBjBBBGMoaSiiAAAQhAAAIQ8AkBhBGfGIpuQgACEIAABCCQmADCSGI+7IUABCAAAQjEI4AwEo8M2yEAAQhAAAIQCCoBhJGgWpZxQQACEIAABEJGAGEkZAZnuBCAAAQgkDECCCMZQ0lFEIAABCAAAQj4hADCiE8MRTchAAEIQAACEEhMAGEkMR/2QgACEIAABOIRQBiJR4btEIAABCAAAQgElQDCSFAty7ggAAEIQAACISOAMBIygzNcCEAAAhDIGAGEkYyhpCIIQAACEIAABHxCAGHEJ4aimxCAAAQgAAEIJCaAMJKYD3shAAEIQAAC8QggjMQjw3YIQAACEIAABIJKAGEkqJZlXBCAAAQgAIGQEUAYCZnBGS4EIAABCGSMAMJIxlBSEQQgAAEIQAACPiGAMOITQ9FNCEAAAhCAAAQSE0AYScyHvRCAAAQgAIF4BBBG4pFhOwQgAAEIQAACQSWAMBJUyzIuCEAAAhCAQMgIIIyEzOAMFwIQgAAEMkYAYSRjKKkIAhCAAAQgAAGfEEAY8Ymh6CYEIAABCEAAAokJIIwk5sNeCEAAAhCAQDwCCCPxyLAdAhCAAAQgAIGgEkAYCaplGRcEIAABCEAgZAQQRkJmcIYLAQhAAAIZI4AwkjGUVAQBCEAAAhCAgE8IIIz4xFB0EwIQgAAEIACBxAQQRhLzYS8EIAABCEAgHgGEkXhk2A4BCEAAAhCAQFAJIIwE1bKMCwIQgAAEIBAyAggjITM4w4UABCAAgYwRQBjJGEoqggAEIAABCEDAJwQQRnxiKLoJAQhAAAIQgEBiAggjifmwFwIQgAAEIBCPAMJIPDJshwAEIAABCEAgqAQQRoJqWcYFAQhAAAIQCBkBhJGQGZzhQgACEIBAxgggjGQMJRVBAAIQgAAEIOATAggjPjEU3YQABCAAAQhAIDEBhJHEfNgLAQhAAAIQiEcAYSQeGbZDAAIQgAAEIBBUAggjQbUs44IABCAAAQiEjADCSMgMznAhAAEIQCBjBBBGMoaSiiAAAQhAAAIQ8AkBhBGfGIpuQgACEIAABCCQmADCSGI+7IUABCAAAQjEI4AwEo8M2yEAAQhAAAIQCCoBhJGgWpZxQQACEIAABEJGAGEkZAZnuBCAAAQgkDECCCMZQ0lFEIAABCAAAQj4hADCiE8MRTchAAEIQAACEEhMAGEkMR/2QgACEIAABOIRQBiJR4btEIAABCAAAQgElQDCSFAty7ggAAEIQAACISOAMBIygzNcCEAAAhDIGAGEkYyhpCIIQAACEIAABHxCAGHEJ4aimxCAAAQgAAEIJCaAMJKYD3shAAEIQAAC8QggjMQjw3YIQAACEIAABIJKAGEkqJZlXBCAAAQgAIGQEUAYCZnBGS4EIAABCGSMAMJIxlBSEQQgAAEIQAACPiGAMOITQ9FNCEAAAhCAAAQSE0AYScyHvRCAAAQgAIF4BBBG4pFhOwQgAAEIQAACQSWAMBJUyzIuCEAAAhCAQMgItG7bTt5ZscKOumH9etKgfv2QEWC4EIAABCAAgcIRQBgpHDfOggAEIAABCEDAvwQQRvxrO3oOAQhAAAIQgMC/BNyrRRwoo0eOkBOqV3de8ggBCEAAAhCAQBwCCCNxwLAZAhCAAAQgAIHAEkAYCaxpGRgEIOAlAnoX+4p/72T3Ur/oCwSCQOCdFe9GVopEj0eFkROqHx+9mdcQgEAGCFS31xfiYwZQUgUEipwAwkiRm4AOQAACEIAABCCQYwIIIzkGTnMQgEC4CMS6iz1cBBgtBCAAAQgEmYCKjw1M6DpWZwXZyowtDAQQRsJgZcYIAQhAAAIQgICbAMKImwbPIQABCGSQAKJIBmFSFQQKSECdtE6+kQKeyuEQgEAhCJDXpxDQOAUCHiKAMOIhY9AVCEAAAhCAAARyQgBhJCeYaQQCEAgjAfcPTB2/Oo0oEIBAdghoonV38nXNL+IUwtg5JHiEQOYIxApht3jhgsw1QE0QgEBOCbi/t3It5xQ9jUEAAhCAAAQgUEQEEEaKCDzNQgACwSagd6qrk1aL3rnudtIGe+SMDgJFRyBaGCG0T9HZgpbDQ8DtTGXVSHjszkiDR8B9LSOMBM++jAgCEIAABCAAgfwEEEbyM2ELBCAAgbQJ4KBNGyEVQKDABLjuCoyMEyCQNgF32EiEkbRxUgEEiowAwkiRoadhCEAAAhCAAASKiADCSBGBp1kIQCDYBHDQBtu+jM6bBLjuvGkXehVsAm5hhBWSwbY1ows2AYSRYNuX0UEAAhCAAAQgkJ8Awkh+JmyBAAQgkDYBHLRpI6QCCBSYANddgZFxAgTSJkDoyLQRUgEEPEEAYcQTZqATEIAABCAAAQjkkADCSA5h0xQEIBAeAjhow2NrRuodAlx33rEFPQkPAYSR8NiakQabAMJIsO3L6CAAAQhAAAIQyE8AYSQ/E7ZAAAIQSJsADtq0EVIBBApMgOuuwMg4AQJpE0AYSRshFUDAEwQQRjxhBjoBAQhAAAIQgEAOCSCM5BA2TUEAAuEhgIM2PLZmpN4hwHXnHVvQk/AQQBgJj60ZabAJIIwE276MDgIQgAAEIACB/AQQRvIzYQsEIACBtAngoE0bIRVAoMAEuO4KjIwTIJA2AYSRtBFSAQQ8QQBhxBNmoBMQgAAEIAABCOSQAMJIDmHTFAQgEB4COGjDY2tG6h0CXHfesQU9CQ8BhJHw2JqRBpsAwkiw7cvoIAABCEAAAhDITwBhJD8TtkAAAhBImwAO2rQRUgEECkyA667AyDgBAmkTQBhJGyEVQMATBBBGPGEGOgEBCEAAAhCAQA4JIIzkEDZNQQAC4SGAgzY8tmak3iHAdecdW9CT8BBAGAmPrRlpsAkgjATbvowOAhCAAAQgAIH8BBBG8jNhCwQgAIG0CeCgTRshFUCgwAS47gqMjBMgkDYBhJG0EVIBBDxBAGHEE2agExCAAAQgAAEI5JAAwkgOYdMUBCAQHgI4aMNja0bqHQJcd96xBT0JDwGEkfDYmpEGmwDCSLDty+ggAAEIQAACEMhPAGEkPxO2QAACEEibAA7atBFSAQQKTIDrrsDIOAECaRNAGEkbIRVAwBMEEEY8YQY6AQEIQAACEIBADgkgjOQQNk1BAALhIYCDNjy2ZqTeIcB15x1b0JPwEEAYCY+tGWmwCSCMBNu+jA4CEIAABCAAgfwEEEbyM2ELBCAAgbQJ4KBNGyEVQKDABLjuCoyMEyCQNgGEkbQRUgEEPEEAYcQTZqATEIAABCAAAQjkkADCSA5h0xQEIBAeAjhow2NrRuodAlx33rEFPQkPAYSR8NiakQabAMJIsO3L6CAAAQhAAAIQyE8AYSQ/E7ZAAAIQSJsADtq0EVIBBApMgOuuwMg4AQJpE0AYSRshFUDAEwQQRjxhBjoBAQhAAAIQgEAOCSCM5BA2TUEAAuEhgIM2PLZmpN4hwHXnHVvQk/AQQBgJj60ZabAJIIwE276MDgIQgAAEIACB/AQQRvIzYQsEIACBtAngoE0bIRVAoMAEuO4KjIwTIJA2AYSRtBFSAQQ8QQBhxBNmoBMQgAAEIAABCOSQAMJIDmHTFAQgEB4COGjDY2tG6h0CXHfesQU9CQ8BhJHw2JqRBpsAwkiw7cvoIAABCEAAAhDITwBhJD8TtkAAAhBImwAO2rQRUgEECkyA667AyDgBAmkTQBhJGyEVQMATBBBGPGEGOgEBCEAAAhCAQA4JIIzkEDZNQQAC4SGAgzY8tmak3iHAdecdW9CT8BBAGAmPrRlpsAkgjATbvowOAhCAAAQgAIH8BBBG8jNhCwQgAIG0CeCgTRshFUCgwAS47gqMjBMgkDYBhJG0EVIBBDxBAGHEE2agExCAAAQgAAEI5JAAwkgOYdMUBCAQHgI4aMNja0bqHQJcd96xBT0JLgEVQk6oXj0ywGTCSPTxkRN5AgEIeIoAwoinzEFnIAABCEAAAhDIAQGEkRxApgkIQCC4BByHUMP69aRB/fqRgcZz0MY7PnIiTyAAgaQE4l1H8a47rVD3aRk9coR95A8EIFBwAs41pteRI44416PWptvc19iEiRNl/MRJdptzfMFb5QwIQCAXBBBGckGZNiAAAQhAAAIQ8BIBhBEvWYO+QAACviLgdgZpx93iiOM80u2OAynR8XocBQIQSE4g0XUU67rTGt3box23yVvkCAhAQAm4ryN9HeuzzX19OaKIHqtl8cIFO57wFwIQ8CQBhBFPmoVOQQACEIAABCCQRQIII1mES9UQgEDwCUQ7fhxxxO1Acu6e1W3u4jiV3Nt4DgEIJCeQ6nWnTlr3tag1O9do8lY4AgIQcBOIvu50X/TnmyOMRB/LdecmyXMIeJMAwog37UKvIAABCEAAAhDIHgGEkeyxpWYIQCAkBGI5gN5Z8a7one1a1CGkoUTcBVHETYPnECg4gWTXnV5jE8x151yH2gLO2YJz5gwIuAlEX3e6z/0Zp8LICdWPz/OZx3XnJshzCHiXAMKId21DzyAAAQhAAAIQyA4BhJHscKVWCEAgZARiOYviIUAUiUeG7RAoGIGCXHc4ZwvGlqMhEI8A1108MmyHgL8JIIz42370HgIQgAAEIACBghNAGCk4M86AAAQgEJNAKs4iRJGY6NgIgUITSOW6QxQpNF5OhEBMAlx3MbGwEQK+JoAw4mvz0XkIQAACEIAABApBAGGkENA4BQIQgEA8AomcRYgi8aixHQLpEUh03SGKpMeWsyEQjwDXXTwybIeAPwkgjPjTbvQaAhCAAAQgAIHCE0AYKTw7zoQABCAQk0AsZxGiSExUbIRAxgjEuu4QRTKGl4ogEJMA111MLGyEgC8JIIz40mx0GgIQgAAEIACBNAggjKQBj1MhAAEIxCPgdhYhisSjxHYIZJaA+7pDFMksW2qDQDwCXHfxyLAdAv4igDDiL3vRWwhAAAIQgAAE0ieAMJI+Q2qAAAQgEJOAOouqV68uJ5j/FAhAIDcE9LrT0qB+ffvIHwhAIPsEuO6yz5gWIJBtAggj2SZM/RCAAAQgAAEIeI0AwojXLEJ/IOBRAsvefFeWvbnC9u5V81z/UyCQKQI1Tjle9P8Zp+wQkc4wzylirjmuO+ZB9ghw3cVnO/S+SXYnn3fxGbGncAT0utPSoXk9+8jnncXAHw8QQBjxgBHoAgQgAAEIQAACOSWAMJJT3DQGAf8RUOfQ8Pse9V/H6bGvCajjSJ1GYXUYcd35evr6tvNcdzvEED7zfDuFfdlxt0AZ1s88XxougJ1GGAmgURkSBCAAAQhAAAIJCSCMJMTDTgiEk4BzlzrOoXDa30ujdhxGHf+9s9ZLfctGXxBEskGVOgtDoH3z24TrrjDkOAcChScQdnGy8OQ4MxMEEEYyQZE6IAABCEAAAhDwEwGEET9Zi75CIAcEEjlm1VGmRcMdcVdjDowRkiZUiNOiodriha0JurOI6y4kk91Dw+S62xGqbphZFRkrNKQjyqrJwiIQeWh6Brorzs0nzrxzHt2DDpMw6R43z4uWAMJI0fKndQhAAAIQgAAEck8AYST3zGkRAp4koD/UYzmIHDEEx5AnzRbITjlOo1grloLoLIolinDdBXJqe35QOhdjiZNhue7UQEEcq+cnXsg7GO/7V9BvCAi52T05fIQRT5qFTkEAAhCAAAQgkEUCCCNZhEvVEPALAf1Rfm2D9nm6i3MoDw5eFBGBeKJBEIS6WNcdjrAimmg0m4dArOtO5+ZTE4bnOc6vL2KNj888v1ozOP2OJ5BMN9cdq3SDY2cvjwRhxMvWoW8QgAAEIAABCGSDAMJINqhSJwR8RCCWcxYHkY8MGIKuxnIW+d1Jy3UXgonr8yEG8bpTk0SLInze+XyiBrD70XNUh4g4EkBDe3BICCMeNApdggAEIAABCEAgqwQQRrKKl8oh4G0CsZyz/Pj2ts3C3LtoZ5FfHZpcd2Gexf4be/R152dRMnosfn0P8d8soscFJcDnREGJcXwmCCCMZIIidUAAAhCAAAQg4CcCCCN+shZ9hUCGCZSvckGeGhFF8uDghQcJBMGxeY0JW+dOtst158GJRpfyEAjCdReEMeQxCi8CTyBaHPGzKBl4YwVkgAgjATEkw4AABCAAAQhAIGUCCCMpo+JACASLAM7ZYNkzTKOJdnCu+eAl3ww/uu+IIr4xXeg76ue5G+1gZqVI6KezbwAwd31jqkB0FGEkEGZkEBCAAAQgAAEIFIAAwkgBYHEoBIJCIPqHNs7ZoFg2PONwC3t+cXJGX3d+6Xd4ZhUjTUYgWhzxiyjpfr/grvtkVma/1whEX3d8dnjNQsHpD8JIcGzJSCAAAQhAAAIQSI0AwkhqnDgKAoEi4A6hxQ/sQJk2NIPxo8iAczY00zPQA/Xb50e0U5kbAQI9PQM7uOh57BdRMrAGCejAEEYCaliGBQEIQAACEIBAXAIII3HRsAMCwSTgdihz52wwbRyWUfnJUeS+7tQ+OLXCMkuDN04/XXdK3y1IciNA8OZjmEbkN1EyTLYJylgRRoJiScYBAQhAAAIQgECqBBBGUiXFcRAICAGcRAExJMOwBPziKHJfdwiSTF6/E/DLdecWJLnu/D7r6L9blETkYz5kgwDCSDaoUicEIAABCEAAAl4mgDDiZevQNwhkmIDbSaRVc9d6hgFTXc4J+MFRFH3dEcon59OEBjNMwA/XnQ7ZLUjiSM7wJKC6IiHgFiX5DlckJgh0owgjgTYvg4MABCAAAQhAIAYBhJEYUNgEgaAScDuJuHs2qFYO37i87ihyCyNcd+Gbn0EdsZ+uO7UBTuSgzsRwjcsvomS4rBKc0SKMBMeWjAQCEIAABCAAgdQIIIykxomjIBAIAm5hhLvWA2FSBmEIeH1ee71/TCIIFIaA1x20CJKFsSrneJ2A1687r/Ojf4kJIIwk5sNeCEAAAhCAAASCRwBhJHg2ZUQQiEvA63f4xu04OyCQgIDXHUUIIwmMxy7fEvD6def1/vnW8HS8SAm4BT/tCCuhitQcgWscYSRwJmVAEIAABCAAAQgkIYAwkgQQuyEQFALuH9OE8wmKVRmHEvC6AxRBknkaRALu686LnykIkkGcdYxJCfCZwjzIFgGEkWyRpV4IQAACEIAABLxKAGHEq5ahXxDIMAGEkQwDpTrPEPDy3PZy3zxjQDriWwJedtC6+0boSN9OMToegwCiXwwobMoIAYSRjGCkEghAAAIQgAAEfEQAYcRHxqKrEEiHgPvu3vbNb5OOzeulUx3nQsBTBNxOUC+FFkEY8dQ0oTMZJuDV606H6eW+ZdgMVBcyAggjITN4DoeLMJJD2DQFAQhAAAIQgIAnCCCMeMIMdAIC2SeAMJJ9xrRQdAS86gRFGCm6OUHL2Sfg1etOR+7lvmXfMrQQZAJ8nwuydYt2bAgjRcuf1iEAAQhAAAIQyD0BhJHcM6dFCBQJAX5IFwl2Gs0RAa86Qd3XnRfzMOTIPDQTUAJeve4Ut5f7FtDpwLByRMD9ucIK4BxBD0kzCCMhMTTDhAAEIAABCEAgQgBhJIKCJxAINgF+SAfbvmEfnVedoO7rDmEk7LM0eOP36nWnpL3ct+DNBEaUSwLuzxWEkVySD35bCCPBtzEjhAAEIAABCEAgLwGEkbw8eAWBwBLw+g/pzVu3yVdfrykQ/5132Un233cvKbvfvgU6zwsH/7J5i6zf+KMUL1ZMyu6/j5TYfTcvdMu3ffCqE9R93YVFGPl2zXr58JMvzP/PZa8ye0jV446WShWPlNIlS/h2ftHx2AS8et1pb73ct9g02QqB1Ai4P1cQRlJjxlGpEUAYSY0TR0EAAhCAAAQgEBwCCCPBsSUjgUBCAl7/IT3/lVelXoseCccQvbNUqZLS5LZrpHOL+rLxh59k5EOPyfbtv0urxjfJYQeXjz7cU69nv/CKDL9/shxq+tmxeT2pcuyRnuqf3zrjVSeo+7oLujCy6ts10rB1L/nks1X5ps9OO+0k19W8WO7q2VZ23614vv3Ohg0bf5Cvvlsr++27txxxSAVnc8YfU2ln3frvpc/QB6RUid2lT5fmsod5v6HkJeDV60576eW+af+++Po72bZ1uz7NW3YSKWnm3EHlD5DdihfLu49XEDAE3J8rCCNMiUwSQBjJJE3qggAEIAABCEDADwQQRvxgJfoIgQwQ8PoP6dff/kD6GSeku/zzzz9mVcUPog7KPcuUlsMPPci92zqPal1+ntS54kKZNW+BtOs+RMrsUVrq3XS1dGvdKM+xXnuBMJJZi3jVCeq+7oIsjCx5/R1p1La3bN681QoJp59SXc4+4yT5888/ZeWnX8q8l5fJ5i1bpVqVijJxVD858ID9Yk6A8VNnSo+BY6yIMmpgl5jHZGJjKu3cPWaCjHrwMdvcsP4d5abal2Wi6UDV4dXrTiF7uW/62XZF3Vay4r2VcefDLrvsIhXKlZVTTqwibZrUlaMOPzjusez4j8DzLy2Rp+a8JBecfapcdfG5UrpU8FaquT9XEEb+sz3P0ieAMJI+Q2qAAAQgAAEIQMBfBBBG/GUveguBQhPw4w/pP/74U+6d8IQMv2+yXHRuDRk3sk/M8f/511+y/N2VckPjjkZA2UN6drhdrr3qopjHemUjwkhmLeFVJ6j7uguyMFLrtrbyxtvvy/W1LpF7erezIeLcFtbVJA1a9ZJPP19lHJany+T7Brp3R56nIlhEDk7jSSrtPPfiYmncto/sssvOMnvKWKluRB1KXgJeve60l17u2z+mf137jZRPv/hafjZhFT824uGuu+4qFY8+XFQ02b59u6xeu0F+++13C3yPPUpJo1tqS8dm9WTnnXe22/iTn8Cv23+TOvXbyXsffmpXnc18dKQcnsWVZ/l7kJst7s8VhJHcMA9LKwgjYbE044QABCAAAQhAwCGAMOKQ4BECASfgxx/SqQojarq//v5bfvrpF9m8dasvHCEII5m94LzqBHVfd0EVRjRfTpWz6sg/5t/Hr822K0ZiWXfRa8vlxsadRcNqvbtwmnVcRh+XimARfU5hXqfajgo6JYoXj7vCpTBtB+kcr153ytjLfXPmgIogy958V65r2EH2328fe104+1Tw/+zLb2T0w1Nk9txXzGrIUiakWzO5/upLnEN4jEGgacf+8sKCZXJiteNkzOBuUv7A/WMc5e9N7s8VhBF/29JrvUcY8ZpF6A8EIAABCEAAAtkmgDCSbcLUDwGPEPDjD+mCCCMewSzqzNKyqwmDkqgURBhR55nWu4u5U7igdwv/9vsfUmzXXQp03t9GZPrdrNZJlAsi0diKYp9XnaDu6y6owsgb73wgtW5tI3vvVUY+XDIjrvn1bu7jzqglv//+uzzz2Gg5pXrlfMemKlhEn/jXX39bYSbZdeecV9h2nPPjPf7+xx/5VsvEOzYI27163SlbL/fNsX0iYcQ5Ztuv2+WBR6fJ8LGT5AgTTmv6+GFS1ogolNgE/jDh+z5f9Y0cUqG8lCq5e+yDfL7V/bmCMOJzY3qs+wgjHjMI3YEABCAAAQhAIOsEEEayjpgGIOANAn78IV0QYUSTrw8a+bC9G739HbfZxLVKfsvWX+XFRa/KXJPj4MJzTpMzTe6DqTPnyqtvvGsTtp9Y9Vi59IKz5Pz/O9We++VX38mM51+W1956T37a9ItUq3SMXHnJOXLBWafEFRe++W6dPPXsfHnm+YXy1derpUSJ3aTKcUfJmaedIJecd6YcZ8KjRJdkwoiKE4tee1smT3tW3lj+nvz8y2YzpgPl5OqV5EITVuzs006UvfbcI7pa+/ojE5ZlwuMzZcGyt2SDyc+iYko5c9dsrSvOl3rXXyUH7L+vHav7ZHW+TXnqWXni6bnypRnDb7/9Zh3dGt++ZaOb7N23O5s7/b1avOoEdV93QRVGtv36m1Q6c4fgMf+ph6RyxSPjTpMal90qX5tVGI/eN0guPPs0+diE1how/KHI8d+uXi+fmfBCB5gcJJUrHhHZfsRhB0m/zi0ir/WJrlQZev8kWb5ipc1j8qcR8yqYhNUXnnuaCTlU3+Ylck4oTDtaf/MuA6VYseIyYVRfp6o8j5u3bpOnZr8gry3/QF43ocR++P4nqVjxcDmpaiWpedm5UuPk4/McH7QXXr3ulLOX++bMg1SEET12/Ybv5brGneSHHzdJ367N5dorvRsqMtWbAxwGRf2o/U1VUC3qvjrtuz9XEEYcKjxmggDCSCYoUgcEIAABCEAAAn4igDDiJ2vRVwikQcCPP6QLIox8u3qdXNeooxiPv0wc01+OPeowS2vTz5tlwpMz5aGJ06WGEUV+M3erLzWJokuXLimbf9kqenepJoJuWu86Oe3EqtLrrnvl/ZWf2cTuW4zTU/tQodwB0uz/2TsPOCeqJ46PKNWK9Q/YFRSxgBUEe6UoxQoqVaWK0qt0KQLSxUIVsSCIoCJWELEiggqCvaGooNLF/p95ujEX9u5yJLnbTb7Pj5dky9v3vrPvws1vZ6bJVdL42to7iCOrPv5cht/9gMx7fpEUK1ZU/nfg/i5X/HfqyNqixaYraTqPzm0ayzlnnprFejkJI+Ysm/roXLl70qMuz7w9iX+gihkbN22R9T/+JH/p0/GtbrxWbryunhywX8ks/b659H3p1HeEfPLZl2J56Y9TJ/UmLYj9qT5B+5tGj5xYoZzcfWdPTTdWOiKOWFTJTe37ysuvLhF78r7sUYe5J5LfXfGhK5htkSp3D+spNS48S4IqjgTVCRq97tJVGLEb8GpNkbVYU2UdenApuXtoTzHB0a99/e33/6w5vZ9LFC+mgsJ7Uq9RO79Ds2w76fhj5ZlHxkW2mfjXtG0v+WrNWrftqCMO1bX6e+TzAdr/SyrS7LfvPm7/zlxnvYqtJ55zpRM6P10yL3Jt742tx2tu7izv6TqxtrvOp5QWyzZx1YRNq00ypPdt0qBeTe+UtHsN6roz0EEem3cjxCuM2L3Wd9g98vRzi6R546ukfYsbXBf2QMDoCQ/pd8029x3mfe95/durXeM9/U4bOnayCvZlpVPrxi760PZ9qevn4dnP6AME2+TaOtWlpIrtM596Xua/+Kr89PNG/T7bTyqfdpIT+LNb09b/Ui0i/9ic55w4aGuysNZLKXvUodLgiur6vXG27KO1v2LbYyooPrfgdbns0nPluHJHysuvLZHnF74pP6z/yT1MYA8kVNVr77XnHvLpl2vk2QWvykuvLHHiUDn9jrrisgvdgw67l8haXH3O/IVi9YHOrnKK1Na+99i9ROylZZmuWXtg4jV9QOK9FR+5NV5Rf2fZgwdN69dx19zhpABtiP5eQRgJkGHSYCgII2lgRKYAAQhAAAIQgECeCCCM5AkXB0MgvATC+Id0MoWRoaOnqPOjmBZ+PkNub3+zi6BwT64/9qRMfvAJJ2pYVMXxxx6tQkYTFUPUwfnVNzLlkSfkoZnzxByzPdvflCX9jxXOHXHvg/Liy29IzYvPltZNr5WjNdWJtR/W/SRTte8HZzwlh6sI0VmdURZB4rXshBFzMj30+DMydsLD6ljdVdre3ECqn19N9lQhx5qlLRoyerK8894H0lrFkSbX1I44f23/Te37qXPpdbmi1gXOAWaijzVzcvUYOEadS69JfXVWdWrVSCNO9nL7nlInUqdew5xQMldTHB15+CFOALEnaZ9Wwaf97UP1cyFZ8sIj6uDaw50TtB9BdYJGr7t0FkbWfr9OGrW9XVas/NjdGsfpOqpxUVU5p8ppUrHCMU4k8LtnTJjcrJEZXpv++DwZNGKiOkvPk0E92nibndhoDlJrJjqcW6eZin9fSV29z9u3bChHHXaw2/f+B59IryHj5E0VXC6vfp7coyKNtZ25Tk7CiEWTXX1TZ1mpDucTVGwc2KOtnKSv9uT5lm2/aPTYi9Kt32iXAm/EHZ3kmtqXunGk24+grjvjHOSxefdBvMLIVr2n7ps2U8bc/7CLRBrRv7Pr4it9IOBmFbXtAYCRd3SWyqec6HUdebVrLNToweuad5WzVaB/cPzASITEitWfaMTW/S460kSMZe+vlhlPPOu+Ky2V4mYV1e174FgVLjq0aig1VRyPbtu1OPzseS/K6PsecpFgJTR1lUUkWqTmOhU4TFS//ppackuzBjvU+rhThZqJ02dLzYvOdg8AvL18pUvfaNGLVnS+qNb26d25uZx8UgXpr6LQkndWOrF/sz5wYCK/ja9Pl1ZSr+YFWcSPUVqT5d4pj8nVdS+RW2+6TsWef77nvHHb912XPne5Ods2E3OtT2NorI7XKNGp+nBFqX+/O73zgvQa/b2CMBIky4R/LAgj4bchM4AABCAAAQhAIG8EEEbyxoujIRBaAmH8QzqZwsiwMVPlBHV43D+itxyi6Xa89r46hrr1HyXvvPuBnHHqiTKiX0cVMsp4u+Vt3T5g+H2adusnJ1J4Dk6rlzBh+iwZNmaKc852a9tMDtJokehmzqGxkx6W+6bO1Kd5r3ROGosqsZadMPLuyo+knzqBrOjugO5tpMYFZ6lTOGu9Eoto6dxvpPyoTwuP0+iP0/QpV2sWDXNlkw6yTJ/efei+IVL19IpOXHE79cdn+tRtw9YaLXJYGbmr7z/Ffm2fPXE8Rh1btWucJ306tcziZLL9LToNkLeXrZTRg7tKFXW8WfHsoLWgOkGj1106CyN2P9iauHPcZJk19wWNbPo5covsoxFPl553ptS6+Bw5T1PS5XT/xFP746VX3pLrW3ZzxapfnfeA7BHzxPiLi96SG1p1UzFxd/nwjbmRcUS/iec6OQkj3QeOlikPzZHyGpE1S2s++KW1e/zpF6VNl4FS7ugjZOETE6Ivnzbvg7ruDHCQx+bdAPEKI7a2ZsyZrxGNd0u1yqfIdBU3rCVLGFmh3yn77VtS9lIBvs1NDeTcM09xtXIswmviQ7P14YCnpbyKI/bQQLUogX+BRhneOXaKfLv2B7m23qXS8KrLnABiQsP8ha+57z7b1+22Zho9UjMSqWJj94QRE19qqDjSvuUNLlLkyzXfyhSNmHz8yRe11pXVyNpNzql6qtxyY30pq5FhFpEy6ZE5uv8FJ5g+MO4OTXlZ1rp0LSdhZM78BdLjjjFOBLmtxfUqWF7iIkILFdrFRaXYvwVee2u5HFLmf/LS7AlS/N/va6/voLxGf68gjATFKukxDoSR9LAjs4AABCAAAQhAIH4CCCPxs+JICISaQBj/kE6mMDLmvoel+oXVZNzg7lnsaGk77n1gpkzSJ1dr6xPmIwf88ySud9D3P/zoCt8+Onu+NL2+ntYuaOh2WSofS6G1Sl/NwXL15Rd7p2R5fV6jSYaOmyLHHHW4c/wc8a/okp0wMnH643L35BnO+XTrzdfJkf8+CZ+lU/3QWdNlzZ73kowZ1FVrp1SOPAHcTqM75moqEXNS3aZPyx4QU6TXnvAtWqRwFuf0oteXSouO/Z2T6cmHxsihWssk2nlt5wS9EHtQnaDR6y7dhRHvHrV0bHZPWTqbxZq2ziKzvHaJ1vOxezZWzPD2xyNY2LHmsP35Z60BVOE/h6jXh12/wll1ZZOmH1r20gwVLPfzdkVe47lOdsKIRayU15oq5tCdMm6AXHxOlUi/0W/suEoXXCvb1En8zGP3yNEaiZVuLajrzjgHeWzefZA3YeRZl+qxWuWTVRgZ5LpIljCySCNKTjnpOOnVqUWWqEi7yFffrHWRKvZd1qbZNXLj9Ve4a9v3wvgpj8rIex6UerUulC63NHGpJN1O/bF9+28ycPQEmTz9CbnxhnrSRiMqvdR2downjJQ98jC5vcPNLpWld+6atd9Lu55DXdrLE48/Rgb3vFUq6qvX1mktn8YaoWYPAUwa00/Or3a6E3Jsf3bCiEVNXnpNK41O+V56drhJU2PW2UH4MAHqiqYd5F2NnLl7aA+5/JJzs3wXetcv6Nfo7xWEkYK2RnpdH2EkvezJbCAAAQhAAAIQyJ0AwkjujDgCAmlBIIx/SCdTGLl38ky5RsWCvhoREd3MWTLl0Tly/wOzpMGVNV2ardj9Ex56XCZpuq0m19WRLvrErLXXlrwrg0ZNFEshdKbmQbc6JH7Nao28rseWOugA6aS1RuxYa9kJI3doAfmpD8/VdB5lNTXPMdkKEm+9s0LeXbFabrmpvjS8+nJXKN36tZQptw8a6+ocHKyRMRdowXlzeFn9lFIa0WLpuWKbObga33K7e1LWolPOUsfbOfrEcKUTyssJWkR+N31iN+gtqE7Q6HWXKcJI7L3yoaacm/PMAhk/+VGXIqec1v956fH7d6jXY+fFI1h4/VvKqtVa42f1x5/JJhUfotuoe6c74eKVp6dG0mxF74/nOtkJI999v15OvuAa193KxbMjay+6f++9pRMyZ3AhTSmUji2o685YB3ls3r0QFGFkuQoB119dS3q2u8kbWuTVBL6pM+ZKH41WaVi/tvTp2CLyPWJRilbfq3DhwnKYpqSKbY88MV+Fk+mudkc7fYDgqChx0BNG6mk6vNZNrhX7vopu3TX1o6X1urrOxU5UKf2/A6N368MBI2X20y+4BxOuv7KW7P1vmsfshBGrpdJ/2L1OKJ05cXgWkSa64+mznnZRpFbDZHjfjoFcu9HfKwgj0dbjfaIEEEYSJcj5EIAABCAAAQiEjQDCSNgsxnghsJMEwviHdDKFESu+Xv+KGtKrQ/MsBD1hZMK0x+W6q2pKj9uyOoZs//0axWFPvUYLIy9qOp/+w++Vjz75Ikt/2X04SmuP2BO1lk7IWnbCSNf+I+WhWfPkjz/+zK6rLNuvUzHn1ubXycFRwow5i0ff/5AWl33TFYC3EywCxGqHNLq2lqYPqR6pWeJ1ZilLxmhdk4e1vsl3362TvzTXurW9tID7edXOkF4db9Yi9QdI8JJo/TODoDpBo9ddugojU1VY/ELT29TUIsunqgiXXTOBpMa1LeWXX36Vpx4e51ugPR7Bwvp/dM6z0mPAaLF6BDm1VAgj72kdlUuvaSFlSh8oS557OKfLp/2+oK47Ax/ksXk3Rl6EkUdVZOgzZLycpaL1NE0fZS1ZESOff7VGo0GulRs0FZZfm/nk805wP/+sMzTdYosskYgmnKz/aYMTKb/4+htXY8frY+WqT+WVN96Rypqm0moBRReH94SRptfVlZuuqyf7ltzbO829Dhhxv0x/7Cm5seEVrpZW7H4rRv/wrGekZdOrpZE+HOCls8tOGLlj5ARNf/eEqwfWr0tr992W5YL/frAHBazGiSe0+B1T0Nuiv1cQRgraGul1fYSR9LIns4EABCAAAQhAIHcCCCO5M+IICKQFgTD+IR1kYeQVTRF0hzpurDVtUEcjK8rmeJ9Y+qoD9ivp6h7YgdkJI32GjZdpjz7pRJzal56v9T6K59hvyb33dE++Wh722LZJU/0se2+1LF3xgSx4ZYm8/8HHWrT2N7nkgqpyZ692bjyx55ijbqWmB7OaK6+99a4s1BzyVhx7L73O9HsGSyVNZxKdZiv2/IL6HFQnaPS6S1dhpFGbnvL8wtel4y2NpH3zf1LNZXcfNLm1tzz74mJpp/UEOrVuvMNh8QgjM+Y+J7d1HyIlihdzBZbP1poLFpEV3eo37yIbtEB6KoSRLzQ12JnVb3Cpe1ZrDZOgp5mL5pLs90FddzbPII/Ns0O8wsiWrdtknEZcWb0qi2Sw39/W4hFG/vrrb7FaIDdoXZ7siq9/v+5HF9FYQ1Pd+bVZGpnRa9A4jSQ8VXqrMGIF1q1ZKsqJGlH5wCNPykZNXZddq3XJOdkKI5Zm68YG9XaIvPKEkZsbX+mEj333ySqc2HflI7Pmxy2MdOg13BWK73xLY2l0Te0d0mhlN/Ygbo/+XkEYCaKFwjsmhJHw2o6RQwACEIAABCCwcwQQRnaOG2dBIHQEwviHdJCFkWWaesSKzloqLSsaa7nI89KyE0bGaCH0+zStV40Lz3JP8FoR2HibpTRZ/OY7cqCmzDqj0vE7FFF/R8d8c/u+YqmAnpg2SkWOY+XPv/506besVsqN+tTu7jGFrH//4w9pps5sK3htETdDbr81kKlFguoEjV536SqMeIXIL7v0PLl3WM8cb9dud4zWVHFz5Pqrasmdvf9x7kafEI8w4gkxbTVSqustTaNPd++3ahRJudNriTmdUyGMWPqgsqfVkj/+/NOto9N1rWXXrm/VXYoUKSIdWzWU47R4dbq1oK474xzksXn3QbzCyMZNm6WHChPPa0FzK0Lepll910U8wsj2X3+Vuc++7MTE7ISRdT/+LF3bNpWLtF6VX/MTRjapYD5aowzv1ZpYR2g0YvULq4qtBUsdt8u/sYUvLX7TRXVUPOHYAhdGeg8dL9NnPC31r6zuUmLusXsJv6mGYlv09wrCSChMFppBIoyExlQMFAIQgAAEIACBJBFAGEkSSLqBQNAJhPEP6SALI5Zi6+4pM2TCtFmagquWc7RY2qnYNnvei5rS6i259Pwz5QJNQ2JPuVvLThh5+bWlMnj0RPl54yYZ2L2tprE6bYcIDXt6uP/w+6RI0cLS5NracrgWdC+kqbKemL9ABo6YIPurY2rUHV2k7JGHxg5HvOLs3ds1k/p1a6jTtrBcdOXN8rGmOZo8ZoCcW/VUiY0+eVujR65s3F4OPaSULJg9UfPLB69eQlCdoNHrLl2FEUvZ1lAFgOLFi8r8GfdI2SN2vO/sRrQUNefVaeaKsffv3kaaNai7w/0ZjzBy+sUNZI0WX39x9gQpX/aIHfqY9dQLckvXf4pTp0IYsQs2bttLnnvpVVd02orJ+0VRPb/oDWnUqofsrmt+6UuPauqePXYYa9g3BHXdGdcgj82zezzCiB1jUUp1G7XTFIt/yCAVpy/7NyWjCfOd+42UDz78TPp3ay1+ER8/a+TUAzOelCGjJ2UbMbIzwsi7Kz+SoeOm6rU/lQ6tbpDrrqjpTSvyOkHTUI6+76EcU2nlV8TIvQ/MlBHjp8kxRx8uU7Rge8mYCBRv0C9rna7h4x9QVqe4CLhChYKXQDL6ewVhxLMcr8kggDCSDIr0AQEIQAACEIBAmAggjITJWowVAgkQCOMf0kEWRswUi15fKgM1b/lajcBodO3l0rR+nUie8z817/prby2Xu9QR894HH2kdkAZy8w1Xatqdos6K2Qkjv2z/VZ1NU+ShmfPkuGOOlM5al+TUihVkt3+LpltNhZH3Pej2W82PYX3bS0Ut0m7th3U/ScNbesoKTZnVvnVDaaqiyT577+X22Q97wteeYF+u6bUmju7nCqwX0aK59iStpe8qr0+0jx3cTQ47pLQTWrwT79YULoNHTpTztZD7xJF9ZdcAFpIOqhM0et2lqzBiNQZqNrhF3l2xWo5WMW7EgM5yyonlvdvHvf68YaN00mLJ855f5NLJLXn+IV+hYMojT0j3AWPk9JNPkFmT7/IV4W7tMUQem/Oc+EWMrFj1sVx7cxcx4dLaQ/fdKeeqgzO2xXOd7IqvW192nXoqFppIabWHBnRtk0Ucsais+i26yoda78f239HtltghpMXnoK47gxvksXnGj0cYsRRVvYaMk8dV8DtRf9fPmDA0Etm3YeNmuW/aTJn6yFxpdn1dad9ix1R276/6RG7V1HOrP/4sqcLIS4uXOLGl5D57ahquJjuseRubifzT9bus+oXVCjxi5OPPvpKrbuwoG3Vc0+4eKJVPOVF2221XzxSR1zoNb5O3l62QVhqZ01W/fwsF8Psu+nsFYSRiOt4kgQDCSBIg0gUEIAABCEAAAqEigDASKnMxWAjsPIEw/iEddGHEnFovae2OQer8+UgdoEcecbBLJbLLLoVk2furtDD7l/K3/nfV5RdL25sayKEHl4oYMDthxA4wZ+uQsZNlxuxn1Smzi1gaEnvK9Ztvf5A333lfftRCtwfsv68M0KfuLzy7cpYaB0+p47n/sHvF0mqdUqmCVNGitwfqsStXfyqL31gm3/2wTk5RoWX8kB5S6n//1GWwNC0NW/fUeiSrZG+tJVJDnVjlyx0h36pz97W33nMOb4tIefCeQVLtjEpZHMCRCRXwm6A6QaPXXboKI2Z6E+yad+gvL2qUhDW7Zy1iqYSmZvv6m7Xy1tvvu6LMlhpuytgBvpEedt5H6rw89/Im9lbK6T3vRVkM7dNejjnqMLfdijnf0LK7/Pb7706IOe+s08TqD6zQQs/zX3xFqpxWUY4pe5hMnDZb9tQorhOPK+ccodG1QOK5Tk7CiA1kmQpB197UWWvwbJV99tlLn4o/SY46/GCNiFkrC5SDpfS6VFPijVOxsXixfwRRN4E0+hHUdWeIgzw27xbIThixe9t+h7+rovq4iY/KKo3KsBRV44Z0l7Or/Cf0/frb7/od9KZLd3jEYQfL8H4d1eF/guveaot88vnXMmTMJF0Xi11quWSm0lr9yecy/O4H9LtutbRrcb3Ur1cjIqjb7wOLUrlXa6J8/8N6qVb5ZFfD5DT97vGaV3w9vyJG7Lq97rxbC7o/7b4zJ+nDAaecdFzkoQPbP+2xJ+X2gePsrbw6b6qUKXWQex+0H9HfKwgjQbNOuMeDMBJu+zF6CEAAAhCAAATyTgBhJO/MOAMCoSQQxj+kgy6M2I3wl4ojry1ZLqPunS5L9CnT39RRZc1S65jw0KRBbWmgKatKquM0uuUkjNhxVjh90sOzZdqMp1xNEHOgWbPUV6dpHneLJKmkzmcvksTt/PeHOY7Ha5qvN95+T7ZrBIrX7Nzq6qjtouceWqaUE128fZZKxYr7zpg93xXR9a5n+81B3e3WZnLRuVUiji/vvKC8BtUJGr3u0lkYsfvgzz//kjvHTdaokMXy+ZdrxCJJvLb/fiWdcDDk9rbZprDxjh1+zwPyyOPPOCHQ2/bUw+PkZL3fvbZURbyWHfu7lFreNnutXeM8GdzzNtm8ZZu07zXURW3ZOD5Z8nQkjZ13fG7XyU0YsX7eW/mxm7OtfRNIvFam9IEuzVYXfZI+iE+ce+NM9DWo687mFeSx2e/Xq5p1lHdVVPhD789fNc2cNYvgs30WceitH7t/TFS3ouF1qp/vjov+YdFRYyZZrY/H3D1+0gnHyMHq0F+rgsQHKoiXLnWgnneeDND0i8kURiy6caKmyhqlqbJszMcdc5R+N1Vw33323fPFV9/I+Zo+0gq7L9bvJItEtMjKK2peIPb7oCCEEfsdZUXbTRyx7+pyRx/m0nz99effToR6X9ODWbrL8cN7ynlVTw/s91309wrCSPRq4H2iBBBGEiXI+RCAAAQgAAEIhI0AwkjYLMZ4IbCTBPhDeifBxXmaFSm39DmfqTNIg0TkiMPKSGlNdeWXqiPOLt1hm7dslc81v7z1vd++JbV+wyGaiqhEXFEbln/+yzVrxXLM71tyHzlKx7Rvyb1zdNRu3faLm8M3WsOhmD7lXkadakdpYV2LGAlyC6oTNHrdpbswEn1/WLTEytWfqFiwTU4of5Q7ychAAABAAElEQVQceMB+0buT9t7u8RX6NP3uxYu7iBJ7qr4gmjmxV3/yhXz73To56biyLqKrIMaR39cM6rozDkEemwkJNa+7RdMartrBZPabtpg65w8/tLQccejBcmql4+R6rd+RU7Fw+x3/4KynVVCcL1/qd5AJ9sW1D6uT0aFlQzHh+7rmXZMqjNjA7fti1lPPu6gWi3Dx2oEH7ic3Xl9PHwqoLgtfWyLjJs2QT7SO1bX1qrvi8QeXPqhAhBEbn63Ve6Y8pgXpF2okzmdi393WihYtor+rykq/bm3cGvarG+QODMCP6O8VhJEAGCSNhoAwkkbGZCoQgAAEIAABCMRFAGEkLkwcBIHwE+AP6fDbkBlkTyCoTtDodZdJwkj2lmJPOhEI6rozxkEeW6ruAYuI2LBxk/ys6RHL/O9Al8LNRJiFWlDcTxhJ1jh+/e03+UqFkW/XrpO999pDBZ0y7jVZ/aeqH4vMXK4p8Sxln6WPLFqkSKouldR+o79XEEaSijbjO0MYyfhbAAAQgAAEIACBjCOAMJJxJmfCmUqAP6Qz1fKZMe+gOkGj1x3CSGbci5k0y6CuO7NBkMeWn/dIfggj+TkfriUS/b2CMMIdkUwCCCPJpElfEIAABCAAAQiEgQDCSBisxBghkAQC/CGdBIh0EVgCQXWCRq87hJHA3j4MbCcJBHXd2XSCPLadxL1Tp1ktjWdeWqw1eQbskEprpzrkpAInEP29gjBS4OZIqwEgjKSVOZkMBCAAAQhAAAJxEEAYiQMSh0AgHQjwh3Q6WJE5ZEcgqE7Q15a8K1c2ae+GjTCSnfXYHlYCQV13xjPIY0umva2eiBU6H33/Q77dWrqod1d+KBs1vVZdLXw+tPc/v498D2ZjKAhcod8pr+t3i7WZk++SM087KRTjZpDBJ4AwEnwbMUIIQAACEIAABJJLAGEkuTzpDQKBJYAwEljTMLAECQRZfAjy2BLEzukQCLT4kDHCiBYTX7J8pdRteFu2d2Th3XaTk044Vjq1aSxnnVEp2+PYEQ4CCCPhsFMYR4kwEkarMWYIQAACEIAABBIhgDCSCD3OhUCICOCgDZGxGGqeCAT53o4em03q2xUv5mluHAyBoBKIvreDGA2VKcKI3R/btm2XT79Y43+r7CKy5x4l5JAy/5NdCxXyP4atoSKAMBIqc4VqsAgjoTIXg4UABCAAAQhAIAkEEEaSAJEuIBAWApnkKAqLTRhn4gSCHg3FukvcxvQQPAJBF0aincfUYQje/cOIdp4A3yk7z44zcyaAMJIzH/ZCAAIQgAAEIJB+BBBG0s+mzAgC2RKI/mOavNTZYmJHyAhEO0CDeF8HfXwhMzfDDQiBoN/XQRdMA2JGhhEyAkEXJEOGk+HGEEAYiQHCRwhAAAIQgAAE0p4Awkjam5gJQuA/AjiK/mPBu/QhEHTBj3WXPvcaM/mPQJiEkSCm+vqPJO8gED8BhJH4WXFk3gkgjOSdGWdAAAIQgAAEIBBuAggj4bYfo4dAnghEO2jtROod5AkfBweQQBicRKy7AN44DCkhAtHrzjoK6ndJtGga1DEmZAhOzjgCQRckM84gaTZhhJE0MyjTgQAEIAABCEAgVwIII7ki4gAIpBeBaEcRedfTy7aZOJuwOIlYd5l4d6bvnKPXXZC/R6JFySCPM33vFGaWTAKxgmQQU0cmc770lf8EEEbynzlXhAAEIAABCECgYAkgjBQsf64OgXwngKMo35FzwRQRiHUSBfmJ8Oh1R1qfFN0QdJsvBGLXXZCds9HrzuAE+XdEvhiPi4SaQLQgyfdIqE0Z2MEjjATWNAwMAhCAAAQgAIEUEUAYSRFYuoVAkAnw9HqQrcPY4iUQNicR6y5ey3JckAmw7oJsHcaWrgTCJEimqw0yYV4II5lgZeYIAQhAAAIQgEA0AYSRaBq8h0CGEOAp2gwxdBpPM/YeDvJT654ZYsfM0+seGV7DQiD2HmbdhcVyjDPsBMImSIadd6aOH2EkUy3PvCEAAQhAAAKZSwBhJHNtz8wznABPr2f4DRDi6cc+ORum2gE4t0J842X40NNl3YXp90WG33JM/18CYRQkMV44CSCMhNNujBoCEIAABCAAgZ0ngDCy8+w4EwKhJhD7hzbOolCbM2MGH+ucDVue9djxs+4y5tYN/USjxXTWXejNyQRCQoDvjJAYKk2GiTCSJoZkGhCAAAQgAAEIxE0AYSRuVBwIgfQjgDiSfjZN5xnFOohsrmFI5RNrE9ZdLBE+B5mArbvhd0+V1/XVa6w7jwSvEEgdgdjvvLAJkqkjQ8+pIoAwkiqy9AsBCEAAAhCAQFAJIIwE1TKMCwL5RCDWScsf3vkEnsvkiUDsfWonh9E56006dj627jq0aiRn6isNAkEhEHuf2rjSad0RsRWUO41xxBJIt7UXOz8+B5MAwkgw7cKoIAABCEAAAhBIHQGEkdSxpWcIhIYAf4CHxlQZOdB0vT/95oWjNiNv8UBOOl3vz9h5IUoG8vbL6EHF3qMGI8yCZEYbM2STRxgJmcEYLgQgAAEIQAACCRNAGEkYIR1AID0I+P0hjsMoPWwb1ln43ZM2l3RyEPnNkXUX1js2Pcbtd09mwrpDlEyP+zfMs8iEtRdm+2TC2BFGMsHKzBECEIAABCAAgWgCCCPRNHgPgQwn4JdL3pB4jlp7T6ofo0BLFQFzDFm76+4HdrhEujouc1p3tvbOPK0i626Hu4ENySSQiesuOye0/Z5hzSXz7qKv3AjYvWg1fKLr+Ng56fqdlxsP9hccAYSRgmPPlSEAAQhAAAIQKBgCCCMFw52rQiDQBLJzGHmDNmetNe/V284rBHaGgJ9DKLafTHAQse5irc7nVBPwEyCjr5nu6y47UdIYeN9vVvvHGg8FOAz8SAIBu+9eW7Lc9ZTdGkz3tZcEjHSRAgIIIymASpcQgAAEIAABCASaAMJIoM3D4CBQcARychgV3Ki4ciYRMMeQtY7/OiYzYe6ewywesSgTeDDH/CeQqetu+L9P7ec/ca4Igf8IIIj8x4J3+U8AYST/mXNFCEAAAhCAAAQKlgDCSMHy5+oQCAUBTySxwcamegjFBBhkaAjYU9r2fyaJIdkZh3WXHRm2J5uAt+4yPYWUt+b4nkv2HUZ/uRFAEMmNEPvzgwDCSH5Q5hoQgAAEIAABCASJAMJIkKzBWCAQEgLeU+0hGW6BDHPy1H9qZdjFmzT6JxVLgQwkJBfNdIdsPGaydWfNS8ESzzmZdgzrLm8WZ91lz8v7nvNEEu81+zPYA4H4CHhCpB3NGoyPGUflDwGEkfzhzFUgAAEIQAACEAgOAYSR4NiCkUAAAmlEoO1t7WTZ8n9yiI8eOUIqVayYRrNjKhAIJgHWXTDtwqjSm4B919nas2bfdfadR4MABMJHAGEkfDZjxBCAAAQgAAEIJEYAYSQxfpwNAQhAwJcADlpfLGyEQEoJsO5SipfOIeBLAGHEFwsbIRA6AggjoTMZA4YABCAAAQhAIEECCCMJAuR0CEAAAn4EcND6UWEbBFJLgHWXWr70DgE/AggjflTYBoHwEUAYCZ/NGDEEIAABCEAAAokRQBhJjB9nQwACEPAlgIPWFwsbIZBSAqy7lOKlcwj4EkAY8cXCRgiEjgDCSOhMxoAhAAEIQAACEEiQAMJIggA5HQIQgIAfARy0flTYBoHUEmDdpZYvvUPAjwDCiB8VtkEgfAQQRsJnM0YMAQhAAAIQgEBiBBBGEuPH2RCAAAR8CeCg9cXCRgiklADrLqV46RwCvgQQRnyxsBECoSOAMBI6kzFgCEAAAhCAAAQSJIAwkiBATocABCDgRwAHrR8VtkEgtQRYd6nlS+8Q8COAMOJHhW0QCB8BhJHw2YwRQwACEIAABCCQGAGEkcT4cTYEIAABXwI4aH2xsBECKSXAukspXjqHgC8BhBFfLGyEQOgIIIyEzmQMGAIQgAAEIACBBAkgjCQIkNMhAAEI+BHAQetHhW0QSC0B1l1q+dI7BPwIIIz4UWEbBMJHAGEkfDZjxBCAAAQgAAEIJEYAYSQxfpwNAQhAwJcADlpfLGyEQEoJsO5SipfOIeBLAGHEFwsbIRA6AggjoTMZA4YABCAAAQhAIEECCCMJAuR0CEAAAn4EcND6UWEbBFJLgHWXWr70DgE/AggjflTYBoHwEUAYCZ/NGDEEIAABCEAAAokRQBhJjB9nQwACEPAlgIPWFwsbIZBSAqy7lOKlcwj4EkAY8cXCRgiEjgDCSOhMxoAhAAEIQAACEEiQAMJIggA5HQIQgIAfARy0flTYBoHUEmDdpZYvvUPAjwDCiB8VtkEgfAQQRsJnM0YMAQhAAAIQgEBiBBBGEuPH2RCAAAR8CeCg9cXCRgiklADrLqV46RwCvgQQRnyxsBECoSOAMBI6kzFgCEAAAhCAAAQSJIAwkiBATocABCDgRwAHrR8VtkEgtQRYd6nlS+8Q8COAMOJHhW0QCB8BhJHw2YwRQwACEIAABCCQGAGEkcT4cTYEIAABXwI4aH2xsBECKSXAukspXjqHgC8BhBFfLGyEQOgIIIyEzmQMGAIQgAAEIACBBAkgjCQIkNMhAAEI+BHAQetHhW0QSC0B1l1q+dI7BPwIIIz4UWEbBMJHAGEkfDZjxBCAAAQgAAEIJEYAYSQxfpwNAQhAwJcADlpfLGyEQEoJsO5SipfOIeBLAGHEFwsbIRA6AggjoTMZA4YABCAAAQhAIEECCCMJAuR0CEAAAn4EcND6UWEbBFJLgHWXWr70DgE/AggjflTYBoHwEUAYCZ/NGDEEIAABCEAAAokRQBhJjB9nQwACEPAlgIPWFwsbIZBSAqy7lOKlcwj4EkAY8cXCRgiEjgDCSOhMxoAhAAEIQAACEEiQAMJIggA5HQIQgIAfARy0flTYBoHUEmDdpZYvvUPAjwDCiB8VtkEgfAQQRsJnM0YMAQhAAAIQgEBiBBBGEuPH2RCAAAR8CeCg9cXCRgiklADrLqV46RwCvgQQRnyxsBECoSOAMBI6kzFgCEAAAhCAAAQSJIAwkiBATocABCDgRwAHrR8VtkEgtQRYd6nlS+8Q8COAMOJHhW0QCB8BhJHw2YwRQwACEIAABCCQGAGEkcT4cTYEIAABXwI4aH2xsBECKSXAukspXjqHgC8BhBFfLGyEQOgIIIyEzmQMGAIQgAAEIACBBAkgjCQIkNMhAAEI+BHAQetHhW0QSC0B1l1q+dI7BPwIIIz4UWEbBMJHAGEkfDZjxBCAAAQgAAEIJEYAYSQxfpwNAQhAwJcADlpfLGyEQEoJsO5SipfOIeBLAGHEFwsbIRA6AggjoTMZA4YABCAAAQhAIEECCCMJAuR0CEAAAn4EcND6UWEbBFJLgHWXWr70DgE/AggjflTYBoHwEUAYCZ/NGDEEIAABCEAAAokRQBhJjB9nQwACEPAlgIPWFwsbIZBSAqy7lOKlcwj4EkAY8cXCRgiEjgDCSOhMxoAhAAEIQAACEEiQAMJIggA5HQIQgIAfARy0flTYBoHUEmDdpZYvvUPAjwDCiB8VtkEgfAQQRsJnM0YMAQhAAAIQgEBiBBBGEuPH2RCAAAR8CeCg9cXCRgiklADrLqV46RwCvgQQRnyxsBECoSOAMBI6kzFgCEAAAhCAAAQSJIAwkiBATocABCDgRwAHrR8VtkEgtQRYd6nlS+8Q8COAMOJHhW0QCB8BhJHw2YwRQwACEIAABCCQGAGEkcT4cTYEIAABXwI4aH2xsBECKSXAukspXjqHgC8BhBFfLGyEQOgIIIyEzmQMGAIQgAAEIACBBAkgjCQIkNMhAAEI+BHAQetHhW0QSC0B1l1q+dI7BPwIIIz4UWEbBMJHAGEkfDZjxBCAAAQgAAEIJEYAYSQxfpwNAQhAwJfA5ClTZNKUqW5f08aNpEnjxr7HsRECEEgeAYSR5LGkJwjESyD6+65SxYoyeuSIeE/lOAhAIEAEEEYCZAyGAgEIQAACEIBAvhBAGMkXzFwEAhDINALRjiKb+ysLF2QaAuYLgXwngDCS78i5IASEdcdNAIH0IIAwkh52ZBYQgAAEIAABCMRPAGEkflYcCQEIQCBPBKL/wLQT7UnaShVPylMfHAwBCOROoKKuLWuTNUrL0vpYs6fWbc15n91GfkAAAkkjsFzXmhcZ6XXKQwAeCV4hED4C0f9uZS2Hz36MGAIQgAAEIACBvBNAGMk7M86AAAQgEBeB2KiRuE7iIAhAICkEEEWSgpFOIBA3AdJGxo2KAyEQSAIII4E0C4OCAAQgAAEIQCCFBBBGUgiXriEAAQjY0+rRT7FDBAIQgAAEIJBuBBBF0s2izCcTCSCMZKLVmTMEIAABCEAgswkgjGS2/Zk9BCCQTwS8dD6WeoQGAQgkl8Cy5e/mmDLLokdoEIBAcgl4qSGbNG6c3I7pDQIQKBACCCMFgp2LQgACEIAABCBQgAQQRgoQPpeGAAQgAAEIQCA5BPxS1/EUe3LY0gsEIAABCKQ/AYSR9LcxM4QABCAAAQhAICsBhJGsPPgEAQhAAAIQgEBICUQ7dSxKxAqw0yAAAQhAAAIQyJ1A9Hcoxddz58UREIAABCAAAQiEnwDCSPhtyAwgAAEIQAACEFACbW9rF0mpZaIIKbS4LSAAAQhAAALxEUAYiY8TR0EAAhCAAAQgkD4EEEbSx5bMBAIQgAAEIJDRBBBGMtr8TB4CEIAABBIggDCSADxOhQAEIAABCEAglAQQRkJpNgYNAQhAAAIQgEAsAYSRWCJ8hgAEIAABCMRHAGEkPk4cBQEIQAACEIBA+hBAGEkfWzITCEAAAhCAQEYTQBjJaPMzeQhAAAIQSIAAwkgC8DgVAhCAAAQgAIFQEkAYCaXZGDQEIAABCEAAArEEEEZiifAZAhCAAAQgEB8BhJH4OHEUBCAAAQhAAALpQwBhJH1syUwgAAEIQAACGU0AYSSjzc/kIQABCEAgAQIIIwnA41QIQAACEIAABEJJAGEklGZj0BCAAAQgAAEIxBJAGIklwmcIQAACEIBAfAQQRuLjxFEQgAAEIAABCKQPAYSR9LElM4EABCAAAQhkNAGEkYw2P5OHAAQgAIEECCCMJACPUyEAAQhAAAIQCCUBhJFQmo1BQwACEIAABCAQSwBhJJYInyEAAQhAAALxEUAYiY8TR0EAAhCAAAQgkD4EEEbSx5bMBAIQgAAEIJDRBBBGMtr8TB4CEIAABBIggDCSADxOhQAEIAABCEAglAQQRkJpNgYNAQhAAAIQgEAsAYSRWCJ8hgAEIAABCMRHAGEkPk4cBQEIQAACEIBA+hBAGEkfWzITCEAAAhCAQEYTQBjJaPMzeQhAAAIQSIAAwkgC8DgVAhCAAAQgAIFQEkAYCaXZGDQEIAABCEAAArEEEEZiifAZAhCAAAQgEB8BhJH4OHEUBCAAAQhAAALpQwBhJH1syUwgAAEIQAACGU0AYSSjzc/kIQABCEAgAQIIIwnA41QIQAACEIAABEJJAGEklGZj0BCAAAQgAAEIxBJAGIklwmcIQAACEIBAfAQQRuLjxFEQgAAEIAABCKQPAYSR9LElM4EABCAAAQhkNAGEkYw2P5OHAAQgAIEECCCMJACPUyEAAQhAAAIQCCUBhJFQmo1BQwACEIAABCAQSwBhJJYInyEAAQhAAALxEUAYiY8TR0EAAhCAAAQgkD4EEEbSx5bMBAIQgAAEIJDRBBBGMtr8TB4CEIAABBIggDCSADxOhQAEIAABCEAglAQQRkJpNgYNAQhAAAIQgEAsAYSRWCJ8hgAEIAABCMRHAGEkPk4cBQEIQAACEIBA+hBAGEkfWzITCEAAAhCAQEYTQBjJaPMzeQhAAAIQSIAAwkgC8DgVAhCAAAQgAIFQEkAYCaXZGDQEIAABCEAAArEEEEZiifAZAhCAAAQgEB8BhJH4OHEUBCAAAQhAAALpQwBhJH1syUwgAAEIQAACGU0AYSSjzc/kIQABCEAgAQIIIwnA41QIQAACEIAABEJJAGEklGZj0BCAAAQgAAEIxBJAGIklwmcIQAACEIBAfAQQRuLjxFEQgAAEIAABCKQPAYSR9LElM4EABCAAAQhkDIHJU6ZIxYoVpZL+77WchBE73lqTxo3dKz8gAAEIQAACEPiPAMLIfyx4BwEIQAACEIBAZhBAGMkMOzNLCEAAAhCAQNoQMJFj0pSpbj6jR46IiCPZCSPRxzdt3AhxJG3uBCYCAQhAAALJIoAwkiyS9AMBCEAAAhCAQFgIIIyExVKMEwIQgAAEIAABRyDaeWMbPHHETxiJFkXsWIswseNpEIAABCAAAQj8RyD6u/WVhQv+28E7CEAAAhCAAAQgkKYEEEbS1LBMCwIQgAAEIJCuBJYtXy4mgkQ3EzsmaxSJ7bNmn5frey+yxLYhihgFGgQgAAEIQGBHAggjOzJhCwQgAAEIQAAC6U0AYSS97cvsIAABCEAAAmlJwE8cMeHDE0ai3xsARJG0vA2YFAQgAAEIJIkAwkiSQNINBCAAAQhAAAKhIYAwEhpTMVAIQAACEIAABKIJ+Ikj0fu994giHgleIQABCEAAAv4EEEb8ubAVAhCAAAQgAIH0JYAwkr62ZWYQgAAEIACBtCeQmziCKJL2twAThAAEIACBJBBAGEkCRLqAAAQgAAEIQCBUBBBGQmUuBgsBCEAAAhCAQCyB7MQRRJFYUnyGAAQgAAEI+BNAGPHnwlYIQAACEIAABNKXAMJI+tqWmUEAAhCAAAQyhkCsOIIokjGmZ6IQgAAEIJAEAggjSYBIFxCAAAQgAAEIhIoAwkiozMVgIQABCEAAAhDIjoAnjiCKZEeI7RCAAAQgAAF/Aggj/lzYCgEIQAACEIBA+hJAGElf2zIzCEAAAoEl8OZbb8mbb74V2PExsPASWP7ucql4UsXwToCRB5bAGWec7sZ2xun/vAZ2oAwMAhCAwE4QQBjZCWicAgEIQAACEIBAqAkgjITafAweAhCAQHgIjB4z1g129Nh/XsMzckYKAQhAICsBE0fa3tJGEEmycuETBCAQXgIII+G1HSOHAAQgAAEIQGDnCCCM7Bw3zoIABCAAgTgJIIjECYrDIACB0BFAIAmdyRgwBCCQDQGEkWzAsBkCEIAABCAAgbQlgDCStqZlYhCAAAQKnoCJIn4RIuZMrPxvWpqCHyUjgAAEIJA7gTf+Tf9nqQBj2/RpDxA9EguFzxCAQKgIIIyEylwMFgIQgAAEIACBJBBAGEkCRLqAAAQgAIEdCfiJIrdq6plb2rTZ8WC2QAACEAgJARNG7PdbrECCOBISAzJMCEDAlwDCiC8WNkIAAhCAAAQgkMYEEEbS2LhMDQIQgEBBEYgVRSxCxJyGNAhAAALpQsCEketuaJhlOogjWXDwAQIQCBEBhJEQGYuhQgACEIAABCCQFAIII0nBSCcQgAAEIOARiHUWIop4ZHiFAATSjUDs7zub3ycfrk63aTIfCEAgAwggjGSAkZkiBCAAAQhAAAJZCCCMZMHBBwhAAAIQSJSAPUHtpZhBFEmUJudDAAJBJxArjrTVdIFtNW0gDQIQgECYCCCMhMlajLUgCXy9Zo3ss88+suceeyR1GH///bd8/sUXctihh8quu+6alL7XrVsnm7dsybavg8uUkSJFimS7P4w7jOFuu+0mhxx8cJbh//rrr/LNt99K8WLFpFSpUln2ffPNt/Lrb79KPDw2bNggP/38sxx44IGyx+67y/fffy/frl0rlSpWzNJn9IctW7fKDz/8IPuWLOnuna3btsl7770np55yihQuXDj60Ix9v+2XX+THH3/cwW4ZC4SJ5xsBhJF8Q82FIAABCKQ/gVgHIWll0t/mzBACEBBXc2T02LERFESNRFDwBgIQCAkBhJGQGIphFjiBS2vUlJtvulHq1a2702MxR/z9EyZIn969In2YY/jEipXk9cWvyAEHHBDZnsibdh06yJNPPZ1tF0/NnSPHHnNMtvvDuOOY4yrI4YcdJs8+My/L8H9WMeP0Kmc6QePVRS9H9pkgdVrlKrJFBaS333rTiR2RnT5v7h4/Xu4aOUpGjbhLataoIRdcdLF8+dVXMuuxGXLSiSf6nCEy75lnpO1t7aTdrW2ldatW0qPn7fLoY49J544d9F66yZ1jf0d/+OFHcsnFF8lBBx3k20+yNvrdf8nqO55+pj4wTY468kipVq1q5PCFL78sdwwcJM8/Oz+yLSxv/OYTlrEzThGEEe4CCEAAAhBIGgGiRZKGko4gAIGQETj6mGMjIyZqJIKCNxCAQEgIIIyExFAMs8AJJEMYWbnyA61TdoMsf2dpZD6pEEZmPf64Ria8767x8qJFsuabb9TxfrHsv99+blurli1S7oSPTDCf3mQnjNjla11eW1Z/+KEsePGFSGTCRx9/LDVqXeZEDRM3cmuxwkjvPn1lydtvy9TJk7IVtGKFkcdnz5ax4+6W/n37StWqZ7pL9h8wQKZOe9DV5bSsC6lsfvdfKq8X23fzFi2l8hlnSJMmjSO7wiyM+M0nMjHeBJ4AwkjgTcQAIQABCISHQLRjkGiR8NiNkUIAAokTGD1mrHhRI6QRTJwnPUAAAvlLAGEkf3lztfASiBZGfvvtN9mmaZEstdYff/whX3z5pYtWsFROfs2O37Rpk4sMaNm6tbz0wvPusL333lt+1/O9iJE999zTRSEcrOmgdi9Rwq8r+errr2XTxk1SvvyxcaXeatGylbzw0ksyc8ajUvGkk7L0aemnVq9erX2Vd+P3dloqLvv/EE3vtVUjKuyaFSpUcGPauHGjExnKHn207Lvvvt4p8sEHH0hRTVdlKcE+WLVKvtX0VZYyav/9948c472xtGQrVqyQ0qVLy3F67ei0Ul4/hx5yiHz00cdSpkzpCOeVeg3r97RTT92h35yEkTsGDpTJUx+QOwcP1oifOm4YDz/yiNzeu4+0uPlm6dihvdtmaa/e13HttddecsrJJ0uhQoW8IUusMGLRIsamXLlyLoWXHfjnn3+689fo/Cpqii1LmxUdMeJxNftaxMo3Kljde/8EeXrePBnQr6+ceMIJcvgRR0ixokWdXYoVLy5H6mevffjRR+7tMXrN7JoJbWbTY489Vkro+dZyuv889n/99ZesWrVadt9j9yz3gp1vKcGsWQqxn376yd3vFY47TorqOONplobM1kmnLl009VglaVD/Wmdzu/+jhRFbI2u/+85Flfitpe3bt7t7y+6x/f4V+XK6vh8LO97SzJlto9eYjc/u7dh+P/3sM3cJi3TxWk7z8Y6xSKXPPv/crS3PDrbP7G6pw+w6llrNeNq97u2z3yWWri16bG4nP5JOAGEk6UjpEAIQgEBmEohOo4VTMDPvAWYNgUwnEC0Ok04r0+8G5g+BcBFAGAmXvRhtwRGIFkbMmTt02HC56sorZcy4cVJMBYHN6tQdPmyoXHThhTsMcsHChdKtR0/nHI52vo4eOUKOP/54J4wMGTRQ7hg0WPZWp7w5h29q1kw6tG8X6cvEiabNbpSNeh07Zv369ZrWaYScc87ZkWP83vgJI+Ywvunm5pH6kHbe2WdVk3s1XZQ5yj0RwOby0oIFzuFvAoelhOo34A6xuh1Wo2S8phP1rm/CRKn//U+OPvoodXYvckPZZZddnMP/mquvdp/tvLa33iYvap9eM3FlsqYXq1DhOLfJ+jHH8P777yfvv79CjFGVypWl2U03y3vv/xMFY05t23bP3XdL8eLFIuf5pdKynS+8+KK0aNVarrriChk08A53vJdubMrEiS610wxNcdW7bz/5/fff3X5zXPfo1k0uv6yW++wx8VJpNWzcRF57/XV549XFTqQxp36D629wopGdYI79C84/X5597rlIKq3oPn799Tfp3LWr6zv6x2OPPqJpzo6VE1RYsRRd0dEslatWc7ZY8sbr0adE3o/QVF+z5zwhRx91lHz08SdSo/ql0l2vkdP9d/ppp7n97Tt0dM56u7/2UoFuikbCePVaBt95p2z/Zbveexvl1dded8zXr/9RenbvJvWvvTZy/ezeWHYJExiMURG9v0zwOUlFoHvvGR8RRkywGn/PvbKn3ttbNm+Wu4YPc/y8Pm1u96utjtK5fa6CQxWNPBk7ZnS24kx2LKw/E2hKlyot7W671eveRVg1atJEli19222zGjL1r7veiX8mGpkYMnHC/XLE4Ydr1Ff28zHxpk3btvLGm2/JESpqffLJJ9KyefNIHUIvQuzmG2+UuU895eZ6qKaAGzpksLTUe9Sa1a65o38/uaJePfeZH6khgDCSGq70CgEIQCDjCPC0dMaZnAlDAAIxBKKFEaLmYuDwEQIQCDQBhJFAm4fBBYhArDBijvZ6depI504dxZ58N8d6/zsGyrK3l2SJgIiegl8qI89RatEC5gw2576lebq8Tl158IGpLurCIhGspsVVV14hzTXCwZzuixa9Ii3btJHn58/XyIusRcWjr+knjHTp2k1maVqnBurUNvFj/rPPutoXTTXFkTnSPQe+RYXcpmLIU0/Pk2f0OhYh0KtnD3XmbpFB6iw3p/pDD05zlzNBw8ZpD8rdcP118oVGo9w3YaKr4fH0k3PF+up5ey95ZMYMqXrmmXLN1Vc54WPqtGlSVEWW1xYvdg736H4uvugiOe+8c+VtTVll0R1NGjWSOnVqy5QpU10/fXrdLtdfd13k+tkJI5vV0X7K6We4J/NfeO5Zd3y1c8514tIy7Xu33XaVOvWu0MiILTJi+HAnjhi3wjqut15/zR3vMclOGPGElnPOPkuuveYaF7UxYeIkFxXg1RiJ7uPkSpVkxcqV8qjyMCGpvTrpy5Yt65gWKVI0z8KIOe5tTi/q/KxWiUVFWKqwSerMN/bW/O6/Tz791M39PhUpzqxSxYl3Y8aOc4LO/Hn/1KkxYWSKRtx0U0HBoj123XVXWfTKK9JcGT0wZbKzubtALj/8Uk+ZyHhT8xZypYoAXTp38l1LM2fNkhGjRstMFY1KlSrl5tb21lvVnodK3z69d7hqbiziEUZszlu3bJX+Gslj7d777hNjNXTIkMj1/OZjfW/csFGG61rec489NMJprdRRQc7u1RrVq4u33q9v0EB69ujueNtaX/vdWpmnQomJUTbfIUOHuXvPxEVaagggjKSGK71CAAIQyDgC0cII+fUzzvxMGAIQUALRdZYQRrglIACBMBFAGAmTtRhrQRKIFUZu1IiL5+Y/E0l1ZOmKTtdi3lPVUZxdMW4/x7TnKLVUSuZQ91rjpk2do9qKdK/S1FT29Lo9xW9P3HutfcdOTiipq2JBds1PGDnzrLNl8+ZN0rF9B5dS6E9NIzR46FCXwshEDM+B36tnT2l4w/XyrqaEuuKqq11UySSN7rB26hmVxZy2XvSCCRr2ZP2iBS8557Udc6c6d+/T4/up87pB/frOcW9phExssLRh1m5t196lkjIHuznmrR8nlGgkhqVu8pql/fpMow62bt0ma9Z87QqhN254gzqXe7hD7LzshBE7oLY63o2/FbnfrpEr511woUuX9ejDD7nzLZXSm/qU/4aNG1Tg+ctFJxj3d5a85VJreUyyE0aqVDvLRRW8+dqr7njr9PZeveXhRx/1jRixAu7W/GqM/KLRGXmNGLHxmzByWa2acqU64k0MMftEO9b97j8Tmeap6GWOe6+ZqNKoSVN56fnnnehmIsGTTz0tryxckCW9mP371+51EwfjaX5Cggkjua0li6Qw8S86gmLJ20tVrJnq6sbEXjs3FvEIIw9o3Rfrv1vXLk6ssvRq0SztmrHzsTRZJ592uoqHPeWYcmUjw5qs/exaaFcZrFFh3nqfO/txOU7TkVmzVG9r1nwj4+8e5z5bZI31Y/dSbGovdwA/kkIAYSQpGOkEAhCAAAQQRrgHIACBTCeAMJLpdwDzh0B4CSCMhNd2jDx/CcQKI7369FER4L+UUDYac7ZbYe1q1ar6Ds7PMe05SqMLg9vJXbt1d0W9LZ3W3CefUid7L5d2K7Zjc4RHCyqx+2OFEe969tR/dO0DO28XTVG19K03NaXRPU548EQAEwgu06fa69S+XIapk9yaiSuWNsiEA2smTBx00IFZmLyotU0sqsAiUW7TJ/ytlkp5rX3xpKZ78ppFIgxQx7AX/eEncNj8u2haKy/NlXfuDRot0vtfh77fed5x9jpIn/SfOGmyjBk1Usf9q0un1LplS5dOyWpoNGnaTJYtXx59intvwk/JkiUjYpHHJDqVVvESJeSkSifvMDcrtt5Zo3P8IkbyKoyY6HSKOst3U2HME6NiB/vNN9+6yAZL8fWT1rioqREKnTUKwyIXrPndfxbFs3DRIlcbJrY/i+CwSCYTRr777nsZedfwLIeMGj3G1ZaxlFjxtFghwc4xYSS3tXThxZe4aCWr6RPbpkya6BuhlRMLP2HE0oPbWvFSadl1Zj3+uMyZ+6RGNr0vBx9yiHRs1y6SOs72x87HatTYurDaOra+opulN7PoFm/9mUB3wAEHuEPs3tymgp8XnWL3Y8WTT4mkaYvuh/fJI4AwkjyW9AQBCEAgowkgjGS0+Zk8BCCgBBBGuA0gAIGwEkAYCavlGHd+E4gVRu4YOEief3Z+lmEkIoxEO0qt02hhxFJr1a5bTxa/vDDLE+SWMsjPWRw9qFhhxPZddMmlYjUUXtH+LA2YtVdeWSxVq57pIgJioyPiFUYslZZFnHjFwb2ICUs/ZFEtxtBqTURHlVhkzOJXX3O1NCz6wE/gsJRQVpR6jj5lb8XIn573jLTv2FHyIox4kQkNNc2XCSMzZs50qcoqa60KSyXWpu2tUl8jdrqrAFOkSGGXhsrGGo8wYvVXzr/wIrGi8tFzsz6t77wKI54IYnZ5S4UZq/viRe2YSOMnjNg9YsKHFz20VutUtNZaF+edc47coinXrPkJIw9On65p1GbKk0/Mdsd4P6LvLRNGHp/9hLz2yqJIoXk7zqKILC1a+3a3eafl+BorJNjBZpfc1pJxLFXqf67mi3cBi6opVGgX3xojubG4Y9AgVwD9rmHDvO6c+PPoozMiwsi0B6drmrkL5H9aN8ciUJ6YM0f69u+v0U5vROra+M3n9CpnysAB/eXCCy6I9G11hbyIE4SRCJYCf4MwUuAmYAAQgAAE0oMAwkh62JFZQAACO08AYWTn2XEmBCBQsAQQRgqWP1cPD4FkCCOrVq92zmRLkeOlkvJzlBqVaGHEUvTUury2e3rfnND2pPnrb7zhnnCfq9EXhx16aLYg/YQR7+83i96wAt3vvvuevKDRHV4ERSLCiNWAqFu7tljqq+dfeEGKaV0Sq1VhDuZxWizdakWUKVNaaqlI8v6KFW4elgLrmaefck53P2HkyquvkeXvviudO3ZQp3QJmTR5shMhLL1S/z593VP8fudFQ7Gn8C3iwopnW9qz71QYsnowVjfFRKEmWgy74kknaeqwG+TVV191NVjsfBMaBvTrp9Emk7JE0URHjJgwMnDwYB3XFFfHpPbll7v0ZwvU6W9iUU7CiGeLs8+qpvY9UVq3aumEEM9ull7s+AoVtKj6HFm3bp2LXvETRtavX++ieiyCwoQpu2fMcW/nN27cyKHwu/+++vprqa3RQBaZdIXWWSlceDeZqlE80x9+2KWKs3o2JoxYaqmbmjVz0T/G7Emth2F1XywVmQlaFqVitTH6aiSVF6ESzd/et2zdxglbndSOXotHGDFxqXvP2120T5XKlV3dlm7de0iJEsXlTuUe23Jj8exzz0nnLl21Ps6DUr78sbJ48avSR238s0bZeBEjlgbOxCGL4rDoj/fee1+at2olC198ISLG+M2nn4ony3U9DRp4h7ODRa5YUfdWLVtIvbp1iRiJNVYBfkYYKUD4XBoCEIBAOhHw/jFnc6LGSDpZlrlAAALxEkAYiZcUx0EAAkEjgDASNIswnqASSIYwYk+eX9vgOnlPU/PsrumXzAkbjzBiTKw2R9vb2rl0T/b0uTn3rXZHrZo1c0TmOdhnznjUOf69gy19z4wZj7lC1ub4tZRc/TQNmKXX2llhpLSKIhdecL5MeWCac8xbEfARWoTairR7zdIvWcF1q6NgTndLO2QpmkxcsOYncLy9dKmL6DCHt7UOKg798MM6V7/jhusaSI/u3X3PcwdH/bAIB4u8sGZF4q0unDWzS3etCzH7iTlu3FYAu586+Ltq/RKLrDEBZZo60e8aOUr8UmnZ2K2Pbnq81eKw94dq6qUr6tV1QlBOwogJE21vu01WrFjpxrL8naWutoo56Vvf0laWvvOOq21hxdmnTX/IpS/zE0bsZBv/hIkTpZDa0+4XqzNyj4pRxYsXc3373X+2w1KImVBgwovV0TjwwAOdTcqXL+/OM2Fk86bNLprIBJrCarciKo706tlDvJRgln5t+IiRMlGLlJ9zztnuvNgfxqZX73/SSXXr3NkJNvEII9bPQyrUjNai8Cb42L1T9cwqLq1bdhFTubEYNvwuFXumuSGWLl3a1eoxUcMTRqzOSocOHV2EU7FixWTbtm3S9pZbIhE5dqLffEwI661i3dwnn5Q9tI6O2bFxw4ZiYlAhTVXnt95JpeXMkO8/EEbyHTkXhAAEIJCeBBBG0tOuzAoCEIifAMJI/Kw4EgIQCBYBhJFg2YPRQCA3AlvVQWtOb3PexxaDzu3c2P2Wsskc86U0msOiABJp0YKGOYPNsWzigF8z57alnTpg/wMiTnu/46K32VjtnJJaZ8KEoVQ0G7PHNrZGRLzXM/ts+HmDi4qJ95ycjrP+rBi9iUj2+9rqumQnjHj9mJiz1157x83WO8+EEWte7QtvuwkjW7dsddETmzdvdvVLzLax95+lTrv00ktcei3v3GS/2v1q6cSyi0qJvV5OLEwo2qI2N3HFIkIsssMTRrx+rK7N91o75OAyZbxNcb1a33a/2nmWCo0WPAIII8GzCSOCAAQgEEoCCCOhNBuDhgAEkkgAYSSJMOkKAhDIVwIII/mKm4tBIG0JRAsjaTvJfJyYCQADtY6N1yzSwNJVWZosq+OSny1aGMnuugsWLtQ6HHNlyKCBYhEWQW8m3pnI5LXFmj5tqEaRvPX6a94mXtOcAMJImhuY6UEAAhDILwIII/lFmutAAAJBJYAwElTLMC4IQCA3AggjuRFiPwQgEA+Bauec66JYHp7+YDyHc0wuBFZ/+KE0aXZjlqP2328/ue3WtnLB+edn2Z7qD1YbZotGjHTp3CnVl8q3/rt07SaLFi+OXM9qq1xXv75LqRXZyJu0JoAwktbmZXIQgAAE8o8Awkj+seZKEIBAMAkgjATTLowKAhDInQDCSO6MOAICEIAABCAAgfQigDCSXvZkNhCAAAQKjADCSIGh58IQgEBACCCMBMQQDAMCEMgzAYSRPCPjBAhAAAIQgAAEQk4AYSTkBmT4EIAABIJCAGEkKJZgHBCAQEERQBgpKPJcFwIQSJQAwkiiBDkfAhCAAAQgAIGwEUAYCZvFGC8EIACBgBJAGAmoYRgWBCCQbwQQRvINNReCAASSTABhJMlA6Q4CEIAABCAAgcATQBgJvIkYIAQgAIFwEEAYCYedGCUEIJA6AggjqWNLzxCAQGoJIIykli+9QwACEIAABCAQPAIII8GzCSOCAAQgEEoCCCOhNBuDhgAEkkgAYSSJMOkKAhDIVwIII/mKm4tBAAL/Etj2yy/y448/yiEHH5xnJn/88Yd8vWaN7LrrrnLoIYfk+fxETvjpp5/kr7/+kv333z+Rbgrk3DCPvUCAcdG0JoAwktbmZXIQgAAE8o8Awkj+seZKEIBAMAkgjATTLowKAhDInQDCSO6MOAICEEg+gYUvvyx3DBwkzz87P0+dmyhy/kUXqTjxtxx+2GHy4ANT83R+TgcvXvyqfPrZZ9Ko4Q3ZHjb4zjtl65at0r9f32yPKYgdUx+YJkcdeaRUq1Y128sXxNjjYZrtgAO6w4/17CfmyISJE2XmjBlSvHixgI6cYUUTQBiJpsF7CEAAAhDYaQIIIzuNjhMhAIE0IYAwkiaGZBoQyEACCCMZaHSmDIEAENhZYeTzL76Qiy+tLiveXS5FixZN6kwmT54ib7z5ptx7z/hs+y0IcSHbwUTtaN6ipVQ+4wxp0qRx1Nasbwti7PEwzTrK4H/yY/3KK4vlERVFRo24S3bbbbfgT4IRCsIINwEEIAABCCSFAMJIUjDSCQQgEGICCCMhNh5Dh0CGE0AYyfAbgOnnmcDPP/8sn33+uZQvX15KFC8eOf+3336Tbdu2yT777CMW1fDFl1+6iAY/J+n69evl22/XSoUKx7l0UF4nlupozz33lMKFC3ub5Jdftmt/v7vttnHDhg1SokQJKVSokPzwwzopXbpU5Njt27fLB6tWyWGHHir77bdfZLv3xtJXrV69Wo499tgsY/f2x77m1t9Wne+HH34oRxx+uJQsWTL2dPf5m2++lR/W/SDl9ZrFiv33JH20MLJp0yZZ+913LuLBj5d1ZHztuC+/+kqubXCdvL74Fde/8fbOMa62//gKFXxFE0uB9eFHH8kuu+wiZY8+OsJ+y9atsl3ZPPzII7L0nXdkmEaFWPNLlxUtLnynY97+66/Ozu6EqB9///23S/e1ccNGOf74Cu6aUbvd2+zug9jj7LPdUx9//LEUV9tbpIzX7H6wfZ26dJFKFStJg/rXuvtn77339g6JvEaPPbJR33z19deyaeMmvaePjTDx9u/sPPLC1LtWbvbzjvNes7On7bfrW9tdef3www/u/ixSpIjbZuetWrVadt9j9yws3U79sTOs7f7cqteMXQd2z36kdjumXLnIGvau461lG9f333/v1vQBBxzg7eY1xQQQRlIMmO4hAAEIZAoBhJFMsTTzhAAEsiOAMJIdGbZDAAJBJ4AwEnQLMb6gEDCRoE3bthpR8JYcccQR8sknn0jL5s2l7S1t3BDN0T902HC56sorZcy4cU4E2KxO0eHDhspFF17ojjEnc6MmTZ2j1hygJrB079pFatao4fbbehwyaKCcWaVKZNqWnmfp0ndk/N3j3La62n+F8sfJnCfnyh577BkRCEaMHCX367FHHXWUfK79VtHogbFjRkcEAts/e84TcrTu/+jjT6RG9Uv12l0j14l9k1t/j89+Qnr16SPlypWVtWu/k2OPKSf33XNPRNQxQeTGm2+Wn1RIOuigg3RMn0mHdu2lcaOG7lKeMFKvbh0Zf8+9sudee8mWzZvlruHD5ILzz48djixYuFC69egpf/75p5g45YkW9+s1TXjo26+/PDZrllQ47jgnjlxZr5506tgh0o890X9r+/ayrwo4JoxsVNuMHT1KTj/tNBl+1wh3rokjv/3+u+ylY7G2+OWFEdHF68jEhQ0/b3BjeGf5cvlDjzdn+ORJE50gZcfZ+Fq2buPSclkNlXUq2HTt3Cli59zuA+9a3uuKFSulRevWUkwjZEwQs0gZu6/KlS0r9m9QS/9lDvgiKqgVU7HupBNO8I16iRVGTBBp2uxGx2JvnbMJE6NGjJBzzjnbXTqReeSFqfHIzX4eC+81J3vaMTbXzz/73IkSJkBMnTxZTjzxBHcfte/Q0QmHdg/spULklMmTIrVudpa1dz97qeF+VcHs1tvayQL9vXCk/r6wtW6/B0bo/e0Jn7aWr7nqKpn+8COyceMGJ3RWqXyGjBs7Ni7h0mPB684RQBjZOW6cBQEIQAACMQQQRmKA8BECEMg4AggjGWdyJgyBtCGAMJI2pmQiKSZgT+Tb0//D1bG55x57uIiPOldcIX163a4iQ3Uxx2iLVq2lXp060rlTR7En9mc89pj0v2OgLHt7iXOG2jEDBw2WZ5+Z55zzy9Sx3qlzF5n31JNiT43HK4zYE+/jx46LRIvMVEFgxKjRMvPRR6RUqVKyecsWaXvrrVqY/FDp26e3izKpds658uJzzzqRwvbXqHWZTJpwv4uciEWXW39WNP3s886XB6ZMllNOPtmJFfWvu16aahqnSy+5xBUnP//Ci6RWzZrSoX07N9dPPv3URXqMU7HmjNNPd7xuat5CTMDooqKBH6/YcdlnczBfUr2GfLx6VWT3Cy++KD179ZZn5z3t+jFH+HkXXCjPzX9GTIAy4aDeFVdmEV2emT9funXvIa9q5IlFFViLJ+2TOdwnacqt3rf3lKvVqW1O/dv12hbxYjys3TFokHym1zShyArEv/zyIhkydKizs+3P7T6wY6Lb5XXrSfVLLpaWLVq4zXcOHaaRRL9Ib733vOaX3snb571GCyMmMF1w0cUq5F0hzVXAsqibRYtekZZt2sjzysYikZIxj3iY5mY/b/zeazz2tLk+OP0heWjaNCeI2Ll2D9apd4XaZbwTHy0yZIyuo2efe07m671jbWdZm02ja+bY7wuLChusQqeJYxbJZGvdIke8+jQmjKxZ843YmjCBbuPGjWLrqGaN6tK6VSs3Hn6kjgDCSOrY0jMEIACBjCKAMJJR5mayEICADwGEER8obIIABEJBAGEkFGZikAVMwJzfJ592uvTq2VMdm2Ujo5k8darsWmhX5/w0x+iNNzd3znh7Qtyapdc5vXIVmaoO85NOPFHT96ySK6+5Vm7v0V3OPuts53y2vi2CwVq8wkidy2tnKRDeUgUZc2RfoSKD15a8vVSm6PgWvPiCSw1kwshltWrKlSrmWBopu6Z3Xe8c7zW3/uw4S/tVRCMXLJ2UtUc0DdUGdexaGqpVmq6rgTp4ly55y0U4uAP0x+OzZzvhpkrlyk4cyI2Xd170q58wYvstusGc/TYGa127dZdrrr7KRfBMmfqAvPrqq3L/ffe6fd6PUaPHSL16dSPRAvE48c3hPvfJp+TVRS9H+L2zbJlGAjWRdzUNl0V0mMPd0qpt0ggYizQyIevyOnXdvXHoIYfkeh944/NeTcj6J3XaD26OK1d+IEOHD3cRLd4xeRVG7F40J7xFS1ikidfad+zkhJK6dWonZR7xMLVr52Q/b2zeazz2NDt99dXXcvfYMd5pMmXKVJmnoo+JmV4zthbF9dLzz7s1tLOso4UR7/fFnYMHRaLF7HpPPf20ik2DI1FeJoxYWrQRakuvjVcx7e2lS2Xi/fd7m3hNEQGEkRSBpVsIQAACmUYAYSTTLM58IQCBWAIII7FE+AwBCISFAMJIWCzFOAuSgNUoOFOFjFNPOWWHGgyWmsqiMswxaqmlFi1YkGWoFrnQv29fqVatqtv+1pIlMu3B6bLk7bc1SqSwNLr+BmnatIlzsvsJI/a3ljmxo1NpNW3cxIkc3oUuvPgSl17J6m3Etima4slS91hqq3vvu09ee/11l96qpka5dNZIDYt+iW259Wd1NTpoOqK3VQiw+ZvT3gSS448/3qWnevKpp2WSikGzZ86M7TryOV5ekRP+feMnjHysac1uaXurbPtlm5QuVdodaXUd2t92q1x/3XUuosPqSXTt3Dm2uyyf43Him8PdImaGDhkSOdciA84+7zxZteJ9x9oiELr3vF3+pynErGaMNRNPnpo7x6W/ss853Qe2P7rdNWKkE7mOLnu0ihhFXC2L77QmxZI3Xo8clldhxMSd23v1cjaLdPLvGxPQrr3mGhdJkeg84mGam/1ix2cROrnZ0+y0dcvWSHSG9dHz9l6ycNGiSMqz6H4taulETUG2s6yjhRHv98U7Kgx6adnsWrHbTRi5vkGDLILm7CfmyEMPPyyPafQXLbUEEEZSy5feIQABCGQMAYSRjDE1E4UABLIhgDCSDRg2QwACgSeAMBJ4EzHAgBA4vcqZMnBAf7nwggsiI7LUN+b4tMiLaMdo5AB9Ey2MWEql4iWKu7Q5dsz776+QGxo1cvUgLL3UZRpVcH2D+hrpcHWkC3Oe/u/Ag3IURtqoKFCq1P+kR7dukfOsaHuhQrs4wcREAosysCgAa2vXkay9jAAAQABJREFUrpXWWi/lvHPOkVs0dVJsy60/S7U1YeIkeVrrnFiqKGutb2nrOFjdDktZVFcjU5ap+OMVRrdjrF7KwZpWyNJtxcPLzoltfsKIpS0qWqSoDOjfzx1uERsWIdOmVUsnjJij+TmNCJgyaVKkOy8F1g03XO/SG9mOeJz4fg73WGHERJKO7TvI5ZfVctezgu81L7vcpdKyuiC53QeRQeobqwNy8aXV5QVNg3ZwmTJu1wPTHnR1bBIRRuyeqK0puqyOyn777Re5pKUh8wS2ZMwjHqa52S8yuH/fxGNPPzs9OH26PPrYTHnyidlZuvTmnAjr2PvZfl/06tnDpZPzLjbr8cdlpEYpvbLwH/HU1nasyIkw4tFK/SvCSOoZcwUIQAACGUEAYSQjzMwkIQCBHAggjOQAh10QgECgCSCMBNo8DC5ABPr17y/L331PBg28wznSLQLD0ie1atlC6tWtG5ej3xziw0eOlGkaTWE1NbZs3SoXXXKpTNQUT8dp0fABd9why5a/66Iu9tmnpKZsmiuDh9wplbWQek4RI/OffdZFKIwZNVIsTdVWTeNk9TNKqAhz5+DBrqi2iS4WPWI1DkwUsAgDK/LeuHGjHSjn1p+lxLLaDPOeekqLzBd10Q/NbrpZKp50kjz4wFTXXy1N93WCRpBYHQyrn/Lqq6+5AuLTpk6RkytViovXDgPTDX7CSGctIv+7FkEfrnU8TBSZrrUlBmnEwC2tWznhZ80338hlteu4AuhXqTPaIl4efPBBuW/CRFmkTuoSWrDcmqVosnRH9rR+dmnG/BzuscLIOVo8vvlNN0mD+vVdfZd+AwZov/PE5m4CWG73gRvMvz9s7FYLZK468812X3z5pbRREWrNmjVZ6qNYsXdL4RZdcD66H3sfPXa7B8xGFiXRvt1trhbL62+8IS1atpK5c55wURXJmEc8THOzX+w84rFn9Fy98034qK3rwOreXKG1RgoX3k2mqs2nm3Cm9WgsCmdnWccKI1ZMftm7yzVtVy+3LpZqdFWfvv2katUzI5FLCCOeZQrmFWGkYLhzVQhAAAJpRwBhJO1MyoQgAIE8EkAYySMwDocABAJDAGEkMKZgIAEnYPUrevfpq2LFk7KHpkeymgiNGzZ0jmhLJRXrGPWmEx0xYtusoPWCBQulxO67y7p166SWFlru0b27O9wEjXbt2suixYtdCqZq6kQ9ocLxLu1WTsKInWxP0Y9WscIc3ps2bZKqZ1Zx9T68p//tSXSL2CikER6WCsrqjNxz991SvHgxd+3YHzn1Z+O87bZ28vqbb7rogmJaa6Rv797SQVNVHV/hOJmgKbuMT1s9Zrk6h4sWLeaEBqvRYmmarMXLK3ZcfsKIFeM2h77VFzFh5JSTK+mT+rWkl47pljat5aYbb5T33n9fOnbqLOvWr9djfncpt0aNHCHHHnNM5BIW6dJUj/3++x/k/HPPjYhRkQP0jZ/DPVYYsWLiVmh7r733Uhuvl5bNb3b1RiyF2iMPTXeO8pzug+jr2XtL73TfhAk65lKO6/BhQ2XsuLvl408+lveXL3eHW/oym+82LcreTe3gJ3jFjt3uA7PRMu3DIp+sJk4/TQtXq+Y/NkrGPOJhGo/9YpnkZs/YuXrn21w7d+nq1p6JXwceeKCMvGu4lC9f3h2ys6xj72f7fWFCyJy5c10tnj9UuKtXt4707NHDpZ6ziyGMeFYpmFeEkYLhzlUhAAEIpB0BhJG0MykTggAE8kgAYSSPwDgcAhAIDAGEkcCYgoGEhIA53r/Wp/UtrZHV7tiZZuKF9VGmdOlIKqrofsy5XXi33Xaqf3sqvmTJkr61Q+wa3+tT8XvttXe2gkj0OOx9Tv2Z+GHFqo2FiUN+zUQUK9R+iKbQSnWzSAIrJG7O7uzaehVGzCEenT4qu2MT2W73ibE7YP/9I3VGYvvL7T6IPt7uCUuBZqyLqhCVzGY2MpHEbBQbKZPseeQ07njsF3v+ztrTRElrBxxwQGyXTlxKFmvj98233zq7eWnndrggGwqEAMJIgWDnohCAAATSjwDCSPrZlBlBAAJ5I4AwkjdeHA0BCASHAMJIcGzBSCAAAQhAAAIQyB8CCCP5w5mrQAACEEh7AggjaW9iJggBCORCAGEkF0DshgAEAksAYSSwpmFgEIAABCAAAQikiADCSIrA0i0EIACBTCOAMJJpFme+EIBALAGEkVgifIYABMJCAGEkLJZinBCAAAQgAAEIJIsAwkiySNIPBCAAgQwngDCS4TcA04cABARhhJsAAhAIKwGEkbBajnFDAAIQgAAEILCzBBBGdpYc50EAAhCAQBYCCCNZcPABAhDIQAIIIxlodKYMgTQhgDCSJoZkGhCAAAQgAAEIxE0AYSRuVBwIAQhAAAI5EUAYyYkO+yAAgUwggDCSCVZmjhBITwIII+lpV2YFAQhAAAIQgED2BBBGsmfDHghAAAIQyAMBhJE8wOJQCEAgLQkgjKSlWZkUBDKCAMJIRpiZSUIAAhCAAAQgEEUAYSQKBm8hAAEIQGDnCSCM7Dw7zoQABNKDAMJIetiRWUAgEwkgjGSi1ZlzMgl89vnncughh8huu+2WzG7j6mvz5s0y+4k58v6K96XO5bWlatUz4zovDAf9/PPP8scff8gBBxyQ0uG++NJL8txzz8sJJxwvderUkT123z2l1/Pr/Jdftsu69evcfeS3n215J/DNN9/K3vvsnVR7pqLPvM+MM5JFAGEkWSTpBwIQgECGE0AYyfAbgOlDAAIUX+cegAAEQksAYSS0pmPgASDw119/Sbnyx8lLLzwft1PbnKv3T5ggfXr3SmgGmzZtkoZNmkjpUqXlslo1pfIZZ0jJkiUT6jPRk/v07Sc33XijlClTOtGuZOSo0bLmmzUy7M47E+4ruoOpD0yTo448UqpVq+o2r1+/Xt5askTmzJkrP2/YIJMmTkiqMz362tm9f/2NN6RTl66y+OWF2R2S5+2LF78qn372mTRqeEPk3I8/+URatmotdw0bJieeeEJke0G/ibVJMsZT98orpWnjJm5t+PW3Myxy6zP2OiZaTpg4UWbOmCHFixdzu5O1/mOvxee8E0AYyTszzoAABCAAAR8CCCM+UNgEAQhkFAEiRjLK3EwWAmlFAGEkrczJZPKZwM4IIytXfqAPVNwgy99ZmtBoO3ftKrvof0MGD0qon2SeXPHkU2T6tGlSocJxCXebKmGkeYuWTkRq0qTxDmO8tV172WfvvaVvn9477EvlhlQII5MnT5E33nxT7r1nfGTo3367Vnr36SPdunWVI484IrK9oN/kZJOdHVtuIsbOsMitz9ixvvLKYnlERZFRI+6KRJQla/3HXovPeSeAMJJ3ZpwBAQhAAAI+BBBGfKCwCQIQyCgCCCMZZW4mC4G0IoAwklbmZDL5QOC7776Tr9eskXJly8qee+65Q8TI33//7fZv3LBRjj++guyyyy5uVL/99ptYlMeHH34kLVu3dlEmtmNvdcQXLlzYHWNCy6pVq2X3PXaXww87zG3L7sfFl1aX0aNGyrHHHLPDIb/++qt8sGqVS0N1cJkyWfZv0KiIEiVKSKFCheSHH9ZJ6dKlIvstfZWlBitfvryUKF48st17s3XbNh3/h3LE4YdHolNsvj/++KM75IKLLpZxY8bIscceI8X1Grvr/17Lre/ff/9dVqxc6cZmbEeNHrNTESOWfuvjjz92149maPO2fZ26dJFKFStJg/rXOu7G32vLli+XXn36ypNPzPY27fDqx8A7yGNbpEgR+f777x1jv1RgxuwjHaPZ6Zhy5eSdZctyjRjJbl7etb3XLVu3yvZffpGHH3lElr7zTiTiZv/99xfPVvvuu68bmx1rzdKHffHll3LggQdG7L55yxb56aef5LBDD/W6zvL61ddfy6aNm/ReOVZ23XXXLPtiP2Q39nhs4vVlkT377LNPRGCwsdl6sXlZi52bJ2LUqH6p2FhtjtG2iD3eu05Oaye3Pr0+vFdb81uVsUVyxbP+vfN4zR8CCCP5w5mrQAACEEh7AggjaW9iJggBCORCAGEkF0DshgAEAksAYSSwpmFgASNgDnF7st3SLpnj/mt1tvbr21c6dOoUSaVlzv+Wrdu4FEaHHHyw1o1YL107d5KaNWrIgoULpVuPns45v3HjRtlvv/3cDEePHCGnn3aa29++Q0e3faMKKHup6DJl8iSxfmKbjaXSKafKu+r49lL0eMfcPX68jL/3Xjn88CPEnMnmDL5fowYOOuggd4g5dyto+q85T86VPfbYU15f/Ips375d2rRtqxEGb8kRGknwiaVcat5c2t7SxutWHp/9hIoGfaRcubKydu13KsiUk/vuuUe26VguqVHTHWcCiQkNVm+lSaOG0vzmm+Pq+5n586VL124qCO3hhCSr2WI1P4xnXlJprVixUlqo6FSsaFHn+C+qr8OHDXX2sn+rWWopE6eKqBBVTIWfk044IUtEhV2vSrWz5L1l74iJG7EtOwaesGVsr7nqKpn+8COyceMGJzxVqXyGjBs7NiI42BgaN20mGzb8LGVKlxETJ25q1kzu15RL2aXSymlesWMcftcIeWzWLCeO/KZi01577eUOsb7t84kqCpnN7b4YrGnKvvzyK/3/S2entSr69dUUb999973MmDlTtmgNmyOOPEKmTpoU6cdEhqbNbhS7R/fWvu0eGzVihJxzztmxQ3Gfcxp7PDbxOj3/wouk9+23u+sYsypVq+p9VlhmPTbDRb+Y0FTvyqtk+dK33f1ntrj04otl1uOzZfuv250tzqxSWYW7sW7NbFPxKJqFXSeetZNTn/9n7zzgoyi+OP5UeleRDhYE6UivgtJ776L03ntvCSG0AAFC6L33Lr33IkiVoqDSQQWk41//7zc662bZ5C7hktwlbz4fs3e7s1O+M4e785v3nm6rPu7avZt8hvnS1s2bHP7+9T1yjDgCIoxEHGupSQgIASEQpQmIMBKlh1c6JwSEgBMERBhxApJkEQJCwC0JiDDilsMijXJDAp27duMF41vkN2qUiqEBVzxwZwV3RTrGiI+vL/3IC98QDLCLfvfuPTSC829cv87okZ0rncs//EDVatTk+wKpcKFCSjyZMDGANm/ZQps2bjDu1R9gsVK2fAU6d/qUPqWOK1aupDHj/Gnh/HnGTv8hXt7KOmHBvLkqDxaMsdM+kMvX1iKwooCFi5/faErI4gT6Vq1mTRo8cABVKF9eWYQU+6IEzZ09i/Lkzk3/+9//qP6XDakpu6MqV7as0QY7V1qOyr5w8SJVrV6DfH18VDwIWNhs2PiNEpyqVqkcKmGkCpdTvmwZatO6tWrTyFGj6SkvgA/ifugUktsmWDZkyprNEA70PThC9HHEAGyvXbvOi+/jldgFAQycKlYoT+3atlXcUEaZUqWoa9cuivXp02eoZZs2ar4EJ4w40y9zW/HZzpWWVQyAMDJv/gL6ZsN6FSMH86d3337UsEED6t+vL8GKp0q16vRVw4b835eq/bAKql2rphK9IIDt2bOX2rRvT1tZ3NLzydwWZ9oe0pjosjp27kJZ2DqlNQt2qBPiH+rLlzcv1atbl9asXcd9mc/xPJaoWzAWV69cVcIXhEc9FpUqVqC2zNvKwtnfTkhl6rbqo1kY0efsfv/6mhwjloAIIxHLW2oTAkJACERZAiKMRNmhlY4JASHgJAERRpwEJdmEgBBwOwIijLjdkEiD3JAAhIQ8+fLTMJ+hVL5cOaOFW7ZupbbtOxjCCBbWYUHxkHfawwoD92Fhecumb4zg7HYLo7Nnz6GNvLAMIUInuDJq1KQp7eA6rAvOEEbgSuv8mdM6uzrCWiUvCxfNmjU1zsNd0ZSp06gbL8RjIRsLxtWqVDWCcsOlUG7u28D+/dmtUwbjvllz5tBbb75Fw32HqXNwXRSLLTAgDiEtZldN93nh32zRYRVGnCkbC/iwTsDivDlV4jbCJZe5fPN1u89g9o+LsDtqER+sR/n5BbHECGkRPiRhBPU5YgC2cN81luvUKZBFsmPHj9OMadMI7anBFiUQQMxunYayKLRpy9Yg7dT34+hMv8z58dlZYQQL/ZMDJ6nb/+B5mytvPuVKDO7UkNC2ly//JMRdOc/u2SD0wJIJVjc6de3eQwkl1atV1aeMozNtD2lMdEHTpk+n02wRBAsrWMVgnFOnTqWESQSTHzFylPrNaRHM0VhYhRFnfzshja9uqz6KMKJJuOdRhBH3HBdplRAQAkLA4wiIMOJxQyYNFgJCwMUERBhxMVApTggIgQgjIMJIhKGWijyYAOJFFClWnI4cPECIz6ATRIe8BQoawggsPPr2H0Ap2G0V4o8gIX7E+rVrlDsnfLcTRvoPGEi79uwxrDyQT6de7IorB7t8MqfghJHSZctRv7596PPixc3Zg3zGgnHTxk2UdQYu3Llzhwp/Vozy5snzSqyIj9OnVwviWNzuxm6+jrHrLpzDojQEkmzZstHE8f5G+VZhxJmy+zEvuKIazC6czMnL21sJTKERRsaMHUezWdD5OMPHvHAfS8V3uMVjd/TQQaPokBbhQxJGnGEAtrC2qFmjhlHfqtVraOGiRbRsyWJl1TCZLR2sItCmzZtpKLtcCs5ixJl+GRX++8FZYeTxo8fk7TVE3QUXbTlz5Q5iMTNs+HB2y/WM3cYNprXr1tOAgQPVuFvrq1yporLcsJ53pu0hjYkuDwHqB3H8F4iMderVp86dOrJgmIrwDL5/z252T9aU53Qlg72jsbAKI87+dkIaX91WfRRhRJNwz6MII+45LtIqISAEhIDHERBhxOOGTBosBISAiwmIMOJioFKcEBACEUZAhJEIQy0VeTgBCCD9+vQh8654LBR37d7dEEaKffEFdWeXW1UqV1K9hZuoipWrKFdaiEuCZCeMzF+wgJYsW/5K0G8ILwg4bU3BCSNwN5SZrSy0KyncBwFj9JgxNNTLi+LEiaMsRszCCPLkL1SYhg31plIlS+KrSnA9hPgUcG21nGNWTJ8xkzZwXBIdaLtdh47qWkjCCApyVDZcOc2aPVsx/Kfmf/5ioTpnzhxOW4wg9gWsaLZt2Uw64PzcefNpQkCAS4QRZxhYRSf0xCyMYD7AEmbX9u3K2kH3VwtjdsKIs/3SZeljeAgjiOMBt2dop46Rg/qCm6fOtt0ZYQTWLPgNIj7K5yVK0uGDB1WsEIh6ixcuoNp169EctmTJ9MknCoGjsbAKI2H97ZjHV7PXRxFGNAn3PIow4p7jIq0SAkJACHgcARFGPG7IpMFCQAi4mIAIIy4GKsUJASEQYQREGIkw1FKRhxOAZcPps2dpKAdcz5EjOyGotO+IEXT4yBFDGCleogS1atGCGtSvrxaLvYYOpfUbNtK8ObOpQP78isD577+nmrXr0OED+w2rEiwgV2WXW3B3VZNjjcSMGYPmzJnLQbwXqR3ycIFlTogBUqJ0afr+7BnzaYLlQT+2PpkxbSp9mjMn3b17l7yG+rDlxCOaya6IkOwWjGGdcfK7U+Q7zIfdaWWk69dvsBuvJhyLoTXVqF6dA6+vIsQ82bh+PYsrsVUA+mYtWqo65s+dY7QBbpj8WYQpVuwz45yjsq9y4O/KVatSpw4dqC7HilBCDItEY/39qXTpUk4LI9euXyfEv1i7epXqA8ptz+LNNXY7tp8X0+PHi6faBJdJH3GA+R7duxlt1B9evHhBWbLnUGNjXvjHdWcY2LE1L5zDtRpiwyCwPAS05MmT0Z69e2kQz6m//vrb1mLE2X7pPujjbJ4/6zdsUJYqYIpkFQMQYyQ0FiNwjQZhBxZMXbt0Vu7AYMnRuk1bWrtm9SsWT862PaQx0f3BEQHYEd9k567dtHTxInWpS7duyhorIHCyEXgdFxyNhZVFWH875vFVDTL9sRNG7H7/plvkYwQSEGEkAmFLVUJACAiBqExAhJGoPLrSNyEgBJwhIMKIM5QkjxAQAu5IQIQRdxwVaZM7EkAg6h69eivxIXHixBQ7diwaxyJAg4ZfGTFEtrElQI+evShR4kQsStyjNq1aKndQsIrArnaIFXDXVK/Bl3Tq9Gm1WH/i+DHV3RMnT1JPLh9iBhaykyVLxuX7kY71YGaCBfZcefIqQca6gL9k6VIWFcarMn7//XcqUriQinkB6w8kuwVjBFOHm6K169ZRAnYBhvsaf/21Eg/gNgsuljqzNcpBDjQPC5Y4HGtkyKBB1K1nT8qWNQtNnzpVlY3g8+grFtBXLltGWfmao7Jx4/4DB6hXn74cIPs+xYoVm0qxwJQuXVq6cvWq08IIyoHbpqksAKVKmVL1wW/0KJoYMIkuXb5Ep5kv0rr1G2ggtx0L4324/Y0bN1Ln8QeWONVYmDp+5LBxTn9whoEdW+vC+c2bN1Ww8vPnv1cs06ZJw/E5WtAQ76G2wgjqd6Zfup36ePmHH6hp8+Z0+/YdKvH55xQ4KeC1hRGUjSD0sK7AfMWcgpjkxfFHKlWsqKsOcnSm7SGNibkw1LuXhSQEg4cwg7R4yRIVXyQ9u3jTgddx3tFYWIUR3BOW3451fFGOTnbCSHC/f32PHCOOgAgjEcdaahICQkAIRGkCIoxE6eGVzgkBIeAEARFGnIAkWYSAEHBLAiKMuOWwSKPcmAAWVO//fv+VgOi6yVj4hAXIe0mTGhYh+pozRwgjSObg3Hb3QVxp2qQxlWHLEbuERX6IJvHixrW7bHsObcd9cEWFuB/WBMEEsTZwHYJJaJKjslEWLAzALTYLL9Z0iEWZ58+eW09TnLhxDGscXMT4QHxAG+3KeaUA04k1a9ex66tVNHvmTNPZoB9fh4G5JAgMcEtm5yrNnE9/fp1+6TJceYRQhD5A2NEWKcGV725tD66d+nxYfjv6Xjl6DgERRjxnrKSlQkAICAG3JiDCiFsPjzROCAiBCCAgwkgEQJYqhIAQCBcCIoyEC1YpVAiEO4FFixdzoPG5NGP6NCOmRrhXGokVIKbJvXv3XmkBBCRznJNXMjh5AmJW4yZNqX27duw+rJqTd0k2ISAEPJWACCOeOnLSbiEgBISAmxEQYcTNBkSaIwSEQIQTEGEkwpFLhUJACLiIgAgjLgIpxQiBSCAwjd1GTeLYCjly5KAunTspV12R0AyPrhIxYgImBdJpdm3WpXNn+vqrhh7dH2m8EBACzhEQYcQ5TpJLCAgBISAEHBAQYcQBILksBIRAlCcgwkiUH2LpoBCIsgREGImyQysdiyYEnj59RufOn1MxSeDWSFLoCCBIO9xjZc6UiQPLxwndzZJbCAgBjyUgwojHDp00XAgIASHgXgREGHGv8ZDWCAEhEPEERBiJeOZSoxAQAq4hIMKIazhKKUJACAgBISAEhIDnEBBhxHPGSloqBISAEHBrAiKMuPXwSOOEgBCIAAIijEQAZKlCCAiBcCEgwki4YJVChYAQEAJCQAgIATcmIMKIGw+ONE0ICAEh4EkERBjxpNGStgoBIRAeBEQYCQ+qUqYQEAIRQUCEkYigLHUIASEgBISAEBAC7kRAhBF3Gg1pixAQAkLAgwmIMOLBgydNFwJCwCUERBhxCUYpRAgIgUggIMJIJECXKoWAhxK4fv0GJU6SmBLEj/9aPXCmHMT9+PPPP+m99957rbrC++YrV6/Spk2b6PSZs+Tj7UVvv/32a1X522+/0V9//UVJkyZ1upybN29SgoQJKWGCBE7fE5aMgZMn07179yhXrlxUqWJFp4v45do1SpIkicva9+TpU/r1119JYuo4PQSS0YaACCM2UOSUEBACQkAIhJ6ACCOhZyZ3CAEhELUIiDAStcZTeiMEohMBEUai02hLX8ObwOAhXtSieXNKnTqVS6rat28//fDjj9To669eqzxXlVO9Vi1q2rgJVa7k/KK4XcOdKWec/3i6dv0ajR450q4Idc7VvIOtKJgL58+fpybNW1DVKpWpcMFCVKRIYYoRI0YwuZ07PZz7+/jRY/L2GkKXLl+mNm3b0ZjRoylHjuzBFlD/y4ZUo3o1qs3j48pk5Yu5eOLECZoxcxYVLlSQBvTv71R15SpUpJYtmnMbqxv5rWUbFywf7Oburt27yWeYL23dvMmSW74KAecJiDDiPCvJKQSEgBAQAiEQEGEkBDhySQgIgWhBQISRaDHM0kkhECUJiDASJYdVOhVJBD7NnYcWzJtHWbNmcUkLZs2aTYcOH6YpkwNfqzxXleOMoOFMQ50pxxlhxNW8nWm7OU/xEiWoU4eOSpQwn3+dz2Zh5MaNmzRo8GDq06c3ffThh8EWG17CSHB8nz9/TmXKl6dePXpQBT46SnbCSHBlW8uym7sijFgpyfewEBBhJCzU5B4hIASEgBB4hYAII68gkRNCQAhEMwIijESzAZfuCoEoRECEkSg0mNKVcCfwv//9j86ePUcpU6YwXDz9/fffyq0PKi9ZugwFTJhAmTJ9QnHjxaP4/B8SXEJdunRJnfvg/ffVOf3nxYsX9OTJE+VqCO6jYsSMSW+88QY9Y3dBixYvpuPffmtYTZjdK8GlERbOIcK89dZburggx0ePHzssB4vc59jyIUXy5NyvlEHut37RgkaF8uXo519+US61gnN19fDhQ7rIff4kY0ZKyG6ezEmXY7Y8efnyJZ05e5biMbOMGTKQ//gJthYjjnijz0hgf+fOHeXaCnzA1swPef744w+28IhJcePGwVeV4Mbq/PnvKX6C+GQdK50Hx7t371KFylXo8IH99Oabb6pL6AP6/e6775qz0h+PHqnv2tXVYx7vCxcu0IcffPCK6y2zMKL7+s477xh1oCCUd+7cOXYllZZSpUpJYRVGMId++vlnypY1K8WOHVu1UdeJL8HNZ1ybPGUK/cpuv/r16YOvISYtjFSvVs3hb0UXFNLcNQsj4H3z1i1K/9FHttY6IY3n/fv31XyLFSsW3b59WzEObj7rdskx6hAQYSTqjKX0RAgIASEQqQREGIlU/FK5EBACbkBAhBE3GARpghAQAmEiIMJImLDJTdGQwI6dO2nAoMFqAfYWL8RikX3OrJlK1CjLroKQEPcgceLEaoG2SaOvqVXLlnSGY0+0bteO4vDCMxbQsQDtN3qUWvzHPVjk9fIeqso9fOQIde3cWS04L1uxQokaL3ixPVGiRMhK+3bvUiJIoyZN1aI/FnF/vHKF+vbuRRUrVFB5zH/8xoyl4MqBy6cJEydS4JSplIoFESwuQwiYMW0qpUiRwlyM8RmCRrkyZWjFylX07PkzbsNd5VIpYMJEQ1yA0NKpcxfayf2ClQPaV7pUKRrrN5pisuiDZBVGvuEYHb1692ExIoEShdKlTUvZs2dTYobVldaDBw8oJN4QFq78eEWJMlj4njNrFiV5OwmVKFWaLpw7G0REas7jU7RwEWrcuJFq185du6hrt+5K2HjAC+6JWNCZzWNsF8ti9+495M8i2Mrly9S9+IPxL1KsOG3Z9A2hDzpVrVGD6tetS/X4v5WrVtNAtgLJmDED3bx5izJ9kpGmcuwOzcYsjCCWRo5Pc9HBfXsNIc7H15fmzpuvxgrzsE7tWiwonQuVKy2IH0O8vNXcyJolixJHanEbe3TvRo746j5t2rxZtWPh/Hn6VLBHLYyUZAubkMbOXEBIc3ff/v3KlRbchwVOnkIJ+ffxiEWuMTzHUIdOjsYT87Bu7dq0YNFi7vd9NZ8LFSxAAfy7iBc3ri5GjlGUgAgjUXRgpVtCQAgIgYgmIMJIRBOX+oSAEHA3AiKMuNuISHuEgBBwloAII86SknzRnYB1Mb9ZixZUrmzZIHEd7NwDValeg8qXLUNtWrdWCEeOGk1PecF70MAB6juEkeYtW9FQjilRq2bNILveg3MjNMx3OG3+ZqMSEU6cPEk9evaijevXEXa+2yW7cpaz8DKahZPAgImU69NP1YL4aL8xBHEGC/t2CQyuXrmqXHvlz5dP3QNrhUoVK1DbNm3ULT169VKWLMN9hylBARYJaB8sRxA3A8nM8sLFi1SVGfn6+KjYJbCW2bDxG+rGbpoQu8MqjKgC/v1jxxvCwvwFC2khuzTTcTlg3eJIGLn8ww9UrUZNFikCWewppKx8JkwMoM1bttCmjRvM1arPK1au5HZupJnTpwe5hnmRN08eY7yv/vQTla9YiQ7t36fKLPZFCZo7exblyZ2bYIEEfk2bNFZzCQWFJIwsXrJEjdnM6dMoR/bsBKsKf39/mj13Hg0b6h1kLgZplOXLtu3bqf/AQbSZ+wUhDwLSFyVLqXE3W0zY8dVF7T9wgBAnxJk4H1oYMccYCalsXQeOdnMXv5kWrVoTxJxePXuoPixdtoy8fYbRiWNHlcjkzHhiHl67dp2tvMaTeT5XrFCe2rVta26GfI6CBEQYiYKDKl0SAkJACEQGARFGIoO61CkEhIA7ERBhxJ1GQ9oiBIRAaAiIMBIaWpI3OhNox7Eknj59oha8s2fLpiw/sIhvTnaLvXB7BEsRuHXSrrhG+fkp6w/ci0XeHr16B3HJpMu0WxRGwO9adevRgH59qdhnxZQrJVgAWNuiy8DRrhwE9U6TJjX169vXyIo2Fi3+uRIC7GJaYCEZViVjuf06BbK1w7Hjx9nSZBqhHbnz5aeRw32VlYjOs37DBvJhMQeWD0hmYQRtW7p8OX2zYb3Oro6VqlRVLsnCIoz8/PMvNGniBKM8Z4SR2bPn0Ea2XBn8r2CFmzF2sM7ZsXWr4mwUyB8gjKBfs2bMMJ+mNWvX0TQWS9avXaPOTwoMpNOnz1DgpAD1/Td2PxWLrYZg7YG0mN2l3WcrGN3PkISRVq3bKHdngwcNVPfiD8orzPPAe8hgp4UR3AfXYpiPqBupd5++VLdO7SBl2M1nlZn/RLYwAjERAp6ep3BJl79gIZrDolPOHDnImfF0NJ91X+UYNQmIMBI1x1V6JQSEgBCIcAIijEQ4cqlQCAgBNyMgwoibDYg0RwgIAacJiDDiNCrJGM0JPH36TC1479i1U7lqyps3D/Xv10/FidBo7BaSx4wdR7PnzKGPM3xMsWLGose8y/8WxzM4euigug3CiM8wX9ud93aCBm46cvQozZu/gI4eO8ZWIjGpUcOvqGnTJsGKI3bllCpTlnr26E5lSpfWzVfH4M7jIhaSGzZoQDV5p75Oq1avoYWLFtGyJYuV+INF+m+PHjHcfyEfBBfzebMw0q//ALXD37zYj3u8vL3pIbtH0oIBzlmTHW+zsKDzByeM4PmtdMmSypVW/wEDadeePfR+unT6NuMIqwRYaJhTcMII3F8VLFSYVq5YTh+nT08VKlWmDu3bUfly5ZTQ0o1ddR3juDG4BsEMAkk2FtomjvdXxZvbb3WlhZgf3bt1VWWZ21KRY500ZtdttXl8nEmXLl+mDh070RMW+lKlTKVuQTyYrp07UcMvvzSKsOOrL0a2MAJ3ZHvYvZ05werFe8gQKlq0CDkzno7ms7ls+Rz1CIgwEvXGVHokBISAEIgUAiKMRAp2qVQICAE3IiDCiBsNhjRFCAiBUBEQYSRUuCRzNCWAIN0IhN6ieXMlPsCSYOTIUSp+xoJ5cw0q1oVkLMiXKVeetm3ZTGlSp1b5EB9iQkBAmIURxLaIGy+ucv2DAmGN8FWjRsq9VYH8+Y22mD/YCSPteWH87SRJDPdWyP/LtWvKpdKObVuDxMjQZZkFDX3OLIzgXH4WBQb278futf6Ju4JzEBHGcTD1vSwqIZnLgcAza/ZsQp3mVLpsOcqZM4dLhBGMHyxZ4PZJB1RH0G60tTe77EKMkfkLFtCSZctp3epV5mYoN1NJmJM1BSeMIB/cgL2f7n0qV64s1a1Xnw5xgHbEloH7sukzZtKGdWuNWCewRIK1jzPCCMYsQfz4BDdlOkFYwb/joXGlBXdnsWPFpqHeXqqYP//8U1kKtW/bxmOEETsx0SyMODOe5nmoeVrnsz4vx6hHQISRqDem0iMhIASEQKQQEGEkUrBLpUJACLgRARFG3GgwpClCQAiEioAII6HCJZmjKQG4iKpVpy592aA+B7murijM4AVuuJDSLpJwMlfefOQ/ZgwVK/aZynPt+nXCLv+1vNiOGBuIN9GeF8KvsQCxn91KxY8XT7nSslvkRQGz58xV7ppgjaFdZUEY8Rs3juaxyyDEh0CcCYgIM6ZOoSwcSNsu2ZWDgOeIM+HrM5RKfPEF3bh5kxBj5Jdrv9Aqdm1ll5xZSEZQ7xPfnWSXVAPp05w56ThbRyAWRZEiLEL07KmKNZcDJpWrVqVOHTpQXQ5Ojn4uZ4FiLMfOKF26VIjCiJU3CjdbXJj7ANdciKXSk60/nrFVR8CkQHZ7tVbVC2EEIlbVatWpW9cubBFTk61YYtAc5r+ArWHgsgnB6s0JC+ir16zh4O4zzafV5z179tLQYcOUZcdttg7SQsbKVas44H0Ax4NZT3HixFaWP81atFSc5s+do+41t99qMQI3XYPZImL0qJFUvFgxunv3ruK0adNmGsBilLMWIz1796aXL1+S36hRKu7JAo7J4suxWTq0a8vWLe2N/tjx1Rf37t1Hw4YPVy7QDhw8SIuXLFVxchIlSqSzGEe7GCMhlW3cyB/s5m5wVlZmYcSZ8TTPQ12nCCOaRNQ/ijAS9cdYeigEhIAQiBACIoxECGapRAgIATcmIMKIGw+ONE0ICIEQCYgwEiIeuSgEDAJnzpylIeze6RFbizx//pziJ0hAI4b5BBEjfHx9lYsrCCkrORh01qxZCK60pnLMiVQpU6q4Dn6jR9HEgEl06fIlOs2B04Nb5EXFCCDdlK1Ubt++QyU+/9wQYVDPzp27KB5bD2BxvBIHizbHCjEa/e+H4MqBFYz/hImE+AwICF8gPws7Y8cqwcVaBr47s5CMuBUQQiA6IJbGn7wAX6N6NeV2DK6j7MqBW6ZeHOPiwYP77BosNpUqUYLSpUtLV65eDVEYseNtFhZUZf/++fHKFSVKQYiBoNSEXU99d+o05eNA6RBGkBDIvifHewFTCDTJkiWjcWP8KHPmzP+W8t/h1OnTKq9dYHZYYBQpVly5TZs2ZTIVKlhQ3fj4yRPq3LkLHTx8mGCFEof5DBk0iLqxYJSN58r0qVODCDtWYQSFTOVYLoGTp1CMmDFVTBcIStt3bKeKFSo4LYz88OOP1LpNWxVfBG3NkzsXW/hUooHcFrj9gmUUkh1fdYH/wGJmB89BBC7HHA+cMkUJgJkzZdJZjKOdMBJS2caN/MFu7gb3mzELIyjD0Xg6M5/NbZHPUYuACCNRazylN0JACAiBSCMgwkikoZeKhYAQcBMCIoy4yUBIM4SAEAg1ARFGQo1MbojmBOCWCULCu+++6zQJLHDfZIsMuNOCSyVXJIgvcH2VOlUqwy1TWMtFOUnfTUpx48YJaxGv3IcF9+s3bqg+v/XWW69ctzsBC5v3kiZ1GSO7OjB+CVjU0hY4dnkgjCC99957dpfVOYhj+QoUpO1bt4SYz64ABD6HOzbMBy0W2eUL7hzEJ83Wej9ca124cNH21kyZPqHkyZMb18A7FgssEIBCmxAbJk2a1NSmdWsl0Ny7dy/UHEJbZ1jzOzOeYS1b7vNcAiKMeO7YScuFgBAQAm5FQIQRtxoOaYwQEAKRQECEkUiALlUKASHgEgIijLgEoxQiBIRANCTQqUtXgkgxcsRwihc3rlsQgDUFLErsUlsWMYoXL2Z3KVTn9u3bT527dSPE14GLOElCwBMJiDDiiaMmbRYCQkAIuCEBEUbccFCkSUJACEQoARFGIhS3VCYEhIALCYgw4kKYUpQQEALRigCsYiCOfHviBOXMnp1GceyPhGyNElUTApojBgfckcFFWO5cuaJqV6Vf0YCACCPRYJCli0JACAiBiCAgwkhEUJY6hIAQcGcCIoy48+hI24SAEAiJgAgjIdGRa0JACAgBxwTgGuv06TOUL18+l7ojc1xzxOY4+d133L+49HH69K/tvi1iWy61CYFXCYgw8ioTOSMEhIAQEAJhICDCSBigyS1CQAhEKQIijESp4ZTOCIFoRUCEkWg13NJZISAEhIAQEAJCgAmIMCLTQAgIASEgBFxCQIQRl2CUQoSAEPBgAiKMePDgSdOFQDQnIMJINJ8A0n0hIASEgBAQAtGQgAgj0XDQpctCQAgIgfAgIMJIeFCVMoWAEPAkAiKMeNJoSVuFgBAwExBhxExDPgsBISAEhIAQEALRgYAII9FhlKWPQkAICIEIICDCSARAliqEgBBwawIijLj18EjjhIAQCIGACCMhwJFLQkAICAEhIASEQJQkIMJIlBxW6ZQQEAJCIOIJiDAS8cylRiEgBNyLgAgj7jUe0hohIAScJyDCiPOsJKcQiAgCv1y7Ri9fvqR0adNSjBgxIqJKqUMICAEbAk+ePqVff/2V0qZJY3NVTnk6ARFGPH0Epf1CQAgIATchIMKImwyENEMICIFIIyDCSKShl4qFgBB4TQIijLwmQLldCLiQQJdu3Wj3nr2UPFkymjFtGqVKldKFpUd+UXPmzqP0H31ERYsWifzGSAtcQuDS5cvUpm07GjN6NOXIkd0lZYZ3IYMGD6FHjx+R36hRRlV2c3PX7t3kM8yXtm7eZOSTD1GHgAgjUWcspSdCQAgIgUglIMJIpOKXyoWAEHADAiKMuMEgSBOEgBAIEwERRsKETW4SAuFCoFDRz2ikry999lnRcCk/sgtt1boNFSxQgJo0aRzZTZH6XUTgxo2bNGjwYOrTpzd99OGHLio1fIuZyqLj48dPqEvnTkZFdnNThBEDT5T8IMJIlBxW6ZQQEAJCIOIJiDAS8cylRiEgBNyLgAgj7jUe0hohIAScJyDCiPOsJGf0JnD//n2KFy8exYoVi376+Wd69Mcjypw5E7355puvgHn27BmdO3+e3k+Xjt59990g13U5uO/OnbuUMmUK5a4HmSpWqUpDvYZQrk8/pXjx41O8uHHVvX/99RddvHSJ3njjDcqYIYM66kJfvHhBT548oSRJktDvv/9OMWLGpIQJEpC5HrT3g/ffp7feekvdduvWLfX5vffe08UYxx9+/FF9hmWHo/SY671w4QJ9+MEH9PbbbwebHW35888/qUevXty3XNSgfj2Kye1MnDgxPXz4kD/Horhx46j7/3j0iJ4zP1xDHiTcH5dZxI4dW33HH9wHJp9kzEgJEyY0zof04d69e4qTdlH222+/EdgmTZpU3fb333+rsXjnnXeMcQ2pj7gfdet2opCnT59xX1+G2CbUeeHiRTWOGT7+2BgXc9ufP3+u5lCK5Ml5jgS1HHr0+LHKmoDnyNWffqJkbGGk5wr4oV2YezrpfmEuou7vv79ACRMlVO7adB59xDhdYq5xea5jzpiTrjc+X7tz544ac/Qd7qbMzHCPo3kU0vjpuYvf2u3bt9VY2M1V3bbQziH0A0z07yS4uWkWRlDHTf7d4Heh54+uX46eSUCEEc8cN2m1EBACQsDtCHiSMHL37l367tSpMDPMmiXLKw+mYS5Mbgw3Ajt27lQP/agALwo5snuGWTfai5eby2ySrlMB3lWHh3adzvNL9vIVKwgvBzVr1FBHfS00R/ivxousTvny5lUvoPo7XnZWrFypXqxq1qxJmT75RF+Sow0BEUZsoMgpISAEPIKACCMeMUzSSDcgUL1WLarD/81fsJAgfGDxORYv1E+bMjnIs+bYcf40bcYMSp8+PV25coUK8bPcxAnjjUV9lJM1cxZas24tJUiQkDZtWE9lK1RUPTQvtLdp1Yoaff0V7d69h7p0767u/9///qeecSf4j6NCBQuqe7B46+U9VC3YHj5yhLp27kyNGzci1PNpjpy0acsWtbCMNs+aMZ3G+fvT1as/0Y2bN6lGtWrkM9RbLdBjAbr+lw3VAjcWz7E4PWP6NCV62OFfuWo1DWRLgYwZM9DNm7f4WTEjTZ08OYhIoO/DcxIWyrG4HIsX0uOwyJGTn8+nTA6kvv36q2fQXj17qOw1atWm6zduUJdOHale3brqXL6ChWjypADKkzs3QTDo1LkL7eR+w0LhR2ZculQpGus32rZu3QYcS5QqTYMGDKDixYuxK6XHVKhIEV7kjkkrli1VZUFoQf0njx9Ti9+O+oh/P0f4DqPChQoZ1UznsT9+/FsK5Pbapb1791Gnrl3pHRaSIHQ9YCYTx/tT/nz5jOwTJk6kwClTKRULIliMh0AxY9pUSpEihcozfORI+umnn/m/n9RcRJ4hgwbSrVu3aeny5Sza/UEffvQhzZk5kxIlSkSIlZGDBSnM1e49e1FKLufyDz8oYW8mW09oUevMmbPUul07isPzGsIdhCi/0aOUGIeKUe+VH68oQQrzY86sWfRxho9V2Qf37VXvJY7mkTPjh7lbt3ZtWrBoMT14cF8JiIUKFqAA5qIFIAMWfwjtHEI/Hj96TN4sQoY0N7UwUqN6NQqcPIXFpESK7RieayVLlDA3QT57IAERRjxw0KTJQkAICAF3JOBJwggWzFuyCXdY06gRI6h6taphvV3uiyACWbLnIOyeQ8KLUmDAxAiq+fWrmTJ1Ko3yG2MUtG7NasqcKZP6jheQwp8VM/qWO1cuWrp4kZE3NB/mzV9AQ7y9jVuWLFqoXjb1CbyQnD59Rn3FDr4D+/YFEWh0Pjn+Q0CEEZkJQkAIeCoBEUY8deSk3RFNAM9GV69cVYv5WMSGZQBc8syZN49279yhnpOweWWs/3havmSx2kyF3fsdO3XinfnpaMjgQarJKAfCQ+DEgFdiiMCVlv/YMcYiORavq1SrTj78zFa5UkW1y33V6tXkNdSHNq5fp3b8Y/G2ectWytKkFm9m0bvZUQ/S3NmzCZYFvfv0pZV8L2JBoCxYkZQuW47wrAmrC/NiMe7DMynqx/uPNcFCoNgXJbjsWer5EYINRJWm7CKrXNmy1uzGdzt3RQsXLaKt27axaDODYJ1RsHBh6tGtO504eYLFDj9lMYC6Th4/rqxKYHUC903DWZBAUGz0owcv9qMPWOgOKXVkQSULW/m0ZtFpD8dyCZwyRY0BNghBhFmzdh3Nmz+fli9doqwgHPUxtMIIxKEaNWuReWH9m02bqE/ffrSfhQVYYmAOjR4zVr2/wHLowYMHNJrfDSB6bdn0jeoexgrP8t+wqJYubVq1mak3l9GwQQPq368vvXz5Us2brxo2pK8afmkII4gBgvGH0IINg/36D1DX5s+do8qtUr0GlS9bhtq0bq2+jxw1muf5Uxo0cIBRL4TBhTzndTwRLbpoYcTRPHJm/DB3r127TgEsKOK3BgaYXxUrlKd2bduqtpj/hHYOWduIsuzmJn5bLVq1plq8GQ3CHayYli5bRt4+w+jEsaMOhThzG+Wz+xEQYcT9xkRaJASEgBDwSAIijHjksEXpRkdVYQQvSnjpMaf9e3ZTcjaxD20KSRj5+Zdf1I46c5kITli1SmXzKfXZh/1gb9++wzi/feuWIO4djAtR/ENohJETJ08qFxlRHIl0TwgIAQ8hIMKIhwyUNDPSCWCx9v1079O4MX5GW7AoXLBQYZrAVhiwQkAQagRMh1WvTkePHafZc+bQzu3b1CmUU41dZsEaxJqswsjs2XNoxapVSrww5y1TrrwSIbCYj8XbHr160+ED+9Uuf50P9VStVFlZj+AcxIc+bJ2BfNqlViVuR9s2ralC+fI0d9581c4+vXupxWhYGsCiIbikLWbglgtp8eLFdB+L+LxoH1yyW3w+dfq0WnxGu/bt208TJ02iEcN91UL4gb17CBYzI/g5FEIQ3B/lzpefRvJ1bH7Saf2GDeTjO5ywOI+EZy0s6OsEV19wRzVt+nQ6zVYR48eNJT8WH2AVkTp1Kjp0+LASDEaMHKUsMLQQ4KiPoRVGZs+ZS/v376dpU6fopqmj//gJVKNGdSX0YA6lSZOa+vXta+SBJXfR4p/Tpo0blGULFvYh0k0OnKTy/MEWIrny5qN1q1exFUhmdW6ojw8LJH8qQU6LF3DTpq1wkAliy9eNm9C3vMgPUQZC3j8u3u4QxK6zZ8/xhi0/2rd7lyoT9f788y80aeIE9R1/dNlaGAlpHjk7fpi7EG8gjOkUyNZIx1gcm8FipDWFZg7h3tAIIxAdIUjp+CnYfJefLZjmsCiYM0cOa1PkuwcREGHEgwZLmioEhIAQcGcCIoy48+hEz7ZFVWEEgkXJ0mXUSyFGFi95WzdvCtMghySMYBcj6oG7LSS8IO3esd3WjVxXdu2wdt16ow0Xz58L8lJuXIjiH5wVRmbxrs2ZvMjRlF1cNGncOIpTke4JASHgCQREGPGEUZI2ugMBLNbCvY95YRntatDwKypdsqQKKF6qTFnlfgjxPqxp9swZaoc5ymnKi9Gw2rAmqzDSf8BAihMnNlsBBN0YYz4PYcRnmO8rz4TWenbu2kW+w0cYVgeouyoLOC2bN+ed+BVUU+BGFVYTp1msSMOWCN27dFGCj7WdWEDvxlYdx779lj5On149+0EgyZYtm3ILZc2vv9sJI3CtlDN3Htq7a6eygoAYg6DYsJJetGA+bdy4UbnLguUKBAKc//boEeUiSpdrPd+uQ0d2FXZDXzZ4Hzx0iAOFD1EM6tSrT53ZXVeqVKmUOyVsNmrctCmPSyUlbDnTRzthBO/GcH1r50prwMBBFD8BW+/07Gm0zfoBc6hnj+5UpnTpIJfM560L+7C0yZkrtxKGdCyOYcOH0zO2avIaMtgQL8wL/CgcliXZ2cXWiqVLKWvWLDRm7DgljsE9ViyO+/KY3Y3dYhdrRw8dVG2x1ouTVmEE54KbR9ZxQl4k63nMXVi/mAXGVavXECxDlrE1ljWFZg7hXrt+2M1N/LbgLm4Pe50wpy9KliLvIUOoaNEi5tPy2cMIiDDiYQMmzRUCQkAIuCsBTxJG4Ev2BvustaatW7cqs3d9vkWzZlSdfYlaE3YameM9WK/Ld/cgEFWFEdCFr2O8FCB2SvNmTQnutMKSQhJGUB52ZE2fPoN+4yCeDerXp2pVq9hWI8LIP1icEUa0KKJBYrciXCRIEgJCQAhEJgERRiKTvtTtSQSwWJsieYogLlqxeF6ALUYQu6EIu4Bq37ETbyRJQf369DG6Bpdbb775RpAYI84KI/MXLFCWHNqFEgrFrvvPWYjpwLEg4DrLVcIIng1Llyqp4lggGPXqNWuU29UjBw8ZgdF1p2DFPH3GTNrAcVK09QnECIgaiJcRXLJbfEbeyuwurAfH3QgIDKSOHdorll26dVOxO/ayFQlii2gLm/zMe2D/flSp4n/CEhbix7HVBcSVkBIsK/IWKKgEhM9LlKTDBw+qvkFsWbxwAdWuW4/jZsxUsfWc6SPa3bBBfapbp45RrZonyZLbCiN4ht/C752zOfaHThhPCCZffdVQuQPDHHqbhTWzWzBsVsJi/I5tW5XrLOvCvrPCSH+2Qmnc6GtdtXIn1rJNGxVT5Q671oIl0rYtmylN6tQqD6w/JgQEhEoYcTSPnBk/q6iHxoQkjOB6aOaQlR/ut5ubwf22RBgBMc9PIox4/hhKD4SAEBACbkHAk4SR4IBZXRT1691b7foKLr+cd28CUVkYcRV5R8KIs/WIMPIPKUfCiFUUEYsRZ2eY5BMCQiC8CYgwEt6EpfyoQgCLtXBfhGDlcOOEuAcBkwJVcHMsJsMV0abNm6kvx23QwdGxYI34EfHixWX3T8MVCrtFX83IajECa+EqVatR+3ZtqS67zfqbrXoXLFzIwd1n0kYWJRCMO7jFW2s9jixGEE8C8eywIA+x49Sp09SK4znsYhdgCMJtTivZvdcEjpGycf16ZdFy5OhRataiJX2aMyfpeBXm/Ppzm3btlUuiHt276VPqiODZcA07gwUDLVYsXrKEjrNFysmT3ynXWnoz0BAvbzrx3UkaPHCgqg95Bg/xoiJFCodoiaErRAD22rVq0s5du41YfRBhMt2/o5YAAEAASURBVGbIwMLMZFPgdcd99B46lE5+d0qJQUmSvM1W1GtV/InPOKi7ncXItevXqTKPZ2+OV1Gb59MztpaZzzFNpvJmpD0s6iCwOGKO9GehxNdnKJX44gu2fLmpYoz8cu0XWsWB1ZGsC/vOCiOZPvmEBg8aSHnz5KELFy+Sl/dQFX9myuRAQttgMb6W3XEhXsvVn36i9ix2XWNRRsc/sdaLtlgtRhzNI2fGzzp3UY8jYSQ0c8iuH3ZzM7jflggjGBHPTyKMeP4YSg+EgBAQAm5BILoKIwhYt2btWjrDvldvs4lx/PjxeHdNGipXriwVLFAg2LHBjib4bEV6n32nFsifXwW/g4/X706dYt+yaSlf3jz0CT+4woUR0rNnz/ih+zs6duwYB95+qR5mc+XOZWu9Al+427ZvV/fhTz4OWAeXSz9euULLli2nS5cv0R9/PFIvHwXy56OqVauqB2LjhmA+4IF7y5atdIhN0GFSDdPr5MmTUdYsWdSOLbyYBZfs+gxmR7k/d27fofc/eJ9KligR5HbsVNvLAb+///57Ov/9BRUAEbuXPuC8MKuGxURwKSzCyHmuB24DdMrNO9PgGsAunWHfxOfYZZRO+XkM4QfXnODb+Dt+Ubpw4YIKCgmz9vfTpVMv0tmzZzNnDfI5pODryGhmmZp5YHeiXYJ11Fqen4ePHFXzM2nSpOpFtHbtWsp/sSNhBAEpb93+x2d0TDalr16tqqoG8x4v1jotXrKU4NdXJx9vL8MfdYwYMamGyfIKiwUPHz5UWRG8sGyZMvq2IEfM9Yv8sqZTlcqV+aU7jv7qlseQhBERRdxyyKRRQkAIMAH8vwrBiJFgwQZLNklCQAjYE8BibXVe1EY8CwTRhpshPP9NYAuJDB9/bNwEq4DxLBrAEgDPPUUKF1JxN7R7LbtFX32zVRjBeTwXIbg4nsu4SLWbH3E8smXLqm4LbvHWWo8jYUS7jkLf8Nz1hJ/9O3boYDwD6jbiiPeCzvxvx0GOzYF+xWHhZMigQdSNXURlY5dM0zlwu11at34DDeR8WEzvw3kbs2tRJDAbNdqPMrA4sXTxInUO7y7Va9Sk5xzT4QS/M8SN+8+zIN6jIITgPSwW1/snv5PgeRPuxvS7kyogmD/4N2/v3r0clLwhde3SWeWCCIP4Iun52R+B15Gc6aPOs5fjhsSKGZPy87sV4k6cO2fvSgvl4rm5e4+edPfePfrzz5eUKmUq8ud/eyFa6LSI47X4s0suxLNArBS8s/mPHauCfyOPdWEf7XDGlRZigyBwOMqFCFaUxST/ceOMd0G40prKcVhSsZeE39lq3G/0KJoYMEm9P57m/19Y60VbrMKIo3nkzPhZ5y7qcSSMhGYO2fXDbm4G99sSYQQj4vlJhBHPH0PpgRAQAkLALQhER2EE7oz69u/PD7N/2o4BhJHpHFTPbjHXvGiPxWb4KW7arLl6+DYXhmvYWXaPH5ph1o1dPOaEXVUL5s19ZUEeL0+16tQ1so7wHaZiQ7RiM2mY8lsTFswXzp+nFs2t1/R37AKDeTEedO0SXkLwctOkSWO7y2Ttc43q1akJ91nzwwJ5wITxxr0wF+/StZt6ETROmj7gxah1y5bUjnex2SVzfdjRFxgw0S5bkHMQprC4rRN8SGNHoF1qwUH4drLPWZ0Q5wPiExJeDrx599UydjFgl+BiAH6ch7KAkCB+/FeyOBJGnOkbdnjV/7KhEtysFcTklzavwYNYbHuu3CPo60sWLVRuCvT3puxves/efeprwoQJ+YX0qPqMuQBf2s4k7Ho7dfKEkbV8xUr8YnVZfcdONLhfsEs+w4bRLA5OqdOh/fsI89SdU3DCiIgi7jxq0jYhIAREGJE5IAScJ2BerEVMBAgfeB4PLsHa4+2337bdyBTcPSGdxzsBnrnfeeedkLK99jVsfrrN/dPulEIqEIvneD9AXmdEiZDKCu01vEdcZxfJqFu78wptGc7kd6aPeP5HwrPv9Bkz6Pjxb20tRsz1YTzxXvDuu++aTwf5jHeipO8mNUShIBdD8cUsXmD+gFtwcxN5b7KVCrhaLYVCUaXaRBfSPIqo8QtNmyVv9CIgwkj0Gm/prRAQAkIg3AhEN2EEgaa7swiAANUhpc+LF6PJkyZRjBgxgmQzL2xjwRk7hewEC9wE37mXLl1Sps5BCvn3C6wQVq9YHuSlzCqM5MieXd2PoHTBJVh7wK+u3QvQ7t17qF3HjspqJbj79fl2LL4gWKI1mfuMh/8X3BazyGIWRq5fv0GVqlQJct1anv4O0ccclE+fN9fnrDCC3UsFixRVu6NQDpjs271LF2kcwTEvC196zLBD8JsN/wQfRxk1WFA5y1ZEjhKELwSRtKbXFUZu3LhJdTlYIV5ogkuYk2nTpKErV68aWUQYMVCE6YOdMCKiSJhQyk1CQAhEEAHrv1ES9yiCwEs1HkvALIx4bCek4S4nACt483shXIzhPQfu1NwlmYURHZzdXdom7RACkUVAhJHIIi/1CgEhIASiGIHoJIxs37GD2rbvYLjCwlDCLVJJ9v+KXfrbt+8IsqBfpXIlGjN6dJARNy/a6wtwpwW/uQjGB/N1a4JlQVUWC548fUJbt24juEnSaajXEGV1or9bhRF9Hgv4X3z+OSVjMeXyDz/QOvYJDLNrndKlTUvreQc/djrpBFEEvoW1ZQfOZ86UiV2F5eedS/Ho7LmztJtdLpkTLDm6d+tqPhXEYsR8ASIJAlQW4iCIvdjXLlK3Hj3YNH6dka0EtxnuyZJzEEO4CEMgSC2qwJfzkUMHX9nNZGbsrDCCCuED2mzpAYsGWDaY0z4OANm4WTPjlFkMWrpsmfIrrS9mzpyZqrEbqBw5cygXZDABx+5BnaxiBM6/jjACsQai0k8//6yrUONZuVIl5eIBQRV379ljK7RZ2xKcxQjcGkyeMsUo/+jRY4TdbDqZXWfFjhU7SODI6GQxcu7cOZo5e47GIkchIASEgNsTcBS02O07IA0UAuFMoFmLFuqZG8+WkoSAJoCA5frdBOcS8ca3vhyvsjhvknOXhHeEEqVL0zqOH+LuVtjuwkzaEfUJiDAS9cdYeigEhIAQiBAC0UkYQbA8xKLQCS6o8nMMD51get7w60YqUKA+Z11cNy/aIw92aFYoX15np4qVqwRZuE6dOpUKbAgRAOnY8eNUr8GXRn4sROtgjjhpJ4w0ZAuC/v36BrFegWUBFr8hkuiEcswL29gZd/r0GX2ZunTqSG1atw5iKn/g4EFqyW62EAcFKVasWLR/z25lnq1vtPb5i+LFqUWL5ipWitnsHi4JZvNi8rqNG1TARwRw1H5+dVn+4yfQhIAA/ZXWrlpJWTjOiTmZ6wuNMAI/ss3ZTZZOCIzY3CSC4LyPry/NMi14r+GYMVnZlzIShJslHHMDfobha3nHtq1B3B0cYj/MmB869e/Tx/CtrM+9jjCyes1aZc2ky0r/0Uc0k/0EYw7pBJFrBPulNruqwjVnhRFdjj6GJvh6dBFGerAwOH/hIo1IjkJACAgBtycg1iJuP0TSQCEgBISAEBACQsCFBEQYcSFMKUoICAEhEJ0JRBdhBDvlsSNIJ7P7J30Ox/0HDlCjJk2NU+3Z4qIzCwo6mRftYZ1x7MhhJSbo6wHsfmus/3/xNr5u+CUNHDBAX1b+jIsUK07wbYyUkYMUblz/n4WFVRj56MMPVSwHxJawJvgWR/wSnUpxAPTJgZPUV2t/ETdl/lz7HfCBkyeTHwfr08l7yGCqX++/cs19RoDGPbt2BrFM0feZj7BCgGsqa1DzCxyUG+KRTgg+Wa3qf99x3lxfaIQRBCLMX7CQYZFj12fMAbBBguuxXTv+C3SvTvKfP/74g65cuUo5cmTXp9QRwk/+QoUNd111WHga5jM0SJ7XEUZgzQSrI53gHi1vnjz6q3GEOAKRT8f7wAURRgw8YfpgdaW1gIUR/L4kCQEhIATclQCCref6NCc1adzYXZso7RICQkAICAEhIASEQLgQEGEkXLBKoUJACAiB6EcguggjVmsC+Ge1C56NGWCO3YA4IePG+BkTw7xo/1nRIjSLA/SZ0wq2QOjVp69xavKkACpVsqTxHR8Qx+LUqdPqHFxgwTJBJ6sw0qRxI+rHlgnBJcTVQPA/JLjJWrdmtfoMN1rN2C2WToMHDqCGX/5nqaLP4wj3X2XLVzBONWvahPr06mV8N/fZTmwwMv77AQv3Bw8eoossgnx/8QLd//2+keUpW6bA8kInqwiD8+b6QiOM4N5OXbrSho0b8VFZ2EC40uMMseaLkv+5TwiOLcbmzNkzdOHCRRXrA4KITge57dq6BkHY/ceO0ZfU8XWEkSrVaxBcOCEhoOJRdjMWXBrOgtL0GTONyyKMGCjC9MEqjMA9XsfOXYKII035tygLkGHCKzcJASEgBISAEBACQkAICAEhIARcRkCEEZehlIKEgBAQAtGbQHQRRqzxI5wddSyQLpg318juaNHeKozMZuGkKAso5hQaYcRr8CBqUL+++fYgn+GWC+65kOBz9tD+ferzkqVLqd+Ageoz/ti1Q1+EkJE5W3ZlzYJzIYlBjoQKBDDEgvLxb7/VxYd4dLUwAlEE4ohOgQETCW1GWrhoEQ0cPERfokUL5lO+vHmN77A48R7qQ4uWLDHOhfTB1cJI4c+KGZZE2Am8bMniYKtfzG3sP3CQcV2EEQNFmD7YCSMoSMSRMOGUm4SAEBACQkAICAEhIASEgBAQAuFGQISRcEMrBQsBISAEoheB6CKMICA4AoPr9M4773AA8jj6a7DHbFmzUcCE/1xjRbQw0qtHd2rBsUSCS5WrVafz58+ry4hFsZsDzCNZ41VMHO9P5cqWVdesfx4+fEi58+U3TteqUYOG+w4zvjvqs874/PlzKl6ipGHBos+HdHS1MILA9nCnBZEDqX7dukYA8VYcS2X7zp3qPALHH9y3N0i8lTZt29FWjjPibHK1MFKiVGkjuDuCxiO+TXBp5sxZNGzECOOyOwkj3Xv2VPNPNw5inbsHigxOGEEfRBzRIylHISAEhIAQEAJCQAgIASEgBIRA5BMQYSTyx0BaIASEgBCIEgSiizBy+MgRwuKnTnaBs/W1kI6ORAJXW4xYg7Ob24YYHp9yDIqnT/8JnG62MrD2t3PHDtS+XTvz7cZna0D4DpyvE+fXyVGfdb59+/ZTY1Owc1hqtGnVijJl+sQQIOBeCy6jdHK1MIJyW3AA9p0ciB0pVaqUtIfFEAglefMXoCdPn6rz9erUoaHeXuoz/kBQwXVYzyB9nD69cmGWO09uis0B6XUqULgIPXjwQH11tTBitv6JxXWeOvGtcgem6zYf+/TtR8tWrDBORYQwYm4fXNFBWLJLNWqxq7jT/7iKw3VPF0bQBxFHQEGSEBACQkAICAEh4OkEEGsPrnxjxIjh6V1R7YfLW7hBfj9dOnrrrbdc0qfwKNMVDbt+/QYlTpLYcBMc1jKj2hyw4/Dbb7/RX3/95ZLNWXDH/PLlS5fOMbs2y7nQERBhJHS8JLcQEAJCQAgEQyC6CCMIqI14HLBqQMqaNQstZ3dE1qDmd+/epS7dulOjr78yXDCZ0TkSCVwtjMSOHVtZDliDmKNNMzjGhC/HmtDpS3a5NYRdbyHBCqRQ0c+M/sJCZuumbyhx4sQ6u3Fs3LQp7dt/wPg+feoU+rx4ceO7oz7rjMOGD6eZs2brr7R96xb1AGmc4A9WF1DhIYwsZ8GgNwsHOn2zYb1yUdWoSVN9imZMnUrFixczvu9g8aQlW5ToNGyoN9XhWDDmhJeu0mXLGadcLYwM8fKmeQsWGOV379qFWrOwZE0///ILVahU2Yh1gusRIYxY45ps27KZrPMSggiEEXOKCsII+iPiiHlU5bMQEAJCQAgIgehF4NLlywTr4jGjR1OOHNmd6vycufMo/UcfBXGru2r1Go4TN4OWs9tbZ6zXnarIyUxYKM6YOYuKbwhxxJmEjU+IR4h3o7CmsLCzq8uuLdj0lOPTXGrDDjbuuCKFR5muaFf1WrWoaeMmVLlSxTAXF5Y5EObKIvFGvLc8fvTY8BwQ1qZ06daNdu/ZS8mTJVPutREPdOw4f5o/d47te7Wz9djNZWfvlXz/EBBhRGaCEBACQkAIuIRAdBFGAKtz1260fsMGg1tpDoo+eNBASp48uTp3584dlefI0aPqe47s2Wnq5MAgO00ciQSuFkbQEOyAGuYzlBDvBAlWDXP5Rctv3DhD+MD5pYsXUe5cufBRJatLIwRnh5UE+vXGG2/QrVu3aNjwEbTxm2/0LcrCYue2bUF2XDnqs755FosiPiyO6DTUawjVY1dWOiGw+Ff8MK8tLnAeYk7/fn3VrjW0CcnZ+lRmmz+///67EsFgUYPUlwPJ37pz2xBtEiZIQEc4sLlZFDt79hxVZRdiOlnjrCDAfWt+GcbDsE4Q1+bPnUvx48UzLGJeJ/j6d6dOUc3adXTxqn2w9GnapInRVszNfv0HqJ1xRkb+EFZhBO7l4GZOp9UsKsHCB+nNN980+oXvm7dsoXYdOuKjSphHY8f4qfmJnXVoW/eevVTAep0Hx6gijKAvWhyBddb4cWNxSpIQEAJCQAgIASEQDQjcuHGTBg0eTH369KaPPvzQqR7DjWvBAgWoSZPGRv69e/fRYhZF/MeOiXCrjbAsiuP5/tDhwzSF34nCmsLCzq4uu7aEh4gRHmXa9Se050QYcZ6Yq4QRbDQc6etLn31WVFWO952p06aRP7+H4x0wrMluLoe1rOh6nwgj0XXkpd9CQAgIARcTiE7CCExqG37diC5eumRQxOJvmtSp1QLwtevXDVdKyGAXaNzRon14CCO6sbD2SMY7oa7+9JMy59XncTRbi+jzWMxv0qw5nf/+e31KHfEQFyduXPr111+DnE+YMCHNmDY1iLiCDI76rAu5/MMPVK7CfzuYIHRAPMiWJSvBBPngoUPKpFnnNx9HcEyTmv8KE87WZ77f+tkcMwLutJ49e04YfyTsshrr5xfkFizs48EXzHRKmyaNEqMesPXNIW77H48e6UtBjtWrVaVR/8b7eB1hBIV6eXvT3Pn/WY3gHAQcWGbcYWsms6iEazqFVRgZM3YcTZo8WRcT5FiXLWZ82HJGJ1ghVa5WjWDGb06IH/L0yRN6zP/ZpagkjKB/s2bPpiaNG9t1Vc4JASEgBISAEBACbk4AG2jgSihz5swUj5+HkeAmB89YsLDGu4FOeLZ5wdbmb7/9NuFZEc/O1jywpkCCZYhO9+/fV+8UPXhzTi62ZmhQv556nsOzPNy7PmYXrigTCXnj8bM53Kjevn1b1W9n+YD68Q4Dd1Fw+YqNUrCI1+Xouq1HbITCc3jGDBkIz/pWixGUi+sP7j+gbNmyqs1TKANuZp+xNcaixYvp+Lff0uh/rdTNcePA58KFC/ThBx+E2A4rO5SNlCB+fPV8Da5WK2SV4d8/IbXFLGKgfz/9/DOl4Wd4u0VrCEPnz39P8RPED7E+c5l6LHDuCbcb4493HLQZMQuR8G6GfOiPNaFOjBvuwRjojWDIh/eOJEmSGAKZ1f2TlZudMOJMnxzNAbQFv4GzvIktdapUqi/oLzaZYUOZOcFy/eGDh/z7yRRkI505j/nzzZs36S73Mwv/3uC+DX3WvyH8Fp7wHAID/C5j8DuPrg/5MJbZsmYleFAwJ/NvBnke/fFItcf82zULI+j/M/4dW+cYxhBz2Go9pbmjzopVqhI2+2FTlE6oB31A0nMZ8w2bLPF7xG8ZCX2AKIj3Ye3mLaS5rG6SP04TEGHEaVSSUQgIASEgBEIiEJ2EEXDAAwrEESzih5SKFC6sdoRbXU85WrR3tTCCRffTp8+E2F7kGcmWGuYHbd03vDA1a9GSvj1xQp+yPeIlZ9aM6QSrEmty1Gdzfpgbr1v/n1WO+Ro+ly1ThipWKK923puvuVoYgesCbx8fcxXG5+AC0S9ctIiGeA9VLwFGZtOHlClT0szp06hajZpBLHVcKYzgQRzxQ5avXGmqOejH7NmzUaECBWnq9OnGhbAKIxc45ktVjvmiY6sYBfIHqzCCa3AnVrd+A0NkMufHZ4iJadKkZvFgjnEpqgkjRsfkgxAQAkJACAgBIeAxBJ49e0btO3Zk64cj9CFbfFyGayx2WdqxQ3slVtT78kvKlzcv9WExAwkbQqpUq06NGzXi/75WcerMLpsgYtT/sqFaIMXiNBZrZ/BzIkQCbNCBYIIyYvFiLzYk5WRLW1hd7OI4eD7DfGnr5k2qHix245lrwaLFLM7c58XVu1SoYAEKmDjREG6wsN60eQt1PXWq1Kq9nbgv4ydMUK5rVUGWP1jwhcUKdrhjQf4XXtD2GjKEYC28Y9tWtRiMxeg27dqrtmJDEBawe/fswc/qFchvzFgVzw7iyAteNE+UKJGqYd/uXWqBe+Wq1TSQLWgyZszA1sK3KNMnGdnSfrJh5WxujlVowKL1c960dJ/7e/DQYf78TLklmj1r5iuL1ygnpLagbRgXvEv4+A6nxNzOm7wQ3oLjHnbr2sVoxs5du6gru0uGmIFNT4lYREF96Lc1Wdt75sxZatG6NTX6qqFyc6uvw7NAn3791TjdYAEAdXbv1tUobvfuPdSle3e1sA+RAfNkgv84Ht+CKk+JUqVp0IAByr0vFswLFSnCbGPSimVLlVUSxh0uak8eP6aYW4URR31yZg6gIfCo0KdfP0qQIKES5jCW2bNlJ7iY1pukIIg05Q13YAfGeKf2Hzs2iGtio+P8Af3B/Dt67Bh9kjEjXWPxbdyYMdSqbVvavWO78tiA34IXv3tBVER8zK6dO1Mj/q3BvTBiKWbNkkWJI7V481yP7t2M4sGhDv83f8FC5VoYglIsFk+mTZmsPCMgI+bY/d/vK8Hl25Mn6U+eJxAtZs2cYbh6RjlXr1yl40ePBBFEIZKW/XezH8qG4KY9DUBAgsBz+MB+1R7Uc+XHK0r8wr8Bc2bNIryrwYUzhBIIZhBi+/bu5dTvyuikfHBIQIQRh4gkgxAQAkJACDhDILoJI2CChzyvoT60bfv2VywvkrH/0K++bECtWrYM8oCkWToSCVwtjPTv25fKlS1Dg4d40bYdO3Qz1BF+ifFQ2LdPH2MXSpAM/37Bw7svvyjgoddq9YAHu6JFCrM7q362LyIowlGfrXXCamLipElGUHh9vVzZsjScX1qwowYPkVu2bFU71HDd1cIIdid99vkXumrjiB1HRw8fMl40jQv/foB7g57ME3PEnPBAP3HCePWyizGev3Ah4SUJQoYrhRHUiZcmX7ZAWbJkqREsXrfls6JFaLy/P23btp2wC1GnsAojuB99HsUvKpf45QsP+zrZCSO4BgukGTNn0v4DBw1OceLEofr16lLnTp1o+vQZNCEgQBcTpVxpGZ2SD0JACAgBISAEhIBHEcBzE6wi/PxGq13p2MldrWZNGjxwAFUoX165Aq3Km18Q/65M6dLUslVrSpQ4EfmNGqX6qRfDD+7bqxY78SxrjmGA519svNJWxLjJzpWWnTBy7dp1CuDnzPz58inLFQgu2EjUjheRsXkFz7QVy5ejzrxwDKsEuIBt3a6dEl0Q088uwYUwdsqj/alTp1I713v27q3cYmlhxIddBP3IAg4EDexox0L+CM6/cf1/blbtXP5gp32xL0rQ3NmzKE/u3GpTEdrclF2G4XnfmuzYzZ03n/qxWzLE9MPz9ICBgwjiwrw5s623G9/t2qLLhovXMTy2sAqAoABRC3Eg8ubJo8YFG5sgZBQuVEgxnTAxQLmJ3bTx1Q1dukyM9YULF6kzb/wawO9KVatUVm3R19H3EcN9g9SJ9kNgw1xAG3zYGhzW6ujjqtWr1Tso+MJKAS5as7DlBWIK7uE4FoFTpii3xrgf7ojh7nbe/Pkcj2aJqtcsjKB8R31yZg6cP3+efwe11Ca7ShUrqHrgPrdr9x5Uszq3n63HIeqULF2Gateqqd6R8f6I9rZp355jWG5SbTYG6d8P7Tt2UhupYGkE633Mxb79+9Mefu/Yv2e3IYw0b9lKWWTU4t8iysX7eX+eC5t5XLBBEWLDFyVL0RaOlamtd7SgAaERv5mnT58p91Zz5s2j3Tt3qN83fp+IfTloQP8gcwyiGeYtEvjevn2LWrZo8W+rXz3AowDc3qEeJFhPtW3fIYgwAoFmIdetYw/hNz6M3703f7NRbVw8wcJMD3Y3jHHX1iR2c/nV2uVMSAREGAmJjlwTAkJACAgBpwlEBWHE6c5aMuJB63s2/8Yup6S8eyhLlsyGSbQla4R9RQyLWnX+i8sBYQS71JDg6gu7WuBSKXnyZGpHDHawOJsQeP7M2bPKTP/58xeUIkVytYNHmwI7W44z+bC4j90x3/MiOnbnZPrkk0hn60y7dR4IK+f4RQH9yMRWNHC3ZmeRo/OHxxEi1imOO4IdiQnYjP3jjz922qd1eLTHrkxYkMSKGYtSpkxhCIn+4yeIMGIHS84JASEgBISAEBACkUIAi9K58+Wngbww+wlbOOg0a84ceuvNt9TGHZyD21fEU6vIQslJfgZbxvH7sPkDSS+Ga2EEC/uz+f4+vBMci6awqLA+KzorjGAx3+zmNZCFimPHj7OL22n8LHia6nBMPiwma9dNaA9EjR07dtpajOD5NQ/3FzEKy5crh+wqbdm6VS3qamEEogtcGT1kC3NY1OA+LOZjEVq7FwpuAVfv0seCN9Jidrl1n3faa5db6uS/f6zssGi9dt161SfNDNbtjTiu3ne88Gx2iWQux64tumxrbMPGTZsqEQSL3rPZknkjL+BDBNMJz9nY1b+DmWDh3px0md26dKZZc+YqLwKIFaOTvu6ozhWrVtG6Nav1bepYplx5JSBB+JjG1t+neaMV4tbBKgb9hoiFmC5jRo+mESNHqXEZ9G+7zcKIoz7hPc+ZOTB9xgxavWYtrV+7Jkg7q7BFeXZ2YwVhBOIJhC9Y2MACSieIJ9hMiE1i5gQhBXWPHDFciYz62nbe5NeqTdsgwkiPXr2VyGAec1gyoQzMJ6TeffpS3Tq1WZippb6Dw/vp3mcLlP9cI2NMChYqzBY5/sqKJaxzTFVg+uOMMPLzz7/QpIkTjLvAq1bdeiym9aVinxVT8wv/Bum5jox2c9koQD44RUCEEacwSSYhIASEgBBwRCA6CyOO2ETG9ZCEkchoj9QpBEJLYOw4fwoIDDRuE1daBgr5IASEgBAQAkJACEQCAbi0KcwLlLAe0L7+dTMQr2PI4EH6K33VqLESSLBLHC6ldNKL4VoYwXlYEWPX+enTpykNWwB079IliGshZ4WRhg0aGLH2UO6q1WsILl6XLVmsBIQAtsTG7nNz+oYX+kf7jbEVRrCppkix4nTk4AEjFgLuxaawvOyOVQsjsAzo238ApUieXLkLQh4IFFgkh/stJLsFXIgK3dgt1TEWMcAPi9oQSLJly0ZwWWtNVnZYtIbVidm6BhY8xb74gs6fOW24LbKWY9cWXfbO7duCuMXCYjosDOBOq/+AgbRrzx7DhZK53F7sOgzWJuaky4QFQ8vmzakrCyTmpK87qjNOnNjKKt98L9qiz0OIGzR4iBKi6tSrz5bXHXkRPZVyxQYhDOJO5UqVjLlhFkYc9Sk5e0FwZg6gHIyf15DB5mYqbwWwJIcwAhFrwMCBanyDZOIvsIaByGNO+vdmfQeAmJafxQuzxYjZrRzKuMQu7jqwtcmTp08oVcpUqlhYAHXt3Ikasrs7JHCAZbu13gYNv6LSJUtSE7ZcCuscUxWY/jgjjJgtx/StcGE3j+NGwpVYrFgxqRG3rWnTJoY4YjeX9b1ydI6ACCPOcZJcQkAICAEh4ICACCMOAEXwZRFGIhi4VBcqAngR3sQv4sEl7DxEfBFYC+l07PAhFVRRf3fHI3yBw7cx0oJ5c6lA/vzu2ExpkxAQAkJACAgBIRBGAliQHcaLvKV44VQnxBIwW3osXrKEJrG1RguOpYDj2lUrDfc9ejFcCyNY9CxdqiRbYKdQrplWr1nDseq8WYw4RHB3i+SsMNK0cRO1wKzbZRZG8EwFKwNYcXzEsVF06t6zJ504cdJWGEEeCCD92D2seTc/Fri7cswLLYxAiOjetRtVqVxJFYvYcxUrV1Euf0ISRpZz/IfpM2bShnVrDaEJljbYEe+sMGJdTH5dYUSPi+ZjFkbmL1hAS5Ytp3WrV+nL6gihCIG/rUmPNVwu9WKBpX7dOtS2TRsjm77uqE5YFWHcdILVwOc8/zqwGzS4jkIsSIwTyvm8REk6fPCgmjsQ8RYvXEC12epgDltpwPIeySyMONMnZ+YA5vyEgEm0d9dOw1IH7SxeogR9VqSoEkYgTCAmIeLLmK2WguOHtkJQ6MTxe8zixbLly1VMlpCEEbi8ix0rNg319kIx6rdVtPjn1L5tmyDCSIrkKSgwYKLKgz94RynAv3HEGUGsUAgjYZljRoH/fgiLMAKXdHHjxTXcbyFe6Fccqwiuv/Q7hggjVtKh/y7CSOiZyR1CQAgIASFgQ0CEERsokXhKhJFIhC9VOyQA11mly/7nksHRDVhs+JYDGrp7EmHE3UdI2icEhIAQEAJC4PUIeLFocfK7U+Q7zEe5kr1+/YZy3dS2TWuqwbEUvmPXWY1YoJg7e7aKFTDUx4dO8YLmwvnzVOwD62L4yFGjlQWGt9cQJQ7A5RUCS+9iywXEtENCYHOIGebA0XYxRkISRlBOzdp12KIjgYo5AsECAse0GdMpZoyYwQoj/dgS5DS70B3KAdcR+wCx8RDDDhtBtDCCxe9W7GqqAbvqwiK319ChHJNwo4rzoRdwZ7MrKcQphPWKdgW0kl1EIUbHxvXrlfUDdsc3a9GSPs2ZU8X1QJvNycourIvWdm2xlq3rNQsjCBxelV2EwXqkJscaiRkzBs3hfi1gqxwIF7AMMSdzmdj007hpM4IrLbi0gnWF+bqOe4H7rXVWqVqN2rdrS3XZouJvdlO2gGMUTmNBaSMLShDUkBCAHbE7du7aTUvZdRtSF45pgnEOCJxsBF7HebMw4kyfnJkDcB8Mt1mVOb7I119/rfqHuCYQ58pyrB1YjEAoqVSlqrKsgfUM+gxrl9bsFmstuwp7P106NC9IGjXaj2DVhGD0xYsX55iGezlG4SxCvI2QhBHEwYGlCmLjgP0Cjt/hyyJHB+bYgWOaIIED3EujbaVLlVJxeQImBdImtoDatmWzEc/SkTCC+XT9xnUlIAZpvOlLWIURv3HjaB4La4iTgkD0eH+aMXUKu+7Ookq3m8sYi+HsPq1Vi+ZGPlNT5KOFgAgjFiDyVQgIASEgBMJGQISRsHELr7tEGAkvslKuKwiEVhiBb+Y2rVu7oupwLUOEkXDFK4ULASEgBISAEIh0AohZALdFa9etowQcow9xDBrzQjBEC3zG4nDb1q3oS3ZrhYRFWcRVyMoLmYMHDXxlMVy7k/qBg5cjDglidXTs0CGIhca69Rto4KBB6t4+bOHRuHEjCoswAssCuLzat28fveBF46K8I7569WqExefggq9jcRnxGzZt3qwWZ2PHjsUxGcYQ3A3pGCIIdI2g0Agyf/fuPWrTqqWKNwJrGFgsQOhAkO+m7E7q9u07VOLzzylwUgA95r525sDhBzkWBiwu4rAQNIT72Y37mC1rFprOgejNySokhFUYsWuLtWxdr1mkwDksyPdkHnc5ViMEnmTsagoxKjJnzqxvMY7WMiEaNW3egmPqpeTYH6Pofyxy5Pg0l7L0CE4YQWF4rwPfWxzgm7UFFbMQMViyZctq1IUA7BANvmrY0HDZBSsOxBdJz27KdOB13GAWRvDdUZ+cmQMo5zzHhPTyHqrai7GElQeChN+7d0+JD8gD12doK+rExqcXL16QF7ugq1SxIi6/kiCmjBk7jlaxJRXKyZgxIw1jcbIaW8qEJIzg9wTBBfFF8BvMkzsX11FJ/Y46tG9HLXgugkN1Fp0g2CH/YxYeEKdnArtxy8AxGZGcmWNwX4Z3m8MH9hvWMtaOhEUYQRmIAbRz5y6KFz++mnOVKpSnfhw7VCe7uQzREnFvmrB1CVy8SQqZgAgjIfORq0JACAgBIeAkARFGnAQVQdlgwo6dMjo15x1K8N0qSQi4AwHsrmzLZvGOUvL3klHZsmUMn8iO8kf2dRFGInsEpH4hIASEgBAQAhFDAIutv1y7phapY5oCSYe1diw+3+YYJmlSpw5rEU7fB3EHCXFSsGMf8SGCE0Z0oVjkv//7/VcCjOvr4AHrg/eSJjXijOhrjo4QlCAQoe+wpPCEBGEEySxohHe7IQyAzzvvvBMuVTnqk6M5oBuFuax/E+P8x6sFfVhlmBNEMYgkadOkMSyIzNftPuty/2JBKWPmLIYwYpdXn7t2/boK9A4By5rMAhHimUCESc5xckKbnj17pgQeCD3hkdAu/FuTmuPGWGMbBVcfxNRLiKliiWsTXP7ofF6Ekeg8+tJ3ISAEhIALCYgw4kKYUpQQEAIeSUCEEY8cNmm0EBACQkAICIFoQQDihV781h3evGUrwbJg08YN+pQchUCYCMDV0x8PHwa5Fy6dkrAbqCFsFRLWdPv2bYIYotMdFqXgFg4WGuZYJfq6s0ezMOLsPZ6QD3F2Bg0eTD16dFeu1DyhzZHZRhFGIpO+1C0EhIAQiEIERBiJQoMpXRECQiBMBEQYCRM2uUkICAEhIASEgBCIAAJwdQRXTuYUm10dtWjezHD9Zb4mn4VAaAgsWryYxnPMGHN65+23lSiSN08e8+lQfUb8lKdslaETXJgV/+wzFedHnwvLsRnHxYG7L8QXkRR9CYgwEn3HXnouBISAEHApARFGXIpTChMCQsADCYgw4oGDJk0WAkJACAgBISAEhIAQEAJCIFoSEGEkWg67dFoICAEh4HoCIoy4nqmUKASEgGcREGHEs8ZLWisEhIAQEAJCQAgIASEgBIRA9CUgwkj0HXvpuRAQAkLApQREGHEpTilMCAgBDyQgwogHDpo0WQgIASEgBISAEBACQkAICIFoSUCEkWg57NJpISAEhIDrCYgw4nqmUqIQEAKeRUCEEc8aL2mtEBACQkAICAEhIASEgBAQAtGXgAgj0XfspedCQAgIAZcSEGHEpTilMCEgBDyQgAgjHjho0mQhIASEgBAQAm5K4O+//6YrV6/S++nS0VtvvRWurbx+/QYlTpKYEsSPH+Z6/nj0iO7evUsJEySg9957L8zlyI1Rn8Dvv/9Of/75Z5SYJ+jHL9euqd9ourRpo/7gRbEeijASxQZUuiMEhIAQiCwCIoxEFnmpVwgIAXchIMKIu4yEtEMICAEhIASEQPgR2LdvP/3w44/U6Ouvwq8SLvnJ06eU49NcdHDf3nBfQK5eqxY1bdyEKleq6LBPq1avoekzZtDypUspbtw4Kv/577+nWnXqUqqUKalM6dLUo3s3h+VIBvclMHiIF7Vo3pxSp04VLo0c5z+erl2/RqNHjqRLly9Tm7btaMzo0ZQjR3an65szdx6l/+gjKlq0iNP3uDojRJESPN//+utv+uD992n+3DkuqyKi/p1xWYM9tCARRjx04KTZQkAICAF3IyDCiLuNiLRHCAiBiCYgwkhEE5f6hIAQEAJCQAhEPIFZs2bTocOHacrkwHCt3F2Fkb1799FiFkX8x46hGDFiKAaLlyyh5StWsliyJFyZSOERQ+DT3Hlowbx5lDVrlnCp0CyM3LhxkwYNHkx9+vSmjz780On6WrVuQwULFKAmTRo7fY+rM8Kiq0y58nTmu5MUO3ZslxYfUf/OuLTRHliYCCMeOGjSZCEgBISAOxIQYcQdR0XaJASEQEQSEGEkImlLXUJACAgBISAEIpbAo8eP6RlbcSxavJiOf/ut2u2OFiRNmtRoyF9//UUXL12iN954gzJmyKCOxsVgPjx48EDdk+HjjylJkiRGLrMwkjBhQvrp558pTZo0FD9ePCOP+cPPv/xCDx88pMyZM9m63nr+/DmdO39eWZ+kSZ3afCtZLUawE/7+/fuEeq0Lvi9evKDHzOLtt98mzWT1mjW0ddt2CpgwXpVrZmKuCO7B4Hbowf0HlC1b1iB8UO6TJ08UA9R/9aef1C58Lb6gHLjrevPNN4MwQF4wfPfdd81Vqc+o79dffzWuoUy4+QrOZVhwDO/du6fapdvy22+/sZXAX8bY63reeecd1T7dkODKAzckjOWdO3cUy1ixYunbgj2GNIb6JrhFu3vvLmXJnJnMZeo2ak5WFvo6yilZugyP5QTKlOkTisttRDuDazPuC25MdZtevnxJZ86epXhcDn4X/uMnGBYjul4rO/C9cPGimiP4bWh3cpiXGPMevXpRLraoalC/HsWMGZMSJ06sqyPNKUXy5JSSrZjMya4fqAv3mMvAPZg7OKfHXZeDufrw4UP1m6zX4Etl1YVr+P3qvJgz+M1my5r1ld8Q8gbXP/2bCunfGdwvyTUERBhxDUcpRQgIASEQ7QmIMBLtp4AAEALRnoAII9F+CggAISAEhIAQiMIE/MaMpWUrVihx5AUv9CZKlEj1dt/uXWoxdPfuPdSle3e1CPq///1PLXxO8B9HhQoWtKWChdjOXbvRgQMHKP3H6enKj1eoRIkvaPiwYWqhVwsjI3yHkY/vcErM9d28dYtaNGtG3bp2McrE4nvTZs3pAS/UIg8WZP3HjqXixYsZeSYFBlLglCn0wQcfqusQB6axxUtyXjhGMgsjWHhu1qIlJUuWjMb6jaY4cf5xl6UL27V7N/kM86WtmzeRZvL82TN69u/CMhap9+7aqbMbR8SVaNOuvXJDlpYFnrvczt49e1DFChVUHpQ7arQf1Wa3XhMCAlS9f3Cf/EaPotKlSqk8WAxPlTIVdencySj31KnT1KhJEzpx/JhxTn/QDKdyX/v060/x4salGzdvKobdu3XV2cgRwxKlStOgAQMUUyxcFypShMc8Jq1YtlRZOUAMq1GrNp3kNmBh3FF5w9mFFMYb94H3nFmzHLqRcjSG165fp2bNW9D1GzcoGY/vbRZcOnVoTy1btFD9dMQC4lLZCv+4UjMLAk0afU2tWrYkuzanTZsmxDFFxd9s2kS9eveh+Bx7BoIh4nBkz56NMB/gSku3y+wyDlZJnbp2pXdYfMM9mNsTx/tT/nz5CM/bcGUHYSIWz7U4PKY5s2c3LLgmTJzIc32qcuuG3wtcXM2YNpVSpEihONj14+Kli8riafHCBSqP/pP9009p6aJFLDZm1qfUceeuXWo+4XeOfmghcNrkyUrwG+Llrf6tyJolixJHatWoEcS9XEj9078piLB2/84EaYh8eW0CIoy8NkIpQAgIASEgBEBAhBGZB0JACER3AiKMRPcZIP0XAkJACAiB6EDAzsXN5R9+oCrVqpOPt7eK04Fd8KtWryavoT60cf06tRhsZYNF/ps3b9E0FiwQqwML7o04zscXnxen9u3aGQvGOXjRdwwLFFjgxUI66kEsg7x58hAWZrG7v3atmmrxGovye/bspTbt29NWXpBOlSolrVi5ksaM86eF8+epQO5oBxZuUdaCeXNVs7QwkivXp0pk+axoEerXt28Q6wfdfrMwos/Bldb6DRtDjLHg4+tLP/KC9lRePMbufwhJI0aNUnxQDsptzbEmalSrRj17dFc79ZcuW0bePsPoxLGjSiwKqzCSJ3duGjHcNwjDeXNmU768eZ1i2LFzF7bAyEStW7VSfCEygS3ur1e3Lq1Zu47mzZ+vXIk5MyZYnJ+/YCEtZHdVzsTVcDSGsD6AeFOShbXOnTopS59jx49TqzZtafDAgWpOagEiJBZ6PO1cadm12dGYwuKjavUa5Ovjo9oAkWPDxm+oW48eVLVKZVthBKJHjZq11JwvWaKEahLElT59+9F+jrejLabsXGktZ+FyNAuYgQET2ZrkU2VJNNpvDB0+coS2bPpGlWXXD9wHV3DOCiOa049XrlDZ8hXo0vfn9Snatn079R846P/snQd4FFX3/4+o9CKKjWZBUboFEQTpRaUjiAgKhK50EiC0QAi9hiIlgqEpzUKVpvRiBQXFv9ipCtIREF/9n+/Vmd/sOpvdhCxs2O99Htkpd2753Dt53vd855wjq1euMHsYwlelKlVN/xAkA52f298ZuxMepBoBCiOphpINkQAJkEB4E6AwEt7rz9mTAAmI+YIN/8cLBYaGx0uVIhYSIAESIAESIIFrjICbwTIxcZa89c47smzJux6zRf6BCM2BAOO5s0A4Kfl4aUnUJOb4et4qCNG1TwUL1LcM2XGxgzyebxERIU+UKWM8AfZqaKwmTZtJ4uszzdfzVjvdI6OMUFK/Xl3zRX9JFQZatYqwbhsvhWnTE4znCcQUCCMQWla+t0patWghEREt7breBykVRhD+CKGyTp85IxfUwwTGfIg8MFjDiwDttm7bzpxbuSYQsqhU6TIyK/F1KVG8uAmflBKPkctlmPDaa7J7z5cyYfw44yWDcF5ITI5cM0gaPmLkKDOnmAH9JZA1gXH+55/3y6uTJnrjdT2Hp01Sa4g9U189VrZt3iQISWWV/mqgR/ix8WPHBLSfrOd8CSPeY/a3pnhXFi5eLO+tWG41bX5r1alrwnS5eYwkzpotW7dulYTp0zyeQfitBg3qC7yNUNyEESRxz5s3jxH1rIcRqqxchYqySoUK7Cs39qkpjKBfeJFAIDupXjgovaP7SOPnGhlvqEDn5/Z3xjTGf1KVAIWRVMXJxkiABEggfAlQGAnftefMSYAE/iFAjxHuBBIgARIgARK49gm4GSz79R+goZ8ySL++fT0A+Lp+9OhRKVPuSfli104T3snjoX9PLGFk/fvrbGMwbsHIii/PEU5r6bLl0l89AooW/T9xxWqrdq2aRlCpVuMpNRRHS8UKFaxb//mFMLJ379cCb4LZKkJY+Rz+U1EvpFQYWb1mjfTp11+Q9wG5S1A+27lTli9dYvJOoN0BmoR703rPMFz42n7woEFSTr1Y3DxG8FFKe/WMSCqU1uUy3L5jhyYIH2REm+eeb6JeGZ3VYyS3+Shm66aNArGqdq1a8qyGTApkTWCcP3f2nAxW0SuQ4m8N0ef0hATD0tme83og+8l61pcw4j1mf2vaV9cbodUGxgywmja/sepZBYHMTRiBmJMlaxYNs9bT4xnvEzdhpGr1GsbbqHq1ah7Vndfd2LsJI8iLUkxzmLyzeNF/QmlZjbt5jOz79lvp1LmLClG/m7BvqAvvrO4a/q1Z06b6vgY2P7e/M1a//E09AhRGUo8lWyIBEiCBsCZAYSSsl5+TJwESUAIURrgNSIAESIAESODaJ+BmsJw7b57MnjPXGM4tAvAKqVilinTSsFgNn33Wumz/li5bzngMPPLww/Y1hJfavWe3RygtZ+4FVHQKIzC4IlQR8pxYSbVRB+F7rETuCANVSJNod2jfHrdMOaK5F0aPHStxsbEmlweEkcaNGsmy5StMYvJ49Yzwzi1iPZtSYaR8pUoSqTlV6tSuZZpCmKWateuYUFpIyO3WLio6hRGEbkL+C3hpWAWG7gULFiYpjFwuwzNqxIeHD9qpWLmKfLh9uwl/9sST5U34pUaNn9c8ITPlwQceMEZwf2viZpy35uP2628NkdMEXhjI7WLljUE7EJJQRo0YYXuMJMXCVNZ/AhVG/K3pnLnz5PXERPlg3VqrafMLoadEieKuwsgbmtNjzdq1kjhzpv0M3iUICi++2EweKFjQXHcTRjqqIJFTE6A7BSckhscewhjgmeTGHuGvBmp4OfBDuC8U7Ed4MC17951kCSNgniF9BokbHGvagVcNPFY6vtzBCCOBzs/t74xpkP+kKgEKI6mKk42RAAmQQPgSoDASvmvPmZMACfxDgMIIdwIJkAAJkAAJXPsEEApn+YoVsmjBfNuICsN0nbr1VNB4WRprGKy/NUzUvDfekIQZM2XlsqV24mcnnTjNu/DRJ5/KDA0ZBA8QCAVdVMRA+Csku7a+8E/KkA2DMQziyEPSvVtX0w68G+BBsVTDet2VP7+sWr1a+qpHCxJQP1SihMBbBblPzp07KzM1RBSKlWOkRvVq0q1HpCD80Gs6rhw5cjiHbI7dBIxAcoxU0HwR7TQR+AtNmhjhJjYuzuQlQa4PhB91axcdOoUReCj07NVb86XMVWP1g7Jly1Y1aMea0EVJeYxcLkOMAzk8kMtl/YaNsnD+m7ikrHoYb5fJU6baidcDWRNv4/xhTQg/XMNxtWvTWgprwm7v4m8NrT4fVAGsW9euxisHxn7k5UDy+soqSgWyn6x+Hy75mMSrcFa+/JPWJVdBwd+a/vjTT1K7bl1NAt/JvBcQHRYvWizj4uOlWrWqrsIIksjX1nepd88oE3rqwsWLMlfXe/prM2STCheZNdk6CsKLITRWVGQPe4zIRYL8HsOGxJk5H1KuyDGy/8B+9fxYbOp5s8dFiG1ly1fQHEGxmvukjiBn0HAVk7Zu2y5L33k7WcJIz969Bd4mYzR/DkSReZpLZpiKd530b0Mnzf0T6Pzc/s7YE+VBqhGgMJJqKNkQCZAACYQ3AQoj4b3+nD0JkAA9RrgHSIAESIAESCAcCMBoGtG6tfzyy69SuWJFmfLqZDPtXZ9/LlE9e8mRX46I6hWSN08eY/gtWrSIKxbkIEAS9KXLlkmmzJnl7NkzRjTopYmpkcMiUEM2jLrwKNi5a5dkz55dkJcjdmCM1KpZ0+53wcKFaoyeYIQc5D8o+0QZGTdmjKmPSpYwgvBbGBfCRiF5N4QTJBl3FjcBIxBhBIZ68MmeI7uKM8ekQ7u2JpwSvAqQ9BpeLkOGDpO1q1c5u/MQRnADhu7ZmrQcBeGsICIhNFNKhRG0EwhDMN68ebO82KyZEaHwHOaN/CIFChQwiddxDcVfe97GeYQDa94yQlo2by69VBBwK/7W0OoT4ckyqXiQIUMG9dDpZsJ7ob1A9xPqwjMH6wLB5e1Fi6RIkcKuwoi/NYUQt3XbNuml4d9OnTop6dWToqoKZPnz55MffvzRVRhB/1/s3i2RUT3l6LFjKi5cMiGp4MUEjxyrwLtpQEyMmVe0ht1q0aK5ufXm/PkSP3GSeQ/Onz+vopuKPOPG2SKfN3urPYhPMYNi5bzmwbkxfXojriBJ/EL1YClUqJBVzePXLZQWkqtDmER+EQgjjz7ysL6LtcxYO3V8Rdro345A5ufr74zHAHhy2QQojFw2QjZAAiRAAiQAAhRGuA9IgATCnQA9RsJ9B3D+JEACJEACJCByTI25EDacSbCT4gLjKb4ih5CCROgpLefUoAvjOJJTW+GAvNtCWCGE3LK+uve+H+xzzBXeNbfmymXnGUlJn2jnrCYVR7iwL77YraJCS1dhJLltB8IwOW0mpz0Y+pFEHZ4/SRV/awgB5Pjx42Y/JdVOat0LdE2xx7HuEGwCLXiXsJedYeICfRacct2Sy4Q8C/QZ1AO7nDlzmn6LPfRQksJIUu1ivuk1v8ptt93ms9rlzM9no7yRLAIURpKFi5VJgARIgAR8EaAw4osMr5MACYQLAQoj4bLSnCcJkAAJkAAJkMDVIgCPlwsXLtjdb9m6VUapF8lH27fZ19LawaFDh9VLZ6BERUWa0FxpbfzXwnghYp1WLw+rwIOpfkPNu6Mh6e6/7z7rMn+vMQIURq6xBeV0SIAESOBqEaAwcrXIs18SIIFQIUBhJFRWguMgARIgARIgARK4Vgn06h0tm7Zssad34403SFPNW4KQWiwkkFICCFU2fsJEj8cffeQRmRg/3qcHlkdlnqRJAhRG0uSycdAkQAIkEHoEKIyE3ppwRCRAAleWAIWRK8ubvZEACZAACZAACZAACZAACZBASglQGEkpOT5HAiRAAiTgQYDCiAcOnpAACYQhAQojYbjonDIJkAAJkAAJkAAJkADlDd6YAAAmeUlEQVQJkECaJEBhJE0uGwdNAiRAAqFHgMJI6K0JR0QCJHBlCVAYubK82RsJkAAJkAAJkAAJkAAJkAAJpJQAhZGUkuNzJEACJEACHgQojHjg4AkJkEAYEqAwEoaLzimTAAmQAAmQAAmQAAmQAAmkSQIURtLksnHQJEACJBB6BCiMhN6acEQkQAJXlgCFkSvLm72RAAmQAAmQAAmQAAmQAAmQQEoJUBhJKTk+RwIkQAIk4EGAwogHDp6QAAmEIQEKI2G46JwyCZAACZAACQSRwPnzF+TosaOSP1++IPYSGk0fP35c/vrrL8mVK5fPAQWbx5mzZ+Xo0aOSLWtWufXWW32O41q4EQhv73kePnxYsmbLZvh437uS56EyjmDN+fsffjDv/A033BCsLtjuvwQojHArkAAJkAAJpAoBCiOpgpGNkAAJpGECFEbS8OJx6CRAAiRAAiQQggS279ghUb16y5aNG0JwdKk7pOEjR8q5s+dkcOwgnw0Hk8fer7+Whs81ltx33inVq1WTqMgePseR3BuzZs+RAvfeK+XKlXV99M8//5RGzz8vDRs0kKYvvOBaJ7UvOnnv+/Zb6fDyKzJ29GgpXryYz66aNG0mDerXk0YNG/qscyVuhMo4gjFXiIMFCxWWD9atDQtBNBgMk9MmhZHk0GJdEiABEiABnwQojPhEwxskQAJhQoDCSJgsNKdJAiRAAiRAAleIQDCFgCs0hYC7cRrqfT0UTB7zFyyQxW+9LYsXLvDVfYqvt2vfQUo//ri0bNnCtY2///5bukdGylM1akiN6tVd66T2RSfvQ4cOS8zAgRId3Vvuvecen12FiiARKuPwCeoyblAYuQx4KXiUwkgKoPEREiABEiCB/xKgMPJfJrxCAiQQXgQojITXenO2JEACJEAC4Ufg5MmTkjlzZkmXLp38+utRyZ37ThvChQsX5Ku9e+Wu/Pnllltusa/D6P3bb7/Z13786ScTpilrlix2HesAdb/Zt08uXrwoDxQsKJ/t3OnqMXLixAlBuJ1ChQpJ5kyZrMfljz/+kN9//11uuukmQZ0bbrzRDnv0v//9T7788iu58847/IaJwjj2Hzggp06ekqJFi8h1111n95Gc+dgP/XuAeYHRHbffruP4P3a47TTUW89dLg/nWH8/f14u6H/OtUE/Z8+dM9ffXbJE1q57XyZPnGC6t0J6JcXCGqc1L4Tfypsnj3VZsF/gDRLVq5c8/NDD8kKT5+VGXZMcOXLYdawD1M2ka5khQwZxjhv3vffMpUuX5PTp0/+ZC0KBoSAUGAr63qf7KZPu2bvvustcs/5x8rb6u/nmm83etuqgva+++kry5c1n9npyBYmk+nfuVdTDHDFGt/BRKRnHd99/b6YBTx234usdsupCoPh/33xj9v79990n119/vXXL/rXW3W0/Y1+h4D3H+PE3wHsNrIaOHDli3reC998v2TRUGT1GLDLB/6UwEnzG7IEESIAEwoIAhZGwWGZOkgRIIAkCFEaSgMNbJEACJEACJHANEKivIYSKaJibJcuWStas2WT7ls1mVuPGx0vCjBlSoEAB+UEFizLqHTBJDewwcsMgX1yN4tOnTpHovv2MkHFIczW0adVKInt0t6nAkNsiopUa009Intx5jMEeddCuFUoL4kvHzp1lx4cfyT36Zf+3CIHUrp107tTRtLNh40aJHRxnwjZ9+NFH0r1rV2nRorl8sH699I8ZaK7DCAuj/6zXZxojvT2Afw9gMO7wSkfBePLlzas5To5J755RUvOZZ0yNQOfj3e7ESZNkyrTpJlTVYR0DjMQzEqbLHXfcYao6DfW4kBo8rLG+1KypLFi0WCpVrCiTJsR7DG3M2HGy6K235KKyvaDCDUQLiBebN6w34lJSLNDQq1Om6Lymyd133yPHlBXEkQRd69tV/MH/NsQ8IGKk1zYzqvBRolgxmab3vQv2VkSLllK7Vk2/ewZG9rLlK8iaVe95hFuqq6G4mjRuLM/rf3v2fCntX3lFMuoehJCHvThm9CiB8R3FydvihP1s5VYZMmyYzJ4z16wT9sxzjRrKHhXWAg2l5a9/7NVRo8eYsFwTJ0+WjBkzyhnlhDFWq1rVxpPccfzyyy8CAQciD8QNCE4zXkuQe+6+27Tp7x1Cpc2bt0iX7t3l5pw5jTBySseFfVPqscdMG/gnkP188cJFOXnqpGzf8aHZX9hbifreWQLJORUx4U300ccfm3XZv3+/xA4aJD2iohhKyyYd3AMKI8Hly9ZJgARIIGwIUBgJm6XmREmABHwQoDDiAwwvkwAJkAAJkMA1QgDGaxhbp0yabHuLLFaj+rj4CbJ4wXzjBYGvwzt36aIG6/wyaGCMbeR+9JFHZMTwYcYoCq+QOvXqy5xZifJYyZICb47ylSpLdTUId+/ezXzxv3v3HmnboYP5Ut0SRuB5AC+OMWNGmzoIgVTv2Wdl4ID+8szTTwuMza3btpM4zdPRUK9bX987je5YilZt2piwTW65ImCI/l6N+dOnTjV9b9y4SUaMGiUrly8zq2gZ0ZOaj/dyg9FoFSCmTJ6knhMPyalTp2T0mLEC8QbGfRSnoT61eFhjbaQs+vSJtj0pvMeHc4TSWr5ipcydPcu+7Y/FW2+/LWNVFHtj7hzjKYQHB8UONl4/8+bMttvxF0oLFZ1rZI07KcZYw5KPPiod2rc3/cDj4umatWTH1i1G3KlTv4E8XaO6fX/kqNFyXkW6GN0rKE7eVn+WMAIWWK+ZKigUVyEH3g/x8fGSqLlShsYNDijHiL/+sVfba16TBvXqSc+oSDPmhYsWyeAhQ2XnJx8bcSol43DOC/OcNn26fPvddzJqxAicGu+dpN4hCFkNnm0oY/Udq1K5snnmvVWrJLpPX9mqwlEW9b4JdD9DWOqr4cmea9TIeAH1HxAjEEXx3qN07d5DIDqN0fcrT57cgve5Z+/eKnx+SGHEEAr+PxRGgs+YPZAACZBAWBCgMBIWy8xJkgAJJEGAwkgScHiLBEiABEiABK4BAjBe16tTV5q/9KI9GyStRkitZ/Vrfat8/Mmnkjhrlqx/f50tjECswJf8VmkRESFPlCkjbdXAjRBXDdR4CgHE+mIf9eKGDJFVa9aa6wh39MhjpWRAv34aZuufr/5R53Xt5/p018vwYUONMIJk7R9u2+oREumVTp3VKP67MZIXK1rUeA84w2OhHasgrBHCcZ0+c0bwdT2EIIg4lneCZURPaj5WW9YvGOXNm0f69uljXdJQZL9KuQoVZdXKFSavhdOgnVo8rLEuX7pEHnzgAbtvtwM3YcQfC3iTlFTBq1WrCLtJeChMm54gPVTgsoSplAojSTFesnSZJLz2mmBuKPBcgZg25dXJ5hwC3T8h3341whuYjhozxvY+cvK2OFnCCMaLUGcDYwaYtvDP8ePH5Ykny8vgQQMDEkb89W+JeNhXVl4ThNcqVbqMzEp8XUoUL268KZI7DogRePeie/cyHh7Zs2e3Q8EF8g4lzpotW7dulYTp0+y54yB+wkRp0KC+8aIKdD8vXbZctm7aaPeP0HjNW7aUzz/7zLT9qL7PQ4fEydNPPWX3tWbtWnm5YycKIzaR4B5QGAkuX7ZOAiRAAmFDgMJI2Cw1J0oCJOCDAIURH2B4mQRIgARIgASuEQLOr/qtKVWtXsMIDcjr4V0SZ86QSyo0IJQWRBKEprJK7+g+RgSBAR1G7qkajum9Fcut2+Z31erVEjd0mDFmQ0iAYRpeAt75Du4rUMB4p8DYPETrr129yqOd8+cvGCP6Bxoe6ofvf5CSJR+Vfn372uGFnJVXr1kjffr1N3lAkO8ABQZdGOARhskyoic1H2d7OAYjeAVUr1bN45bzutNQn1o8rLFaBn+Pzr1O3IQRfyyq1XhKxZ5oqVihgldrnqcpFUaSYoy5lS7zhLz91mLB+j9Tq7Z06viKbWQfO268EQjuu/8+DeOVXs6p18cRDTP18Y7tZnBO3t6cqlSrbsK8OQ32eKhm7TrSovlLAQkj/vrHXh2gCd83aZg3Z6lUpaqKL4OkXLmyktJxwJMHe2j37t2SN18+iezWTSpUKG/EOH/vELw6smTNouHjejqH5XHs3LfOG87r4IuQZ5anCurBI6R8pUqyd89uIzQhHNpH27eZsF9WOxDWSj5emsKIBSTIvxRGggyYzZMACZBAuBCgMBIuK815kgAJ+CJAYcQXGV4nARIgARIggWuDgJsw0rFzF5PQvG90tD1JCBHp0l3nkWPE2zjvFEaQ5LmWeqJseP99E1LHaqhf/wGyYdMm+yv/UmoIRyijqlWqWFVMWCrrq3g3YeSMen68OX++tGnd2ny5ji/5R44cZZK3O8M9WQ3CcBupIX7q1K5lLmFsMIgjlJZTGElqPlZb1i8Y5VThaLB6zVgFyd1hBP9g3VqTJ8NpqE8tHt4Gf6tvt183YcQfi85du0mhBx+ww1WhXYRGGj12rIYzizV5M3AtpcKIP8bIRXFX/rvkqadqSOPnm8gO9RRCLpGfNVdF9aeelnVrVtvJ4OFJgVwegQgjWC8kDYcXklUwrycrVgoolFYg/bvtVfTlFEZSMo45c+dpjpIqJncNPH7eXbJEBg0erALEDk1un1H8vUNvvPmmwGsjceZMa+p2GKwXX2ym3loFNc9P8vaz1ZBTGEEeGwgg+LtRv15dq4rAy6R7ZKT9Xtg3eBAUAhRGgoKVjZIACZBA+BGgMBJ+a84ZkwAJeBKgMOLJg2ckQAIkQAIkcK0RcBNG4NUBD4uJ8eOlTOnSgoTKyEeQOXMmGTl8uO1hkZSRG+Gqajz9jBQrVtSIErfffpts2rxZYvTL+b/++tsWRmLVwLvr8y9k2NAhxkB78OAhE5rn5Q7tNSl2fRNKy9tjBOGDGj7XWJq+0MTUwZrMmDFTPvn0UzvsknOdKmhehXYa3uuFJk1M4urYuDiTewN5ER4vVSqg+TjbwzFyNPTTL/GHadigyiq8IM8CcozsP7Bf3lm82FR3CiOpxeNyhRF/LLD2fVW8QhL5h0qUkKNHj0ps3BD1zjir+TleszEg5BbCRUVF9rCveR8495avcTvFNDy/adNm9SgaarxEkHTcEjIOHDxovC2WvvuO2SfIP9JRw6kdUDHKypPh5O3dH7wtBureGz1qpFQoX97Ma5zmGFm1arX079fXeIwc1jUcrgJbuzatpXDhwh7TCaT/QISRQMbh0bGeIJcKvC4gwsGz6osvdku7l19W0XGdEY38vUMYe+269dRjJMrM88LFizJ37lyZ/toM2aQeV5kzZUr2frbG6C2M9NW/G7u//FLilHXx4sUECeuHaS4U5N6xBMNt27ebnCaD1LsmW9asVlP8TSUCFEZSCSSbIQESIIFwJ0BhJNx3AOdPAiRAYYR7gARIgARIgASubQJO47VzpvjKfIImZIcIcfr0aSn7RBkZraF0EF7L2+hsPedt5IahuUPHjrJ379fmOYTdate2jX7tHmcLI0hKHjNwkH5VvkyyapirEydOSIuXXjIGd+ST8GVshsEVX82fVW+Ri2rozaIG1hEqrngbtDG2deq1EtWzl2TPkV0N4sekQ7u2Jt8IvsSf/8Y8KahfzCM0WFJCjzVH5y+8VuInThLkkUAS8MdLPSbx48aZpNuo5zTU4zw1ePhij/a9i5vHiD8WEEMWLFwo4+InGG8crAfWfpzm8oAXj1WWLV8hA2JizF6I1hBNLVo0t27Zv8695Wvc3nsGHhEIx4QwWQnTphphzmoQoaymqziTW3OFYFxjRo+SSZNflX3f7pPdu3Z58Hbrb3pCgkyZOk1uUM8G7OsunTrJ+x+8LzWfecYIBjDeN28ZIS2bN5deKiJ4F3/9+9qrTo8RtOlvHN79wiOqR49IQRL1jBkzmnw5nXXslleGv3cI7X2hIbgio3rK0WPH5M8/LynD3BI/fpxHnprk7me06y2MXLp0SZPB9xYIbDly5FDhJr2MV2+jF5q9aOf0mTJ1qozRtZyhSeQRDowldQlQGEldnmyNBEiABMKWAIWRsF16TpwESOBfAhRGuBVIgARIgARIILwJIIRQzpw5L+vLbuQlwJfubjlLLLowiCMUVd48eQQheQItCKsFYeKWW25J8hG0j7ncmiuXWHlGknwgGTcx7ly35DJhjQJ5LJg8Auk/UBaYF7jCoyBUCgQPCEzYJwixldwCEeHgoUPmeQhv3gWCz759+6R7t67et8z55fZvNepvHFY95y9Eh180Lw/m7lYCeYeOqTBy3XXXJfm+JHc/u40FnE6eOCm5c9/pdluQ9wTh0so+8YTrfV5MOQEKIylnxydJgARIgAQcBCiMOGDwkARIICwJUBgJy2XnpEmABEiABEiABEgg7AjA+yFGwztFRUWa3DNhB+AKTXj9hg2aJ2WpjNB8L/CAYUldAhRGUpcnWyMBEiCBsCVAYSRsl54TJwES+JcAhRFuBRIgARIgARIgARIgARIgARJIGwQojKSNdeIoSYAESCDkCVAYCfkl4gBJgASCTIDCSJABs3kSIAESIAESIAESIAESIAESSCUCFEZSCSSbIQESIIFwJ0BhJNx3AOdPAiRAYYR7gARIgARIgARIgARIgARIgATSBgEKI2ljnThKEiABEgh5AhRGQn6JOEASIIEgE6AwEmTAbJ4ESIAESIAESIAESIAESIAEUokAhZFUAslmSIAESCDcCVAYCfcdwPmTAAlQGOEeIAESIAESIAESIAESIAESIIG0QYDCSNpYJ46SBEiABEKeAIWRkF8iDpAESCDIBCiMBBkwmycBEiABEiABEiABEiABEiCBVCJAYSSVQLIZEiABEgh3AhRGwn0HcP4kQAIURrgHSIAESIAESIAE0hqBP//8U/YfOCDXX3+95M+XL2SGf/z4cfnrr78kV65cPsd0/vwFOXrsaNDGfebsWTl69Khky5pVbr31Vp/j4A3/BE6cOCHYa6HK8ffz5+W3336TfHnz+p8Ma1wzBCiMXDNLyYmQAAmQwNUlQGHk6vJn7yRAAlefAIWRq78GHAEJkAAJkAAJBJvAli1b5bvvv5fmL70Y7K5Stf19334rHV5+RcaOHi3FixczbcNQXblaNRUg/pa777pL5s6elap9Xk5jw0eOlHNnz8ng2EE+m9m+Y4dE9eotWzZu8FknpTf2fv21NHyuseS+806proyiInuktKn/PDdr9hwpcO+9Uq5c2f/cu1oXBg6KlTatW0uePLmDMoTx8RPkwMEDMlrX1W0vBtJpanFza2fDxo0yZOgwWbt6VSBDYZ1rhACFkWtkITkNEiABErjaBCiMXO0VYP8kQAJXmwCFkau9AuyfBEiABEiABIJP4PXXE2XHhx/KtKlTgt9ZKvZw6NBhiRk4UKKje8u999xjWv7hxx+l+lNPy57Pd0mGDBlSsbfLb+pqCyPzFyyQxW+9LYsXLrj8yXi10K59Byn9+OPSsmULrztX7/ShRx6VeXPmSJEihYMyCKcw4rYXA+k0tbi5tUNhJJAVuPbqUBi59taUMyIBEiCBq0KAwshVwc5OSYAEQogAhZEQWgwOhQRIgARIgARSmcDZc+fkgobbeXP+fPn0s8/Ml+/owhnqCaGfvtm3T6677jopeP/95jepYfzvf/+TL7/8Su688w6fIYZ+3r9fTp86LYUKPWjCXXm3d+HCBflq7165K39+ueWWW7xv2+d///23CRV08803m5BGp0+flp9+/lmef6GpbN+y2dS76aab5IYbbrCfsQ7wLMJtnTp5SooWLeIxL6tdq+8ff/rJzCVrlizW4z5/L168aMZ+x+23K4M7Peq5CSPoC3zx3AMFC8pnO3e6eoz4YuIcK0InYT2tcVudW+v87pIlsnbd+zJ54gRzy1rnpFhYbVjzQtiovHnyWJfl5MmThn1Ur17y8EMPywtNnpcbb7xRcuTIYdfxPjh16pSZ8/333SdYH7dy8OAhE1KscKFCkj59eruKc7646L021n3cq1Ktus51ojz44AOSKXNmyaL/YbyZ9TddunTy669HJXfuf9YoEAaXLl2SPV9+aZ7HuxA/YaLtMWL1i72Itq1yOdyOHTsmEFwg7CAsnFtJir9TGMG7cfjIEePV4/Y++Npfbn3yWmgToDAS2uvD0ZEACZBAmiFAYSTNLBUHSgIkECQCFEaCBJbNkgAJkAAJkEAIEBgzdpwseustY0z/Q42+2bNnN6NCGCcYTzdu3CTdIiON5wUED4gkE+PHS5nSpV1H/8H69dI/ZqAxvh5RIywM77Nen2kM5XgAgkhEq9ZySo20ObQvGH7jx42TChXK2+2NGx8vCTNmSIECBeSHH36QMuqFMEkN+W7eHxACiqsxHiIIDNbRffsJxoncD5bRP2HqVClWrKjdPg5wv8MrHU34MORfOKrj6N0zSmo+84ypZ7U7XT1o0GbmTJnk0OHD0qZVK4ns0d2jLefJxEmTZMq06SZUFYzQCOU1I2G63HHHHaaatzCC8GUtIlqpsf6E5MmdRyBgoA/M3xlKKykm1lhfatZUFixaLJUqVpRJE+KdwxJrnS+q4HRBBRiIFhAvNm9Y75cFGnp1yhSd1zS5++57zJpBHElQNrer+IP/rYh5wPCeXtvMqKxKFCvm6n0EkaBr9x6ybds2KXCfru/3P0jlypVk+NCh9h45cPCgtGrdRg4eOiS3aT+//PqrdOnUUdq2aWPmZM3X19pAdKnxTE1TF/k1MFfs5ZbNX5J2bdtK/YYNpUihwrJk2VLJmjWb2Tv+9gMae2/VKunVO1qyaG4WiITIXYN9hWcRSssaF/ailXMkpdwgsjRvGaHCza+mre/1PejTu5e9P83k/v0nKf6WMNKgfj2ZMnWaZNN37uyZMzJ2zGipUrmy3UxS+8uuxIM0Q4DCSJpZKg6UBEiABEKbAIWR0F4fjo4ESCD4BCiMBJ8xeyABEiABEiCBq03ALZTWt999J3Xq1ZchgwdL7Vo1Bcbad959V2LjhsjK5ctck4PD6BzRoqWpjzm1UmP2UzVqSCO9DsECX/A3avisMVDDWL1p02bp0LGjrFWjM77cX6wizbj4CbJ4wXzjbYFE4Z27dNG+8suggTH/weRmjIYRucbTz8i+r/f+p751YciwYfK9GvOnq2iCL/EhAI0YNcrMC3Wsdh995BEZMXyYETjg1QEec2YlymMlS1pN2b8Y+2gVmqZMnqSeEw8JDPSjx4yVDz/6SNases/Ucwoj4FG+UmWpXrWqdO/ezSRD3717j7Tt0MGMyRJG/DGxxtro2WelT59o0449KK8DhNJavmKlR94VfyzeevttGati1Rtz5xgPHjQ5KHaw8fiYN2e23YNbKCf75r8H8Co5fPiIJKjIkilTRiMENdf9UqliBen4yitGeKtctZoa7StJV133bNmyySeffirtOrwsAwcMMPvKmm8ga+MWSgt7FALflEmTbW8Rfwz+3zffSN36DWTYkCFmDBBGVqx8T3pERUndOrVdhZHL4QZBY+iw4bL6vZVGhNm5a5dE9exl9qfTe8bJ140/2mnTrr00bNBAeqnwB5Fo4aJFMnjIUNn5ycdGjPK3v5x98DhtEKAwkjbWiaMkARIggZAnQGEk5JeIAyQBEggyAQojQQbM5kmABEiABEggBAi4CSOJibPkrXfekWVL3vUYIfJ3RLRsIc83buxxHSevdOos58//Lh3at5diRYsaLw8YkVH2amisJk2bSaJ6kMCzwCrdI6P++ZK/Xl2TSB0CybNqyLXKx598KomzZsn699dZl+xfy0ju/Eo/EGEECdp///13Oa1fzyOEEAzlED0gYMATwGo3TpOkO+fZIiJCnihTxvZesAeiB0gCnzdvHunbp499GV/8l6tQUVatXGFyoDiFEYQba9CokfEMsTwM8GCcGt9XrVlre4yg3aSYWGNdvnSJPPjAA3bfbgduwog/FvCsKakCUatWEXaTCN80bXqC9FBBxwrL5GaYtx/QAwhrJR8vLYnqDeP04EEIt30qOoEz9kj9ho1k2+ZNgpBUVuk/IEYgko0fOyZZa+NLGKlXp640f+lFq3kTCiyp/YD3Y+HixfLeiuX2Mziope0gTJebx8jlcAOHho2fl/59+0j5J8ub9Qc/613yGMS/J278IYy0btvO7GsrB88ff/whpUqXkVmJr0uJ4sWT/c659c1roUWAwkhorQdHQwIkQAJplgCFkTS7dBw4CZBAKhGgMJJKINkMCZAACZAACYQwATdhpF//AZIxYwbp17evx8h9XUel8+cvSMJrr8kHGqIJYZJKlnzUPH/P3XfL0mXLpb9+9V9UBRPvAo8UGMarVq9hxBS3vBOJM2fY4Zas5y1RILnCyOo1a6RPv/6CPCDwSkBBbg+IC8gdYbULMQahtqzSO7qPCW0EQcC7YOw9oyKlerVqHrec153CyJKly2Sqek54G9tXrV4tcUOH2cKIPyaXVOSxwok5BRaPQfx74iaM+GNRrcZTKvZES8UKFdyatK+5Gebtm3pw9OhRKVPuSfli104Tmsx5zzrGHpmekGDWwbqGX+f15KyNL2HE6dWE9v0x6Kt7BaHHBsYMQHW7xKo3FcQ1N2Hkcrl99PHHMmfuPPn4k080x8qN0rzZixIR0dKnOOLGH8LIgIEDZZOGuHOWSlWqyuBBg6RcubLJfuec7fA4NAlQGAnNdeGoSIAESCDNEaAwkuaWjAMmARJIZQIURlIZKJsjARIgARIggRAk4CaMzJ03T2bPmWuHgcKw8dV6xSpVpJOGPWqooZuc5YwaiJHEvU3r1sZ4iy/8R44cJfDgQMglhKJCOCKEiHImB4f3gSWEdOzcxSRt7xsdbTcNsSVduuv85hixRIFAPEbKV6okkZrrok7tWqYfhEqqWbuOCVXkFEacggsqJiWMYOw5NZH4YPUysQqSu8MI/cG6tcYTxSmMoE94HGx4/33Jkye39YhAeNqwaZMtjPhjYgkF3mO1G3QcuAkj/lh07tpNCqlXBLyArIL8MaPHjpW42FgVzzKay26Geau+9Vu6bDl5ddJEeeThh61LgjBmu/fsNqG0sEfABLlPkL/EKgjBhTJqxAhbtPKer9vaBCqM+GMAgeL1xESzjtaY8Avxo0SJ4q7CyOVwA5NMmTNJqcceM90hxNqLzZubvC2PlyrlHIJ97MYfwsgQFdnWrl5l18OBUxjxt788HuRJmiBAYSRNLBMHSQIkQAKhT4DCSOivEUdIAiQQXAIURoLLl62TAAmQAAmQQCgQSJw1W3NPrJBFmtvDCteDROl16tZTg/XL0li9Of7WcFPz3nhDE4PPlJWauNpKKG6NH6JJw+caS9MXmkiD+vXN5RlaFzkiprw62YgqMHoX18Tc3bt1NZ4X23fskPaaP2Kphuu6K39+gbcEPDmsBO/nNNxVdJ++klmNxCOHD7e6sn/dRIFAhJEKmni6neY/eaFJE018flLzpsSZ3BvIHwLDs1u76NTN+G4NBsm5+2nIp2FD4qSyCi9I1o4cI/sP7Jd3NAwTilMYQfgu5EJBWCmINLfffpts2rxZYvRL/r/++tsWRvwx8TVWa1zOXzdhxB8L9N9XxRokkX+oRAnj+YE8M+fOnZWZ6h1kFYSOQrimqMge1qX//CJM2EcaGm3G9Glm/SEOdVHhpb6GUUNidOwhKzxVt65djUfPOhWOsAfGjB5luPqar9vaPFzyMYlXAad8+SftsXjnwcENfwx+/OknqV23riaB72TeBbwjizXR/bj4eKlWraqrMHI53CCMjBk/XuZouCvkBTl77pwRYcCtcOHC9lycB278AxFG/O0vZx88ThsEKIykjXXiKEmABEgg5AlQGAn5JeIASYAEgkyAwkiQAbN5EiABEiABEggBAki0HqGeHr/88qtUrljRCBkY1q7PPzdJn4/8ckSN1iJ58+QxRuCiRYu4jnrPni9lkIYXOqveIhcvXpQsWbPKiKFDbGPub7/9JviSHsmks2fPLsh3EKtJ1WvVrGm398abb8oETYwNI/np06el7BNlTJ+WV4ldUQ/cjOSBCCMwtiOZdfYc2dXQf0w6tGtrQiLBM2D+G/OkYMGCruGp3IzvzvHAYyZ+4iQzr/Pnz6vIoob5ceOMcRv1nMIIzg+reILk83v3fm28ZhC2q13bNsowzhZGUC8pJm4M8IxbcRNG/LGAGLJg4UIVASYY0ezEiRNmTcaNGWPW0Opn2fIVMiAmxqxJdM+e0qJFc+uW/YuE80jcvnTZMvWIyKz75IwRp3ppEvN06dKZetYeQWizTJkyGU+hSA1dZuWd8TVft7VBUnWsKfbS25p0vEiRwprDpKF4h9IKhMHWbdukl4ZSO3XqpIa2yiBVVVzLnz+f/PDjj67CCCZzOdww9vXrN0jmLFmMGFXrmac98tfYUP89cOMfiDCCx5PaX9798Dz0CVAYCf014ghJgARIIE0QoDCSJpaJgyQBEggiAQojQYTLpkmABEiABEggjRA4duyYMVw7E2InNXSE1YLo4QyZ5awPTxAYwCEEWB4qzvs4hsdKzpw5JZuKK8EoSDqOPm7NlcvOM5Ja/SCEVq5bcqlh/58wU/7aBYvrr7/eDinmq36wmATKAvPCmmZWweJyCvo7cPCgEdqs5O3e7UEAOX78uKnjfS8Y54EywLixZzJkyBDwMFLKDYIOns2TO7fZHwF3mMKKwdpfKRwOH0shAQojKQTHx0iABEiABDwJUBjx5MEzEiCB8CNAYST81pwzJgESIAESIAESIAESIAESSJsEKIykzXXjqEmABEgg5AhQGAm5JeGASIAErjABCiNXGDi7IwESIAESIAESIAESIAESIIEUEqAwkkJwfIwESIAESMCTAIURTx48IwESCD8CFEbCb805YxIgARIgARIgARIgARIggbRJgMJI2lw3jpoESIAEQo4AhZGQWxIOiARI4AoToDByhYGzOxIgARIgARIgARIgARIgARJIIQEKIykEx8dIgARIgAQ8CVAY8eTBMxIggfAjQGEk/NacMyYBEiABEiABEiABEiABEkibBCiMpM1146hJgARIIOQIUBgJuSXhgEiABK4wAQojVxg4uyMBEiABEiABEiABEiABEiCBFBKgMJJCcHyMBEiABEjAkwCFEU8ePCMBEgg/AhRGwm/NOWMSIAESIAESIAESIAESIIG0SeD/AwAA///2fm7GAABAAElEQVTs3QmYHGWdP/CXIIRDlENEkSsrcu3KoctM8PyvqKisq4IHGhMBDwRnBkWORRA5JKByJ67KoZiIiije6w0KwjpBIYDrgqAchiCHQFAuQfzXW1hNz2QmTM30UW/Xp54ndHd1vVXv+/m1/fj0d+p9V7r/z/f+PdgIECBAgMAUBU6bNz+cNn9+fpahgYEwNDgwxTNqToAAgbQEZs2eE4YXLco7fc7CBaG/ry+tAegtAQIECBAgMK7AI488Et60xx7hjbvtFma97W3jHleFN77+jW+GM886K3z1K18Jq6++WhW6pA8ECBConMBKgpHK1USHCBAgkKSAYCTJsuk0AQItFBCMtBDTqQgQIECAQMUE/v73v4cDDjwwvGqXXcIur3xlxXo3sjsXX/zz8OUsFDn15JPCk570pJFvekWAAAECuYBgxAeBAAECBFoiIBhpCaOTECCQsIBgJOHi6ToBAgQIEJiAwD333JPdgbF6mD59evjrX/8a7r///rD22muHeDfJjTfdFDbbdNMxg4hHH300XPvb34aVVlopPGfzzcPKK6+83NXuvffe8NvrrgtbbrFFWGuttUa8H6+7xhprhGnTpoWbbr45v05xjj/+8Y/5+dZff/1Gm9i3++67L6yzzjr5vqL9qquuGm677bb8PM3HNxpmT2699dZwx513hm223jofy53Z83XXXTdv03xc8/OJ9H0i17777rvD72+4IWydXXuNzNlGgACBdgoIRtqp69wECBCokYBgpEbFNlQCBMYUEIyMyWInAQIECBDoGYE3vPGNYe899wqv/fddw09/9rPwiRNODG/K9s375CfDaqutFv6chRsnnvCJ8IqXv7wx5nj3xv4HHBDWzUKKGIwsy46Zf9qpoW/HHfNjHnroobD/+z8QLszO908zZuTBQGx/8oknhFVWWSU/Jl53+223C9//4Q/zgOLBBx8MnzvrzHDKqaeGG2+8KSzNwozdXv/6cOxHj8mvEft27Nzjwo9+8P1G+7e86U3hnC99OSxbdk+4/fY7wk4z+8Mns6mQiwDiL1mQss979w2X/fKXeTizZMmScMpJJ4V99tsv/OyCn4QNNtigMabiyUT7/kTXjuMZGBoKvxheFGZkBtdff33Yd599TM9cQHskQKAtAoKRtrA6KQECBOonIBipX82NmACBkQKCkZEeXhEgQIAAgV4TGB2MvHe/9+WBxMEHHRie+tSnhq+cd1445ti54YpfXpaHGr/7/e/Dbru/MZyUhRw7v+xlOcf3vv/9cOiHDguX/PzisGZ2F8hBhxwSli69NRx/3Nyw8UYb5XeEHHTwIXk4cczRR+Vt4nXjtuDss8OT11wz/OehHwrnf+Mb4aQTTshDmngXySt2eVX49je/kbcbKxhZsuSW8Ml5p+WBzLJly8JbZ7097PqaV4f3ZcFH3AaG9g933XVXOOHjHw8bbvjMEO9E+dDhh4eLsmDnkot+NmYwMtG+P9G143mW3bMsnJg5rfXkJ+cer99993DkER8Or3n1q/P++Q8BAgRaLSAYabWo8xEgQKCmAs3BSFxwOC48bCNAgECdBDbfcqvGcK+/9prGc08IECBAgACB3hAYHYy86z37hB9+/3v5nR5xhHEKq76ZO4XPn/25sN2224azP78gXHLJJeGM0z8zAuDU0+aF3XZ7Q9joWc8Kz9uxL3z8+ONG3GXyne9+Nxx73PHhf7LwJG7xuq/799eGPfd8R/76Rz/+cTj0sMPD8KWXNKbl+vf/eF3Yb9/35kHCWMFInObr5BNPzNvH/3zq058Ov/zVr8JZZ5wR/va3v4Xnx3587Pjwyle8onHMTy64IOyz735jBiNxzZWJ9n1F1y7Oc0QWwmy5xXMa1/7c5z8fVp62ch4YNXZ6QoAAgRYKCEZaiOlUBAgQqLuAHwXr/gkwfgL1FRhetCjEO0biJhyu7+fAyAkQIECgtwVGByNHHHlkuOjCC0cM+t92fnk45qijwote9MLw4SM+EtZ8cnaHx8EHjzimeHH77beHF7z4JeHyyxaFpzzlKcXubKqrkfubrxsPuvCnPw3HHf+xPJQpGr1ut93Ce971ruwukNfk03yNnkrr7W97W9g9O6bYvv6Nb4YvfulL4bxzv9y43i8u+Xl42tOeVhyS30HSt9MLxgxGRvexaDR6f+z7RK79r89/fiPkKc61+bOfHY468iPFS48ECBBoqYBgpKWcTkaAAIF6CzQHI0MDA+aErffHwegJ1EqgeRqt/QcHwmD2HWgjQIAAAQIEekugOaAYfVdGMdLmYCQGDz/80Y/C2Z/9bPF2iHdIxMBk9uy359NexeDhiMMPC/++666NY752/vnhlOyukot/+ljo0nzdeNBkgpFibZTiIs3BSNy304teHOL/h9njLW8pDgnnffWr+Z0p402lNZm+x5OPvnY8z9xsfZSX77xz49pxuq8YFsV1WWwECBBoh4BgpB2qzkmAAIGaCjRPpxUJTCVT0w+CYROomUDz3SJx6L77avYBMFwCBAgQqI1Ac0AxkWBkyS23hNe+7vXZHSMH5Yu0P5gttP6FL3whnH7mWeGiLPSIC58fdfQx4YorF2fraRwRtt9uu/Cryy8PRx51dHjhC1/QuNOk+boRux3BSFxIPq5/cuAHDwgvfelLw8UXXxzO+uznwhWLF495x0jsx2T6HtuNDkaOPuaYsPjKq8Jxc4/Nw6Jbblka3rHXXvnUYLu94Q35lGS3LL0lHHboobG5jQABAi0REIy0hNFJCBAgQKAQcNdIIeGRAIE6CIwORdwtUoeqGyMBAgQI1FWgOaCYSDASna66+upw4EEHhzvuvDM88sjDYcNnbhhOPeXksNWWW+aMcX2PGIR881vfCqtOnx4eefjhsNsbXh8OP+ywMG3atPyY5uvGHe0IRuKdLCedfEr4+je/Ge7M+rrFFluEuVlgERdBH++Okcn0PfZ/dDASz/ORI48K3/r2t8OT11or3H333WHPOXPCQQd+MDd48x5vDTfceGO+pkphEs9jI0CAwFQEBCNT0dOWAAECBJYTGH3XiCm1liOygwCBHhEYHYrEYblbpEeKaxgECBAgQKDFAjFsiNNCrbfeemOe+ZFHHgm3LF2aL8i+8sorj3lMp3Y+nIUzq6yySnj00UfDFltvM24wUvSnVX2P5/nDkiW5Qbx+sT344IP5wvbN67AU73kkQIDAZAUEI5OV044AAQIExhUQjoxL4w0CBHpEYKxQ5JyFC/KF13tkiIZBgAABAgQI1Ezgtttuy8OQYti333FH2P1Nb87v1Bgv0CmO9UiAAIHUBAQjqVVMfwkQIJCIwOhwJHbb3SOJFE83CRBYocBY329CkRWSeZMAAQIECBBIQOBlL39FeCC7O6PY4h0uL33xi/O1P4p9HgkQINArAoKRXqmkcRAgQKCCAmP9eBi72d/XF4YGByrYY10iQIDA8gLDw4vynfEukfhv9CYUGS3iNQECBAgQIECAAAECBKotIBipdn30jgABAskLjBeOJD8wAyBAoPYCcaH1vizojWGvjQABAgQIECBAgAABAgTSERCMpFMrPSVAgEDSAvGvrGNIMtZfWyc9MJ0nQKB2AjEQidvggDvfald8AyZAgAABAgQIECBAoCcEBCM9UUaDIECAQDoCRTASQxIbgVYKXLF4ceN0O2y/feO5JwRaITCz/7G7Qtwh0gpN5yBAgAABAgQIECBAgEB3BQQj3fV3dQIECBAgQKBFAkPv/0AowpHTTjk5CEdaBOs0BAgQIECAAAECBAgQIECgxwQEIz1WUMMhQIAAAQJ1FRCM1LXyxk2AAAECBAgQIECAAAECBMoJCEbKeTmaAAECBAgQqKiAYKSihdEtAgQIECBAgAABAgQIECBQMQHBSMUKojsECBAgQIDA5AQEI5Nz04oAAQIECBAgQIAAAQIECNRNQDBSt4obLwECBAgQ6FEBwUiPFtawCBAgQIAAAQIECBAgQIBAiwUEIy0GdToCBAgQIECgOwKCke64uyoBAgQIECBAgAABAgQIEEhNQDCSWsX0lwABAgQIEBhTQDAyJoudBAgQIECAAAECBAgQIECAwCgBwcgoEC8JECBAgACBNAUEI2nWTa8JECBAgAABAgQIECBAgECnBQQjnRZ3PQIECBAgQKAtAoKRtrA6KQECBAgQIECAAAECBAgQ6DkBwUjPldSACBAgQIBAPQUEI/Wsu1ETIECAAAECBAgQIECAAIGyAoKRsmKOJ0CAAAECBCopIBipZFl0igABAgQIECBAgAABAgQIVE5AMFK5kugQAQIECBAgMBkBwchk1LQhQIAAAQIECBAgQIAAAQL1ExCM1K/mRkyAAAECBHpSQDDSk2U1KAIECBAgQIAAAQIECBAg0HIBwUjLSZ2QAAECBAgQ6IaAYKQb6q5JgAABAgQIECBAgAABAgTSExCMpFczPSZAgAABAgTGEBCMjIFiFwECBAgQIECAAAECBAgQILCcgGBkORI7CBAgQIAAgRQFBCMpVk2fCRAgQIAAAQIECBAgQIBA5wUEI503d0UCBAgQIECgDQKCkTagOiUBAgQIECBAgAABAgQIEOhBAcFIDxbVkAgQIECAQB0FBCN1rLoxEyBAgAABAgQIECBAgACB8gKCkfJmWhAgQIAAAQIVFBCMVLAoukSAAAECBAgQIECAAAECBCooIBipYFF0iQABAgQIECgvIBgpb6YFAQIECBAgQIAAAQIECBCoo4BgpI5VN2YCBAgQINCDAoKRHiyqIREgQIAAAQIECBAgQIAAgTYICEbagOqUBAgQIECAQOcFBCOdN3dFAgQIECBAgAABAgQIECCQooBgJMWq6TMBAgQIECCwnIBgZDkSOwgQIECAAAECBAgQIECAAIExBAQjY6DYRYAAAQIECKQnIBhJr2Z6TIAAAQIECBAgQIAAAQIEuiEgGOmGumsSIECAAAECLRcQjLSc1AkJECBAgAABAgQIECBAgEBPCghGerKsBkWAAAECBOonIBipX82NmAABAgQIECBAgAABAgQITEZAMDIZNW0IECBAgACBygkIRipXEh0iQIAAAQIECBAgQIAAAQKVFBCMVLIsOkWAAAECBAiUFRCMlBVzPAECBAgQIECAAAECBAgQqKeAYKSedTdqAgQIECDQcwKCkZ4rqQERIECAAAECBAgQIECAAIG2CAhG2sLqpAQIECBAgECnBQQjnRZ3PQIECBAgQIAAAQIECBAgkKaAYCTNuuk1AQIECBAgMEpAMDIKxEsCBAgQIECAAAECBAgQIEBgTAHByJgsdhIgQIAAAQKpCQhGUquY/hIgQIAAAQIECBAgQIAAge4ICEa64+6qBAgQIECAQIsFBCMtBnU6AgQIECBAgAABAgQIECDQowKCkR4trGERIECAAIG6CQhG6lZx4yVAgAABAgQIECBAgAABApMTEIxMzk0rAgQIECBAoGICgpGKFUR3CBAgQIAAAQIECBAgQIBARQUEIxUtjG4RIECAAAEC5QQEI+W8HE2AAAECBAgQIECAAAECBOoqIBipa+WNmwABAgQI9JhAczCy957vCHvtuWePjdBwCBAgQIAAAQIECBAgQIAAgVYICEZaoegcBAgQIECAQNcFPnf22eGzZ38+78cO228fTjvl5K73SQcIECBAgAABAgQIECBAgACB6gkIRqpXEz0iQIAAAQIEJiFwxeLFId41EjfByCQANSFAgAABAgQIECBAgAABAjUREIzUpNCGSYAAAQIEel1AMNLrFTY+AgQIECBAgAABAgQIECDQGgHBSGscnYUAAQIECBDosoBgpMsFcHkCBAgQIECAAAECBAgQIJCIgGAkkULpJgECBAgQILBiAcHIin28S4AAAQIECBAgQIAAAQIECDwmIBjxSSBAgAABAgR6QkAw0hNlNAgCBAgQIECAAAECBAgQINB2AcFI24ldgAABAgQIEOiEgGCkE8quQYAAAQIECBAgQIAAAQIE0hcQjKRfQyMgQIAAAQIEMgHBiI8BAQIECBAgQIAAAQIECBAgMBEBwchElBxDgAABAgQIVF5AMFL5EukgAQIECBAgQIAAAQIECBCohIBgpBJl0AkCBAgQIEBgqgKCkakKak+AAAECBAgQIECAAAECBOohIBipR52NkgABAgQI9LyAYKTnS2yABAgQIECAAAECBAgQIECgJQKCkZYwOgkBAgQIECDQbQHBSLcr4PoECBAgQIAAAQIECBAgQCANAcFIGnXSSwIECBAgQOAJBAQjTwDkbQIECBAgQIAAAQIECBAgQCAXEIz4IBAgQIAAAQI9ISAY6YkyGgQBAgQIECBAgAABAgQIEGi7gGCk7cQuQIAAAQIECHRCQDDSCWXXIECAAAECBAgQIECAAAEC6QsIRtKvoREQIECAAAECmYBgxMeAAAECBAgQIECAAAECBAgQmIiAYGQiSo4hQIAAAQIEKi8gGKl8iXSQAAECBAgQIECAAAECBAhUQkAwUoky6AQBAgQIECAwVQHByFQFtSdAgAABAgQIECBAgAABAvUQEIzUo85GSYAAAQIEel5AMNLzJTZAAgQIECBAgAABAgQIECDQEgHBSEsYnYQAAQIECBDotoBgpNsVcH0CBAgQIECAAAECBAgQIJCGgGAkjTrpJQECBAgQIPAEAoKRJwDyNgECBAgQIECAAAECBAgQIJALCEZ8EAgQIECAAIGeEBCM9EQZDYIAAQIECBAgQIAAAQIECLRdQDDSdmIXIECAAAECBDohIBjphLJrECBAgAABAgQIECBAgACB9AUEI+nX0AgIECBAgACBTEAw4mNAgAABAgQIECBAgAABAgQITERAMDIRJccQIECAAAEClRcQjFS+RDpIgAABAgQIECBAgAABAgQqISAYqUQZdIIAAQIECBCYqoBgZKqC2hMgQIAAAQIECBAgQIAAgXoICEbqUWejJECAAAECPScQg5Adtt++Ma4nCkZGH99o6AkBAgQIECBAgAABAgQIECBQKwHBSK3KbbAECBAgQKA3BIbe/4F8TZHTTjm5EY6sKBj53Nlnh8+e/fmw957vCHvtuWdvIBgFAQIECBAgQIAAAQIECBAgMCkBwcik2DQiQIAAAQIEuiVQhCLF9YtwZLxgpAhFRh9fvPZIgAABAgQIECBAgAABAgQI1EtAMFKvehstAQIECBBIXqA5ACkGE8ORuMXQJG5xiq24b3Qo4o6RnMd/CBAgQIAAAQIECBAgQIBArQUEI7Uuv8ETIECAAIE0BcYKR2LoEafLilsMRnbYfrvG67hPKBIVbAQIECBAgAABAgQIECBAgIBgxGeAAAECBAgQSFJgrHBkvIEIRcaTsZ8AAQIECBAgQIAAAQIECNRPQDBSv5obMQECBAgQ6BmBiYQjQpGeKbeBECBAgAABAgQIECBAgACBlggIRlrC6CQECBAgQIBAtwRWFI4IRbpVFdclQIAAAQIECBAgQIAAAQLVFRCMVLc2ekaAAAECBAhMUGCscEQoMkE8hxEgQIAAAQIECBAgQIAAgZoJCEZqVnDDJUCAAAECvSrQHI4IRXq1ysZFgAABAgQIECBAgAABAgSmLiAYmbqhMxAgQIDAFASGFy0K/X19jTPE18Vm/2MSE3GIR7ILIYYjnzn9jLDXnu/I8SZix+2xz5nP0PjfQ6O/px4X84wAAQIECBAgQIAAAQIEUhQQjKRYNX0mQIBA4gLxR8ZZs+fko4g/XJ+zcEH+fCL744HXX3tNfnz8z+ZbbtV43q39sf/FD/BxXMUP7Z3cf9q8+eG0+fNzi6GBgTA0OJA/79b+idSybO2ncnzEqMJnpfkz2q3PynjX7dZnpfm6U6lxOz5z8XMTa1Z8dmL/4v+24qONAAECBAgQIECAAAECBNIVEIykWzs9J0CAQDIC8YfP/v6+xo+JU/kBMw66+cfl4gfLbu7vZABS5R+1mwOZqdS4HT+Ox89HFT4rzZ/d8WrZrf3NAUVzLTu5vx21n8pnsfheGe+zE88tJIlKNgIECBAgQIAAAQIECKQlIBhJq156S4AAgeQEmn9Ubf5RuPihcf/sr68Hszsc4hZ/ZIzHx21mFqSMtT++V9xhEp/HH5GLrVv7m/+CPPY/jiNudd4/kVqOV+N27I/1qMJnpfkz6rPy2F0XzQ7tqP1UPovxcxNrVoRVzcFNfC9+j8V9zf9bj/ttBAgQIECAAAECBAgQIFBtAcFIteujdwQIEEhaIP4g2fxjdPNfoSc9MJ0nQKCWAvE7rbhDJAY6xfR1EaM5+K0ljkETIECAAAECBAgQIEAgIQHBSELF0lUCBAikKFD8eNh8Z0iK49BnAgQINAsU321xn++3ZhnPCRAgQIAAAQIECBAgUH0BwUj1a6SHBAgQSE6g+a+qY+dHv05uQDpMgACBMQRiOLLSSqEx7d8Yh9hFgAABAgQIECBAgAABAhUUEIxUsCi6RIAAgZQFiumzTJuVchX1nQCByQjE77+4FdNtTeYc2hAgQIAAAQIECBAgQIBA+wUEI+03dgUCBAjUSqBYpDgOWjhSq9IbLIHaCsRAZHh4UWPNEeuN1PajYOAECBAgQIAAAQIECCQiIBhJpFC6SYAAgRQEirtFir6es3CBv5wuMDwSINDTAs1rjgiFe7rUBkeAAAECBAgQIECAQA8ICEZ6oIiGQIAAgaoJxB8IY0gSgxEbAQIE6iBQBCNxIfa4DQ489liHsRsjAQIECBAgQIAAAQIEUhMQjKRWMf0lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEJi0gGJk0nYYECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAagKCkdQqpr8ECBCoqECcOitOJRO3/r6+MPSP6WQq2l3dIkCAQFsEioXY+/v7rLHUFmEnJUCAAAECBAgQIECAwNQFBCNTN3QGAgQIEMgEmhdej8GI9UV8LAgQqJtAsc5IHLcF2OtWfeMlQIAAAQIECBAgQCAlAcFIStXSVwIECFRYQDBS4eLoGgECHRFoDkYExB0hdxECBAgQIECAAAECBAhMSkAwMik2jQgQIEBgLIEYjhRb/FHQRoAAgToJxGCk+B6cmU2lNTgwUKfhGysBAgQIECBAgAABAgSSERCMJFMqHSVAgAABAgQIECBAgAABAgQIECBAgAABAgSmKiAYmaqg9gQIECBAgAABAgQIECBAgAABAgQIECBAgEAyAoKRZEqlowQIEKi2QJw+Jk4jE7c4jdbQoClkql0xvSNAoB0CxVRa8dymFGyHsHMSIECAAAECBAgQIEBg6gKCkakbOgMBAgQIZALxx8BZs+fkFhYd9pEgQKCOAhZfr2PVjZkAAQIECBAgQIAAgRQFBCMpVk2fCRAgUEEBwUgFi6JLBAh0VEAw0lFuFyNAgAABAgQIECBAgMCkBQQjk6bTkAABAgRGC5hCZrSI1wQI1EkgBiPF9+DM/r4wOGBKwTrV31gJECBAgAABAgQIEEhHQDCSTq30lAABAgQIECBAgAABAgQIECBAgAABAgQIEJiigGBkioCaEyBAgAABAgQIECBAgAABAgQIECBAgAABAukICEbSqZWeEiBAoNICcfqYOI1M3OLi60ODppCpdMF0jgCBtggUU2nFk8fvQhsBAgQIECBAgAABAgQIVE9AMFK9mugRAQIEkhSIPwbOmj0n73v8MfCchQuSHIdOEyBAYLICFl+frJx2BAgQIECAAAECBAgQ6KyAYKSz3q5GgACBnhUQjPRsaQ2MAIEJCghGJgjlMAIECBAgQIAAAQIECHRZQDDS5QK4PAECBHpJwBQyvVRNYyFAoKxADEaK78GZ/X1hcMCUgmUNHU+AAAECBAgQIECAAIFOCAhGOqHsGgQIECBAgAABAgQIECBAgAABAgQIECBAgEAlBAQjlSiDThAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKdEBCMdELZNQgQIFADgTh9TJxGJm5x8fWhQVPI1KDshkiAwCiBYiqtuDt+F9oIECBAgAABAgQIECBAoHoCgpHq1USPCBAgkKRA/DFw1uw5ed/jj4HnLFyQ5Dh0mgABApMVsPj6ZOW0I0CAAAECBAgQIECAQGcFBCOd9XY1AgQI9KyAYKRnS2tgBAhMUEAwMkEohxEgQIAAAQIECBAgQKDLAoKRLhfA5QkQINBLAqaQ6aVqGgsBAmUFYjBSfA/O7O8LgwOmFCxr6HgCBAgQIECAAAECBAh0QkAw0gll1yBAgAABAgQIECBAgAABAgQIECBAgAABAgQqISAYqUQZdIIAAQIECBAgQIAAAQIECBAgQIAAAQIECBDohIBgpBPKrkGAAIEaCMTpY+I0MnGLi68PDZpCpgZlN0QCBEYJFFNpxd3xu9BGgAABAgQIECBAgAABAtUTEIxUryZ6RIAAgSQF4o+Bs2bPyfsefww8Z+GCJMeh0wQIEJisgMXXJyunHQECBAgQIECAAAECBDorIBjprLerESBAoGcFBCM9W1oDI0BgggKCkQlCOYwAAQIECBAgQIAAAQJdFhCMdLkALk+AAIFeEpg3/7GptOKYBgdMpdVLtTUWAgSeWCAGI8VUWjP7+3wPPjGZIwgQIECAAAECBAgQINAVAcFIV9hdlAABAgQIECBAgAABAgQIECBAgAABAgQIEOiGgGCkG+quSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRFQDDSFXYXJUCAQO8JxOljhocX5QPrz6aQiQuw2wgQIFA3gWIqrThu34N1q77xEiBAgAABAgQIECCQioBgJJVK6ScBAgQqLmDx9YoXSPcIEGi7gMXX207sAgQIECBAgAABAgQIEGiJgGCkJYxOQoAAAQKCEZ8BAgTqLiAYqfsnwPgJECBAgAABAgQIEEhFQDCSSqX0kwABAgkIzJs/v9HLwYGBxnNPCBAgUAeBGIwUU2nNzKYU9D1Yh6obIwECBAgQIECAAAECKQoIRlKsmj4TIECAAAECBAgQIECAAAECBAgQIECAAAECkxIQjEyKTSMCBAgQIECAAAECBAgQIECAAAECBAgQIEAgRQHBSIpV02cCBAhUUCBOHzM8vCjvWX82hUx/X18Fe6lLBAgQIECAAAECBAgQIECAAAECdRcQjNT9E2D8BAgQaJGAxddbBOk0BAgkK2Dx9WRLp+MECBAgQIAAAQIECNRMQDBSs4IbLgECBNolIBhpl6zzEiCQioBgJJVK6ScBAgQIECBAgAABAnUXEIzU/RNg/AQIEGihwLz58xtnGxwYaDz3hAABAnUQEIzUocrGSIAAAQIECBAgQIBALwgIRnqhisZAgAABAgQIECBAgAABAgQIECBAgAABAgQITEhAMDIhJgcRIECAAAECBAgQIECAAAECBAgQIECAAAECvSAgGOmFKhoDAQIEKiAQ1xgZHl6U96S/vy/09/VVoFe6QIAAAQIECBAgQIAAAQIECBAgQGCkgGBkpIdXBAgQIDBJAYuvTxJOMwIEekbAGiM9U0oDIUCAAAECBAgQIECgxwUEIz1eYMMjQIBApwQEI52Sdh0CBKoqIBipamX0iwABAgQIECBAgAABAiMFBCMjPbwiQIAAgSkIzJs/v9F6cGCg8dwTAgQI1EFAMFKHKhsjAQIECBAgQIAAAQK9ICAY6YUqGgMBAgQIECBAgAABAgQIECBAgAABAgQIECAwIQHByISYHESAAAECBAgQIECAAAECBAgQIECAAAECBAj0goBgpBeqaAwECBCogEBcY2R4eFHek/7+vtDf11eBXukCAQIECBAgQIAAAQIECBAgQIAAgZECgpGRHl4RIECAwCQFLL4+STjNCBDoGQFrjPRMKQ2EAAECBAgQIECAAIEeFxCM9HiBDY8AAQKdEhCMdEradQgQqKqAYKSqldEvAgQIECBAgAABAgQIjBQQjIz08IoAAQIEpiAwb/78RuvBgYHGc08IECBQBwHBSB2qbIwECBAgQIAAAQIECPSCgGCkF6poDAQIECBAgAABAgQIECBAgAABAgQIECBAgMCEBAQjE2JyEAECBAgQIECAAAECBAgQIECAAAECBAgQINALAoKRXqiiMRAgQKACAnGNkeHhRXlP+vv7Qn9fXwV6pQsECBAgQIAAAQIECBAgQIAAAQIERgoIRkZ6eEWAAAECkxSw+Pok4TQjQKBnBKwx0jOlNBACBAgQIECAAAECBHpcQDDS4wU2PAIECHRKQDDSKWnXIUCgqgKCkapWRr8IECBAgAABAgQIECAwUkAwMtLDKwIECBCYgsC8+fMbrQcHBhrPPSFAgEAdBAQjdaiyMRIgQIAAAQIECBAg0AsCgpFeqKIxECBAgAABAgQIECBAgAABAgQIECBAgAABAhMSEIxMiMlBBAgQIECAAAECBAgQIECAAAECBAgQIECAQC8ICEZ6oYrGQIAAgYoIxHVGiq2/r6946pEAAQIECBAgQIAAAQIECBAgQIBAZQQEI5UphY4QIEAgbQGLr6ddP70nQGDqAtYYmbqhMxAgQIAAAQIECBAgQKATAoKRTii7BgECBGogIBipQZENkQCBFQoIRlbI400CBAgQIECAAAECBAhURkAwUplS6AgBAgTSFojBSPxRMG4z+/vC4MBA2gPSewIECJQUEIyUBHM4AQIECBAgQIAAAQIEuiQgGOkSvMsSIECAAAECBAgQIECAAAECBAgQIECAAAECnRcQjHTe3BUJECBAgAABAgQIECBAgAABAgQIECBAgACBLgkIRroE77IECBDoRYE4nVax9ff1FU89EiBAgAABAgQIECBAgAABAgQIEKiMgGCkMqXQEQIECKQtYPH1tOun9wQITF3AGiNTN3QGAgQIECBAgAABAgQIdEJAMNIJZdcgQIBADQQEIzUosiESILBCAcHICnm8SYAAAQIECBAgQIAAgcoICEYqUwodIUCAQNoCMRiJPwrGbWZ/XxgcGEh7QHpPgACBkgKCkZJgDidAgAABAgQIECBAgECXBAQjXYJ3WQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDzAoKRzpu7IgECBAgQIECAAAECBAgQIECAAAECBAgQINAlAcFIl+BdlgABAr0oEKfTKrb+vr7iqUcCBAgQIECAAAECBAgQIECAAAEClREQjFSmFDpCgACBtAUsvt6d+t35pz+Fm2++OfzhD0vC0ltvDeutt27YdONNwsabbByescEGYdq0ad3pmKsSqKFA81pLMRweGrTWUg0/BoZMgAABAgQIECBAgEACAoKRBIqkiwQIEEhBQDDS2Srdf//94TNnnBF+/b+/GffCMSQZ3G+/sPHGG497jDcIEGidgMXXW2fpTAQIECBAgAABAgQIEGingGCknbrOTYAAgRoJNP+l9Mz+vjA44C+l21X+eGfIvPmfDLffcccTXmL6qquGd71z7/C8HXYY89h4x8mJJ53ceG/nl70svHznlzVet+NJN67ZjnFU+ZznnndeWLz4ykYX5370mLDSSis1XnvSHgHBSHtcnZUAAQIECBAgQIAAAQKtFhCMtFrU+QgQIECAQBsFHn300XDoYYeHGC4U28orrxxmbLZZeMpTnhLuuvuucOvSW8NDf/1r8Xb+g/gB798/bLP11o19xZPbbr89fOjwDxcvw2t33TW8/nX/0XjdjifduGY7xlHlc55x1lnhF8OPr/lz5mc+LRjpQMFiQNy8WWupWcNzAgQIECBAgAABAgQIVEdAMFKdWugJAQIECBB4QoGrrv51OHXevMZxGz7zmeED+w+Fddddt7HvwYceCmeeeVa44srH7xj4l3/eJjtu/8YxxZNuhBTduGYx3ro8CkbqUmnjJECAAAECBAgQIECAAIHJCAhGJqOmDQECBAiMKdD819L+UnpMoinv/MEPfxi+8tWvNc6zz7vfFfp23LHxunjyt7/9LQzu//7GnSOrZlNqfWr+44FKcVw3QopuXLMYb10eBSN1qbRxEiBAgAABAgQIECBAgMBkBAQjk1HThgABAgSWE7D4+nIkbdnx/R/8IJz3tfMb537PO98Z+rM1XcbaTjz5lPCb//u/xlunnHhCWGuttUK862TZsnvy/ffee284/xvfbByz3XOfG3bYYfvG6xkzZoSNnvWsxuviSVzf5Nprrw1LliwJt2RTd602fXpY/+nrh+dsvvmY65m04prLli3LpocaDjfedHO45557wmqrTQ9PW+9p4fnPf17Yassti64t93jJpZeGOAVZ3J7+9KeHLbfYIhv/snDtb38bbrjxxvwcWzxn87DRRhs1ppv6azYV2e9vuCFcd9114ZFH/hY2z8a1+ebPDquvttpy52/e8fe//z0zvyZcccUV4U93/Sk88MCDYZ111gmbbbppeOELdgpPfvKTmw9vPL/5D38IN910U+P1jlnYFU2X3HJLuDK78+eee5aF9dZbL5sObauw8cYbN/pZNIjjuerqq4uX4WcXXZyPrdjxjtlvb7RZedrK4QVZX2ytF2heaymGw0OD1lpqvbIzEiBAgAABAgQIECBAYOoCgpGpGzoDAQIECGQCgpHOfAxuvPGmcMzcuY2L/VMWXAwNvC8PPBo7//HkO9/9brj61//b2L3vPu8Ja6+9dvjEiSeFa7JQYyLbm3bfPbxql1c2Do0//P/kggvDV88/Pzz88MON/c1P4none++1Z4jTfBXbVK4Zz3Hppf8Tzl64MMQ7YcbaYjCyf/YjdLwzZvT23vcNNPr6gp1mhpe+5CXh5FNODXHKseYtvrf3nnuGGBbNPf5jI9ZxicfFgOOgDx4QNsjClbG2Bx54IJx4yinhhhtuHOvtsMoqq4R4h88O2z8ePBUHfu/7389Mv168DB87bm64/PIrQlxEffQWw60PZmvGxICk2H6bBTgf+8QJxcsVPk7PjP5rjLuHVtjImxMSsPj6hJgcRIAAAQIECBAgQIAAga4LCEa6XgIdIECAQG8INP+l9MzsDobBAX8p3Y7KxmBi6AMHhPvvv79x+rjo+k4z+8N2224bYlASf4Bf0TaVkOLL554bfvSTC1Z0+vy9Zz7jGeHDhx0Wpk9/LKiYyjWHs0XEz/jsZ0Mc+4q2bZ/7L2Fgv/1CXIy+eWsORlZfffXs7pG/hYceenxx+uZj47RkS5cuze/UaN5fPH/qU58aPvyhQ/OQpNgXHx948MFw4kknj7hLo/n94nmsTQxwtt5qq2JX/jg6GIkhzf/8YnjcMcdw5NBDDm6ENIKREZxdeyEY6Rq9CxMgQIAAAQIECBAgQKCUgGCkFJeDCRAgQIBA9wUuuvji8IUvfmnMuydiELHN1tuE52V3JWy33bZhzTXXXK7DcTqupbfemu+PUz1dnk37VGybZHchbLzxRsXLsOO/7hie+y//nL++9Y9/DB856ujGdWNI8MKddgr/nC3sHsOE4UWXhet/97tG291e/7qw62tek7+e7DUXZ9NIffJTn25MhRVPttlmm4btsxAorlVy5ZVXhfuzOzWKLYZy786mF2vemoORYn+cTmvzZz87H3sc1+gtTmO108yZ2RotD+V3bjTfXTLn7bPyu06KNvEulo+fcOKIsccAZofttwtPX3/9cEU2hpuy6b+KLZ774AMPDJtuukmxK4wORuIbK620UohTm22yySZZEHZf+NUVi8Pdd9/daDNjxmbh8EMPzV//8bbbwn9/73uN96699rcj7niJ03gV2ypPWiXMzsZga71ADIibN2stNWt4ToAAAQIECBAgQIAAgeoICEaqUws9IUCAAAECExb4v2uuCZ/6zOnhvvvuG7dNvHPiBdmP+2/dY4/GnRujDy6zEHpcB+PHP/5JuHzx4mztjAfC+4eGGqFJPG8MDw744IGNBd932G67MPC+/UZfMg80PnT4hxv7X7vrruH1r/uPxuvmJ0cd89EQr1tshxx0YNjiOc8pXmbrfzySTw3WHMgc9ZEjRqyLMjoYee973p0FPv/aOEcMe+JaHsW23nrrhqOPPDJf4yPuu+7668PxH/9E8Xa+VkiccqvYrsg85v/Xp4qX4V+yoGgou2Oq+c6VuP7HqfPmN455/vOeF/Z77z6N16ODkRiKxCnSts2CkWKLvsfOPa4Rak2bNi3MO/WURj+L4+KjxdebNTwnQIAAAQIECBAgQIAAAQIjBQQjIz28IkCAAIEpCDT/tbS/lJ4C5ASb/uUvfwm/uvzy8MtfXZ4vJD7e+htx8fR9sx/hn7HBBsuduUwwUjSOYUQMIsZa8Py/Pv2ZvE/x2Hi3xHHHfrRo1nic6DXjXRCHffiIRrvn7bBDeN++7228Lp7EBebjQvPFNjpoaQ5G4voap5580ojpxuJaLF//5reK5mHnf/t/4W1vfWvjdZzC68BD/jNf8D3ufNaGG2bByUca73/mjDPDossuy1/HQOOIww8L8c6b0dtxH/t4466SOKXWqSed1AisRgcjcSqtd+611+hThJ9fckn43OcXNPbHNU/GqoNgpEHkCQECBAgQIECAAAECBAgQWE5AMLIciR0ECBAgMBkBi69PRq11beKdI7/+39+E/8tCgl//5jcjplyKV4lrUsQFvWMw0LxNNKRobnPHnXeG66+7Pr/L4rYsvHj00Ucbb9+8ZEnj2nHtk5NPePxOi+KgiV5z9F0Wcequ1VdbrTjNiMcYohRbXCckLnJebM3BSLyb4wP771+8lT9ecuml4bNnf76xbzC7y2X77G6X5u2jxx3XWFR9/ac9LRw/99jG28fMnRtuvPGm/HW8SyS+P9b2l6xGMcwqtmOPOboRVo0ORmL/4zhGbzGQigFLse3x5jeHV7x85+Jl41Ew0qDo6JPmtZZiODyUrSdjI0CAAAECBAgQIECAAIHqCQhGqlcTPSJAgECSAoKR9pct3rlwwYU/bVxo7bWfGuKUTGNtv/zVr8IXv3xuWLZsWePtd8x+e3jJi1/ceB2fTDSkKBr97KKLwpfO/Up4+OGHi13jPk41GLn45z8PZy9YOO75x3sjrh9y8IEfbLzdHIzskK29MrDfvo334pPRwUgMTmKA0rytKBiJd5M0r/3R3G5Fz5vv9hgdjBx26H+Gf5oxY7nmca2So499PJR58xt3D7u88pXLHScYWY6kIzssvt4RZhchQIAAAQIECBAgQIDAlAUEI1MmdAICBAgQiALNfykdF8AezNZYsLVWIAYj++z3vsbi5zNmPL749lhXGv2D/yt2flnY4y1vGXFomWDkR9n6Il/+yldGtF/Ri6kGI8PDi8LpZ53VuES862XVVVdpvB7vyaabbDpiyq12ByOHHnZ4uP2OO/LuxDtGYmA1ke1de+/dWC9ldDDykQ8fPuZ0XIKRich27xjBSPfsXZkAAQIECBAgQIAAAQJlBAQjZbQcS4AAAQIEuixw8KGHhj/96a68F6tNnx7mn3ZqiOtajLX9IVu0/Mhs8fJie2l2t8ic7K6R5q1MMDL3+I+F3/3+93nzuEbGXnPmhG222TqsscYajVN++vQzwuVXXJG/nmowcs211+YLqxcnH2/aqOL98R7bHYx8/IQT8zVe4vWjxWnZGibj1WS8PgpGxpNJa38MiJs3ay01a3hOgAABAgQIECBAgACB6ggIRqpTCz0hQIAAAQJPKDBv/ifD4quuahw3K1sk/GXZYuFjbd/IFhT/draweLG9affdwqt22aV4mT9ONBi5/4EHwtD7PxDiXStxi3cFvfud78yfF/+Ji78fevjhjeBmqsHIA9k1P3DgQY1puzbddJPwoUMOCU960pOKS+aPcbqw0888K7w8uyMmTpU1emt3MPLVr50fvveDHzQuu1+20P1YU5x997//O5/abNfXvCbE9VKaN8FIs4bnBAgQIECAAAECBAgQIECgvQKCkfb6OjsBAgRqJdD819L+Uro9pb/q6l+HU+fNa5w8Tt0Ug5G4dkhc9DveqXDnn/4ULrr44vDDH/24EWTE/XM/ekx4+vrrN9rGJ3EKqDgVVLHFH/TftfdeIZ43bsVjXGB9/wM+GO6///58/3rrrRvmHnNMI6SIa46c+5XzwoU/+1n+ftE2XnOdtddunCfun+g147GfOePMsOiyy+LTfNshWxR91tveGtZZZ5389T333JMf89vrrstfz9hsszA08L4QQ5lia3cwcusf/xgOP+IjxeXCGquvHt7+treF/iw8ilsMk37xi+Fw1tln58+nT181vHG33bK6/VujTbuDkSMOOyxstNGz8utNmzat9B0tjY56QoAAAQIECBAgQIAAAQIEekBAMNIDRTQEAgQIVEHA4uudqUL8kf2LX/pyuOCnP13ugsX0TcVdHc0HvDq7U+SN2R0jo7cYaOw7MNgIUEa/f8LHjm+EEHGarMt++cvGIWuuuWbYequtsnBk5XDd9dc37hRpHPCPJzFE+fhxxzV2l7nmn//853w6rVuWLm20j+NsDoHinSrFNtbi6u0ORuK1L7jwwnBOVpfmbfXVVgvrrbdeuCe7o+Uvf/lL460YNh168MFhxozNGvtaHYyc//VvhO9+73uN8zc/ecmLXhTeMWd28y7PWyTQvNZSDIeHBq211CJapyFAgAABAgQIECBAgEBLBQQjLeV0MgIECNRXQDDS2drHhdDPPe+8cQONojfxR/hZb90jvPQlLyl2Lfc4+q6M5gOag5Hf33BDOOW0eeG+++5rPqTxPAYWH/rPQ8KCL5wT4vomxTY6GIn7J3rNeOy9996bhyNLb701vhx322brrcN73/PuEAOb5q0TwUi83o9/ckH40rnnNl96uefTV101CyXmhP6+HUe81+pgZMktt4SjP3psaA6NigsKRgqJ1j9afL31ps5IgAABAgQIECBAgACBdggIRtqh6pwECBCooUDzX0rH9ScGB/yldLs/BlddfXX41re/E2648cblLhWnktosW5Njl1e+Mmy15ZbLvd+844EHHwxf/erXwuWLF+chRPN7zcFI3H/HnXeGT59+erjxxpuaD8sXHX/3O/cO2z73ueH63/0ufPs738kWJL8uXx9krGCkzDXjheI6Il/88rlh8ZVXhkceeWTEtdfOpuraOZtO7NWvetWYU0R1KhiJnbrk0kvDd7773/l0Yc2djIvV/9OMGWHO7LeHZ2ywQfNb+fNWByPxpL/+39+Er33962FpdrdNs5lgZDn+lu0QjLSM0okIECBAgAABAgQIECDQVgHBSFt5nZwAAQIECLRf4O677w5xnYt7l90bVl9j9bDJxhs3pr9q19XjWiM33XxzFqT8OTzrWRuGZz7jGSPWEWnXdePdKn9YsiTcfdfdYa0s/Nl0k43DWmut1a7LTfq8N2d3zNx1113hoQcfChtmPhs+85kd8Zl0hzVsiUAMiJs3ay01a3hOgAABAgQIECBAgACB6ggIRqpTCz0hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE2iwgGGkzsNMTIECAAAECBAgQIECAAAECBAgQIECAAAEC1REQjFSnFnpCgACBpAUsvp50+XSeAIEWCDSvtRSn0RoatNZSC1idggABAgQIECBAgAABAi0XEIy0nNQJCRAgUE8BwUg9627UBAg8LmDx9cctPCNAgAABAgQIECBAgECVBQQjVa6OvhEgQCAhAcFIQsXSVQIE2iIgGGkLq5MSIECAAAECBAgQIECg5QKCkZaTOiEBAgQIECBAgEAdBWJA3LzF6bRsBAgQIECAAAECBAgQIFA9AcFI9WqiRwQIECBAgAABAgQIECBAgAABAgQIECBAgECbBAQjbYJ1WgIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB6AoKR6tVEjwgQIJCkgDVGkiybThMg0EKB+D0Y1xmJW5xGa2hwoIVndyoCBAgQIECAAAECBAgQaJWAYKRVks5DgACBmgsIRmr+ATB8AgTyUOS0+Y8HI+csXECFAAECBAgQIECAAAECBCooIBipYFF0iQABAikKCEZSrJo+EyDQSoF4t4hgpJWizkWAAAECBAgQIECAAIH2CAhG2uPqrAQIECBAgAABAjUTiAHxouxfsQ0OmEqrsPBIgAABAgQIECBAgACBKgkIRqpUDX0hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE2iogGGkrr5MTIECAAAECBAgQIECAAAECBAgQIECAAAECVRIQjFSpGvpCgACBhAWsMZJw8XSdAIGWCMTvweHhx6bS6u/vC/19fS05r5MQIECAAAECBAgQIECAQGsFBCOt9XQ2AgQI1FZAMFLb0hs4AQL/ELD4uo8CAQIECBAgQIAAAQIE0hAQjKRRJ70kQIBA5QUEI5UvkQ4SINBmAcFIm4GdngABAgQIECBAgAABAi0SEIy0CNJpCBAgQIAAAQIE6i0QA+JF2b9iGxwYKJ56JECAAAECBAgQIECAAIEKCQhGKlQMXSFAgAABAgQIECBAgAABAgQIECBAgAABAgTaKyAYaa+vsxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIVEhCMVKgYukKAAIGUBawxknL19J0AgVYIxO/B4eHHptLq7+8L/X19rTitcxAgQIAAAQIECBAgQIBAiwUEIy0GdToCBAjUVUAwUtfKGzcBAoWAxdcLCY8ECBAgQIAAAQIECBCotoBgpNr10TsCBAgkIyAYSaZUOkqAQJsEBCNtgnVaAgQIECBAgAABAgQItFhAMNJiUKcjQIAAAQIECBCop0AMiBdl/4ptcGCgeOqRAAECBAgQIECAAAECBCokIBipUDF0hQABAgQIECBAgAABAgQIECBAgAABAgQIEGivgGCkvb7OToAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRIQDBSoWLoCgECBFIWsMZIytXTdwIEWiEQvweHhx+bSqu/vy/09/W14rTOQYAAAQIECBAgQIAAAQItFhCMtBjU6QgQIFBXAcFIXStv3AQIFAIWXy8kPBIgQIAAAQIECBAgQKDaAoKRatdH7wgQIJCMgGAkmVLpKAECbRIQjLQJ1mkJECBAgAABAgQIECDQYgHBSItBnY4AAQIECBAgQKCeAjEgXpT9K7bBgYHiqUcCBAgQIECAAAECBAgQqJCAYKRCxdAVAgQIECBAgAABAgQIECBAgAABAgQIECBAoL0CgpH2+jo7AQIECBAgQIAAAQIECBAgQIAAAQIECBAgUCEBwUiFiqErBAgQSFnAGiMpV0/fCRBohUD8Hhwefmwqrf7+vtDf19eK0zoHAQIECBAgQIAAAQIECLRYQDDSYlCnI0CAQF0FBCN1rbxxEyBQCFh8vZDwSIAAAQIECBAgQIAAgWoLCEaqXR+9I0CAQDICgpFkSqWjBAi0SUAw0iZYpyVAgAABAgQIECBAgECLBQQjLQZ1OgIECBAgQIAAgXoKxIB4Ufav2AYHBoqnHgkQIECAAAECBAgQIECgQgKCkQoVQ1cIECBAgAABAgQIECBAgAABAgQIECBAgACB9goIRtrr6+wECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAhQQEIxUqhq4QIEAgZYE4hUycXz9u/X19YWjQFDIp11PfCRAoLxC/B4eHH5tKq7+/L/8uLH8WLQgQIECAAAECBAgQIECg3QKCkXYLOz8BAgRqImDx9ZoU2jAJEBhXwOLr49J4gwABAgQIECBAgAABApUSEIxUqhw6Q4AAgXQFBCPp1k7PCRBojYBgpDWOzkKAAAECBAgQIECAAIF2CwhG2i3s/AQIEKiRQAxHii1Op2UjQIBAnQTid+Cipu/BwQFTCtap/sZKgAABAgQIECBAgEA6AoKRdGqlpwQIECBAgAABAgQIECBAgAABAgQIECBAgMAUBQQjUwTUnAABAgQIECBAgAABAgQIECBAgAABAgQIEEhHQDCSTq30lAABApUWiFPIxPn14xan0RoaNIVMpQumtlVYmgAAQABJREFUcwQItFwgfg8ODz82pWB/f1/+XdjyizghAQIECBAgQIAAAQIECExZQDAyZUInIECAAIEoEH8QnDV7To4Rg5FzFi4AQ4AAgVoJWHy9VuU2WAIECBAgQIAAAQIEEhYQjCRcPF0nQIBAlQQEI1Wqhr4QINANAcFIN9RdkwABAgQIECBAgAABAuUFBCPlzbQgQIAAgXEEYjhSbPGuERsBAgTqJBCDkeJ7cGY2ldbggCkF61R/YyVAgAABAgQIECBAIB0BwUg6tdJTAgQIECBAgAABAgQIECBAgAABAgQIECBAYIoCgpEpAmpOgAABAgQIECBAgAABAgQIECBAgAABAgQIpCMgGEmnVnpKgACBSgvE6WPiNDJxi9NoDQ2aQqbSBdM5AgTaIlBMpRVPbkrBthA7KQECBAgQIECAAAECBKYsIBiZMqETECBAgEAUiD8Gzpo9J8eIPwaes3ABGAIECNRKwOLrtSq3wRIgQIAAAQIECBAgkLCAYCTh4uk6AQIEqiQgGKlSNfSFAIFuCAhGuqHumgQIECBAgAABAgQIECgvIBgpb6YFAQIECIwjYAqZcWDsJkCgFgIxGCm+B2f294XBAVMK1qLwBkmAAAECBAgQIECAQHICgpHkSqbDBAgQIECAAAECBAgQIECAAAECBAgQIECAwGQFBCOTldOOAAECBAgQIECAAAECBAgQIECAAAECBAgQSE5AMJJcyXSYAAEC1RSI08fEaWTiFhdfHxo0hUw1K6VXBAi0U6CYSiteI34X2ggQIECAAAECBAgQIECgegKCkerVRI8IECCQpED8MXDW7Dl53+OPgecsXJDkOHSaAAECkxWw+Ppk5bQjQIAAAQIECBAgQIBAZwUEI531djUCBAj0rIBgpGdLa2AECExQQDAyQSiHESBAgAABAgQIECBAoMsCgpEuF8DlCRAg0EsCppDppWoaCwECZQViMFJ8D87s7wuDA6YULGvoeAIECBAgQIAAAQIECHRCQDDSCWXXIECAAAECBAgQIECAAAECBAgQIECAAAECBCohIBipRBl0ggABAgQIECBAgAABAgQIECBAgAABAgQIEOiEgGCkE8quQYAAgRoIxOlj4jQycYuLrw8NmkKmBmU3RAIERgkUU2nF3fG70EaAAAECBAgQIECAAAEC1RMQjFSvJnpEgACBJAXij4GzZs/J+x5/DDxn4YIkx6HTBAgQmKyAxdcnK6cdAQIECBAgQIAAAQIEOisgGOmst6sRIECgZwUEIz1bWgMjQGCCAoKRCUI5jAABAgQIECBAgAABAl0WEIx0uQAuT4AAgV4SMIVML1XTWAgQKCsQg5Hie3Bmf18YHDClYFlDxxMgQIAAAQIECBAgQKATAoKRTii7BgECBAgQIECAAAECBAgQIECAAAECBAgQIFAJAcFIJcqgEwQIECBAgAABAgQIECBAgAABAgQIECBAgEAnBAQjnVB2DQIECNRAIE4fE6eRiVtcfH1o0BQyNSi7IRIgMEqgmEor7o7fhTYCBAgQIECAAAECBAgQqJ6AYKR6NdEjAgQIJCkQfwycNXtO3vf4Y+A5CxckOQ6dJkCAwGQFLL4+WTntCBAgQIAAAQIECBAg0FkBwUhnvV2NAAECPSsgGOnZ0hoYAQITFBCMTBDKYQQIECBAgAABAgQIEOiygGCkywVweQIECPSSgClkeqmaxkKAQFmBGIwU34Mz+/vC4IApBcsaOp4AAQIECBAgQIAAAQKdEBCMdELZNQgQIECAAAECBAgQIECAAAECBAgQIECAAIFKCAhGKlEGnSBAgAABAgQIECBAgAABAgQIECBAgAABAgQ6ISAY6YSyaxAgQKAmAnEambjFqWTiAuxDg6aRqUnpDZMAgUwgfgf2Z1Noxe8/GwECBAgQIECAAAECBAhUV0AwUt3a6BkBAgSSE2heeHgom1tfMJJcCXWYAIFJCsRAeNbsOXkoEp9ff+01kzyTZgQIECBAgAABAgQIECDQbgHBSLuFnZ8AAQI1E9h8y63yEce/mD5n4YKajd5wCRCoq0AMRYqF133/1fVTYNwECBAgQIAAAQIECKQiIBhJpVL6SYAAgUQE4g+Di7J/g9kdIzYCBAjURSB+98W75uJjDIVNp1WXyhsnAQIECBAgQIAAAQIpCghGUqyaPhMgQCAhgfgjoR8IEyqYrhIgUErAd1wpLgcTIECAAAECBAgQIECgEgKCkUqUQScIECDQmwLFmiPWG+nN+hoVgboLFN9x7hCp+yfB+AkQIECAAAECBAgQSE1AMJJaxfSXAAECiQjEv6KOc+4Xmx8OCwmPBAj0goDvuF6oojEQIECAAAECBAgQIFBXAcFIXStv3AQIEOiAQPHX1KMXIo4/KMbNFFsdKIJLECDQMoHR02ZtvuVW+blHf8e17IJORIAAAQIECBAgQIAAAQJtERCMtIXVSQkQIECgEIjhSH9/XyMEaf4r6+YptooQJbZrx/7m6zb/iNmt/XGcxY+q8fn1114TH/KtW/vjHT7RI27Nd/h0a3+7PxNlz9+tz0rzdWNtqvBZaf6MVuGz0vwZbcf3x4o+K7E+0cBGgAABAgQIECBAgAABAukICEbSqZWeEiBAoCcEuvUDZvOPy4KRx/7KPX6gmn9kb65NFX7sXtGP0afNn5//76GTP4JX4TM0umbNAUVzLTu5vwqflebPbic/E/mH0H8IECBAgAABAgQIECBAIDkBwUhyJdNhAgQIpC0wL/tB+xfDi/I7E5p/UG33j+BV+FG7OZCJVezkj9cT+dG8+cfl5tp0a3+7PxNlz1+Fz1D83Eyklp38bFXhs9L8GW1nMBL/NzwzuwNucGAglsJGgAABAgQIECBAgAABAokKCEYSLZxuEyBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBCPlzbQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhUQjCRaON0mQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEygsIRsqbaUGAAAECBAgQIECAAAECBAgQIECAAAECBAgkKiAYSbRwuk2AAAECBAgQIECAAAECBAgQIECAAAECBAiUFxCMlDfTggABAgQIECBAgAABAgQIECBAgAABAgQIEEhUQDCSaOF0mwABAgQIECBAgAABAgQIECBAgAABAgQIECgvIBgpb6YFAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkKiAYCTRwuk2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF5AMFLeTAsCBAgQIECAAAECBAgQIECAAAECBAgQIEAgUQHBSKKF020CBAgQIECAAAECBAgQIECAAAECBAgQIECgvIBgpLyZFgQIECBAgAABAgQIECBAgAABAgQIECBAgECiAoKRRAun2wQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AcFIeTMtCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUQFBCOJFk63CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfICgpHyZloQIECAAAECBAgQIECAAAECBAgQIECAAAECiQoIRhItnG4TIECAAAECBAgQIECAAAECBAgQIECAAAEC5QUEI+XNtCBAgAABAgQIECBAgAABAgQIECBAgAABAgQSFRCMJFo43SZAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwhGyptpQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQqIBhJtHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQIECJQXEIyUN9OCAAECBAgQIECAAAECBAgQIECAAAECBAgQSFRAMJJo4XSbAAECBAgQIECAAAECBAgQIECAAAECBAgQKC8gGClvpgUBAgQIECBAgAABAgQIECBAgAABAgQIECCQqIBgJNHC6TYBAgQIECBAgAABAgQIECBAgAABAgQIECBQXkAwUt5MCwIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBRAcFIooXTbQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC8gGCkvJkWBAgQIECAAAECBAgQIECAAAECBAgQIECAQKICgpFEC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAQHkBwUh5My0IECBAgAABAgQIECBAgAABAgQIECBAgACBRAUEI4kWTrcJECBAgAABAgQIECBAgAABAgQIECBAgACB8gKCkfJmWhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJCghGEi2cbhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLlBQQj5c20IECAAAECBAgQIECAAAECBAgQIECAAAECBBIVEIwkWjjdJkCAAAECBAgQIECAAAECBAgQIECAAAECBMoLCEbKm2lBgAABAgQIECBAgAABAgQIECBAgAABAgQIJCogGEm0cLpNgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQjJQ304IAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIVEAwkmjhdJsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoLyAYKW+mBQECBAgQIECAAAECBAgQIECAAAECBAgQIJCogGAk0cLpNgECBAgQIECAAAECBAgQIECAAAECBAgQIFBeQDBS3kwLAgQIECBAgAABAgQIECBAgAABAgQIECBAIFEBwUiihdNtAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAYKS8mRYECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAogKCkUQLp9sECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAeQHBSHkzLQgQIECAAAECBAgQIECAAAECBAgQIECAAIFEBQQjiRZOtwkQIECAAAECBAgQIECAAAECBAgQIECAAIHyAoKR8mZaECBAgAABAgQIECBAgAABAgQIECBAgAABAokKCEYSLZxuEyBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBCPlzbQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhUQjCRaON0mQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEygsIRsqbaUGAAAECBAgQIECAAAECBAgQIECAAAECBAgkKiAYSbRwuk2AAAECBAgQIECAAAECBAgQIECAAAECBAiUFxCMlDfTggABAgQIECBAgAABAgQIECBAgAABAgQIEEhUQDCSaOF0mwABAgQIECBAgAABAgQIECBAgAABAgQIECgvIBgpb6YFAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkKiAYCTRwuk2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF5AMFLeTAsCBAgQIECAAAECBAgQIECAAAECBAgQIEAgUQHBSKKF020CBAgQIECAAAECBAgQIECAAAECBAgQIECgvIBgpLyZFgQIECBAgAABAgQIECBAgAABAgQIECBAgECiAoKRRAun2wQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AcFIeTMtCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUQFBCOJFk63CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfICgpHyZloQIECAAAECBAgQIECAAAECBAgQIECAAAECiQoIRhItnG4TIECAAAECBAgQIECAAAECBAgQIECAAAEC5QUEI+XNtCBAgAABAgQIECBAgAABAgQIECBAgAABAgQSFRCMJFo43SZAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwhGyptpQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQqIBhJtHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQIECJQXEIyUN9OCAAECBAgQIECAAAECBAgQIECAAAECBAgQSFRAMJJo4XSbAAECBAgQIECAAAECBAgQIECAAAECBAgQKC8gGClvpgUBAgQIECBAgAABAgQIECBAgAABAgQIECCQqIBgJNHC6TYBAgQIECBAgAABAgQIECBAgAABAgQIECBQXkAwUt5MCwIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBRAcFIooXTbQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC8gGCkvJkWBAgQIECAAAECBAgQIECAAAECBAgQIECAQKICgpFEC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAQHkBwUh5My0IECBAgAABAgQIECBAgAABAgQIECBAgACBRAUEI4kWTrcJECBAgAABAgQIECBAgAABAgQIECBAgACB8gKCkfJmWhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJCghGEi2cbhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLlBQQj5c20IECAAAECBAgQIECAAAECBAgQIECAAAECBBIVEIwkWjjdJkCAAAECBAgQIECAAAECBAgQIECAAAECBMoLCEbKm2lBgAABAgQIECBAgAABAgQIECBAgAABAgQIJCogGEm0cLpNgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQjJQ304IAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIVEAwkmjhdJsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoLyAYKW+mBQECBAgQIECAAAECBAgQIECAAAECBAgQIJCogGAk0cLpNgECBAgQIECAAAECBAgQIECAAAECBAgQIFBeQDBS3kwLAgQIECBAgAABAgQIECBAgAABAgQIECBAIFEBwUiihdNtAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAYKS8mRYECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAogKCkUQLp9sECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAeQHBSHkzLQgQIECAAAECBAgQIECAAAECBAgQIECAAIFEBQQjiRZOtwkQIECAAAECBAgQIECAAAECBAgQIECAAIHyAoKR8mZaECBAgAABAgQIECBAgAABAgQIECBAgAABAokKCEYSLZxuEyBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBCPlzbQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhUQjCRaON0mQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEygsIRsqbaUGAAAECBAgQIECAAAECBAgQIECAAAECBAgkKiAYSbRwuk2AAAECBAgQIECAAAECBAgQIECAAAECBAiUFxCMlDfTggABAgQIECBAgAABAgQIECBAgAABAgQIEEhUQDCSaOF0mwABAgQIECBAgAABAgQIECBAgAABAgQIECgvIBgpb6YFAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkKiAYCTRwuk2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF5AMFLeTAsCBAgQIECAAAECBAgQIECAAAECBAgQIEAgUQHBSKKF020CBAgQIECAAAECBAgQIECAAAECBAgQIECgvIBgpLyZFgQIECBAgAABAgQIECBAgAABAgQIECBAgECiAoKRRAun2wQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AcFIeTMtCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUQFBCOJFk63CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfICgpHyZloQIECAAAECBAgQIECAAAECBAgQIECAAAECiQoIRhItnG4TIECAAAECBAgQIECAAAECBAgQIECAAAEC5QUEI+XNtCBAgAABAgQIECBAgAABAgQIECBAgAABAgQSFRCMJFo43SZAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwhGyptpQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQqIBhJtHC6TYAAAQIECBAgQIAAAQIECBAgQIAAAQIECJQXEIyUN9OCAAECBAgQIECAAAECBAgQIECAAAECBAgQSFRAMJJo4XSbAAECBAgQIECAAAECBAgQIECAAAECBAgQKC8gGClvpgUBAgQIECBAgAABAgQIECBAgAABAgQIECCQqIBgJNHC6TYBAgQIECBAgAABAgQIECBAgAABAgQIECBQXkAwUt5MCwIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBRAcFIooXTbQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC8gGCkvJkWBAgQIECAAAECBAgQIECAAAECBAgQIECAQKICgpFEC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAQHkBwUh5My0IECBAgAABAgQIECBAgAABAgQIECBAgACBRAUEI4kWTrcJECBAgAABAgQIECBAgAABAgQIECBAgACB8gKCkfJmWhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJCghGEi2cbhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLlBQQj5c20IECAAAECBAgQIECAAAECBAgQIECAAAECBBIVEIwkWjjdJkCAAAECBAgQIECAAAECBAgQIECAAAECBMoLCEbKm2lBgAABAgQIECBAgAABAgQIECBAgAABAgQIJCogGEm0cLpNgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQjJQ304IAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIVEAwkmjhdJsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoLyAYKW+mBQECBAgQIECAAAECBAgQIECAAAECBAgQIJCogGAk0cLpNgECBAgQIECAAAECBAgQIECAAAECBAgQIFBeQDBS3kwLAgQIECBAgAABAgQIECBAgAABAgQIECBAIFEBwUiihdNtAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAYKS8mRYECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAogKCkUQLp9sECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAeQHBSHkzLQgQIECAAAECBAgQIECAAAECBAgQIECAAIFEBQQjiRZOtwkQIECAAAECBAgQIECAAAECBAgQIECAAIHyAoKR8mZaECBAgAABAgQIECBAgAABAgQIECBAgAABAokKCEYSLZxuEyBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBCPlzbQgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhUQjCRaON0mQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEygsIRsqbaUGAAAECBAgQIECAAAECBAgQIECAAAECBAgkKiAYSbRwuk2AAAECBAgQIECAAAECBAgQIECAAAECBAiUFxCMlDfTggABAgQIECBAgAABAgQIECBAgAABAgQIEEhUQDCSaOF0mwABAgQIECBAgAABAgQIECBAgAABAgQIECgvIBgpb6YFAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkKiAYCTRwuk2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF5AMFLeTAsCBAgQIECAAAECBAgQIECAAAECBAgQIEAgUQHBSKKF020CBAgQIECAAAECBAgQIECAAAECBAgQIECgvIBgpLzZ/2fvPOClJtY2Pp+93mtBVLCABZRiRxAbgigIKAiogFeqSBMQlI70pggCimKhKYoFGxaaKB3EioBgb6jYvVZs93ufwTfM5mR79pzds8/w42w2ZTL5J5uZeSuPIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyFECVIzk6I1js0mABEiABEiABEiABEiABEiABEiABHKbwNdff23eXL8+5YuocPzx5uCDD075eB5YOASWLFlq/v7f3/ZkJQ4sYSpXrlQ4Jw7hLB9/8ol57733vJpOO+00s+8++3jfN23ebOY89pg5uGRJ0/CSS0yJEiW8bcksfPLpp+bdd9/1Djnt1FPNvvvu633/6quvzGOPP26++fZb06RxY1Pu2GO9bVwgARIggVQIUDGSCrVifgwHZsX8Bv9zeUU9MCvq82fqLv/vf/8zy5evMPMXLDCnykCubp0LzR577BH1dH/++afZvPlt8+VXX3r7lCpVypQvV85+/+OPP8zzixebLZ9uMQ0a1DclZbBZHEpYg+fiwILXkD8E2L/mx70urv1bftw9XmVREKCgqyio85zZRGDxCy+Y9h06ptykcWPHmotlnsCS3QQqVD7B/P7777aRF9SubSbfNim7G+y0bspdd5mbbxnnrXn6qSfNceXL2+8//PCDqX72OWbbtm32O5QZsx+Y5e2bzMKMmfeZYSNGeIc8+vBD5qQTT/S+X9q0qVm37k37fa899zQrli+LUNB4O3KBBEiABBIkQMVIgqDyaTcOzPLjbhf1wKyoz5+puwyBWNv27b3qO3fsaK7r3s377i68/8EHpkPHTgafbrnqyhbmxoED7apu1/Uwzzz7rF3ebbfdzMplS81+++3n7p5zy2EOnnPu4tngvCbA/jU/bn9x7d/y4+7xKouCAAVdRUGd58wmAhwfZNPdyFxbcnl8EEsx8uicOaZPv/4R4DBnTcWgL5ZiBF4rNc+vHXGe8bfcYhrUrxexDl9Gjh5tXnjhRW/9wvnzvGUukAAJkIBLgIoRlwaXLQEOzPLjQSjqgVlRnz9Td/mG3r3N40886VVftkwZE20g1qzFlWbtyy97++qCKkZ+/OknU6VqNQOvEi1DBt1oWjRvrl+z6vOK5i3MN998Y9t04oknmLE33RTYvjAHz4En4EoSyFIC7F+z9MaE3Kzi2r+FjCmh6oqrYCPR/jIhSFm6U6L3LhlBV5ZeKptFAmkT4PggbYQ5UUEujw9iKUbwHq9V+wKDyAkosea/8W5ULMXI33//bRUjn27ZYqvZaaedzJLFz5tDDz20QLXX9exp5j79jLf+3c2bvGUukAAJkIBLgIoRlwaXLQEOzPLjQSjqgVlRnz9Td9kv9L/issvM8GFDC5wObtSVTzrZ/PXXX3bbrrvuak495RSz++67mZrnnecpPy6oUzfCo+ShBx+w+xWoMAtWnHHW2QbhMFCqnn66mXXfzMBWhTl4DjwBV5JAlhJg/5qlNybkZhXX/i1kTAlVV1wFG4n2lwlBytKdEr13yQi6svRS2SwSSJsAjKG2/CPsdStbuHChmTDpNm/V1W3bmksuudj7rgulJQyvm4dB1/Mzuwjk8vgglmIElDEHfmD2bHPwQSVNu3ZtU56vxlKM4DwvrV1r7rnnXptj5MoWLUyjhpdgdYGSaB9U4ECuIAESyDsCVIzk3S2Pf8EcmMVnVBz2KOqBWVGfP1P38LfffjN3TrnL5hhBfNWOHTqYUqUKWrEg10C1M8/ymtFUkseNGrkjnqpuQL6ScbfearZ89plpcuml5obre+qmrPtMRtAT1uA56yCwQSQQgwD71xhwitGm4tq/FcUtKq6CjWT6y6LgHsY5k7l3iQq6wmgX6yCBXCLwyKOPmr79B3hNHtC3r2nVqqX3nQu5RSCXxwfxFCNh3Yl4ipFEz5NMH5RondyPBEigeBKgYqR43teMXBUHZhnBWmSVFvXArKjPX2Tg/zmxXzHSWiY5/WWyE63ANfn//u//om3OivX5IOjJCtBsRLEjwP61eN3SfO/fwrybxVWwkQ/9ZXG9d2E+36yLBOIRSGV8gLC2Tz75lNnw1kbzxRdbzd577WUOO6y0qVOnjjm9SpWop3zs8SfM339v92Q/8sgjTZXTTjOYr0Bx+ca6debwww4zVeT4csce681JkGz79TfeMK+88or5448/rZfAyaecbM/pP9G3335r4DmrBXUdecQR5sOPPjKPPPKoeeeddwwMSA455GDred6gQYPAevR4/fzl11/NggULzZo1a8zWL7dKAvDfbR2VKlQ09epdFDPPRdA1f/nll+ZluZ4vt35pypQtY2qce66eyn7C2x+Ga29tests2vy2ZQQ2ZWXfRg0bmoMOOihif/dLKuODTZs3m/Xr13vVnCIRBo4qW9b77i5s2LDRtkvXnS4e/Eccfrh+tZ+4l2+8sc5slnrBvmTJg+Q+HGkuqH2+qVChQsS+7pd4ihGXZSnxYKp+xhnu4d7yz7/8YubOnWvWvPSS2SqMS5QoYa+naZMmpnTpUiaeYgTsv9j6ha1v1113M5dc3MAuI2rBkqVLvfM8OPsh+9zqitGOAeIuu+xqGjqeVwvEM+u///2v3fXf//63qX3++XpYxCfY4TnV0qB+fYn2sLt+5ScJkECOEqBiJEdvXFE0mwOzveJiL+4DsyAAW7dulfidT5uNb71lBzcYzFauWMlUPqGyqVSxYtTBQqIDQ4RdekkGThi8vf3Ou2YvGdwfeeQRdrBeq2bNoCZFrMM9eeyxx8zGjW8ZxCPdZZedTelSpQ0GinXrXCjfd4nY3/2C8A4YKK1Z85L59NNPza/iDQLvjwrHHW8aN7400GXdP+g/8cQTzbHHHGOrRWL2r77eHmrqpx9/MsNHjfJOd9aZ1U39egUTx3k7/LPQWLxGoilIUr0Xeg4MCJevWGE2bdpsef/x5x92oFy+fDk70PcP/N6Se75h40Y93IwYOcpOaLACsWWvaX+1tw2xX8+sXt37nujgGQdgQvDss8/ZkGKY7P1r333twLlWzVqmWrWqZuedd/bqdRf8E4m6devaCdbbMqBdvHixwcTn8MMON9XOqGaOK18+Kle3Ti6TQCYIsH9l/xr0XL3z7rsiPHjae/cdeOCBVnhw6aWNTBkRWvmL+17dY489ovYp6Nsef+IJLxb4PvvsY+pceKG/OpPs+VFBuu/ddAQbBS4gygoYGqxavdosWrRI+vYtBkIaHbs0atTQQCjilnXr3pTxx9veqtKlS5szqlXzvrsLfqHUIQcfYs4660wTVn+pwsp4grtk+3P3GnQZwr8VK1ZaQeZn4rW6TUKAVjj+eHOCjO8qV65sDhMObknn3kUTdLn16zKu/ZlnnjXrN26wQl+EID24pAhSq1Y1F1xQ2+y15566a8Snf3ymQlmMK56RMcanWz6VY/cyZ8iY4OSTTjK77bZbxPH8QgJFQSDZ8QHyHPbt3z8iP6HbbozF77rzjsD5mTs3u1TehVdcfrlp3aatfUe6dTRu1MiMHjXSKgSaXn6FnV+52zFXun/mzAICeShQmlx2ubfrTaNHybv3EHNNx47m119/89brAhQMD866P7C/032Qq7F9h47mxx9/1FURn8hB0a9PH9Oq5VUR6/WL/5ovlWtrJdes+R3RN942cYLubq+1R8/rzauvveatcxfw/unY4RobMcBdr8vu+S6oXdtMvm2Sbor6CQVCi//saH+0MM2ooF379uZFmW9qWbRgvscPc+IRI0aahx55RDdHfGJ+CSXDkMGDAxVS8RQjiVwbFDHIsamhl90G4J07fOgQuZc/mWEjdkRRePThh8xJMp/W0qZdO7N02XL79V//+pd5de1LdhkKvOZX/kd3i/m5z957m9dffcXbp85F9cy7771nv2NO+PRTO/KFejvJwrDhw82M++73Vr20aqU54IADvO9cIAESyE0CVIzk5n0rklZzYMaBmf/BmzZtuhklCbYhZAkqEI5PkcF3kFVLIoOnmTLwGHPzzWL5sy2oejtxxcD86KOOCtz+vAi/e/Xpa3744YfA7RDWT5pwa8RgS3eEQqbd1e0j8nvoNnzC+qpvn9520uCu9w/6B8rkpOVV2wdpV17V0qwWa6Z0ymYRBAQpAtK5F2gP2tXzhl6i3Noa2DxMcoYMGmTOq1HD237b7bebWyfGH9DjgFqSNwXPgpZE7j8mJdf36m2efmZH4jw9Xj/Llytnpk+9N9A6yz+Af1GS8y1auChCIaX1YPI17d57rIJE1/GTBAqLAPtX9q/uswbB/Y2DBpsHH3rIXe0tQ3jR8ZprTI/runvrsADBCQQoWlYuWxpoKbvuzTfNpU2a6m5WEHKL9LVaUj0/jk/3vZuOYEPbH+sTwrOWrdsYMAgqUChhXOD2dZ9//rmpd/ElnjUpcoI98dgcg/7HLd9//72pU6++FRZiPfrqB+6/z1pQh9VfQlgZT3CXSn/uXgeWMRZo3badKIR2WMa6++AZvLZzZ3Ntl86eUUE69y6aoMs9J5anz5hpkNQ92rgTORbunnKnQShTf/GPzyCULSPj1JatWxcQyuI5GDZkSNTY9f66+Z0EMkUgmfEBEk33vOGGqL8PbSPG5LeLQN5vHOaOzSFw/vOPPwyE6UEFAnRrSPX2DqWxux8UHo8/+kjE+Nz/GzzxhBOsMj3aPA/1Yf4xe9YDgWGJYXDWuWtXgzDG8Uq3a7vI+6pLgd3ca4bnwjapC14rWlzFyGefSV8gXizudt3P/3nzmDGB7w/3fIkqRqCkRvjl7777zp4G89dlL+7wvNFzg+Opp1f1eKCPembuU3Yz6mgseS/Xr9+gu0f9jBbe2d+/Q3kAJYKWeNcGfle0aG7wGa3gmYT3zQcffujtQsWIh4ILJEACGSJAxUiGwBbHajkw48DMfa4niEB8kgjG4xVMUm+bMMGcKR4Rbok3eBoh3hTTps9wDwlchjv343MeLWD5tFkG6k1kABhkgeRWBMueB+6/31SqVNFbjUlAo0sbm/fef99bF20Bli2wqNLiH/QXhmIk3XsBr5guXbvFnUjtueceIgx6zFNEhSXoCZoYYJLTRSY7rtWTMvZ/wkV8xvRpdiDtbvMP4JGc7wkJLQChX1CBcgTJ7f0u50H7ch0JhEmA/Sv7V/d5GjR4iJn14IPuqsDlXpJzqv3VOzzzIDQePnKkty/CRjSR/FX+4n93wxrW9RhJ9fw4T7rv3XSE6/7r9H+HMKuVKEUQCiNWgXfk1HvutqFcdL958+fbflK/Hy+eExD6uYJF9KPYT8t13bqazp062a9+5rpP0GcsQ4J4grtU+3O3HTAMadmqtflEPGXjlboSmufmMaMNFAnp3LtEFCMTJQH1xNt2JKGO1ja05faJE825554TsYt/fHa+eB2/JNbmGj4lYmf5gnt7+6SJJhHvZP+x/E4CYRFIdHwAY7BOXa41EIBrqVixghgm1ZRwSR+aF154MUKgjzExhPducedmuh6ht+BBhXeLK6zW7bC8v1iUBT/9/JN5/vnFEd4lo0YMNwiPpMX/G9T1xxx9tKlR41xTssRB1mofBlGuQgYeknOffNJgHqIFSpFr5P2qnh1YDyF9taqny/toT/Fo32CWScglt3QWz5TrundzV5mga8YO8AKAcudMCQfVu9cN9hgonZ58aq53fA15x+AdWFKSjS96/nnzlISHUqUJuKxds9pAke4W93xB8x93X3e5b7/+5hFJbq7l2afn2pBm+h2fy8SLorV4U2iB8rpb12vt14fFS6TfgIG6yRx/3HHWKALef6tXr7FepIisoOWRh2bb+67f8env35NRjGA+3uCSS2zoLq0Tc3BES8D9/1IiKixduixQGZ+oYuT9Dz4wd9x5p1Zv1q59OcKbyU3SvsfuovyWObwWeowoCX6SQH4SoGIkP+97SlfNgZmxrqj5PjDDwzNu/K1msjPwgJsyFAuw0Pv1l18N3JrVHRX777fffmbF0iURyotYA0MoJOo1uNgb7EJg3UgGU2effZbE9XzXDjwxuNZyfY/rTAexnnWLv42dJAn6+bVq2YH7c8/Ni7DEPUfqnXrPPd7hCB3Rsk0b7zsGrleKhcu+++wr4TdWWS+J3yWkBAqubckLiz2XY/+g31WMYECpXH77bZt5bt487xwYFFauXMn7rguvvPKqgZBCi99jxH+dyd6LP8Qa7MK6F3nngBtzw4svNrVq1RSl0q8i5FkQIehxWS2UMCSYKGl5bt58z0oJwpuzJXyIlorHV4hIFhnr/sMSFN41ELJogaAK9w/eR7BkXbJsWYR3S8mSJc0ccbWGFZUW/wAe62Hlep7ECoZQC8KQ+dJ+hOXQAldtDMBZSKAwCbB/Zf+qz9uYm242d997r361wtnqEtoHsd7hDbJaQju6giBX+QErzHPEEliLa+mq6/CJUCbah1qBtvRrGn4onfOj7nTfu+kINnD+aAXM4FHzyquvervsKyHEatY8T5ThR5hFIlREuCstEGo9+MAsKzzSdQMG3mhmP/ywfjUYV6jXzlMS8qzH9dd72yBMvG/GdM/DM6z+0juBLPgFd+n051ovniFYFbthTnAeXA/6XzDCc+gKLfuI0LBd27bWwzZVoVQ8xYh/rIP2IgRpJQnd+ttvv0qb1kpc/U16GfZ3M2Xy5AjliH98pjsjNBiu7//k34pVqyT06o4QoRh7rF65QsZ/++ju/CSBQiWQ6PigQcNGEe+wWffNjFDuYt6CMEP67sdFzHv2GSuU1gtyx+ZYN/HW8eYiCUOrpa54xCHEohZY9s8VrwG8L1H8IZ/8ngdBv8Ermzc3A/r3i1AyQ0DfRjzW0B9ogVej5pLAukaicHnzzfW62XQXBUAnUXxgHqQFIfqgPFGPFPye4Unphkv0XzOUHVeLcgFzWtdDH0ZVU6dOM3OFGbwuguYL42+dYG6/Y4d3/Nwnn4joQ9Au93zJKEZeePFFc/U1HfTSTN9evUzbtjvmqtgwQgwjpomBhJa5Tzxu5zv4jj7oIem/lsscdw/hsHjRwogQUCvl3XeVKMS1DOjXr0D4MX//noxiBAolKJa0oD+ZKp76bkhG9NMjxTBy5v2zdDf7mahiJOIg+ZJMnisqRvz0+J0E8osAFSP5db/TuloOzLbjy/eBGUJFVD/7HKOKAQwax0o4rQb163nPFwTb/cUqxbVsGSMhr5AfQ0usgSEm3lOnT5f4389by5upd99tzjnnbD3Urqt+1lmeNwgSpN1xe6QV4TUSb/b5fxL8IS776hXLvXAPqOiK5i2sYP3882tZgXtVyTmiBWGpRkioBi3PPfO0lycE6zDwvW/WLFPzvBr2WITcwGAbxT/odxUjdod//iSafP16GfjCy0GLqxgJ414g5vZdohSCkmbLls/MNWJ9fINYIbsFrJCEEMWN5erug+VkksnGuv8vLlkiMXJ3KLpgKXb3XVNM2TJlvFPCIqtX7z52oK8rrxbBjFp1YZ1/AI9ndcodkyOSKKKexhJSRidfsBB9TRR7rlWa1s9PEsgUAfav28nme/+K9zH6V1V8oO+aJ/3P/vvv7z16UAxfUKeuZ5ULw4HlS170BDgNxUNEQ2VAmAuLVderAf3G6WdU9zwEa4vC+Y7J270/wzh/2O/dZAQbHqSABVjzdujU2dsCJf9dYuDhsoHF9TUdt3t4YEcIBCEY1AKL10bCVw0c0KfAy/BQsSquW7+B53mAfvIZERa6inqtQz9T7S9xfDTBXRj9+WgZz91z71RtpkGoG3hkquATG/B8tZL+Fs8SCoSjzy9cECGQxPpk7l0sxYh/rAMDjjvFY9kdF2LciWfvFjHc0QKFx2NOLH3/+Az7dZB4/D3FuAZGEyio54bevSOswqeLohJ5YlhIoCgIJDI+wBgW/YKWCy+4wHo76Xf9hKIAv10t/vBS7tgcyvKXX1oTkWtnknhsTRDPLS2tJFTwAAkZrAW/nzPPOddTrMIrAcoBLf7fIITjCPXk96rA/lBiX96suR4qicF35OPwX281yS90/8wZ3r7ugt9bz+/p714zjN2WSogqNRRw63GXYbCGa/Xn+kKOrfoSdlHLuLFjxZumvn61n+753GuK2CngC+bdVapW8/p+5LmC8t0ttS+s43n14L38wvOL3M12GeGlP/r4Y3OCeIq4BYqfKtXO8N7rQXlM/P17MooReDO5xnSzxfAgKOQhxj8wjnSjNlAx4t4pLpMACWSCABUjmaBaTOvkwGz7jXUHMfk4MJstMc8H3DjIe8qD3JKxEZaLEL5oMjz/ID2RgSHqwMAYA15/cQdYGJgiuZxbYLXoTpDbi/VP8+bNPMsUhGqCpWxQ8Q/G4WGAuLSYZKOo0MoVqGg9/kF/JhUjYd0LbTvCixx11FEFLCNnzLzPuEnwosWtT1XQ4/6m0Ba/MMVv9abtxeC+1gUXeoN4CAhXLV+mmwsoRoLCBmBnv3s5YsLDepSFBAqLAPvX7aTddwH7V2NuHDDAXPWfKws8hreMG2/umDLFW+++I/19HxLXwttEC2LQ4x2rxY2D7u9TUjm/X3CS7nvX3x+8u3mHV4BeQyKf3Xv09PJVwaL4yccfK2DJi3qQSPi111+3VcLgAUld1fABK+GV0LjpZZ5xCKxd/yXJ2l0vA4RfwpgnVkm1v0xUcJdqf+62C7nUlot1dZC3xN1iUDHm5rH2EmFIgETLUKK4JZl7F0sx4n8u/cJc95z+XG4L58/zjCr84zOEzVww77kI5RjqgtCwVu0d9w+W6F0kJA0LCRQFgUTGB36DIoyHg363aD/6Vi0Q2kN4r8Wdm7ke4rr9UQnl1EdCOmlBEveajpci1l8iRnAbNmz3uoJBE36DWvy/wTatW9nE6Lrd/4l5JBS+KBUqVDBPyXsbxX+9QwbdaFo036FEsTv98wceLvB00eI3onKvOUjZoMfpJ+aACD31toRsRthmzfuB7b/K3HLV6tW6q00k7oZbxgb3fO6YxzsoxkLX7teZZ597zu4BZRIUV3hPo0BZU/P82nYZf6KxhZcNwoxt3vy25Pr4LCK8MDzm1LsGBo/jb7nFqw8L/v49GcXIxY0u9fpJeCEiaXm0gjxSU8VIUQsVI0qCnyRAApkiQMVIpsgWw3o5MOPADI+1P8xGLCEyvBD2FIsjWKVgEOSWRAaGiG+NUFIYfCKu7V8yGNWyQbxKYDmL4heIYx0sTRAiyl9gwVnltFNNdYkZe2b16oEWnbCagdWuG0oC9cAK9JSTT5J4s9VNNQltAksof/EP+jOpGAnrXuAaEFYKCVvB+p1335OQaL94l/b5F19EhKhwBQ3eTrLgClTggQNhXbQS6/677vHxBs/XduseEZLsTRFoqbeHfwDvDwmgbUPot2YtdggfowkDdX9+kkDYBNi/sn/FM+W31ofgNkgB/9u23yKSl44YNtRcLuGPUODNgJAQWpCkHRbxWmAN//gTT9qvqHuNhAnSsCJhnD/s924ywnW9xqBPt1/BdUfLJfWdeEG4gi4YXfitgv3GAu75mknOMTduubvNXU61v0xEcJdqfw6PmMqSS0BLLCtsjL8Q2gXKkGMl11vQc5rMvYulGPE/l34vXm0vPmc98IAZNGSot+pe8SLRXCP+8VmLZs3MkME7DH30IFiCY4yiRjB+wx7dj58kUBgEEhkf+A18Em2X/zcea2yOOv2KkRnTptq5lHu+ZBQjw4YMNs2uuMI9PGL5siuamVdfe82uc+d6CAnVX0IbapkxVdrhy2Wp2+BpgevSgnBc8E7VEu+adT98IvQu5h1uSEZ3u3/Z752C7cmcz1/fM88+a7pd18Nbfad4eyLMMIr/3QdvxlNPOcXbFxyGjxhpHpg921sXayFsxYjb551y8snm4dkPRj39g9LGgYMGe9upGPFQcIEESCBDBKgYyRDY4lgtB2YcmOG5RgxtxNJGQeiBdTJgVUG0XZngn3gDQ1gIDh0+wrPKjFWtO1h295u/YIEdOGu4B3cblhEGo02rVqa7JEh1LUKxDVZAPXpebz/xPajUlBBaEIAcfPDB3mb/xDuTipGw7gUmHRjoq6LJu5goC5lWjEAppXk/4g2e/ZbTCOdx5BFH2Jb7BXSPSaJcv+s4doT1FIRmWvr36WNaixUbCwkUFgH2r+xf8az5E7sm+vz5LdphFKBhKJBPCXHGUaD0r3bmWeabb76x32EcAMGWljDOH/Z7Nxnhul5H0CfCuyTax7nHRzP+QL4SxNN3S6lSh5oFYs0bzRvV3dcVEqVjSODWieV0+vMPP/rInC9emFrgadvrhuv1a9Kfydy7WIoR/1hn45vrAkPvoIH+UEEjhw8zlzVtatvuH5/1lmtDLoGgcsJJJ3t5VGqJRfwUsYxnIYGiIJDI+AAhdxF6VwvCLyYyNztBFAa3TZygh8UV2oetGNH8RF4DfAsIS4XwVChuaCj/9cby0sMc8DQJQaXlMhnvj5Sk8FrizUd1PygWzpFE9giFnGgJWzHy088/m9Ml3BXagtJclEpDRbmE0l7yjywWZTUK5sXI7enmW+kooSQXSkjJREvYipHzap1vYPCIUr5cORtCLVpb7pHwhaMl35qWbFKMuP0R2gfPF7/xp7abnyRAArlDgIqR3LlXRd5SDsw4MMND2K//APPwo496zyMGXq5iwNsQZyHWQHT69BlmuCRfS7REU4zgeHh93CdJ3F6QvBVuYlW3bgjLITT3Fww8H3hwtlksuUrgVYDQXv4CV3WEYkAbUPwT70wqRsK4F+vWvWkuE6tJtYz0X1/Q90wrRuAKrgnn4w2ehw4bFpGkD7H2D5F47yh+AZ3f5VuvjYoRJcHPoiLA/pX9K549/zsd77Kddtqe+yDWs9lKhPRt2rT2dnEVxjBgQPhD9FHIDYEcJFr84UfCOH/Y791khOt6XUGfbr8C74aSJbf32UH7uusQSsS1usU2JAZuIAI75KhyC4RQiHOfSCjGTChG0u3PvxDv0LPOreFd0uWiUBghioVUSzL3LpZixP9cviLhY9TLyd+2efPnmy5du3mrkQOv4SUX2++Jjs+wMxUjHkIuFDGBRMYH/qTnQYmzE7mMWHMzHB+2YqRxo0ZmzOjg+R7mJSedeppB6GMUvIfhBYHiv97rxMCtsyRZDyovrV1rk87rNr8hQbxr1uP8Slfkt+zY4RpzXPnyXo6iTZs2Rxhaha0YQVuulhyMmNOilC5dyiyR3FiYr54qnvrw+kPxey7+LFEATq1yujfXO+boo03/vn3NyaecbHaXnE1aqlY/08uVFbZixM1XCWPEN159JdDTEG3p3aevmfP4doMOfC8MxYjbvlhyhUulX0Rfq4WKESXBTxLIbQJUjOT2/SvU1nNgxoEZHjh/4j1YGtW5cIeFoftQduzcxYa/qlLlNFNFcjacdOKJ3uZYA1E3xjeSbI4eOVJctc+woay0gq7i4aCWL7EGMBhQQwiC/1CSIHb4Cy+8aOYvXOgN/lDn/OeeNUdLfg23IJzCb9u22SR8sNJZJzk4MDDGxFsF99jfHfgmOvEOI/l6GPfCFaDhWpAzplGjhqZ0qVL4asv9olhyk9FnWjHiWuJi8Pz6Ky9HtQ5144njHm9Y94aXhDhsAZ3y4CcJhE2A/Sv7VzxTEyWp7URJbqsFSWuDQjbq9miffmXvTSJ4ulQEUJPvuMOMu3W7dTAUJjBsKFmypFdNGOcP+72bjHDdu5CABbdfQVhMCNfBINny119/2dCLGt7FfzzCdSLxOs4Rq2RCMZJuf45rw9gMnyixDBMgbBw6bLjNX3PaP+FJYaXulmTuXSzFiH+s48+b457Tn2jZ9fhJdHyG+qgYcalyuSgJJDI+QD5HCLXVk6BSpYrmUfG8x7jYLZgH9bj+BtOq5VWmVs2a7ia7HGtuhh3CVoxgjP/s03M9T2+3QX6vgf+0aGEG3TjQ7oIcg3iH6vUeeOCBZqEYqQW9d69q1dqslNwZWtzwelgX75r1OH/ei8WLFhYIyejPh+TOD7WeRM+n+/s//c/DvGefMVu/2Gpatmnj7TpNckCdffZZ3ncY+LXv0NH7Pko8Zpo6nvLY4M/rFrZiZMjQYea+WbO8NtzQs4e5pn1777suIMfTRfUbeLlOsL4wFCOjxowx906dps0wbgQCXenvQ7CeihGlw08SyG0CVIzk9v0r1Nb7O+IBYmnQqlXLiDZwYFb8B2ZLliw1bZ2BDEJx3HPXlAKCawgNEBtWy1kS+3W6xIDVEm1gCAtMWLVAKYECSz9Y/LkFVkTniVfB559/blf7FSNwm75fBl+rJDke2jFy+HCDBPEYYqAAAEAASURBVLBu8Vsb9ZO462pxi2NXrFhpVkuYjDqSQHXUyBHuoQYDcpwfcbxREFLrril32mX/oCmTHiNh3As3FjAEOktfWFxAWOQmrcVFZlox4s+d0vO67mKV1cHydf/Ai6f5lf/xEgf6PX/CFtC55+YyCYRJgP3rdpr5LvhYunSZaXP11d6j1VISrw+UBOz+smLlSjNz5n2me/duURUnZ9c4z+sjL6pb1yDHkhuvHYYKEDa4JYzzh/3eTUa47l6Lf/nmsbeYKXff7a2OFnoFyiMk++0guVlKlCjh7a8LEyZOMpNuv12/GoRlOfLII8zNt4zz1sFYxA1P421wFjKhGAmjP7+0iVjDvrndGhYeMNPuvadADgFcRisRwi2XcZIWxItH6Eu3JHPvYilGgsY6bgg4PSfGZrXr1PWSNUPoumr5Mk9Ymuj4DPVRMaJU+VnUBBIZH6CN/rE6PBrgFajKb4SoRX4KjJ1R0AcgebobBija3MweIH/CVoygXuRwQmgr9bTDHG/GjJlm3IQJEcLxOY88bHMaaVsQOgwhtbQgbCTybVWuVMnOY+ABN2LU6Ig8hPCweGHRoogQU/GuWeufJsnAXSMxv9IDCeevat3azhH1GIxp+vXtYxVUqohP9Hxah/8T/RP6D1VgI/zvZ198bqZJtAWUfffd16xdvSpCKYa2oX/Q4ld6wFjvmo6dzBtiAKilcuVK5r4ZM6xxoIbkite/x7o21N246fZcaDgHDB/hvdNGmKkCDwp3eAgirKNbUlWM+MNePfnYY6Z8+XK2alyTXhdW+L0NkT9r/LhbrPILYUjRtut79fbGVdo+KkaUBD9JILcJUDGS2/evUFvPgdl23Pk+MIPC4jwZbG/Z8pn3/J0vVkfXifC6nCTgxMDvrU2bzA0yeNC4sNjRn6Av2uAJAz3EgoWSDQWD2OclV4gOmmAdNExyjzwollBadt11V7NIvDgOOeRg6y0AV+JqorCB6zAKXIYxuYfgX8vz4nqMQaCWm8VSRJUnrhcCJtbTp95rrSJ1X1hc1axd23NZbiKDzdGjRtrNiU68w/AYCeNeXCMWRM+LJREKBohIaup6zjwmrsy9xKXZLRPGjzNIRqr3RLe5uUFw356SY/fee2+7GflcdFKAFdHuP7bBWghxzjEQRcF5OnfsIIqrNmbvvfayruDIHzNErFUxQdAyWhRYTZwwMfEG8Hqc37qaOUaUDD8LiwD71+2k871/Rf+HGOZuLowuEh4E4TrQF6HgfXW1KIrRh+CdilAk2v9sp7j97/ARI8x0UZ6gwIp20fx5EcKUoNjuYZw/7PduMoKN7Vce/Bc5V5B7RQuER0MHDzYQEKGgv4GQrbcY/aBv3WvPPU2f3r1Mcwk1qQUCRYwPVCCFBO5zxTsE+8IqedXq1bqrGGTsyG3hrXQWwuovnSpNGP25/12EPAUjZcxVo8a5BqFDMQabOm2aGTtuvHdqN8SNt1IWkrl3sRQjQWMdKPv69eltQ2fi3r25fr3NKeeGTMWYDmM7LYmOz7A/FSNKjZ9FTcD/mwwyTEQbkTsK76d33n3XazLG9cjNgb4CIQDdsLkYx0NB7JZYY3PslwnFiJ4f4fFKSshHzAHUE0S3uUYTug59YKs2bSPmmti2j8w7dt9jDy+Xlu6PfvDeu+8yJ590kq6yn/GuWXcG17r16utXy7RixQqmcsVKNooA3v94VwWVm0aPFq/NhnZToucLqkfXuR6QyG3122/bvPmQP7k8jsE7EsoUMNOC5wL5rX4QI7/V0nZ/aEjdzw13Fq9/j3dtfq8RnANzeCjHvpS5NZTbQSVVxYjfi9Kt2x9uDMaODRo2jJBvYH8YX/4iUSNUpuDWgWUqRvxE+J0EcpMAFSO5ed+KpNUcmBnDgdn2Rw/hqNq0u9pTXugDiUEtBoWq1ND1QQm0Yw2ekAj8uXnz9HAbSxqeKbvssrN5+ZVXzGefbfcU8Xb4Z+Gw0qXNi4u3J5YbeOOgCOUJJvTnnnuuVZ689dYm8SR51VNsYOIALwhN2j336WcMLB21YPu5Z59tjj7maPPpp1us1YgrkB8jSpHG/1jiJDrxDkMxgvaley9mPfCAGTRkqF6qFb5VkbAYpQ4tZdZv3Gg2yv9oBXFtoQDR4oZA03X6iTjtKoDCulj3H9vRrsHidq3KEazDxA75bDD58+d7gWcRQq65ypp4A3jUiULFyHYO/Ft0BNi/sn/Vpw/v9NYi7EH4Ri2wrITgAIILWMG678VoXol+r0hYf+JdpyUoTAS2pXv+sN+7yQg29NqifSLf2BDJS+UWjA1Ky9hhq1hTf/fdd94m9CUIRYOQNCgY19S7+GJv/IH+aNZ9Mz0rZxiL1GvQwLtvUCg8KcYBR5Ut69XpLoTZX2q9YfTnEJz2Egvkp+Y+rdXaT4yDYHkOwxBVDGED1t8zZYo555yzI/bHl2TuXSzFCOqKNtZBCJ1tEjLV/b1gf4Sgg0GM6/WT6PgMx1MxAgos2UAg0fEB2oq5BYTmUATHKvDin3jrrZ43le4bb2wetmIEyst1kq8hVnuxDxQLeOf6C97LmI/i/RCr4D0AIzfkA/GXeNfs7u/3gnO3YRnegnUuvMB677jbwlaMzBCjh2Fi/BBUonlDPvDgg3ZeFU15AwXLPXfdZRo1bhLhqROmYgRjlz59+0XkD/FfwwknVDZVJXLE3ZKAXUuqipHNb79tLml0aYRCUOv0K0aw/oMPPzSXN2vuKZl0X/28QIwiSx16iGd0gvVUjCgdfpJAbhOgYiS371+htp4DMw7M3AcOXiGw1IGQOlapdd55Zpy4osLS3y2xBqIY4LaT5HLRLEfgffDIQ7NN/wEDrXeK1usqRpBbBHWsXrNGN0f9dMNo6U5jJSzGnTJAjFfgLTP59ts8d9xEJ95hKUbQvnTuBRQ8sHR1vXv814wkjh+JW7MbGxb7+BUjD86ebQYOGuw/3H5PVjGCg558aq613nUt3IIqh8LyxoEDCkyawhbQBZ2b60ggDALsX9m/us/RK6++atq0bRfVQhH7QkjUtk1r00fCiQQVCK+rnXlWhLBf94uVOwL7pHP+sN+7yQo29BqjfU6XEC3DRYkeq2C8gtAu9S7a4WHiN9hoLaFkkbzWLQ8/8ojpJ+MSLRUqVDBzJFwZLGL9Jez+EvWH1Z9DcDZYDCYekD49VoFlNkKNnCfhRINKMvcunmIE9WOcgnGna/UcdF4Y48AyHF5Bbkl0fIZjqBhxyXG5KAkkMz5AO6G8HCpeXouef76AERGMi666soVpLyEbgxQNseZmqDtsxQgU+xfUPt++b9R7HedBgXL5ckl03VcUtZj3RSu//PqrGSUhs55+5pkCXg9QcEMJhJCUavzmryfeNfv3Rx932+TJnnGdbodSBN6b6D+Qr2LhwkXmk08/tZvDVozAQPAcmV/7yx7iKbNWvD/ALqgsW7bc9JJ+C8+IWzAmuP22SdYAA/f4fjFOQ/gtKDLCVIzgnBibjJYQ2Q899LDBvXPLOZIXZYIo7MAOCnotqSpGcDxChI4dP9688847Eb+HIMUI9ofX4T0S+nvlqtUeJ3Bt3uwK071bNzNlyl3mdgm5qYWKESXBTxLIbQJUjOT2/SvU1nNgxoGZ/4GDZQXCdSDOtGtBiME2rFsb1K9vunTu5CkN3OPjDUSR3Lxr9+5m/foN7mHWumn82LHi/XGOFd4g0eaal9Zat2tXMYKDEFJr1gOzzIz77i8QExTbEWILccThbRBUnnn2WXOvhIyANZO/7LfffqaNCEZatWplw2jo9kQn3mEqRnDudO4FBqaI6Yr4qq4SAhMRxH8FI7QXiQeXyABTc6v4FSMYQE+TGLwYUGMy4Fo1p6IYwXUhtvj4iRMKPAfYBuumVmIZ10aEg0ElbAFd0Dm4jgTCIMD+lf2r/zlCfqybbh5rvSTdbbDQhxcCwjzVEC/IWKVvv/7mERFy+Mu1nTubbvJuj1VSPX8m3rvJCjZiXRe2zZE445PvuNOGbHH3hWcOwqwMlzj1ZcuU8Tb5hYHg/9QTjxsIS/ylrQgc0U9qadO6lYR82iHg0fWZ6C9Rd1j9Oeq6WxL4YvwELyW3wMumcuXKpn+/vjZBu7vNv5zovUtEMYK6EXtex53ueAXb0K769eqZvhLTH+HN/CXR8RmOo2LET4/fc40A8i1Cmfj551+YEuJZVaHC8QYeVkVZYv0GEerrg/c/MF/JfOPgg0sa5A30KzdjtX3btm1m/YYNNhTltm2/2wgB8BDZf//9Yx2W0jYoj5GsfJMYCaJ+eKi5uVpSqrQQD0KOzg0SEQD90HHSdsyfgxRlmWwSPGDXSd4RhA7dR97dxxxzTFQPy0y2I1bdmFvvtutuEor7EE+WMf7WCVSMxILGbSSQowSoGMnRG5dLzebA7GDrulucB2bwGoFl4NatX9qBaCVJfIcJahgFQngM3r7++htTrtyxNv+FGy4pkXNg8ozBzWcS6uKbb7+RCUIJU/qw0lbwASFTvAIh/xYZsGNysc8+e9sBZFkRjAQJReLVlent6dwLTCpwHz/44EODZLLlxIIoSLiQ6WsIqh+KMkyYcP8QJ7h0qVJ2MF/YA/mgtnEdCRQVAfavxb9/hbDo/ffel3fft/a9DCFGYb6Xi/r8mfptQSAEoSH69p9//sUmZIWxRLLji0y1L916w+rPIQDcuPEt89nnn0l4ld+tcBWKoaLuexH2DPfviy+2SgjQ3WyYzUoVK3q5eNLlx+NJgATCJxBLMRL+2VgjCYRPYNz4W83kO+/0KqbHiIeCCySQ0wSoGMnp28fGp0qAA7NUyfE4EiABEiABEohOgP1rdDbcQgIkQAIkQAL5SoDjg3y987lx3fBimefkOPW3GoaWUyUyAowttby69qUCuXp0Gz9JgARyhwAVI7lzr9jSEAlwYBYiTFZFAiRAAiRAAv8QYP/KR4EESIAESIAESMBPgOMDPxF+zyYCCI92QZ26CTcJYbVfXrM64f25IwmQQPYSoGIke+8NW5ZBAhyYZRAuqyYBEiABEshbAuxf8/bW88JJgARIgARIICoBjg+iouGGLCCQrGLkhp49zDXt22dBy9kEEiCBdAlQMZIuQR6fkwQ4MMvJ28ZGkwAJkAAJZDkB9q9ZfoPYPBIgARIgARIoAgLIY9i7b1/vzO3atDH169XzvnOBBIqSwBbJRdq567Vxm3DwQSXNhRdeaC5t1DDuvtyBBEggNwhQMZIb94mtDJkAB2YhA2V1JEACJEACJCAE2L/yMSABEiABEiABEiABEiABEiABEsgFAlSM5MJdYhtJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARCIUDFSCgYWQkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAuEKBiJBfuEttIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQCgEqRkLByEpIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARygQAVI7lwl9hGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUAhQMRIKRlZCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQCwSoGMmFu8Q2kgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhEKAipFQMLISEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBXCBAxUgu3CW2kQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBQCVIyEgpGVkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AIBKkZy4S6xjSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqEQoGIkFIyshARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcIUDGSC3eJbSQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgiFABUjoWBkJSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArlAgIqRXLhLbCMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAoBKgYCQUjKyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgFAlSM5MJdYhtJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARCIUDFSCgYWQkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAuEKBiJBfuEttIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQCgEqRkLByEpIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARygQAVI7lwl9hGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUAhQMRIKRlZCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQCwSoGMmFu8Q2kgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhEKAipFQMLISEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBXCBAxUgu3CW2kQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBQCVIyEgpGVkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AIBKkZy4S6xjSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqEQoGIkFIyshARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcIUDGSC3eJbSQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgiFABUjoWBkJSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArlAgIqRXLhLbCMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAoBKgYCQUjKyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgFAlSM5MJdYhtJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARCIUDFSCgYWQkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAuEKBiJBfuEttIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQCgEqRkLByEpIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARygQAVI7lwl9hGEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBUAhQMRIKRlZCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQCwSoGMmFu8Q2kgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhEKAipFQMLISEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBXCBAxUgu3CW2kQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBQCVIyEgpGVkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AIBKkZy4S6xjSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqEQoGIkFIyshARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBcIUDGSC3eJbSQBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgiFABUjoWBkJSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAArlAgIqRXLhLbCMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAoBKgYCQUjKyEBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEsgFAlSM5MJdYhtJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARCIUDFSCgYWQkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAuEKBiJBfuEttIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQCgEqRkLByEpIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARygsAvP/73f/yfOIOhYyb9D/8XLV5mueFzvyOr2P9B65QtjtH9dF3dJu3sOnz612F/XafH6Tqecztv5UO2Vf7HZ2j7b5i/lSqB7yb+Vv5rfyN4PpL9rYCdPldB73hdF/Qe0nVB53TXaf36js/UOfU87rm1/fqM8PO/9jekrJSP3kusV0a6zuWJZewTtC7o/uo6nMd/Tned/5xuO3jOKnZcpoyUI9lGPsvKR59bPkPbxw36+9HnBZz4DHEsgecgl34rbn+h/RauwV3Wd0A+foID7qfLg7/9HX0nuOh7Txm56/SZyaXfBNqs16Tvd/eaivN1utcedJ26Luh+6rqgcay7zs+W54yUBypHcPL/flyO+h5y15Ft8BiEz+2OcYn7vOgzpO85PG/KSp89fsaX9xtCig/JfbD8Lyps03W6n7tO+Qa9HPUhjvdga/36sLv185w7XhDgpLzJdsdgF0z4DAV3sPq88PdJQa4+C/7fivv7CXrf6rqgZ0jXBb3j3XWFdU49j3tufVdq/6Ic8uUT90/vkzLAOmUVxv0NYqz1xzqn2w69H9pWHK/rtP5495XnZD+AZ4bPEPs7fXfwnVB83glB/YWuc/sGvff59qnvPZeF9p3aD4MJfxPF5zeRz/fTvXYdx+r7AM+4rtPfBdbpO0HXBf1W3HX+3wrPScUIn6FgQ8yi+K0E9W96f/gZLP9nKK0Yfj1jJ88w4ybPND06XWWu79TS7tm4dQ+zau0b5tFp40z1KifaddgPpXqVkwqs0+NWyjEr175u90tkXVBdia5LpH40xL9fovUH7eevK6j+oHVBdSW6juc08kxFf64S5Ri0H9mSLd5XQc9Gouvy5RlSHrF+i0HvPnddrD5E68f+/v1SOSfqcessVakWVkX0aahX+ze7sRj+ca9RGbh9fRis/b8Bl7u/fiCOtc5fF/ZPZB3PyXGaPleJPC9BzxWfIT5DfIZy632rv3Wds54h89U5Mm9Fwb3U7XZFMfyjzyvm8J+tf95eIdbhu8tCx1B8x/Edp8+M/jb02cDDk8i6XHuGtL3JXqfLQ5lpXdiWyDqeM748MBGOQbzJNr/Zur9Fndu6Mms8H8V9fo/fRaqFipEY5PBSwiAKRQdWMXbnJhIgARIgARLIKQI6iHYnfk3EAMAVHuTUBSXQWPTtMHBwBUU4zB1QJlANdyEBEiABEiCBrCaAPh5FhSFBwpKsvoAUGufO312DhxSq4iEkQAIkQAIkkHME8nF+n+5NomLERxCDKVc44v/u251fSYAESIAESKDYEFCBQnFVjOj14YZRYFJsHlteCAmQAAmQQBwCEJTA8AHFtSKNc1hObEbfjqJGHv7vOXERbCQJkAAJkAAJZICAzn+L6/w+DGRUjDgUg1yOnc1cJAESIAESIIFiTwCDJ9dAAMIUtTYtDhdPgUlxuIu8BhIgARIggWQJ+K1I0R+qMiHZurJlfxX4oD3FTeGTLYzZDhIgARIggdwmUNzn9+neHSpGHII6sKIVqQOFiyRAAiRAAnlLoDj0i7gGN3RW3t5MXjgJkAAJkAAJ/ENA+/dctyAtzp4wfFhJgARIgARIIGwC2v9T7r2DLBUjwsK1hnWXd2DiEgmQAAmQAAnkHwH1pMzVgZMrMMnVa8i/p45XTAIkQAIkkGkCKhjBeXLd0wJ9PUpx8m61F8Q/JEACJEACJBAygVyf34eMw1aX94oRfShyfUCYiYeDdZIACZAACZAAhCe5HGoD7afHCJ9jEiABEiABEogkgP7RDZ0ZuTV7v6nRAw0esvcesWUkQAIkQALZSyDX5/dhk81rxYgOqgCVA6uwHy3WRwIkQAIkUNwI5NIgCn08rUeL2xPI6yEBEiABEsgEAfTvKLlgCKGGjWgvjRtBgYUESIAESIAEUiOQS/P71K4w/lF5rRgBHghOVq59PScGgfFvJ/cgARIgARIggfAJ5JohAQZ44ybPpNFD+I8CayQBEiABEihmBNw+/rP1z2f91aG9t0g/j/wouaDIyXqgbCAJkAAJkEDeEXD7/nx3FMh7xUjePf28YBIgARIgARJIgYCrbMjm0Bsc5KVwc3kICZAACZBA3hJw+016YOTtY8ALJwESIAESyDMCuTK/z/RtyVvFSKlKtayVSc9OLRlqI9NPGesnARIgARIoFgQgPMmF8FRoJ6xJ50wbVyy48yJIgARIgARIIJMEcqF/176d8/dMPgmsmwRIgARIIJ8I5EL/n+n7kZeKEdz4Jq17WLa0isn0I8b6SYAESIAESIAESIAESIAESIAEcoFAtgpJNLcIQmjR8CEXniS2kQRIgARIgASyn0DeKkZgSYrCQVX2P6RsIQmQAAmQQPYQcF1usy22N9q2SowfaE2aPc8LW0ICJEACJJAbBFzjwWzMNaKKERo25sbzxFaSAAmQAAnkBoFsnt8XBsG8VIwUBliegwRIgARIgASKIwEdOOHask1wokITWpMWxyeP10QCJEACJJBJAm7/TuVDJkmzbhIgARIgARLIHgLa/+frHDovFSPZ6h6cPT8LtoQESIAESIAEggmgD1259nXJNXJS1uUbUcUIBTrB945rSYAESIAESCAWAQhHsrF/j9VmbiMBEiABEiABEkidQDbP71O/qsSPzDvFiApN8lUTlvijwT1JgARIgARIgARIgARIgARIgARIoGgJlKpUy2D+jv/ZFsazaMnw7CRAAiRAAiRAAukQoGIkHXo8lgRIgARIgATylACtSvP0xvOySYAESIAEijUBtRzNFgUE2tOkdQ/LnB6hxfrR48WRAAmQAAkUIYF8nd/nnWIEzxgGVyjVxeIk28t3331nvv7mG3PgAQeYA+Q/yocffmT++PMPc1TZsmbnnXfO9ktg+0ig0Al8umWL+eTjT8xxx5U3+++/f6GfP1tO+N7775u///7blDnySLPrrrtmS7PYjmJAQL0ve3S6KmssNzGQQ+J1WpMWgweMl0ACJEACJFAkBNCXjps80547m/KIoV0o2aKssY3hHxIgARIgARIoJgSycX5fWGjzUjFSWHDDOM+zzz1n5jz+hLmkQX1zcYMGtspeffuab7751oy7+Sbz73//O+I0WP/X339FrEvky7777GP23HPPRHblPiSQ1QS+/fZb06tvP/O///3PHFSihBk9ckShtPeHH34w237/3f4md99tt0I5Z7yTdL62q/lt2zYzZtRIU+LAA+PtnvL2P/74w3zy6afmU/m/j7xLDj30UHPoIYdErQ/KXihsEin7yTtutxg8f/n1V/P++x+Y77//zhxxxBHmsNKlzU477ZRI1dwnDQI6cMqmsJTZ2KY0EPNQEiABEiABEih0Aq53RjYpRgodBE9IAiRAAiRAAnlEQOfS2WT4WFj4804xkkveIngIklWM9B94o/li69akn5/LmzY1F9Q+P+njeAAJZBuBzz7/3AwcNNg2a9999zXjx95s/u///i/jzbxt8h3mtddfN106dTQnn3RSxs+XyAkyrRj566+/zH33zzIrV682WHbLCZUrmRbNmwcqZLr3vN78+OOP7u5Rl3te191UOP74Atv/+9//msl3TjHvvveeVYLpDnvsvrupW+dCU79ePV3FzwwQQF+abV6XmfIYgbL17nunRqXYof3VBYwUou6c4gYoODds2GD22msvU75cuaxV/r3/wQcF3gW45N123c0ceeQRKV599h/2wYcfmocfeTSwoeh/el3fM3Bb2CuhoP/yq6+sYhpKai14fj755BPrQZlJJbmej5+pEYBBxzfyvvn+++8j+jWMZQ45+ODUKuVRJJACgWzs41O4DB5CAiRAAiRAAiSQIIF87vvzTjGCxG0ouRKfNFnFyN333mu+/fa7Ao/+xx9/bC3HMbH617/+VWB7zfNqmCqnnVZgPVeQQC4SWPPSWvPxJx+bk0480Rx7zDGFcgn5phiBoG3yHXeYDRvfMlBGHH/cceKxcbgoPH4yr4qCCIIdCOAG9OtrINRxiypG4N0BQW+scsVllxUQqMLj5JZx460AECEGj5eQaQfsf4D54MMPzOa33zHwYDm/5nnmissvLxSlWKz2c1vuE4CxAYwO8JwH9Z8QemvIvkx5bc6YeZ9Zuny5hdmudWtzxhnVshJstx49zU8//VSgbaXEi2zYkMEF1heXFW+/846ZNn17mBf3mr6T9yDeR/feNcVdnbFl7Yf69+1jw63qiXQs2UzeiefXqmlXw2sP79Kdd9rZHHjg9lCtun/QJ64D1wOPSL+3ctD+ya77888/zbcSPnYXCRGroWOTrSOX9/9VvB/H3TrBQLnoL2dUq2ratWnjX83veUoAz8qP8p7dSzz9XQVoccaRreG9ijNzXhsJkAAJkAAJ5AsBKkay/E7rZDbRUFrRLmfYyJE2N0nrlleZs848M9puXE8CJJAiARVI5YvHyJzHHjfPzptnBcLXdetqSpcq5ZH79bffzMRJtxkIC085+WTTuWMHbxsWVDHSo3t3U7FCQW+QiJ0DvoyfMMGs37DRWs53vbaLFVjrbps2b7bnRlgznBfnZwmfgMb6rl7lpKzzHAn7alUxUq3q6ebqtm1jVp8pr80777rbrH35ZXvuFs2aGRgzZGN5+plnzG+/bfOa9p2EuFu95iVT3BUj3gX7FnTsVRiKEXg29e7X33oa3D5xotl99+0hHeGF0LtfPxuCtfcN15tyxx5rW7lt2++m07XXWmUfPCvjlbc2bTJjRSFdXZRybUU5F3b5WDxahgwbbo44/HAzaOCAsKvP+vqWr1hhps2YaU6vUsXmFXQbDKMDrGchARBY9Pxi8+BDD5naouSEAUjYBRajK9e+bqvNlnweVIyEfZdZHwmQAAmQAAlEEsin+X3klRuTd4oRP4Bs/07FSLbfIbaPBLYTuPmWcQZC+XxQjMCy9/refWw4rGihruAx0qf/ACvggdeIm8MoHcUILPIh5NtZrIqRZ2nvvfcu8AjOX7DQPPzoowbhvLqJ4I8lfAIagzQfcowkoxjJlNcmLPtXrFhpPazOPvusCGVg+Hc3vBqhHB1z81gqRgrBY+SJJ58yc0Ux5VdCvbFunZl42+3We27ShFvNnnvs4d1gKEb++utvM2Xy7d66aAsvv/KKuWPKXTbsKsKvhl3yXTEyYdIks+7N9eb6HtdZD8yw+bK+4kOgMBQjTVr3sMCyJccIlDVasi2Mp7aLnyRAAiRAAiSQywSycX5fWDypGCks0imep6gVI1s++8xs3vy2+eijj8zf//vbHH7Y4dbasEyZIwOvCCGMfv31F3Nm9ermzfXrzeuvv2EOOeRgU61qVRsaAfkf1q592Wz9cqupXLFSaOFAfv75Z2tNe9BBJSMs0CHQ2iRWjijnnnOOF1YHFpRLli61lpJ+i3LkSkCuiHdEoPONhCWDqzqu4fTTTw/MlxAEApaVG8Si/dvvvhXrTSPcSpvDDjvMHH3UUYGC3KA6UlkH9/rVa9ZILPFPDXIw7LfffqaUWPJXr35GTEEaQjcg3NrhYqmJNkIIt3HjRmvxj+svW6asOfXUUwKTYCMcx9Jly2xzzz7rLGutCmHYpk2bzVdffy3Wn4fJPalgE2PHuyZw+1BitX8s7d9bQiwhJn2F4yvEDPPx4YcfmQ8/+jCw6mMkjBbCNUUryHPxyquvCps9TDUJVQGL2yVLl5nPv/jC7CMCdzzn1c84w+yyyy4RVSCOO54RLRDWL1i0yEBhUEOes8Plmv0lVluQQPxNEYgg/NdXX31t24xzV65UyXtm/fXpd7R13bo3zUcff2Tv93Hly4snRXlrLZypHCNrxAL8Lgnbh9B8w4cOidpGJGQHf3+Ol3QUI0/NnWuenPu0Oe3UU03Ha9orhohPPPtQ3OB3fpMkntcwRxE7pfkFzwB+47hn333/g/2NH3EE7lnFAterp0r1edPjs+kzGwdOmWpTMoqRaPdIPQfyzWuTipHt3rqZ9hjBuAXvPLz7/J5Nt4r3yJvrN5iSBx1kRo0YHvGI9urb13qS3D5pYswxAg7CmGmm5JRq3Kihuahu3Yh6wviS74qRwUOHGfSZVIyE8TQV7zryUTFSvO8or44ESIAESIAEip5ApubSRX9l8VuQd4oRdQ/KFtfgeLdo/oIF5nGxAmxQ7yJT76KL7O4I1YHkjGNGjkg4znOyQhkIFKGUeeKpuQaCb7dAyFn7/FoyOW5UQGCsYUSaNr7UPDLnMe+wsmXL2PjICJPwu4S40dK+XTtT9fT0wwMgpjlim0MofEPP7VZOOMdTIkB9UgSpKCOHDzMHlyxplyHU7HFDrwJhfjAxn3zHnVagb3d0/uy6666m4cUNTJ0LL3TWRi6iHeNFCAFhfVCBdftVV7awQt2g7emsg1JqxsyZBiGE/AVx8RH6olLFCv5N9ruGRbrwgto2cfgt42+1cdHdnSGov7ZTJyt8d9cj7niHzl3sKlijTp06zbz2xg7LLmyAdX+zyy8z59WoYffz/4FiADH0YZHqL4hn/p8WLaIq0eY+/bR9Tv3H4XuLZldIyJnzgjbZdR999LEZOmKEVbxcc/XVNm+Fnx8E+9d26RyhFHvn3XfN6Jvihx5xTxwt/A2Sh991zz1WOOXuj2WEPGnfrm1Uwf5La9fa0BvubwrHIa8KPDm6y28CuUDGiHIgzIS7sx540Cx+8UVz3rnnmitbNMcpkyrpKEbG3XqrzWsCi+ULap8f9bz6LurU4Rpz6imnRN0vlQ2wwL532nQDhay/IFH81W3bBOaiSPV585+D34MJZCr8BxUjwbwTWUvFSOEoRtAXTLn7HntLmjZuLOOUC+wyErH3GzDQKomDlMno//BeumnUqJgGCKhMDXVa/udKc87ZZ9v6w/yjz0q+htKiYiTMp6l416Xj3kyF0spWeuo1Qo+RbL1DbBcJkEAQAczFPxEZ06677GqNLoP24ToSIIGiJZB3ipFcS74e1uORrGJktsSuXSgxbGFpfWnDS0zZsmWtcBvW/AjXsPXLL22y9g7tr45oogojIYBv2qSJtV5EzGRY4sNa8VKxNDyq7FGi7HnCrFq9xpxYubJBjoAwStfrepg99tjdTvC1vkkSPmLz228b5Dy45up2XoxmCKNHjbnJ1BOrR7QJBZaWAwcPsYljkegSniRljjxSLMI/Ma+++ppZ/dJLVknUtUsXG6JHz+F+3jT2Fns+JKI+UzwNjjr6KJt4Gte/ToSp8yTED4SpXUXQfuIJJ7iHprW88a23bNJOKCDqiuKmfPlywrukeWvTWwYCEyTIhlJmyI0DA4XsqhjBfUNCR3g9lClTxvz151+S0Fru+VNP2XZDYHHjgP4RFvGuYgRKrl123sUqMeCt8pUIZZYtX2Fefe01e31BOR+ghBs6YqT1WDlKnrMG9etZL5dffvnFep1gAgjFyX9EAF9DBPH+8umWLWbLp1siVi9avNgmME1UMYJEsvvt929zykkniXdLRbPrbrtaL6k5jz9hoETzP6ew/N8oTN3ylLQTAlQI68uI54C/HCmKJXhYuOW999+3YWbAAPetquQwKHFgCfOFeIE8/eyzlhs4jhg2tIA1rz7DqA/C+FqSbLykKP6gnHtZchH88N8fJSzHm1YRGbZiRPOp4N2gClv3uuItp6MYGTRkqME9by+5HsArWkH4HgjarmzeLKpCLtqxsdbjWb5dlKe7icKuXt064iFS2SY/xb1fsHCBzX2CRMbDhwwp4GGlipFkn7dY7eG2zBMoCsXIi0uWBF4YFPTwyIxWwvTaVM9BPLe//vareP8dYfuWstI3JFpU2O0P7xTv+HS86FB3Ol6b6KNXrlpttspvGiEB8XuGNyU8ZuHFmEzRsVemPUb0fYe2ueENEVIQoQVRgjw9NF/Tjf37e9cGr4X3ZIyEAo9JvOtQtK6gfhzb0Se9/vob1uMUBjQY81WWcIbHHH00NhcoUDB/J8nWUf6UsQbGKugTMe6sf1FBj5RYzz76UHgpY4y65bPPxUN5f9sPn3BC5Ygwjm4jonmbHin9d9myZeyuUCx9KjwwPkSBQminnXayy+n8wbj0c/GgdsvTzz5neUDYfcghh7ibbN+Ofl7L62J8gmfTXzCuVA9JXB+eYfx2YRzj947Gsalwc8+Zyu/0gw8+tB6ubj3RlqtVq1Zg7KP7pnJuPRaf6bwj3HqSXU7Fs9vtDzA2flG8t+CpDGOwKqedWqAJJUocFNUQqsDOObKCOUZy5EaxmREE8HvHvBrRF/bZZ5+IbfySOQKIWIH+7aASJSJkFpk7Y+yadf6H8SQMUVhIgASyjwAVI9l3TzLSIp2cJxLGA0qPgYMGi5JhDzNCwuTsu+++EW1Cws4bBw+2k99+fXrb0Eu6gypGENcf8f1RHpkzx8ybv8CGmOnetatdh8kwwj7AgwOeHGGUkaPHWCH+nbffZpU4qLNnr97mVFFwrJLwUudImKemTRrbU60Socc906aZduJFcYYkEkWB1f3shx42u4tyJSh+9mMiJH9GvGhOFuE58kj4i3qtYPAzThKZYhLvL5jIIgRTNM8J//6JfscE6Z6pU60nj3/yi4EBvBsgtGgmSRrPl0m3v6hiBPd6sCQ9hTDeLVDs4JmAxUM3UWSdIAotLa5ipL54NTUSYbm/zH74YbNw0fPWSmKg5Idwy8qVq8y906fbRNrw9vGHXYKQZpgoTvaS0FqjxUtqj913dw8PXIblLIQsiSpGUMl13boVmEji3PByAsNhQwbb2O2BJ5SVYAxPkkRzjKBOPLMIY+Yq7dz6Ec8dXjRQmjQRLyy3QOn3ugiWoIxCQmg/t8UvvGhmPfigPSRsxcjwkaPsb63VVf8xCJ+WbFHFSNtWrcwxxx4T9XAIoPyeLnps0P1yK4LyAkqMBvXqmYaXXOxuSnkZ4WrwO8A70hU+uhVqkuwmlzYydevUcTdZy2xYaKMEtT+Z5y2i4iL4ot6XTL6eGPxk+mDU2O6aDva9468dE+sJ427xr/a+ax+crtfmsuXLbXJf9Pf+UlM8/y5r2iSwj/Pvm4piBH1Vql506XptQgD50COPRni2uteE/hUeE4kKOPS+Z1IxghCl6CPRp6AfGDtmtDWEQN/cV7xFwASli3h8+r1GkRNntYRGdN9n90m4LAheUdxk7dOmzzDLV66MWId9oEiacvfd1gAD3/0FnirwfIThhlvgmQqjjkQLjDsmjh9XYHeMJ+8RT1Xk+PIXCCHQP8KL0l80LKN//cX165uLG9S3YyooGsFVC8aXQWM73Z7o58z77jdL/glBmsgxMNZp16aNt6vmNPNW/LOAMRTG1bffeaeBAkILjE769+2jX+1nqty0klR/p0+KJzoMSRIp0cYuqZ4b50z3HZFIu6Ptk6pn99UdOhbw3o92DqyHlyy8ZVMtmfK+TLU9OI6KkXTo8diiIpDpsHdFdV3Zft4u3bpLaPdfzW3IqyZymaIuVIwU9R3g+RMlkE/zez+TvFOM+AHky3ednCeiGNEJW5B1ofJaIZPjqTJJPvnEE02Xzp10tVGhDAQ3KjhYsHCRCBoeiRBQIjwXBvrRJrpehUksTJXQNitWrbIxtGGpCAu/666/weCa4Z0CgQFiN6OoGzomipgwJlI0fBKsDyCg9xdYscOaPRutAZ6WhKwIyXb2mWeaVsLDX1Qx4p98u/vpZNavGHIVI4hfDvb+AoVKj57X2zBfg0TxAs8TLfrM+JVsuh2f94oSCxa88cIn6THJKkagdIHAxa9cQH2qBIhmJavnTFYxgpjviP2OcFkQPgUV5A8ZcOMga7F7+8QJnqUqvFig9IPABkIwtRB16wDzLl272X2iCRfc/ZNZvqFPX+sFlsj7JKheVW4EbXPXIYza5Nsmeavw3mjfsZO9JleQ5+3gLEy+c4rNH3OuWPheJYLMMAqEGhDYQrgIxUZQgZV977797EB80q3jI54pHRiH8bwFnbsw12VjDNJMtakoPEaQx8ct3//wvVjsz7H9aiKKkXS8NhHCE+dC/wwFC/I87bnXnlbQ+rD05ejrThLLdIQYjFeSVYyk40WHtqTjtQkLcgjrIfiGN9jR4ukAr9HfxOMUSssXJHwgkmMjrOQAyc0R1F/4eejYK5OKEf85k/mu3sGucn7I8BHWgxP1uGG5brt9sg2T6RoJoA+CkB4eEPAMOefss8yx0qdh/AUjkBVi+AAPyyDlPnj/94ftnhg4F3LawfgEY6jGDRthVUTZZdddCoRFhDcwxhDoEzEevUg8TUpL+EsI/VfLuA/1ofTr3dvzAtFK/d6mK1evsh5/UIzg2ce49VDx3MCYZud/8owFKXi0vmQ+4Yn75dYvIw559PHHbb8KT+bSkhvOLQeWODDC8wYKpR/FK1SLHgvFCARxG9/aKIYcpWxuPzynUJaodzSOSYcbjk/nd+rnjvrcskHajucGv8ObR48qYJyVzrlxnnTeEW47k11Ox7MbYw8Z+HinXCsGM/h9Va5U0ZxRdbtxl7dRFvYXjymMLVMtUIww+Xqq9HgcCewgQMXIDhaFuUTFSGHS5rmKE4FMzaVzgREVI7lwl0Joo07OExFkwoodEw/X68PfBBXwwZobQlctKuSGkBkTSxRYYN4364EIxQjWQ8C5m0x8bhOBbxhl3vz5Nq+JWmJDgDFh0iTrAbFy9WqzfMVKA0ElytTpokSRiVcylgQqHIumzIGAAOG84OaOiS1ifEMAmg1Fk6ZGsyJTxQhyjFwmIdCCCsIyTZh0m02mPWTQjd4urmIkVgJXjWXu5nzAsR27XGsF3RCAQxAeVFS5hvBkbVq3CtolYl2yipFYyiz1AIinlElWMaLx2i8Sr4LG4l0QVPBMIYE68p64SidYSyIUHBQiUIxEK5lKvg7BPxQAibxPgtqmihHkb4n1G9lNQpq5CgjwwHsDCpJEFSOp5kEJard6jdW54ALP+yxoP+Xuj9uv780wnreg8xbmOliUrBLhyRlVTjTZkrMrU4M5fff7k1onwzuZPjioXlWSJuox4vbfyXhtQqDdt/8A+04eLO95v6IbHiQDBw+yYVzgAQrBXKySjGIEv+90vOjS9dp8QDzsnhdPOyiDouUSWypW/gi3iN9wIkXve7YqRtRoQkNV4v5e2727OaFSJfOG9PnwkOl4TXt7qdrH3XrL2AhhNRRGr772uvVI2X33yD58/YaNBuG6YLGJ8VasAsExFFPJ5Bh5VHLZPSdjP4T//I/kb/OXxS+8IJ6Ts60BDIwvYimzHpw92yxa/IKEqjtDwoB+bZpLjrLDDzvMX2XGvqeTY0RDTNaSnGoI29L8issj7pG/0elwS/d36m+L+x1eLjffcov5XcaGGCsGeUAX5TvCbWuyy+l6drvnQ0jjuWLwlKkcI1CM3CJ9PMqcaQW9tNy2cJkESCA6ASpGorPJ5BYqRjJJl3UXZwLZOL8vLN55pxiB4ASlZ6eWJp+St+nkPBFBJpKYQ8AwWPJRRJsUwgIQwk1MMhFaYJd/rOmKUjEC6ynkPtAJPib8c5951kyeNNG8JNZWCJ0FTw94fCAeNwRNmOD7C679lVdftYIfWCHC8h7lN4nTjEl+NMUI9kH4JoR0QMgdsIFQCXklDi11qDlC4pPHineN49MtuKZ1696U/BI/WAtKxO1G+errr2wYn3QUIyrU3VNCrLnKrEQVIxNFqQJBi6tggIXojZLXBcJxVVoFMVgrOTOgoIBFat/evYJ2iVgXpmJEPZFcy9mIk/3zRYVGiYbSUi8YWHIGeXzoOaCkBGM3hBmeM1wjLJf9ocn0OHyqgD5sjxEoZaCcaSmeGKkk4VXFSA8RwFWssCNuutv2aMs9buhln+14Qlm1br5EQqJc3KBBtOqSWq+hzaKFpNPKEG4L4W38yhv9DcVSjCT6vOm5+LmDgCZmxZow+/dcVIyk6rWpAtNYIejU2AG/XfyGY5VkFCPpeNGhDel6bWr4vTatWsbM4xLrev3bdOyVrYoRvZeNJNxgfQk7qJ6xCEO5ZOkym98LVvsoeK9hjHHXHZM970X/9fq/Q4ndSZT76MNQzwEHRFcoJasYQY6JHuIVvJOMtcbJWC4ozCaE+AjbijCmGDtEy3eCdqtiBGOcIYMGJaz88l9zqt/DUIwgB07/Pn0KhC1z25Qut3R/p25b3GWEqMTYAvMLHce727Gc7rnTfUf42xPmd1VSRvPsds+VacWIe65sWc7G8F7ZwobtyF4CGqEiU0rM7L3yomvZn3/+aaAYwbgjGQPYTLY4kflfJs/PukmABOITyDvFCJOvX2XOknBK0YprkQ2vAFh0BxW1zMQ213qwKBUjEERi4q7W3FCSfPvdtwZJRXUyBMtHxLvGRBkKEn8II0xMkAATnSkUG7By3P2fnBZQdsCaNpZiBDxwrqUiUECYCAjUIBjQogmbIYAIs6C9EJQjISfuIXIzoJ2qsEIoEMTaDEMxAi5333mHZ3mJc3fo3MVeTiyPEc2JcYkIqRG/G0WFZvGYIs8GhNKJJvDNBcUIvJng1QSlyL4JJORr1LChl7dHPYCKSjGiCoJUlQ7pKEYGS86XTz75JCI/kH2YfH9UeXPVlS3MuWJNHEbRuO4tmjUzNc+rEbVKKPug9OvQ/mpJjHqat18iA2MqRjxcWbOQi4qRVL02NRm3el4G3QRYdQ+X5JHxPNZwrL7jE3l3p+NFh3Oh70vHaxN5sJAPCwYN7dq2sV4G6O/SKdmuGNG+9YLa51ujBSRqR5J1hBldsmSpzSky7uabzL///W8bmhTjoKA8H7EYqTI71pgSxyerGIHRALwHgvJnuO3RvjZeTixVjEQbJ7l1ZmI5DMVIvL4J7U6XW7q/0yB2GFvjXiJhbiylbLrnTvcdEdT2sNbpuC6R5y8fFSPMMRLWk8Z6MkkAxgZaEEEC+brgLXZc+fIyHzhVN3mfJUocVCD3l7cxzQUYdr4pBomYe2Ac+y/JI3rUUWUlN+XpgbmyYEAAOYK/IO/oSRKqEgXyn/dlDPj9999Z+QZyjgYZPCCqwMaNG+25fxXD0iMOP8KUL1/OlC1TxtYT6w/6gTWSGxbK8t9+22ZKSChJ9POQ3wSNyXB9H3z4ga0S73gY7iF3GgqiYPg9WbEeczPIHoJKOm1HrrO3337HzgEPP6y0Oe6442wu3o8//sQgckYsw7igtnAdCZBA4RHIO8UIPUZiK0bw6CGMxpdffWUG9OsbtQNDJ99LYmz7cwAUpWIEFgIIy6ShH9C+ihIbvaUkiMZkvrPkW6hdq5YVymM/JGN3cw/ASwR5CWAtiPXIpeEm2VThWDwhvvvzhdIAHfznorTZtGmzWbZihVW6pGpp79btLmsIEMSlvrJFc5to1B08xJtwJRJKSyfTfmFYoooRFbi5wgnEAYeSCoOWyaIoiFZWSX4RePycULmSDfEWbT9dnwuKEb1nGLQhhFkyRcOawaMLnl3RSqY8RjQuPX5D+H0lW9JRjCAvC6xG43nw6HvsWsmBpAP6ZNvp33/6jJn2Nxwr1A6O0VBjyENQtmwZWbO9FCfFSDa62tJjxHh5vlJVjKDfRP9etmwZ6d93/+fJjfz4XUL7vf/B9kloLGU4jkpGMZKOF522MB2vTeRduHXCRDupRn0wjECOiUMOOVhyPpQ25codayfneq5EPrNdMYJJPBS+1c+oZtq2bm0NEOB9i5xWy2W8cv8DD0qIrI52PIQwhjAoGTFsaIFLxzgAx30hHiU/SN6QnyQhu5Y31q2z455O4xVbAABAAElEQVSwFSOa625fEfb4c3LoufEJLxd4/8YKFYr9VDGCUKhuPg5sK4wShmIkES/MdLmF8Tt1eUJ4d9PYsVaAFs9bIoxzp/OOcNud6nKqnt3u+TKtGMnGUFpUjLhPAJezlQDyp7oGkfHamYgiNF4dQds/FgOyKXfdbRUi/u3oxyHj0Vywuh25wpCDyV80FyaMRx5/8gmDkJtagoxoli1fbh586KGI/XT/mjVqmMuaNomQr+g2cJsjubZgoAEFh78gzGaXTp0KeHOqt51//1jfo41HUm072vvoY4+ZefMXFDgtxh5Vq5xOxUgBMlyRjQSycX5fWJzyTjFSWGCz7Tw6OU8klJYKHtu3aydWBVUCL0Un0/5Y0EWpGEFDIQxFktgekhgZIcFcd3ww2EesA5pdcYUVHvkF0jrhcj0a3ItPRTHiHo9lDVuRqIDff3y075oMG4k3YZXiL4kqRtRq1H88viOR6d1Tp1rLB8Tq1uIqRhBiC4qloKKCancQhYEEwmxA0KZWqUHHauL3RF2Rc0Exslhi2c+SmPbxBAFBPJAIGEIUv2LSvy8UgGAbdigtVcxASTZGwtPtvPPO/lPb77A8Ki/Po/+ZSEcxovlm4iVA79Ovv/WYuuWmMVGtggIbHWOl5jGKldAdSlh4UGGA73fhLk6KkUzl84iBP+6mTLVJ3/25lGMkVcWIvjMQAhIejvFKj+7dYuYySEYxopb9qXjRue1Mx2sT/dmal16S/2vNRx9/bH52BPw4B5TRnTp2KJB7xT2/u6xjr2wNpaXetCeK1WfXa7tYg5e99trb5mZDgvDhI0cZ5MGqV+8iG5oxKJwl+oOp02fYEEi4doS02tPJrwYrVPT10QQRyitZjxF9H+8lCqwSIuiJV0495WQbLizafqoYQfL1Sy4OJ/xitHMFrQ9DMRJtDOieL11uYf1O0Sb0l6hvw8a3DJ7BzqKEizaewP5hnTuddwTakUrBuwVj01Q9u91zFoZiJNuSr7vXz2USyFYCGDtIh+c1b61EPIDRQGXJx3ZG1Wreel3Y/4D9DRQPYRYYt8JzHe8c5MyqLvk50Ue+L16Wa8ST4nUxVjhePBmu69Y14n2LMIYb5V2sBV4YC59fbNt3xWWXWU/hA2TeV6rUoTI+3G44U++iujYvmB4zf8EC8TqdY+ddMCKrIAaqkMvA0/jhRx6xUTVOOuEEc22XznqI96nvNYwBL6xd2553NzGcfEPmkivFQBKe+BiDINoHImNowft8y6db9Kudf8GYEgWGqEFGPpVPqGwwdnBLOm1Xb0YYpSLn2Sky3sB1fCX3AnnY9thjTxtunR4jLnEuZyOBTM2ls/Fa/W2iYsRPpJh+18l5IooRFTyeXqWKuebqdoFEEG4ClgN1L7zQNJGOT0tRK0aQx+Ltd9+VEDbtbcJPhIOA+yXKzPvuN6+89pq1isTkys3ZgO3q0RDNGlwn7dE8RjDBw+AH1h+utwbq1qIKJbQJbQujQOAAYRYGQO71unU//sSTEiLs2bihtCocf7zNi+Aeq8saCqv2+bUMBkhacF4NpRUthveHH35kB1QI7YU447Dw1KK5IKKFPML14fmFUNlNKKzHB33mgmIEwlbNrzJSLHCDkpDDDfsRGWAi9Jqb7BfKDnjaQGgXjQkGxlBGoYStGME9geIB7sb+cFF6PxDaDglhYXUN5Qk+taSjGMHAvWev3nbgi5xBJQ48UKv1PjVJeqx3mLdzEgt4BvEsHihx8ocPHRJo8QShx6TbJ1tvO1hkuaU4KUay0aIkU4O5fFKMaBJnhKBEvoJ0SzKKkXS86KK1E/1TOl6bCPGD+48wCMtXrrRh/DDZvWnUyIiJebTz69grWxUj8KRAqCsIG5DsGsvqCQh28LQ99phjTGvJuwJPuJMlnEYX8cLTAu+iGwcPtrnYGooyoca550b079gvU6G01MtXlTraplQ/80Uxki63sH6nGEfcI8Y2CHmCMfH1PXoEhjxx72dY53brTPcd4dYVa1nbnqpnt1u3ChATNRZyj01kORs9RhJpN/chgWwjkOnfatD1IicncnMGhSWE0Ra8RGGwAOUEwpxGK6+KzAS5144+6igR7O9uzhNvD0TTiFYwXsK8E+/2wRKOHWFJ3QJPk4GDB1mv5KA8kRgvQr4Ew1wY57gFc79+AwbavGeDBg6IUMa4+2EZ1wjPHRS/gZpdGfAnnbZjTt5Lxkdoo2uQ655GQ1BTMeJS4XI2EsjG+X1hcco7xQgEJyhMvh79EcMkYcCNg6zQM0iRAsEfQk4h9wYEnq5At6gVI4iNDRdM5BlZsGiRDQehVq/Q2CMsBLbNE4uGkcOHGSS+1qLHQtCKba7VGgTQuGYoNqIpRrTTgzcIQlL4XVTRUUNgj5jeYU9mELcSQlcNh6HXhE/kY5g0ebIdiERz2dVQWmCFpKtuHhoMcKAsAx8wGTV8eISQHs+LKkYgXEHoIvfaIZSC8gMWHUGW9q4A/bquXSNCD4EZBpXPPPec9YSBNWQipSgUI7Pk2Vosz5iGHUmknSqICXpmtslAC2FdMFAM4qZeNHheIaiCJbMWhIS5W561devX2wFq2IoRnEetTmEdDCtPKNW0QGGCtiNkRFDb01GM4Bw66MfA+foe10Ukr0fYtakzZtiBMbbBKirMos8WrqvZFZdHKEfwLMPjzoYavL6nKV+uXMSpi5NiJOLCsuQLQ2mlH0oL/RwEp1e3aWOqVaua9p1NRjGSjhddog1Nx2sTfV3/G2+0v29/mLxo5892xQgMOhAiC+/Spk0aW6VuS7GwPEfebyhDho8wX4pi6IaePa1S2O/hiHBb0yTEIN51veSdF1QypRhRbxcIX0aNGB506qTWaX9c3D1G0uUW1u9Ux9x49uCFHC3eu3sTwzq3W6d/OZ13hL8u93u6nt1uXUUhbHXPXxTL6N9Xrn3dnvr6Ti2Logk8JwkkTaCwf6uYc0M5sYdEb0AkBpWBuA1HzlGsd+Uc7nZdVsUIvicyt310zmPmufnzAxUyWqe+XytWON4g9GMy5Zbxt9pcZO1ExnKGhP+MVlJRjKTTdoRnxNwQfRmM5oKMY5FTFEa5VIxEu2tcTwJFTyDvFCNMvh4/xwgeS7i13zllitXMl5VEWUdLsq6dRCgOy38IOpB7o41YEMIi2y1FrRhZumyZmSGeIRDWHigC46FimaBFc2Rg2x+Sj+SO2yZFDAogzBw0dKhNUg5hMwS9Bx1UQmJmbzUYHLRp3cpgUoYYnLD4OlSsLFyPGgiDEc8Tsdcx4EDierDbZ5+9Lbf3JSwFrAlQNyzJXa8JbWOqn2qljs74iCMOt8Lg3XbdzSpF3pEkZBAQj7npZls93GnhVouwWVpUMQKFDZKdfff9D+YoaTvytnz40UcG7qsoQbG3XcUIlCIIqYFwXvvv92+bq2bz5rcNhPxI3gaPEly/vzw3b57EFX3Croa7MeK5Y+CGZw3CZiR269712sA44oiXvXTZ8ogqYeGLBHGIo4qksVpg8YJQXlrCFFS/tWmTGTtuvI1JHzTBB28optwCj5DxokDAM4Nj8MyBD5gjeRzYQrCPa4e3jVugrBsxarS9X9h2XPlyVtH3408/y+93o7VaQU4MxO/OhGIEA8/77p9llkosWTx3iMWPZw/P+DvvvmdDeMHivPcNN9iQX27bVTGCa3bz+Lj76DJ+Y34381/k2ZgwcZJlhOOPPOII+4x8IBwxKUB74NV0vjzPYRe8J+BdBqUP7hXuD37L+P6mKKLwm4kWki7M5y3s62J90Qnkk8eICrpjTVrxHK9+aY1pePElcS28k1GMgHOqXnS4e+l6beI9DKW+38rRfTLG3DzW9ktB1o7ufrqc7YoRtPPabt3NztKHwFMERgiutxA8bZfIuArvU1hy+r2ENXwE+m0w8Rf0/V27X2ffi2GH0sL9xpgTYy+E1oBni7/AsOOROXNsnil/P+LfN18UI+lyS/d3Cu7qmY7xGZQiQeNC//3B93TPne47IqhNiazDc5iuZ7d7nsIWtrrnLqpl5hgpKvI8bzoECvu3qvKAoLCXyV6HKkYwV0N41nhFI2+4IbP9xyCk1vBRo6xB29gxo/2bY35Xw7QWzZqZmufViLpvKoqRdNqu46BY4XYTmf9FvSBuIAESKBQCeacYwcAKpXqVk+T/iYUCORtOopPzIA+QaO3DZHOaCLnfkdBUmEygIKYjhJCtWl5lBf/+Y4taMaJCGLTL7z2BCTqSUWOCAtfRYUMG+5tvBdTI+wAFkBYI5WtJB1xHwoahY5v79NPmzQ0bzGGHlTYD+/XT3ewnOEHI/8a6N62HBNwrtUBZUr1aNYN4nKgz7AJL+UclaRncY1EgHIYCp0njxja2KTxV4E0D4U+dCy+wyau1DaoYQYKwSy6+2Nxz71QRrm/wEqchRwSSkdY87zw9xPt0FSNIxLtehMOoD6GcUNAODNAg4EYIkmgFocrgdYGJrxYwO0HiTiPMVpCyAfvhfjzx1Fw9JOYnrgN5ULQkMlCZOm26WbFqVdxk33iuELJs5erVBknl/SXaQA7PzNynn7HeJm48ewj8q4ri8QrxSvDn6NC6oVi5+957bTJynB8F1ij1L7rIWvxmKvm6nh+feN6XLF1mFRK6HlZINWuca58lN4SWblfFiH6P9dnzuu4R3ii6L35beF7ekPj2UMag6DOPmPhVq56uu4b+iXfJ7NkP2XixUDxpAfvLmzYtoADT7WE+b1pnUX1mKmxVOteTqf4d7yT0bbEmPfHanUof7NYJxRs8OSG4nzCuYHJM3TfdPhjvEXgJwNMQ75GLG9SPMCDAe320KNkRgql927Zxf2faJ0frc7Xd+qnC6VS86NLx2kSfP/rmm83OMsZpedV/Chh9oH3oO5GYFMpP3INofZJeCz71vmdrKC20Edal33z7rQ1NAW8CJF5XS1I1NkEfDmV9UxlPYPygRfNN4d2LpOyuFy76tgflPbly9So7loinGEEoC3iXwPsRoTISKSq4gTILnoswSNGCZxljEViwYix044Dtead0u/9Tn73i7jGC606Xm7JK5XeKGPwYt8BIqZcotJCrMJmSzrnTeUck08agfdP17HbrxHge1xK297meA94Z2ZZjRMN7oI1zpsUX0uq18JMEipJAYStGMM+HN95pp55q/p+984Bzonjf+KtIFUQBAal3FjpyqFT/KspPERVEwN5AEBEpxwEiHZTemygWQOwCFsCGoFjoFgQEAZUmKL2pgBT/8wxO3CSbXHIpt8k+40eyOzs75bub7N48877vo4+0iWjo5jkRqsjyeI8e2qI2NTXFNq4HOoO/3fAuhYQ5AzwHfBO8cyAeCt4zDx3+Q3sAQBmct0+9qwT6e9rUkxVhJJK+Y5Hgwi++8JtbMf3BZyh//1nLc5sEsouAE/++jxcL1wkj8QKbTO1g4nv79h1y8tRJ9UdnqUxXiCb62PHH9L59+9XE/i5tdRJs9WiwseLBDGuHgwcPKSHkPB2XABP9sUyYiMDEFSbm8cem1aVVsHatwgiC0iMZaxG4SoM1ACY+7JKvMGJectAH9AX9sJsct6sLebAUQXBx066ZoAlUPpny8cL3m7JQyq9W5xQtVjSgIOI7ZkzOb1WBgiE8wUomOxJEna1qMhXWE5gcy8wSJJp9hJUI2JUtW9b2JTuabVnrwm8FLKwgRmJCLtTvm7WORN124otTrPqUHcIIxAfcXyb9rZ7D+I7j9xCWiNYEy6gaV1yhsyIVRlAJ/oAbN3Gi/qMU32WsxM93dj7lSnKDFkzQL4gmtzW51doNvY04X38qwdako8qtHybb8ezznQBFUFDjssmUj8SKLlKrzfkqyCisC/Dsg8hZtkxZ1edS+hn+k/ojfbsaB57rdyiXUw2US85QUiIII7A8NBMVqakpAjdhJpk/5s1+K2U5C4tTk/DOMWTYcEGgdghFsBZNUZaCmND4TrldvUz5I8fv4jvKJSbcTOC5AAuBQO9CsMjZoiwmS9tMludTAVwRU8s3GasWfDdg6VTighJaqIcVJ+4nWKv27N5dX1Prub7WpniOoN9YuIIAs9aEiSG4GotWwkIQuMO0pm2/btMCEp4lcINiTbD6tT5TEa9ii4p7Y1Kwc7GgpVZNb+tunJdVbjg3ku8pVgtj1TCsRTJ7X8FCIiyOsaZI2o70N8Laj3C3zUpuvEtnxbLb2h4WZ6RndNHv1nYM8T20+3221hFs24nCSLD+8hgJOJVAvIURE2MxmsIIrC1hlZlZglUchA886wM94611ZKR38vKegd9nvEMaLxV45mEuwARax9+ZqD8WwkgkfTeWLL6LTq1jNe9SdKVlpcJtJxKI1d/SThyrb58ojPgS4T4JuJCAnTASKoZAwkio57McCZBA4hFwor/vWL3MZYcw0vqRtl7CSLA7BFZKxjViNIQRtAVXhC+/+prAIgB/iJoE4fOG/9WXmxo2NFlen53UZB3ODSUFElcisaLDuZFYbeKP17kffKAmnbfolY/WccCSAa6kwrFGSwRhBBMRsLxDulYFT7/v3ns8wwZPBGDHcx6pU4f2fhPVEIbfeGuGDvZqTsRiiGqXVlUuV1voxQ6YrFmhVrljUnuScmOaO8AiEVgqIRacmeg39eEzmDsPBJqFj3BMrJiECWgIJXeo7wcsRnzT7Dlz5L05c32zbfejFeDdVG58kpv9zD4nKd/kuXP/t7AGwXOxqjaU5GvlYz0nK9zM+Vn9nhphxNQT7DOQlXtW20Zbkf5GBOtvZscisez2rRv30Gx1/2IBEsZkTYHiCVrLZLZtLDAZzyMzUjxOAoEJxFsYMVae1atV0/EnA/cs8yPGYiRUYaTfgCf1QhirO87MW/mvhDkfog6EXQgs1mQEiFgII6btrPTdxMsKZsFHYcR6JbntZAJO/Ps+XrxcJ4y4NcZIvG4otpOYBCiMJOZ1Y69JgARiTyAawkjsexmbFmAhgfHDivK8887V1mC+8Y5i0/LpWrNqRYezI7XaxOpEWC9i5WNhZUVgjVcV6pgTQRgJdSyZlYNLQ1jQ5Twrp14RH8jKNLN6IjlurhnuUVj7nnPOOZFU55pzI+UWyfc0UsiRtB3pb0RW+g4RIyuW3VlpK5nOwWTNqH/dYdOVVjJd2eQeS7yFERPvEosBrHFWs0I5XGFk0rOT5Ztvv5WHH3pIateuFVaTsNh8omcvbRk5YewYLwtJU1EshZFI+g5r49fffFOCLaCAVe3AwUO05epwZTXJRAIk4DwCFEacd03YIxKIOwEKI3FHzgZJgAQShIARRuCOBivgfVM8hQLftrnvDAJwL+a7ahs9GzxsmHZN5uQYI84gyF6QAAmQQGACsGAZPWm6LrBjzYLABXmEBBxEIN7CyBHlvrR7j57aUhOxuqxxtwwWLGD49NNP5bbbbgvqfjhcYeSrRYtk6kvTtaVmRnq6ac7rE5YTS5cvkyaNb/WygvxZuSsdPHSYdiE9VsVws3uvhttOxDqLhcVIJH03ogdciQ8e+JTtIhpTP11ped0O3CEBRxFwnTBiTIPdFnzdUXcdO+M4AhRGHHdJ2CEScDSBWLmtimTQsXq+G2EkUN+GDRksRQoXDnSY+S4gsOaHtTJm3LiAI6UwEhAND5AACTiMgBNjjOD5vkRZjSDRYsRhNwy7E5DA18qF5DOTn5NgbpYCnpzFAx99PE/HS0tNTZHH2rbV8SdNVbAOhMDw2++/S+uWLaVOndrmkN9nuMIIFogMGDhIx6KDq9TGjW7RcfFMxbCUQ/w8xPJq06qVl1tSCDodOqVrF7J2LhThhvCV114TxNTMTBhBe3369ddxXieOGxtSnNNI+o72EB9tw8aNUqVyJWnTurV2/Yl8JIx7zNhx+pPCyGkm/Ne5BJz49328aLlOGIkXWLZDAolEAD7CEST+nHMKeL1AhTIGvExs/TcIKAJKZof7jFD6yTIkQALRI+DEF6dY9QkugnwDJVtJwhcy4h8wuZfAjt9+UyswP7MFgGfivffcbXuMmSRAAiTgNAJOFEacxoj9IYFQCBxTMdrSVew1xN06v0gRv1MqlC+v42n4HYggAzHBxk98WtauW6fbrVypkm4blg0bf/pJW7fWv7ae3HO393uJifFlmoaIAgElb548UrJkSZOtP+FitEtnf6sQWISMmzhRix/FihaVSy6+WPKdnU/FxNqgBRPMGQSKL/fmjBky75P52o0Wzrvk4otUjLvjp+NpnSHStEkTGTVmrJx77rlSIH9+1f+7BPFP7JKx1LkwNdUTvN1a7uHWrfwWNEXSd1iyQPyAcJNf9Q39KqTcz+7evUc2b90qdzZvLs+9+CJdaVkvArcdSSBWf0s7crA+nXKdMIKXPaS6Nar5oOAuCZAACZAACZBAKATMsxRlnfI8NStK66jnOwPGhnIVWYYESIAESIAE/AmYZ7xTnu/+PWQOCSQGgeUrVsjsOXO1xYCvy83LL7tM2rV9JOoDgQDx/gcfyHy1YAOLe0zKrQSNa665Wpo3beplzYHj6zdskOEjR5miQT9Rz6SJE2zL/PHHH/Lyq6/JqtWrlbDxt6dMgQIF5Ib/1ZebGjb05Fk3Tpw4oTl9smCB5zy41IK40VrFLYG1xZy5c2XR4iWCmCSdOrSXS6tWtVbh2Yaogz5AHMK2bxrQr6+tm7Gs9h31Iybdc8+/oC1VsI9FMXBl9sD990mOM3PIk4MGURgBGCZHEzDPfnTSbc9/1wkjDL7u6O8iO0cCJEACJEACJEACJEACJEACJEACmgAWPjDGCG8GEgifwP79+9Vk/e/KyuJsKVqsWNC4IuHXHviMU6dOCVzR7tu3X3mjOFdgQWIXO8S3Blhd7FLn4TOlbFmBdUq8U1b7jn4eOnRIiyMQRWA9wkQCJJAYBCiMJMZ1Yi9JgARIgARIwDEE3LyixDEXgR0hARIgARIggRgQMM94p6wYpTASg4vMKkmABEiABEjAQsA8+5HllOe/pXsx3XSdMGIuttsudEzvIlZOAiRAAiTgKgJO9EFKV1quugU5WBIgARIggRgQwN/KzVtm6Jp3rFkQgxbCrxJ9WrxipT6RrjLD58czEoPA7Dlz5PjxEyF3tly5clK1SuWQy7MgCZAACQQj4MS/74P1N5rHXCeMRBMe6yIBEiABEiABNxJw4ouTE/vkxnuDYyYBEiABEkhcAk4URhKXJntOAqET6NApXf46ciTkExo2aCDNmzUNuTwLkgAJkEAwAm7+W9p1wggtRoJ9FXiMBEiABEiABDInYJ6lKOkUC0xajGR+3ViCBEiABEiABDIjYJ7xTnm+Z9ZfHieBZCCwZMlSOXEydIuRUiVLSWpqSjIMnWMgARJwAAHz7EdX3Pb8d50wwuDrDvjGsQskQAIkQAIkQAIkQAIkQAIkQAIkkAkBxhjJBBAPkwAJkAAJkAAJZJkAhZEso+OJJEACJEACJOBOApikQKpbI811K0rcecU5ahIgARIgATcQwIpRp8XzQJ+cFvfEDfcCx0gCJEACJOAeAm7++951woh7bmuOlATcQWDHb7/Jn3/+KcWLFZMCBQo4btBHjx2Tbdu2Sd68eaVUyZK6fzt37ZJDhw7JBcWLS/78+R3XZ3aIBDIj4EQfpE7sU2YceZwESIAESIAEnETAqSIEJmy4GMNJdwr7QgIkQAIkkEwE3OxdicJIMt3JHEvSEcCkOibQw01nnHGGnF+kSLinJWT58RMmyverV0urli2kbp06jhvDTz//LEOGDZcK5ctLty4Zun9Tpk2TRYuXSJvWraVWzRqO6zM7RAKZEXCiCOHEPmXGkcdJgARIgARIwEkEnCqMOIkR+0ICJEACJEACyUQAz/5RagHCEvU5c+po13mEcJ0wYsyDurZ7MJnuY44lSQksW75CnnvhhbBHlyd3bnl6wviwz0vEEyiMJOJVY59JIPoE8ELnNPcf0R8layQB5xH4+Zdf5NSpU5JStqzkzJnTeR10aY+2KmvVY2qBDdJ5550nRQoX1tu79+yRAwcO6G2rNavO4D8k4GACtBpx8MVh10iABEiABEggQQm4Thhxs3lQgt6jru722nXrZM7c9/0Y/PXXX/Lr9u16AiI1JcXveJ48uaVThw5++cmYQWEkGa8qx0QCJEACJJAoBB7r0FFg4TpsyGDP5Hui9D2Z+5nR7XE5ePCgHmJ6x45StUplvT3x6Uny3fff6+1bG90ijRs1SmYMHFuSEIAoMnrSdD2aHWsWJMmoOAwSIAESIAESyH4CWGBYt0a17O9INvWAwkg2gWezJBAJgVXKddQ45UIKKwBHDhsaSVUJfy6FkYS/hBxAAhIw1pf0952AF49dJoEoE6AwEmWgUagOggiEEaSi558vgwc+JXCzitTtiR6yb98+yZEjh4wYOkQKFiyo8/kPCYCAU60vrcKIG9188O4kARIgARIggVgQwHO/ecsMqaOEkVnKjZYbk+uEETdeZI45+QhQGPnvmlIY+Y8Ft0ggXgScGM/DiX2K1/VgOySQnQQojGQnffu2V61eoxbQTNAHb2/WTG5scIPe/vPPP6Vj59Pxzq64/HJ59JE29hUw17UEzAQJADjNMgPiCN1hu/bW5MBJgARIgARiQIALD0QojMTgxmKVJBBrAuEII8f+/luWLFkiZ555plx91VW2Xftl0ybZunWrlC5dWi668ELbMsjcs3evrF27VrZs2SpHjh6RMqXLSPny5cTOnZdvJfhjfPGSpbJz507t27pw4UK6vdKlSkvZsmV8i3vt//HHH/Ltd9/Jpk2b5Z9//pGKFSpIpUoVpUCBAhKKMAJ/2suWLZOdu3bJ0aPHpEiRwnJhaqpgUsCsoLQ2ePLkSfnyq690FgK658qVy3rYa3vbr7/KzyrAerFixXS/vA6qHQZf9yXC/WQggBcoBGfDyhKnTFJQGEmGO4tjSEQC2SmM4Hm9Rb2/IMZJvnz5pMQFFyQiwqj3+YMPP5RZ77yrXa6OGj5Mzj77bN0GXLSOGjNWb3frkiEVypePetusMLEJQBhBAFYkJ68cRT/d7PYjse8y9p4ESIAESMApBPA8RZxO/G3v5Od+LHm5ThjBxAlSFxV8nS9Tsby1WHcsCYQjjOzfv1+6dn9C/3H87NMTbbs16+135IOPPpIGN1wvdzRvblsGQsHrb76pAnn+7Xf8unr15I7bmwcMurrw88/lzRkz5W8l0tily6pXlwfvv0/y58/vdxixVMZPnCh79+7zOgZRpOcT3eWNN96U75VrsVYtWwhEDGvCRMmsd96Rj+d9ogUV6zFsl1FCUPt27QQijW8aMWq0/Lh+vW291rKjx46VH9auk0cebi01a9SwHtLbEJ2Gjxwl5ctdIp07ddJ5019+RRYvXarrrnHFFX7nMIMESCB8AnipM4nPd0OCnyQQewLZJYxg0UTfAU964mhUq1pVOnZoH/sBJ0ALz0x+Tr7+5hu5Ur0XPaTej0z66ON5MmPWLC0gPTWgv8nmJwkkDAGzstXNLj8S5mKxoyRAAiRAAiSQAARcJ4ww+HoC3JXsYqYE4i2MfDxvnrw1c5ZecXh7s6ZSqWIlyZsvr7bgeGvGDB0IPu3SS6VD+8f8+r7uxx/16sScOXPKzQ1vlIsuukhSypZVlhtHBdYWny1cKHD5kJJSVnr36OFlwYFgro8rX9iwNjm/SBG5VQUILVmqpJw8cVI2bNyg/uj/Vv5R/8GSxE4Yefe92TLn/fd1LJYG118v5S65RHLlziXfq6CjsF7ZvmOHXKz6071bV21RY+08JhQwsXChsizp1eMJ6yHP9q7du6Vn7z5a0EGsl7POOstzjBskQAIkQALOIYDnxJatW0LqUO3atSVP7ty2Zf86ckRWq2fW1m1bZffuPVKqZEn9/KpapYrX88t68kr1zDlw4IA1S29XU89NxApD2rx5i7aohDXmOeecI1gw4JuOHz+unpertdXm78r6ErEjypQpLVWVIJA3Tx7f4lHd/+3332XVKtW2YnjuuedqS4Py5cpLbvVMDUUYyQo36wBg1Yqx7/jtN8mVM5dmjneDL778SgUVr6KLllLvB/WuuUZvgze4+yb0Pa3a6eCSEFZ+UffFgQP7tcXJpYpjoUL+CyUisZZF+5s2b5aNG3/S7HLnyq2tZCtXrhxSoHpc5+XLl+vFIWB4QfHignFeqKx7ixQu7Ds8z36PXr0F7yh4r0pNTfHkP//ii7J02XK59+675Lprr/Xkc4MEEoWAEUbQX8YaSZSrxn6SAAmQAAk4jYCxEKXRgAtdadFixGlfR/YnKwTiKYwcOnRI8Ac2XFj179dXT8RY+wwLkj79++k/2tM7dlQTFJWth+W111+XBZ8tFAgqNzZo4HXM7Hzx5ZdSuVJlP8uNeZ/MV5YmM3Sb/fr28Zuo2rZtmzw1eIjAlYadMLJh40Z54623pE3r1lJcubqypsOHD2tRAxMN/fr01tYj1uOoEwFKEcC0v2q7dKlS1sN6e+ast+XDjz+WhmpczdX4mEjALQSc6EqLFiNuufuyNs73Zs+R2XPnhnTysCGDbSed4RrxuRde8LNgRKUQ3tu0buUROqwNGQtEax624cqoWNGi8vSzz2qB3xy3E+QhTEx+7nm9oMCUM59YOPDIww97TYCbY9H4XL5ihUx9abqf1eclF18sXTqnS3pGF8FChmhzQ9/x7vHyK6/KF8pqFdsQrPAJN6FIdqyQv37DBm2tiW1rwnXCYohP5i+Qd95718sKFladVSpXshbXbjWzai0LIWvGzJn6HcirUrUDF5133XG7XHP11b6H9D7GOE0xX6RcoWLbNyFw+s0NG8otN9+kg6hbj+NaZHTtqt5bSkuP7qcDsJvjAwYOUvfvXn2tYi2mmTb5mVgEzEQJeu1Ulxp4B0FyiitP3Rn+QwIkQAIkQAIJRMC4oUaXnRZTLN4YXWcxEm/AbI8EYkEgnsKImfxvdPPN0uTWxrbDgausl199TYkbFSUjPd2rzNPPPKvjgzzU4kG5sm5dr2OZ7fTu208wGdSmVSupVaumbfGBQ4YEtBixPcGSCT/b8LfdumVLqVOntuXI6U1jcQJXYffec7fX8RMnTmgXZVhxOmTQQG3R4lWAOySQxATMi5STXFk4sU9JfAsk3NDglnH7r9sD9vuHdWtl0eIl2iXkiKFDdAwra+Gff/lFho0YqSepIYbjmVSkcBH5XT2j5n7wgX7OwRph0FNP+on4eM4cPnTYU91M5eJx3759WhiZv+BT9Rxaq1wbldDWCoh7BbGk6W1NPOVRtk+//lp8qKueVVf93//pZ84+5SoT1gRYfIA4Yr179vAT+T2VZHHDxMnC6ZUqVpT6110rRVX/8Oz7+uuv5aAaF95J4CrTThiJhBvafF+xffvd9/S4HlbCk4khgoURk59/Qb8j3Hn77XLD9f9DcU/C4oe1ys2lSZs2b5JPFGsII3fdcYfg3aGQstYpUeICJVKctg66+aaGXvwisZZFuwh+DovYkiVKqMUTzVQMt1SBWIL74Y23ZmhrWLu+49zZc+bKe3Pm6IUh/6tfX1u3FiteTDCu9crNJxaOwOoV40YdTCQQLQIQRpr/63o6ESZKIJLUrZFGF9nRugFYDwmQAAmQgCsImOc9rS9daDHiijucg0x6AvEURsaMGydrflir42P4rqQ0oOGiBJMMcAkCl1LWhFWZsNqAy4/WrR7SqzvtAp5bz8E2Vki2fay9QICA8IDz7VIowdftzkMeJlWwEvbeu+9WLiXq+RXDZFT3nr0kt1rZOWrkCP1pCq1QE0LPqtW7sJCBpQwTCbiJgBMtRiiMuOkOjO5Y8QwbMWqU/K0mrdu1fcTPjRWeR4OHDlNulzYFjCdlYjqEYkHYT8XFgFBTX7kyOqwEhnvuutNPiLGOcMrUadpyINACBbikfOW117W1g4llZT0/ku0JE5+WlatWSa2aNeRhtUjB9/n9qRJlXlWWoUi+wkik3HB++46dtCBkF8dr0eLFMmXaS9r12Bj1jA6Wvv3uO8FCjYuUC6o8eXLLtWrBQ/W0tICnRGotC0EEwgisTeGOE+5ErWkrLF4HDdbvFYMHPqXHYD1u7hGcC6sY34R3o/kLFiih6jq/un3Lcp8EwiGQCBYjZjx4Fxk9abre5cSOocJPEiABEiABEghMAM95E4/Tuh34jOQ/4jqLEUycINGPWvLf3Mk8wngKI48r/9QIfJ6amqL+gD+9qtKXLVaKYsII6ekJ471Wyx5RsUTGjhsvWHWKlDdvXu0ju7ha+ViyREkpp4KS2/3RDxdWGd1Ou4CYNHGClyihK/r3n1CEEQRR/0Wt9kWdhw7/oX2J43T0GeJHIGEEZSY+PUm+U37KWz74gPzflVciS6eRo8cI4qd0eKydx1+5OcZPEiCB+BPAi51J5mXP7POTBAIR2LlrlwwZNlyvxL//3ns8MSqs5Vev+UHGjh+vrQ3ghskuwboRVo5wkfT0+HF+caus55hJ77Jly0ivJ57wc4VkLbtfWYXArSPcHo1Wk/++E+woCwHhCSXiIxZGv969VNyRMtYqsryNZ2aXx7vr+rHowcRDsVYIt00QL9AHX2EkUm64NojjhfhdE8eN9Rs73GkhvgnaDtQ/01cjjGC/fbtHg4oiKBOpteygIUP1O0bXjM5SsUIFVOmXzOKMZso66CblFsuaOnbO0BYlvkytZbhNAm4nQGHE7XcAx08CJEACJBAqAbPwYYn6mzmj3QN0R2kB5zphhMHXLVefmwlLIJ7CyKPtO2gXGYjRgQmfzFJGeie/la9wHbFMuftYtnyFCj66Vf+xb60HKyrbPdrWyyoEAUd79emri2VVGMEkEYQTuJtAwoRSvnz5PBNWCNwKUSeYMAJrGVjNWP2Ym6DrcJsyXPmihwsTJhIgARIggcQiAKsAWILs3rNHAlljYEQffPihzHrnXbnpxhulWdPbbAeJyXlM0mOyPpiVI042wkiwZ49pxDyDUlNTdCBtk+/7aSw7WrVoIXXr1vE9nKV940bLzhrUWmGg4OuRcsMzupOKXwIrlbGjRsrZZ59tbVYvdjALKMaPGe133FrYCCOoA2UzS5FYy+JewLsTrDqeVoIaAtTbJeOqq7ZyywZrHGsyizKqqYDwd6tA6Ygjw0QCJOBPwNeVFle/+jNiDgmQAAmQAAmAgJkPpzDifT+4ThjByxMSfZF63wjcSywC8RRGzARO3169BKtbo5EwGQXhY+vWbfKVcoUBX+GYeLGKDFiFiskWpAljx2hBw67tYBYjpu9XXH653NbkVr8A7Ga1ZrDJKUxwIPg8Js4GqODzpUqWlLfVBNn7aqLs1ka3SONGjey6xTwSSGoCTnRbxed7Ut9yUR8cnjHDR46ULVu2ylXKGrCFsgoMlF6cOlUWL1mqY3/YWU2Y8xBPAwsBOnVoL5eqCe1AyTybEJMLsbmCpU8/+0y5qnpDu/d6TC0gCJReUXG+PlPxvm656Sb9vAtULpx8uJrEczIlpaz06dkz4KmBhJFocBs4WMUR27xZLWC4S7m8vNarDx99/LHMmPW2XlQBMSpYMsLIxRdd5BeQ3O68SKxlsSije4+e2hIIAeoDJVjkwNII71Z4x7ImLOhAHDSUQcJCjAuKF9fvMaVKlZTKlStTLLEC43bUCEBYSKQYI9aBGwsSJ8U/s/aP2yRAAiRAAiQQTwLm7+Ou7R7Uzfrux7MvTm7LdcKIky8G+0YCoRIIRxj568gR6dDpdED0icq9B9xx+CbjMqLBDdfLHc2bex2e9Oxk+ebbb+Xhhx6S2rVreR2Lxg4mkXr17avddfVWbrtSU1M81XZI7yx//fWXnpDBxIxdMsFNW7VUq2Tr/LdKFkIGXIvASgTCip37kVCEEbRpVnVeX/86uV3xgVsTBJ4dNniQrWsRu34yjwSSiYAThREn9imZrnkyjeXkyZM6/sMPKjg3VuQ/plwr5ciRI+AQzXMGokiB/PkDljMHbmvSRAkjVcyu36cRRrp1yZAK5cv7HbdmzJk7V96dPUcuv+wyHf/Eesy6/ZoSTxYoEeXaa66R+5RLsGikz7/4Qqa/8mqWhZFocFu2bLm8oISpAgUKyO1Nm8qFF12oXWf99NNPWhTBszgzIQosjDCC4OuB3KFZmUViLQshB4IOrEmxmCKzVLhQIWmv3HL6JogiXy1aJN+t/F5bvsLC1SRY0VxWvbq0atkyoEWKKctPEgiHQLIJI5gE4oLIcO4AliUBEiABEkhkAsZy0iwWwFhoIRL8ilIYCc6HR0nAkQTCEUYwgPQuXbX/dEwGYFLANyEgKSYN7IQR/FE+9aXpelUrVrfaJay4Xbp8mTRpfKvfH+iI45FfTSQFCp6O+oaNGCkbNm7UQcwRzNwkM6ly4w03KEGimcn2+oRIgTghvsIIVu7CRQqEoLGjR2kf5V4nqh34lYerkGAWIzgHEy9duz+hXYndd8/degUtgrbCTzkTCbiRAF64Fq9YqYduVqBkNwcKI9l9BRKjfVgBvjBliixVE+5wkdg1I8PvueU7ktdUcPEFKsg4Fg7gORlpCkcYWbp0mTyv+guhpVOHDgGbnqqCkMMC8w71rGygnpnRSOZdA+4u+/ftE7DKQBYj0eIGd2KTn3tOsNDDmiCW3NGsWUiuw8IVRsw1yoq1LFyAIUZInty5ddw1a5+zuo37dq961/n99506ZtpCJVpBOKlVs4a0ad06q9XyPBKwJZDIK0rxfoKEWGNWkccEZ7d7fzF5VgHFMAg1z7wLmbrQh1DyQq3frlwo9dv1w66uUPPYpuj7yvcd2Fz3UDnalSNbssV9ZXdvhJrHe8jd95ARQqwiiPn72JqH5wKTNwHXCSPGp5p5OfLGwT0SSAwCZrIiM7/fZjRG+IALifROHb2sRlatXiPPPf+8IEi6nTCCP8YHDByk3V3BRUdj5T7KurIW8TaGDh+h/0Bvo3xk11K+sk3avHmLDB0xQnKoVZMPPnC/1KxRwxzyfEI4GT5ylPbFPU4JGFYf4giaPmLUaC1qtGndSq+YNSeeOnVK3n1vtsybP1+7LvEVRjAeWMqg/76B01HHEuUW5ZXXXhO4U8lMGEF5TKQtURNUCB5/RE3OdO7USapUroRDTCRAAiRAAglC4K2ZM5UV4CfaJVHPJ7p7PXMCDeFTJYq8qsSRzFxuBTrfN99MuodiMYJnJAJ5I87XoKee9K3Ks28WGIQSWNxzUiYb2379Vfo/+ZTkVvHFEOsrUDLWFb6BwqPBDc9buBP7ftVqwcKJU6f+0c/h4sqt1CWXXOz1PhOof8gPVxiJ1FrWBE/PLCh8sD4HOwYXXL379tPjH6+sYhnrLBgtHnMrAUxWG7dg5m9/a96ONQs0GjOZZHXBZSaTrHlmHsE6wWTy7Oo3eaZ+NMY2RcjWe/U27yERfldEzO+E9TeH3xV+VwKJ/OZ+sXuuWPPwzEMdTMEJuFYYsb7QBEfEoyTgPALhCiMQL/r2H6AFBPiprlihvPpjOq9sVbE9du7aJZcrdwxYfWgnjGD0sAgZN3GiFj+KFS0q8Jmd7+x88uP6DVowgfgQyK/5/AWfKncXs7TwUbhwISlbpqyUKV1K1XVIflJWHdu3b1cTHacCrnI1og76gdW9WLkKNyiwMMEkyZ49e+X71av9LEZQ/s0ZM2TeJ/O1Gy30+ZKLL1LB1o+rfq8XOUOkqXJ3Ah/eYAL3KPcoH+Z2FjWoywShxTasXwYPfEoHhMU+Ewm4jQBfstx2xZNjvHge4LlQsGBBgShSpHDhkAaGmFh4hubLl08GK3ECn74Jbh9nzJwlt9x8s+BZFyyFI4zAfdITKs7V4cOHtdVGyRIl/Ko+cOCA9OzdRz+ThioXj7CkiEZC27CW1EHQlbWKnXswvF8gDheSrzASDW7TX35Fvvv+ex3QHhYYWU3hCiORWsua+CrNbmsiNzVsaNtttIH3n6uvusrv+Eo15goVKmirE7+DKgOB3dupOGw4/+kJKsC7Eq+YSIAE7AlY31mCTSZxQnK0Bmgm6q3zJSbPTGBbBSaTR7bThfcQ7yF+Vyh04YfU/B7G+zfBPAWN9ZDZ52dwAq4TRnCDIvFGCX5j8KizCYQrjGA08Hn94pSpOtCnGR0CeT6srDy+/uYb+eCjjwIKIygPd1Ivq+CuaNvq5xoTMDf8r37AP/xxLoSVuR98IFu2btGxRJBnEoSOhg0aeFmamGP4hOgy8+23ZcGnn2lhB3mw2qhds6bcq9xaTZj4dEBhBBMHs+fMlU8WLPD0+ayzztICS2sVMwWTV/DfvmjxEh1cPTM/5VidiVWatzdrKjeqPjORgFsJ2K1gym4W5vluNTfP7j6xfecQWLZ8hTz/4ot6ovlx5VayTOnSYXXu9TfekPnqOQRxAHEd4CLSpGNKQBg7brwW7K9Rk9wP3H+fOWT7GY4wggpMrI/UlBTpoGJRQNgxCYLMZGX1CXdTtyqLzsaNGplDUfl8T8U3ma2ekxCREAcDz2yTYJn5vArOvmrNGv2s9hVGUC5Sbog1hneOtm0elpSyZSWvRZSCGIBYG6GkcIWRSKxl0Z/9+/fr+GmwcIHFK+KBWBOEDyz8yKneSfr26a0tgsxxWMi8qmLGYCHKo4+0kdI29yoWnbz+5pv6egRzc2bq5CcJhErAOuFtrBtCPZflSIAESIAESIAESCDRCLhOGEm0C8T+kkA0CeAPffio3rlzl5pYOUew8jTUSQXTD6xOxCrQffv2q8Dj5+o/3CE2hJqw8hTuOXKpCQ0EHLVO8ASrA1YisC5RQ5AyZUqH1W+4y9ql+oxPTKyg7XAT3HlkdHtcr86Ea4xorcgNtx8sTwJOIOBEYcSJfXLCtWIfThMYOGSIbNq0WT9zzi9SJCiWm29qqASQql5lIECMUeIHXFvB5WOlihW1WLB5yxZtUXj8+HFljVlBxcrq4BfTCrE2tmzd5qlv26/b5Nixv3Vg7jwqDpY1XXfttTpuhDVPWwVMekZWrlol+dTCgCpVqgjGsG//Pi2IwJoE1o5wlRltywE8s+HKC9aleNZXKF9OP/cP//Gn/LB2rdyvAr1PU3HI8Hy1E0Yi4QYGELMQD8Yuwa3nuecWlPLlyunFGVjsYdI2ZRH7ymuvm11t9YKFDYg7VtInIDreCbp09o+hFom1LBpepGK+YEEJ7o2LLrxQvX+UUdsnZO26dbJn717tlrTDY49p61dPR9UG7g0ISl8qixK4yCpxwQX6vQfu1Hb89pv8/PMvejFHzpw5db9hEctEAtEiQGEkWiRZDwmQAAmQAAmQQCIQcKUwghc+JPpaS4RblH0kAWcQMKszGejUGdeDvcheAuY5il445VkKYQQJJsu0CtUo+I+FgBFGLFkBN+3iUqEwBPo5c9+XTxcu1BPtpgJMUNdSMbTuuutO25gXiJWlXTiaE4J83q6Cid/YwD54+ifzF8j7H36o3WqZKiDSXFevno7/Fas4ExA3IFCsXvODtgxB27C4hAtNuIEKFHzd9DGr3HD+oUOHpHe//lqUgXWFNcFSB9asWPQBN1u9e/UUI46s37BBxy+zlg+0HSyGSiTWsmgPLkvhDmzL1q16YYXpAxamNFVuttKqBfb7vHzFCoG7rc3K6hYClUlY0AJXoo1uuUVbwJp8fpJAtAiYZ7xTnu/RGhfrIQESIAESIAESIAFfAq4TRoyvN4CgebDv7cB9EiCBQASMG63uygVLoDgkgc5lPgmQAAmQQHIR2KesL3/7fafkV8JE0WJFbQWRWI0Ybppg/VBUuVoKNU5KNPoCq5CtaoL/vPPO0xYrWakzHG5wfzV12ktyrRJ+bmtyq62lKISLycqdF6wwrqxbRx5q0SIr3cr0nEitZeEObPuOHcoa5JgUUtayiFUWTtq7F/fb71LwnAJKlCpsG+cmnPpYlgRIgARIgARIgARIgARIQIUf/uvwIeWYxj2J5sHuudYcKQlEQgCTP4uXLNFV/KXcaCEOycUXXSQ9uj8eSbU8lwQSnoBZSYqBcDVpwl9ODoAEHEsALrzgumziuLE6tligjm786ScZOnyEtp7o1eOJQMWYTwIkECIB85znMz5EYCxGAiRAAiRAAiSQsARcJ4zgSsFqhG42EvaeZcdJIC4E4MICq1BNKqt8gz/W9lHtPsTk8ZME3EjAqbE8MJEzSj3fl6hPWoS68c7kmJONQKeMLtpV1iMPt5aaylVZoLTw8891LI9QAt8HqoP5JEACpwk49RnP60MCJEACJEACJEACsSDgSmEkFiBZJwmQQHIRgE/13bv3qMCnZ+hA6+eee25yDZCjIYEsEjCTJjOnjnaUxYjVItRpfcsiap5GAq4mMGXqNFmkLDfhuqvxLTdL6dKlPZYjfyuXVAcOHpRVq1bL519+KYg/0q1rF0lNSXE1Mw6eBCIlYJ7xiNc1Sz3nmUiABEiABEiABEggmQm4VhiB1QhWlTJIazLf3hwbCZAACZBALAhAhHCiiw1M6OC5XrdGmiP7F4trwTpJIFkJHD9+XKa/8oqs+PobwbZdQiDySy6+WJo1vU27u7QrwzwSIIHwCDj1GR/eKFiaBEiABEiABEiABDIn4FphxKyGASK63Mj8RmEJEiABEiABdxPARAmSEwURd18Zjp4EkpvAkaNHZcOGDXL48GHtWguB0AsUKKD/L1umjLYoSW4CHB0JkAAJkAAJkAAJkAAJkEAsCLhWGIHFyOhJ0yWj3QOMNxKLO4t1kgAJkAAJJBUBs6AgEZ6bjCWWVLceB0MCJEACJBAHAnjOI3Vp9yAXQcSBN5sgARIgARIgARLIfgKuFUayHz17QAIkQAIkQAKJQSCR4neUqFJfQ00EAScxrj57SQIkQAIk4AYC5vnJ+CJuuNocIwmQAAmQAAmQAAhQGFEQjPUIg7XyS0ECJEACJEAC9gQgjixesdLxVpbmmY5R0FWm/bVkLgmQAAmQAAn4EjDPT/5N7EuG+yRAAiRAAiRAAslKwPXCiHkBxAXm6phkvc05LhIgARIggawQwDMSqatyq5EoKVEEnEThyX6SAAmQAAmQAAmQAAmQAAmQAAmQQDIScL0wgouKiZ8laiXsrKmjk/Eac0wkQAIkQAIkEDYBq/usRHZLhXEwYHzYl58nkAAJkAAJuIQAYoswrohLLjaHSQIkQAIkQAIk4EWAwogXjtM7eDmE9UgirZC1GQazSIAESIAESCAiAibgeiK61TAWobQGjegW4MkkQAIkQAJJTMA8KzHERHzWJ/Gl4dBIgARIgARIgATiQIDCiA9kvhz6AOEuCZAACZCAawiYZ6A1NkeiWlyYseDicbLHNbcwB0oCJEACJBAGAWMdykUEYUBjURIgARIgARIggaQhQGHE51Li5XDUvz7VjWstTK7UrZFGVxw+rLhLAiRAAiSQXARKVKmvB5TIrrOsV4TPbysNbpMACZAACZDAaQLWRQ/YRqLbydNs+C8JkAAJkAAJkIB7CFAYCeFa200UWV8mQ6iCRUiABEiABEjAUQTwHFu8YqXuk3EdaawskkUYsQLH2BBPjH7UrVS4TQIkQAIk4DYCyfysd9u15HhJgARIgARIgAQiI0BhJBN+mDiCBQkmU4wrDuQ1V3FIkIy7EfOCaTVDNr7ZrXl2IovJs6vf5Jn62eZozZ1sRawTl7yH/nOVw+/KdB0jyVi88bvC7wpWgFqfW8GeKyiXjCtGreO3PpP1A4X/kAAJkAAJkICLCFjflc07gYuGz6GSAAmQAAmQAAmQgIcAhREPiuAb1ski68skhRERTrxy4jWciVfz/bFOTlrvod6dHpCO6Z3lyPEzZMfBMygAhTGpnRlbI5YYIY3iWuiCQTKyxXMNwj++i8ZiJPiTMLGPmmtoJoEwfqRkFIIS+0qx9yRAAiRAAtEmgGeg9VmPd2/zXhjttlgfCZAACZAACZAACSQKAQojWbxSvhMq2Pd1SWKXh5dSJGvMklDy7OoKNS+UoGmMwQAAQABJREFU+tEn33Kh1m9Xzrcuu/rt8uzqCjWPbQa/r0LlaFcunmwL5/tHpkw7/T25694WUj3tv/g+ofTDrv+h5oVSP+9bb9dLZOvNI5HuIdzLbku4X40QYhVkOTnktjuB4yUBEiAB9xCwWxDjntFzpCRAAiRAAiRAAiQQmACFkcBseIQESCAbCEydNk0LIxBExo8dkw09YJMkQALJTgACiXGJabWcgliCZBVKUBbJCCrY9s0z+9ZywfKC1WVXv11esPrt+sE2QcX/2tnlka1G5bnnDQ/eQ6e5hMLDlMEZhluwPFMG5U25cPPMeU5u065vsR6nW9o0HHEfGDfQvp4N8LyzLs4DGyYSIAESIAESIAEScDMBCiNuvvocOwmQAAmQAAm4mICZSMSEEraNWGLcbcECaPSk6ZqQ7wRTIHeARlSxW6Fr8kz9bJNszf1iZ8Fk7hereGfyeA9V05bO/H5W8wi58bqH8INofg/t2jR5dvetybP77bPmmfrtfoNN/Xa/waZ+9NF8V0yetX67708ytwkeTCRAAiRAAiRAAiRAAv4EKIz4M2EOCZAACZAACZCACwlgwg3JTFbbTcqZPLtJOWue76Qc6jV5dpNyJs/Uj/K+E3XW+u0mB039ZiKQbZ6+nmR72l0qRATeQ6PxtfB8F/ldCV8UBj/z22T3O2Ty7NiaPDeLFNaxG452v/uGo9131nAMdC+jPiRrTBGdwX9IgARIgARIgARIgAS8CFAY8cLBHRIgARIgARIgARL4jwAmsZCsbkrM0VDyTBmc41uXXZ4pg2Pm3HDzzHl29dvlhVu/Xd/YJqj4X2OyPc3F3B/BeJgydhzt8oLVhfKmvmDlTBm7+u3ygtXFNqsBQUi/c6GWC5d3uNfTrh+J1ibGwEQCJEACJEACJEACJJA1AhRGssaNZ5EACcSIwHcrV8rUf4OvM8ZIjCCzWhIgARIgARIgARIgARIgARIgARIgARIgARJwMQEKIy6++Bw6CTiRQMf0zgJxBAnCCIKwM5EACZAACZAACZAACZAACZAACZAACZAACZAACZBAtAhQGIkWSdZDAiQQFQJTp02TKRaLEQojUcHKSkiABEiABEiABEiABEiABEiABEiABEiABEiABP4lQGGEtwIJkIDjCMBihIKI4y4LO0QCJEACJEACJEACJEACJEACJEACJEACJEACSUGAwkhSXEYOggRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBQCFEZCocQyJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACSUGAwkhSXEYOggSShwDcaK38N/h6yxYtkmdgHAkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIAjCFAYccRlYCdIgAQMgY7pnQXiCNL4sWMYa8SA4ScJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEBUCFAYiQpGVkICJBAtAlOnTZMp017S1VEYiRZV1kMCJEACJEACJEACJEAC7iWweMX3snjFSlmiPmdNHa1BIG/UpJekTo1q0rXdgzpvpNpHGWtes5YZ+phdXhd1Xl11vqkLBe3y2KYI2YrtfWV3v9jl8R7iPYTfF/4O8fcWzy1zL+B5hWR+H/QO/wmLAIWRsHCxMAmQQDwIwGKkelpaPJpiGyRAAiRAAiRAAiRAAiRAAklGAJPwSFbBY/Sk6Tpvx5oF+hNlkIeJRjOpBBHECCMmr0SV+rp8RrsHPPWZvJlKZDHCSPN/BRSTZ+rHyWxThGxFeA+dntTmd4W/Cfhd5G9CZL8JeHb5Pq+MkG/EVXBmCk6AwkhwPjxKAiRAAiRAAiRAAiRAAiRAAiRAAiSQIASsgoQRKWDRgclYqwiCcmZSySqg+ObZTTT55tlZjJj6gc2ILCbPuurbLs+3ftThm8c2vVdK23G0y/PlSLanRUQzkWqYgQvv2+BWKoYZ7yHeQ9nxXTHCiPU+NKK9VYTFswICPpM9AQoj9lyYSwIkQAIkQAIkQAIkQAIkQAIkQAIkkAAEMJmLZAQOMzlkhJEEGAK7SAIkQAIkQAIRETCCuRFqsI9FAVahJKIGkvBkCiNJeFE5JBJIdAKIM4LUskUL/cl/SIAESIAESIAESIAESIAESMCOAEQRXzdZXCFrR4p5JEACJEACbiIACzlYQSIZl45uGn8oY6UwEgolliEBEogbgY7pnQUxRpAYfD1u2NkQCZAACZAACZAACZAACSQkAaswQguRhLyE7DQJkAAJkEAMCBgLEqu7LS4c8AZNYcSbB/dIgASymQCsRaZMO20KT2Ekmy8GmycBEiABEiABEiABEiABBxLAxM7iFSs9rrM40ePAi8QukQAJkAAJOIqAWUhA11r/XRYKI/+x4BYJkIBDCMBipHpamkN6w26QAAmQAAmQAAmQAAmQAAk4iYBxD8LJHSddFfaFBEiABEjAyQRM/C0EbjdxSJzc33j0jcJIPCizDRIgARIgARIgARIgARIgARIgARIggYgJmBWvqIjCSMQ4WQEJkAAJkIBLCBjXWhRF/rvgFEb+Y8EtEiABEiABEiABEiABEiABEiABEiABhxPwdaXl8O6yeyRAAiRAAiTgOAJ0QylCYcRxtyU7RAIkgDgjacqVFt1p8V4gARIgARIgARIgARIgARIAAYohvA9IgARIgARIIDoEjPWl2y0vKYxE535iLSRAAlEi0DG9syDGCBKDr0cJKqshARIgARIgARIgARIggQQnYOKK0Dd6gl9Idp8ESIAESCDbCRhhBB3ZsWZBtvcnuzpAYSS7yLNdEiABWwKwFpky7SV9jMKILSJmkgAJkAAJkAAJkAAJkICrCBi/6EtWfC8zp46WuipwLBMJkAAJkAAJkEDWCUAc6druwaxXkARnUhhJgovIIZBAshGAxchK9X/LFi2SbWgcDwmQAAmQAAmQAAmQAAmQQBYJ0B96FsHxNBIgARIgARIgAT8CFEb8kDCDBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABJKXgHGp5dZYIxRGkvfe5shIgARIgARIgARIgARIgARIgARIIKEJYNIGLrS6KHcfdKGV0JeSnScBEiABEnAYAbfH76Iw4rAbkt0hARIQQZyRtLQ0qa7+ZyIBEiABEiABEiABEiABEnAvAbdP2rj3ynPkJEACJEACsSaAxQcmuTHeCIURc/X5SQIk4AgCDL7uiMvATpAACZAACZAACZAACZCAIwiYwOu0GHHE5WAnSIAESIAESCBpCFAYSZpLyYGQQHIQoDCSHNeRoyABEiABEiABEiABEiABEiABEiABEiABEkgMAliI4DaXlRRGEuPeZC9JwFUEvlu5Ulaq/1u2aOGqcXOwJEACJEACJEACJEACJEACJEACJEACJEACJBAvAiWq1NdNuTEAO4WReN1lbIcESIAESIAESIAESIAESIAESIAESCBkAli92rxlhi6/Y82CkM9jQRIgARIgARIggdAImFheFEZC48VSJEACJEACJEACJEACJEACJEACJEACJBBTAggKO3rSdN0GhZGYomblJEACJEACLiWARQiLV6xUbrTS6ErLpfcAh00CJOAgAnClhVQ9Lc1BvWJXSIAESIAESIAESIAESIAE4knATNagza7tHoxn02yLBEiABEiABEggyQnQlVaSX2AOjwQSjQBEkY7pnXW3x48dQ3Ek0S4g+0sCJEACJEACJEACJEACJEACJEACJEACJJAQBLAIwSQGXzck+EkCJEAC2UBg6rRpMmXaS7plCiPZcAHYJAmQAAmQAAmQAAmQAAk4iICZsHHbZI2DLgG7QgIkQAIkkMQETIyROjWqyaypo5N4pP5Do8WIPxPmkAAJZDMBWIxUT6smLVu0yOaesHkSIAESIAESIAESIAESIIHsIsAYI9lFnu2SQPYROHDggKxb96OUKl1KSpcqlX0dibDlo8eOybZt2yTnWTklJaVshLXxdBKIHQEKI7Fjy5pJgARIgARIgARIgARIgARIgARIgARIIGwCFEbCRsYTHEDgyJEjcviPPyRf3rySP39+B/QosbrQo1dv2bV7t5xxxhkybPBgKVy4UGIN4N/ebtmyVZ4cNEj3f/iQIQk5BnbaHQSMZSZG6zbrTFqMuOMe5yhJgARIgARIgARIgARIgARIgARIIKEIuHmyJqEuFDvrRWD+gk/l9TfflOvrXyd33Xmn1zHuZE4gvUtXOXz4sC44oF9fKVWyZOYnObAEhREHXhR2iQR8CFAY8QHCXRIggewngADsSNXT0rK/M+wBCZAACZAACZAACZAACZAACZAACYRIgMJIiKACFPvp558FcwJlSpWWWrVqBijl/GwKI86/RuzhaQJuXoRAYYTfAhIgAUcRwAsQYowgfbnwM0f1jZ0hARIgARIgARIgARIgARKILwEzYeM29x7xpczWokmAwkg0aSZuXRRGEvfaua3njDHitivO8ZIACTiWwNRp02TKtJd0/8aPHUOrEcdeKXaMBEiABEiABEiABEiABGJLgDFGYsuXtceGwJy5c+Xd2XPoSis2eBOmVgojCXOpXN9RCiOuvwUIgARIwEkEYDFSPa2atGzRwkndYl9IgARIgARIgARIgARIgATiSIDCSBxhs6ksE1j4+eeec//66y9Z+MUXsnfvPqlQvrzUuOJyzzGzUaTI+VKlciWzG9XPPXv3ytq1awWT8keOHpEypctI+fLlJDUlxbad337/XdavX6+P1alTR3LnymVbbunSZXL02FFJKZsiKSllPWX27dsnq1av1kHmr7j8csH4165bJz/+uF7+Pv63bjetWjU577zzPOdYNw4ePKjdZlnzzHZmnDZv3iKbt2w2xT2fZcuUldTUFL2PIO6//vqrHDp0SO9ffdVVcuaZZ+pt6z/hcrOe+6Pit2HDRtm+Y4eULlVSKlSoIBddeKFs3bqNwdetoLhNAg4kQFdaDrwo7BIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDzCTzc9lE5depUyB29/LLLpF3bR0IuH2rBL7/6Sgd9P3bsb79TrqtXT+64vbnkzJnT69jff/8tg4YMlV+3b5errrxSWjz4gNdx7CxavFh7dYC40b9Pby2CmEJrflgrY8aNk7Jly0h6hw4yeOgw2b1njzmsPwsUKCCPPdpWLrn4Yq987GzYuFGGjRjpl48MCC2PPtLG9hgyZ8+ZI+/Nmet3vPEtt0jjRrfIC1OmyLLlK+Sff/7xlHn26Yl+DLLCDRWi3plvvy0ffTzPU7/ZaHDD9VKrRk0KIwYIP0nAoQQojDj0wrBbJEACJEACJEACJEACJEACJEACJEACJEACziaAyXc1S+7p5IpvvtFWEFWrVJY6tWp78s3GeYXOk3KXXGJ2o/L58bx58tbMWXL22WfL7c2aSqWKlSRvvryyadNmeWvGDC18pF16qXRo/5hfezt++00GDh4sEFQgRECQMAkiR/8BTyrrj+PSrUuGX7+NMFK8WDEpWLCgtpKposadS1me7FAWFO9/8KFuG4LM0EED5dxzzzVV68/Dhw8rC5d1XnmwOPlKiTGZCSMQc7b/ut1z7uKlSwT9gTACDm+qcV9QvLgUPf98yXHWWbpcm9atJEeOHJ5zIuH2wYcfyqx33pUzzjhD6l19tVx2WXVtGbNbWal8tnCh5MmTV5avWCGFCxeS4UOGeNrkBgk4jQCsM5Hq1khT/1dzWvdi2h8KIzHFy8pJgARIgARIgARIgARIgARIgARIgASyQgCB1xevWKlP7druwaxUwXNIIO4E3n1vtsx5//24xRiBm6gevXprC4b+/fpqIcA6aAgeffr30+690jt2FAg2vumrRYtk6kvTJV++fDKgbx8pVKiQtoIZOnyE/PzLL9K0ya1y8003+Z6mhQhYjCB16ZyuBJmKXmVOnDihLUJ+2bRJbmxwgxJtmnkdt9uBa7KXX30tU2HE99zX33hD5n/6mVxZt47s3r1H7rn7LuXaqpRvMc9+JNxgafN4j54CYef+e++Retdc46nXbDwz+Tn5WolkFEYMEX46lQBjjDj1yrBfJEACriPw3cqVghgjSF8u/Mx14+eASYAE4k8Aky5mZQy2m7fM0J2YOXW0zrfzb27y6qgVNbNUOSS7F8oSVerrYxntHhAzoWPyTP1sc7pmtGPNAv1Jtt+L9b4y9wvvoWpqcpTfT3xJ+F0J//fWfH/s7iFrni9bK2+733iTZ+pHed/vrLV+u9/9SNsMVD/6Yp5t2E7UZJ4J6L9hlahjYb/dQyDewsjMWW/Lhx9/LI1uvlma3NrYFrQRGypXqigZ6em2ZSY//4K2cIA1y+Nduyhrjw/kHSXyIB4KBBVYRvgmYzECN1sjhw31Paz3EYNjxKjRkjdvXpk4bqxtGWum6WtmFiPWc7BthJG8efLIgH79tCDhW8a6Hwk3WIKAFyxlBj45wJbNqtVrZNyECRRGrNC57UgC5n3G+jeIIzsag07RYiQGUFklCZBA1glMnTZN+y9FDePHjlFB2NOyXhnPJAESIIEgBDCZNEqZDS9Rn2ZSy26CyW5SxuRZXx7tXih9J8jQHZNnN0Fm8kz9KG8mgkwe2zwtRBmO5tqRLQU9flfCFwzMb06y//aZ3wm7cVrzfO8h62+w3W+8yTP1W3+HTJ61fjvekbZprd+uLtMm+paIyTz70HczvkQcB/vsLgLxFkZgsQGBonOnTgGDusOl1kDlzimYgHHk6FF58qmBgoDltWvVlBVff6PjicCCBHFC7JIRRhBjpG+vXnZFVND2Y/JYh4762Pgxo7WbK9uC/2ZGKoyEGsMlEm7GjRY4Pdyqle1wtmzZyhgjtmSYSQLOIUBhxDnXgj0hARJQBGAxMnXaS0oQqSYtW7QgExIgARKIOgFMIplVtHaT65iEsfpXRXmTzHnh5pnzUI85N1ieKYPyply4eeY8tnn6+hke4XK0uwamLrIlW3MvhHtfmfN4D2X/PWR3DWJ9PaPZpl1fjWBjFdJ9n23oAxMJkEBsCMRbGHm8Rw/tJis1NUVy58ptOyi4foI7K6SnJ4yXPLnty23evEUGDxsmJ0+elDPPPFO7x6pQvrxtncgMRRhBOQgjEEj69e4lZcqUQVbAFKkwcnPDhtL0tiYB6zcHIuH28iuvysIvvgjqHozCiCHNTxJwLgEKI869NuwZCZAACZAACZBAFAlg8ggWIkjG/RUmipCMmyu9w39IgARIgARIIMEJGMEEIhy2jZtIY8mS4MNj90nA0QTiLYw82r6DQPiAWycEPc8sZaR3CmgBAvGib//+WmhBAPNByk1UIGsRtBOuMIIA7sGEFtQZqTCC4Ou3Nm6EqoKmSLgZt2PB4qZQGAmKnwcdRAB/E8OLAhZUuO3vYgojDroR2RUSIAESIAESIIHYEcAL3+hJp+NZJLprkdhRYs0kQAIkQALJRsAqjCTa889uUUOyXR+OJ/kIxFsY6TfgSfl1+3btygourSJJL06dKouXLNViCAKLB4svgnZCEUb++ecfgQhx/PhxGTJooF9weN/+xksYiYTbWzNnysfzPpHr618nd915p+8Q9D6FEVsszHQgATtLUwd2MyZdojASE6yslARIgARIgARIwCkEMKli3NbQQsQpV4X9IAESIAESiCcBPAsXr1jpWQmK56HVbWQ8+xJOW9ZFDYwxEg45ls1OAvEWRiY9O1m++fZbefihh6R27VpZHvoSJYi8oISRUiVLahdaiEmyd+8+ub1ZU+UyqoFtvUYYgXssuMmyS/v375eu3Z/QAcqfmThBcubMaVfMkxcvYSQSbvMXfCqvv/mmVKtaVTp2aO/pu3Vj02YV12XwEAZft0LhtiMJ4FlLixFHXhp2igRIwG0EEGOkY3pnHXQdwdeZSIAESCASAmZCJdFWyEYyZp5LAiRAAiRAAsEImGcjyjj9+Wgma9BX4wYT20wk4GQC8RZGvlq0SKa+NF0qV6ooGenptmhgvbB0+TJp0vhWyZ3b393Wzl27dOD1Eyq2SO+ePaR0qVKyYeNGGTFqtBY0unfrKhddeKFf3UYYQZ3jx4yRs846y6/MvE/my5szZkjp0qWlf5/efsd9M+IljETCzYgeiNUyeOBTUrBgQd9hiKm/cOFCMlyJTEwkQALOI0CLEeddE/aIBFxNYOq0aTJFBV9HgjBSPS3N1Tw4eBIggawTsLoOsQagzXqNPJMESIAESIAEEp+AEUb4bEz8a8kROJPA1998I89Mfi6om6Vo9hyuqgYMHCTbtm2TW266SRo3ukVy5MjhaWLX7t0ydPgIOXjwoLRp1Upq1arpOYaNEydOyKChw2Tr1q1+1iHvzZ4js+fO1VYPA/r2lbx583qda4QRWIHUrV1b7rn7Li9xZO26dTLpmWflyNGj0qZ1a6lVs4bX+XY78RJGIuU2bMRILR7B3RjGhpgsJoH5mLHjBJ8URgwVfpKA8whQGHHeNWGPSMDVBIww8lCLB6VlixauZsHBkwAJRE7ArDTlKtPIWbIGEiABEiCB5CFgdTOZPKPiSEjAGQSOqUDo6RldtIhwfpEifp1C8PHbmtzqlx9JBixCxk2cqMWPYkWLyiUXXyz5zs4nP67foAUTiAAQTezafUO5hPpEuYYqd8kl8njXLtpCxPTl1KlTAgHgp59/lsuqV5fHHm1rDulPI4wgtsnl6vhnn38hFSuUl9y5csv2HTtk408/CdpGf1D3mWee6XU+xJxXXnvdK+/QoUNaUIDQcEHx4l7HHmrZQjA+pEWLF8sXX37lOb57zx49/kKFCkmh887z5GPj4osuktubN/PKw04k3MAE4gcC1ufPn1/zK3TeubJ79x7ZrESmO5s3l+defJHCiB91ZjiNgPmbmcHXnXZl2B8SIAESIAESIAESCJMAJnuQTFyRME9ncRIgARIgARJwFQFMiCB1bfeg48aNZ/qof/vHRQ6OuzzsUBACy1eskNlz5uoJ/pPKPZU1XX7ZZdKu7SPWrKhs//HHH/Lyq6/JqtWr5W8lzphUoEABueF/9eWmhg1Nlufz+1WrZPzEpwUuoQb07ydFChf2HDMbe/bulQFPPiV/HTki991zt1xbr5455Bd8/Z1335PPv/xSELgdCa616tSqJfeq8+xii8BdF4SXUBPimCCeCdLsOXPkPcU4lBQsFkhWuJk2t/36qzz3/Auy47ffdNYZZ5yhY7Q8cP99kuPMHPLkoEEURgwsfjqWAIOvO/bSsGMkQAIkQAIkQAIkEB4B82KX0e4BR07yhDcaliYBEiABEiCB2BEwbrXQghODmzu9f7G7MqyZBLJOAFYev+/cKfv27ZfzlAUDLCzsYn9kvYX/zrRajPTtdTr4OixEYC1y/PhxLRLYCSL/1eCcrUi4wcoF4ggC18N6hIkEEokAFiEsXrFSd9mJiyRiyZKutGJJl3WTAAmQAAmQAAnElQBe6pq3zNBtUhiJK3o2RgIkQAIkkIAEzHMTz8y6NdIcZ23p5smaBLyd2GUXErATRlyIgUMmARJIUAIURhL0wrHbJJCsBL5buVI6pnfWQdcRfJ2JBEiABMIlYCZR3LbaJVxOLE8CJEACJEACIIDnJt1P8l4ggewjAJdQx4+fCLkD5cqVk6pVKodcPpYFKYzEki7rJgESiDUBCiOxJsz6SYAEwiJggq/jJAgj1dPSwjqfhUmABEiABEiABEiABEiABLJGgCJJ1rjxLBKIhECHTuk6fkeodTRs0ECaN2saavGYlqMwElO8rJwE4kLAuKJG8HW3xfOiMBKXW4yNkAAJhErAKox8ufCzUE9jORIgARIQvNAhdVHBY7nylTcECZAACZAACYROAIKIcUXppFgjTu1X6GRZkgQyJ7BkyVI5cTJ0i5FSJUtJampK5hXHoQSFkThAZhMkEGMCRhhxoytqCiMxvrlYPQmQAAmQAAmQQHwImBc6N650iQ9htkICJEACJJCsBKxBzmdOHe2oBQYlqtTX2N04YZOs9xvHlTwEjhw9Krt27pJcuXPJBcWLJ8/AOBIScBEBLEIwyW0LDCmMmCvPTxIgARIgARIggYQmQIuRhL587DwJkAAJkEA2E4A44sQA7OgXEmOHZfMNwuZJgARIgARIIMkIUBhJsgvK4ZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAMALGWsRtliKGCYURQ4KfJEACjiDw3cqVMnXa6VVhCL7ORAIkQAIkQAIkQAIkQAIkEB8CTrUawejRN1qNxOc+YCskQAIkQALuIOB2d9QURtxxn3OUJJAwBDqmdxaII0gQRqqnpSVM39lREiCB7CNg3GghvggnTbLvOrBlEiABEiCBxCUA4WH0pOl6AE4KwI4OMc5I4t5X7DkJkAAJkIBzCRhhxGnxxeJFjMJIvEizHRIggZAITJ02TaZYLEYojISEjYVIwPUEzAsdA6+7/lYgABIgARIggSwScLIwYvrGAOxZvLg8jQRIgARIgAQCEIA7LbrSCgCH2SRAAiQQbwKwGKEgEm/qbI8EEpsAXuYWrzhtbRZNi5F9+/bJ8y9OCQinbZuHpWDBggGPu/3AgQMHZN26H6VU6VJSulSpmOHYtHmzvDVjpm39Z5xxhjzetYvtsWhmHj12TLZt2yZ58+aVUiVL6qp37tolhw4dkguKF5f8+fNHsznWRQIkECEBfGd/+OEHyZcvn5QvV07OPPPMCGvMvtN//uUXOXXqlKSULSs5c+bMvo7EsGU3T9rEECurJgESIAEScCkBt8cWMZedFiOGBD9JgARIgARIgARIwIfA7zt3Sq8+fSVP7txyzjnn+BwVPeF+3nnn+eUj49ixv2X7ju2yZ88eOXLkiJRUk+WlS5WW3Llz2Zb3zTxx4oTs279fzsqRQwoVKuR7OKb70Wq7R6/esmv3boE4MWzwYClcODbj2LBxoyc+lRXMfiXMHD9+XF58brI1OybbP/38swwZNlwqlC8v3bpk6DamKCvIRYuXSJvWraVWzRohtYt7BULPLiWqFC5cRMooUYniW0joErLQyZMnZa8SYJFynnWWBPo9ScjBObzTL01/Wb746ivdy9YtW0qdOrUd3uPA3XusQ0eB0DNsyGApUrhw4IJJcoSxRpLkQnIYJEACJEAC2UbAeFxwuyUmhZFsuwXZMAmQAAmQAAmQgNMJGGGkdq2a8nCrViF1F6LC/AUL5KN5n8jhw4e9zsGKZFgPNG50i1xx+eVex3x3tirrgwFPDVQT46WlX5/evodjuh+tttO7dPUwGNCvr8eSIqadt1T+lBJjNm/ekhDCyMGDB2XSs5MFK7//+ecfzyhyKGHsunrXyG233Sa5c4UmqnlO5objCXz9zTfyzOTndD9huTB21EjBNWeKPYFnn3teVnz9tW7o3rvvluuurRf7RmPUQrSEkVhZX0Zz2HSpFU2arIsESIAESMCNBPC8b97y9EIuCiOHD/33l5cb7waOmQRIwFEE4EZr5b/B11u2aOGovrEzJEACziVgVrxEO8ZIVoSR6S+/Ip9/+aWGVaVyJUlNSZVcuXIqK4AtAqsCuFaCBUWz25pIwxtvDAg1WuJEwAaCHIhW2xgvftfLKEuZWkpcindKFGHkt99/l7HjxsuevXu1xUCF8uWkeLFiAldcK77+Rlu9VKtaVTq0f0zfO/HmyPZiR+CFKVNkydJlnga6ZnSWihUqePa5ETsC+L4tWrRYu9K66qr/05aBsWsttjVHUxgxEyVOC75uCBphBM/7Lu0edK1PdMODnyRAAiRAAiSQFQJmMUQ03VBnpR/ZfQ4tRrL7CrB9EiABLwId0zvrSTRkjh87hrFGvOhwhwRIIBABpwgjP6xdJ6PHjtWT1x3VJPalajLbN322cKG8+vobevV/7149tQWJbxnsR0ucsKs7s7zsbDuzvoVzPFGEkUFDhsovmzZJuUsukY4d2kvePHk8w4Q4N3T4CG15c/edd8r/6l/nOcaNxCYAN1qdu3aTv/76S/6vbl35ctEiuV5d37vUdWYigXAIRFMYGTXpJd30rKmjw+lCXMvSlVZccbMxEiABEiCBJCFAMcT/QlIY8WfCHBIggWwkMFX5Y58y7fQfZBRGsvFCsGkSSDAC5iUP3Y7mqpdwLUZmz5kr782ZI2mXXqpX9wfC+P2qVdoyAG6yAiXEzRg2YmS2uNLKzrYD8chKfiIII1u3bpUBAwdpoWzkiOGSTwVv903ffvedPP3Ms1LjiiukbZuHfQ9zP0EJrN+wQYaPHCUXpqbKPXffJQMHD9HxIRAngokEwiEQLWEknDadUhYLI2A9Es1nv1PGxn6QAAmQAAmQQLQI0H2WPUkKI/ZcmEsCJJCNBOB2pXpaWjb2gE2TAAmQwGkC4Qojxmd9VlZ9QyzZr4KtI504cVKWr1ih400gGPMtNzU83SHLvzlz5pQr1SpzuwQXVitXfq9dM8FtV9Hzz5eqVavIxRddZFdcotE2YmTg99suFSlyvsCtWCgJ8TVgebNly2ZlNfOrdkNW4oIL5P+uvFIKFCgQShWeMokgjBjXa9dcdZU8cP99nr5bN8Bk26+/apHMmm/dBv8fflirmG2V/QcOSulSJaVMmbJStUplW/dbEL927NghlStXlj8O/yHLVizX5WrXrCVly5bRLt++/uZbQblSJUvIjQ0ayFkqOLg1QbCBa7iqVaqqQPGF1DXbKj+u/1FZv2yWYkWLysUXX6yspqpYT/HbRrD5pcuWyTZ1rVHXueeeKyVKlJC6desEdW20avUa2bdvr1RQbqfQFmJ1YPx/qfpwv1xWPU2Nv4xfe7DS+PLfgNt169RR91fguC1g/rP6LhVTbs1i4d7qzRkzZN4n8+W2WxvLzTfdpK1HEJcoHvF4wv2N8AUZyfcUruNWrVotW7Zu0de7QvnyUr5cecmdO5e+NrhGtWvX9rr+x/7+W5YsWSKI03S1+q7YJVhdQWgsrQTniy680K/Iws8/98tDRrDfUhw/cOCArPz+e2x6JdyradWq6bw//vhD3/cHDuyXU6dOaWvBQoUKeZXHDtx3rV27Vn9Xjhw9or7TZaS8cp2XmpLiV9Y3Ixg3twojxloUrGYqC5e6SiBhIgESIAESIAESsCdgnptujytipUNhxEqD2yRAAiRAAiRAAglJACtgTIrmxEi4wshrr78uCz5bqIWIIYMGmi6F9DlqzFhZu25dSGVR6Oyzz5bxY7xdnfz5558y+fnntbBgVxECvrdp3covuHM02jZWJoHaffSRNnaHvPLQf8RcwKS3b8IEdpfO6QHFHd/y2I+nMIJJWaz+L1/uEuncqZPuDkSPxUuXSquWLbS1h10f+/TrLzt++00eebi11KxRw65IpnkQtl6cOk3AzzdVqlhRHm71kJxzzjleh15+5VVZ+MUX0qRxI3n/w490HBMUwOT0oCefVC7hxul+mZPshBvjAqyTcv+1Y8dvMmPWLFPc83mlEh8g+PiKKiiwbPkKeWn6dMGkt29Cf1u1bBlQUBs/YaJ8v3q1tHzwAX2/fPPtt15VIIB50ya3akHH64DaGTFqtBJw1uvrAnEkUIJbPIh0kVybQHUjv0ev3rJr927p26uXFqNenDpVFi9ZqoWSW26+OdipWT6W1d8Ia4ORfE8h+E59abr87XPNL1EiGr7f6Rld5OixYwKrmSKFC3uahWjctfsTWsR49umJnnzrxqy335EPPvpIGtxwvdzRvLn1kN5u/UhbgaDjm/Lnzy/jRo/yzfbsG8seT8a/G3B9171bV/lk/gJ557135dix/+5j/Ab4isEQ5F5/802vcqbO6+rVkztub67HZ/Ksn1nlZq0jlG08SxPBlZYZi1n9ao0vhrxovgeYtvhJAiRAAiRAAolIwNf9pO9+Io4pmn2mMBJNmqyLBEiABEiABEggWwiY1S/WyZFodCRcYcS4PELbrdWkbp06tUPuxroff5RDBw95ym9Xq/nf//BDvRK/WZPbPPlm46ycZ8nll11mdvWEHyZ8MYkHy5CrVTDhS9TEHVbhw5Jj0eIlOk5FQ7Xyv3mzpp7zsBFp26gDK93Xqklka4LQ89XixQJBJjNhBKvE+w14UrAqGq6FGt1ys7Yc+P33nbJmzWqZ/+lnenK/r4rLgpXaoaR4CiOh9MeuTPtO6QKriR7dHw9L9DF1mXsOwtHNDW/U1huY6MW9O++TebJGWVHAmmPggAFe1hFGGMHk8/333afLIA/3D1a611Ur9q+td42yXPpaYNkAF19j1eQxBAeTjDACQQer6q//X30pXry4vufWrPlB5s2fL7iudhZUuDcgvqA+3JNYNV/0/KLqXlynraUgSED8G9C3j3Y7Z9o0n0YYweQ0rAjQNiw7YDmzSN1zEBhgLdWrxxN+q/FhXfLM5Of0fYbjdgmCRc/efQQsRw4baivs2J0Xah6+3337D5CCBQvKqOHDdF9XfP21wOosNTVFevfoEWpVIZeDKJDV3wjTSCTfU1ipDBk2XFcFwa7+dddKUWXtA2uLr9XYDx46rESu1Vo0iYUwsmzZcjMM/Xng4AF5a+YsfY2DCSO+v22bNm+STxZ8qmMC3XXHHTJwyBAppCz7SpS4QH3Hcuu6b1ZWflZXiR/Pm6fbwj19u/r9rVSxkuTNl1c2Keuqt9T369ft2wO6YIyEm9eAQ9gxQgOKOjX4erBhmP5H+10gWJs8RgIkQAIkQAJOJVCiSn3dNVqIBL5CFEYCs+EREiABEiABEiCBBCHgFGEEuBAXBNYTSBAo4EooVU30l1TugTAJGmrCxDEsOTC51q9P75BOQ2D3b79bKe3btdMr/60nYYJ8zLhxkldNcE8cN9Z6yG87K237VaIy4Lrm5VdfC0kYMWXhVicjvZPXBDzqfvuddwXjg/UBYm2EkpwujGDV/KPtO+ihwMIILs/CSZikhsXJzl279Gp7TDb7JuPerXnT26ThjTd6Dhth5MYbbpDbmzfT+ZiUHqcsMRD8HSKIsfIwlg2YwLeKUkYYKV+unG7fKpqgQrgfmvD0JC3IDFcWAFZXaHv37tPWQRA0Lqte3dMvbGACHwHnMSEcKOC8EUZgadCtS4bf/TLp2ckCKxI7UQ7cuj3RQ4so/ZXwUrpUKa/2sTNz1tvy4ccfa9HGV0j0K5yFjA+U6DlL3dMIut6yxYO6BghknZTFBFwxQYyxss5CE7anRPobEcn3dMLEp2Wlsm6qVbOGsmJq5efi7VNlbfeqsrpDioUw4gsEImzvvv0yFUZ8zzNiJNx15cmTWwmI9YK6gIU4je8Q7uv+/fr6fc9hadKnfz/BdyK9Y0ft/s7aZiTcrPWEsg1hIZEsRnzHZN4FkG+EHayMrVsjjVYkvrC4TwIkQAIkkHQEfJ952B89abpQGAl8qSmMBGbDIyRAAiRAAiRAAglCAJM5JkXThUa4FiPoAya7X3v9DVmk/OFjgtOaII4ghhJW4mc26RktccK0j76069BRu0waMVStcLbxf2/KRqttM4lqNzlt2jKfj6sV8pgYxAp+WIz4JvT/6NGjki9fPt9DAfedLozs3rNHnujZS/d/6OBBcn6RIgHHYncArqiee+EF7bLHuO/yLYeYBt179NSC2ISxYzyT0UYYgSUPrg8SYoQ8OWiQQGx44vFunqogUmz86Se/2BdGGIE7K8SAsUtGKAwkcNidg7y577+v3BPNlqtUvS1U/b7JCCOB6oU7tnETJqj4KCV1v33Pf1fVPUe1ARdG995zt9fhEydOaLdNsGSAYBXudfGqLMCOYdeu7SNell+G1wP33SvXXH11gLNjkx3Kb0RWv6ew5OnyeHctDkD0Qewk3wQXWu07dtJlEkEYQf/bt3s0qCiCMkZka6TcozVR8WTskvmtrFypohKG0z1FIuXmqchFG5gEWqLeCWapmCNIRiyxWpEgD6lLuwe1YGIVhOzyTF2mHOoywd5Ne9Y8U79dnl39dnlsU4RsRXgPVRPzvQv0neV3hd8V3Bv8rlTTv5kQQZDM4gB8f6L5t7GuPMn+oTCSZBeUwyEBEiABEiABEogegawII6Z1+OFH7IcNGzYK3OYgkPPx48f1Yaycb9vmYYF1RKAULXHCWn9Gt8f1KvnMgjtHq20z2ZeZMIKA2R2USym4Pnpm4oSAfvatYwll2+nCCIQgTDQjZUUYgRUN3K1ZrT7suJjAzMOVyx+41UIywoh1Yh6xTmCBYmInmLpMDJp+vXt5BTQ3k/uIMXJp1aqmuNfnWzNnysfzPpH619aTe+72FiC8CvrsfK7in0xXrr3gLg599E1GGEH8Frs4IWYssH6ZOH6c7+kqcPs+6a5EqdzKBdmokSP0pylkXFohcD1W8Ec7mcluuAAbp+IEoY8mfaSsVGYoaxVYmnXqcNqayByLx2ew34hIvqfGHRQEEQgjgZK5VxNBGLGL82Q3LljqwWLPLu6IKQ+XWnDJ5csnUm6mfjd/Gjci1uDsvnmYOGr+r1hiyplVtmBnJphMHibgzGSsnfBi6reu0DV5pn626T15R7bf64ldc1+Z+4X30GlhhN9P/g7ht5i/t+Jl+eH7O2GeK3hGGcEd3JiCE6AwEpwPj5IACZAACZAACSQAAbwImhTNVTGRCCOmP+YTosi6H9fLrLff1v7k4VYLq9ExMWuXsipOoB3EFPlduYk5qGKW/GEJyA2hBsedJowYS4XMgiDbcQqW53RhBJYJj7R7TA9h0FNPSnEVIyOchDgZiJcRyGrC1AWxA0IBglsbd1vxEkYgikAcqV6tmrR/rJ3pkucT7oxWrVqt4ksc1KLdiRMn9bHde3ZrC5asCiNGdML3a5IS2+zSROXm6zvl7svX4mXk6DE67k4H1d801e9oJwThnjb9Ze1qD6KSNSHWBKxGcubMqd2Z5cl9OmaFtUyk21n9jYjke4rg4ZOff0FSUspKn549Aw4hkYQRuEpEbKDMkrGySU1NUb/39tcTloa/bNqkq3p6wngx1z1Sbpn1zfe4mVRBvhEDfMsk4j7GZd4NsG3chZmJI7s8Y62A8ZrJapNnXZlsl2csRkz9qMM3j22efm8j2+Cr/XkP2VuMmO8dv5+nXXEaHtbfJt/fHP4OvQQEHsHAMENesvwOYSxM4ROgMBI+M55BAiRAAiRAAiTgMAJ2K4ii0cVoCiOmP2YlO/YDrXbHsawII4gRMWXaSzoQOurA5Fpei+spBMiGn3unCSMm/onbhBFcI8SUgMumx7t2EcTqCCchkPaP69fLvcoS4zplkREoIcg3rJZgpWTis8RLGJn3yXwdvB1jwxhNwuQ8JsoRhwT3JKwnsALfxDWB2zTE3IilMGLuO7huM0HYTdB1uLpDXBT0K9rJWLtkVu9jj7b1i7+S2TmZHY/kN8Lwysr31FgAJZMw4mtZFYg94ghB+IDwmSuAEG49FzGWTDyeSLlZ6w1lG5P1ZmV2MgkjoYydZUiABEiABEiABNxHgMKI+645R0wCJEACJEACSUcgkYQRwEccB6y+vkkFw26mgmLbpXCFEayQ79u/v8BPf5PGjaTeNdd4JtdM/cHc5Jgy+Ay3beu51u1QXWkheHjP3n20SyE7t0fWOsPZdrrFCMbS/8mntJu1NioYda1aNcMZnkx7abp8uWiR3N6sqdzYoEHAcxFjBLFGeiu3XampKbpcvIQRE2S8thobAm6b9JoKsr1ABdtG3J377r1HxzWBKzWTzIRwLIURCDIIio1YL0YsNO7Jbm10izRu1Mh0J2qfCLTdKSNDW25dULy4X9B4NHRQBes+fPiwchFWW4mnLaPWdqS/EZF8TyHIjJswUQe6R8D7QCmRLEZCFUb6DXhSWwn27dVLypYtE2jotvmRcrOtNJNMrKJFMjE0MinOwyRAAiRAAiRAAiSQsAQojCTspWPH3Ubgx/UblJ/69QGHXa5ceX2sQvnwVpsGrJAHSIAESIAEJCsWI5j4zJ3b3j2WQYqg0AgO3bTJrXLzTTeZbK/PcMWJr9QE+VQ1Ue67Mt9aqVOFkZMnT0rbx9rrYPXjRo8SrEiPRkoEYWTGrFny0cfzpGaNGvLIw61thw0+cI92WfXqXhYMJh7FNVddJQ/cf1/Acw3biePG6iDsKBhNYSSYyykj3tzcsKE0va2Jp4/dnuih43x065JhG2snHsIIOvPxvHnK1dcsub7+dXJ78+aCfsGCZ9jgQbYBwj0DyOIGruPESc8ILFIQa8MqBpkq4R4NbtLwPRij4p9Ey2ol0t+ISL6niLEEETCYazOM31hX+MYYMfFNUAbiqTUuC/KQTJDzBjdcL3eoa5lZghu33n37ac743Qk1ffvdd/L0M8/6xeIJdP6kZyfLN99+Kw8/9JDUrl0rUDHb/Ei52VbKTBIgARIgARIgARIgAU2AwghvBBJIEAKz58yR9+bMDam35ZU40viWRmqigSJJSMBYiARIgAQCEAhHGDl16pS8NWOGmsD+Xjp17CAlLrjAttYjykXQEyroMyZfgwWtDlcYMSvzAwWMPqZcuXRM7yyIa2FWx9t2UGWG23agekK1GMH5JsD3/cp6ANYuvgmuaN58a4bceGMDOb9IEd/DtvuJIIwY102Y/A40GW9EggrlywuEBJNgdYQxFi5USAY+OcA2aD1cVU1QsTRSU1Kkd88e5tSoCiOBBD5YL8ESCMHGreIJLDUwAQ53WnBhBVdWvumdd9+TuR98EFNXWmgT38Ou3Z/QLo7uu+du7d6relqatG/3qG+XorI/Vbm6+2rxYgkmZuE3olPnDIEQ0b1bVz0BH43Go/EbkdXvKb6/4PyninmEoPIILu+b8F2ABQ+SrzCCvPQuXbUlTSAmECsgWjhNGDGCVOVKFSUjPR1D8Uv4Li9dvkxZ+93qJaxHg5tfY8wgARIgARIgARIgARLQBCiM8EYggQQhYBVGIHzYpfXKqsSaYuUGwtoGt0mABEjACQSM64+6NdI8AVaj0a9whBFMsI4aO062bt0q+VRcD7gNwkRYjhw5PF3BpCAmRhHwuXDhQkqg6Ge78hknHFLudGDhUbpUKenX5/Rkoacimw3jcgUr0BHIu1jRop5SmGB9/Y03ZfHSJQKLlsyEkXDb9jTksxGOMLJp02YZOGSIXr2NSXQENjYJ/Z8ybZosXbZcrrrySmnx4APmUNDPRBBGMICx48fL6jU/6BgEmDjFvWESRKqJkybp62bnbgtxOhCgGRPtd991p5c4gng2qFsHIveJYRJNi5GCBQtKp/btvdwEQRR5SQUYR9/gMuqpAf29rCOMOzk7d1Hbtm2TCWrM6HcsXWkZxi9MmSJLli7T1jSIa9K5UyepUrmSORy1TwhCnbt205P7VqHIrgETAD7USX67OnzzovEbEcn39L3Zc2T23LlSpHBhaa++4/htMwli0PPqXl61Zo2OOWMnjBjhA78N6Z06ev12wgLvueefF9QTKrN4WYzgug8YOEhwX9+iLAQbKzdt1ucCBKGhw0doAdHuOx4pN8M4lE/GGAmFEsuQAAmQAAmQAAkkCwEKI8lyJTmOpCdgFUa6deliaw1i3G1ZLUtefG5y0rPhAEmABEjAKTFGMBk86Zln5Ie16/RFgUut1JRULVLsP7BfNm78SU/cYVIMgaitk/92V3HYiJEqFskWKV26tN/hfPny6pXX5gDEgyHDhsumzZt1EGtYF6Qof/ZYrQ8h5jK1Ch6ued55b7aegM+ZM6f0fKJ7wGDA4bSNPmDS75XXXjfd0Z8QWDDph6DamBy3podatvASb3DMxHeA9QREpZIlS8quXbvlxx9/FLjSSU1NkcfVMzCUAMaoL1GEEcSTQPwFXDtcF0wYFy9eTHbu3CU///ILhiL1rr5a7r/vXr1t/QfiwZhx4wSTvJhwrlihgo4tg/3VapIZFkI3XP8/ufP2262nRdVi5AHVrw8+/EiKKjHuAtXvg4cOy08//ywHDhzQwdTbtX1Eql16qVf7xpIFQl6ZMqV1v3PlzKXvo43q3K4ZnWWYmixGKqIshOrWqaPHYSoxAcxbqfsIx3yTFoNUTJXMXDfhPPQV3x2kouefL4MHPuUl4ugDUfjHtINrPG7MaN23QNWaoPUQONGfaKRo/UZk9XsKYXjQkKGCWCVnnXWWfpfF+A7/8af6zVwrsBaD6zX8jtoJI/gt6dt/gLY0giuyihXKK3Ekr2xVvz2o83Llam7hF18EFEYgPkCkMOlvZbEEIRu/x7Cosqb/KddqNa64Qmf5/rZhHPh+wZ0XfqP+n70zgZupeuP4U7KWoiLZJZQIlYr2fdWGf2mzREl2Im0oS/Y17Yj2aKFVm1IkFZUQiVAp2VKkVP/zO3reztz3zsydd+Z9Z/udz4e5c+69Z/neO3fmfX7neR634NnUo1turxB4hIwZP94+jzHnGoceKiX2LiH47Y72MS6IJpea8IreEi83b3uR3lMYiUSH+0iABEiABEiABDKNAIWRTLuinE/GEggijOjkYzlWz+ErCZAACaQzgVQRRsAQxseXTQgghMuBcdYtMPgfc/TR1vgFA2y0oga5tevWWo8B93iIDWONcdUtMEQ/ZcJNLfj445zq4sWLG6N0XWnTqpVgNTyMmgtMDoPt27fLhPHjwhpnY+17+YoVAjElaOl7+23GIJ47EfFnn38uTz39jBVUtC0YzxHeCKGO4J0QtKSLMIL5wJPn8SefsLlnIJRowXW+5KImNrxYuFwTCJP2lPEIgncGjMpa4HkCQQReF96SSI8RhIQrY+7nRyZNMkLeGpsrBv2hf3hOwQjsV+bN+1CmPf+8FVCwH9cZydibNW0qCAmHXBuvz3pDvlm1yiSXP9skmW+a00wihRE0ilwTMHZHS2SfM4A8bDxrcpm8ZnKaYG5dO3eO2IImOsdB8LYJF5ovYiM+OxP1jMjr5xTPnYceecR6SKlIgfsEosDJxuspXPJ1nQrEw0cmTrLXSusguuI+w/3yymuvhRVG2t7QPkQY0fP9XvG5gaCI8tXy5TJ0eLAcJJGEOHgVTn0cn/EvBCGytJQsWVLOPvMMOd/k4QlX4uUWrl2/eogjKI0b1vPbzToSIAESIAESIAESyBgCFEYy5lJyIplOIBaxwz02SDgtHO8WJHKPJT+JeqrE2oZfv2gjWt/oz3ucX1t+7QQ9znbg819ezw/HyDsPny5ZRQIkkEQCsYTS8g4TRr+fN260Rt8//vjTrHo/wOaCwErp/C4wrMOwWnivwnY1PgzO6VZgCMRKcKyuh4gE42GsJZ2EEXduuG9+MtcPnhLwAgkniLjnYBv3HK47jN8VzUr2RCWx9/aj77H6H6KFmysHnj1YhY9V8aVLl9ZDw75CSIQnwObNm6Wy8YzK7zH7DQSCIcLWIU8QEqLn5V7zazeV6xL1jMjr5xQCHu4T3CNuzqBowgiY4j7fuGmT9ajab799rZiWTs843Gf4btm0abOZfyn7WQn6vRCOWyrfaxwbCZAACZAACZAACaQqAQojqXplOC4S8BCAQV5DZIULpaWnwAg/bMTulW2RjnXb1HP1NUgC90jnox20gZAn3pLX87Sd666/wW5ibsuXf5XDRffrq9t/pD6DikfKX9vXV7cfrXNfI/WN46Kd77bFbRIggYIloMLIccc2tB4X3t6DGrO85/F9YgnAUAoDu7cMGjLEejAwrKSXTGLe+wkjiWm5YFt586235cmnnxZ8zq9v27ZgO2dvIQSCCCMhJ/BNwgnQYyThSNkgCZAACZAACZBAihKgMJKiF4bDIgEvAde4HknswHlDjSiiidjDHeseA8P8YTV3J3RfZsIF6LloK5wxyR0PjkMbbkEbfgZ/73kQJVDQL4r27XeuPcD8p8IIjtHj3Xa0DsdrvYoa+t47T9Rf1KSJdhHyGoRVuPG652rfaNydb7hzQwbBNyRAAhEJIPn6PBP+o5EJ/dGzQ8uIx8ayU4WRcOf4xcEPdyzr84/A4i+X2Dwb4ZawAYsAAEAASURBVHoI910W7njWByOQKcKIhtHqfXNPqVmjRrDJ86h8IUBhJF+wBm6UOUYCo+KBJEACJEACJEACGUCAwkgGXEROITsIuIJCOLEDJNzjwhn7ox0Tbb/rkQKj/kUXNskV/grHeENZec+L5k0SbvwqjGC+4UQFV5DAcUHa8jOcRWMRab8733DXDMegeFnZSv5HAiQQmEB+5RhBuJkXZ4SGG3QHhUS5yAHBklwC3//wg7z99ju+g0CInatMbhKWxBNIV2EEIZzmzptngSD01wdz58mh1atLn969Eg+JLcZEgMJITLgSfjCFkYQjZYMkQAIkQAIkQAIpTIDCSApfHA6NBFwCrgEeYoBf8XpKhPOAUGEhnKiAtt3+vIKBKzqEM/j7jS/oeW7ffoKGjh99hOvfbQPHeeeAOhT3OL+2tK+8sHLbDtf/7lHwfxIggXgJ5JfHSLzj4vkkkMkE0lUYQZL6Bx56OOfSVKlSWW5qf6NNFp9TyY2kEKAwkhTsIZ0ylFYIDr4hARIgARIgARLIYAIURjL44nJqmUXANbJHm5mfgV/PCeLFgGPd47ziRBCxQPtzX2M5T4/19o32dF8kscIdf9DjvNzcNrz73Hm5x7njda+ZW++ey20SIAESIAESSFcCCDW38/edUqZsGSlRvHjaTAMJwzds+Nkktd/DJlovVapU2ow90we6du1a+fvvf6RChfLCHE6ZfrU5PxIgARIgARIgARJILgEKI8nlz95JIDABr5Hde6Kbs0L3+Rnj3XYieTGEM/aHq9c+w72650USGfR89S7xEzWCCCNoR4/z46D9RBqXjgHH5oUVztMxYBtz8Qs7hn0sJEACJEACJEACJEACJJBMAvAWmbtgkR1CIvN1JXNO7JsESIAESIAESIAEwhGgMBKODOtJIMUIuIJGJGEBhv4ZL80MSUruhtRyjf1Bp+gKC5GEhEjtxXqeO06vKKFigzsuv76DHBdpXO4Y/Nr3q/OOyXs9cA4FEj9yrCOB+AgwlFZ8/Hg2CZAACZAACTDHCO8BEiABEiABEiCBbCJAYSSbrjbnmtYEggojOkkVBfDeFRbiNfZHEhK0b7/XWMfvjtMdP9rWuXlFCG+/QY6LNB93DN62w70PNyY/gQRthDs+XPusJwES8CeQX8nX/XtjLQmQAAmQAAlkHgEKI5l3TTkjEiABEiABEiCB8AQojIRnwz0kkFIEEiUsuMZ+r+AQZMKRhIRI5ydq/OgjiOAR9LhI84mXlR8PP4GE4ogfKdaRQGwEGP4jNl48mgRIgARIgARIgARIgARIgARIgASymQCFkWy++px7WhFIlLDgthOvMBKLQd8VIIKcp6JEpBwj0doJIqC44/KGKIuXVaQbzCuQRJtLpLa4jwRIgARIgARIgARIgARIgARIgARIgARIgARIIDgBCiPBWfFIEkgqAddI7zXg+w1MhQXscwUQt528GuODCA5+Ywp6nitWpIowkldWfhzcuqBM3HO4TQIkQAIkQAIkQAIkQAKJJkDvy0QTZXskQAIkQAIkQAKpTIDCSCpfHY6NBBwCrqARTRhxj40kLKB5VzRxuou46bYfbSxuQ+55kfp1j/NrP6iYEOQ4V4SJ1JcfR3dued1WASu/hJe8jovnkUC6EWCOkXS7YhwvCZAACZBAqhFgjpFUuyIcDwmQAAmQAAmQQH4SoDCSn3TZNgkkkEA0sQBdwci/fPlX8uLMl3J69jP2u23B4H/RhU3kMPPqLWgPxbvPPR/7/fpAPc73nqtiRbh+3bbDiRHaRjQxIchx0YQR73hiYRWOH9iguG2HY7j7SP5PAiQQjQCFkWiEuJ8ESIAESIAEIhOAMDJiwqP2oOmTRkY+mHtJgARIgARIgARIIM0JUBhJ8wvI4WcPAdeIHnTWkYQDb3sQIdzy1b+iSDhxIsj5fueGO++wmjVDBB2/c3V8QQQPHBvkuGjCCNoJN2bsQwnHyj1P+WKeKMuWLw97nj2A/5EACcREgOE/YsLFg0mABEiABDKMwNcrV8o///wjNQ491M5s27Ztsv7HH2W//faTsmXKZNhsOR0SIAESIAESIAESiJ8AhZH4GbIFEigQAq6RPVqHEERq1qyVy1vDe16QNiOJKxAVZrw0M8fA720/3Ll5PU/bDyJ44NggxwURRtBWXljl5Rz0xUICJFCwBHbs2CGrVq+Wn376SQ444ECpXKmiNSQV7CjYW34S+GnDBt/mixYpwmvtS+a/yt9++01+2779vwqfrdKlSknhwoV99rAqnQns+P13gXFdy4EHHCB77rmnvk3Z1+3mfl333Xeyfv16KVq0mBx8cDkpf/DBstdeewUa859//ilr162TdeZfuXLlpErlKqadIoHOjbdvCBs/mHGvWrVKSpYsKYdUqyb77LNPoL6vv7GD/PXXXzlhcufOmyePTJosp5x0klx7zdWB2uBBJEACJEACJEACJJBNBCiMZNPV5lzTmgAM+NGKN2xVtON1P9pGCC63BBFW9Pi8nq9zcvu+qEkTbTbsq54Xbb6JPg4DystcdRzuPNFWkLniOBYSIIHoBOAxoqVxw3q6GfF169atMuH+B2TlN9/YVbZ6cKFCheT0U0+RSy+9VGA4Z0l/Ajd27CR//PGH70SKFysmtWvXlv81byYw/LKEEnhxxkyzCOK/EJ2he3e/69O7lxxavbrfLtalKYENP/8sw0eMlJ83bsyZwajhw2TffffNeZ9qGzt3/iGvvPqqvP7GGwJxwy34bF915ZVyZN06bnXINkSFqY89Lh9+9FHI+fhOqF+vnlzXunVYgSTevjGQ2e++K9Oee14g1rulUqVKctON7aXMgQe61bm2EyGMMJRWLqysIAESIAESIAESyGACFEYy+OJyaiRAAiRAAiSQLQRizTGCFbmjx4y1Rr/SpUtbD7tyBx0kPxqvkQUff2KNYvXq1pVOHW+SPfbYI1swZuw8VRipXLmyFCtaNGeeuN4QyFAggvW98w45qGzZnP3cEPlg7lx5/4O5vihWfP21FRUpjPjiSdvK777/XkaMGm0/G7VMCNCvTPhPlFQWRv7++28Zd++98vkXiwVCxjFHH2W9RLYbkWHp0mWyZu1aOwcIDEc1aGC33f8gpNz/wIOy6PPPpUTx4nLYYYdJpYoV5fsffjCLYr6ynjMQ/7p27iTFzX63xNs32nr5lVfkuRdetGOvWaOG9RT59ddfbd94TiEcVveuXaRihQpu1yHbiRJGmrXubtv9fvFbIe3zDQmQAAmQAAmQAAlkGgEKI5l2RTkfEiABEiABEshCArEKIwMH3yPfmFAlMEB17tRR4DWgBTHZ7xk6zBrCWlx+uZx5xum6i69pSkCFkdv63GINjjoNhK1Zs2atPPTIIzZ8zeHGGNqzezfdzdcoBDoYT5ydxhOHwkgUUGm0G2EFRxnRGCHUTj7xRLn4oibSo1dvO4NUFkZee32WPDt9ug3phs85RA0tEC6mTH1M5nzwgfV4GTxwQIhAiuPgaTL9+RdMOMX9zTOge0hODoinEIogGJ15+mnS4oortGn7Gm/f8FocdM8QO/Ybb7he6h15ZE778GJ5eOIk+WjBAiuK9O97Z84+70aihBEmX/eS5XsSIAESIAESIIFMJUBhJFOvLOdFAiRAAiRAAllEIJZQWmvWrJH+AwZaD4Hhw4ba1cFeVJ8uXCj33ne/NDzmGGl/fTvvbr5PMwLhhBGdBkLYTH38Cbtae8K4sYFzEej52fpKYSSzrvzSZctk/L0T5PedO+Xcs8+W5s2ayi+//CLdet5sJ5qqwggEzltvv0OQS+iiCy+0Yo73yiA8Vedu3QUiSa+ePQSeMFrc8yGMQiD1FniO3NG3n+y9994yYuhuEQPHuOfmpW+0MfnRKVa0aXLBBXLJxRehKqRgzD1732I9eG7v00eqVasasl/fJEIY0bb4SgIkQAIkQAIkQALZQIDCSDZcZc6RBEiABEiABEgghwBWDr87Z07EhLQwdiH5bmUT2z1cwSriL79cYkK0rJHNW7aaFcoVpLJJ0lu3zhG+4bdgtFuyZIlUMKFQ9i+9v8z/aL78+ONP0qBBfbtCeNeuXbJw0SITCuYLm3T3zNPPsKuX3f4h2MBQWbdOXbvv22/XmFAry4z3y2obAurQQw+NGEMfbcFA+OH8+bJ27TrbVimTOLt8+fLSuHGjXKuo3b4RiuYbs7L5IBNyDIZDeNzMN+1s3LRZypQ50BoaEYffW7Diec7779vqxo0aSZEIeVvAfOXKlTl9eNvK6/towsjmzZut4RHtDxk8KN9yjcDwvNqsyF9j2O9dooRUqVJZah9eO9d1ducJdmB4/PHH2/vqvffmyOpvV9tDsCoeTJOV9yGIMJLX+w0hkTZt2mhDGiG82ceffGI/bwiNhETaR5nPDUKj+RV4scwziaeRKPxkk3jar+D+hUiK/A3VDznE7xBBng3c4whl9PvvO+XAAw+wHkfHHH2072ccjaxe/W3O9XEbRQLvatWq2io8C5DYG59lFIwRY924cZN8sfgLKWHujWMbNrT7wv2nfGrVqiUHmwTh8RYY32H4h8dc00svkfPPO882mQ7CCAaKRPELzfMR1ybcM6bPbbdb8eSqFlfI6aedloMMobKGmXwqyENyz6CBYa+tehre0K5tyPWJp2+IUD2M8IR7Fp4s4fKITJv+nLz6+uty6sknyzVXX5UzdneDwohLg9skQAIkQAIkQAIkEJ0AhZHojHgECZAACZAACZBAihOIxWMExj+s/vUat2KZ4mcmDv0jkybbcDPe82offri0u65NLmM1QqE88NDDctIJJwhyM8AAqaVLp07y6aef2lXDWgdj5939+4UY6dQw18WE//r++x9s6Bg9Xl9PMIbya6+52tfrYf5HC+TRKVOsEU6P11cY15FcuM4RtbUq5PX1WW/IM9OmyQlGQKlcqbI8+fTTIfvx5uijjrJcEePfLTA6wvh4XetW1pDv7nO3R44eLV8uWRrXtXHb0+1owgjCBw0YNFiQb2b4kHv0tIS9wpj/6JSp1rjvbRS5Ta656ipp1Oh47y77/qZOne0K/ttv7SMPPzIx5L7BAVjBfkO7dnJE7cN9z8/PymjCSDz329hx4+UzIxK2bnmtzRvxifl8uAX32GWXXCznnnOOW223VegqXLiw3H/v+Fz7UTHdJLl+5bXX5Jyzz5L/NWsWcgxEgunPPy+45yGSegsE044dOvgKWjNmzpQXZ+ZOVg9vgouaXGjCIk00ouiCkHYxRow1qJEcib579upljx9qhDzct4koeCZ9bZ5NJ5pnlJZ0EUZ0vJFeVRi5rpV5DpnnmBYNo3XcsQ3l+rZttTrX69PPPiuz3nhTzjjtVLmyRYtc+yNVhOv7ayMEDx4y1OYQGWk8GMOVRZ99ZnKoTIgYTqtj5y7yl7l37xs/zjbz4YfzZfLUqSYk2gmBx4vvUuYYCXcVWE8CJEACJEACJJBpBCiMZNoV5XxIgARIgARIIAsJxJJjpGOXrtZrIq95ETTMFlYlX3DeudZ7Y5999rEG61lvzJLFxosEceoH9O8fsnJZhZG99trLGMKvNIbs2ibh7qvyjgnjBMNmVbP6vXnzZvKDEW0mGyP6tm3b5I5bb5WqVavkXFEVRrCafMuWLXLWmWdIOSOgwHi5ePGXMuvNN613wVkmL8oVJj+KW5YsXSojR4+x4aLOM8bkWrVqmjj6ZWXpsqU2fj0ECRjZ+5sE5H6GVhVGDqlWzaye/90alKtWrSp//vGnETO+lJfMXJDAuHnTpsZYfbbbtRUE7jOJjXEu4v/7FayiRzgcsIQ4AU6JKtGEkUmTH5X3TZLx0089Va66MjaDZ7QxwrB+18BB1jsB829y4QXWQ2f79u2ybNlXMvOllwTCCe6JU085JVdzKowgH045461z3HHHWiPqBsNrhjHAQ9RBYuZBA+6O6PGTq+EEVEQSRuK931QYwbzhTYF7Hd5K8NRCQvi58z60oiHup2rmPnRLvMLICy/OkJkvv2w/B+ecdZbNRVSkaBH5zBin0S9yTSARd++be9qxuX2v++47+W7ddzlVcz+cZ58JEEbw+YJxHaJn2TJlpNC/9/j1ba+zn0uc9PgTT8rbs2fL+eeeK00vuzSnHXcD859o7tkGxkOr400d3F0J384UYQSfsS7/htLyhqN68qmn5M2335GzzzpTLm/ePCzD14zHxrPGcwNeKcgFErRE6lu/T+D91Pf228I2qeJtyZIlZfSI4WGPi3cHhZF4CfJ8EiABEiABEiCBdCJAYSSdrhbHSgIkQAIkQAIk4EsgqDDyhwlXAiM5CsKWwDgZS0FII3icILROj25dTRik3Kv073/wIVnw8cfSzBg1zzPGTS0qjFSrVlVgmEPBCnGs8oXx3E0MrjHnr7/uOmsItweb/1QYQXx89O/1zNBVxRBtsJIcRjQtCNOD1eowMB/VoIFW21f0j4TzWL0cLuG8CiMI8zPAeLLAGO+Wt9+ZLY8/+aTt02u4A7ebb+ljjdr9jPDiJkbWNjRUDESbZk0v0+qEvKowcqVJmnzwwf+FHVq/fr0VlBabEGdH1qljQ9R45xXvAObOnSePTJ5sQ43d3KN7iAcQ2kb4sLuNcAKuCONTrGjRkC5VGPEzlEOI6mPEJAgB4YSVkMYS/CaSMBLv/abCSA0THg7cvPf6hPsfEHiR+Bmp4xVGlq9YIU8984z1HoAY5RYIlhDwYOzue8ftEcPt4Tw1usPTasOGn83K/St873/tA8JK3/53WY8zCITeeeM4fQ507dzZhu7Tc/PjNVOEEQiQL8yYadnjuu2xxx45uPSZ7YYQg4cbxOYaNQ7NSYaughTEOohiQUukvjW/ETz1unXpYpuE5878+R9JqVL7GQ+9xlYk/nnjRund51Y77gcm3Ot7XwQdT7Tjhk941B7Ss0PLaIdyPwmQAAmQAAmQAAmkNQEKI2l9+Th4EiABEiABEiCBWAggZ8Att+5elQsjdLh47uHaRAicBx9+2IabUiOW91g1YBUvXlzGjR6VY4BTYeQME9sexlEtavh+6P77claf64r1q0y4ltNN2BYtahBFeCE33I3ux+uQYcMFht1wAod7rLv9klkh/7xZKY9QX61M+96iwkiD+vVNGKEbvbsF4X06mJBgKGNHjbSr492DdE5+XhnIr4Lkwr/++mvEOPtue7FsqzAS7px6devKTWZOfkbocOcErb/tjjutN9Gtt/QOm8vikUmTrCcCVqtj1bpb9P4IZ4RXQenM00+TFkb4KcgSSRiJNo5o95sKI+HuY+TYGDNunG9ooXiFkWhjHzFqtMAjpq0JPRcuBJq2ocJI8WLFpH/fvr7ht/RYfYVIiXB78EqA8OOWtSbXT7+7B0TNh+GeE892JggjuFajx46z3nSdjIeNNxeSPjObG0EWodkgOMK7BHk/IKAg6TxEZhU5IZYNvPuuQFij9f2iEWtmGNGmrslNBaELRe8vbHdof4MNUQihsde/gjpCbiVawEVfLCRAAiRAAiRAAiSQbQQojGTbFed8SYAESIAESCCLCbjGpbwII889/4K8/Oqrcu7ZZ0vzZk3DklRj9tDBg3MMof8JI6Hx6bv26GnDZj38wP05IsrLr7wiz73wog3r4hrKVRhBjpEjjTHfryAPCESMWOPgv/veezLlscetEQ7GOG9RYQQr39uYGP1+RefS14SE8SbG3rRpk/Q2ohRyaowwhka8aoGHDVZtu8ZB3ZeIVxVGGps8HqVL/ZePAeGsFn/5pU2yDWMnQhd5vWni6R8GVvQNj5wJJu6/O2e3XeQtQIgl5IdpY/KwuEXvpXBJ4XXFeUGEVXLHhe14hJFo95sKI+Hy0iBPELy3IDiMHzsmZGj5LYwgVxA+z17hMmQQ/75RYQT5d/w+V37nwFvgwUcesR5p8Axzy2OPP2HD76kR392XH9vpLoysMULSUCMWI0F6uFBZw0eOMiEFl5kwgLuFEXi4dTMJ0X/77Teb+wXCCIRuFUbKH3ywzf8UjXeQvlUgdJ99400ukYUmbBsK8k8dWbeOuN9d8MhzvQGjjYP7SYAESIAESIAESIAE/AlQGPHnwloSIIEkEVi4aJF07trN9j5n9jtJGgW7JQESSDcCGvqjccP60rhhvbDDh2fCDR1usvux4tcbJifsif/uQJ6Mjz/5JKo3Bgy2MNy64bYKShhRASOcofwHEz7q88+/kK2/bLWhrXbt+svObsPPG+Tbb9fEJYwg1As8Zry5UZSrGvy8Hi9qmPRbza3nxvOqwogbrsxtb9Wq1TJ85Egb2gxhmw6rVcvdnedt5KK4s19/GyYL3kPhigpDyFuB3DduiSaMqLEWXi+djWBWkCWIMJLX+y2aMKKGYohNEJ3ckihhBOGUvvnmG/s5+WXbr4Kk7CjfrFolEPpiEUYuOO88uezSS9xhht12PaiQO0ZD/sGDobsRUncZwz3CbBWEcTydhRGEJUNeJeSlQWL164yHj59XGLwA4Q142SUXywXnn2+vC8IlrjCed8ijVLFCBVv3/gcfyKRHp9jnA54TkUrQvt+bM0cenfpYiAgGz7kvjEdUqdKlbF/wWkEOJiRwR76dB++bkCOiRxpDXvZlYo4RzGnugkXmt8F/vw/K1znD4une4VpByDB33tMmjbS/I9y67xe/ZY/Hb42RE6bYba3zC+Wpddo+TmCfImQrwnvoM2lkfqdPN58zFH5WRPQ54T5z+FlJnc+Kfmb97lu3zvuMx/2tdX7XU+u0fRyv3ytah/bnme8wFL1PsI17JdLfuziGJTgBCiPBWfFIEiCBAiAwycRhR0JRlLHGiISQLSwkQAIkEI2A/mHl/kANd06X7j1syKZePXvYvA/hjvOrHzZipMBYGs0gCmM4jOLtr28nDY85xjZVUMKIeh8gDwnmqAXeC1jpjjwk8GCAgQ3JoDXJORKq7zB5E8KtbFfBJZLHSDRhBInpR40ZE5KEXZOulypVyuZFwbgSXaIJI+hPV+KHm39exoSQZgjTA84ILxauQGyD6Oa3Ej1dhZF477dkCiMQ99A/PsMohQsXtuKW3pvwJEC+omjPAZyrHiNIvn7xRU1QFahMf+55eeW110KSsGuOi2MbNpQb2rUN1E68B6WrMILP3tjx99pn2iknnWTzB7l5RVwuyCfzxptvyVlnnC5XXH65uytk+xXjLTjdeA1G4x9L35oXCnmXkH8pXFlpBLpB9wyxIbQQSiu/imuYUwNNfvVVUO2qYco1Knnr3HmrscqtUxZqrMLYtc7v94fWsU+KTs1a7xZR9X7hPURhRPM38TmUHmKpfmbdvzH1Ge/Wea8nvie0zu97Reu0ffd7RetcYUSPd7+btA7nsuSdAIWRvLPjmSRAAvlAAB4jkxxhJB+6YJMkQAIZSMDvB2q4afa7626b8Nqb2Dzc8W69JkXXkCvuPndbBQIkWa9WrardVVDCiBrvjj/uWGlnkrdrecIkRn/LJEivUL68XH3VlYKk1q6hMFpoo0QIIxBksOoZuV76973TrsTW8GQXN7lQLmoS3HCs8wryGkQYee31WfLs9Ok2mTbyeSSiqOdC0aLGq8HkwwhX5s37UB42eUYQMgehc9ySrsJIvPdbMoURJD/Hin/k97jUeBF4PcvyEkorVmEE4gzyIe27774y7J7B1tMBhnEYyPMi6rr3VCzb6SiM4LckrhHEuUsvvkguvOCCiFN+7fXXzWf/OXu9kdclXHnq6afljbfelrPOPEOu+N//fA+LtW94HyFEIrx/ECIrXPl04UK59777pVKlStIvQc+ncH3B6IKSjqtRYUxCwQpbXZGuBiZXpNDjXC+SSHVqyAQbeJ+gBKkL2r7fcUHa9xuHX1tB69jn7pXY4a5xUI5+x5Et2Xo91yI9c3gPRb5fUuXZ544j1uup1zja9wr6QHGPV8FVhZF0/t7ePbvk/k9hJLn82TsJkAAJkAAJkEABE4DxG0bwSKt+EWMeBi7km9BV4himGtCwAvnaa672HTnObX9TRxt2Z/yY0TY2PQ5MpDASKeSUijfe0D0339LHhv8JFyqqIIQRcHh91ix5Ztp0uzq7ebNmgnEhdMyQQQOldOnSOCThJYgworH+ax9+uA2BlohBQAjq0Kmz9S6IlDBZEzD7rVhPpjCC0FGbNm+2ib69POAxAa4oWOmOFe9uifd+i0cY2W48nzp12Z2bA/lHkIfEWzRp/TlnnyX/M/ehFoh2ECTgJYLwZ3j1loIQRtAnkssjyXzHDjdK2bJlbVg2P68i7/gS+T7dhBE8xx574kkr+ra+9lppZPIKRSsIIXjXwIFWnBgxdIhvuC20oSESw+V4ykvfCJvW/eZeNp+J3+dIx/64mdPbs2eb5PAmv1XT8Pmt9PhsfYVhSkNdqRACg1E6ijzZeg05bxIgARIggcgEVExRwVUXCOr3XuSzuddLgMKIlwjfkwAJkAAJkAAJZDQBDd0EwSOcMV5FAuSacGPJw4B296BBcsD++8uAu/r7Gk01NEo1E5v+9lv75LBMpDDixsLP6cBs/L5zp9x6+x02pr4rnsBADyM2VlCHy7PxvEn2/pJJ+h4ulFQiPEYwVoggPXvfIkVMboirr2xhV3YjbCKMv/lVgggjaogPl6A5r2PTvCrXXn2VnHLyybmawbXBPYV7SxMtuwclSxhZ/+OPctfdA0T2EBk5fLgUK1rUHZZ8vXKlDB4y1BqRJ4wbmxOSDQcl4n7T6xEu+XqkHCMYQ1eTi2Pbtm3S++aeUrNGDVSFFKy+xyp8rzCiIYsgpoweOSJkXtoA5o3552coLfT1+RdfGHFkvPUkOuigg2y4pxYm1NOZJuRTQZV4hBHc08ifg1KsWNGonhvxzmnGzJfkxZkzrRiN50ksuYL6mXt9rUnU3qH9DfYZ6B2L3u8Qb4cOHhQimOPYePrWUF5nnHaqXNmihbfr3bmPzDNz+/bt9nvn4HLlch2TyIp0W3nqZyBC+BE1GCWSDdsiARIgARIggVQigO9A9SChMJK3K0NhJG/ceBYJkAAJkAAJkEAKEcAqUYTOCGoMGT12rHyx+EsbIqd7165ywAH758xmydKlMn7CBNm58w/xC7elq8XhNdLiistDxBEkXEfb1mjryWGSSGFkv/32ky4dO0qVKpVzxg1R5NEpU61nCgxnd/fvFxIqCyuiYahsbFZQIwmxW2AQHGfmjHHntzCCfh+eOFHmfTjfGjCR16Rbly5S54ja7pASuh1OGIFHBELZfGyMtwiRg5BXd/Xr5+shkdcB4Z5AaKbixYtLt86dc0KroT30/8KLM+Rlk7vAK8Jpf8kSRtC/rpBH4urWLVvm3OvIsTF67DjLzi/8F86N936LVxhR4QMJ7bt26RziNQIvjAcfekh2mLw6XmEEdfA2gbjTuuW1cuIJJ2A6OQVhzx574glrrM5vYQRj6H3rrcbTa7Mgyfzf5j08j3AvFVSJRxhRsRVjjeRll4i5PPHkUyZU4Dv2WQ6BESEDYymz331Xpj7+hJQwbLt07iS4b7Qg18yIUaOt4OwXEi3evtE+nhEoV15xhZxuBBItuB9HjxlrhTgIfBD68rO4BhbNiZCf/cXbtushkg7jjXe+PJ8ESIAESIAE/Ajg+9BdEIDvc3pL+pHKXUdhJDcT1pAACSSRAELXdO7azSZdR/J1FhIgARIIQkBdiN0keJHOw0pyrMRetXq1NfYiDFC5cgfJjz/+ZGP449xTzer+a8wqf2+BeIAE4j+sX28N6IcfdpgNwYL3XyxeLAiN4ud1kEhhBN4Hr7z6mg2vc7AZ99ZftlnD2ZYtW+wKd6x6rnfkkSFDV08W5BWpXLmSYNxFChexq6RXmNXvPbt3kyFDh9lzDjzwQCOgNLLz0EYS5TGC9nT1NbbLlikjgwbcHSLioD6RRYWRffbZJ8QD4HcjykBQQilUqJCAq9cQnohxvGqSaCNpM0rdOkcYo20FmxQaSZohnOxvPJC6GmOsnzE3mcIIvCeGjRhpPY2wUh5eUH+Z+/trUw9xBAb6u0yuGIzfW+K93+IVRuAZdme//nbspUqVMvd7LSOOFJc1RgT88aef5GgTJm+2CbvkFUYwj6effVZmvfGmfTYgF0+NQ6ubcGh/yrKvvrIeNJddcok1lKPdkuaeurLFFTleKUiQ/t6c93NwIDTX1q1bLaP9PaHiYHxv3ixyWCTNGYQGT2zcWFq3apnTdqI3li5bZkTLSSHNQryDOIKCfCduaEHMBx5o4YqGAsN+5MVAfoz8KghHBc4QNop4vJv8+kQ4rMrOeCBCIYfIm2+/Y59F+CxWrFjBPufXrl1nRUyEX2zbpnWuUFvx9o3xzf9ogTxi8gwhFCM+T9UPOcR6PK1avcqK9BUrVJDuXbvY5Ot+80lUXToLIxprPVEs2A4JkAAJkAAJpCMB/buY34vBrh6FkWCceBQJkEABEZg0ebJM/Df5ehvzx3/rVq0KqGd2QwIkkM4EYvUYwVzhEfL4k0/YGP4QSrTsvffecslFTeTUU04JMQLqfrzuNPkVnnrqaeudoYZ11MPz5PLmzX1DsSRSGIFRr4wRFGBIgxcIjJfaPxKuw5jrV7DafdrzzwsEFBSIJDAANjMx62Gw//iTT0wOkDesJ4A3ln0ihRH0ffudfa3RMVoiexwbb1FhxK8dNfhfeP75IR44fsfGUwdPJOQJQIgqLQgndmTdulaQwX3nV5IpjGA8K77+Wp5+5lkrIrrjQ/izKy7/X0Tvmnjut3iFEYwVwucjxtAP0VILvKnwGcG9/ooRrPyEEYibCI30xltv2fwwOHevvfaSQ6pVM4bxNvZzPvOll+SDufMEwoebc2KGCeX0ojk3SKlnrn1n81mOVGDsh+EdBaH5IE7lV4EnDcSMoOXAAw6QISasVLiiggEEoD69d88h3LHx1mtfQdu5vY9hWa1qrsORR+rd9+YIhDUteK4f1/BYuezSS3wF3ET1Df4vzHhR1q37zgok6B/PBYjYLU1OqxIlSuiQ8vUV4ghKuqw0xfe/JqXNVzBsnARIgARIgARSnIC7wIGhtYJdLAojwTjxKBIggQIioB4j6A4eIzC8sJAACZBAfhP4eeNG+cmsIoenBIx97qroSH1jlTFWn0NowIpeeCTkZxk4+B4rWriGWCSaXrNmjRxkkjMHSV6OFckw+m02SbWxYjq/x+zHA+GzYEyEoDN8yD3W48bvuEysw9zXrltnjZww0sNTJR3Kpk2b7H1TtEhRObj8wblyjoSbQ7LvN3xGN5qxwxtsv/32tUIgBMEgBaLnT0bIwmvVKlVsXpwg5yXymMVfLrEeapUrV5a+t9+WyKbztS03BJdfSMJ87TwBjSMX0rrvvhN8RhG6sCALRPs1a9fY5yKe60Hv14IcY7L7wmrYHh1apo14k2xe7J8ESIAESCB7CEAcmbtgUUhoreyZfewzpTASOzOeQQIkQAIkQAIkQAJJIeAnjCRlIHF2+qbJ5/GkCVuD3BXXt20bZ2s8nQQyl8D4CfcJFo3AY+Bkk9coXQpyOCHfUsmSJWXYPYNz8tOky/izdZxqTEllDwwNEYJrxDAh2Xqnct4kQAIkQAJBCKSbF2iQOSX6GAojiSbK9kiABEiABEiABAqcAH70jfg3AXsmJ2DNFGFEw2ghkTASCrOQAAnkJgCvrl59brWJ14ebpOvFAuTOyN1Kcmo0N8r5554rTS+7NDmDYK8xE1DRIWi+rpg7SMAJ+L5vZjxGGCIkATDZBAmQAAmQQMYS0O9LTJDfmeEvM4WR8Gy4hwRIgARIgARIIE0IuD/8MnkFaboKIwj1NXfePHs3IfQXcjMURN6BNLl9OUwSyCGw4OOPZeXKlfb9d9//IMhNc8F559n8FjkHpcHG2++8I18tXyH/a9bM5mRJgyFziIYA8nWMnDBFUlkY4YUiARIgARIgARIIRqB8nTPsgRRGwvOiMBKeDfeQAAkkgYDmGEFuEeQYYSEBEiCBoARg0EHpaeKOZ2pJV2FEE8/rdalSpbLc1P5GGkwVCF9J4F8Cjz3+hLzz7rv2HXJLHNvwGGndsiVDUfEOyXoCWACBki5J4bP+ghEACZAACZBA0gngu5Pfm5EvA4WRyHy4lwRIoIAJTJo8WSZO3m3cbNOqpbRu1aqAR8DuSIAESCB1Caw3iaB3/r5TypQtIyWKF0/dgXpGtn37dtmw4WeT1H4Pm3OgVKlSniP4lgRIAAQ2btwkSPxdaK9Csn/p0lKiRAmCIQESMATSIcwXLxQJkAAJkAAJpCoBiiT+V4bCiD8X1pIACSSJgCuMwGMEniMsJEACJBALAXiOZLLXSCwseCwJkAAJkAAJBCEA4QGlh/G6TMXVpSqMZHK4zCDXiceQAAmQAAmQQCwEIIhoLk6G1MpNjsJIbiasIQESSDIBhNOiIJLki8DuSSBNCTCOappeOA6bBEiABEggaQRgNEFCc5RUNppwtWvSbhF2TAIkQAIkkMYE+Ddy+ItHYSQ8G+4hARIgARIgARJIMwKaODaVDTtphpTDJQESIAESyAICuqJ0+qSRWTBbTpEESIAESIAEsocAvuPnLlhkPELrp6RXaDKvBIWRZNJn3yRAAiRAAiRAAgklwNWkCcXJxkiABEiABEgg6QRSPcxX0gFxACRAAiRAAiRAAnkiQGEkT9h4EgmQQH4SQJ6RhYs+E+QYYSEBEiCBvBKASIKSirHS8zonnkcCJEACJEACiSQA0aFRw3opm5sL3+Ua5ov5RRJ55dkWCZAACZBANhFQrxHm4gy96hRGQnnwHQmQQJIJuMnX27RqKa1btUryiNg9CZBAOhLQkFoY+/eL30rHKXDMJEACJEACJJCvBNJBdMAYkTQWhWG+8vV2YOMkQAIkQAIZTEDzjHCRQehFpjASyoPvSIAEkkzAFUbgMcIk7Em+IOyeBNKUgCuM8Mdfml5EDpsESIAESCDfCWiYKooO+Y6aHZAACZAACZBA0gioMMJcnKGXgMJIKA++IwESSAECCxctoiCSAteBQyCBdCcAcYQJ5tL9KnL8JEACJEACiSYALwyGmUw0VbZHAiRAAiRAAqlLgN/9/teGwog/F9aSAAmQAAmQAAlkEAGIJPOMIahHh5Y0BmXQdeVUSIAESIAEYiOgHpXpsmJUx4tZMjRmbNeaR5MACZAACZAACUQmQGEkMh/uJQESIAESIAESSHMCbgx1JJhluJA0v6AcPgmQAAmQQJ4JqNCQLt+HOl5MmMJIni87TyQBEiABEshyAvg+RWFEhdAbgcJIKA++IwESSAECyDOycNFnghwjLCRAAiSQCAJqWFGjCsQSFIYSSQRdtkECJEACJJCqBPB9N3fBIulpPCa14DvRfa/1qfiq48fY0mXMqciRYyKBVCHww/r18uuvv/oO55Bq1aRQoUK++yJVbtmyRZYuXSYVK1WUShUrRjo06r7NmzfLzxs3yr777isHlS0b9XgeQALpQoA5RvyvFIURfy6sJQESSBIBN/l6m1YtpXWrVkkaCbslARLIZAJINovQWukSSiSTrwXnRgIkQAIkkH8EaAjJP7ZsmQQSRWDHjh2yzYgFJYoXl3322SdRzaZkO/c98KB8/MknvmMbPWK4lCxZ0ndfpMo+t90uP23YIHvssYcMGTRIDjhg/0iHR9z3+qw35Jlp0+SExo2kDW0REVlxZ3oR4O8B/+tFYcSfC2tJgASSRMAVRuAx0qB+/SSNhN2SAAlkMgEVRqZNGmm9RjTcFkKLaB4Sv1Wqfi7IQer82gpaF6R9XKtIx+kq26B96nGuq3Wk9v2OY59iVmnvXqmN6+Pl4ccsaJ23Lb/2/eqCtu93HPvk9YTXgd+9EbSO91DB3EPNjPCPoh6SeHaPnDCFCwEsFf5HAqlJ4M233pYnn35azjrjdLni8stTc5AJGtX8+R/J2nXrQlp7bdYs+eeffySvwkjXHj1l27Ztts3+fe+UihUqhLQfyxsKI7HQ4rEkkP4EKIyk/zXkDEgg4wgsXLTIzomiSMZdWk6IBFKKAIzWGkoL22pMUrFEjUkYtBqYVFBxY7Nrnet94l2R49e+W6ftx9qnOw5vnxi31umc3D61zq9PrXPb13m6ddq+39y1ffY5BZci5x4i28+E99DukEb6+eFnpZ4VdmG852dlpGWQyOetbTCN/9NnpntvpPF0OHQS8CWQTcKIH4C2N7SPSxj5euVKE4p7kVSuWEmOO+5Yvy4C11EYCYyKB5JARhCgMJIRl5GTIAESIAESIAESiIcAjPdYDY3wWpqc3c8Y42es0jo/cUDr/MQBt47CyG6PFxhGXaO5snXr1JisbHHdtY4GZhqYeQ/Vy3mG6eeCn5V61nsriPitz333mZMOzyH3GmMOKOqhY9+k8X96TTAF/a5M4+lw6CTgS4DCSHzCiC/UPFZSGMkjOJ6W8gT094Hr6Zvygy6AAVIYKQDI7IIESIAESIAESIAESIAESIAESIAESCA2AlhEoEW9PPU9X0kgUwjMfOkleWHGzKwIpeV3zeL1GPFrM691FEbySo7npToBvwUzqT7mghgfhZGCoMw+SIAEYiKAPCP1TW4RhtKKCRsPJgESIAESIAESIAESIAESIAESSHECs999N2eE27dvl9nvvScbN26Sw2rVkobHHJ2zTzcOPLCM1Dmitr6N6xW5PN41/aE0btRIihQpEra99z/4QHbt2iWNzHFFfY5DCKtFiz6TnzdutInPy5YpI3Xr1pFDq1cP26bfjliEka1bt9qwWX7tBOX0119/ySeffiqrVq+WLVu2So1Dq0vt2rWl3EEHCYURP7KsywQC8IBF0XyamTCnRMyBwkgiKLINEiCBhBFAbNDOXbvZ9tq0aimtW7VKWNtsiARIgARIgARIgARIgARIIL0IqNcIPUbS67pxtOEJtGt/o/z999/hD/DsOfqoo6RD+xs8tXl/O2TYcFm+YoXceMP1cszRuYUYtLxm7Vrpf/cAOahsWRk04O6Qzn777Td54KGH5MslS0Pq9Q3avL7tdVKoUCGtivgaizCCcWP8fgX9Yk6RCoSo+x54UJYsDR37nnvuaRn/9NMGeWbaNDmhcSNpQ1tEJJTcRwIZQYDCSEZcRk6CBDKHALxFJk7eHRt57OhR9BrJnEvLmZAACZAACZAACZAACZBATASYYyQmXDw4TQjM/2iBmGzjOaNd8Mkn1guibp0jpNFxx+fU60bp/UtLzRo19G3cr+/NmSOPTn1MIgkuzz3/grz86qtyyUVNpMmFF+b0CY+TYSNGylfLl1vPkJNPOlFqmLH98ssvdg4fzJ0n27Ztk/POOUeaNb0s57xIG7EII2h7iUeQgcjx/ty5VuSJJoyMGjNGFn+5RIoVLWrmdYEde1GzvXbNWnnznbeldKnSdh4URiJdMe4jgcwhQGEkc64lZ0ICGUMAXiOLzD96i2TMJeVESIAESIAESIAESIAESCBmAhRGYkbGE9KQwAsvzpCZL79cYDlG4DXRrefNNvzV6JEjrEjgxXbLrbfJhp9/lsEDBwhCZLnlndmz5dOFi6Rjhw5StGhoKC6IDhAfihcvLuPHjHZPC7sdizDi1whCk019/Imowsi3366RuwYOtJ4sd95+m1SsUCGkue07dsjdAwbKTxs20GMkhAzfZAIBDaXVqGE96dmhZSZMKSFzoDCSEIxshARIgARIgARIgARIgARIgARIgARIIJEENIwW2mQorUSSZVupRKCghRHM/d777jfixkK5/rrr5Ljjjg3BgdwbAwYNlkOqVZPb+twSsi/aG4QI69Cps/z5558y7J7Bsv/++0c7RQpKGHnMiCfvGBHllJNOkmuvudp3XM9Omy6vzZpFYcSXDivTmQCTr/tfPQoj/lxYSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5SiAZwgiSj0+4/wGpV7eudO7UMWR+Tz/7rMx64025qsUVcvppp4XsC/Km+829BEnS+/e9M5dXht/5BSWMjBw92uZFaXXtNXLSiSf6DYXJ132psDITCKjHCJOvh15NCiOhPPiOBEggBQggz0j9+vWZXyQFrgWHQAIkQAIkQAIkQAIkQALJIgCPkbkLFtnuGfojWVeB/eY3gWQII/DoQDgtvI4aPkxKlChhp4kcIjff0sfmDBk5bKjss88+vtPHeQiBvX79eiOC/CK/moTsWj77/HPbbqoJI7fdcaes//FH6WKEoCONIORXXp/1BpOv+4FhHQlkKAEKIxl6YTktEkhXAvhx1blrNzv8Nq1aMs9Iul5IjpsESIAESIAESIAESIAE4iTAHCNxAuTpaUEgGcIIwDw6Zaq89/770rrltXLiCSdYVstXrJAhw4b7epIozM+/+EImTn7UJllHHRKZF/9XWMH7LVu2mNzy/6Scx4h6slAYwVViIQESAAEKI7wPSIAEUooAvEXwIwtl7OhR9BpJqavDwZAACZAACZAACZAACZBAwRGgMFJwrNlT8ggkSxj5avlyGTp8hNQ+/HDp0a2rBfD4E0/K2ya5+g3t2sqxDRvmgrJx4ya5s18/+X3nTrnkoiZy6imnSMmSJUOOUwEi1TxGkHgdCdhvurG9HNWgQciY9Q09RpQEXzONAHOM+F9RCiP+XFhLAiSQRALwGllk/rVu1SqJo2DXJEACJEACJEACJEACJEACJEACJJC/BJIljMCro1efW62HB8Jm7b333gJR488//pBRI4ZLkSJFck38/Q8+kEmPTpFaNWtKr549cu1HRaoKI5pwvnnTpnLuOWf7jv2111+XZ6c/x+TrvnRYmc4EKIz4Xz0KI/5cWEsCJEACJEACJEACJEACJEACJEACJEACJEAC+UogWcIIJjXNiACvGjHg6itbSNmyBwkSlJ/QuJG0CbNI8ZVXX5Xpz78gdescIV07d87FZacRVRAae9euXSkXSktFj2pVq8ptfW6RPfbYI9f4H544UeZ9OD8ig1wnsYIE0oAAPDBRGjesb/7VS4MRF8wQKYwUDGf2QgIkQAIkQAIkQAIkQAIkQAIkQAIkEAMBJl+PARYPTVsCH3/yidz3wINy1hmnyxWXX16g81j33XfSt/9dUrNGDTmobFmZYzxCunftKkfUPtx3HMgvMmbceCsqDLz7LnuOHvjXX3/Jk089LXM/nCc7d/6RcsLI9h07pFfvW2TH77/LeeecI5decrEUKlRIhy+LPvtMHnr4ERsmLJI4lHMCN0iABNKeAIWRtL+EnAAJZB4BhNJCaVC/fuZNjjMiARIgARIgARIgARIgARIIRIA5RgJh4kFpTgBeFl2795DixYtLmQMPzDWbw2rVskb8XDsSVNH/7gGydt06KVK4sBQzYxg+5B7Zc889fVuH+DF4yFBZtXq1Db2FsVWtUlm2bt0qC42wcJT5G36fffaR51+cIeUOOkgKmzZvvaV3TlgueMcsXbYspO2vV6607+HJ4QoVlSpWlKuvujLk2LVr18pjJg+KW3755Rf5acMGO56Dy5Vzd0mb1q1CxJs333pbnnz6aXtM2TJlpHr1Q0zy+GLy7Zo1NmF8vSPrygszZtJjJIQi35BA5hKgMJK515YzI4G0JABRBK63KG1atWSekbS8ihw0CZAACZAACZAACZAACcRPAMLIvAWf2YamTxoZf4NsgQRSlMBHCxbIjJkvWQM/xAe3HH3UUdKh/Q1uVUK3X581S56ZNt22efZZZ8rlzZtHbH/Lli3y1DPPyoKPP845DqIORAWE4NphPDOeM+G2FhhPmO3bt8uE8eOk6L/5SuAZAw+ZIOXQ6tWlT+9eIYcuX7FChgwbHlIX6U3f22+TypUrhxwC1hBXfvvtN1sP8aZmjUPl+rZt5YO58wyLaRRGQojxTSYQYI4R/6tIYcSfC2tJgASSRGDS5MkycfLu2IdjR4+i10iSrgO7JQESIAESIAESIAESIAESIAESIIFwBLZt2yY//vSTFN6rsBEfKvnm7Ah3birUw8sEIk/VKlVyPFpSYVwcAwnkBwEKI/5UKYz4c2EtCZBAEgnAY6RB/Xr0FkniNWDXJEACJEACJEACJEACJEACJEACJEACJEAC6U8AObtQmHg99FpSGAnlwXckQAIkQAIkQAIkQAIkQAIkQAIkQAIpQACGnBEmnBYKQ2mlwAXhEFKCwIyZM+XPP3cFHkvNmjWlbp0jAh/PA0mABEggWwhQGMmWK815kgAJkAAJkAAJkAAJkAAJkAAJkEAaEWDy9TS6WBxqgRHo1KWrbDd5PIKW8845R5o1vSzo4TyOBEggAwnQY8T/olIY8efCWhIggSQSQAJ2lAb16ydxFOyaBEiABEiABEiABEiABEggmQSYfD2Z9Nl3qhKYN+9D2fVXcI+RihUqSrVqVVN1OhwXCZBAARDQHCPTJo1kOC2HN4URBwY3SYAEkk8AoghyjKC0adWSeUaSf0k4AhIgARIgARIgARIgARIgARIgARIgARIggTQkAG+RZq2725FTGAm9gBRGQnnwHQmQQJIJTJo8WSZO3h1HeOzoUfQaSfL1YPckQAIkQAIkQAIkQAIkkAoEYNhh0thUuBIcAwmQAAmQQDoS4Pdo7qtGYSQ3E9aQAAkkmQA8RhrUr0dvkSRfB3ZPAiRAAiRAAiRAAiRAAskm0NSscp1nRJHuHa6Vnh1aJns47J8ESIAESIAESCBDCFAYyZALyWmQAAmQAAmQAAmQAAmQAAmQAAmQQKYR0ATsjRrWk+kmNjoLCZAACZAACZBAcAL4HkVp3LA+PS892CiMeIDwLQmQAAmQAAmQAAmQAAmQAAmQAAmQQGoQUIMOvUVS43pwFCRAAiRAAulDgPlFIl8rCiOR+XAvCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACaQVAQgjI4zHCEJSfr/4rbQae0EMlsJIQVBmHyRAAoEJLFy0SJBjBGXO7HcCn8cDSYAESIAESIAESIAESIAEMpcAPUcy99pyZiRAAiRAAvlLgInX/flSGPHnwloSIIEkEZg0ebJMnLw7/uHY0aNMEvb6SRoJuyUBEiABEiABEiABEiABEkgFAm4oECZhT4UrwjGQAAmQAAmkOgEsKGBekchXicJIZD7cSwIkkAQC8BhpUL+etG7VKgm9s0sSIAESIAESIAESIAESIIFUIwADz8gJU4TCSKpdGY6HBEiABEgg1QhwQUGwK0JhJBgnHkUCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACKU1AFxNgkMwtEv5SURgJz4Z7SIAESIAESIAESIAESIAESIAESIAEUowA842k2AXhcEiABEiABFKOALxGUBo3rJdyY0uVAVEYSZUrwXGQAAmQAAmQAAmQAAmQAAmQAAmQAAlEJMDwIBHxcCcJkAAJkEAWE+DCgdguPoWR2HjxaBIggXwmsHDRIkGOEZQ5s9/J597YPAmQAAmQAAmQAAmQAAmQQLoRaNq6ux3y9Ekj023oHC8JkAAJkAAJ5AsBLhyIHSuFkdiZ8QwSIIF8JDBp8mSZOPlR28PY0aNMEvb6+dgbmyYBEiABEiABEiABEiABEkh3Algh27hhfYYLSfcLyfGTAAmQAAnERYALB2LDR2EkNl48mgRIIJ8JwGNkkhFG8EqPkXyGzeZJgARIgARIgARIgARIIM0JuAlmpxkPEsZST/MLyuGTAAmQAAkEJsDQWYFR+R5IYcQXCytJgARIgARIgARIgARIgARIgARIgARSnYAKI41MclkNrcWEs6l+1Tg+EiABEiCBeAno9x/a6d7hWunZoWW8TWbd+RRGsu6Sc8IkQAIkQAIkQAIkQAIkQAIkQAIkkDkEIISop4gbY50eJJlzjTkTEiABEsh2AuodAg4qgpSvcwZFkThuDAojccDjqSRAAiRAAiRAAiRAAiRAAiRAAiRAAqlDwF1B+/3it+zAXLFE6xCHfZ5AC8VdAABAAElEQVQRVFxPExiYUNyVt1qnIovbltb59al1bvvsMz3YutdY7xe9nrg/tM7vemqd3z2kdW77eg+5ddo++wz9fJLtf58f937hPSSSzZ8V3Au6MADPJ5bYCFAYiY0XjyYBEkggAeQR8SZXR13nrt1sPZKvuwX7ULznuMdwmwRIgARIgARIgARIgARIILsJwFCEosYiNahSpBhpuajYo4Z6VGqdn5FV6/yMj1qXSWxdozNFCpFInx+/e0jrXI56D7l1ZEu2EKf1fnGfQ1rn3i+8h3YLQCroq8eIfajzvzwToDCSZ3Q8kQRIIB4C4QSQSZMny0STfB2lTauW0rpVK7utx+MNBBOKIxYL/yMBEiABEiABEiABEiABEohCAMY1lLkLFuWEH0Ed3qOogQlGfpTGDevniCpB6vzaCloXpH2MyXtc0Pb9jvO25de+X51fW0Hr0qlPd+56bwSdpx4X6z3EPkM/i8oRXLzXgGzrAUuuZ4Jb52WGfUHqyDY12brXBdeSJXEEKIwkjiVbIgESCEjAFTlwCkQO9Q5x96kA4tZpF3Nmv6ObfCUBEiABEiABEiABEiABEiABEiABEiABEiABEiCBwAQojARGxQNJgAQSScD1DEG7Ko649fAYqW9EE4TWcosKJm4dt0mABEiABEiABEiABEiABEiABEiABEiABEiABEggCAEKI0Eo8RgSIIF8IeCKIOgA4kiD+vVyQmnhPbxF3EJRxKXBbRIgARIgARIgARIgARIgARIgARIgARIgARIggVgJUBiJlRiPJwESSCgBrzgSqXGKIpHocB8JkECiCSC2MYombsV2kDo9xj031jr2CXq5ecfKEW0oSz1X3/u171en5/m1FbSOfYIUrycY6L0Q632l5/lx9KuLtX2/sbFPUEmP+3b3SP+7v/Q9X0mABEiABEiABEiABMIToDASng33kAAJFBCBIOIIRZECuhjshgSykAAMiEi+Os+89ujQ0houUdesdXdLY9qkkbnqvl/8lt2HRKIjJ0yx21rX1JyHtho1rCfTzbkoWte9w7U5iQ/L1znD7tM69rmbt3IkW95DmiSUnxURPod2J5nl8zb39wq+a/Cdg+LeJ7bC/OcKXFrHVxIgARIgARIgARIgAREKI7wLSIAEUoJAJHGEokhKXCIOggQyjgCECDUY0fAaalBTUYgixX+iFoWulvYZwM8KPyu4EShcpo5w6Qojfs9sFUsy7kucEyIBEiABEiABEiCBOAlQGIkTIE8nARJIHAE/cYSiSOL4siUSIIHdBNSgp54aqIVHB4p6jGAbwgmKiifY9tbpe/e4SHWR2vJr368uUvt+42CfoJL72vnVka1FlXPPKw/eQ7u5BOGhx+AM5RapTo/B8XpcrHV6HvusBwR55uh3brqw1XHqvaPfc66gi7rGDevn3JcWFv8jARIgARIgARIggSwmQGEkiy8+p04CqUjAFUcoiqTiFeKYSCD9CajBCDPR1bXpPyvOgARIgARIgAT+IwCxRIUSbKsnoLso4L+juUUCJEACJEACJEAC2UeAwkgCrrl3hQ6azGudnoc23B+yeI/irdP32Kfnxlqn5/m171cXa/t+Y2OfoJIa1zMR44j1ekbrs91N3aRB/frSod3usB04XvvQ+0/f+7UVtE7b8mvfr459gkru+9avjmwtqpS7b3eP6r9rqO+z4RViCIrmLMB73c6G+XOOJEACJEAC2U1Aw+AxtFZ23wecPQmQAAmQAAmQwH8EKIz8xyLQFgwpmlBVDSreH5kwnuqKHP3h6bc6VetcF2dNzurWafvu6h6t0/bZZ2ji22xji5tXVz373UNa53cPaZ3fPeTWafvKln0yobI+h3gP1bMCiD73U/Wz4n7JuWPMhrAa+gx0n1suD26TAAmQAAmQQDYQwO94/RsW29nwGyAbrivnSAIkQAIkQAIkkDcCFEYCcINxWFc/ew2BOF3rKFLU803EqIZ0V+xRI5VbpxzVyEq2u+Pd632lHMHFNWqOnBAqCvmx1To/tlrniiDap1vHPpmAF6Kw3i/u51Pr3PuF91DqJabFNUNxn7v6bHDrdh+VWf/r81Pv1cyaHWdDAiRAAiRAArER0O9FnKW/2WJrgUeTAAmQAAmQAAmQQPoToDAS4Rq6Pxhdo7DXYwTGQBQVT7DtrdP37nGx1kVqn32CwH/XgGz9ecR6D6EVZann6nvsC1Knx/i1FbSOfYJUbt5ku5uL3h+ReOgxfhz96iK1heO1vUjH6TF+7fvVRWorUX2iHRTtSwVp1ygCscRNQL77jPT/H9dD553+s+EMSIAESIAESCDvBPCdCE/XTF8YkXdCPJMESIAESIAESCAbCFAYiXCVXWHENRpFOIW7SIAESIAESCCtCLiCgRpKMIF0/97T7/B0n0da3UwcLAmQAAmQQNoQcL//02bQHCgJkAAJkAAJkAAJJJAAhREPTBhSUDT2Kn8wegDxLQmQAAmQQMYSUDEh3VeQugJPus8lY282TowESIAESCBlCHj/Bk6ZgXEgJEACJEACJEACJJCPBCiMOHA1pAiqNHSWs5ubJEACJEACJJDxBCAqoGjYKRhLdLFAOk0e8xhhxp6JYcHS6TpwrCRAAiRAAqlNQBdFYJTMxZXa14qjIwESIAESIAESSCwBCiMOT11hyh+EDhRukgAJkAAJZC2BbEnOnrUXmBMnARIgARIgAUMACwT5NzBvBRIgARIgARIggWwjQGHEXHEIIroy1t3OtpuB8yUBEiABEiABl4CuIk0nYwnEHBR6irhXktskQAIkQAIkQAIkQAIkQAIkQAIkQAIugawXRnQ1bDoZfdwLyG0SIAESIAESyE8C6bRgQD0/wYNJ1/PzrmDbJEACJEACmUognb73M/UacF4kQAIkQAIkQAIFQ4DCiFlZOs94jFAYKZgbjr2QAAmQAAmkJwEYSpCzA8nMUzXniI4R3+vMFZae9xlHTQIkQAIkkBwC7uICfocm5xqwVxIgARIgARIggYIlkPXCCHBzVUzB3nTsjQRIgARIIP0IIP64FhpMlARfSYAESIAESCBzCOh3Pb0uM+eaciYkQAIkQAIkQALhCWStMEIxJPxNwT0kQAIkQAIk4CWQjvlGvHPgexIgARIgARIggfAE+DdyeDbcQwIkQAIkQAIkkHkEslYYwWoYhANhctbMu6k5IxIgARIggewjoCFA+N2efdeeMyYBEiABEiABEiABEiABEiABEiCBWAlkpTCixhPAoptwrLcMjycBEiABEsh2AvAeadywvvlXL2VQqEcLBsRQXylzWTgQEiABEiCBNCOA71OUVM0nlmY4OVwSIAESIAESIIEUJpCVwgiuB8SRuQsW8QdfCt+cHBoJkAAJkEDqEdD44907XJtS36H4Xkfhd3vq3TMcEQmQAAmQQHoQ4CKD9LhOHCUJkAAJkAAJkEBiCGStMJIYfGyFBEiABEiABLKLAI0m2XW9OVsSIAESIIHsIeBGVqD3ZfZcd86UBEiABEiABLKVQNYJI7qiFBc8lUKAZOsNyHmTAAmQAAmkHwF8l6badyi/39PvPuKISYAESIAESIAESIAESIAESIAESCBZBLJOGOFK12TdauyXBEiABEiABPKPQNPW3WWeEWyQfH36pJGBO9q0aZM89MjEsMe3v76d7LfffmH3c0feCfz999+yfMUK+fXXX6VOnTpSrGjRvDcW5czHHn9Cvvv+e9+jTjrxBGncqJHvvkRXfrNqlRTas5BUqVI5pGmMbfv27VL9kENkzz33DNmXSW9+37lTvvzySylRooTUqlkzo+eaSdctm+eybds22fDzz/LXX3/lYNir0F5SrVrVnPfcIAESIAESIAESIAESSE8CWSuMxGo4Sc/Ly1GTAAmQAAmQQOIJaGJWtJwqyVnzKoys//FHue2OO61Rft99980Fq1fPHlK6dOmc+n/++ccayXIq/t0oWbKkFC9WzFvN9xEIzJ//kTz4yCP2iBMbN5bWrVpGODq+Xfc98KCsWbMmpJGdf/whW7dulYubXCgXNWkSsi8/3qxZu1b63z1A6hxRW7p16ZLTxc6df0iPXr1kjz32kHGjR+XUY+PPP/+UzVu2hNTpm3322UdKFC+ub9Pi9dEpU+W999+3Y23burU0anR8Wow7WweJ590P69fLt6u/tfdnuXLlpFKlilKoUCFfJPg84XMVpOxtxLG999477KHbd+yQb75ZJVu2bJbKlStLxQoVClxImzL1MXl3zpxcY8R3wvAh9+Sqz4QKeF+O+Df5eiyLDDJh7pwDCZAACZAACZBA9hHIOmEk3S7x5s2b5eeNG+WA/feX/c0/lNXmj5M/d/0ph1SrFvYPk3SbJ8dLAokksO6772TtmrVy2GG1QgyaiewjHdpa+c03ghXZVatUkcKFC6fDkDnGNCGQVxEiP6eX11BaKowcf9yx0u6666IOEYbq9jd1zHUcjNply5QxngBVpMmFF0j5gw/OdQwrQgnMfvddmWo8OVCOPuoo6dD+htAD8vnd5198IWPGjS8wYUSNrOefe640vezSnNm9/8EHMunRKXJYrVpyc4/uOfXYWLV6tQwYNDikzn0Db6ZGxx0nTYy4k58eN26f8Wzf/+BDsuDjj20TV7VoIaefdmo8zfHcfCTwzuzZMm36cwIvH7fg2XbVlS3s/erWY9u9vt593vcXnn++XHrJxd5q+eWXX2TC/Q/I1ytXCoQZLbi/zzv3HLnwggu0Kl9ff9qwQfrcdrscWr261Dj00JC+SpQoLuefd15IXaa8wXdpM+OBicIcI5lyVTkPEiABEiABEiCBcAQojIQjkyL1r7z6qkx//oWQP9p79ekjGzdukpHDhuYK74H6v/7+z9U76DRKmlWHxdNs1WHQufG47CKAsDi9+txq/5guc+CBcs+ggQUCQFdJwkhVtEiRAukzWic3depsDRpDBg+SAw84INrhed4PQ/HadetknfmHFcwHG6PJwWZVabgCsReCTZBSyvAsEoFnKqwoDTKPTDtGw1J273BtyniM5JVxPMJItWpVpfBeu0VHLGRAuBUUeI5c366dHFm3jn3P//wJwOA6Z8778ttvv8kJJzQWPLMLshSkMIJnVc+be9nV9AjP1vCYY3KmetfAgfLtt2vk7LPOlMubN8+px4YKIxDeXOMsnqFrjQeKrs7Havrbb+2T8iI4nv8ffDDXhtI66aQT00LMCbkgWfJm+nPPyyuvvWa9RBDyDIuxcM8tWbbMel7ttdde0qNbV6lZo0YIERVGDjhgf7OoK/LvjhMaN5ITTzgh5HzcHyNGjhKIElgQdrhZ4LJ/6f3N52CVfLV8hfWgOvP00+SKyy+3Yws5OcFvXp81S56ZNl2aGCHmkosvSnDrqdscPUZS99pwZCRAAiRAAiRAAoknkHXCiIb/aNywfsoljvW7vLEKIwgHAiNPrAV/iOMPchYSSHcC3//wg9zRt5+dBkLbjBo+LN//eEZn4yfcJwsXLZKOHW6UBvXr2/6T/V9+CyOItz31scdl7ocfhsTexrxhEL7qyit9BZmuPXoKYnYHKTC81D788FyHpsqK0lwDY0XSCCTDY2Tg3XdJuYMOypkzDPxTzGfi408+sSFf+ve9k54jOXRSb6MghZE333pbnnz6aQth0IC75aCyZe02co4MHLw7JE+7Nm3k+OOPCwGlwgi8/u6/d3zIPojSS5d9Zb5/Jthn8KXGeFtQq+lDBsI3GUVg8ZdLZNSYMQLxo22b1iEiHjw4npk2TWa98ab1yB1knoHu4gUVRi4w3hSXXXpJzFzQL/qHGNO5U8cQ4WzZV1/JWOPhBTHwphvby1ENGsTcfiwnPGU+r2+Yz222CSOxMOKxJEACJEACJEACJJDuBLJOGClf5wx7zdJllWuswshDJlb3pk2bc92XiKuNlZkw4PjFUEcoA3f1Yq4GWEECaURg/kcLZM3aNVK/Xr2QFbb5OYVsE0bwPJlw333y5ZKl1nBx+GGHmRjglYzg8at8agSiLSYmPrxUsIIZApVbVBjBCmck4I1Urvjf/3IlKU6lFaWRxs59BUsgr+G94vEY8QojOuPx906QhZ99JqedcopcfdWVWs3XFCNQkMLI7Xf2tbkaEA5o/NgxOYL9I5Mmydx5H1oyd/XrKxXKlw+hFEkY0QPVGI3V+71v7qnVfCWBPBHQ51c4QQDiSP8BA83fG5ukc8ebbKgp7UjvxbwII/B6733rrTZMMLzi/fKPvD7rDSvMYPFFl06dtNt8eaUwki9Y2SgJkAAJkAAJkAAJpBSBrBNGYDhB6dGhZUZ6jIS7u+4eNMjmJmnd8tpcbuvhzmE9CZBAcALZJoxomA0kIO3WpXOIMW/H77/bVZ3LV6ywKzqxstMtKox079pVjqid2xvEPdZvO5VWlPqNLxvqNNRGo4b1UiaUVioJI2rMRli9EcbAp6EqYfj7YvEXVhA8tmHDiLfK518sNobHjVLL5J1wQ9Np/WFGjITXAbxTvjQrrBGqCbH/j2pQ3yYqjtT4DnPsh/Pnm1BM62w8/1KlSkl5Y5BvbELbhMtTgc/z999/L0cccYT8agTQ+Qs+ssb94489zoqX8OL6+JNPBcdVrFBezj3nHLvi3B3HIiMWQTT1K+ARTSjV8yDMfmHygyD8FIStfY34esgh1eS4Y4+NKZRUQQkjS034oeEmPBAKwmHd0utmu/3rr79Kz9632PBAWHV/rxFM9txzT7tP/9N7yc9jRI/58MP58tDEiYLwRUMHh89HgnGsNjlL1pjrjsTXVapUNh55te152pb7imuFa+YtuF+w8AAFc/hm1WqbIBuhlo6sWzcnJx72I4+MX8F8Tmjc2G9Xrjp4YkE8+tFca4wJ86xUqZJUqlgpl3Ce6+QYK9AXcqCUKVM25PsJ99kyww/llJNPzhG2IBK8+957dtGR14MBXpXwJF1hPhMbzaKlEiZkbblyB8mx5j4NGt4S1wyf702bN5kQoWLmXEEqVqwo1Q85xFc4iHG6uQ6H2NH71tts/VAThhPf8X7lx59+EtwH3tCh8QgjM2bOlBdnviTHHH203HjD9X7d2ucVPjPgHml8vidHqMR8li5dGnLEgo8/EXipQISpd+SRIfuKFikqjRodn1MX7tmG85QhckTiHt7x+w7f+0Ubi+VzunPnHzLvw3n22Xmk6eujjz4yIceWmxBkh8kxJlwfnudLzLwWLlwku3btss94NySf9um+6vc76jI5+bqfl6nWNTa/bbQEqdNjcI6eG2udnoc29NxIdXoM+9x9rSLxiMTRj3ektoLyZp8glfteJtvdXPT+iMRDj/Hj6FcXqS0cr+1FOk6P8Wvfry5SW5nUZyLmHitbt09so7ht7K7h/4kikHXCSKLAFVQ7sXqMhBsXhZFwZFhPAokhMGzESPsHdDaE0sIf1zBMIBxWuFBXMF7dYpKWHmBihMNrRA3DoB2PMJJqK0oTc/ekXyuaYwTCSLobTvLDYwRXtLvJJ4HcQ107d5a6dY6wFxkG/R49b7ahYAYPHBA2pwaMXT179bKenl7jH0LJfGZEASx0gEjyyaefhtxAhQoVkstMQmMIE34FHnWPTpmSk5vCPQYepde1bi11jqjtVttthM2bbQzAl1zURF5+9TVrzMeOokWLyMC77pKRo8cIQhlqOeWkk+Taa67Wt/ZVn5Mhlf++8fOW8Dtujcmr8YBJ4I3r5i3IUYLnDXIdBSkFJYzAm/eTTxfaIZ126ik5eUTeePMtk0fueVtftUqVHMHEHXsQYeS111+XZ02S7OOPO1baXXede7rdhmj26JSpVkTz7oRh+5qrrgox8uoxMLAOHT5C3+a8qmcKxv/8iy8I7lct3bp0Cbl/2t7QPiSBth6HazRmZO62db++Qlh5+tlp8ocJn+RXIEa0NPdZ0Gvu14ZbB6GnS/ceNrH4zT12L6bC/hnGYP+iMdyjuKHQ8BnHZx3jcBcB4D6dcN/9OXmH7In//gdRCJ+jcJ9RHIZxjBo71i5qcs/VbXhTXHv1VVZE0LpEvEJove+BB60YO+Cu/jE3GY8wMnL0aOuFGi28r4YN7tD+Bjn6qKNiHqPfCfPnfyQPms9p0AKxY/iQ3SHwcE64ZxvuIQjY995/v6wyAqIW5Gy5rc8t+ta+5uVzqvcfPHArVapoRJL5OW2ee/bZRqSuIA8brzQtEGAR4rFsmTJalesVhq5MS76uobQx2Z5mcSSKN4qEO+9pk0ZaA5Rbp4no9fcP2tA6v4UZWudGqWCfImQrwnvoM3H/fuBnxfzN8G/ORveZw89K6nxW9DPrd9+6dd5nvPtd43c9tU7bd79XtA7tzzPfyyh6n2Ab+9MlPQTGm+qFwkiKX6FkCyPfmdWhX3213KzK/Fb+/udvuzoPfxBXrVrFlxwMLjt2bLerAL9YvFgWLfrMro47/rjj7ApCGE0WLPhYfvzpR6l7RB3fP8R9G45Sme0r/BRPXlYB41zEOEe4NazAxCpEhCpasmSJXfmLFY7VqlaTo48+KiSOtPaJFaLvzZlj35504onWAIIVw8uWfWUNApXNH2pH1K4ddQUzGohllZz2jxV4q79drW9DXg81K3PxR2G4AsM+jIrFihazcd2xUvLd9+bYcCf7GKMD7vPGjRrlWvWMP0SxClQLjPWz3nzTrsY71awkxR+n3hJpLPhj+Atj4ET4rw0bfrZjRt9169TJWZXqbU/f/7B+vXz+uVk5veZbu3rzMLO6vFbNWtZYmV85RtSAgNB8MJwgKbBfQUJ28Pfuj0cYSeaKUneOuAewihfXbPOWrXYVb+XKuGZH5JqvnpfX+03PT6VX/BjDjzT8WFMjQyqNL5ax5JcwMsCs3IchzOup+fgTT8rbs2fL+eeeK00vu9R3qB/MnSsTJz8qDcyq/I43dQg5RoURfBfDu+CsM8+Qg8xnEfckzsPKenzmYHSrVrVqyLlYOQwBA+LJeUY4qVWrpjGQlTXP3qXy0YIF1igJg2v/O+/IWeWsDagwgpXu11x9tV21jzoYz5EkufHxxwuM/h+Z7/inn33Wro4fbQzf6EsL+t/2S2h+oamPP25WUP8uQYQRJGS+s19/K8ogcTOezwcaMeSbb74RPJcWff65XSkNLza3X+3f+1pQwoi331jeRxNGsHL+1tvvsMmqscoeq+3dgv13DRxkv+NhjG1y4QXWO2j79u32e3rmSy9Zb6NrTMi3U03oN7fgmbVkyX+r6JEAGzkXcO8hzCHu8f2Ngbh8+YPN74Oi9tQLzj9PKpvfElpwXdyyZesWm9A6iDCC3wQjRo22XkAXnHeuVK9eXSAg/W7uF3y/vGM+RxAH8X15e58+YZ+9bv9Btjt36y7FihUN8b4ZN/5ee6/jXr2hXVtRj6+vV66UwUOGihs6Ct5Td5j7FOJGI5MzBqIJxg2x5FMjkH1oVvXjt1Pnjh2tN4LfmCBI6cr/E8x9fkj1Q2xYSvxO+dzc56+ZkFL47YtQVl5vBr/2gtZpLhzk9sLCh1hLPMJI3/53ybrvvpPrjbh3nBH5wpUhw4bb36dXX9nCPHNODXdYTPX43bvy65Uh58w1nhjId4Lrd4xHgCliBGE3n5z32TbNCJ64VhBGwHTJ0iXGo6+8fVbi+QyxxM3BktfPKZ77EObwvDv15JOs2Lb4yy9l6uNPSBEjwB1svAj/17yZFC9WTCZPnWqFtuZNm5rjzg6Zq/cNvuNR0vn7HQZGXV1Lw+t/BjUaXncL3ipqqfER97vW6f3iGjy1zjVMeo2gZEu2vIdEMvGzos8Jv2eCW+d9JuC5onUqgvg9J7R99zmkdWhfhZFIbeBclrwTyDphBB9UFNxg6fBj7/VZs8xqvBkm8d/5csH559uxY6XURvNje8iggbLffvvZumj/xeoxgh/oEGVemDHT/vHmto8f9DDENL300lwGY13F1bzpZXb1op5XrVpVk8CxjfS/e0DIqr/r27Y1oS8ihxPRNiK9ZvsKP7DJ6ypgnKthkc45+yz7hx4MEUjq6hYYHjp16GCN7249jmt/U0dbNW7MaJk4cZKNre8egz/YWlz+v7B/wOZllZy2D6MO7lO/clWLK+T0007z22XrEIblroEDrYHvhnbtZIQJdYKknm6BYb+TMTy4YS9WfP213DN0mHtY1O2rWrQwYzk113Ewqjz48MMCccVbYHy6vu11uQyUehwMmZMenRLymcI+hEmAQaOrWfWKFepDTDgMd/x6fl5f1bCb1/wJ8QgjyVxRqrw+M0apRyZNtkYprdNXGJPaXdfGN5dTXu83bZuvkQngByRKrKtn8ksY0Tj93oTYMPzBAAjvDKw49jPgIxk3BGvX20Rnr8IIPucwunnPn3D/A1bw9QtHg+fMwybkEr7DYexzC7738VzDM6nF5ZfLmWec7u4WFUawCrl5s6Z2nwoLMLpBBEGyZpQ+xlsMIsaIoUNyfWfYA5z/uhkPGhiSgwgjanT1y30AQzNWbcNbDc9shBWLVnT8Fze5UC5q0iTa4UnZr8IIrnPXzv/lVPj773+MkXOVfGaF8TVyzllnycXGC0GvgQ527tx58sjkyTaZNe4Xr1ANgeFuI5wgjNk95ndluFBqaO/ThQvlXuMFgQUUEA5glHaNw9pnpFeI+ci3EkQYeeLJJ+Wtd2YLflOG867Awowjah8RNhxYpLGE2zfoniEC7kh2r5+vHr16y9HmMzPPhKA72SwC0c/APCNEYkV+W+NppaGV4N3y1NPPSFHDCN4P3vLc8y8Yr6tXLTt4mXqL/qbFwpSRw4f5hofDfY4FGokSBnQM04zn0avGAymc95EeF+5VP6P4fXC2+U0ZqZQ2objgPaNFfxt4vY50v77iHsS96Pcc0GMS8RpPjhEVec4wv0G3GYHsyisuz5VvzR1jXj+nKozgcz96xPAc71z9u8/97GjIPT9vPncs6b6txiTMQ42UqPMu5oBxCkXFE2wHqdNj3HMj1cXavt84IrXvNw72CSq8nmCg9wLvIdDIzUP5YJ8yirVOz/Nr368u1vb9xsY+QSU1rmcixhHtetrJeubr9exEG3MXLEoLG7fOJ5Ves04YUcXOVftT6YLk11j0B7J35Wq4/vSPAbiKIyRHNbPKEH8crjZ/KL5ghBrE4m1oYte2v75dSBMqjCAMR/NmzayxA4ZbrJqC2zZWRx1S7RAbegHu3vVMLOrOnXYb1UMaysObbF7hF88qYKBWYQTXDX/Aweuhqllp/Neuv6xx4IUZM6wRGKtA77z9thDDiiuMQOTaq9Be1jiA2NMbjGFszvsf2D9g0Q/CTPgZ4/K6mhVtwsj43brvsJlT3nz7bWtUDCqMQGAsVWo/Oap+fWtgKVyksPWSmm6MF/ij03ufelfRouMZRqCBgfXss86UqsZzwFuqGGEJHhZuWWlWOWPlIwySWL2NFZIHHnCgrDeGo5deecVyA0ckePYaq3SVKtqDMf6M00+TsmYFIgwqH5v46FvNqmwY/WCgSbQwovlU8GxQwdadV7RtNX7kJceIGhuSsaIU81LDIMJRYAVz3Tp1rYEP137WG7Ps6lLEvx/Qv79ZQV0kBIUKI7HebyGN8E1YArpCyV25E/ZgZ0d+CSMqUOB5eo0JeeMWCBAQWP1W+K81q8r7mUUEEDNhqPYaslUY8RMv0AdW0I8ZN856ayFkSizlpZdftosxTjrhBGllQnW5RYURd8x6T7t5M3COzg/9R/Law7FBhZENP/9sBZdiRoRBYmbv5wttwWsS9WrMRl2kkk7CSKR5NLvsUjnPeCD5Ff1ddustva2g4XeMJoCPFsJIn39oI69hI2MRRtQA3qZVy8D5SPzmF2vdRCN8fzBvniDcHX67QrjDfYrf0Pjtis9kz+7dbLO6OAMeWvDICVJ0cQVCv+Ez7i0qnkbLGeM9LxHv9V5obPJnIKxerEWFkSDn3WESrWPRDQqEzetv7GB/D4UL0alt6rM1vw38+rdQXgQY/a2CPD633XJL1GdSXj+nKoxUMDmiIC5rgYcTPOhclvhbAQufEH4MYcgytbjCiK6uzdS5cl4kQAIkQALZSwBiiAptef07OHvphc4864QR9RhJl+TroZcr7+9iEUYgetzRt59ZDVjMxA3vn2uFE2JJ39mvnw235P1DW3/Yd+nUKSc8wLPTp8trr8+yIWaw+hVl8+bNNkcBXMkRqzkRJZtX+MWzChjsVRgpaRLY9rvj9lwrfCFs4Z6A90EXI2QhuaoWVxi50Hg1XWqM5d7y1DPPCGKR4w9g/CHslryuknPb8G4/8NDDNixMUGEE5/utUMRKWng5Qbi4u3+/iCuQ1RAY1FiENnHPYlW4G5bDnQvifCPeN0STZmbFrFv0j16IUYgp7zWevm1W2T5uVtuiJFoYGTDIhAgyImmra68RhE+Ltagwcl2rVnJojUPDno4wQV5PFz3X73q5DalBLS8GDbcddxuJdPE5wDPSNTa4x6hRyM9QqUZkHO83/ljuN7fPZGzjh9gIswIzlbwv8/qDML+FEawYvtJ4r7lFw9H5hat5zIRAecfkVXBX+rrnqjByXetWNpSUuw/bCFmJ+xReHOPHjvHujvgeSaSnmPBYfoYzFUbcuP7aF7zbet/cM6dtGN9ghOtrhPTKlSvn1PttBBVGkNx43L0T5NDq1aVP715+TcVcl07CCJ6H+C5wy88bf7ZiLEIq4V6CF4Mbxgrfzzd27GS/wyaMHyfeRNna1qw33rThzxCyqY25r8IVFUYQbm3sqJHhDotYH4swgt8N+P0AcaKt8cSD8OD9rovYWR53as4WfU6r2IjfR3M//FDe/2CujBs9yrY+cbIRUYxXznjjMevm0orUtT5zwnHE7wMs9kG4M4ToQtgjePQURFFRKF5hBOH1vN/f3vG3NL8hdMEI5gxhBAJJuO9XPV+Fkbx6rWo70V4TIYyE8xZ2+47nc6rCCARoVwjX3yIQ8JCIHUUX1PiFaHTHg+9370pUd38qbqvHqEaDwBxQ1GCUimPmmEiABEiABEggUQT072AuCMgb0awTRvKGKf3PikUYmTL1MXnXhCZoarw7zjd/kPmVcPHPVRhBQk1NhKl/cLsGSvzh0679jRLuj0K/PqPV6R9z2bjCLxqbSKuAca4KI4iFjZBnfuVFE64KXhEIm+GGfnCFEWXvPR+CSvcePW2Yqr7GsOAabvSe8Ypsbhu6gjHaalY9J1ZhBAYHGHn8DC4qAvh5u2h/eI1VGPli8Zcy2iRW9RoU3TbVgIQV0PcaAycMYyj4QxhhPWBIQCgeeHZ5C5h37NzFHpNoYeTmW/pYL7CgHmjesam44a33vocRD8Y8LcleUYpwdQh7Bs8qGMz8CuKU9+5zqzWQwXDm3lMqjCTifvPruyDrdEVmrN4ZBTnGoH2pkTJo6Bj3mQdvLjXseftT8dLvu3TXrl12cQA8vLA4QBPhIpQfnpW7jAiHzzbEam+JJoxAKO9l8i14Pz9uO3i2IDfR1l+22ufJLuMdiLLh5w3GW25NSgojr5ucCs9Mm2ZzaMBrJRElnYQRhBxCaCdvwXMRv8kmm+Tq+E012NxPeEVBnjjkZMEzRw353vPxfoHxMoQhNZropMJItOP8+tA6/V4LEkoL+TxGjxlrDbo4H8LDweXK2dx1FcpXkJo1awT20tD+g7wiRBU8IzXvCn5DzXz5FZkwbqx8ZL4HEDoLnh7w+IDXJ+aEMEbegs838pjhM4nvbXwvo/z++w4raEX6DYxQmQ+b0KQQ5PE9gmcEnjUHm3wulStWkiOPrBtYiPGOK9J7DfOFRRcIdxtrUYO8m3MlaBvIlQFOfiEE3TY0TGF+h8BLhDASxDM2ns8phRH/5Lzu/cJtEiABEiABEsgGAq4HCbYZWiv4VacwEpxVWh8ZizCCVewI8eN6fXgnrwY+rAaD0VWLGrlhZNY/zGebla9IAugKIzgeK8OQGDDWFa3al/c1m1f4eVl430daBYxjVRhBjpH/mRBofkUNSN5Vaa6R8F5jNPCGfNK2kMsD94272jieVXLart9rrMJIpHAV+kd+NFEmVmEEOXwQqitSAmYIH0igDmOpKzrpqj8IIjCehiv5lXwdhn8IAPEKI7iXIq2CLWJCmrkCRLJXlKrByM2x4MdeuQ81iYlxb2nR52Yi7jdtM1mv+mML/esKzWSNJd5+80sY6T9goE14Dc+oxiZRuLfoc9d9BuiiAyR2hieZX4lHGMEzF89HeF/g8wSxFd/VmpcCSa0RjioVPUb08+eXO8WPU5A6/V7LbwNrkLGEO0ZzjIQTRvQ8eAnBg8ddob58xQpruI9kgMf58EyEhyLyssA7MlxRYSSSoB/uXK2PRRjBObhn55tk5RCmv12zJldup0oVK0oHE6ZTxUXtJ55X9YTSZz1Ekk2bN8mdt91mw3ciTJKGlOvZ+xYrkLgeU+gbYspL/2fvLOCkqt4/fExCRSQNJOxuVLC7GxUssBFUEFAUW8FAacXuwsDWv91i/mwMbBCTsrBQ/+d78F3uzN6ZndmZ3b2z8xw/MjM3zj33OXfn3nm/bzz8f2H8EjYk6jRo0CAMS2KH0nNVNS9KqfXcc887FaHX95REMGtymFA6x1132cUWFeX1qaef9tGm49wqK68cahjl26k9M1VHGFEKQaUSjNZriTu+it3rOeiQgw50W/hUhTXViiGMqK6PWGZrhfyd1oQworGmR2BkG39dr9PziCJc6oOjRl2z5PgQgAAEIFD6BOy+qDMptxIS1Z29shNGqDFyiNvU5w7P1vr4gs3ycjvrjNOdfnDGNdVYkNe3fuzJg9GMKnUpjJSzh5/NUXW8gLWvGeiyCSNm1E1Pz5KrMGLGvKjAUIiXnJ1z3GsxhRGLRNp3n31COou442lZvsKIRcEonVxcxIcdRyKlGEdTmMmTVOcYl5rM9tOrGeiLHTFiRonuBx/kNt9ss+ghc3pvESO5eFKmd1iXHqWW2ixTbQcbqxko09OB2N9QNmEk1+vNjsXrPAIy5KQXV523NvO7mhJGlApHKY7SrwMbicTFkwedGoqwX3TB+SEHvTkmnDSgfyiWbdtGX+27NFMqrWwRI1bMWvnoDzrwAKfaINGopmwiel2n0lKR7Rt8RGtVaWCirKp6X5+EEbsutttma9d1//3DqVva0gYNfPSdrzuTqVkB8bXWXCM4xWTari6EkfSxSFDQ3+zkyVPcCz5SRoZ03UOHeicdi6pM3yffz4roUgoy1USTAKIIrNVXXc0p9ZNEjd4+GnO7bbZxu++2a9hOxdgP8fdDa4oSUbonPS9puSJto0XG7TunKmHE+tOrngNUZ+cbL359+OFH7vkXXwzLqnsfjvYdfW9zLKFJDhn5tkKEEUXRKpq2quetU049zX3va9gd17uXW2fttfMdYs7b15YwUsjfaU0JIzlDqsMNZfixVFnR93U4JA4NAQhAAAIQSAQBUmvlNw0II/nxKtmtc40YiXpkZyuaKuFEAoqa0gdYuo+6FEbK2cNPP5hlKK+OF7DmMB9hREa0qy6/rMKYlqswYmll9thtt2BM0HEL8ZLT/pmaWEg8yLXGSDEM1fkKIyqOrLzlMugstuiimU6lYvlee+5ZUbfHjJd1JYyYQFBdL+tChJG69Ci9aNhw9+FHH6V4ZFdMUOSNUtdI9Ot51JGu4wYbVKxBGKlAUSNv7AEwX69RM1IWM5XWexPfdyNGjQoe4YrqiisULgj2PaD0hK28SKprpyqvfTOAV0cYsTR4mbyY7bsliREj8pq/ePgIl15kuJCLqT4JI1bXZa89dq+IItAzXS8fdfinjzpUwfrFF188FpelyoyKKnEbmtG8NiNG4sZhy/T8ceoZZ4RUVad58aJDh/a2quBXGd8bNW7k+vm0iXretbRa6ljP1Iv6SKtuXbs6Pfcq0laOJdbM8SH6vGPr9GrfOfkII9H99d6isasSs9L3q+pzEHN9qk6xzVZbTREbTZs2rVRHpBBhxFLvVpWuUoKyHLKGDb2wIjq9qvOqzvraEkYK+TutKWFEQoOaCQ/V4VeT+5g3LJ6wNUmZviEAAQhAoJQJ4DSQ++yVnTBiocGdO66T2Ie93Kcv9y1zFUbUo3linTbI/8hs3z72IJk8UutSGClnD79CvIA1wbkII4pckDdzevqmXIURGQllLIwW7C7ESy72wvxvYSkIIzZn6QaVbOdl68yYp4guRXZlajUVMWLGAnnJyoM231aIMFKXHqXX33Bj8NLNVBTbOFiqsXRDXX0SRpJYYyQpESP6TpQBX4bDqtLJ2N+yjJutff0AFZuuKiKpusKIjG/ygg/G5FNOjq3NcM+99/n0Pw8nMpWW6k3ob0upvlSrSqn40tt333/vnnrqKbfXXntlTOsY3cf4V1fkjfZVU+9zSaUl4eMkz0bRvMcf29utvdZaFcOxegyZ0g7putAzor6fsqVQVYe1LYx89vnnoV5dtjRZF/oaH3KyqKouRQWQHN/o72zSJ594gfuoIHKeGvmbUS2+/735pjv80EODuBmN6FT39ryT6V7x/gcfOAlZmYQRRaUoCloCZTSiKzp0ifQS61WQXmMrZjNhJ1Nxc11vioycMXNmiIiLpooqRBjR9av6aUoZphouccXbLaVetnSDxWJhzzrpqYBz6V/p1pQKLZMInd5Hdf9Oa0IYMdFBY/z6vSfTh5qIz+YIkeQxJgIUg4AABCAAgbInYL+Rx183vOxZZAJQdsJIJhD1fXk+wogZHlV0UcUX45r9IFMRbRkorNWlMKIxlKuHXyFewOJmwsj2223rlOoqrr388ivuqmuvdcsvt5xToXRrUWFE9WKUOiKumeCmmhHyBlQrxEsu7hi2rBSEkaeefsbn8b7NbeZT2/XofogNPafXKV995c4659ysxZXVkYygMmAUO5WWGRMlkl3ojRcLLLBA7LgVwbSyz62dfk0UIozUpUep1THawqcPi6ZNiZ68DFo9ex8bDDuXjBqZUhwXYSRKKjnvzXu70IgRfRfKEHarz88vg67qLQ0+5+ysqfL0HThw0CA3Y8bM8Pf8j/8sz37VI8jUqiuMqD+r9dS508bBqBs9hlISjRk7NnjfJzFiRGN95NHH3J3jx4fIgN49e6awlae70vwppWRVNQrsvO27rFSFEdWf+tBH0ih6QBGIEstPP3VQyneyomllpNU1dcLxx6dEVcgAfe9997uHfM2rXGpK1KYw8sUXX7oLLrrILeDr4EiAlyE8venvbOjFw5wcY0YNH1bU6IE77rrLPfrY4051Rh574gl3qX++scivp595xt18621h3SOPPebO8wXvlRbTmu0rw77WRe+Ruk6VZkvP0ZmEEYvKlGAq8UWF6qNN86bnHNWGqSrKJ7pfru/Fdcj5c+uXddl7L7fTjjtW7KoC8kr5qHRhim5TdHk0hVkhwogOYvur0PyAfiek/I0r5du1N9wQ7q9at+oqq1SMqybe1KYwUt2/03IVRiTeDPPpM/v36l5Wjo41cZ3TJwQgAAEI1F8CUWcHoiwzzzPCSGY29WpNPsKIGR6zeWONu+OO4Nm60w47uC777F3Bqq6FkXL08CvUC1iTZ8LIaquuGrz/KiY08sZSYW237Tau6377VayJCiOnDDzJrbD88hXr7I0MHIN9IWqlPlAufUu9pvXV9ZKzvuNeS0EYkTFWaXNUfPy8c8+JLUI+e/Zsd+dd40NalGgRb4kdKvgqA0smD1/l35YYpVZsYUTXnFJZqEZCeroom4/oj3yJJ1FDbyHCSF16lErY0Hdp82bNgsE7mjPezlti0JhLx4ZoO0XdRVt9Ekb0kDXhtbfC6ZVz8XV9l5nRU9emhDE1/b0e17t3xjpdYaP//nnYG6XH33Nv+LRp587u0B7do6srvS9EGLHrU17obdsuGwyLCy+0cKjT8LGPcJGx8cKhF4VjtmjRwnXu1MlJMFcrRo2R28aNc1/4v6NoU0SEuLVt29YtvNBCFatU/yT6fKEVut+MvuRSJ497faesvtpqofC1+vjYe/ern2222tId0K1bRT/Z3pSSMKLzUOqiaFNaU4kCaroWJXy0a9c2ukl4/3+PPFJxja25xuo+HdkyIfJGkRb6rm7mv9P6Hn9cSFMW3VlimQQAa7rnSHiS2L1MWsSORAPV00lvSjOpe4a1P/0cTvZF1PV3kx6VvK2vjxJNP/jEk08FIUznqL+pdm3bubbLtnE//viT+8RHsU71QqREgv267ONTWW1vhyjKq9W0kcDZ3Asc55x1ZkW/FkGrdX/5sV12yZiK7wFtpKjqM885JzCWOKJnq5YtW7hvv/0uRN0cdmgPJ+eIjyZNCsyX8gLD0UceUdG/7q1XXHlVEFjFVdFRYrXooos4PU995q93fd+ob91nos9UFZ0U+OYFX8PkxptvCX9TcoJQZIpY69xV50V/f3KSkTgSbSZsiE3DLAKv9pGos6P/HRFts31E2KjRY0LEne6x7fz3gq7Pz71Yoxor+u7SM6iulWI2Xdv6bok2HU/Cg47fzDOItv327RIchWyZooC/9HVvrE35aor7448/w9w1THMY2nqrrWIdz6rzd1oTwojOQfd4taSm0gqD4x8IQAACEIAABKokYFmTtGGp/26v8mSruUHZCSMUX6+6+LoMD6edcWYweh7qPdnTi7XLsCJvtwb+R48MnjLsWqtrYcS89MrNw68QL2DNnQkj+gGuuhzROZdBQ2KZ2MqQcf7gwcFAYXMeFUYkiqgYZtS7UT8sJX7IkzrO0z5qQC/Um9XGVBfCyC3eePSU9yJVrQAVWs2lyUj4xFNPh9oh6V6h8gQeOWp0SBESx81ywsswcqxnLk9ha0o5c5X3Jn3nvfeCQarYwoiOY9ETMn709ucsw481GXU0dhnQ4sZeiDCiY5jhpS48Su3a0nl167p/SkFdXcuKuAupBmOKZ9cnYcTmOkmvFiasGiP5PPQVEjESPf8mTZq49t4oLePtNltvlbOx0gxb6itbCks7ViHCiPqQ1/Vd99zjZs2aFbqUoVF1O7rss4+T0Vxe6PKUl9f4jjtsHwoha8NiCCNWpyccuIp/MhVZ1z3pIZ/uS9+dMg5ba+DvX1tssbnrsvfeKUZqWx/3WmrCSPo5aO6WWnJJJxFpT19bRNdgpiYxSfcpXe/WdM9fa8013SEHHRgbbSHDvSIycmniP9YLBOntiKN7pggj6eujnxWxakKcLdf3ptK7fTn5y/Ddasv1qvueHHQ22mjD6OKivLcaaOosPcJK92elqtS1mKkmkP5+FBUqIcOaDOwS7iQG6LweePBB9+7Eia5Nm2Xc6T5yLNok8slQ/vY774bnJzlEWNO8dd54Y7fLzjsFo70tL/aropDuufdep5pZJvrqGIpk2d+LE7oHpze7P6cvj/u86847u7323KPSKp2rrtW333234m/cvqd29tErNTHfEntOGHBipbFkWpDulJLPd1u24vL5/p3a/UPimaJ3rNk8RCNrlN5RUXWZvltt3yS/2n2eSJEkzxJjgwAEIAABCJQWAYSR0pqvao82n4gRHWTi+x+4y6+4wslzS15qyy/Xwc3vjeL6gacfi/LiOsx7taanNqhrYaRcPfwK8QLWfJswIu895WifOetHt5yfd3lpfvHll+FHsbaLy5cfFUYkilx7/Q0hJccSTRd3ilr46KNJTkYEeboqokSG/PRWHS856+PFCRPcc8+/YB/Dqww/8qRt6T2eo8VmGzZs4JTKy1oxDdVWGFhGKqXHSG8y9ig9TbQpImSEFxBkQNE+EhfER8z1A1ZslSpCnryKtok2eTcq1YXmS+tWWXmlkMrj519+9X+/74dCsaqJobQXNSGMyHNUhtLnXngheHDqvOWBLkPlx598GlJ4yXN54IknhhRB0bGbMKJzjou6iG4rL1oV+o22uvIo1Rgkeih/vEQfzZXmR966+vyuF6L0N5MpJV0xr7coj7p6nzSPUss5XtPF14vN2wq1K2LizNNOLXb3sf3JyKnvZ9V5UkrMqJgdu0NCF2r8X3/zrVvMe9K38kZaCbX5tFIQRvI5n1y2VY0WpWOUU4u+ty3iKZd963ob3fc0dgkDityL3t/remxxx5dwojR53//wfYg6yVYrJW5/W6b7rYR3Rco0a7ZEOHcxqK0moWKyjx5Syqwl/TXTuIpIkGKOS841M2bM8JFQ7fL++y7mOGq7r7r+O03a/d34m4Njvvd5259XCEAAAhCAQDkTkINBPg6E5cKq7ISRpD7o1fQFl68wovHI6/s6b+S29BRaph9FCmtXTYS4wqd1LYyUs4dfdb2ANa8mjOyw/XZuj913d1dfc603rk8MaQC0Xmkz9t5rT6fw//QWFUYuHTPaveeNw+pPRjc1efkpkkQGbqVjyNTy9ZKzfuRxee/9D9jHrK86D9VBsVZMQ7UMICpcPOHll4Ox0Y5hrwf61C5be0/R9CYD5QMPPhSiTWT0sSbBYCOfU72rj0pIr9Fh20hYueqaa7xBfmKFR67SjcgLc3Mf0VBTxdft+HqVqPXsc8+HFBe2XIa2rbfcIlxL0RRatt6EEfuc7VWpWaLRKLZtXXiU2rEl9I0bd7t79bXXgvBky8VeHs/pApitL+b1Zn3W1aseqoaPvdElyTih+3t10ntZxIhqah3Wo0clpOmiZKUNClxwydjLQqHl7gcfFP5uC+yO3TMQ0HetvqejTWKm+Ce5xkh0vLyHAAQgUNMEdC/tcmi/cJikFV83B4i7fAFZ0nzV9JVA/xCAAAQgUF8IRO/t1BqpPKtlJ4xURsCSqgjI8D11qg+j/+dvL4a08Sm0as9Lraqx1cT6Uvbwq64XcFQY2a9Ll4DVokXMq1QCR1xLF0bMY1eevBJH5I0cZxyP60vL6tpLLtO4amO5vCK/8TnIF/WRFK1at8ooiKSPRVEhytku4UlRMnXRJOrIo1TREypCW1UkSDHHWFcepfquUMSOUhJJKC5Vr/vqzEUShZHqnIf2MWEk0/41EXFlx9L35EmnDApRVRf7ouv2/WnreS0eAUXYKTovriGMxFFhGQQgUI4EosaTpAkj5TgfnDMEIAABCECgGAQs6hJhpDLNshNG9LBnDU8TI8FruROIE0ZyZZJJGMl1f7aDAARKj0B9upcq/Ztq9mRqyoEflx4v0/ZVLX/t9dfdpz5VntrUr78JhcTj0hRW1Q/r8yPw6GOPuR9+mBa701prrRXqJsSuZCEEIAABCEAAAhCAAAQgAIESJqDf79jA4yew7IQRVLL4C4Gl5U0AYaS855+zh0B9IGApNpKU3iuO68233OqefvbZsEqReBt23MAd2r17rUZZxY2LZRCAAAQgAIGkEtBveN3fKbye1BliXBCAAAQgAIHSJIAwUprzxqghUFQCCCNFxUlnECgLAhY1khTPk1IRRqZPn+F++eUXt8CCC7hmPv2d0hXSIAABCEAAAkkgoHt7dep11eTYNSare0J9kZokTd8QgAAEIFCfCSgdtlrnjusQPRKZ6LITRpJmyInMBW8hUGcEEEbqDD0HhkBJEkhijZEkGnNKcnIZNAQgAAEIlC2BqAiRpBojZswZ0Kt72c4NJw4BCEAAAhAohIBlUMLJIJVi2QkjqafPJwhAQARUPPrHH39yTZosFgp450NFBagnT54SdmnbdlmXqUh7Pn2yLQQgkGwCSRRGkk2M0UEAAhCAAASSTyCpwkjyyTFCCEAAAhCAQLIJIIzEz0/ZCSPmbULoUPwFwVIIQAACEIBAKRKwiFCNPSnpvUqRI2OGAAQgAAEIJI2A3eO5vydtZhgPBCAAAQhAoLQJlJ0wYgpZv16HOEJxS/viZfQQgAAEIAABI1AqNUZsvLxCAAIQgAAEIFA1AYtS1ZZJSu9V9cjZAgIQgAAEIACBpBNAGEn6DDE+CEAAAhCAQMIIyHNTxVmTFH2JMJKwi4ThQAACEIBAyRHQ/X3Yf8VZx183PBHjRxhJxDQwRCFd4wAAQABJREFUCAhAAAIQKHEC+r2s1qnj2gQKROay7ISRyLnzFgIQgAAEIACBahAwI4UeqpJiOLE0GzodUm1UY1LZBQIQgAAEyp6A7qVd/jOcJCU6g/t72V+WAMiRwO9//OEmTpzoGjdu7FZeaSU3//zz57hn6Wz2448/uu9/+CF2wEstuaRbdNFFY9dlW1hMbuprypQpbqEFF3Lt27fLdljWQaDWCZBBKR45wkg8F5ZCAAIQgAAEIJCBQBKFkQxDZTEEIAABCEAAAjkSSGLESI5DZzMI1CmB3377zf38yy+ucaNG1TLOF2PwN9x4k3vuhRdCV0cceqjr1GnjYnSbqD6eevppd8tt42LH1POoI13HDTaIXZdtYTG5ffnlZHfOkCGuefNmbuj552c7LOsgUOsELGKkf6/uOBJG6JedMCJjjlqS0n9E5oO3EIAABCAAAQhUgwAepdWAxi4QgAAEIACBEiBg93giQktgssp0iE88+ZS77fbb3XbbbO267r9/nVC4/Mqr3Guvvx6OfWC3bm7rrbask3HU5EE//ewz9+abb6Uc4tXXX3PTp89w1RVGiskNYSRlavgAgZIgUHbCCKFDJXFdMkgIQAACEIBAXgSoMZIXLjaGAATqOYHJPpXHHz6lh9oSSyzhWjRvHt7/MG2amzVrVnjfyHs2t1lmmfCefyCQVAIWparxJSW9V1JZMa66I5AEYWTa9OnuxRcnhFRam222qWvYoEHdAanFI188fIT74MMPqy2MFJMbwkgtTjyHgkCRCJSdMELoUJGuHLqBAAQgAIGyJWCpNpJUuA1hpGwvx7xPfMaMGW7q19+4adN+CAbjpZZayrVu1Srnfmb7dBmfffa5Ny7PdG3btg2G5XzyeP/0009OOajVFph/gZBuIdeDK7f2lK+mhrG3bNnKtV22jVtsscVy3b2g7ZKQJqQ6J/Dvv/+6b7791n3r/xf7Vn6ul1l6abf44ovn3N3MmTOdvFT/nvO3W36F5StEhlw6KOR6++uvv9zUqV+Hsc/5e47Ttbq0H3ujhg2rPHS/E09yul7U+h5/vFtzjdXD+0suHevefPvt8H6P3XZ1u++2W3jPPxAQAbu/631SaoghjGg2aEknkARhJOmMamp8hQojxRwXwkgxadJXsQmYPTxJv+GLfY7V6a/shJHqQGIfCBiBr7/5xv36669uydata80QYcfO5dWKfUU9AL/7/vtgCKhuMbJcjluft7n1ttvcV94occzRRyVyzjOxlzFl9CWXuiZNFnNHHn54ps3KdvnUr792s2fPdm3atAkGJvH64ssv3cILLezatWtbtlxyPXEzUiSp+HquY2e78iWgNAt33X23e/W11ypBWGXlld1BBx7gdK/M1GRUH3v5Fe6TTz91MrZbk0fmTjvu4HbdZRdblPH1nXffc5ddcYX7888/wzY63uBzzs64va2QYV45td98KzV9hNavu8467tDuh7hFFlnENq+R11I0+miulNrkiy++TGEy33zzuc033dR12Wfv4FmbsjLyQWLIFVddFVJ0RBYHUaXHIYe4tdZcI7o45X2h19uEl15y4++5tyK6wzrX9bbH7ru7bX26lkyCnAQRCSNqrVq2dOcNPtfpnNVOPPkUJ7FmgQUWcBddcH5eAlHogH/qNQEJI0krvl6vgXNy9YbAAw8+6O69/4E6TaVVb2DmeSIII3kCY/OyJUAGpfipRxiJ51KWS2VU14/+fJt+aLVs0SLf3Upy+9FjLnFvv/uuO/zQHq5zp06JOwcZAM6/cKiTgefE/v3C+K69/nr34oSX3FFHHOE22rBj4sYcHVAhXpXqp1Av3uhY9F7jOemUQW755ZZzpwyca2BI38Y+y7A+5auv3Ff+/yW9oatd23auQYOFbXXW159//tl97o02M2ZM90b6Rq5lq5Z+/7bBaJF1xywrX3nlVXflNde4XXfe2e215x4ZtyzEG1Wdmifu559/HoSj5Tp0yLngYHWPLV6//f57xnOyFU29N/DCC8fPwfCRI93E9z9wJw3o71ZeaSWnEOqBfq4leg459xzrgtcMBCSMvOSNJ3ibZADE4sQR0PPNYF8EU8bqRRdd1HVcf33XrNkS/nt3pnvDiw0yJMvgfM5ZZ8VGcOg7YphP1fD9Dz+E9brPNluimRdUv3AffjTJ6fts2623CnnFzQCdDkGCzNXXXuf++ecft+IKK7hJH38chJiqhBEd89zBQ8I9TkbuddddxzVv1txJLHlv4sRw72natKkbNHBg7NjTx1Hdz6UmjHw0aZIbPnKUmzNnTogQWX311dwijRu7b7/7zr3+vzfCnCni57RTTo6937438X039rLL3B9exNJ2K6+4gpvfiwkff/yJ+8zf8yQsHO6L28Y9WxV6vT38f/8XRBHN1Wqrruo6tG8fRJDPv/jcz/n7YQp1vXXr2jV2OiXAjRozJqzbd5993I47bB/ey7nn+BPmPh9u4P8G5PRBg0A6Ad3j1Qb44qw0CEAgnsAzzz5bsULOVs8891x4xtDzQccN1q9YZ29atGjp1vD3oWK26Bii/S600EJuk86do4sqvdd9Qr89V1lllRA1+/r//ucm+vuLfk8v7aMT1/PPGrr3pTf99nvWn6ua7CGZfmtp/QsvvhjuwZ38dg1ifpMpteMrr7zi5Mj5++9/uBYtmjv9ltT9KdOzlPpNb/kKI4Vws2N/+NFHbtKkj30E8tdu2TbLBI6yGUyePIXi6waJ18QRsPs7NbdTp6bshBFCh1IvgOinV159zV159dXRRTm9lyHh0jGjc9q21DdCGKmZGSzUq7IYXrxxZ/bgQw+5e+673x3Wo3vGh8u///7b3XTzLe7lV18NRhbrRwaTddZeOxhNMgkkMu7fcced7iX/QCijWrQpF/ie3iO0U6eNo4tzfq8HRD2wyUtUhrS4Vog3qvrTQ+Vdd9/jlF4l2pZddlnX+5ieWQXTQo59lRd8XvbCT1WtX9++bvXVVo3dDGEkFktJL+RBr6Snr8YHb/dv/dgfdPJAp8hKa/oOu/DiYW6Kr8mw9ppruuOPO9ZWVbyOGDUqGKT1ndL7mF4pwrecEkaOGh0EW333rbfuuhX72Zvnnn/e3ejvFfqh3+OQg52MFldcdXWVwogMEBcNG+5k5N94ow39voeEfa1fiSx33HWXe/yJJ8P6mowQLCVh5I8//nQDBw1yEtI7+/vood27p0RXyJAx5Lzzg+gRFQ6MqyJ6+vuICxmIdtlpJ7f3XnvaqvD65FNPh0gURWxcfOEFPjqzScr6Qq63z7/4wg05/4LgeND94IPc5pttltK37p/XXHd9uJZO9aKORJP0ZsKKrrNhQy+siCZ6/4MP3LARI8PmcqCRAY8GgaQTUBTLhNfmRssh1iR9tspnfEf2PCY4OuR6xuuvt57r1fPoXDfPabsjju6ZEsFqO8kBZNTwYfYx9tXuU4o4lUjyvzfeSNlOv2X39s51O+6wQ8pyfbjwoouDc4fEdYkYcU11rs4+d3AQXfR7NNr07DL+nnvco489Hjv+tv635LG9euXs7JGvMFIINz2XKfr4kUcfi55SeL/D9tu5jTpuiDBSiQwLIJBsAmUnjBA6lPmC1I+lBx58qNIG8oD4aurU8EM87sdXw4YNXJ/jjqu0X31cYA8QRIwUb3YL9aoshhdv3NnooefkQae6X375xQ0fdnGsl4vEjMuvuNK99c47rrE3ssnjZlmfmkkp1yRKyCCzwvLL+9zex6UY4XQ8eW1eMPSisK0MK/rbkoFCnqwTvQew5Z8/vIePTuqcX3SSvG9OOfW0EAlhkUPp52hGEy2vjjfqQw8/7O6+977gMbvSiisG7x6x0nnL60e52/v17RNb1LXQY8sLVg/wHTq0dwstuJBOIbbtv+++rn37drHrEEZisZT0QmqMlPT01ejgJb7LSK7v9UzG4Hd8NOgoHxUqQ8Bll4xJiSCw/Rf2RmbdD+QQkt4kFN90y60htVL6M9Ejjz7q7hx/t1twwQXd0UceEYQTRY/kIowoMkFG8sY+0uHC888L95r0Yysi4tTTz3DTfZTj2WeeEaIj0rcpxudSShPy8suvuKuuvTYIAud7g0xcmjEJSjLK6N6bfq+0/XV/G3jigFh8l195lXvt9dfdfl32cTtsPzciQxva9VLd6+36G250z3svW0UzKqoxrp0zZIhTHvNMNUIu888m8v7dxHvpHuajnK3JkHPn+PHBG/jcs8+yxbxCINEE5PgwfOyNYYwUX0/0VJXV4ORU6h8sKs75Nf+dq3SXqufUaaPKjm1L+ChV3VOK2ZQhINpm/TjLO0uMD5GxuQojGpN+i2637TautY+cVwTtixMmuAkvvZxRgJezxw033eyyiT13+1SQD/noxz13383ttuuu0WG6e73j4QPeAXGJJZZwO2y3XeCysM+08Lavf6XjynlBv6F1/82UMjLaYb7CSCHc7HesHF223Hxzt95664bz+MFH9z79zDOuoc/+oGe85s2buaE+UpkGAQgkn0DZCSMWMdLfhwZ37rh28mcoASM0Y4FuXPKKK+eGMFL82TemdeXFm+mMzKtSOci7e+/euGYPRnrwGdCvX0pkhh4q5ZWpB7u4dBdmKFP6E6XpUoSINRm5FIXygn8oVbTJ6BEjgkHN1lf1ag+bRx1+uNvIexint0K9UZVz/bwLLgxiqTyF1l5rrYpDKIJGqWL0QNhmmWWCka5ipX9T6LHVl4yEMhbq+0jfS9VpCCPVoTZvHyvOmqRUWggj8+aHd5UJyFj9ySefxH4namulpRow8OSw4zlnnZkiLtz/wAPuvgceDJEHSp0U1xR1csKAE52+A4d6AcO+m5QG6/Qzz/JF1ud3x/buFYRo7Z+rMGLGhzjjfXQcFkknz89NN9kkuqra76OpJgpNE6J7olJ0TJ4y2c2c9WNIO9HWp5yUASmfdBn5nIzqisz+bXYF8/R9TfyI86wd6iOIFKWTLWL03fcmupGjR8emYCzketM1NPH990OReKV3jGsmnmRKhyXnCF17p51ySnAisD7sOjmwW1e39VZb2WJeIVBBIIk1RhBGKqaHNwkmYL+/tvP1n7ruv3+djPSbb791p51xZl7CiFJ7yjlAjiHRpppqiiKJu8/omUDPPLp/j/SRKXEOI3IwlLPe+UMGp/xG1jGUSnTcHXeEVN/p9zk5Fg467fQQsXnm6ac5RY9U1fIVRtL7y5WbokmVZltjPNjXpdtyiy3Su/J15OY6JiCMVELDggQQIFAgfhLKThiJx8DSbAQQRubRMSM+ESPzmBTyrlCvStu/ul682cautHLyBFKaCuU6TW/yBNVDmwwPA/qd4Fb10SLpTZEjMojJU1WpLJTSItqUlmTllVZ0Sj2V3hRJowdOtdMGecNG+/bhfVX/KDRZD2y/+zRdIy6+qNIxtb8ZVKrrjWr77+YLDe+5x+6VhqQxyMAoQ1i6Ucb2re6xdTA98OsB9vJLL4k9v0oDilmAMBIDJY9FZqSg+Hoe0Ng00QSiwog8/PSD1pp9X8SlNbJt9Hq2rwMyefLkkCpDXpTW5EGqKLrovSRXYeRO7/n5yGOPhToWqhWWqd1+553uscefcDv5lBcqKF6MVqw0IW/7qEqlflKkZHpTxOKRhx9WKRVV+nY18dlqcckxQdE40XZ0r94hL7pqTqUbbWw7pcM89vg+4ePoEcNjo1Js2/TXbNdb+rZxn2+48Sb33AsvVIoI0baKOO03YIAXn5atVB9N1+h0Xy9H59uoYcO4rllW5gSSKIyU+ZRw+iVCoFSFkW5exNnWiznpzWpVxTm6adtLL7vcvfHmmy7OEU+OcIN9uko99+i3dL5NzoVyUjzCO6Pkkla6toQRe3bTc4Hqw8U5dhg3hJF8Z53ta4MAwkg8ZYSReC4sjRDIRxhRgcqXfO5jhTym50S2LuXpLcOBjMEqUJWpKUXS+95jTqkCfvv9N+8t4AtfrrxSTgZi/fhWGOZ3Pi3RrFmzgoFDx9OPxHbtKhcRi45B6YB0k//88y9C2g0ZvFfzOcUXW2wxl4swkm8RMXkGPu9/3KpVVcBMxb0/9bnMFeYaZ4gvxeLrhXhVFuLFG53z9Pe6fvqfNDB4t8hzOK4pZZTyvsugcsF5Q2IfjLSfRTcofcqGHTvGdZVxWc/ex4baI32PPz541WbcMLLCHsa23nJLd+AB3SJr5r0txBtVBpf+XrDR37o8gFq2aDGv48i7u3zamP/z6WMUYnzwQQdWrCnk2NaJBKM/vEFqrE93U91mhk6Kr1ePIPm+q8eNvZJLwJ515PV4yehRKd/pZ559TkgpepyP+FDtqEzN0vwd5L97t/Lfwdma/bheasklw4/rTNs+9fQz7pbbbqvSuHDJpWPdmz4FheqQFKvOSDHShOh5SsYTFWfdZacd/b1szeDJqrSRjz3+WKjbIuPB4LPPzlrANROfQpYrpZRSS6215hopKWH1DGAFynUtZBMQevlUsqpnorRUinzNtWW73nLp49zzznOKiElP45XLvmwDgaoIWM0u6nlURYr1EJhHoFSFkUwOn+bgp3ug7oXpTdEkiiqJq81mzhrVjU5UqlE9Jx3YrZuPbtwy/dCVPteWMGLZIrI9a8l2pXSXCCOVpokFCSBg93eKr6dORtkJIyhkqRdALp/sx1suqbTMA06e8fLmjmvjfbHmhx95xOdj3s7/oOsSt0kQCm67/fbwYzN9Axl899u3S0ZPcaV+uP3Ou5xCHeOaiqLK61OpE9KbaqmMvuSSkB86uk6iiIq1jht3u3vb5yGPe4AopIiYDOwytMf1Gx2HGXMzGdklOin9g6IQTugz14vxRp//c8LLL4e+O26wQbS7knhv15QGW2wv3kwAVFT11nHjnGpUbL/dtrGb2YPRRht2DGHAsRv5hfZguI1/qDvAP9zl2lSnQxEp8kRRyiil3MqlmffOmaed6tq2zS4CZusvkzeqiW/yfh5+0dCMXbzlDXRjvKEuk5dRxh39ikzHtn0kGDVpslhBeVslcr7/4YehDopy60qgO/WMM4Jn8FlnnG6H4rWECOhB7yVfoDVJ6b1KCF/ZD9Xuw3GpD/v2HxDSJug5QA4dihh8yTtfyLi/wfrrVXzXXnPddcEpI1M0XRRyrsKI0k2oyKnqk6h+SFz0QojO85F0mQqFR49byPt8jT4SwhU1qftZ/xP6xqa0sjodXfbey+20446FDC+vfcXqpJNPcUqB1vuYnqHui3VgxiAxv2LspWGx0oa88OIEH0Xyl9ukc+cQAaQVJ/lUVbp/ZIoctT7TX7Ndb+nbpn+2a0LP2hd6xwzdj2kQqM8ELH2nznH8dcPr86lybiVMIN97ZE2caq4poXTsqhw+dW/TPa6Bd2yIc0ZTrU05q+lVWQpUC00t1Nfy91dlP9BvxTibS9jQ/yP7x2c+RbOeY376+ZeKYvayaczwddOSJowo1fUzzz3nC9Jv7/bdZx87jZRXhJEUHHyAQEkQQBgpiWmq20HWtjDyqE8ZoaJhSj+0r08Hsdqqq7lGjRuFCI47fKoIiRfr+JoGxx3buxKYD7yhU6GX+rEoz8TlfdGu9u3ahbRCirZQQSx51Ksgs1L8RMMf5QmvH8nyFJQX/B677eaWabOM+3vO3z4P5iRfxPIN96//T5EkcQKGPQxJQMq3iJgKZCof5XJZwk2VskmGcj1cyFCuH+zl0Oz6qy0vXjE9+9zBoSi60l9lepi7zQsnT3gBRcKJBJRMzWqJxOVnzbSPrsVLx14WQoglBGaK/EjfX/lOFemyjK/tIWGkkJbJG9W8fyW6ZDuGhVBLVBzpixXn0zIdW31I8Dzm2OOCIdKOL2/dr6Z+FYxDzZs1S/m7zue4bFvaBKgxUtrzV5ejt6Li8oqU57/VB9GY5PRw1DG9wg99S61oArHWR8Xfa326qBd91OwWm23mDvEOGNlarsKIDAyq6SQjgSJflXZqmaWXruha0bU67rTp04KB/sjDDnMbb7xRxfpivrHnnFzzpyviRGkp11h9tQpnjfTxaPwDffrHRo0auTEjR9TK97cEGznBvOdrnsQ9D1pEaNTJ56GHH3Z333tfGH7U0UFj1zkozZkcJXJp2a63qvaXs8h5Fw4NBqOqnj+q6ov1EMhEQEKEWlLqcVr6To2J4uuiQEsigXzvkTVxDrUpjGj85swWrW9m4n1cJImds+6bEmZUi1NN91sJK1ZoXfYY/eZLmjBikSwIIzaTvJYaAbu/a9xJuccngWHZCSOEDuV/2ZlhujYiRuRZoIKRMgSc5T0jW7VsmTJgGUBP96mN5MEQl17oVp9u4kmfdkKCyo4+z3ZcUyHT1VdbPSV/uLZTbm559+uYZ3qP8fQiYlOmTHHn+lyZ+kEdJ4wUUkRMfZ7oRRl5S8hbfdk2bSoN3VITFTN/eKWDJHBBNq/KmvDiNS+PqoQM83LdZ6893c477RTIyZjy3nsT3YorrlBRkPxFX0D92utvcIpKGHjigFjCEsZ0TcsTddq06SEdirxTt95yC7evj6pKL4YX24lf+Ohjj3tR8S7/EFlYUVV7oI3zRlVE1k233Jpi6JLXtHK1N226ePCklWhnxi6Jj/K4zfUcsh1b563UeBJ/lJf+iMMO9Ua3a9zHvqCy/obUZNjcdZed3XbbbpvzMcOO/JMXATNSJKnGCBEjeU0hG/9H4IUXX3TX3XBjMMgf2+uYSqmy9DwiYUQCiQkjeh44ywvoaqr/pDpQahIoJIxs5YtxHuSLcmZruQoj6kOGA0WDKtWnvksljEgEnjFrpvv662+C1+LjTzwRipyeceqpVaYMzTaubOvyNfrcfc+97qH/+z+34/bes7JLvGeljtf7uONDXYz0qNBsYylk3bXX+3ma8FJwwDnDOxEoJWa0Re9DFv38+BNPhkKx2i76HGbCSM+jjnS5ROVWdb1Fx5H+XlEuFw69KDgIyZFGzxTl4iSTzoLPNUdARpMuh/YLB0iKCGH3dw2KiJGam3t6LoxAvvfIwo4Wv3dtCyMfTZoUnk/0u0yRoWq33Hqbe8o7o2bKcKFtLEWpfm/vtecelaJhTYBImjCi39n6vZ3NQcRsCaTS0kzTkkaADErxM1J2wkg8BpZmI1CbwogZ/7OloTDD7Oq+7ke/vnNvwDZ+SyN0WI/uwUBry3N5tYLOcQXEbP/BviBrpogR2ybTa1VFxOxhKi5CYM6cOaGYtYwi2eo6ZDp2qS7P5lVZU168N3uj/9Pe+B8nvEU5KrWJjCcmwimMuM8J/ULtDYkBCilWtMQEb3y5xhthlP5ERVzjml0btk6CxAFd9w/XcK6CgvZVyhLVuNGx5X1bnVaVN+p99z/g7n/wwVDzRIzUouPv1fNop6LDFn6t9QqjziXVR1XHVl+W4kRGIXkTzfl7jk9ts7w3ajo3ZcpXYb22W3ON1cMc6j2t+ASSKIwU/yzpsb4TkDhx9bXXBdFD37lbb7VV7Cn3O/Gk4LhwysCT3Ao+ElVNUSPf+xRRMgZYqsOrr73WvfTyKz7idFe3u486zdbyEUbUj+7/d/g0oe/52mtyopAIvMrKKwdjfMtWLUM9K3lbKtJR9TxqotlzSjaDQPS4ioSV8J+psKttq3uXvtszpduy7Qp9lch1+x13uMeffMo19vfIPscfVzGf0b4l9p96+hlBhLrysrFhle7xKgSr1zXXXDOkFtGKAQNPdrp3Wb2qaD/p73O93tL302eJIvKulSOAopTEqkmTJnGbsgwCBRFIojBS0AmxMwRqiUC+98iaGFZtCyO6r57kIyfluKbfe8r4oWemv3y0xwifMSDueUS/VU8edGqIElGkqH73prekCiNP+OcHpXvPFg1jWRMQRtJnlc9JIIAwEj8LCCPxXFgaIVCbwsiIUaNCagPVx1DqhbgmYUICRVwEi3n0KerjCJ9uQsbTaLqsuP60TDd11S2QACHhIT1SxfarKhenbRf3WtUNXnk0B/qHBOXxHOYN23q19trrrztFKJSTsbcqr8qa8OJVyG5//zDX0BtMhp5/XtZrx4q8mTCiiAXlWZWxXg94Jk6YMKKirErREtdUj2PGjJnh+pvpPYA//PAjN9l7JMsruOfRR+VU0NVSu2QrBhd37OiyXLxRH3zoIXfPffenXItW9Fd99fGFaFXINiqMKJWWRKJsLZdja//JkycHz6S/vfe2wrbTC9rrurn+xpvC33SPQw52m226abbDsq6aBGQ4mfDaW2FvirNWEyK71SkB/bgd543kekbQd0nnTp0yjkfRIYoSSa9Fkb6DPcMcctCBbovNN09fnfI5X2EkurPuMw29MGLCuaWyyEWQifaT7/t8jT4W8VmVx+cZZ50domJyjbrId9zaXs93ihRRei/dj07wwn67dvF1uHQ/Oq7PXMcbGW0sb3rccfXsKLFEjg9x9V9sn3yuN9vHXmVwGjFqdIgU6dChfRi7jE80CNQUAUu1QZqNmiJMv/WRQL73yJpgUNvCiM7BHFsPOqCba9WqtVNN1E06d3KH9egRe4qf+poiShEqB4+Rw4fFRj6e71NG6rdtVc8PdgD7XV7d54hcuZnoocwi5w0+N9bxz2wYCCM2O7wmiQD39/jZKDthBIUs/kLItrQ2hRErYtmhQ3svDDSIHZaM18q1rXbpmNEpKa9++/13N9L/eNSNVE1e80stuaRbcsnW3si8jFvJFyWXWJLe5H0p7wY1FReLihLRbXMRRgopImYG5mieTh3fbvbH9e5VKc1HdHz15X2uXpXF9uJVMd2rffHc3Xfd1e2xe3ZvX+VNl4Flbx/+u8vOOwf0KjD7sY8iae9Tq8ijU80ejuTZe2L/uakJwoos/0j0UT5zCRBK8XGOF1QyXZPWzfU+FczzXhTQMXSsfFuu3qhKRXfDTTcHL2kLmZYn87u+dk/TJZqGY8vQqJo4SounXLHyuM0mUOZ67Og5Ka1egwbzxMPouhv9+J7149TfulLf0MqDgKXaoPh6ecx3IWc5/u573MOPPBKeH44+6qgg5mbrb+To0e7d9yY6/ejfytd9ytTOOudcp3pmudyrCxFGosfX85AMDLpHXOTrj2Uz4kf3q877fI0+dl8yB4JMx7R0VKr91qFD+0ybVXt5tG6XxAtFimRygLGDmOAhhwY5NsQ1pbw8ru8JYdUlo0ZmjNTM93qLHkvRKzIyydlA9fWOOvLIjPe+6H68h0B9IiBDzrCxN4RTIpVWfZrZ+nUuVjM016jKmjj7XA38OnZVdg1zctPzRVzxdRu/6r8qNZbSRrdu1Sr8HlVWD2X3iGuy18j5QL93020e2l6/x2++9daQYjNpwojGZ1kj5MSr+mJRRwX9/h0xclT4HYwwIlo0CJQGAYSR0pinOh1lbQojKqos4UM/XONCL9NB9Ovbp5Inujz3Xnn11WC0/tJ7l8uzMtpUv6PXMT1TfhRb2gRtV11hpBhFxFQIVB6nUYOuFV1Xqg5FMVhRsug51af3+XhVFtuLVznclR7rgvOGVMo5ns5YnsaKUKrq4fdhn199vM+zrsgG5VrNtelhUV60Si9yQNeubput41O8qD8Zffr7aBV5wSriKZsIEXf8fLxRFd0y5tKxoQ6O6uFkauYNpBRaCq3O1PI5dqY+0pfbd5Ye5CWe5ssjvT8+xxNImscJxdfj54ml8wgosk/RFaoDou+mvscd69q2jY8amLfXvBpk6627bogaia6z93KwUFolRXEonVX0h7JtE30thjCiKIgh518QIgz38Km7dvcpvGqy5SuMPPLoo+7O8XdnLUavOZEIofSY2cSF6p6XateNHDPGKee30qAdf2zvKudGxxpzyaXurXfeyZoGzIxgKuB++qBBlYZY3evNOpLoNXL0mPAcu41P89Z1//3q/TOgnTuvdUsgafd3S98pKkmpe1K3M8TRk0jgD2/D6NuvfxDJW7ZoUWmIclxTPY1itgt83Sn9ZrT2p7eDKLpezyIdvKNetG27zdYptbCKJYzoGGcrstY7hizssyYo88LF3lEjm81CdV1V31VZFlZcYQX///LeBvSXk4Opm895x8M9Q6pm2T8WW3RRd4CvnynhRe2NN98MdT7Ch//++drXYpOjnWxIi/rto031uNLHUgg3OeBK/NDvbx1L42rmnQN/+GGa+8Kz39/XB73ymmtCPVvVTqNBIEkE7P6uMREVOm9myk4YsQuBi2DeRVDVOzMyxqWuSt9XeZZlGNBNzgpWpm9jnnM7bL+d28/fOKLNCnEVs3iofhRL+Jg8eYp7wRfCVjoMnUtUZNCNTcU/1bKlTcj2AGFjL6SImB5s5GWv3Jtn++Lzijqw4qU1nSIjOg919d6uDYWn1rYXr0U4RIvHZeNgBp+qirSP83lIlc98u223cV332y9bl5XWXeOjVyZ4r5lNO3d2h/q6OZmaRaVEo1cybZu+PF9vVBlqZIiTCKMUWZmaHlpV82fZZZd1Z51+Wuxm+R47tpOYhXowl+e22iWjR4VQ7ZjNWFQAATNSJKn4uu7vpPcqYFLr+a6KMrv8yivcOz66TffW4489NvxozeW0f/75Z9f/pIFh04suOD82dYKi/O6+976cRfBChREZ3ZViU9+18lpUGsP0H/65nFs+2+QrjEiMOPe880Kh+MHnnB2bR9zEdhlwrIh9PmPKtm3Uc1OF0Q8/tEfsGOL6sHHJmeZMfw+LE9gVyTHx/Q9cXOq0Qq43jUfXqa5XGYr23Wcfp2dmGgRqg4DupUkrvs79vTZmnmMUg4Du7fc/8GCIGNB9OtpUg1G1GIvZjji6Z4owkq3v/ffd122/3bYVm2Sza2ijXCNGtO2jjz3m7rhrvN6GY+hY2ZocO8Tp8SefDE6x2nbBBRcMzqFHHHZYeD5TrdEXfa1O2UX6eEeWtXx9L7Wnnn7a3XLbuPA+l3+UucBSj9r2hXBTH/qteeVVV1fUttQzgp4tDzn4ILfA/Au4c4YMQRgx2LwmigAZlOKno+yEkXgMLM1GIB9hJJqXOZNB0vJQxgkjYy+/wv3vjTfckf6GuPHGG2UbVrXWKZrk1DPOCDf69JQNSoegtAjy+pP3X1wb5b0O9WNVP66j+ciLWUTMHiwUibCvF45OPPmUUHT1Qh/FIEGnPrbqelXK00QeJ8Xw4jUBSlEd6XUr4pjL4KOHHgkE8g5Of+CyfayobPSBztZV9Wp1aTbbZBPXw+fAz9SURkU5TyX25XONVMcbVQ+ySmGmSCxFjMhoFNduufU299Qzz7gdd9g+GHXSt6nOsdP7yPTZvrOqilbJtD/LqyaQRGGk6lGzRbkSkPPDsOEjQhpOid/HeMOEim/n0yRCqN6XfvgqWlXfL9ZkCFERd93LBvQ7wa26yiq2KuNrIcKInChU6P3lV14N0a+nnzqoRlNo2UlYhERVkZK2vV7tPrbFZpu5br7AfbTIqiIilaYsGF8G9Hcrr7RSdNeC3k/13qOqcSJRa8ftt3dd9tk7VtzIdBDNpRWU3WjDjv6579CK+7z4WxF3OXJc7KMilSvdWqHXm11PErqOOOxQJwcMGgRqi0AShZHaOneOAwEI1C4B3S+/9w6sem3frl1OGUNqd4TZjyYHXD3L6NkwPVIl+56shUDdEEAYiededsKIHvasETViJLK/mpExl4gR9dS3/4DwQ1RhixbyGD2CvMjl4RgnjJjnu3JSKjdlXJNB+uVXX3F77r5HpTzLMrbqppQtd7TlhezrC2+uucbqFYcw0UM/oPftsk/F8ugbiRQqkp4ujFjaoGIUEVO9BkXdKJWY8pnLqLDuOuu4Y3sdEx1Kjb6X8eOLL74Mx9CNviZEKjuBQrwqi+XFqxQeYi6jv0SOqOHGxhn3aqm85P0jL6D0ZgXR0yOUZHC5+957faTwfMFYk76fPkvEG3T6GeF6i/NGtX30MCbxRQXP5TGcayvEG9XSiG2z1ZY+tLlbpUPq4fZEz1NCo7yEVecn2go5tgxoV/nwZHkidejQPtptxXsrRJwvk4oOeFMlAe6lVSJigwQRiKbLlJidSci2ISsVhNISRpscP0b5tEb6Xtc9op1PwdWsWTN/r/wieIbKW1BRgUpVkd4efOgh9/Szz6UsVtpQfUdqLBpTtHXcYP2MEYYSpVXjSqk3dX8+1tcei0vZEe2vWO+rkyZE39lKEaq856qZJdFI56vP7773XrjvyoO1Ku/SfM/h2eeeczfefEsQQ6IiVqZ+Vlt1lSB+RNcrb/pwny5DadJUs06pPuQJ+okvHKvnD4lrx3svVqUBibZCrzcTk3SdVZWSTcfdbZed3ZZbbBEdAu8hAAEIQAACEIAABCAAgRwIlJ0wgkKWw1WRtkm+wogJH8rl3LfP8SledDKIXnnVVU5Ft+KEEXnhnT14SEh3tasvaK182VEDhtIiKCekfqQedfjhbqONNqwYrQz5F1x0kf/ROr/rfsjBsV7/Ek5UR0IG8FHDh6X84FROS3kXKozzqCMOTzF0y3CuFBKPPfFEMFinCyPFLiImT9CXXn4l/BD/zRtjTujTJ6TKqDjZGn5z/oVDKwrYp3Mu5qEL9arUWIrhxfu2zyM+2ucTz8cLVsd+5tln3U233BqMIyrmqmvemrxVh40YGa7V9GLuMqxJoNN1tfOOO7rddt0lxUNGBrhbfNE5eQPLgHS2j8zIZNixHK29fd0cRc7k0gr1RtW5KXWcmuqfbO0FEmv6Wxg5anS4fiSMSiCNtkKPfdu4ce6Jp54OAmjPo45M8czW98fzL7xQYQwbNHBgRvEkOibe1w8C1BipH/NYE2cRNVTn0n+DBr7QqI8QTW8SMxQN9/a77wbDuNZLEFlm6aXDd3n0mSS6750+vcQjPs1Erm2TTp3cYT4yNb0pb7iesVTTTN/3h/toAkUs1GbTd3i+aUIkqIwbd7vTvrrvW1NhUgkicY4Ftk11X00YyXX/TEK6IoJvvOlm96m/b+s81CRYyLNVOc/b+nSR6a3Q682EkfR+M33ezzvz7OCdemgQqK8ELEpV50eNkfo6y+V3Xvc/8IC3K8zJ+cRX8lGVa0acOnPekQ0hAAEIQCArAYSRrHhYKQL5CiMSL1Q0Wh7vKpi16iore3GkUSgO+t3337v1/Y/5Z7wnX5wwouMpImTUJZcEg3LrVq2CJ17jRRr7YlyTgmAi46dEk7jiZSrcfef48UH40A/udm3b+R+tbXxfPwUPv6ne+0/G6Ew/Ik3U0TiW69AhpAmSd78KcutBZNq06cEgki6MaHszUOsHc75FxLR/tFmkgZYp+uW8wefmlQIi2le+78X32OP7BOOFjPIqniaxqCZa1HigY0VFsLjjFduL145xiS8m/qYvKp4tNZRtG30VK9UQkaHejGNt2iwTPGGnTPkqXGtKy6VUGOnnNsEX/73BG1sk0skjdIXllgsiyKwfZ7lPP/vcSRAT975ecMmUlkXXpuW9z5bOKzpmvTejSyHeqK+8+ppTDRSNQV7Ty/vxy4P28y8+d4oCiks3U4xj63vlCp/SRvOlJqPU0ksv5Tn+7b7y+V51TantuftuXnCq2ULE4UBl+k8SI0YQRsr0Yqyj05bBXBGk7byBvLbFiTo65YIPq3umngNnzZpVcmkn9OyoZ0jda9q2XbbSPb1gOHQAgYQQ0P09afW6EEYScnEwjKISOK5P31AwPNdOd9phh4yZBnLtg+0gAIHyJqD7qdqAXpnr15YjobITRsyYQxqt3C/3fIUR9ax6B9f4fNtKlWBN6XSO9FEeStP08COPZBRGtL3SSckTX8eWh6Y1Gc+390Wsd95pJ1tU6VXCyoO+COqXk78MeaujG6gegh4qMnl16kf7XXff7Z70hm4ZYNWUPmHjDTd0B/q0VmN8VIE8ReOEERm4q1tELDpGe3/aGWcGfvv6vNg7+jHXVouKFbt4znvvtWeNHTp6rFwOUmwvXh1T0UdKkbasF9BUX6Y6TYXYn33u+ZBOxfaXMLdRxw0DP4kmcU1RTkqx8paPWNG1Z00iijxoxT5bihTV41Fdnkx1PKy/9FcTRtKXZ/qcSUhUBNi999/nBYmpQSDR/hJ5JOR098XnGjduXKnLYhxbrJ56+hn32OOPB89pO4g4S5Dpuv9+bpWVV7bFvNYAgSSKEGbM6dxxHcc9vgYmnS4hAAEIQKDeE9C9lOLr9X6aOcEEEHjppZfdnL9zjxhps0wbIuETMG8MAQKlTMAyKN113XB+L0cmsuyEkci587aGCch4Od17U3733fc+DVCTkGoik4E401DkoSfj+YwZM31R6aZOEST5RC8oF/cU70Wueh3NvVd7pnRE6ceXF7w8A2WrlmdgPuNWmohCi4gpWkAFrnX+itiQIFRbTakuZLxW0c8LfHFxGfhLqeXrxStR487xd7uDDzyg4BzdEvSUk1wiYK7Xmthqvn/wkVY//fyLa9GieRBD0iNM4ubA6uLE1fGI276mlilCZPKUyeE61d9oPn8vhYzJvmOmec/tBj6dzFJLLYXndiFA89jXvDc7dVzbjfcPVjQIQAACEIAABEqfgO7vL3lxRP+Ttqr055MzgAAEIAABCIiAHB+G/XePRxhJvSbKUhghfCj1IuBT8ggoJdhtPkXTRht29PVOjqjVAd7lRYL/82LBumuvHYq61urB6+Bgp/oC5zNnzXQXDx0aaoXUwRCqdciZM2eGSBelsDpl4EnV6oOdIFAfCegeT3hwfZxZzgkCEIAABMqZAJkfynn2OXcIQAACEIBAzRAoO2HEvFyFEy+Ymrmo6LVwApZGS4WrVcC6NtuIUaPcexPfr/WC77V5jnYs1Y5REfTOnTb26dEOtcUl8aoUXPfcd787tPshbtNNNimJMTNICNQ0AQsP7tfrEMSRmoZN/xCAAAQgAIFaImApPLm/1xJwDgMBCEAAAhAoEwJlJ4xoXmU4UfqP/r7gDHnIy+RKT/hpTp482akYt9psn1bpxQkvuRWWX75OIgFu9rVdVC+l+yEH11pKpLqanjfefNO9//4HbovNN/M1Rpatq2FU67hKATZ9+gzXpcs+roFPFUeDQG0RsDDcJN5DTRghPLi2rgaOAwEIQAAC9YWA3d91PklLk4lzY325yjgPCEAAAhCoCwJyMFBL4m/4uuARPWZZCiOk2YheArxPAgGr62Fjadeurevd85iSq+9h4+cVAhCovwTMazOJ9UVk1MHhof5ee5wZBCAAAQjUHAG7v+sIScusoPv7hNfeIhq05qafniEAAQhAoJ4S0D20y3/CCA6ElSe5LIWRyhhYAoG6JTB79mxffHuaL3g+Xyhg3bRp07odEEeHAAQgkIGAnAtUlBVvkwyAWAwBCEAAAhAoQQJJjhgpQZwMGQIQgAAEIJAYAjgYZJ6KshVGLByXPKWZLw7WQAACEIAABEqNgO7vahJvkpYKpNRYMl4IQAACEIBAkgjYb/ikRbQkiRFjgQAEIAABCEAgdwJlL4wIFQ9WuV8wbAkBCEAAAuVJoFS8TMxoolnC+aE8r1XOGgIQgAAE8iOgNFqlEAlqtcS4v+c3v2wNAQhAAALlSUD3d6XAHuBrbNPiCZStMCIcpfIAGD91LIUABCAAAQjUHgHLPZ7E2iLpFHgATCfCZwhAAAIQgEA8Abu/a23Sc49bVCgGnvi5ZCkEIAABCEDACEQdBpN+f7cx18VrWQsjUeDyhKVga5QI7yEAAQhAAALzCJjhhIeqeUx4BwEIQAACECh1AmY4IQqj1GeS8UMAAhCAAATmEaB22DwW2d4hjHg6PAxmu0RYBwEIQAACEJhLoNScCLi/c+VCAAIQgAAEqiZQavd3nZHu8dQTq3pu2QICEIAABCAAgcwEEEY8G8tVWgrpQTJPJWsgAAEIQAACxSVQ6kYHi3IRFSJdintt0BsEIAABCJQuAQkhXXze8VKNEjHHB80A9/fSvQ4ZOQQgAAEIFJ8AaaXzY4ow4nlZeNH464bnR4+tIQABCEAAAvWUgBlNdHqlajjR2HkwFAUaBCAAAQhAYB4BcwzUklIVFiSOqFm9kVKMegknwD8QgAAEIACBIhHAcSB/kAgjMcxkRFHr36s7dUdi+LAIAhCAAATKg0CpR4ykz5KdD/f3dDJ8hgAEIACBciJgzg+lKoqkz5WdTyk7cqSfE58hAAEIQAACuRKIOgekOw7k2ke5bocwkjbz9lClxTxYpcHhIwQgAAEI1GsC5mFSXwwl0cmK3t9JnRklw3sIQAACEKjvBOz+Xl9/35I6s75fwZwfBCAAAQhkImD3+K/fezLTJizPQgBhJAaOLqpoITciSGIgsQgCEIAABOoFgah3iaXWqK/CgYkjJvzo8zB/zyeCpF5cypwEBCAAAQhkIGBGE622e2CGTUtysd3P9fxiqbV0zp07rkMGiJKcUQYNAQhAAAK5ErDf8PXV+SFXDtXdDmEkB3J2kUUNRXr4UuvsH76spS+zz9Ht8l2WrX/1a/3ZdvaZY86dl2w8jFkcx7hl2frKlTfHFKlkXLfFGEe+88kxRWDe92a2vynYzmVljLLxsG3yZav9VHhVzbxLZERQM6NC+FCP/4l6mEYZyJCiZtyNsX3Wuuous/3i+o9bVhfHLMY48j1PjikCuV1XsJ3Lyv42svGwbWCb+rslGzOxMm7ZtrNtYJtMtnZ/ixpJ9Js2+llzV1+brl17xjEhKNv1LA52TWfbzrbR9rZdvstsP46Z+ns9X45xc1AKbOPmPd9zz/c8OaYI5PY3C9u5rOyazMbDtoFt7T4HmKND9H5ebr/h516lRfx39s8//cv/2Rns1OWIf5u26/jvE089H1jpVZ+jy865cEzFMuNp++k1fZm2t2XWly2L6z+6zPbjmB3/he3ca5drKP+/T/v7ibuGosvS2ervz5bl+53AMVP/Zo2jfffBtur7SjGvIetL8xCdA7vHlMOr/tZ1/tG/eVsWZWLXain9zWvMNod2Trmep5179Nkj7tyt/+i1ZMs4ZurflV1DsP0pPE8bD7teuIZy/x7iGuIaSv/7ifu+tW3serG/tXJ51T3LuNg55/o9E8fOlsXdC21ZXP+2LO7+G11m/Ufny5ZZ/3pNX2b9a3n6eUb7NxbRZdYXx0z9Tonjnc42yjuOrS2LY2vL4uYzuoxj/lTxNxy9bmE77/kyer1w3f4Ufs/a95r9/dj1Ut+vITtfXrPb9jPxcZlWsDwz0GwPINwk53KzLyC78et6si8pW8YX+VwjqP2txV1XxrG+f5HX1HnaA0IcW1sWxza6LP26jV7L1n/ctWz9R78TbFm0/7hz55gIXbrO7HqpqWvIjqHj2PcQr5XvVWJif5Ol9DcfvW7ivmdsWXT+7TxtWdx3W3SZXS9x16r1r1fbzpZZ/1G2tizafxxv64tjYki3a4HrNv6eaXz4WynPvxV9f9r3ql0L5fhq9xGdu92D4u5L0WXp3yna15ZZf3pNXxb3t2bLov3HjcP6is6ZLeOYNf9MHDef0WX2t2PzqbmxZXHzacvi5tOWRfuPm2Prn2OW53c41xACkL4DMn1P6HvBvjfsu4LXzDb8qtiQSquA6BuFlVn4WLYQMx0ifTv7rHW2b77LbL+4/uOW5dt/3Ng4pqgwn2Jg10K+15XtF8cxblm+/ceNLd9jFmMcHFMUK/+txC3Ld45hG9BWuq9Uh+3cnvg3nYCuMa7LuVTs7y0bD9tGe9h22ZbZNtretst3me3HMcszFUm+10vctcY1JCqV/2ZhO5eLXR/ZeNg2cRzjlmXrS9tbf9m2s23i+o8u03taZQLGzxjbZ22Zvsw+a51tl22ZbRPXV67LsvUfNw6OKSqV5y5uWb5s1YfxtX3tc1z/cctsv7i+cl3GMUWq8hzDdi4Xuz6y8bBt4jjGLcvWl7a3/rJtZ9vE9R+3LFtfHDM1VZd40IpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQNx3XTcAAD8mSURBVAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpLAGGkuDzpDQIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgQQTQBhJ8OQwNAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEMidwJw5c9xLL7/sJk2a5GbPnp37jvVgy/nnn98t0XQJ17lTJ9e+Q3v377//uvnmm68enFnxTwFhpPhM6RECEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARqkYAEkeEjRrrB553n9L7c25JLtnbXX3ut23yzzcodRez5I4zEYmEhBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIlAqBHXfexT33/POlMtxaGaeiRS4dPdr16NG9Vo5XSgdBGCml2WKsEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgkEKgzwknuKuuviZlGR/mElhooYXcd19PdQ0bNgRJhADCSAQGbyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKB0CMyZ85dr1rI16bOyTFm7tm3dBxPfy7JF+a1CGCm/OeeMIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQjUCwI33niT69m7d704l5o8iS8+/cS1atWqJg9RUn0jjJTUdDFYCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQMAIHHXyIu/vee+0jrxkIPPv0U67jBhtkWFt+ixFGym/OOWMIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAvWCwK677+GeevrpenEuNXkSD9x3r9tm661r8hAl1TfCSElNF4OFAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABI4AwYiSyvyKMpPJBGEnlwScIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoEQIII7lN1AM+3dg22xAxYrQQRowErxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFBSBBBGcpsuhJFUTggjqTz4BAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAiVCAGEkt4lCGEnlhDCSyoNPEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUCIEEEZymyiEkVROCCOpPPgEAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACJUIAYSS3iUIYSeWEMJLKg08QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQIgQQRnKbKISRVE4II6k8+AQBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIlQgBhJLeJQhhJ5YQwksqDTxCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFAiBBBGcpsohJFUTggjqTz4BAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAiVCAGEkt4lCGEnlhDCSyoNPEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUCIEEEZymyiEkVROCCOpPPgEAQhAAAIQgAAEIAABCEAAAhCAAAQgAIGcCPz7779uzpw57qeffvL//+xmzprpfvzxRzd79m9+/39dwwYNXZPFm7gllljCNWnSxDVZbDHXoEEDN9988+XUPxslm8Bvv//ufv31V/f333/HDrTBwgu7xo0bu4UWWqhacx6uL9/3T/6ampN2jPn9NbSwv5YW99dVube6EEZ22Xlnt9qqq7h//vk34P/X/70vtuiibsj5F4TvhCTOCcJI6qwgjKTy4BMEIAABCEAAAhCAAAQgAAEIQAACEIAABLIS+OOPP9zPv/zipk+f7qZMmeJeeeUV9/Y777qvpk4NhnKJJRJGFlhgQde4USPXqnUrt+Yaa7hOG2/sluuwnGveonkQSRr5dbTSJCAx5K2333H333+/+/PPP5zXyCq11n7ed911Vz/nHfy1sECl9VUt0DG+/e47d91117tf/PUWbQstvJBbb9113V577hldXJbv60IYueqKy93+++0XRJB//OQHocoLYc1btXb6fkhiQxhJnRWEkVQefIIABCAAAQhAAAIQgAAEIAABCEAAAhCAQCwBGUBlrP7kk0/cfd4g/sijj7l33nknGELl3V9VU+TASiuu6LbdZhu3++67ufXXW88tuOCCbv75569qV9YnjMAvv/zqhg0f7i72/2eKGFlqqaVcv7593WGH9nDVEcFkYH//gw/d3l26uO+8QBJti/hIlK5d93djRo2KLi7L93UljBx4wAEVvP/555/wd7xEi5YIIxVUkv0GYSTZ88PoIAABCEAAAhCAAAQgAAEIQAACEIAABBJA4K+//nLfff+9u+OOO92NN9/sfvDvf/vtN/fHn3/6aIGqRRGdglJoSRyRkbx58+Zu1112dkccfrhbZpllXKOGDRNwlgwhVwLvf/CB69uvn3vxxQkZ519zuv7667txt93qmi6+eN4CGMJIbrOBMJIbJyJGUjkhjKTy4BMEIAABCEAAAhCAAAQgAAEIQAACEIAABFIIKI3RG2+86W646Ub37LPPuWk+hdafXhAppEkgUc2RDTfs6Hp07+46d+rsxZJmhXTJvrVEQELYpWMvcyNGjnTffPttxqMqEqhFixZOaZc6d+rkFllkkYzbxq1AGImjUnkZwkhlJnFLEEZSqSCMpPLgEwQgAAEIQAACEIAABCAAAQhAAAIQgAAEAgGlx/ndpzN688033dnnnutef/1/7ndfcLuYTbUnVlllFdffp1zacccd3GJeLKlOPYpijom+MhNQ2iwJZft17eZefe21KtMmSQw5oFs3d/JJJzql1sqnIYzkRgthJDdOCCOpnBBGUnnwCQIQgAAEIAABCEAAAhCAAAQgAAEIQAACgYBSZb32+uuu/4AT3YcffZSxloQ2Vpqs6Gv4oH98dIESbVWVbmu55ZZzA08c4Pbea6+8IwsqjsWbGiega2LCSy+5447v47748ssqj6fIoBVXWMFdNnas67jB+lVuH90AYSRKI/N7hJHMbKJrEEaiNPx39uyff8otCWLqfnyCAAQgAAEIQAACEIAABCAAAQhAAAIQgEC9JfD773+4Tz/71B15dE83adKkUE8kk7ihKI/WrVv5wuor+eiPlV3rVq2DUDJt+jT38cefuA8//NB961MuzZw1KyOvBg0auCVbt3ajRo5wG2+0kWvSpEnGbVlRdwSm+zRqF1w41N1y221uVpb5tBFKMNPcDrtoqNvXF1FfdNFFbVWVrwgjVSIKGyRJGGnWslXRo8pyo1D1VggjqYwQRlJ58AkCEIAABCAAAQhAAAIQgAAEIAABCECgzAlIAPnAixnnX3Chu/+BB9ycOXMqRXwo3ZWM3Ouss7bbZqut3HrrrefatWvnFvPLFvRRAmrab/bs2e6rr75yb731tnv6mWfcK6++6n7++WenYu7pTdEFG3lR5JyzzgxFuxdacMH0TfhchwQ0n4oS2d+n0frss8/cH5E6Mwv6uWrWrFkQxH744QenNGzRtvtuu7ohgwe75X1kUK4NYSQ3UkkQRmykbdq1D3/f9jnuVWJZoTWK4vqtahnCSCohhJFUHnyCAAQgAAEIQAACEIAABCAAAQhAAAIQKHMCv/z6q7v88ivciFGj3MyZMyvRkBG8efPmbrttt3HHH3e869C+XZXpr5SCSYW6r7n2OnfnXXc5Gc9l+I42GUwXXnhhd8zRR7u+ffu4Vi1bRldX671EHv0/11A/n5t//vmC8d5Sf1Wr0yw7pR7P+ePNX6PHiw7FzlOv8/njzu95FvM8f/rpJ3ff/feHNFp/pYllTZs2dbvtuouPDPrOPfPss5WEr7Zt27pzzz7Lddlnn5zHhDASnd3M75MkjGQe5bw1EkU6rLBi7HfLvK2K/w5hJJUpwkgqDz5BAAIQgAAEIAABCEAAAhCAAAQgAAEIlDEBGdXfevttd+JJA0MtiTgUSyyxhOt1TE93bK9eIeVVrsZ39S1j93XX3+DGXHJJxhoVqklx5hln+Hoje8YdPq9likz51Qs9v/rIFYkUimhp2KiRW9BHvNREsyiZn32BclVdadS4sVvE/69omFw5VWdcxlbHleG5YcOG4VwlNBWrfeRTqp18yiD3+BNPVIoIWWuttdyZp5/uBa/v3Qn9+rvffv895bBKp9V1//3diGEXh9RaubBAGElBmPFDkoSR9Eih9EHr70PbSBj58ccf01fX6GeEkVS8CCOpPPgEAQhAAAIQgAAEIAABCEAAAhCAAAQgUMYE/v77bzfotNPdLbfe6mbMmJFCQsKCDO0D+vVzPXp097VEWjml1MqnyYCvfu+97353zrnnuhk+IkXHjLbGXkjY2qfnuuaqK0Mkio4rY6rScl119dXe0zy1VolEh+WXX84d0K1bSN+laJT3P/jAPfLIo+7Nt95yP0yb5o8xxx/CR6T4bZdddllfCHyDcIyVVlrRKdpBUTDVaRIhdD4T33/fPfnUU+6NN990337zbRiHlJEF5l/ALb744m7VVVd1W2+5pVvfFyBfaqmlgliS7Xhicquv4/Hpp5+liBBioZRVRxxxeBjzNH+ur//vf+6RRx917777XjA2i9X8C8zvWjRv4TZYf3238047ubXXXsupFkx1z1Pzdvc997iBJ58SIn/0OdqOP+44d9yxvYMos+fe+7gvfcqtaLokjXv99dfzwsgwt+YaawShKLp/3HuEkTgqlZclSRipPLrUJbo2LWIEYSSVTW1/QhipbeIcDwIQgAAEIAABCEAAAhCAAAQgAAEIQCCRBBRd8dXUqW6fLvv6wuufVUqHtMgii7itttzCnTd4iK8n0jYn43bcico4+uXkyW748BFu3B13hIiO6HaKJlh5pZXc6JEj3QZeSFD0g/aZPn2G23X33d3XX3/tomZ5re/UaeOw/fPPv+AeeuihUMvkey8aSEzReZkhXwZ6iTuqjyKBQoXed9h++3Cc5l5wyFXokXDx9TffuAkTJrgnnnjS/e+NN9z3Plri119nB8OvHU/noj4b+SiVJbwAs/LKK7stNt/cbevTkC2//PKusV+eHj2hfef4/nsceph70fcvL3tr6qtNmzbulptuDELIfffd51557bWQmkzpyqK1WxZeeCEvLM09T4kyXbrs41bzAk0+BdDtuDN9ofWhF13kLr/iypQUaBqPzusaL1httukmTmMYfN75btztt1dKlbTUkku6vn2Od4cfdpiT+FVVQxipitDc9QgjuXEiYiSVE8JIKg8+QQACEIAABCAAAQhAAAIQgAAEIAABCJQpgV98GqYHH3zInXzqqe77779PoSBBYcnWrd3oUSPd5pttVi3jerTD332qpUkff+L291EeU70YEzX+a7uWvr5Ir549Xc+jjwoRFxIipk2f7rbYams32Ysq0SZhRJER3bp2dcNHjAjijozquTSJJB06dHBHHn5YqH+h6JGq0k9p7OIz9rLL3b2+5obGnx71kunYEkGaNGniNtpwQ3faqYPcSiuu5CM5Fk0RR4Iw4sWQLvvtHwrWR9lIiFjSCwwnn3Siu8zXgfnk009TIjPijqtj6pw26dzZnXXmGW5tn/ZKkSPpgkzcvrZMETHH9enjXn75FVsUXiX4dO7UyY0cPiwIPRJGVGNEkSUS10wg0sbadv311guijmrU6JrK1hBGstGZtw5hZB6LbO8QRlLpIIyk8uATBCAAAQhAAAIQgAAEIAABCEAAAhCAQJkS+NYXR7/woovduHHj3I++0Ha0SXyQAfwOv65Ro4Z5GdWj/UTfS4g5/cyz3B0+akQRCdGmiIJNN9nEXXXFFV4kaRGEh0zCiIz8EjT+9mLCTz//nLNIYcczseKwHj3c0V6IaetTbWVq//hojve9SHCuj5pR6iwJAVHjf6b90pdLFFh1lVXcoFNOdrvvtltKpEo2YURjVb0ORe8oFVFUNEk/RvpniSOdO3dyY0aNcu18MfR80moN84LTmEsurSSYqd7MSQMGuIMPOjCk+PrbR/bM9OnRunuWz/nonahgpLFrnm687jof4dPJR400Sh9iymeEkRQcGT8kSRj52Iudf/yRWl8mfeB/+giuHXfexenvvzYbwkgqbYSRVB58ggAEIAABCEAAAhCAAAQgAAEIQAACEChTApMmfez6nHCCe9WnZpLBP9qWXLK1N4Cf6I70tS0UtVCMJsO3CnmfcuppvpbGpyldymivVFdPPPpISB2lVFqZhBEZ3PW/mkSF6ggVISXUf0XlexxySIjKSBnQfx8mffyxG+JTRammh4q6a1zpTX1JhNCYlNpK4kXcmBp5sWmdddZxg889J0SQWARFNmFEx7LzzfdctV8LH6lx8MEH+zoxJwSRIn3s6Z8lbPzsxaY99trbvfPuu5XSaLVZZhl39/i73PLLLRfOWWMSk4uHDw8RNar3Em0SvLr5IuynnDzQLb300tFVld4jjFRCErsgCcKI5lzX7xItWqZcI7EDrqOFCCOp4BFGUnnwCQIQgAAEIAABCEAAAhCAAAQgAAEIQKBMCahw+EFeFJg69euUWhXCscYaq7tRvibIRhttWGUKpFzxSTD4aNIk16fvCW7CSy+l7CYjvozoj/7f//li3auHY2YSRlJ29B8kqiiiQob3pVXo3L9X8fUffpjmJk+ZEiIt0oUf62M5b+A/+aST3L77dgmF2jUONRl+FaExavQYd/0NN/h6IqkGfxmFW7ZoEWqIKBJE6a40jlk+EuYLX4j8vYkT3RSfAuw3n4YrKpIs7tNqbe5rjozwqai0vwrJVyWM2FglwCgtl6I/VHdEUT0Sa1T4XDVcfvfiliI4ok2CjYrPj7v1VrfiCstXmTZM/T373POurxfMpqq2ixc+rOnYu+y8U4hAUZosY6X1r73+uut/4onu9df/Z5uHV52f6seMGumvJZ9OzMSglI3++4AwEkel8rIkCSPNvDDye45p7CqfSc0uQRhJ5YswksqDTxCAAAQgAAEIQAACEIAABCAAAQhAAAJlSkDihCIDJBqkR0Js5Yt3y3i/4gorpBjAC0GlY0yfMcMd06u3e9gLIOlNhv6bb7zBbemP3cAb9HMRRrSP6pPssP12bu+99griiAqc//33P27GzBnulVdedbf5dGAfffSR+9mn8oka+nV8iRlbbrGFGzlieBAcLDrmzz//DOLNSSef7CZOfD9lP4kNzXzh9kO7d3d77rmHa9++vVvMF3dX034a9xu+OPvQi4e5jz78MBw3rPzvH4333LPOCvtKbMhFGJGg0MILKbvtsovr1q2rW7bNsl7kWCgUm//8iy/cpWMvC+P9yadESz9HpeI6f8gQ17Xr/q7p4otHh1LpvQSgwUPOc3fedVcQhqIbSES64LwhbscddqiUluuHadNCvZdLLh1bKZ2WeF104QV+3N3cIlmKsCOMRGlnfp8kYYSIkczzlLQ1CCNJmxHGAwEIQAACEIAABCAAAQhAAAIQgAAEIFAnBJ57/vmQ+z/u4Lvtuou7eOjQEJkQjQyI2/b/27vzeK2qcg/gKyUxM0XIOUVTs5wV7YpDCVYOgJAaDtigdjUVxYGcygE1c1ZAUTPTSFA0tRIb7lVQ01vZdLtXcyorUUCTxAuiWcFdz9aX9n4P7+GA5Tm2v/vzOZ132O+71/quY3/sH896Ovpa3LCPEOZzORi59bbb2tzAXz7fwL/6qqvSHrvvVjTu7kgwssXmm6fjc3XDwAF7Fr04ymON60UY89hjj6ervnJ1mjDxxkVu+xPVF9E3Y9iBBxTXjflEP4TjThiZ7pg8OUXYUD6iYuOkXGUSoUgEIhFaNF83tqSKbbhOzz1Vvvf971fmGpUx0Rh9TK6i6N2792KDkfjuqIKJypZPf+qTxZZY8Vr8FKFKvtaM6TNShDhxreY+JFG1MWTw4HTWqDOL8Kc8l/Lj+fMX5C3OfpMGDR6Sps+Y0eZ7Buy5Z7r4ogtTbKfVXPkR8/3OHZOLrdn+lMOv5qAt+qp86Zyziy24ytcsPxaMlDVaPxaMtLYpv6NipKyRt+SbN+f//l7/VX3PMwIECBAgQIAAAQIECBAgQIAAAQK1EWgvGBm816B0wfnnFzfByzf93whOIxg5cvjw9M1bb2tz8zyCkauuvDLtucfuiw1G4mb/6quvni4fMzptt912RSVEq3G+krezmvb00+mss89Od911d5tG8xE6ROP36792bbFVVfQJ+e2Tv0sf32efND1vJ1UOGqL5+L759TNO+2JaKVdfdGun/0qEQBGsfPH0M9LT+fqNI6pSYkut6NWxzdZbFz1c4hr7Dt0vTb3nnsr14jOxbVX/fv3S2aNGpQ3zdlhR5VI+wvUv+fO33XZ7OiOfMy1vH1Y+4vzttt22qACKIKnV8ULeBuybuVJk5IknFWOI720cUdky4ujhRQgVFSiLOh7OTeo/nz8blUhROVM+1s1h0qgzTk/7DR1afrnyWDBS4Wj5RDDSkqbyhmCkwiEYqXJ4RoAAAQIECBAgQIAAAQIECBAgUFeBBx74rzQwVxLETezyTfDw+OhHPpIuufii9N71169UQ7wRq6gimJ37dsRWWpPvvLPNNWNbrOuuvTZ95CO7pghJ2qsY6dGjR/rMpz+Vjj1mRN5K692LHWOEFHHDPm7cR5+T8nwjqIiQZfJ3vl1UNMS53/r2d9JJp5zSZjup6Cdybt6Waoe+23eI4je5yfypudn8vffdVzk/QpzRl16ahg79RFF10l4wsnIOYM4955z08VyhEvNudTySt+06YeTn0z333ls5Jea36aabpkvzevbdvvW4f/3rR3IocmIx1rJPfNn7N944XXzhhalfv10q311+MmvWn9L4b3wjnXveeUXvk/J7ET59fMiQ/B0XFNUvzRUnca5gpCzW+rFgpLVN+R3BSFlDxUhVwzMCBAgQIECAAAECBAgQIECAAIHaCkTD7P32PyBFf4jYCql89OmzTd7q6bK05RZbtNk2qXzekjyOa0ST8OFHH9Pm5n18T1RGfOdbt6dt+/QpqiJaBSMRKsR2Tjfkm/DRqD0ClcUdEcpE5chnDzu82G4qbsKXjwgfrho3Lu26a/80d86cdGHuDzL+hhva3OCPBuL77P3xot9H+fOtHkcD9//4z//M1/xBm1MOP+ywdNLnRxahTHvBSPQk+e7kO4p+L9Gvo9UR21+df/4F6ZocLpWPCEaiAfqluWfMzjvtVH5r4eNYm0k335y+cNrp6dlnn134ejwI70MOPrgY69rZvdURlTYRBEXfmpkzZ7b5m4rqmLG5widCmuVyxU/zIRhpFln0c8HIol2aXxWMVEVspVX18IwAAQIECBAgQIAAAQIECBAgQKCmArH10eeOODI99PDDbXpvxNZH55w1qmhovqh/3b80ZFGZ8qMf/7io2ohrlo+4RmxTdd89U4s+GFGx0CoYea0CYpN0z913t+krUv7O5sfxnZdeNjqNHjs2/TE3GS8f0SvkC6eemg46aFianbeU+kKu8viPu+4qeqKUz4trx09HTeKaETqUt+NqfF/03Tjvy+cW820VjMR1Yi2m5rFEZUx71405jR4zNl2SA63y0ZFg5MXcR2XUqLOKUKUckkUoEltnfePr16edd945dW8nmIlrxnZcJ518Svr+D36Q5uSAqXysscYaeTuuo9OhhxycVny9WX35fcFIWaP1Y8FIa5vyO4KRsoaKkaqGZwQIECBAgAABAgQIECBAgAABArUViL4XZ+ab4Xfkba2ab2K/613vStGAfdzll6fo5xE3yN/oMW/evHT5FePSFbmPSHMwEVUfW225Zbpxwg1FBUXcnG8VjMS50XPjlkk3LfG4Jt18S26IfkbRc6Q8n9jqafiRR6Yjj/hcmpWbh8eWWw888EB6pamypPyZN/p41/79i+2tNthggyI4WVSPkQg11s/bmd1z911FcNTeOkTlz+jRY5Y4GInw5lf/8z9pxLHHpagiKh9xvehRsvVWW6Woqllmmfb/Dl7NVSNPPvm7ojdLVJCUj6gI6rPNNumG8eNzxU2vNiGPYKSs1fqxYKS1TfkdwUhZQzBS1fCMAAECBAgQIECAAAECBAgQIECgtgLR72PixInpvLz9UoQQ5SNuyEelwg3jv56ir0ZHtqsqf775cdwwf+aZZ9JnDj4k/e9DDxXbWpXP6ZmrRYYNG5ZOPunEtEruo9FeMBI32Hff7WNpQt5Ka0mPb3372+nkU7+QnspbepWPCEaOOPzwNHz4UWlWDhiiAXn0JGnecqv8mTf6uN8uuxTbW2204YbtBiPvfe9709QIRrLLPzoYiVAkthmLrcOuvPrqNoFVzDGu2fjpyJzjOxs/5fOj2qVHDle+lrf62nGHvkWvkfL7gpGyRuvHgpHWNuV3BCNlDcFIVcMzAgQIECBAgAABAgQIECBAgACB2gq8diP6kXTAgcPS0zm0iBvk5SMqBD6Zw4pjjx2R1sjNydvbxqn8uebHcZN8Vg5ebpiQQ5gLLkj/l7dtKh9x03299dYrGox/NDdeX2GFFdoNRqLPxgc/uF363uTJxZjaCwvK14nH111/fTrn3C+nGbkfR/mIrZ1OOO64dOihh6Q/5YqR2A4qGqZHX5LyEdtKxXZSy+Tg6I0eO+6wQzr/vC+n9fPcW22lFQHVPzMYiQAqArIBAwelaN7eXOXxRufY/PkI2A7Yf/90ysknFX1iyu8LRsoarR8LRlrblN8RjJQ1BCNVDc8IECBAgAABAgQIECBAgAABAgRqKxCBRdwI/9RnDk53T5nSptF43JTvkasURl96aYrAIrbXWpojeotMvefevD3Vien3f/hDm34bcZ0d+vZN46+/rmhqHs/bqxiJIOS9eXupH3z/e2m13Jg8tnrqyBHzjS2yvpGbqs+ZO7fykZXy3CKkGDJ4cIqG6WecOSrdkYOXeS+/XDlv5513SkP2GlxUb1TeWIonq62+Wtpu222LfhudFYzMzQ533T0lHT9yZNF0PYz+mUesVVTIjL7s0rTTjjtWLiUYqXC0fCIYaUlTeUMwUuFImq9XPTwjQIAAAQIECBAgQIAAAQIECBCosUBUiUQoctIpp6RHH32sjURUiWzygQ+kE44/Pu25x+7FTfyOVmjETfYIRe7PvTpiu67oXxFBTPPN97XWWisdN2JEOvywfy8am8f3txeMxCBXW221ojl8NDBfaaWV2oy7+YW47rTcU+Wwwz+XHvzpTyvhTFwvtqm6ZdKktPXWWxX9VsZddVW6YtyVKYKD8hFBRgQom2yySfnlpXq8XO7dEv1bwrizgpEZM2cWfWZii7HmPjNLNanFfCisYyu0s0edmT550EGVJuyCkcXgvf52VwpGeq66Wpuqqo7N4p9/lmCkaiwYqXp4RoAAAQIECBAgQIAAAQIECBAgUGOBCCmiEfr5F15UVFI0BwFBE1tXbbrppunI3INjp1wxEVUasSVSewFJNC1/IW9JFSHE2MuvKJp7v/TSSxXp+HwEA4MGDkxnnnF62iD30mgciwtGYrutqDKJkCKqR2KLq1ZHY7uoqBQZm5vJz5gxs3JqzO9973tf+vbttxVzezlXiUyZOjUdOfzo9MILL1SCnDXWWCMdM3x4+tzhhxUu7W0vFrUXzz33XPrNE79Jf371zwuvmTt25H1tUnp/7t0Slp0VjPzlr39NjzzySNr/wANz/5fplW20irAo933p1atXDHWpjpfzNmSxLdm8efMqhvFlew0amL50zjmVNReMdIy5M4KRK8aOSZ/+1KcWbqcXgWr83W6w0ftShGtd8RCMVFdFMFL18IwAAQIECBAgQIAAAQIECBAgQIBA+uH99xfbTD388MNpfg5Lmqs6Ynurd7/73WnggAHpoNx3JLZD6t59uYUVHkEYn4kQIm64/yFvmXXzLbekb956W5qZb5wuqndFfOe666xThBu7fexjRUjSWIrFBSNx4z4+/++fPTQddcSRae211yqCiuawJioxohLi3vt+WFTFLGosPXv2TMNyOHDaF7+QVsxN2OPacd7AwUPSk08+WRl7XHPLLbdIYy67rAg2ls+BzKLCkbCIbbhuyQaX58qTcl+VZfLYl8ufu3zM6LT9v/1bMe/OqBiZPfvFNGHihHRi7qfSvN4RFu2z995p6Cf2bTcAa6zXon5Pnz4jXfPVr6aH8t9U8/r37t07nXnaaWno0E8s/H7ByKIU277WGcHIoIED0sQJE9KyOQwpHxdfcmk67Ywzyi91mceCkepSCEaqHp4RIECAAAECBAgQIECAAAECBAgQKLaMmjL1nnTMsccW/8o/btQ3HxEKxA3zlfPWVX369Ek77bRjWq/3enkrq9d6j0RFyNN5u6of/fgn6cEHH0x/fP75FDe741+XN994jwAjtsA69eST04EH7J8inCiHGosLRhpji74nu++2Wzrk4M+kbfM2V+/IlSyNoCK+47c52LjjjsnFDfrpueF6vNY8ls032yxdfNGF6YPbbVfML7475nL+BRem68ePT8/neZSPd75zhTz/bdOZp5+WNsufjTClfMR8o+rkjsl3pstGjy6amsdrjSPClM033zxdc/XVubH6+sXLnRGM/O9DD6UTRn6+2OqsMbbG73XXXTedmys6Buy5R+OlJf49K1eLXHvt19KYXKXTXC0UFUdD9torjbvi8qLaJ9ZeMNIx4s4IRuK/+9mzqv8dNEYb/50PGDgoPfvcs/ml5vqiBan7ct3T08880zj9TfstGKlSC0aqHp4RIECAAAECBAgQIECAAAECBAgQKMKLP+Vto26++eZ06egxRSPuRYUjQRUBSdzYfmcOBFZc8Z2v3djON0T/nPuJxA3wl16am4OBVyp9PMrEcRN89dwj5JMHDUuH5+25Vs2VKLGlVvnoaDDSCFii8mTjvB1WbIkVIUvcZI+qlUcefTT95re/LcKN5qqFuN4qebuoYQcckE495eQiqGmEKnFuBAcnnnRym54kcU5s3fWBvBXWhz/8obTzTjvlipW1i0Am5v/E40/kCpX70n/96Edp5rPPFltJNeYW443Km1NPPintN3Ro0dw+gpo3OxgJ39ha7MxRZ6Xn8lZqzcfgvQalc84+u7LVVfM5i3v+St5K66GHf532y76xpVhcs3GEYQRSY3PVTIRE3fONd8FIQ6f9350RjMSIzh41Kh137IiFwWNjlBH6xU/jv53G6/E7Xo/t1Dbc+P0t//+gfP4/8rFgpKopGKl6eEaAAAECBAgQIECAAAECBAgQIECgEIib83PnvpSu+srV6aabJqU/PPVUcbP6H8nTrVu3tGbu0zEo95gYftRRae3ceL05FInrdTQYaYwtAocIbCKsie9bkG/IRm+LCGvi5mzzEedHuPGhnXcu+ptsteWWlVMirIgb+9ddf33RI+WpadPaVJrEd6y88spFuBJhx9vz3GLLrOhL8vysWcX2Uc3XjiDmwx/6ULrkooty/46er431TQ5GYm5xszq2QJow8cbKNldxczv8rrziirRnrhZZKVfkLO0R14ntuo7I6xw9W5r716y++upFv5bPHnpIisofwUjHpDsrGOnRY+U0Pf930CoEWdTo49yoKNlIMLIonjf1NcHIm8rtYgQIECBAgAABAgQIECBAgAABAm81gbi5f/vt30oX5z4asTXWqy3ChSWZV+OG+7tzM++jjjwi95YYmtZac82WX9FeMBKBROMnbrzGDfglOWIsUaGwUa4uOf/cc1Pfvtsv3EKr+Xtm5O23xn/jhnTZmDHFjf1y1UPzue09bwQx/frtkr546qlpyy22WPgv7GP8b2bFSJj99Gc/S8ePHJl++cv/rgw7tkxaf7310i03TyqqRWLcb+SILcW+eeut6Zxzv5ym5Zvq5eMd73hH2mqrrdKE8V9Pq+UKoqjS+fUjj6a99923qFgqn/vOFVZI+++/Xxqbtyar+9FZwUi4985brD3y8EMdDkcEI13nr1Uw0nXWwkgIECBAgAABAgQIECBAgAABAgS6oEDczIxqi8cefzyNGTs2Tb3n3qLCIF5f2mOVHj3SNttsk44eflTRy2PFXCHQLVd4tDraC0aioiGqDeLG+lNLUdUS1Qlb5O2bzjzj9BSVIivkm+6tAoAILGKrqQkTJ6avXPPVdrcYazWX+O4IHKIXyvHHHVuEIvG8cbzZwUjM6ZwvnZuuve66NCtXtpSPqAoYduCwdOLIE9Kqq65afmupHse1os/L8KOPKbYWK4dY4RJrMf7669KOO+5Y/D0IRhbP3JnBSIwutpD71u23FdVejdEuahuteC/WP3rNqBhpSHXeb8FI59m7MgECBAgQIECAAAECBAgQIECAwFtEIG5gx1ZS0TT55z//ebrzu9/Nv3+RGyw/V2x5tLiQpBEGxBZTm226adpzj91zZUbfohph+RxoLJurNto72gtGor9JNEo/dsSIoqn6L375y+IGf9yEbXXEjdv43DrveU8aOGBAGjJkcNrkAx8ottNqdVO38V1RMfPC7Nnp/vsfSJNyD5Zf/OIXRVgSYyzf6G+c3/gd3xsN5qP/ySf23ScNyNeN68d2X+XjzQxG+m6/fdHvY+99P5EefeyxohqoMZZYs6jiuXLcFWmHvFYRGL3Ro/F39MXTT083TJiY5syZU/nK2M7sgP32S6fkHi+r5SBGMFLhWeSTzg5GYlDxtz0uh6a7fmTXokdQOegrDzr+f+L5vJWWHiNllc55LBjpHHdXJUCAAAECBAgQIECAAAECBAgQeIsKxHZI0UT8Z3n7pegVEc3MZ78wO83NjcaLbbYiIMhzi7Ajqjnixn/03lg3b7sTPTx23HGH4oZ7VAd09GgvGIlKkf79+qUbJ9yQnvzd79Kdd343V7VMzWN8Ls3NN96jr0h8PjaB6hbjyTf4o7fHxhtvnD6eA5Etc5VIbN20zBJsExU3+ON7o0JlypQp6e4pU9P0GdOLniKvvN5ofqFBrgZZMRtED5Goktlr4KC02WabFkFD9EFZ1BGhzsl5i61f5pAnxt44lllm2bRmDiuuGjeuaHQf4UWr48W8BdqNN96Ybpo0qXLK2/K6RDhzwvHHp/dng//+1a/Sl887v+iFkoqVe+30t71tmbTOOu/JDdHHFONvNdbKl3fwyd13T0ljc9+S2bNfqHxi2WW7pY023DCNGHFM2nCDDdLvfv/7ouF983nduy+fdvvYR3PFzXGVz9fxSVcIRhruUfUV1V/L54Cr1d9m/P1Nnz698ZE37bfm61VqwUjVwzMCBAgQIECAAAECBAgQIECAAAECHRKIVh7z5/8tBwIzin4R0X8jtmJ6KQck8V4EFj17rpKbq6+Z1ll3nYWN1VvdMG3voosNRvr3T7fcdGPxFXFuhAJPPPFEeuaZ6emPeeurl16aW/yr9p49e+ZgYa203nq903q9e6do/r404ymPtdhqLIdFT+YtoqZNe7qowHjxxdk50Jifw4935ECkVxFmbJhv+EdPlQiLFndE8BLh08t5C7MIWBpHxCDx+bXXXnthT5LGe82/C4cXXyyqW8rvxXfEv+iPccXvOXPn5oAixvv3ACbOj6Ao1nCNNdYof/wf8vjlXH00K1cORLhUPmJsy+Y1CaeoUImgbebMZ9Nf/1at/omxrbjiiv+Q7b3K138rPu5KwUhX9hOMVFdHMFL18IwAAQIECBAgQIAAAQIECBAgQIDAEgn8Nd9Q/1uucIgb6xESxE39OCJwiC12otKg8bO0IUR89/M5dPlwv/5FlUZ5gEXFSCkYifdiHH9pjCkHFAsWvNYPpTGeCERiTEs7nvL143HMOao84ieuHT9xlA3imnH9jl4z5tywLL7s9f+Jz3ekeiM+Gz+NsTR/R4wljtfOiTUrRzDFW8VYO3Kt187u+P82xhW/2xwxv9ed2jsvKlqWXbb9LdjafPe/4AuCkY4tqmCk6iQYqXp4RoAAAQIECBAgQIAAAQIECBAgQKDLCSxpMNLlJmBABP5JAoKRjsEKRqpOgpGqh2cECBAgQIAAAQIECBAgQIAAAQIEupyAYKTLLYkBdREBwUjHFkIwUnUSjFQ9PCNAgAABAgQIECBAgAABAgQIECDQ5QQEI11uSQyoiwgIRjq2EIKRqpNgpOrhGQECBAgQIECAAAECBAgQIECAAIEuJyAY6XJLYkBdREAw0rGFEIxUnQQjVQ/PCBAgQIAAAQIECBAgQIAAAQIECHQ5AcFIl1sSA+oiAoKRji2EYKTqJBipenhGgAABAgQIECBAgAABAgQIECBAoMsJCEa63JIYUBcREIx0bCEEI1UnwUjVwzMCBAgQIECAAAECBAgQIECAAAECXU6gEYzs0n/XNG3atMr4ll9++dS/f/90840TK697QqAOAoKRjq2yYKTqJBipenhGgAABAgQIECBAgAABAgQIECBAoMsJzJ8/P/3phRfS0P32TzOfnZnSgr8PsXv37qlv375p3OVj//6iRwRqIiAY6dhCC0aqToKRqodnBAgQIECAAAECBAgQIECAAAECBLqcwIIFC9Krr76afvLgg2nevHkpP114dOu2bOrVq1faZuutF77mAYG6CAhGOrbSgpGqk2Ck6uEZAQIECBAgQIAAAQIECBAgQIAAAQIECLxFBAYNHpLunjLlLTLazhvmnXd8J/XbZZfOG0AXu7JgpIstiOEQIECAAAECBAgQIECAAAECBAgQIECAQMcEDj700DTp5ls6dnKNz7r/vntVlZXWXzBSwvCQAAECBAgQIECAAAECBAgQIECAAAECBN46AndMnpz2O+DAt86AO2mk06c9lXr06NFJV+96lxWMdL01MSICBAgQIECAAAECBAgQIECAAAECBAgQ6KBAz1VXS6+88koHz67faX222Sb98N576jfxdmYsGGkHx1sECBAgQIAAAQIECBAgQIAAAQIECBAg0HUF5s+fny66+JJ05llndd1BduLIVlhhhfT8szM7cQRd89KCka65LkZFgAABAgQIECBAgAABAgQIECBAgAABAh0UOH7kyHT1V65JCxYs6OAn/vVPW+7tb0+33frN1L9fv3/9yS7hDAUjSwjmdAIECBAgQIAAAQIECBAgQIAAAQIECBDoWgJROfLjn/wkDdl7nzR37tyuNbhOGM22ffqkm26cmNZac81OuHrXv6RgpOuvkRESIECAAAECBAgQIECAAAECBAgQIECAQAcFHn/8ifT444+nOXPn1KqCpFu3bqlXr15p6623Tj1XWaWDWvU8TTBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEsBwUgtl92kCRAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQUEI/Vcd7MmQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1FBCM1HLZTZoAAQIECBAgQIAAAQIECBAgQIAAAQIECNRTQDBSz3U3awIECBAgQIAAAQIECBAgQIAAAQIECBAgUEuB/wchrRo3UA82wwAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1.3. Selecting the right model for a Temporal Agent\n", + "When building systems with LLMs, it is a good practice to [start with larger models then later look to optimize and shrink](https://platform.openai.com/docs/guides/model-selection). \n", + "\n", + "The GPT-4.1 series is particularly well-suited for building Temporal Agents due to its strong instruction-following ability. On benchmarks like Scale’s MultiChallenge, [GPT-4.1 outperforms GPT-4o by $10.5\\%_{abs}$](https://openai.com/index/gpt-4-1/), demonstrating superior ability to maintain context, reason in-conversation, and adhere to instructions - key traits for extracting time-stamped triplets. These capabilities make it an excellent choice for prototyping agents that rely on time-aware data extraction.\n", + "\n", + "#### Recommended development workflow\n", + "
    \n", + "
  1. \n", + " Prototype with GPT-4.1
    \n", + "

    \n", + " Maximize correctness and reduce prompt-debug time while you build out the core pipeline logic.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Swap to GPT-4.1-mini or GPT-4.1-nano
    \n", + "

    \n", + " Once prompts and logic are stable, switch to smaller variants for lower latency and cost-effective inference.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Distill onto GPT-4.1-mini or GPT-4.1-nano
    \n", + "

    \n", + " Use OpenAI's Model Distillation to train smaller models with high-quality outputs from a larger 'teacher' model such as GPT-4.1, preserving (or even improving) performance relative to GPT-4.1.\n", + "

    \n", + "
  6. \n", + "
\n", + "\n", + "\n", + "\n", + "| Model | Relative cost | Relative latency | Intelligence | Ideal Role in Workflow |\n", + "| ----------------------- | ------ | -------- | - |------------------------------ |\n", + "| *GPT-4.1* | ★★★ | ★★ | ★★★ *(highest)* | Ground-truth prototyping, generating data for distillation |\n", + "| *GPT-4.1-mini* | ★★ | ★ | ★★ | Balanced cost-performance, mid to large scale production systems |\n", + "| *GPT-4.1-nano* | ★ *(lowest)* | ★ *(fastest)* | ★ | Cost-sensitive and ultra-large scale bulk processing |\n", + "\n", + "> In practice, this looks like: prototype with GPT-4.1 → measure quality → step down the ladder until the trade-offs no longer meet your needs." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2. Building our Temporal Agent Pipeline\n", + "---\n", + "Before diving into the implementation details, it's useful to understand the ingestion pipeline at a high level:\n", + "\n", + "
    \n", + "
  1. \n", + " Load transcripts
    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Creating a Semantic Chunker
    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Laying the Foundations for our Temporal Agent
    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Statement Extraction
    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Temporal Range Extraction
    \n", + "
  10. \n", + "\n", + "
  11. \n", + " Creating our Triplets
    \n", + "
  12. \n", + "\n", + "
  13. \n", + " Temporal Events
    \n", + "
  14. \n", + "\n", + "
  15. \n", + " Defining our Temporal Agent
    \n", + "
  16. \n", + "\n", + "
  17. \n", + " Entity Resolution
    \n", + "
  18. \n", + "\n", + "
  19. \n", + " Invalidation Agent
    \n", + "
  20. \n", + "\n", + "
  21. \n", + " Building our pipeline
    \n", + "
  22. \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Architecture diagram" + ] + }, + { + "attachments": { + "290fc94d-2358-44d9-829c-220cd96a8b34.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAh0CAYAAACC3eDdAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAADtqADAAQAAAABAAAIdAAAAABBU0NJSQAAAFNjcmVlbnNob3RjGjOwAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMTY0PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjk1MDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgqNTUJqAAAAHGlET1QAAAACAAAAAAAABDoAAAAoAAAEOgAABDoAAN1ggKvGwAAAQABJREFUeAHs3Qd4FFX3x/Fj+YsFXnsBXys2FAVUEgRF7L1hRUSKCigJKiBFVESlKqIQu9IU+2vBXkCwIdgogmDvvSti93/Pzc5msiXJhgxk53zneSSb3dnZOZ974zO/vXdmVvr155/+FRYEEEAAAQQQQAABBBBAAAEE8lRgJYJtnrYcu40AAggggAACCCCAAAIIIOAFCLZ0BAQQQAABBBBAAAEEEEAAgbwWINjmdfOx8wgggAACCCCAAAIIIIAAAgRb+gACCCCAAAIIIIAAAggggEBeCxBs87r52HkEEEAAAQQQQAABBBBAAAGCLX0AAQQQQAABBBBAAAEEEEAgrwUItnndfOw8AggggAACCCCAAAIIIIAAwZY+gAACCCCAAAIIIIAAAgggkNcCBNu8bj52HgEEEEAAAQQQQAABBBBAgGBLH0AAAQQQQAABBBBAAAEEEMhrAYJtXjcfO48AAggggAACCCCAAAIIIECwpQ8ggAACCCCAAAIIIIAAAgjktQDBNq+bj51HAAEEEEAAAQQQQAABBBAg2NIHEEAAAQQQQAABBBBAAAEE8lqAYJvXzcfOI4AAAggggAACCCCAAAIIEGzpAwgggAACCCCAAAIIIIAAAnktQLDN6+Zj5xFAAAEEEEAAAQQQQAABBAi29AEEEEAAAQQQQAABBBBAAIG8FiDY5nXzsfMIIIAAAggggAACCCCAAAIEW/oAAggggAACCCCAAAIIIIBAXgsQbPO6+dh5BBBAAAEEEEAAAQQQQAABgi19AAEEEEAAAQQQQAABBBBAIK8FCLZ53XzsPAIIIIAAAggggAACCCCAAMGWPoAAAggggAACCCCAAAIIIJDXAgTbvG4+dh4BBBBAAAEEEEAAAQQQQIBgSx9AAAEEEEAAAQQQQAABBBDIawGCbV43HzuPAAIIIIAAAggggAACCCBAsKUPIIAAAggggAACCCCAAAII5LUAwTavm4+dRwABBBBAAAEEEEAAAQQQINjSBxBAAAEEEEAAAQQQQAABBPJagGCb183HziOAAAIIIIAAAggggAACCBBs6QMIIIAAAggggAACCCCAAAJ5LUCwzevmY+cRQAABBBBAAAEEEEAAAQQItvQBBBBAAAEEEEAAAQQQQACBvBYg2OZ187HzCCCAAAIIIIAAAggggAACBFv6AAIIIIAAAggggAACCCCAQF4LEGzzuvnYeQQQQAABBBBAAAEEEEAAAYItfQABBBBAAAEEEEAAAQQQQCCvBQi2ed187DwCCCCAAAIIIIAAAggggADBlj6AAAIIIIAAAggggAACCCCQ1wIE27xuPnYeAQTiKPDLkiXywfsfSOPGO9XK8mr7/tVKNHYKAQQQQAABBCIVqLXBdvz4CTJs5MgqF1+//iYyY9q0Kq/PihULtGq9t3z99dey6qqrysL58ype2b2a6/qVbrCWrvD+Bx/IQYcc6vduz1YtZdzNN0e6p3fedZdcdPFg/xm9zz1HunXtGunnWd54rz595OFHHvUEd91xuzRr2nSFcLz3/vty1DHHyNKlv8n+++4r11937QrZj7vuvlsuHHSx/+xe55wt3bt1849ry/6tEBQ+FAEEEEAAAQRqrUCtDbbjxo2XoSNGVBmufv368tz0Z6q8PitWLLDHnnslg+2iBW9UvLJ7Ndf1K91gLV1Bg+0BBx3s906D7YRx4yLdUw22F1w0yH9Gn17nJsNFpB9qdOPn9u4tDz38iK/+7jvvkF2bNVshEjffcosMH3m5/+yVV15ZXn/1FVlrzTWX+76E+55+qXJm9+5+H2rL/i13ED4QAQQQQAABBGq1QK0Nto8+9phMvv2OcngLFiwQnQKny4477ij16tZNvr7++uvLmKtGJ3/nwbIJ5BpUc11/2fZuxb2bYLvi7KP+5NoSbN9+5x03YttW/vjjD2m9156RzwrI5pot2NaW/cu23zyPAAIIIIAAAjYFam2wzdQcbY8/XubNm+9fuueuO1fYVMFM+xa353INqrmun69eBNt8bbnK97u2BFvd0x9//FHeefddP2q80korVb7zEayRLdjWlv2LoGQ2iQACCCCAAAJ5LBDLYPvzzz/Lq6+9JrNnvyz/93//Jy1aFPoDxDp16qQ11TPTp8vvv//uzyXdf7/95LPPPpdZs2fLkiW/yG677SY7bL+96IHlX3/9JfPfeEPmzpkrm7jzeZvvvrvoKHF4+ejjj2XhwoX+qUaNGskWm2/u90Pf8+FHH0kzN7WxVcs9ZMMNNwy/rdxj/ZxFixbLa6+/Lm+//bZst912ft+33347v4/lVna/pO7/J59+KnPnzvWrHXZo6bmg+otud+bMl2TR4kXyvrsozQYbbCC6zYMOPDDjdnMNqtnW//vvv+XpqVPl33//9fukZmq35Ndf5bnnnvPPbbzxxv5LCj2Y13b78IMPpUnTJrLLzjtn3Df/pkRNVbV64cUXRfuFLgfsv7+sssoq/hzGGc/O8M8F/2y11VayvTPXRb9E+ezzz/zjPVq0kLXXXluqEmxz6X9+4+6f77//Xl6cOVNefvkVWdNNO23SZBc58IADRM9zrGgq8j///OP63Jsy86WZ8sUXX7j3NZUWhQWy0UYbybPPPie/Lv3V919t59RF2+Qt18deeeUVeeutt/2Filq4Ojf7739TV630999++823nfYx/XvZbbddpXnz5rKKm0o7fUapcdD2urHU9m/apIm8+eabstjtR4MG9aWwoCD5mT/99JO3Wbz4Lfnqq69k000b+L/N8DrByqnb1fNk333vPV+jOjVs2FBaur/BbdzP1CU12DbZZRd51vXR9959TzZwf7Mt92hR4d9u6vbmzpsnn3/+uX+6VatWsuoqq7r/J82WOe7vc8mvS9z29vBGqdOMwzVUZJZLbeF9032a7frZnDlzfFvr/x932GEH0WnP4SVbsM1l/3L9m67O3054n3mMAAIIIIAAAnYFYhdsJ916m1w2dKjoAX94WX311eX6a66RPfdsFX46eW6oTmseOWK4nH1uLz8FMFipY4dTpO9550mX08/wgTd4Xg9Gb7rxBilwB+/BEj4QvGDAAH9AfYc7RzK86EH/pYMvlpNOPDH8tH+sB+CdupyWPBgOr6AH8xPHj5ctt9gi/HTZ/terJ5e7/T+rqNjXrsH1pRee9+t+/Mkn0qt3H3ndHcimLg233lquu/Ya2doFuvCSLaiG1wk/zrb+wAsulLvuucevuu6668rkWyfJdttuWy4gaoA76sgjpOc554oG4WDR9W+bNDEZNIPn9WeuVl1OP92FlFKPF1yY1TCtIfrEdieHN+v3Y9Tlpec3dut+pkx9pvS87WemPu1DQGXBNtf+px/+2OOPyzm9eperXZ/XML3fPvvIZcOG6a+Seo6tBozOrr/olyDhpe5aa8nNN90o/foP8F+o6Jc7b75ROtMhWO/bb7+VDh07+WAbPBf8bLN3a7nO/a3o+6qyaFucfEoH0W2GFw2PV7gLwB197LH+6b3c3954d/6oLmFHrVED542JC3HpFzJXj77SrzfzpZek93l9faD1T4T+0f0sGTNG9G87WMLb1X6lX2L0P//8NNujjzrS/b2M8CE8eG842N5y440y6qqrkl9UBeucfNJJcon7+63KEt6e9vsR7rzZefPLt4P+f+fWiRPLXf04XEP4PO7w87nWpvurf1tq+fAjpecRh2vQLzNuv+1W0WsVBEv4/2fhc2zD+1HR/uX6N12dv51gX/mJAAIIIIAAAgjEKtjeceedyat4atPqAa+OVOp/uqy5xhoyccL4clOYg0DmV3D/6EheMEIbPKcjrHqFYB3x1dHdYNHtzXzxheSFXcIHgno1Yf1c3ZaGTD3oD8K2jozoAf+RRxwebEoWLFgonV34+u6775LPaXjW8BIsup3xt9wsjdzoSrCk7n/wfBBs9WD2iKOOTgYY3efGjRu70ef5fsRS19fzle+75+5yo6PBdrWO6l486uoxY2WsC0i66AH8bZMmyU477eh/Dx8ca51//Pmn/On+SzXWkcf7773HB1H/RvdPdawuufRSmXTbZL+J/7ladTTunnvvlQEDL/BtriFs8Vtv+YDxwP/+59c70p3nqCPwGvDemDvHrxfe7/BBvb6hOv1vxoxnpdtZZyX7aKb+4nfG/RMOtjpCetoZXct92aKBVt//8y+/+NE3HZHV/1KDrY4On3JqR19vsG1tH31fsBx80EE+XOrfQ0WLzkRo1/6UcsFTv5BY4s6F13NEg78D3Ua2YJu6/SDYfvrpZ3LAwQcnv2jSv8NNGzTw4TD4Wzr1lPZy0YUXJjcRbh/dd11PDcL7FKycGlLDQVTNtD/q/uv7w1+4FPfoIWf3LA42k/VneHuBg/7Ukf/wlwDrrLOOD5X6hY8u4RrCfSz8fK61qcN5/frJg1MeSu5vapvrl1t33j5Z1ltvPb9O+P9nuQbbXP+mq/O3kyyEBwgggAACCCCAgBOITbDVQFjYspU/CNVAq6OXbfZu4wLDn+5gbopcfMmlvsF1evDUp55MNn4Q4PQJna450I201q27lr/FSnhko2dRkXTu3El++OEH0ZE8ncKpyyQXlHVKoS7hA0H9/Zijj5IL3GiRHsjqRa9GjbpSbp1cGq70YPaVWS/pan4Jnz98+GGHyfn9+/nppDr18rKhw0QvpqWLXqlVr9gaLOH91wP/dm4kuHXrvWQtF3K23WYbN/V4sfRwo7gaQHQ/b7rheh8eNRjpKFswgvTQA/eLTp8OlmC7eiBenWAbttAwPWH8OL/vwfbDB+n63G677ipXXD7SBxedCj50+Ag/NVVfu3DgQOl4agd96JfqWE2YOMmP5OsGrhk7xrf1cPflws23jJPNN9tMTjn5ZH8Vbj0gn/v6a/5ztD9pANED/icfL/UP73c4dFS3/+1/4EHywYcf+s9L7S+jR4+WiW4GQrCEg+39Dzzog4q+pu0+0o3q6mwEDbY6Et3HjczpSL0uqcF2sPtbCPqhBlgNadpXdOq1znYIRoB15FpH3SpaBpw/UO5JfBGg04l11oN6aRDUEHXhoEHJL4MqCrb6hcfxbmRX+8Haa6/jpyM/8OAUvz/6N9fjzDPlnLN7+vp0yvX+7srU2ofruZkKr7/ycnIXw+2jT+68c2MZOXy4r0+/aLrv/vtl0OBLfGjV1x95aEpyRkBqENWZFUcfdZQ/31W/BBk1+ip9i/97fnX2LP+4on/C29Mvswb07Ssd3AwQ/ZvStuk/4PzkFxP6/x7tl7qEawj3sfDzul4utT3+xBNS1PNsfZufMXHxoItkd3eqxWduWvJ1112fnFVxoruOwZDLSv9fGf4bzjXY6udU9W+6un87+hksCCCAAAIIIIBAIBCbYKvncXY/q4evq9sZZ8h5fXoHNfqfp7nnZrhzDnXRKbo6oqlLEOD08b133yV6cK7LK6++Kied3N4/1rDzsguhq622mv/9+htukCuuLL0Cc1/3OV3dtnUJHwjqeZoP3n9fuVFQXUdHt1525zTqomFJQ4CG3t2aF/gwoKM2U1zI1IPfYNED8sOPPMpfTEaff929f401Sqdfhvd/yKWXyIknnBC8rdxPHXlcy43KabAPlgkTJianuV55xRXlRpCD7VYn2I5wIatv//6+Hh2BvdlN2dZpteEl9SBdp2qGz5n83333ST934K/LEYcfJqNHjfKPq2ul53me3rWb30YQlIOpxvvsvbe0b39y8vXnZ0z350/vuPMu/osSfV2nnesS3u9w6KhO/9OR0+YtSr8UydZf9MuH2S+XBrdwsL3Q3QIomOZ+vZtKrueHh5fwNOvUYHvE0cf4Lw10hHfa008lR+j0/Xr+53EnlE6TTx3RDG8/eKy3PlIT7Y9Tn3zSfxkTvKY/r7v++mQgrCjYPvXE47LVlluG3+ofa9/X83Z3d+dlB31eXzjT/a0/5f7mdXnxuWeTnxtuH+17T7ovhHQaf3i56uoxUnLttf6pyy4ZnDwtIBxEtS9qnwwve7t7yuoosi7Z9je8fnh77du1k8EXl962KVhH238/98WGnkOsX07MfL70/0/hGsJ9LPx8rrUNcX+T493fuy7jbrrJf/kV7IfOCmmz737+PG89NeGJxx71L4X/f1adYFvVv+nq/O0E+85PBBBAAAEEEEAgEIhNsNXz125KnL+nB/KpF0LRESQ9SNblumtK/Ll3+jgc4BbOn5d8n14Iat/9D9BVfOAKH+TqqE9fd/6iLjqS27O4yD8OHwiecdpp0q/vef758D83ufMIR1x+hX9q5PBh0vaYY0Sno57Wtat/Ltv7wgemE93oZ6uWLf36wf5rvdnud6kHrhPdeXwL3MVz3n///eTUTp16GkyJDB/g64aD7eYabP1OJf7R92roauOCYeoSPkj/z3/+I7NnvlguzOvUb90HXXQkWUeUdamu1Xuu7gMPPsRvo6ub8t33vD4SjJae1qWztHcjtkF76yj85u4LAD3Y16Vzx1NloBt51yW83+HQUZ3+N82dv9vVjf7rkq3db3QhZOQVpaE+HGwPPfwIP2tA233+nNf9KLzfUOifprvu5r80CQfb8BcDOrobfFkTeltyhFWnvD/04APhl8o91pG2gj1K+6FeyEivVJ66vPHGgkrPsdWLhN3npptnWnSmgU5TfctNE//440/8Fw263jfffJO89Vc4ZIbbZ5dd3HYT53eHt62zFNoed7x/qu0xR/sRXf0lHEQHui9mdIZGeKnsy4Twuvo4vD09Z3dvd05w6nK6+7uf7v7+dZk+bar8d9NNs/axZaktPMtBQ3HqotOudbqy9gmdSaKzTML/P8s12ObyN12dv53U/ed3BBBAAAEEEEAgNsFWLzwUTNetrFnDo6zZAlw42Opo460TJyQ3W5Vg29+F2tNduE1dwiOR57gpoEXufL3Jt9/up0fqujpd8bTTuqS+TcKjxOGR2Wz7H2xA6zjdnYupwa6iJYpgqxdo0vNj9TzZ1CV8kK5TpDVMhhe9Omqz3Zv7p8IBq7pWeuC+0y5N/MG7Tq8d7qbcNnZXENYvPIZedqkc27at7Ny0mQ/9F190oQ/TwYWlBrlzODu4czl1Ce93ONhWp//d5qalB1Pks7X7vW6ab3833VeXcLAN2l2n3Wuw1UCSurTcq7U/9zUcbPUWMgcfeljqqhl/1wC0YF7pFbYzrRD+smBvN/39FhfCUxedZq1fIOiSbcQ27Bh+v36JcU6vXuXO/Q2/HjzOFmz14lI3u0CZuug04H32298/3aKw0F+gTH8JB1E911Sn6oaXIa7PjHdT2nUJfzkWXif8OLw9DdgatFMXPe9Vp5Xrohdv0ovRZetj4edzrS2YVp/6+Zl+D85BX5Zgm8vfdHX+djLtN88hgAACCCCAgG2B2ATbm91o7XA3aqvLWd27y2GHld3qJrWJN3TTkIMLpAQBIXVkclmDrZ7reqmb5pi6XOnO07vWTc/U5cbrr5N93RVh589/Q4457jj/XLb3hc9l1FG04AJS2fbfb8z9Ex4N0QBxtLuQ1DrrrO1ffuKJJ5PnR9ZUsNURxH3btJGnp03zn6FTbPWAXUeAwkv4ID1TsMkWbJfFSkdg9XZIOs1UzzE85LDSi3fdMfk2fwuiw4440l9QSS9IpFNf9YBbl/DUzWz7XZ3+p+eynnBSO/8Z2ab9hvtLONiGp+KGg53fmPsnPM05HGw1yOu0dx251b+BieNukZUruEBUcOujYLvhn3pRpd0KCv1U2k022USefWZacsZDsF743M5cg214lFF9Wrn+G4w2Xj12rP+70c8J1x9un/C50cH+6E+99VPHzqVfHnXp3Mmdz97fvxwOonoeu57PHl6WJdhedeUo0XPnUxf98kSnjevfzasvz/YXWQvXEP7bCD+fa23hkWEN5TojIduy+Wab+2nfyxJsw/sdfE62v+nq/O0E2+QnAggggAACCCAQCMQm2IZDgh6MPzzlwXKjWCWJq/N26tRJ9NzCYMkWDJc12OoVR/UcWj13Llh06u9BhxyavILsy+7eo3q1Vg0bu7uAoK/r+x5/9JFyVwHW+07qKJtOKdYpfjpVUA+Edcm2/8Fn6q1WdDqoLs+6qa96j9BgCa76q7/XVLDVLwj0CsLd3ZV+gymWet7yJDfirReRCpbwQXouB8HLYqVhRkONnmesU5F7FPf0u6PToDXk6cV1NIjpNO82rVvLEHfRIV30YmPBucnZ9rs6/U+vGtzETRfW0WS9CNKT7tzG1P6i06d1WrYu4WAbDgM6eneNC3pB6NMp9zoS+NDDj/j3hYOtPtGpSxd5/oUX/WslY64WvYBUsOiFmS52F1c644zT/cV/guez/QwHpnPdxZ16uHYPFr3okwY3vR2QLrkEW/1b2NWN2Gt41lvR6O2WgkWnQO/pLgynfrpkC7b6WqYpwF27dZdp06fry+52QWX1Rxls9W9Aw3Lwd6ufrVOi9XxmnQKs59Y/+nDpFYuz9bHw8/r+XGoLn+vcoX17GeRmJQRL0F/2br23P88+2MflFWyr87cT7Ds/EUAAAQQQQACBQCA2wVbDwd5uRE6vIqyLHkjq+XMaFJ55ZrofmdSDZA29OuIZHLxlC4bLGmx1H/SekD3O7C7buCvOfvTRx346cTAlODy9VtfV++c+8mjpRVt0n7u7c+/0YjrvuVBwgzsvNwg3ev9NvVVQsGTb/+D18MF6504d3fmineTLr76UB9z0x8l33BGsJnrRmLPclWeDq+BWtt3kGxMPUtf/delSd9XlU5KhWkPNjW6kWkOWLuGD9FyCrb63ulYXDbpYbnfna+r0XW0XvcqtjiQHV7gNRkd19PHQQw6WceMn+PN+NahrYNcl235Xt//pvWT1Xq26lO8vH8m17mq1wRWT9fVwsNV+dEzbY5O3g9Lgve+++/h+/dxzzyev2q3vSw22t7rbHg12tz/SRb9I0ZFEvd/rW2+/5W6B9L9kEB1z1WjnUHpesl85wz965ePe7j7PwaLTd5u70e4ff/xRHncXk9IQGiy5BFt9T9Cn9LHec7b1Xnv6ezHrFO4gmOtruu86VVynv4bbR1/TC07pOdUFbpRe9+muu+9OXkROvwiY7gJz8GVC+G+lpkdsdV/0KsGd3Pna66+/vrsC9Ty55trrktOsq3Ie97LUphePa3v8Cf46A9qX93GzKvRv/Rf3BYJ+AaJf+OgSvsjV8gq21f3b8TvMPwgggAACCCCAQEIgNsFW69GD/fYdTk2GwNRW1gPZG9zVUPW2KMESHDzX9FRkDaUajnWEMXXRc071HD69zUywLF36mxtBLJJnXSjJtujVece6ESYNZsGSbf+D15986ik5y93uJ9OiQUDNdJROl/Ctbirbbur2Mq2vF/g5/sSTkredOcTdk/Tq0Vf68BU+SM812FbXarwLqsEorIY9PaAO3z5Jby/Tx53jrIv2Bx3J0jbSKwcHS0X7XZ3+p19Y6JWywwE2+Cz98qXxTjslb8kUDra6jl4tWa/2rR6pi94+5kUXVnTkMzXY6rrhi5Glvld/1zbRc2Yru4+trjtu3Hh/qyR9nLoc6y6O9j93sTVdcg224am/qdvVWyNpqNbRTl10+vuN7lZW4fYJTjcIh+tgO9q+OiVXA16wRBls9XZKb7/zTvBR5X7qeb633HRjcsQ9XEP4byP8fK616QfqbIRzevVOXkSv3E64X/SLlXvdBcD03Hhdllew1c+qzt+Ovo8FAQQQQAABBBAIBGIVbLUonfY4zE0hffXV15KjIT4gNN5Jhg0ZkrxnZQCQKZDpa8s6YqtXEf3vfzeTSy67zJ/vqNvUg2kdSb7M3ZZnm4YN9alyiwat4W5kapobYQ7uQaoraLjaz43G9XOhS7cRXrLtf3idxx5/XM6/4ELRc9yCRS9So/fN1FsPjXK3LlK3mg62+ll6wKrnkeq0VF2Cc4jDB+nhg3e/kvsn2/l4wevVsZrqzvvtdmbZVFndlt47ddjQIX6z4fN3g89JvShSZfuda//Tz9Gp5nqBKG2LYHqtjurpPZA1uAUjoqnBVt8714383etGWV+cOVM+/ewzfx/g445tK2e4Ucq92uzjv+TJFGz1vTo9dcpDD/vbSOlsBl10SnTHDh2kuKhHlUKtf5P7R2cbPPHkU/LSrFnyq5sy37Dh1nJmt26y/fbbi94SSJdcg63Wrn3zlvHjy4UxPQf6Andv45JrrvUj8PoFSqZgq/2qnxtN7u3u6fvW22/7fdB/dNqvXsk8PAVbn48y2N51x+0ydeo0GTdhQrIWPSWitZvyrv1P//aCJVsfS30+l9qCbT/19NNy4003y/w33kjuh37hpwFfL0oXPhd+eQZb3b/q/O0EdfETAQQQQAABBBDIq2CbS3PpSOmiRYvljz//8AfX4fM7c9lOLutmOhD87bff/HTiH929KnfZZZdyB7AVbVtH8nSERw/Cg3vuVrR+Za9pcNFRwc/cfTg1dOh027gsNW1VEy7V6X/aVzSo6shZeDS/qvujQVC/xAmW4EuPbME2WE8vNPXmokWymfsCRc9nXZYlCMjBVZrDYSwcbHP5DP0SY/Hit9y06yX+oml6nnm2Jfx5wRcm6qLPf/7Z5+7/Bdslpx5n20ZNPZ8pKOt0aA1w6rNz48ZpX1RV9Nk1WZv2NT3HV4OsnoaQ+oVZRfsR9WvV+duJep/YPgIIIIAAAgjUfoHYBtsVQZ8p2K6I/eAzEdCrPx/izp3VacqVBdsotfQWXMHVpasbbHPZv0zhL5f31+S6mYLtsmy/NtW2LHXwXgQQQAABBBBAIAoBgm0NqhJsaxCTTVUqoFOYDz38iIzr/fb77/4cYn1x550bu/sJ35txvZp4Ui8+dNGgQRk3pRcRC84zP93dn7l/4hzmjCvXwJO1KfwRbGugQdkEAggggAACCCBQRQGCbRWhqrIawbYqSqxTUwKfumnle++7b6Wbu3TwxdLO3Qc2quW++x+Qvol7wWb7DJ3q+uD996Wd455t/eo+T7CtrhzvQwABBBBAAAEE8luAYFuD7af3Y3w0ccuefdyFe1q5i9ewIBCVwE/uvO0x7v612Za11qorhx56SORhUs/VnDJlSrbdkAb1G8gRRxy+XM5t1SsgX3vddX5ftnbnjp7crl3W/Yr6hfvdLbUWLHjDf0zHjh2X+fzl2lRb1HZsHwEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAAEEEEAAAQQQQAABBHIVINjmKsb6CCCAAAIIIIAAAggggAACtUqAYFurmoOdQQABBBBAAAEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAAEEEEAAAQQQQAABBHIVINjmKsb6CCCAAAIIIIAAAggggAACtUqAYFurmoOdQQABBBBAAAEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAAEEEEAAAQQQQAABBHIVINjmKsb6CCCAAAIIIIAAAggggAACtUqAYFurmoOdQQABBBBAAAEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAAEEEEAAAQQQQAABBHIVINjmKsb6CCCAAAIIIIAAAggggAACtUqAYFurmoOdQQABBBBAAAEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAAEEEEAAAQQQQAABBHIVINjmKsb6CCCAAAIIIIAAAggggAACtUqAYFurmoOdQQABBBBAAAEEEEAAAQQQyFWAYJurGOsjgAACCCCAAAIIIIAAAgjUKgGCba1qDnYGAQQQQAABBBBAAAEEEEAgVwGCba5irI8AAggggAACCCCAAAIIIFCrBAi2tao52BkEEEAAAQQQQAABBBBAAIFcBQi2uYqxPgIIIIAAAggggAACCCCAQK0SINjWquZgZxBAAIHlKzBmbInMmj1behYXSWFBgbTvcKr/qb/r8/q6Pq+/B+tOvnVSha9pBZm2w2ekO1bHKnCsanuktmPwe7CditoqHz5D+6fWFPTT5fsXxKchgAACCNQWAYJtbWkJ9gMBBBBYTgIaVnQJwuqYkhLRsKrBYJvtd/A/9XddT1/rWVTk19UApAHincWL/E/9PdNruu1M2+Ez0h2rYxU4VrU9tM2C8Bpu12A7FbVVPnyG9kHtp2e7L1+K9bF+GVNY4Pux+rIggAACCNgQINjaaGeqRAABBJIC4bCSfJIHCMREQIO6LkFwj0lZlIEAAgggUIkAwbYSIF5GAAEE4iIQTNeMSz3UgUAmAe3nuugMBBYEEEAAATsCBFs7bU2lCCBgWCCYjhpMHTZMQelGBIKp9Dp1ngUBBBBAIP4CBNv4tzEVIoAAAl5ApyAHFwyCBIG4CwTBlinJcW9p6kMAAQRKBQi29AQEEEAAAQQQiJ0AU+9j16QUhAACCFQoQLCtkIcXEUAAgXgIMFobj3akitwEON82Ny/WRgABBPJZgGCbz63HviOAAAJVFAjf0qWKb2E1BPJegH6f901IAQgggECVBQi2VaZiRQQQQCB/BRi5yt+2Y8+rLzDW3d9WF72/LQsCCCCAQLwFCLbxbl+qQwABBBBAAAEEEEAAAQRiL0CwjX0TUyACCCAgwpRMeoFFAT23XO9nq1cDZ0EAAQQQiLcAwTbe7Ut1CCCAgBfQA/wWhQVMyaQ/mBLgCx1TzU2xCCBgXIBga7wDUD4CCCCAAAIIIIAAAgggkO8CBNt8b0H2HwEEEKiCwJixJVLoRmx1WiYLAggggAACCCAQNwGCbdxalHoQQACBDAJMycyAwlOxF6Dfx76JKRABBBBIChBskxQ8QAABBOIrwO1+4tu2VJZdgHPLs9vwCgIIIBA3AYJt3FqUehBAAAEEEEAAAQQQQAABYwIEW2MNTrkIIGBTgCmZNtvdetWcW269B1A/AghYEiDYWmptakUAAbMCBFuzTW+6cPq96eaneAQQMCZAsDXW4JSLAAIIIICAFQHOLbfS0tSJAAIIiBBs6QUIIICAAQEO8A00MiUigAACCCBgWIBga7jxKR0BBOwIMCXTTltTaZkA/b7MgkcIIIBA3AUItnFvYepDAAEEnMDYkhLvUFxUhAcCZgS43Y+ZpqZQBBBAgKnI9AEEEEAAAQQQQAABBBBAAIH8FmDENr/bj71HAAEEqiSgI1eFBQXSs5gR2yqBsVIsBLjdTyyakSIQQACBKgkQbKvExEoIIIBAfgtwrmF+tx97Xz0B+n313HgXAgggkI8CBNt8bDX2GQEEEEAAAQQqFeDc8kqJWAEBBBCIjQDBNjZNSSEIIIBAdgFu95PdhlcQQAABBBBAIP8FCLb534ZUgAACCFQqwJTMSolYIYYCnFsew0alJAQQQCCLAME2CwxPI4AAAnESYEpmnFqTWqoqwBc6VZViPQQQQCD/BQi2+d+GVIAAAggggAACCCCAAAIImBYg2JpufopHAAErAtz2xEpLU2dYgHPLwxo8RgABBOItQLCNd/tSHQIIIOAFmJJJR7AoQL+32OrUjAACVgUItlZbnroRQMCUACNXppqbYhMCnFtOV0AAAQTsCBBs7bQ1lSKAAAIIIIAAAggggAACsRQg2MayWSkKAQQQKC/AlMzyHvxmQ4Db/dhoZ6pEAAEEVIBgSz9AAAEEDAjoAX6LwgIpLioyUC0lIlAqwBc69AQEEEDAjgDB1k5bUykCCCCAAAIIIIAAAgggEEsBgm0sm5WiEEAAgfIC3O6nvAe/IYAAAggggEC8BAi28WpPqkEAAQQyCjAlMyMLT8ZcgH4f8wamPAQQQCAkQLANYfAQAQQQiKsAt/uJa8tSV0UCnFtekQ6vIYAAAvESINjGqz2pBgEEEEAAAQQQQAABBBAwJ0CwNdfkFIwAAhYFmJJpsdWpmXPL6QMIIICAHQGCrZ22plIEEDAsQLA13PiGS6ffG258SkcAAXMCBFtzTU7BCCCAAAII2BDg3HIb7UyVCCCAgAoQbOkHCCCAgAEBDvANNDIlIoAAAgggYFiAYGu48SkdAQTsCDAl005bU2mZAP2+zIJHCCCAQNwFCLZxb2HqQwABBJzA2JIS71BcVIQHAmYEuN2PmaamUAQQQICpyPQBBBBAAAEEEEAAAQQQQACB/BZgxDa/24+9RwABBKokoCNXhQUF0rM4PiO2//77b5VqX2mllaq0Xj6ttGTJEvn777/lP//5Tz7t9nLfV273s9zJ+UAEEEBghQkQbFcYPR+MAAIILD+BOJ5reNvk2+WZGTMqRNy1WTPpcWb3CtfJtxe/++47Of/Ci+Sff/6Riy4YKP/ddNOcS1i6dKn8+NNPUme11WTdddfN+f358oY49vt8sWc/EUAAgeUtQLBd3uJ8HgIIIIBAjQhYDbYffviRXDJkiDfsfe45smOjRjl7Tp32jNx+553+vbqNuC6cWx7XlqUuBBBAIF2AYJtuwjMIIIBA7ATieLufP//8U/52o5a6/Pzzz9L//IH+8cAB/aVBgwb+8Sorryz/93//5x/H6Z9589+Qv/76U5o1bSrVmWptJdjGqc2pBQEEEECgYgGCbcU+vIoAAgjEQiDuUzI12J7Tu49vq8GDLio3PXe6m678ww8/SkFBc/n888/l/fc/kD32aCGbuvCr03mff+EFeffd93w43mjjjWSfNm1k4402Srb7F19+KS+9NMufz9qy5R7y6quvygcffCj1628iOtV5nXXWSa6r5/2+9/77smDBQvn4k09km4YNpXHjnfxnJVdyD/744w95/fU58vY77/gpwVtusbk0c9tqUL9+crVs+6379vAjj/r1DjroQFlj9dXlDfd577htbb31VrLxxhvLiy/OlE8//VQ233xz2W23XZOfP/+NBa7Wd+WDDz8QfbzB+uvLHi1a+G0ddughsfsSII7nlic7CA8QQAABBMoJEGzLcfALAgggEE+BuE/JrCjY6rRdnb7bcOut5d333vMNXHTWmbLLzjvLFVeOlrfefrtco6+66qoyoG9f2XLLLfzz8+bPl6vHlvgAq6Fy8VtvJdfX81N13fXXX88/9+CUh2TKww/7xzqSqkF3lVVWkb59evuQqy/86s5v1YsaaagNL3q+6xmnn+ZHYfX5bPvdyE097lHc07/1ihHD/Tmyd997rzzx5FOy1ZZbyjfffutDerDt1evUkd69zpWtt9pK7rrnHnnyqaeDl8r9HHvVaFlzzTXLPZfvv8T9C518bx/2HwEEEKhJAYJtTWqyLQQQQACBFSJQlWCrU5ILmzeXbbfdRhrt0Ei+/uZrd3/fa2QNF+bO6t5N1nUjr3ff+z+Z/fLL0qxJEynqcZavJQi2+oteqOngAw/0z2uA/errr2XPli2lc6eO/rk+/frL999/L11PcwG1WVN5eupUF3Qf8euc0v5kv84NN93sP0ND8fFt28q6660rM2e+JM8+/7ysscYaMmrkSKlTZ7VksE3d77XqrpU12OoH7OxGiPfdZx9Z8ssSeWraVB/q9erJV14+Ur786iv55ptvZe7cuTJt+nQ/onvsMcf4/Wq0w/Y+hPtf+AcBBBBAAIE8EyDY5lmDsbsIIIBAdQTiftuTqgTbVnvsIV06dyrHp1OCv3VXGdbwqLfPef+99+WmceNkEzedd8ill/h1w8H2gvMH+FFRfWHaM8/I5DvulPqbbCKXXTLYrztsxEh5x0313WXnxrJ369Z+lHg1N2Kqo7G66Aju2b16i96up995fWS7bbf1z+s/Q4YNd4G2jpxw/HGy+WabJYNt6n7/9vvvWYOtjs5eecUVPhjrNj/97DO56OLSfdN91H3Vxco5tnE8t9w3IP8ggAACCKQJEGzTSHgCAQQQiJ9A3KdkViXYnt65sz+3NmhdDYi33nabvPra66IXogoveu7piGFD/VNBsF1rrbXk6itHJS/WpAFWg6yOspZcfZVfV6cXX3/jTe6c3h/87zodWacHn9zuJP/zM3eO74WDLvYjo9eVjK1whDSYipxpv7NNRW6+++7SvesZ4VL85+nnntGli7RoUehfsxJs497vyzU0vyCAAALGBQi2xjsA5SOAgA2BuI9cVSXYhoOdtnpwvmlwAaXVV68jX3zxpTznLiaVKdhutOGGMmzIZckOo+frDh0+olyw1Rc1MC9cuND996a7QNMb/pxXnVo8+opR7mJVf0vxOef6kVudGrz22msnt6dToHXKsJ4Lu5ob4Q2Cbep+VzRiqyO9gy68ILnN33//Q3r16eP3KXxrICvBNu7nlicbmgcIIIAAAkKwpRMggAACCOS9QHWCrYZSDaftTjxR9t9vX28Q3BtXA6demGlld7ugYMS2smCr59beMn6CP491iJv2q+FUr7p8bp/z5JdffklOPR582RD56KOP5AD3mSe5z9blE3cF40vc8zodekC/vv5CU9UJtrqtIMDqtGcNsHfcdZcfZS4Zc7XoVGVdgmCrF9Q6v38//xz/IIAAAgggkM8CBNt8bj32HQEEEKiiQNynZFYn2N7pAt9TU6dJvXr1ZDd3qx29PY/+p2H0r7/+8rfeueiCgfLmokX+qsiVBVsNkgMvvMgHW73IVJNddhG9VdCrr73mQ+7lw4dJ3bp15eVXXpGbbhnnQ6xuU597/4MP/Chu4512lHPPPtu3anWDrb55Mzdyu/TXX/1osf6+V6tW0qnjqfrQLwvffFNGjS6dPq3rbrjBBtLjzO7By7H5ye1+YtOUFIIAAghUKkCwrZSIFRBAAIH8F9AD/BaFBVJcVJT/xWSooDrBVi/gdOPNN/t7wOom9QJSXdzVjXXkdcpDD/vpu3oe7KLFi6sUbHUbequd++6/34XhxfLTTz+J3jpI72V70IEH+NsL6Tq6zHFXJb7HXYFZg68uOlW5YPfm0v7kdsl7yVYn2OqFpvQCVM+4e/dq0NZRY70S9KkdTvGjz/7D3D/62oSJk+TlV18Rna6cGtqD9fL9Z9y/0Mn39mH/EUAAgZoUINjWpCbbQgABBBDIOwENuN+5KyNvtNHGyasJL2sRGhw1tOotfYLpv5m2qYH8J/efXq1Ypz1XdwnuYxuMzOp2NaDXr18/GZSru23ehwACCCCAQD4IEGzzoZXYRwQQQGAZBeJ+u59l5Mn7t6cG27wviAIQQAABBBDIUYBgmyMYqyOAAAL5KMCUzHxstarvM8E2sxX9PrMLzyKAAAJxFCDYxrFVqQkBBBBIEYj77X5SyjX3q94/98MPP5IGDerLjo0amas/W8FxP7c8W908jwACCFgUINhabHVqRgABBBBAAAEEEEAAAQRiJECwjVFjUgoCCCCQTYApmdlkeD7OApxbHufWpTYEEECgvADBtrwHvyGAAAKxFCDYxrJZKaoSAfp9JUC8jAACCMRIgGAbo8akFAQQQAABBBAoE+Dc8jILHiGAAAJxFyDYxr2FqQ8BBBBwAhzg0w0QQAABBBBAIM4CBNs4ty61IYAAAgkBpmTSFSwK0O8ttjo1I4CAVQGCrdWWp24EEDAlMLakxNdbXFRkqm6KtS3A7X5stz/VI4CALQGCra32ploEEEAAAQQQQAABBBBAIHYCBNvYNSkFIYAAAukCOnJVWFAgPYsZsU3X4Zm4CnC7n7i2LHUhgAAC6QIE23QTnkEAAQRiJ8C5hrFrUgqqggD9vgpIrIIAAgjERIBgG5OGpAwEEEAAAQQQKC/A1cDLe/AbAgggEGcBgm2cW5faEEAAgYQAB/h0BQQQQAABBBCIswDBNs6tS20IIIBAQoApmXQFiwKcW26x1akZAQSsChBsrbY8dSOAgCkBbvdjqrkpNiHAFzp0BQQQQMCOAMHWTltTKQIIIIAAAggggAACCCAQSwGCbSyblaIQQACB8gLc9qS8B7/ZEODcchvtTJUIIICAChBs6QcIIICAAQGmZBpoZEpME6Dfp5HwBAIIIBBbAYJtbJuWwhBAAIEyAUauyix4ZEeAc8vttDWVIoAAAgRb+gACCCCAAAIIIIAAAggggEBeCxBs87r52HkEEECgagJMyayaE2vFS4Db/cSrPakGAQQQqEiAYFuRDq8hgAACMRHQA/wWhQVSXFQUk4ooA4HKBfhCp3Ij1kAAAQTiIkCwjUtLUgcCCCCAAAIIIIAAAgggYFSAYGu04SkbAQRsCXC7H1vtTbWlAlw0jZ6AAAII2BEg2NppaypFAAHDAkzJNNz4hkun3xtufEpHAAFzAgRbc01OwQggYFGAkSuLrU7NnFtOH0AAAQTsCBBs7bQ1lSKAAAIIIIAAAggggAACsRQg2MayWSkKAQQQKC/AlMzyHvxmQ4Bzy220M1UigAACKkCwpR8ggAACBgQItgYamRLTBOj3aSQ8gQACCMRWgGAb26alMAQQQAABBGwLcG657fanegQQsCVAsLXV3lSLAAJGBTjAN9rwlI0AAggggIARAYKtkYamTAQQsC3AlEzb7W+1evq91ZanbgQQsChAsLXY6tSMAALmBMaWlPiai4uKzNVOwXYFuN2P3bancgQQsCdAsLXX5lSMAAIIIIAAAggggAACCMRKgGAbq+akGAQQQCCzgI5cFRYUSM9iRmwzC/FsHAW43U8cW5WaEEAAgcwCBNvMLjyLAAIIxEqAcw1j1ZwUU0UB+n0VoVgNAQQQiIEAwTYGjUgJCCCAAAIIIJAuwNXA0014BgEEEIirAME2ri1LXQgggEBIgAP8EAYPEUAAAQQQQCB2AgTb2DUpBSGAAALpAkzJTDfhmfgLcG55/NuYChFAAIFAgGAbSPATAQQQiLEAt/uJceNSWlYBvtDJSsMLCCCAQOwECLaxa1IKQgABBBBAAAEEEEAAAQRsCRBsbbU31SKAgFEBve3JmJISeWfxIqMClG1NgPPKrbU49SKAgHUBgq31HkD9CCBgQiAItpNvneTvZ2uiaIo0LaDn12q4pc+b7gYUjwAChgQItoYam1IRQAABFdCD/cKCAjAQiLWA9vPZ7r/ioqJY10lxCCCAAAKlAgRbegICCCBgSICRW0ONbbRU7eO69Cwm0BrtApSNAAJGBQi2RhueshFAwKZAarBl9NZmP4hj1UFfTu3jcayVmhBAAAEE0gUItukmPIMAAgjEWiAIAPpTz0MMzkHUW6PooheYCl7r6aZx6shXcL5iptdSg0T4FiuZXuMzSsqZ67RwbYNMVsFrubRH0Fbhdg22Y+UztI8x3V4VWBBAAAE7AgRbO21NpQgggEA5AQ1LGnQ0uGoI0ECkiwai1Nd0PX2uotfC22lRWODPbQzeF37N2md0Pu10OdsZd+va1XurY9ijIqvgtSjbI26f4Tsx/yCAAAIImBMg2JprcgpGAAEEEFieAnu12UeaNW0qY64avTw/ls9CAAEEEEDAlADB1lRzUywCCCCAwPIWINgub3E+DwEEEEDAogDB1mKrUzMCCCCAwHITINguN2o+CAEEEEDAsADB1nDjUzoCCCCAQPQCBNvojfkEBBBAAAEECLb0AQQQQAABBCIUINhGiMumEUAAAQQQSAgQbOkKCCCAAAIIRChAsI0Ql00jgAACCCCQECDY0hUQQAABBBCIUIBgGyEum0YAAQQQQCAhQLClKyCAAAIIIBChAME2Qlw2jQACCCCAQEKAYEtXQAABBBBAIEIBgm2EuGwaAQQQQACBhADBlq6AAAIIIIBAhAIE2whx2TQCCCCAAAIJAYItXQEBBBBAAIEIBQi2EeKyaQQQQAABBBICBFu6AgIIIIAAAhEKEGwjxGXTCCCAAAIIJAQItnQFBBBAAAEEIhQg2EaIy6YRQAABBBBICBBs6QoIIIAAAghEKECwjRCXTSOAAAIIIJAQINjSFRBAAAEEEIhQgGAbIS6bRgABBBBAICFAsKUrIIAAAgggEKEAwTZCXDaNAAIIIIBAQoBgS1dAAAEEEEAgQgGCbYS4bBoBBBBAAIGEAMGWroAAAggggECEAgTbCHHZNAIIIIAAAgkBgi1dAQEEEEAAgQgFCLYR4rJpBBBAAAEEEgIEW7oCAggggAACEQoQbCPEZdMIIIAAAggkBAi2dAUEEEAAAQQiFCDYRojLphFAAAEEEEgIEGzpCggggAACCEQoQLCNEJdNI4AAAgggkBAg2NIVEEAAAQQQiFCAYBshLptGAAEEEEAgIUCwpSsggAACCCAQoQDBNkJcNo0AAggggEBCgGBLV0AAAQQQQCBCAYJthLhsGgEEEEAAgYQAwZaugAACCCCAQIQCBNsIcdk0AggggAACCQGCLV0BAQQQQACBCAUIthHismkEEEAAAQQSAgRbugICCCCAAAIRChBsI8Rl0wgggAACCCQECLZ0BQQQQAABBCIUINhGiMumEUAAAQQQSAgQbOkKCCCAAAIIRChAsI0Ql00jgAACCCCQECDY0hUQQAABBBCIUIBgGyEum0YAAQQQQCAhQLClKyCAAAIIIBChAME2Qlw2jQACCCCAQEKAYEtXQAABBBBAIEIBgm2EuGwaAQQQQACBhADBlq6AAAIIIIBAhAIE2whx2TQCCCCAAAIJAYItXQEBBBBAAIEIBQi2EeKyaQQQQAABBBICBFu6AgIIIIAAAhEKEGwjxGXTCCCAAAIIJAQItnQFBBBAAAEEaljg9TlzpFnTpn6rqcE2/FoNfyybQwABBBBAwKwAwdZs01M4AggggEAUAj3POVc0vHbp1FE6d+ok4WA7fsIEGTdhYvK1KD6fbSKAAAIIIGBRgGBrsdWpGQEEEEAgMgENtRpuddFwq0FWR2+bNW2SfDzmqtGRfT4bRgABBBBAwKIAwdZiq1MzAggggECkAuFwG/4gDbiE2rAIjxFAAAEEEKgZAYJtzTiyFQQQQAABBMoJpIZbQm05Hn5BAAEEEECgRgUItjXKycYQQAABBBAoEwjCLaG2zIRHCCCAAAIIRCFAsI1ClW0igAACeSIwa/ZsmTVrdp7sbX7u5py5c6Rpk9IrJOdnBbV/rwsLC/xOFhaU/qz9e8weIoAAAgjUtADBtqZF2R4CCCCQBwJjxpbImJKSPNhTdhGBqgtosO1ZXCQE3KqbsSYCCCAQFwGCbVxakjoQQACBKgjoCG37Dqcm1zzbhQBdChjpSprwID8F9Msa7d+6aLCdfOuk/CyEvUYAAQQQqJYAwbZabLwJAQQQyD+BcKjVQFtcVBpq868S9hiB7ALBbATCbXYjXkEAAQTiKECwjWOrUhMCCCCQQWCb7XfwzxJqM+DwVKwEgnDb0315o1OTWRBAAAEE4i9AsAfxSnoAAEAASURBVI1/G1MhAggg4Kdo6hRkRrHoDFYEgi9y3lm8yErJ1IkAAgiYFiDYmm5+ikcAASsCGmp1KrKed8iFday0uu06GbW13f5UjwAC9gQItvbanIoRQMCggI5eMVprsOGNl0y/N94BKB8BBEwJEGxNNTfFIoCAVQEO8K22vO266fe225/qEUDAlgDB1lZ7Uy0CCBgV4ADfaMMbL5t+b7wDUD4CCJgSINiaam6KRQABqwIc4Fttedt10+9ttz/VI4CALQGCra32ploEEDAqwAG+0YY3Xjb93ngHoHwEEDAlQLA11dwUiwACVgU4wLfa8rbrpt/bbn+qRwABWwIEW1vtTbUIIGBUgAN8ow1vvGz6vfEOQPkIIGBKgGBrqrkpFgEErApwgG+15W3XTb+33f5UjwACtgQItrbam2oRQMCoAAf4RhveeNn0e+MdgPIRQMCUAMHWVHNTLAIIWBXgAN9qy9uum35vu/2pHgEEbAkQbG21N9UigIBRAQ7wjTa88bLp98Y7AOUjgIApAYKtqeamWAQQsCrAAb7VlrddN/3edvtTPQII2BIg2Npqb6pFAAGjAhzgG21442XT7413AMpHAAFTAgRbU81NsQggYFWAA3yrLW+7bvq97fanegQQsCVAsLXV3lSLAAJGBTjAN9rwxsum3xvvAJSPAAKmBAi2ppqbYhFAwKoAB/hWW9523fR72+1P9QggYEuAYGurvakWAQSMCnCAb7ThjZdNvzfeASgfAQRMCRBsTTU3xSKAgFUBDvCttrztuun3ttuf6hFAwJYAwdZWe1MtAggYFeAA32jDGy+bfm+8A1A+AgiYEiDYmmpuikUAAasCHOBbbXnbddPvbbc/1SOAgC0Bgq2t9qZaBBAwKsABvtGGN142/d54B6B8BBAwJUCwNdXcFIsAAlYFOMC32vK266bf225/qkcAAVsCBFtb7U21CCBgVIADfKMNb7xs+r3xDkD5CCBgSoBga6q5KRYBBKwKcIBvteVt102/t93+VI8AArYECLa22ptqEUDAqAAH+EYb3njZ9HvjHYDyEUDAlADB1lRzUywCCFgV4ADfasvbrpt+b7v9qR4BBGwJEGxttTfVIoCAUQEO8I02vPGy6ffGOwDlI4CAKQGCranmplgEELAqwAG+1Za3XTf93nb7Uz0CCNgSINjaam+qRQABowIc4BtteONl0++NdwDKRwABUwIEW1PNTbEIIGBVgAN8qy1vu276ve32p3oEELAlQLC11d5UiwACRgU4wDfa8MbLpt8b7wCUjwACpgQItqaam2IRQMCqAAf4Vlvedt30e9vtT/UIIGBLgGBrq72pFgEEjApwgG+04Y2XTb833gEoHwEETAkQbE01N8UigIBVAQ7wrba87brp97bbn+oRQMCWAMHWVntTLQIIGBXgAN9owxsvm35vvANQPgIImBIg2JpqbopFAAGrAhzgW21523XT7223P9UjgIAtAYKtrfamWgQQMCrAAb7RhjdeNv3eeAegfAQQMCVAsDXV3BSLAAJWBTjAt9rytuum39tuf6pHAAFbAgRbW+1NtQggYFSAA3yjDW+8bPq98Q5A+QggYEqAYGuquSkWAQSsCnCAb7XlbddNv7fd/lSPAAK2BAi2ttqbahFAwKgAB/hGG9542fR74x2A8hFAwJQAwdZUc1MsAghYFeAA32rL266bfm+7/akeAQRsCRBsbbU31SKAgFEBDvCNNrzxsun3xjsA5SOAgCkBgq2p5qZYBBCwKlCTB/j//vuvfPzJJ/Lbb7/J1lttJauuumrsWf/880/5/IsvZPPNNqvRWn/++Wf54IMPZd311pUG9evLyiuvXG77aq3/pT5fbqUIf/nnn3/81iv7/Pfef1+22nJLWWmllSLcm9w3XZP9PvdP5x0IIIAAAstTgGC7PLX5LAQQQGAFCdTEAb6GnFFXjpbb77hDfv7lF19JnTp1ZJ82bWTY0CFSr27dFVRdzXyshtdPPv3Ub0xDWrBosDz08CPk7XfekUsHXyztTjopeKnaP+fOmyeDBg+WN95YkNxGvXr1pNc550j7k9slg+zRxx7r17li5Eg5+qgjk+sujwfPTJ8uZ3Tr7sP8tKefyvqRgy4eLJNdnzj8sMPkqitHZV1vRbxQE/1+Rew3n4kAAgggkLsAwTZ3M96BAAII5J1ATRzgBwFGi994441lvfXWk3dc2NNAuO0228hDDz6Q16O3i996Sw474khZZZVVZPHCssCp9e2x517yww8/yFndu0uvc89ZpvZ/c9EiOebY4+Svv/7y26nvRmq//vrr5O/9+54np592mn8tH4Jtt+5nytRnnpHddt1V7rrj9mWyqek310S/r+l9YnsIIIAAAtEIEGyjcWWrCCCAQK0SWNYDfB2tLdijpQ93Fw4cKB1P7eDr01HMY487Xn5dutSHGg03+bpkC7Zaz6LFi2XBggVy8MEHy1prrrlMJbbvcKrMmj1btth8cz/SXdC8uQ+2I6+4Qu5/4EFZY43VZdbMmbLmGmtIPgRbDeVTp02T1nu1lgYN6i+TTU2/eVn7fU3vD9tDAAEEEIhOgGAbnS1bRgABBGqNwLIe4Ou5oLs2L/Dnez7wv/9J48Y7JWs75dSO8tKsWdLbjWSe6UY0g2XO3Lny3HPPycI3F8kO228vrVvvJc2aNg1edq89L6++9po0bdpENtpwQ3nk0cf8aOnBBx0oO+64ow9/Oh129TqryyGHHCzbb7dd8r36QIPoQw89LG+//bbUrVdX9mjRQo45+mi/DX1dR1qvufY6fSjdunaV5194Xma//LKst+660sZNn260ww7+NT0/dMqUh+Tbb7+VO+66y58n2uPMM/1rhx9+mGzTsKHcceed8uWXX8lBbt+C9+kKb775psx49lmZO2++bLzRRtKkSRM58ojDk/vgNxL6R78g2LlpM/n999/lvN69/H4FL3/40Uey3wEH+l8D43Cw1dD41NNP+223cl8y7LXXnsFb/fMLFiyU3XfbTfbcs1Xy+cB4p512lAP2398/H9Ry2GGHylL3hcSMGTNkya+/Suo2M01F/vTTz+See+/129m1WTPfpsFnaJ/Yf7/9quwe7KRaPPLoo/KiC/P/t+r/+f3fa889Zdz4Cb4tzu5ZHKya889l7fc5fyBvQAABBBBYYQIE2xVGzwcjgAACy0+gJg7wjzj6GB/kNvvvf10gOyM5Qqdh55clv/jAuKELqLrc68LvgIEX+CAcVKkXFhoxbJi0PeZo/9SwESPklnHjZbttt5VP3MWodNRXFx2p7Nypk1x/443y999/++fqrrWWTL71VtGApsvTU6dKz3POlT/++MP/Hvxz0IEHyjVjx/hfNaw1aVY6gqxhc4oLwcGiF7y66frrfTic5qbRdnXTaTMt15aMlQMPOCDjyKmGsd7n9U1OIQ7e39oFzjFXXy26z6nLZ599Lq332cc//ejDD/naw+voPv755x8upO/hRz+DYLuXC6vPv/BiOc/iHj0kCH39B5wv9953n5vC3EX69+2b3ORwd27uzbeMk+PatpXhw4b654NtHuJGnzUoB1Oi9cXwNlODrU7FPuGkdqJfBDTZZReZOGG8rzFoxxOOO06GDrnMh+SquOvn6ZcPZ7o6ps94Vn9NLvu6Lx6muS81tM+8vejN5PO5PqiJfp/rZ7I+AggggMCKESDYrhh3PhUBBBBYrgI1cYA/f/4b0t2FkC+//DK57zoSe9CBB0iXLl2SU3QXLlzoguBxPoT1OudsadmypcxyI7pXuAtPaVB5eMqD/pzcIBBpyDy/f3/Zcost/AWV9IrLuuiIZuPGjWXosOF+dLZzx1Nl4Pnn+9dOdyOwGoa6nn66dOncyb9+etduPig99MD90qhRo3IBS88H7tKpo+zgRmnHT5goL7z4omhAf2bq0/Ldd9/JwoVvugtHfSIXXDTIX7hp3E03+c9p1GgHWX/99dOC7VtulPjwI48SHYFtd+KJoiO7OiV3iNtX/Zk6eu035v4Jj8rOcNN3N920QfBSxp9BCFUj/Zz9999PnnzyKX+xJn3Dsy6U60hudYJtZdsMB1sN4R06dpLX58zxI9aTb50k//nPf/w+B+2YKdhW5K5vvs59uTBq9FX+y4yOp57qRtL3lhdd24yfOEl++ukngq0X5h8EEEAAgaoIEGyrosQ6CCCAQJ4L1ESwVYIff/xRHn3sMXn8iSfl5VdeSY6YNtx6a7npxhv8FXTHuVHYoW40Vqcd9+8XGj0cMdIHo0EXXigdTmkvQSDSc0xvv+1WL6xXXb7uhht88H3skdIR1vFuSuqQ4cOlsKDAjdpOSrbEu++9J2u7cPXLkiX+uV69+8i8+fNl9KhRcoQLmuER237n9ZEzXAjWRUOpXuVYl5fc9OQNNtjAP67oHNsgYAZXJ57ggtdlQ4f66c+3Tpzg36//PPb44zL6qqv9KG8fF8xTl+oG2zZ7t5ab3Qi2LhqmW7rzWb/55hu5evSVctihh1Yr2Fa2zSDYarDf2U0z1i8StJ3vmHybv3BYUFvQjpmCbWXundwXIjoSraH90ksGB5uUK13YvdaFXkZskyQ8QAABBBCoRIBgWwkQLyOAAAJxEFjWYPvOu+/Ka+582HXWWceHNjXR+9hOd+dnXjZ0mHzh7vF6hruSbz93RV+dIqzhN9tyzNFHyeUu+KYGIl3/BhfeLh91pRzgztW87tpr/CbuvuceOf+CC8tddXeGC1kXuVvv6DTo1GWkC8E63TkcbHWUWEeXg2WHnRr7Kbh6JefgnNlcgm1QY8+iIulZXBRsttKfn3/+uezVJvtU5Guvu05+/XWpHOVu7aNXmg4CdfiCXfohQSC8wI1gd3Ij2dlGbAPjTFORK9tmEGyDonSE98nHH0u7l2/wGZmCbWXuuxe28BckmzhunLRq1TL4KNHZAce4qc0E2yQJDxBAAAEEKhEg2FYCxMsIIIBAHASWNdjqVW+7nXmWv1ftC88/56eOBi4axq50o5Q6QnvPXXe66bjD/HRfvULyCccfF6yW/NmgQQM/0pkaiHSFqgRbHTXWKzTr+bc6MhsEU72XqgbdTMH2+RnTZZNNNknuQ6PGO5dOW65msB3qwrNe3Ch1pFHvg/vyy6/I7rvv5qc6Jz8w8UBHW3dx5/3qlwJ9ep0r3bt1S67ywYcfyv4HHuR/z3TxqPB9bDu7LxGee/4FCYLthW4KtV746qQTTpDLLr0kuc3gCsyZgm0w+hysnLrNINjqucLrugtu6RRxPd947NVXlbs4Vmo7hr9QqMxdw6uG2HPP7ik9zjor2BW59bbJMvjSSwm2SREeIIAAAghUJkCwrUyI1xFAAIEYCCxrsNXpvrsXFPpRTg0hep/VOnXq+NE2PfdS783ayd0C6AJ3K6DHn3hCinqe7UOwjvAFF5Q6311MaquttnTTkE+R1Vdfvdojts+7QNfJff7aa68tr8x6yYcfPe9373338/t3ycWD5OR27cqN2FYWsLSJgxHblVdeWea9/prfR31el2DkNAiDQdDXc0j13q1bbbml/+x+AwbIg+4Ky63cecUTx48rfXPKv0HY3HyzzfzFlnSK9VdffSV6ux99b1Vu95MaQm93of6iiwfLRu7KzFOffNJvQ29RdHTbY/1+LUuw1f2c4Go5/sST/JWjdVvDhg7x7lrasgTb4EsQPU9YR/F1WvrcefOkX/8BolPNGbFN6Tz8igACCCCQVYBgm5WGFxBAAIH4CCxrsFWJIIToY71y8X/dxZf0Prb//vuvvzrubZMm+dsA6YhdB3cLID3fVaevNt99dx9SNLzVq1dPHpkyxV/wKDUQ6XarMmKrV+fVEVsd/dQAWd+NxD7lrpL8jxvB/fmXX/y+9O7VS9q2PSZ5VeSqBFt97x6t9vSjqRrmdJTyxuuvy3jxKL2C86ku0OstjTSk7+wucqXTtb///ntf8yR3xWANaZmWcODU1zfeeGN/vmxwBegB7qrGp7mrG+uSGqj9k+6f1GCro6lHHnW0r1/vs9twm4Yyz92CSEPy0qW/ZbwqchDSs20zGLFVi2lPP+W31959eaHbO61LZxnQr59/a2o75jJiqyPc7dqfIjpFW5d6dev6GvRLCx2ZJ9h6Fv5BAAEEEKiCAMG2CkisggACCOS7QE0EWzWY4K4oPMEFWA0kumhw3cndc1ZH8PS2PcGi9709r28/eWHmiz4I6fN6qx4dlQvWSw1Euk5Vgq2u9/Ajj8hAd96thihd9P6tl48cId3ddGkdedWrJffocVZOwVa3oxeFusFdEVmvbKxLEIgzBUwNtwPOHyjT3W1pgv3YYvPNvUW2UOs36v7R0HnxJZf48B88p1cZ1qsptzvpJH9lZn0+0+fq86nBVp+bNXu2XHLpZb5+/QLhuGPbui8g1pRr3FTxZR2x1WCri4bd7mf18NPAg6nUqe2YS7DVbeoFtfSiYTNfekn+dLdv2tPdw/bUDqfIyad0INgqEAsCCCCAQJUECLZVYmIlBBBAIL8FairYBgo6MvmlG4HdequtZLXVVgueTvup90jVkcxN3Xm1GrZqctERTp2uWnetun4EuCa3ncu2dD+0xo3dNGC9uFYui44Sf+yCnY4O6znAOkK5rIveJqeuG/nUKdX5tOjIf1C/zgQ45LDDCbb51IDsKwIIILCCBQi2K7gB+HgEEEBgeQjUdLBdHvvMZ9gQ0HsKL3pzUbliX3dTvPVcbZ1WPded71zdhX5fXTnehwACCOSfAME2/9qMPUYAAQRyFuAAP2cy3rCcBAa5i17pFa0zLeEp1Jler+w5+n1lQryOAAIIxEeAYBuftqQSBBBAIKsAB/hZaXhhBQvoucGLFi1O2wud5q73tl2WKdX0+zRWnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCbAAX6ZBY/sCNDv7bQ1lSKAAAIEW/oAAgggYECAA3wDjUyJaQL0+zQSnkAAAQRiK0CwjW3TUhgCCCBQJsABfpkFj+wI0O/ttDWVIoAAAgRb+gACCCBgQIADfAONTIlpAvT7NBKeQAABBGIrQLCNbdNSGAIIIFAmwAF+mQWP7AjQ7+20NZUigAACBFv6AAIIIGBAgAN8A41MiWkC9Ps0Ep5AAAEEYitAsI1t01IYAgggUCagB/i6vLN4UdmTPEIgxgKzZs+W9h1OlcKCApl866QYV0ppCCCAAAIqQLClHyCAAAIGBMaMLZExJSXSs6hIehYXGaiYEq0LaKjVcKuhVsMtCwIIIIBAvAUItvFuX6pDAAEEvEAwekWwpUNYEWCWgpWWpk4EEECgVIBgS09AAAEEjAgwamukoSnTT0HWL3POdrMTit0sBRYEEEAAgfgLEGzj38ZUiAACCCQFgumZOjVTpyQzRTNJw4MYCARf3mgphNoYNCglIIAAAjkIEGxzwGJVBBBAIA4CQbjVWgi2cWhRalABHaENFkJtIMFPBBBAwI4AwdZOW1MpAgggkBTQEKCjW+EwkHyRBwjkqQCBNk8bjt1GAAEEakCAYFsDiGwCAQQQyHcBAm50LdjznHOlWdOm0rlTx+g+xPiWmXlgvANQPgIIIOAECLZ0AwQQQAABBCIU2KvNPj7YjrlqdISfwqYRQAABBBCwLUCwtd3+VI8AAgggELEAwTZiYDaPAAIIIICAEyDY0g0QQAABBBCIUIBgGyEum0YAAQQQQCAhQLClKyCAAAIIIBChAME2Qlw2jQACCCCAQEKAYEtXQAABBBBAIEIBgm2EuGwaAQQQQACBhADBlq6AAAIIIIBAhAIE2whx2TQCCCCAAAIJAYItXQEBBBBAAIEIBQi2EeKyaQQQQAABBBICBFu6AgIIIIAAAhEKEGwjxGXTCCCAAAIIJAQItnQFBBBAAAEEIhQg2EaIy6YRQAABBBBICBBs6QoIIIAAAghEKECwjRCXTSOAAAIIIJAQINjSFRBAAAEEEIhQgGAbIS6bRgABBBBAICFAsKUrIIAAAgggEKEAwTZCXDaNAAIIIIBAQoBgS1dAAAEEEEAgQgGCbYS4bBoBBBBAAIGEAMGWroAAAggggECEAgTbCHHZNAIIIIAAAgkBgi1dAQEEEEAAgQgFCLYR4rJpBBBAAAEEEgIEW7oCAggggAACEQoQbCPEZdMIIIAAAggkBAi2dAUEEEAAAQQiFCDYRojLphFAAAEEEEgIEGzpCggggAACCEQoQLCNEJdNI4AAAgggkBAg2NIVEEAAAQQQiFCAYBshLptGAAEEEEAgIUCwpSsggAACCCAQoQDBNkJcNo0AAggggEBCgGBLV0AAAQQQQCBCAYJthLhsGgEEEEAAgYQAwZaugAACCCCAQIQCBNsIcdk0AggggAACCQGCLV0BAQQQQACBCAUIthHismkEEEAAAQQSAgRbugICCCCAAAIRChBsI8Rl0wgggAACCCQECLZ0BQQQQAABBCIUINhGiMumEUAAAQQQSAgQbOkKCCCAAAIIRChAsI0Ql00jgAACCCCQECDY0hUQQAABBBCIUIBgGyEum0YAAQQQQCAhQLClKyCAAAIIIBChAME2Qlw2jQACCCCAQEKAYEtXQAABBBBAIEIBgm2EuGwaAQQQQACBhADBlq6AAAIIIIBAhAIE2whx2TQCCCCAAAIJAYItXQEBBBBAAIEIBQi2EeKyaQQQQAABBBICBFu6AgIIIIAAAhEKEGwjxGXTCCCAAAIIJAQItnQFBBBAAAEEIhQg2EaIy6YRQAABBBBICBBs6QoIIIAAAghEKECwjRCXTSOAAAIIIJAQINjSFRBAAAEEEIhQgGAbIS6bRgABBBBAICFAsKUrIIAAAgggEKEAwTZCXDaNAAIIIIBAQoBgS1dAAAEEEECgBgXGT5ggr8+ZK2OuGu23Gg62r8+ZIz3POde/1qxp0xr8VDaFAAIIIICAbQGCre32p3oEEEAAgRoW0GA7bsJE0eCq4TYItp07dfShVj+ui3vcuVOnGv5kNocAAggggIBdAYKt3bancgQQQACBiATC4VZHacMLoTaswWMEEEAAAQRqRoBgWzOObAUBBBBAAIFyAkG4DT9JqA1r8BgBBBBAAIGaEyDY1pwlW0IAAQQQQKCcQDjcEmrL0fALAggggAACNSpAsK1RTjaGAAIIIIBAeQENt7pwTq1n4B8EEEAAAQQiESDYRsLKRhFAAIH8EBgztkTGlJTI5FsnSWFBgWyz/Q7+p/4evNazqEh6FhdJ+w6nyqzZs+WdxYv8T/0902taeabt8BnpjtWxChyr2h7aZrqutm+4XYPtVNRW+fAZ2ge1Dwd9MT/+8thLBBBAAIGaFiDY1rQo20MAAQRquYAGVl00rOpjDT76WIOPBpkWhQVSrGEh5bXgdw1E+h79PXhf+DXddkXbqei18Hb4jJppj8AxW7vWRHusyM/QfqufH/RFrUef099ZEEAAAQTsCBBs7bQ1lSKAAAJeQA/8NQjoyCsLAnET0BFoXYIR6bjVRz0IIIAAApkFCLaZXXgWAQQQiJ2AhlkdyWJBIM4C2s91oa/HuZWpDQEEEEgXINimm/AMAgggEDsBPdjXkVrOQ4xd01JQFgGd1q7n3jIzIQsQTyOAAAIxEyDYxqxBKQcBBBDIJKDBNnxObKZ1eA6BOAkEwZYpyXFqVWpBAAEEsgsQbLPb8AoCCCCAAAIIIIAAAggggEAeCBBs86CR2EUEEEBgWQW4UuyyCvL+fBTQUdtCd5VvzrfNx9ZjnxFAAIHcBAi2uXmxNgIIIJCXAuF7leZlAew0AtUQoN9XA423IIAAAnkqQLDN04ZjtxFAAAEEEECgYgGukFyxD68igAACcRIg2MapNakFAQQQyCLAAX4WGJ5GAAEEEEAAgVgIEGxj0YwUgQACCFQswJTMin14NZ4CnFsez3alKgQQQCCTAME2kwrPIYAAAjETGOvu56lLcVFRzCqjHASyC/CFTnYbXkEAAQTiJkCwjVuLUg8CCCCAAAIIIIAAAgggYEyAYGuswSkXAQRsCjAl02a7W6+ac8ut9wDqRwABSwIEW0utTa0IIGBWgCmZZpvedOH0e9PNT/EIIGBMgGBrrMEpFwEEbAowcmWz3a1Xzbnl1nsA9SOAgCUBgq2l1qZWBBBAAAEEEEAAAQQQQCCGAgTbGDYqJSGAAAKpAkzJTBXhdwsCnFtuoZWpEQEEECgVINjSExBAAAEDAnqA36KwgNv9GGhrSiwT4AudMgseIYAAAnEXINjGvYWpDwEEEEAAAQQQQAABBBCIuQDBNuYNTHkIIICACowZWyKFbsS2sKAAEATMCHDRNDNNTaEIIICAEGzpBAgggIABAaZkGmhkSkwToN+nkfAEAgggEFsBgm1sm5bCEEAAgTIBRq7KLHhkR4Bzy+20NZUigAACBFv6AAIIIIAAAggggAACCCCAQF4LEGzzuvnYeQQQQKBqAkzJrJoTa8VLgHPL49WeVIMAAghUJECwrUiH1xBAAIGYCDAlMyYNSRk5CfCFTk5crIwAAgjktQDBNq+bj51HAAEEEEAAgWwCnFueTYbnEUAAgfgJEGzj16ZUhAACCKQJcICfRsITCCCAAAIIIBAjAYJtjBqTUhBAAIFsAkzJzCbD83EWoN/HuXWpDQEEECgvQLAt78FvCCCAQCwFxpaU+LqKi4piWR9FIZBJgHPLM6nwHAIIIBBPAYJtPNuVqhBAAAEEEEAAAQQQQAABMwIEWzNNTaEIIGBZQEeuCgsKpGcxI7aW+4G12rndj7UWp14EELAsQLC13PrUjgACZgQ419BMU1NoSIB+H8LgIQIIIBBzAYJtzBuY8hBAAAEEELAqwNXArbY8dSOAgEUBgq3FVqdmBBAwJ8ABvrkmp2AEEEAAAQRMCRBsTTU3xSKAgFUBpmRabXnbdXNuue32p3oEELAlQLC11d5UiwACRgW43Y/RhjdeNl/oGO8AlI8AAqYECLammptiEUAAAQQQQAABBBBAAIH4CRBs49emVIQAAgikCTAlM42EJwwIcG65gUamRAQQQCAhQLClKyCAAAIGBJiSaaCRKTFNgH6fRsITCCCAQGwFCLaxbVoKQwABBMoEGLkqs+CRHQHOLbfT1lSKAAIIEGzpAwgggAACCCCAAAIIIIAAAnktQLDN6+Zj5xFAAIGqCTAls2pOrBUvAc4tj1d7Ug0CCCBQkQDBtiIdXkMAAQRiIqAH+C0KC6S4qCgmFVEGApUL8IVO5UasgQACCMRFgGAbl5akDgQQQAABBBBAAAEEEEDAqADB1mjDUzYCCNgSGDO2RArdiG1hQYGtwqnWtAAXTTPd/BSPAALGBAi2xhqcchFAwKYAUzJttrv1qun31nsA9SOAgCUBgq2l1qZWBBAwK8DIldmmN10455abbn6KRwABYwIEW2MNTrkIIIAAAggggAACCCCAQNwECLZxa1HqQQABBDIIMCUzHWXp0qXy5ZdfSd16dWX99daTlVZaqdxK//77r/899flyK0X4y4r+/AhLW26b5tzy5UbNByGAAAIrXIBgu8KbgB1AAAEEohdgSmaZ8Xvvvy+33X67fPjhR8kn11hjDWl79NGyT5u9kwH3kiFD/DpndOkiLVoUJtddHg/mzZ8vV7sLfm204YYybMhly+MjY/kZfKETy2alKAQQQCCjAME2IwtPIoAAAgjEUeCjjz+Wy4YOk7///tuXt54bqf3xxx+Tv59w3LFy0IEH+tcItvnfAzi3PP/bkAoQQACBqgoQbKsqxXoIIIBAHgtwgF/aeCOvGCWL33rLj4R27tRRttt2Wx9s773vPnlx5ktSp85qMnrUKKmz2mpCsM3jDs+uI4AAAgiYEyDYmmtyCkYAAYsCTMkU0XNWzywqlj///FOOa3uMHHLwwcmu8NXXX8uAgRf43y8aOFC22GLzcsF2vfXXk9fnzJGVV15ZGu3QSBrvtGPyvToK/Nprr8u6664je7dunXz+iy+/lJdemiVrrrmmHHjA/v756TNmyA8//CgFBc3l999/l/luyvHvf/yRts1MU5G//fY7ee755/12GjZsKDs33snXpFOrFyxYKB9/8ols455v7J7ftEGD5H5YfkC/t9z61I4AAtYECLbWWpx6EUDApMDYkhJfd3FRkcn6tWgNhn0HDPD1X3LxoLTwN2vWbPnr779kh+13kPVdkA1GbDXELlj4pg+RAd6Rhx8uRx15hP91phvpvXn8eNlyyy3kwvPPD1aRIJxusP76MmLY0NLPTZy3u/tuu/mgHEyJ1hfD2wzeG5xju2TJEhk6fIRoWN56q62kd69zZfU6deTBKQ/JlIcf9tvWi1xpeF9llVWkb5/ePuT6Fwz/w7nlhhuf0hFAwJwAwdZck1MwAgggYFMgPCo7ctgwH14rkgiCrQbFNm4ktmnTJn5k9hk36qpLsI3qBNvKthkOtoMHXSRXXDla3n3vPdl8s83kvN69/Ciw7kOffv3l+++/l66nnSbNmjWVp6dOdUH3EdmzZUs5pf3JugoLAggggAACJgQItiaamSIRQMC6gI5cFRYUSM9iuyO21Q22u+zcWM4uLvZdSEdEe53XV3766SfpdsbpUtC8uVQn2Fa2zSDY1qtXT7ZyI8Hz5r8h9TfZRPqd10f0uWAZNmKkvPPuu6Lb02nQDbfeWlZzI7l6jjCLCLf7oRcggAACdgQItnbamkoRQMCwAOcainz33XdyXv/sU5EffuQRd97rH7LHHi2kQf36yanI7U48Ufbfb99k77nyqqv81OTg+eoE2+C9wUZTtxkE2+B1HeEd8v/s3Qm4bWP9B/C3UERpRJooQiXX0L1o0EhRZhrMKlP3XlM0mcek0HXRyEWiNKJBMhQqQ4YMUYpKk9LwT4lK//Vb7XXsc51z7j73nrXX2ev9rOdxzx7ftd7P7/U867vfNRx+WHraU59avVT+/ekdd6SPfeKTxXm7fymfx+HIyy+3XHrbW99S/h324QyfGPcZFl2XCRDIVkCwzbb0Ok6AAIG8BGK2dY8ZM9ODxcWatths07ThG94wBPD7e+5J7z/gwPL5SBeP6r6P7fEf/Wi6ubhYUxVOr77mmvTxT34qLb3UUumoIw4favO8889PXz3/gjTSObZz3xt37jarYBvn0S6xxBLpj/fem9ZYffW0+667lBewGlpJ8eCfxUWobr311uK/H6ebbr65/Gx5defiCtDxN+fF1cBzrr6+EyCQm4Bgm1vF9ZcAgSwF7OD/r+zHfuS4dNvtt5cznzvusH1a6fnPL2c743Y/PyguHtXL7X7mDqG/+e1v04EHH1Ku4OADDyjPg/3b3/5Wnhd7969/vUDBNi4etfdee5YXjoo249zZ2O6YmY1zaz992pwUofzIww5NjykOP37ooYfS3u/eL913333lYctxOyMLAQIECBDIQUCwzaHK+kiAQPYCDsn83xCIW+IcfuRRqboa8ZOe9KTyPrYRCGPZaost0us3WL98XF08al6zqzETfOjhR5S324nbAS33nOekuAXQQgs9ujy0eUFmbKurIt95513p2OM+Ura3wfqvS1tvuWV5BeQPHHhQGWyf+YxnpNVe/OLyqsk/vO66MuQe+8Gjy9nesjOZ/mPcZ1p43SZAIEsBwTbLsus0AQK5Cbjdz8MVj5B41tlnpzvvumvoxbjX7OabbpJeud565WxovNFrsI3P/vWvf02f+NSnU5zz+r973a6UXv6yl6WTTvnYAs/YHn3kEbGK8vZBJ550cjkrWx1KHYcof+nLX04/vu328oJWCy+8cHmbnwi/L1511fJ7Of8j2OZcfX0nQCA3AcE2t4rrLwECBAiUAvf/85/pD8VhvHEOa8zcxuG9C7o8UJy/++iinUUWWWRBmxrX92PWOO5xG/2I83ItBAgQIEAgNwHBNreK6y8BAlkKuN1PlmXPvtPOLc9+CAAgQCAjAcE2o2LrKgEC+Qo4JDPf2ufcc+M+5+rrOwECuQkItrlVXH8JEMhSwMxVlmXPvtPOLc9+CAAgQCAjAcE2o2LrKgECBAgQIECAAAECBNooINi2sar6RIAAgbkEHJI5F4inWQg4tzyLMuskAQIESgHB1kAgQIBABgKxg7/2tKlpxvTpGfRWFwn8T8APOkYCAQIE8hEQbPOptZ4SIECAAAECBAgQIECglQKCbSvLqlMECBAYLjDrxNlpWjFjO23q1OFveEagxQIumtbi4uoaAQIE5hIQbOcC8ZQAAQJtFHBIZhurqk/zEjDu5yXkfQIECLRHQLBtTy31hAABAqMKmLkalcYbLRZwu58WF1fXCBAgMJeAYDsXiKcECBAgQIAAAQIECBAgMFgCgu1g1cvWEiBAYL4EHJI5X2y+NOACzi0f8ALafAIECIxDQLAdB5aPEiBAYFAF3O5nUCtnuxdEwA86C6LnuwQIEBgsAcF2sOplawkQIECAAIEeBZxb3iOUjxEgQKAFAoJtC4qoCwQIEJiXgB38eQl5nwABAgQIEBhkAcF2kKtn2wkQINCjgEMye4TysVYJGPetKqfOECBAYEwBwXZMHm8SIECgHQJue9KOOurF+AScWz4+L58mQIDAIAsItoNcPdtOgAABAgQIECBAgAABAkmwNQgIECCQgUDMXE2bOjXNnDE9g97qIoH/Cbjdj5FAgACBfAQE23xqracECGQs4FzDjIufcdeN+4yLr+sECGQnINhmV3IdJkCAAAECeQi4GngeddZLAgQIhIBgaxwQIEAgAwE7+BkUWRcJECBAgEDGAoJtxsXXdQIE8hFwSGY+tdbThwWM+4ctPCJAgEDbBQTbtldY/wgQIFAIuN2PYZCjgGCbY9X1mQCBXAUE21wrr98ECBAgQIAAAQIECBBoiYBg25JC6gYBAgTGEnC7n7F0vNdWAeeWt7Wy+kWAAIFHCgi2jzTxCgECBFon4JDM1pVUh3oQMO57QPIRAgQItERAsG1JIXWDAAECYwmYuRpLx3ttFXBueVsrq18ECBB4pIBg+0gTrxAgQIAAAQIECBAgQIDAAAkItgNULJtKgACB+RVwSOb8yvneIAs4t3yQq2fbCRAgMD4BwXZ8Xj5NgACBgRSIHfy1p01NM6ZPH8jtt9EE5kfADzrzo+Y7BAgQGEwBwXYw62arCRAgQIAAAQIECBAgQKAjINgaCgQIEMhAYNaJs9O0YsZ22tSpGfRWFwn8T8BF04wEAgQI5CMg2OZTaz0lQCBjAYdkZlz8jLtu3GdcfF0nQCA7AcE2u5LrMAECOQqYucqx6vrsdj/GAAECBPIREGzzqbWeEiBAgAABAgQIECBAoJUCgm0ry6pTBAgQGC7gkMzhHp7lIeDc8jzqrJcECBAIAcHWOCBAgEAGAm73k0GRdfERAn7QeQSJFwgQINBaAcG2taXVMQIECBAgkLeAc8vzrr/eEyCQl4Bgm1e99ZYAgUwF7OBnWnjdJkCAAAECmQgItpkUWjcJEMhbwCGZedc/194b97lWXr8JEMhRQLDNser6TIBAdgJue5JdyXW4EHBuuWFAgACBfAQE23xqracECBAgQIAAAQIECBBopYBg28qy6hQBAgSGC8RtT2bNnp3uuP224W94RqClAnFeeYz7mTOmp2lTp7a0l7pFgAABApWAYFtJ+EuAAIEWC1TB9qwzz7CT3+I669rDAnEYcoRbY/5hE48IECDQZgHBts3V1TcCBAiMIBA7+2awRoDxUusEjPXWlVSHCBAgMKqAYDsqjTcIECDQPgEzt+2rqR4NF4gxXs3UDn/HMwIECBBos4Bg2+bq6hsBAgTmEqiCbZxrGzv/1RIzuNXzaja3+3n34/jOSM9H+l712bHei8/Ma/29tGMdE+PYSz1Gqn/1vV5qVX12rHbGem+sdVRj3CHIoWQhQIBAPgKCbT611lMCBAiUAhEYIgTOHQDinp+xVKE3zlGcOX16efGd6nzFkd4bqZ1oP4LFSO9Zx+yh8z6777M6klXlGDXrtR5Vrapgl8s6qnEVfy0ECBAgkJ+AYJtfzfWYAAECpUA1IxZPIkDNfa/beD61eD3ei89eXfw3owi6sYz0XvXZ7naq74303mjttG0dq6/1krTbLu9Mu+6yy5DjSB6s5n9cVXbV2CkHqX8IECBAICsBwTarcussAQIECPRb4OWvfFVafcqUNOuE4/u9ausjQIAAAQLZCAi22ZRaRwkQIECgCQHBtgl16yRAgACB3AQE29wqrr8ECBAg0FcBwbav3FZGgAABApkKCLaZFl63CRAgQKA/AoJtf5ythQABAgTyFhBs866/3hMgQIBAzQKCbc3AmidAgAABAoWAYGsYECBAgACBGgUE2xpxNU2AAAECBDoCgq2hQIAAAQIEahQQbGvE1TQBAgQIEOgICLaGAgECBAgQqFFAsK0RV9MECBAgQKAjINgaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKBAgQIAAgRoFBNsacTVNgAABAgQ6AoKtoUCAAAECBGoUEGxrxNU0AQIECBDoCAi2hgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYGgoECBAgQKBGAcG2RlxNEyBAgACBjoBgaygQIECAAIEaBQTbGnE1TYAAAQIEOgKCraFAgAABAgRqFBBsa8TVNAECBAgQ6AgItoYCAQIECBCoUUCwrRFX0wQIECBAoCMg2BoKBAgQIECgRgHBtkZcTRMgQIAAgY6AYGsoECBAgACBGgUE2xpxNU2AAAECBDoCgq2hQIAAAQIEahQQbGvE1TQBAgQIEOgICLaGAgECBAgQqFFAsK0RV9MECBAgQKAjINgaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKBAgQIAAgRoFBNsacTVNgAABAgQ6AoKtoUCAAAECBGoUEGxrxNU0AQIECBDoCAi2hgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYGgoECBAgQKBGAcG2RlxNEyBAgACBjoBgaygQIECAAIEaBQTbGnE1TYAAAQIEOgKCraFAgAABAgRqFBBsa8TVNAECBAgQ6AgItoYCAQIECBCoUUCwrRFX0wQIECBAoCMg2BoKBAgQIECgRgHBtkZcTRMgQIAAgY6AYGsoECBAgACBGgUE2xpxNU2AAAECBDoCgq2hQIAAAQIEahQQbGvE1TQBAgQIEOgICLaGAgECBAgQqFFAsK0RV9MECBAgQKAjINgaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKBAgQIAAgRoFBNsacTVNgAABAgQ6AoKtoUCAAAECBGoUEGxrxNU0AQIECBDoCAi2hgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYGgoECBAgQGCCBa6/4Ya0+pQpZatzB9vu9yZ4tZojQIAAAQLZCgi22ZZexwkQIECgDoGZe+2dIrzuvOMOaacdd0zdwfa0OXPSqXNOH3qvjvVrkwABAgQI5Cgg2OZYdX0mQIAAgdoEItRGuI0lwm0E2Zi9XX3KakOPZ51wfG3r1zABAgQIEMhRQLDNser6TIAAAQK1CnSH2+4VRcAVartFPCZAgAABAhMjINhOjKNWCBAgQIDAMIG5w61QO4zHEwIECBAgMKECgu2EcmqMAAECBAg8LFCFW6H2YROPCBAgQIBAHQKCbR2q2iRAgMCACMw6cfaAbOngbuYNN96Qpqz2vyskD24vJv+WT5s2NU2bOnXyb6gtJECAAIFaBATbWlg1SoAAgckrUIXZWbOF2slbJVs2vwIRbmfOmC7kzi+g7xEgQGBABQTbAS2czSZAgMD8CESo7Q60exYBYKpZrvmh9J1JJhBj+6qrrx7aqrPOPEO4HdLwgAABAu0XEGzbX2M9JECAQCnQHWoj0M6YPp0MgdYJdI9z4bZ15dUhAgQIjCog2I5K4w0CBAi0S2CFlVYuO2Rnv1111ZtHClThdmbx400clmwhQIAAgfYLCLbtr7EeEiBAoDxEc5vtti8PzYxgayHQdoEY73Fo8h2339b2ruofAQIECBQCgq1hQIAAgQwEqp18s7UZFFsXSwGztgYCAQIE8hIQbPOqt94SIJCpQByGHFeLNVub6QDItNvGfaaF120CBLIUEGyzLLtOEyCQm4Ad/Nwqrr8hYNwbBwQIEMhHQLDNp9Z6SoBAxgJ28DMufsZdN+4zLr6uEyCQnYBgm13JdZgAgRwF7ODnWHV9Nu6NAQIECOQjINjmU2s9JUAgYwE7+BkXP+OuG/cZF1/XCRDITkCwza7kOkyAQI4CdvBzrLo+G/fGAAECBPIREGzzqbWeEiCQsYAd/IyLn3HXjfuMi6/rBAhkJyDYZldyHSZAIEcBO/g5Vl2fjXtjgAABAvkICLb51FpPCRDIWMAOfsbFz7jrxn3Gxdd1AgSyExBssyu5DhMgkKOAHfwcq67Pxr0xQIAAgXwEBNt8aq2nBAhkLGAHP+PiZ9x14z7j4us6AQLZCQi22ZVchwkQyFHADn6OVddn494YIECAQD4Cgm0+tdZTAgQyFrCDn3HxM+66cZ9x8XWdAIHsBATb7EquwwQI5ChgBz/HquuzcW8MECBAIB8BwTafWuspAQIZC9jBz7j4GXfduM+4+LpOgEB2AoJtdiXXYQIEchSwg59j1fXZuDcGCBAgkI+AYJtPrfWUAIGMBezgZ1z8jLtu3GdcfF0nQCA7AcE2u5LrMAECOQrYwc+x6vps3BsDBAgQyEdAsM2n1npKgEDGAnbwMy5+xl037jMuvq4TIJCdgGCbXcl1mACBHAXs4OdYdX027o0BAgQI5CMg2OZTaz0lQCBjATv4GRc/464b9xkXX9cJEMhOQLDNruQ6TIBAjgJ28HOsuj4b98YAAQIE8hEQbPOptZ4SIJCxgB38jIufcdeN+4yLr+sECGQnINhmV3IdJkAgRwE7+DlWXZ+Ne2OAAAEC+QgItvnUWk8JEMhYwA5+xsXPuOvGfcbF13UCBLITEGyzK7kOEyCQo4Ad/Byrrs/GvTFAgACBfAQE23xqracECGQsYAc/4+Jn3HXjPuPi6zoBAtkJCLbZlVyHCRDIUcAOfo5V12fj3hggQIBAPgKCbT611lMCBDIWsIOfcfEz7rpxn3HxdZ0AgewEBNvsSq7DBAjkKGAHP8eq67NxbwwQIEAgHwHBNp9a6ykBAhkL2MHPuPgZd924z7j4uk6AQHYCgm12JddhAgRyFLCDn2PV9dm4NwYIECCQj4Bgm0+t9ZQAgYwF7OBnXPyMu27cZ1x8XSdAIDsBwTa7kuswAQI5CtjBz7Hq+mzcGwMECBDIR0CwzafWekqAQMYCdvAzLn7GXTfuMy6+rhMgkJ2AYJtdyXWYAIEcBezg51h1fTbujQECBAjkIyDY5lNrPSVAIGMBO/gZFz/jrhv3GRdf1wkQyE5AsM2u5DpMgECOAnbwc6y6Phv3xgABAgTyERBs86m1nhIgkLGAHfyMi59x1437jIuv6wQIZCcg2GZXch0mQCBHATv4OVZdn417Y4AAAQL5CAi2+dRaTwkQyFjADn7Gxc+468Z9xsXXdQIEshMQbLMruQ4TIJCjgB38HKuuz8a9MUCAAIF8BATbfGqtpwQIZCxgBz/j4mfcdeM+4+LrOgEC2QkIttmVXIcJEMhRoJcd/P/+97/pV3ffnf75z3+m5y6/fFp44YVzpKq9zw899NCY63j0ox895vuD+ubP77wzLb/cculRj3pU37rQy7jv28ZYEQECBAjUKiDY1sqrcQIECEwOgbF28CNofeS449Nnzz47/e2++8oNfuxjH5te9cpXpqOPOjI9foklhnXil7/6VfrPf/6Tnr7MMmnRRRcd9l6vTyaijV7X1Y/P3XPPPenv//hHevKTnpSWXHLJMVf5qte8tvwBYaQPLfec56Rvf+vCkd4a87XJ4jnadhx8yKHprGJ8vXGjjdIJx31kzL5M5JtjjfuJXI+2CBAgQKB5AcG2+RrYAgIECNQuMNYOfhU6YiOWXnrp9OQnPzndcccd6V//+ldacYUV0vlf/cqw2ds1p05Lf/3rX9M5nz0rrbXmmvO17RPRxnytuKYvvWvGzHTht76V9tlrz7TH7ruPuZY6gu1k8RxtO3bdbfd08aWXpjXXWCN97uzPjukzkW+ONe4ncj3aIkCAAIHmBQTb5mtgCwgQIFC7wGg7+DFbO3WdddNf/vKXdOAHPpB22H67clt+WgTbLbbcKv3j/vvLIBKBpFpGCy/V+738nYg2ellPvz4zP8H2oAMOSFtssfmwTXz0ox6dFlts/LPgk8VztO34wx/+kC6+5JL0ipe/Ii277NOH9bnOJ6ON+zrXqW0CBAgQaEZAsG3G3VoJECDQV4HRdvD/9re/pTVeMjXF+bVf+eIX04te9MKh7dp2+x3SD666Ku27917p7TvvnE4+5WPle5869dTyPNwtNtssPf3pT0+rT5mS1lvvFeV7MZMbhzT/+Lbby8OVX/iCVdJ2226bHv/4x6cHH3ywpzZimy769rfT1Vdfk/7z0H/SOmuvnV77mtekJzzhCUPbdvY556Tf//6etNFGG6Zf/vKX6corryy3ZdNNNklPfepT03nnX5BuuOGG9MxnPCNtttmm5Sz00JeLBzfceGO6/PLL060/vi2tvNJK6RWveHnZj+ozcT7WPYOVAABAAElEQVToeeedn57ylKekzTffLH3zm99MN910c1phheel9V/3urTUUkuVH6224xvF+z/7+c/TtKlT00vWWis97WlPTdu87W1Vc8P+VjO2Rx5+WHrz1lsPe696cuZnzkr33ntvev7zV0wbvuEN1ctlPX7wg6vSYx/7mLTDDjukT3zik+V7o9Xk8suvSD+87ro0ZcpqpcEll1yaVl31Rek1r351+b3bf/KTdH5h9dOf/jQt8fglSuvNNt00LbTQQkPrjAe///3v07cvvrhsK9570QtflDbZ+E3piU98Yk91rbYjxlfUslriEO5o9/qiVjEG11h99fL9yjc+V303+rDiCiumiy66KP2iqPnqxWdf99rXjvlDwGjjvlq/vwQIECDQHgHBtj211BMCBAiMKjDWDv6bNt0s/fjHP07PeuYz0667vHNoVu3Xv/5Nuu/v95XnjS72uMelKWuMfNjxjsUs7wHFbG+cX/nWbbYtQ1D3hkS4PP+8r5YXDZpXG//3f/+XtikCdWxP9/KCF7wgnXXmGUPn+266xRbp5ptvSS9eddX0o5tuGvroCs97XhlQzy1CerXE4dSf/9w5Q9/9QvHe+z5wQBmkqs/EBY2OOfrotHkRgmO59LLL0jt33a0MsHHBo6uuvrr6aFqmOLf480V4j5nHTTbfPN1yy61D71UPIixfUPR5pKUKth9473vTJptsPOwjiy++eBFaH5u+853vprfvskt5CPgXP//59MIXviDFrOcb3vimcnY9vrvV1lvNsyZHH3NM+vSpp5Xh/Re//EW6//5/pp122D594P3vLwPlzL32LoNp90ZssP766aQTZw299JMi9O6w087l+odeLB48+1nPSp/8xMfLw9fnVddqO7becst01JFHlM1Euzvu/PYU4bZ7iVA759RPp+evuGL5cvXd+NHgzrvuGvb5l7103fTJj388LbLIIt1NDD0ea9wPfcgDAgQIEGiFgGDbijLqBAECBMYWGGsHP2Yid3vXu4YF0ghmG6z/urRzMVO7eBFq42JR3//+D8qVTJ85swi8f08HvO99xQzmCmnZZyxbXkX545/4RDruhI+mdddZOx16yCFFiLo/7b3PvikCTHx2u+22nWcbe0yfkb5VzMhNWW21tPtuu6aFF1o4nfyxj5Uzhd0XHqqCbYTL9xchLwLbe4p1xKHVcY7wAUVwW2SRhdP+nfdOOWl2Obt36623pk232LIMtXE+7LrrrpuuKmalP1xcPCvCbYTRCMJVsI0Or/T856d3vP3tZd9nn3RSOVu4ZRFoP3j0UeXM731/uy/NPvnkdO0Pf1gG442L8Ln4EosPmwEuv9z5pwq23a9Vjz/0wQ8OhesjjzoqnXb6GWXA+/IXv5CmF+fxXvqd76T1itnlTxXW0dd51aQKhdF+fC8uCPbiF7+4/EHgHUVwvqwI0Lu84x1p5512TDF7+45ddi3PrT7/K19Oq6yySum0bnH4cITqqS95Sdr1ne8snU465ZSyJhEsP/3JT/a8HVWwjdnZqt0Xv3jVtF3xg0gsZ571mfSjH91UzHg/LV353e+kuEJ0dx9etd56aZtt3pZ+dsfP0glF+I66H1uE98023aT8/tz/jDXu5/6s5wQIECAw2AKC7WDXz9YTIECgJ4F57eDHIcRf/8Y30jcv/Fa65tprh2bxnvfc55azcjE7Vy2jnUcZ78fhs3FeboSuCC9nnHFGOqM4rPatb35zOvywQ6sm0khtxHfWLA6LjiszH3XE4el5xexrLD/72c/S+w84MD2puOLwNT/4fvlaFWxnFIF8z5kzyte2evNbykNaty0OAT7k4IPK16qLFu05Y3qaMX16OrWYvTyqCEJx+PR737N/+Zn454PHfKj87sEHHlgcOr3NsGD7pS+cWwbB+NxnzjorHXJYsW2Fy4Xf+Hq8VC7zc45t3E5p7lvfHH3kkWnTzixuHLq9xVZbF4d131aG2/iBIA6zvqC4mFf87V5G8oz3q1AY9bv4om89Yn1x+PSSxSHe8UNFLPvs++5yBvz4j3wkvemNG5XrftMmm6Ylipnk7115RXrcYouVn4ugGz8QrFaE5OM+fOzQ1bHntR1VsI0+RbvR/+9eekl5GHk0/Lvf/S69/JWvKsdOXLRslZVXHupDXJ37mqt+MHQhs+kz9yzG64XpbW95Szrs0EPK7Zr7n3mN+7k/7zkBAgQIDK6AYDu4tbPlBAgQ6FlgtB38O4rQeF1xDmacKxnnjsYS97G9rJgZPOKoo8ug8c5itvI9++83tK7Rwstdv/hFevd++5fBKEJq9xLn4x7zwaOHXhqpjdiW12+40dBnRnpw6cXfLg+ZroLthz/0oaEguHMx8/jdy68oZ4d33HGH8uv77rdf+mpxruweu+2W9inOFY5DbyPAj7bEzF/MAFYztuESYboKoNddf33a+i1vLc8Zvv7aa4aamZ9gO9Y5tlXDt91+e3rjxg/PRp740RPSG17/+urtob8jecabVbCtZpiHvlA8iMOdDyoCYRxyPvdSzRzHOcQHHnxIee5wHAo+r2Ve21EF2zgP+6DiFkARjL947ueHNRth/sYf/SgddsjB6W1vfetQH2J8njz7xKHPnlLM5H/k+BPKmfiYkR9pGW3cj/RZrxEgQIDAYAsItoNdP1tPgACBngRG28GPK9Xuuvse5fmnV15x+dCMXDR6cnG4aRxaHLOb5xbnqFbLaOFl4802T3Gob1xB+ZXFxaTiIkMRNOMCVL0E2+4LWb23CNIxQzv3EhcLiotIzW+wPbI4j/a0OaeX27j1VlvO3Xxx3uyy5QWUqmAbM52XfPuioc/FRY5iZjguhtWPYHvshz+SPl4c6lstrysuvHTKySdVT4f+jlaTKthWgbL6QszQx9Ww4xDzmJmNmdFY4l6zEXSrYHtJcYueXYpb9cR5xhdd+M3q6+nf//53OvcLXygPGV+pOGw9DhmOpdftqMZd1Pj7xbiL2etYot11Xvby9Oc//zl9/JSTy4tcjdaHjxXn1sYh5DEmBNuSzz8ECBDIWkCwzbr8Ok+AQC4CowXbOAR1reK+tBEo9t5zZnkuaVy8KG7/s90OO5aHolYXh6qsqvAy59OfTi972UvLlx944IH0otWmDDuENN6IGdiYiY0r+8464fiqiaEA1N1GvLnRmzYuz/WM8z73e/e+5UxpXCTqhFkfTXsW55jGFX1jmd9gG4euxiGscVjrt775jfJczmjv/cXFpJZffrnyCs6LLrro0IzteIPt7rvumvbdZ+9octSlOsc2bq8UV1yee4lti+V73/9+edGm+IHgo8cflz5w4EFlXaqZzO7vjVSTeH+0UHjFFVemHYuZ+CWXXDJdWxzeGzPSceXj9V79mnIsVOuIi3mtNW3tsq5xQalqVr+ayY0fGS7/zmXledixvl63o2o3ZvaPKA5Rr64O/bniQlkHHHRwGZRju6L90fog2Ia4hQABAgQqAcG2kvCXAAECLRYYLdhGl6tZzHgc51A+s7g6ctzHNs6RjXMrP1OcJ9t9G6A3v/Vt5YWD4iJNcSXlPWfMKG+XE4fMxqGzcTXbuOXN5VdcUc68xTmzEZw2L24jUx2OPFobF3zta2mfd+9XnqP7jOKiVMs+fdny3NcI3nGBo7hQVCzzG2z//o9/pO2Kqy7HlZRjljC2M84zjSvzxizs1847r7za8XhnbI8rDomNi1w95jGPKWc/X/uaVxcXv9qt3Na5/6mC7dyvx/Pw/9EN15cBdsMi5Md2zSzODZ5ZnCMcNnsVF+OK4B0Xk4qLXFXLaJ6jhcL44SJmbCNYvrS4gNbTiys9X1TcduehYgY36hV133effcrzjQ8/4oh0+pmfKcPmKqusnP7x93+UVyeOde+37z7FlbR3qTYjjWc7jijOJ55zxpnld2McxfKru+8u/3b/mDJaHwTbkso/BAgQINAREGwNBQIECGQgMFawje7PKQ7PnVME2Lt//etSI0LfC4tb7Bx91JFDt12pmK783vfSUUd/sJxZjdeq81zjgkDvKq5qHLf9iWXppZdOp336U2nWibPLW8u8oLjKblyIKZbR2oj34pzYWSeeWF59OJ5H2IurEr9rj92H7q86v8E22otDnvfb/z3pyu9/r7yqbrwWt9OJc2urW8yMN9j+5je/LS5w9YFilvUHZVic+9DfWEe19BJsdysOD/92cZh4bFfc7qc6VHfGnnuluGduXLU6LCNIxzKa52ihML4TQfkDxUW5IuzHstaaa6ZjP3RMinXHFZJj1nz//d5dvnfi7NnFYcrnpD/+8Y/l8ziEePoee6Qdils9dS/j3Y64ynS0GxejiiWuhrzNW9+SphcXBauW0fog2FZC/hIgQIBACAi2xgEBAgQyEJhXsK0I4tzG3xezhM9dfvmh0FS91+vfOEfz/n/eX56XGYfRzu8SYef/ihAa53dW53DOb1sjfS9mgeMw6WcU59XGbG2OS5xjGzPWSyy+RDlTPS+D+NEiahH3Jp7IpfpBZaLb7XXcT2RftEWAAAECzQgIts24WysBAgT6KmAHv6/cVjZJBIz7SVIIm0GAAIE+CAi2fUC2CgIECDQtYAe/6QpYfxMCxn0T6tZJgACBZgQE22bcrZUAAQJ9FbCD31duK5skAsb9JCmEzSBAgEAfBATbPiBbBQECBJoWsIPfdAWsvwkB474JdeskQIBAMwKCbTPu1kqAAIG+CtjB7yu3lU0SAeN+khTCZhAgQKAPAoJtH5CtggABAk0L2MFvugLW34SAcd+EunUSIECgGQHBthl3ayVAgEBfBezg95XbyiaJgHE/SQphMwgQINAHAcG2D8hWQYAAgaYF7OA3XQHrb0LAuG9C3ToJECDQjIBg24y7tRIgQKCvAnbw+8ptZZNEwLifJIWwGQQIEOiDgGDbB2SrIECAQNMCdvCbroD1NyFg3Dehbp0ECBBoRkCwbcbdWgkQINBXATv4feW2skkiYNxPkkLYDAIECPRBQLDtA7JVECBAoGkBO/hNV8D6mxAw7ptQt04CBAg0IyDYNuNurQQIEOirgB38vnJb2SQRMO4nSSFsBgECBPogINj2AdkqCBAg0LSAHfymK2D9TQgY902oWycBAgSaERBsm3G3VgIECPRVwA5+X7mtbJIIGPeTpBA2gwABAn0QEGz7gGwVBAgQaFrADn7TFbD+JgSM+ybUrZMAAQLNCAi2zbhbKwECBPoqYAe/r9xWNkkEjPtJUgibQYAAgT4ICLZ9QLYKAgQINC1gB7/pClh/EwLGfRPq1kmAAIFmBATbZtytlQABAn0VsIPfV24rmyQCxv0kKYTNIECAQB8EBNs+IFsFAQIEmhawg990Bay/CQHjvgl16yRAgEAzAoJtM+7WSoAAgb4K2MHvK7eVTRIB436SFMJmECBAoA8Cgm0fkK2CAAECTQvYwW+6AtbfhIBx34S6dRIgQKAZAcG2GXdrJUCAQF8F7OD3ldvKJomAcT9JCmEzCBAg0AcBwbYPyFZBgACBpgXs4DddAetvQsC4b0LdOgkQINCMgGDbjLu1EiBAoK8CdvD7ym1lk0TAuJ8khbAZBAgQ6IOAYNsHZKsgQIBA0wJ28JuugPU3IWDcN6FunQQIEGhGQLBtxt1aCRAg0FcBO/h95baySSJg3E+SQtgMAgQI9EFAsO0DslUQIECgaQE7+E1XwPqbEDDum1C3TgIECDQjINg2426tBAgQ6KuAHfy+clvZJBEw7idJIWwGAQIE+iAg2PYB2SoIECDQtIAd/KYrYP1NCBj3TahbJwECBJoREGybcbdWAgQI9FXADn5fua1skggY95OkEDaDAAECfRAQbPuAbBUECBBoWsAOftMVsP4mBIz7JtStkwABAs0ICLbNuFsrAQIE+ipgB7+v3FY2SQSM+0lSCJtBgACBPggItn1AtgoCBAg0LWAHv+kKWH8TAsZ9E+rWSYAAgWYEBNtm3K2VAAECfRWwg99XbiubJALG/SQphM0gQIBAHwQE2z4gWwUBAgSaFrCD33QFrL8JAeO+CXXrJECAQDMCgm0z7tZKgACBvgrYwe8rt5VNEgHjfpIUwmYQIECgDwKCbR+QrYIAAQJNC9jBb7oC1t+EgHHfhLp1EiBAoBkBwbYZd2slQIBAXwXs4PeV28omiYBxP0kKYTMIECDQBwHBtg/IVkGAAIGmBezgN10B629CwLhvQt06CRAg0IyAYNuMu7USIECgrwJ28PvKbWWTRMC4nySFsBkECBDog4Bg2wdkqyBAgEDTAnbwm66A9TchYNw3oW6dBAgQaEZAsG3G3VoJECDQVwE7+H3ltrJJImDcT5JC2AwCBAj0QUCw7QOyVRAgQKBpgdjBj+WO229relOsn0BfBK66+uq0zXbbp2lTp6azzjyjL+u0EgIECBBoTkCwbc7emgkQINA3gVknzk6zZs9OM6dPTzNnTO/beq2IQFMCEWoj3EaojXBrIUCAAIF2Cwi27a6v3hEgQGBIwGGZQxQetFzAbG3LC6x7BAgQGEFAsB0BxUsECBBoo0A1a+vQzDZWV58qgSrUxvM9i6MTZhRHKVgIECBAoP0Cgm37a6yHBAgQGBKoDs+McBuHJDtEc4jGgxYIVD/eRFeE2hYUVBcIECAwDgHBdhxYPkqAAIE2CFThtuqLcFtJ+DvIAjFTWy1CbSXhLwECBPIREGzzqbWeEiBAYEggQkDMbnWHgaE3PSAwoAIC7YAWzmYTIEBgAgQE2wlA1AQBAgQIEBhN4OWvfFVafcqUNOuE40f7iNcJECBAgACBBRQQbBcQ0NcJECBAgMBYAoLtWDreI0CAAAECEyMg2E6Mo1YIECBAgMCIAoLtiCxeJECAAAECEyog2E4op8YIECBAgMBwAcF2uIdnBAgQIECgDgHBtg5VbRIgQIAAgY6AYGsoECBAgACB+gUE2/qNrYEAAQIEMhYQbDMuvq4TIECAQN8EBNu+UVsRAQIECOQoINjmWHV9JkCAAIF+Cwi2/Ra3PgIECBDISkCwzarcOkuAAAECDQkItg3BWy0BAgQI5CEg2OZRZ70kQIAAgWYFBNtm/a2dAAECBFouINi2vMC6R4AAAQKTQkCwnRRlsBEECBAg0FYBwbatldUvAgQIEJhMAoLtZKqGbSFAgACB1gkItq0rqQ4RIECAwCQUEGwnYVFsEgECBAi0R0CwbU8t9YQAAQIEJq+AYDt5a2PLCBAgQKAFAoJtC4qoCwQIECAw6QUE20lfIhtIgAABAoMsINgOcvVsOwECBAgMioBgOyiVsp0ECBAgMJACgu1Als1GEyBAgMCACQi2A1Ywm0uAAAECgyUg2A5WvWwtAQIECAymgGA7mHWz1QQIECAwIAKC7YAUymYSIECAwEALCLYDXT4bT4AAAQKTXUCwnewVsn0ECBAg0AYBwbYNVdQHAgQIEJi0AoLtpC2NDSNAgACBFgkIti0qpq4QIECAwOQTEGwnX01sEQECBAi0T0CwbV9N9YgAAQIEJpGAYDuJimFTCBAgQKC1AoJta0urYwQIECAwGQQE28lQBdtAgAABAm0XEGzbXmH9I0CAAIFGBQTbRvmtnAABAgQyERBsMym0bhIgQIBAMwKCbTPu1kqAAAECeQkItnnVW28JECBAoM8Cgm2fwa2OAAECBLIUEGyzLLtOEyBAgEC/BATbfklbDwECBAjkLCDY5lx9fSdAgACB2gUE29qJrYAAAQIECCTB1iAgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0OBAAECBAjUKCDY1oiraQIECBAg0BEQbA0FAgQIECBQo4BgWyOupgkQIECAQEdAsDUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZQIECAAAECNQoItjXiapoAAQIECHQEBFtDgQABAgQI1Cgg2NaIq2kCBAgQINAREGwNBQIECBAgUKOAYFsjrqYJECBAgEBHQLA1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUCBAgAABAjUKzB1sr7/hhrT6lCk1rlHTBAgQIEAgPwHBNr+a6zEBAgQI1Chw2pw56fobbkyzTji+XEt3sI33Tp1zevmecFtjETRNgAABAtkJCLbZlVyHCRAgQKBOgSq8RnCNcFsF29WnrFaG2lj3zjvukHbaccc6N0PbBAgQIEAgKwHBNqty6ywBAgQI9EOgO9zGocfdi1DbreExAQIECBCYGAHBdmIctUKAAAECBIYJVOG2+0WhtlvDYwIECBAgMHECgu3EWWqJAAECBAgME+gOt0LtMBpPCBAgQIDAhAoIthPKqTECBAgQIDBcIMJtLM6pLRn8Q4AAAQIEahEQbGth1SgBAgQmt8BVV1+dpk2dmmadODvNmj07nXXmGeXzFVZaufwbz6v3Zk6fnmbOmJ622W77FN+74/bbyr/xfKT3oucjtWMdj3ScH6vKsdd6RM3is1Hv7rpW7YxVq0FYR4zBGMNV/yb3/3m2jgABAgTqEhBs65LVLgECBCapQATWCDtVyInHEVwjGESQWXva1DQjwkLnc9V71fP4Xnwnno/0XnR7rHbGes86/lebynUirKpajVbXQV9HjNu5x3C8FoYWAgQIEMhHQLDNp9Z6SoAAgVIgwuOjHpXS1GLnPwKAhUCbBCKoxxI/wFgIECBAIB8BwTafWuspAQKZC1QzrJkz6D4BAgQIECDQQgHBtoVF1SUCBAjMLRCHasZMVnVO7Nzve06gbQLxQ06cexvnhFsIECBAoP0Cgm37a6yHBAgQKM9BvOqq4oJRxfmzDj82IHIQcMh9DlXWRwIECDwsINg+bOERAQIECBAgQIAAAQIECAyggGA7gEWzyQQIEBivQNzSxWHI41Xz+UEXiFlbRykMehVtPwECBHoTEGx7c/IpAgQIDLRA971KB7ojNp7AOASM+3Fg+SgBAgQGXECwHfAC2nwCBAgQIEBgZIG4aFoszisf2cerBAgQaJOAYNumauoLAQIERhGwgz8KjJcJECBAgACBVggItq0oo04QIEBgbAGHZI7t4912Chj37ayrXhEgQGAkAcF2JBWvESBAoGUCJxb384xlxvTpLeuZ7hAYXSDu3bx2cYsr4350I+8QIECgLQKCbVsqqR8ECBAgQIAAAQIECBDIVECwzbTwuk2AQF4CMXMVF9CZOcOMbV6Vz7u3bveTd/31ngCBvAQE27zqrbcECGQq4FzDTAufebeN+8wHgO4TIJCVgGCbVbl1lgABAgQI5CPg3PJ8aq2nBAgQEGyNAQIECGQg4HY/GRRZFwkQIECAQMYCgm3Gxdd1AgTyEXBIZj611tOHBZxb/rCFRwQIEGi7gGDb9grrHwECBAoBtz0xDHIU8INOjlXXZwIEchUQbHOtvH4TIECAAAECBAgQIECgJQKCbUsKqRsECBAYS8BtT8bS8V5bBZxb3tbK6hcBAgQeKSDYPtLEKwQIEGidgEMyW1dSHepBwLjvAclHCBAg0BIBwbYlhdQNAgQIjCVg5mosHe+1VcDtftpaWf0iQIDAIwUE20eaeIUAAQIECBAgQIAAAQIEBkhAsB2gYtlUAgQIzK+AQzLnV873BlnA7X4GuXq2nQABAuMTEGzH5+XTBAgQGEgBt/sZyLLZ6AUU8IPOAgL6OgECBAZIQLAdoGLZVAIECBAgQIAAAQIECBB4pIBg+0gTrxAgQKB1Am7307qS6hABAgQIECDQJSDYdmF4SIAAgbYKOCSzrZXVr7EEjPuxdLxHgACBdgkItu2qp94QIEBgRAG3+xmRxYstF3BuecsLrHsECBDoEhBsuzA8JECAAAECBAgQIECAAIHBExBsB69mtpgAAQLjFnDbk3GT+UILBJxb3oIi6gIBAgR6FBBse4TyMQIECAyygHMNB7l6tn1+BYz7+ZXzPQIECAyegGA7eDWzxQQIECBAgEAPAs4t7wHJRwgQINASAcG2JYXUDQIECIwlYAd/LB3vESBAgAABAoMuINgOegVtPwECBHoQcEhmD0g+0joB4751JdUhAgQIjCog2I5K4w0CBAi0R+DE2bPLzsyYPr09ndITAvMQcLufeQB5mwABAi0SEGxbVExdIUCAAAECBAgQIECAQI4Cgm2OVddnAgSyE3C7n+xKrsOFgNv9GAYECBDIR0CwzafWekqAQMYCzjXMuPgZd924z7j4uk6AQHYCgm12JddhAgQIECCQh4Bzy/Oos14SIEAgBARb44AAAQIZCLjdTwZF1kUCBAgQIJCxgGCbcfF1nQCBfAQckplPrfX0YQHnlj9s4REBAgTaLiDYtr3C+keAAIFCwG1PDIMcBfygk2PV9ZkAgVwFBNtcK6/fBAgQIECAAAECBAgQaImAYNuSQuoGAQIExhJw25OxdLzXVgHnlre1svpFgACBRwoIto808QoBAgRaJ+CQzNaVVId6EDDue0DyEQIECLREQLBtSSF1gwABAmMJmLkaS8d7bRVwu5+2Vla/CBAg8EgBwfaRJl4hQIAAAQIECBAgQIAAgQESEGwHqFg2lQABAvMrMJ5DMv/73/+Wq3nUox41v6sb+l7VVrwwEe1FO1Wb3e2N9Fp8dkGW8bT5f//3f+nPf/5LWmaZZdJjH/uYBVmt706ggNv9TCCmpggQIDDJBQTbSV4gm0eAAIGJEBjP7X7e8773pz/ee2/aYbtt0yte/vIFWv3nv/CFdOG3Lkovf+lL0447bL9AbVVfPuzII9MvfvHL9M6dd05rrz0t/eimm9JHT5ydlnra09LRRx5RfWyB/l562WXpM589O6280kppv333GbWta669Np39uc+nv/71r+VnImw/5znPTu8otu3pRcjtXv7yl7+kfz7wQHr8EkukxRdfvPutnh9PRBs9r6wPH7z//vvTX4sfBR77mMekJz3pSRO+xvH8oDPhK9cgAQIECPRVQLDtK7eVESBAYPILCLYp9RJsr77mmvTxT36qLOhiiy6alnn6Mul3v/1duv+f/0yPW2yx9L73vict+/SnDxX8pFM+lq67/vq02SYbpzdutNHQ6+N5MBFtjGd9dX/24ksuTZ8955z0glVWSfvuvVfdq9M+AQIECLRYQLBtcXF1jQABApXAeG73I9j2FmyrkLnWmmumXd/5jvToRz86xQzkMR/+SPrVr36VNt90k7TRhhtWJUjV5wXbIZIk2D5s4REBAgQILJiAYLtgfr5NgACBgRAYzyGZvQbbv//97+k73/1u+uWv7k7/+c9/0nOe/az0mle/Oi1WzFZWS/ehyBtssH66+OJL0p/+9Ke03HLLpTXXXCM9Y9llq4+Wf+O81htuvDH95Kc/Tffe+6e04gorpNVWe3F5mHH1wV4PRe6lrWgzDu+9+ppry3U+7nGLpXXXWSf99re/neehyIccfkQZYLfecsu0wfqvqzYvnX/BBekr552fXviCVdI+e+2VLvvOd4p1/DVd+8Mfpt/+7nfl4c3RryWXfEJ61StfWX7voYceSldceWX62c9+nv72t7+lpZZeqnxv6aWWKt/vpY1e+nvzLbemO+64Iz33ucunJy65ZNnvCORrFbV49rOfnW7/yU/KQ7sXWXiRtNZaa6ZnPuMZQ/2KB3/44x/TjTf+KP20aONJT1wyrVQcqr3ai19chvp4/9///ne64Gtfj4fpDa9/fbr1x7eWrksUh16vuuqq6dnPelb53k0331L09Wfprl/cleLxU5/ylLTO2muX72204RvSIosskh588MF02+0/SbfccnO6rxhrq6y8clr1RS8q3JYsP9fLP+MZ97205zMECBAgMHkFBNvJWxtbRoAAgQkTGM/tfnoJthFwjjn2w8UFk/48bBsjoBx80IHlobjxRhVsIyBFoP1HMaNZLYs+9rFp3332Ts9dfvnypQhmp805PV35/e9XHyn/RlDe/937DoWiXoJtr23F9n/wQ8eW5xRXK43zZJ/33OemO4rgNdY5tud8/vPpom9fXJ4f+obXb1AE8NXSs575zPSPf/wj/bkIy48pzhuN836r7a3ar/7GZw8prOJHgQ8fd3wZAKv34u/CCy+c3rf//sWPAM+ZZxu99reqR/yg8Meihg8U4TGWOMd1/de9Ln3tG99IEbJjifrs/+53l+cMx/M4r/nY444rZ6XjebXE+dM7bL9deXGwOIf4XTNmlm+tPW1q+sFVV1cfSwsttFCaOX16etELX5A+d+656VsXfXvove4HJ55wfHrc4x6XPlTMfEfQjiVqEn2M83APLcx6PUd5POeWd2+DxwQIECAweAKC7eDVzBYTIECgVoFegu03vvnN9KWvfLU4N3LltM3b3lbOrn2iON/017/5TXrL1lun1732NeU2VkEqnqz6ohemV7/qVenv9/09XXTJxWVQesITnpCOO/ZDZXD5djGbe/bnPlfOyMVhvEsvvXS6/PIryqD7xCc+MX34mA+Wn6uC4lgXj+q1rRNmzSpnDJ/ylCen173mtelZz3pmuqoIY9+94opy+8cKtjGzGocXx+xltUTwWmPKlPTaov8RamP5+Z13FmH3/mIm82vlZ1+67jpp6kumFjPbi5YB+rbbb08nzj4pLVaEuT1227WYCX1i8YPAF4vZ1GvS6kVYnv6uPebZRq/9reoRIfPNW22VlipmhD9z1llDwX7LzTcrguxz0uc+f266+9e/Lkxend7y5jeX4Xvf/d9TziavU1ywKy4q9sc//DF96atfLX/c2H7bbdJ6r3hFeXGsKtg+/vGPT+sXDs8sAnz8AHDrj39czswec/RR6Xe//30RrO8tZn9vTJcUF+qK2eItNtus9Fpl5ZXSvcWPIO/7wAHlzO1hhxycYsb31OJHj7Deesst0kvXXbf8rH8IECBAgEAlINhWEv4SIECgxQLjue1JL8E2qCLYxYxfzPDFbNrFF1+cLr70srReEXq2L66oHEsVpGL277gPf3joVji/KQ71PfDgQ8rPHHHYoeUVhOM84BuLKxy/ujg8d1ox2xdLHNoaoS9mAg89+KDy0Nhegm0vbcWFnWbsuVfZ9jt22imts87/DoWN9R5x9NHpzjvvGnPGNj4Xs61x6PS1P7wu3XzLLeVsbbweF4/a5Z3vLMN8PI9lrHNs47DbCHNxCG60eefP70yfPPXUtEwR7o88/LD/NTBGG730N2bNq3o8f8UV03v2e3fZ7pe+/JVypjY8Dj/0kPK1mE2NWdWVnv/8crY8ZmvDPS6S9a49di+3Mz4YPwJEMF1zjTXKUN49Y7vVFpun12+wQdle/OBx0CGHlo+P//CxKX7QiGW0c2yjnb322Tf961//Kn8kmdKZDY/Z+zh0utdlPOeW99qmzxEgQIDA5BQQbCdnXWwVAQIEJlRgPOca9hJsf3/PPelTnz413XnXXUP3la02+KXFOao777Rj+bQKUi9Za6202y7vrD5S/o1gGwG3mnnda993l2F52Ie6nuy84w7lTF0vwbaXtpYvDoGObYigdOJHTygPva1W980LL0znfvFLowbbuEhUnDMbS5wbGocNR7j/2c9/ns4tZlvjMObll18uHfC+98VHymW0YBsh7szPfCb98LrryyBXfT7+xqHdMcNZLaO10Ut/Y5azqkf37Zdi9v0LX/ry0OxwrOvyYsZ6zhlnphWe97z0vvfsX54nfOZZn6024xF/Y8b7Q8WPAd3BNg6zjsOtq2WX3fcoQ/vBBx4wdFj5aME2vhPnFZ9TzBxHuI0lQn8E3Le+eeuez7Mdz7gvV+IfAgQIEBhYAcF2YEtnwwkQIFCPQC/B9tAjjky//OUvy+Dz4lVfVJ4/GRcBisNqRwq2cdGgCDTV8sADD6Z9ivM3IwjFbV7idi/VxZgidK244grVR4f+RhCNWcVegm0vbS1ZzBrO3Pt/96g9pNi2ZxXbWC1xru8V3/vemMF2xl57l2H2vfvvV17kqvpuHC4b5+3GeaGnzD5xaHZztFBanW9aXUBp0UUfm373u9+ny4uLSfUabHvpb9jNb7CNWekTTzq5PLf1zVttWXV16O/CCy1czrJ3B9s4dLz73rS77vGucga+12Abjcc50DfdfHM5rmJ8xfnLYx0ePrRBnQfjObd87u96ToAAAQKDJSDYDla9bC0BAgTmS2A8O/hVsH1rcW7lusX5oN1LzG4uVPy3+/QZZajrDinVDGz37GwVpKKNKsDGzGacExoXX4rwN3vWR8vZ0s+efXZ5KHMcJrvPXnuWgTAuNvWJT34yvawIu3G4a3y+l2Dba1sfOPCg8nzPCNPbbvO2cub1j/femw459LDyfrRjhagjjioOVy5mrKcUVwWOGeq4oFHMLn727HPKc3Sri0NVflWw3egNb0ibb7Zp9XI66oPHlDO94f3a4pzWWD5TzI5eWsxYxhWAIyBWh9+O1kav/a3qMd4Z2/vuuy/tWRwaHMueM2ak+DEjlrjf7913/7q4L++GZYid32AbF+t6f3Hf32qJ83FjxvwpxTnLcY5xLL8sbqF0aHEl6jg/+GMnzR4yqb7jLwECBAjkLSDY5l1/vSdAIBOB8RySWQXbkWhiBi6C1iGHHZ5+dffd5e16IojecuutKcJPBNEIn+sWh+dG2KuCVLwWgTZmRe8vZt0iPMbSHbDisOS40nK0E+eoLr/8cuXtbyIsxZWTY2Y0Qk0vwbbXti659NJ0VhFEY4lgGlcLri4GFds7VrCNQ5E/8alPl4fXRvCMGdE4RDvCbfR3uyIoxwWVquXLxcW2Lvj618vAHqF39SmrpQ2LkHtOccGsi4qgHxdbWnP11UvXsI1zl+Mc42j3oAM+UH5vtDZ67W9Vj273Xg5Fjj6c9dmzy/Np43Fcqfnf//p3eYGpeD6jCJ9xmPB4g20E2I8cf0I0UY6Npz31qeldu++W7vnDH8pzcsMyLjr27Gc9O/34ttvKi2jFug98//vL78zrn/GM+3m15X0CBAgQmNwCgu3kro+tI0CAwIQInDh7dtnOjOJ2K/Naegm2MXt2ysc+XgaQaC8C7957zkxfLe7fGoetxqHHB7z/fUPB9jXF1ZAXecwi5UxthLW4Fc60l7ykvMhUNRsZ7US7p595ZnGY86/KYBdBdvXiKsM7FBejilvAxNJLsI3P9dJWfO7Cb32ruHjSN1PclzcCaczAvqC4B20E3rGCbXw3Dr0++5zPlecKRxCN70c426K4uvBaa64ZHxla4r68p595RnF14NvKkF+Fy1jvJz71qeLiU7eWn41zSeN84jgM97zzLyjDYhzSHGajtRFf7KW/CxJsI+h/4UtfSld+7/tD50LHjPK2b3trWqMI5LGMN9hGm3NOPyNd88NrUxyeHleSPvrII8q2IvR+66KL0k9+8tPyImXxY8cqxSHrMdsdF9XqZXG7n16UfIYAAQLtEBBs21FHvSBAgEAjAhG0HnjwgTJodAfU0TYmZuBiVnPp4jYzEeBGWyIg3VN87unLLDPm50b7fvfrvbQVAStmPZ/85CeXV/7t/n4vjyOU3XPP79NTilAbAWx+lgi4ca/fpZZaeujq0fPTTi/9nZ92u78Tt+uJe992n0Pb/f5EPo4fQmLMRJiNHzosBAgQIEBgJAHBdiQVrxEgQKBlAuO53U/Luq47GQu43U/Gxdd1AgSyExBssyu5DhMgkKOAcw1zrLo+G/fGAAECBPIREGzzqbWeEiBAgACBrATGc255VjA6S4AAgRYKCLYtLKouESBAYG6B8dzuZ+7vek6AAAECBAgQmOwCgu1kr5DtI0CAwAQIOCRzAhA1MXACzi0fuJLZYAIECMy3gGA733S+SIAAgcERcNuTwamVLZ04AT/oTJyllggQIDDZBQTbyV4h20eAAAECBAgQIECAAAECYwoItmPyeJMAAQLtEHDbk3bUUS/GJ+Dc8vF5+TQBAgQGWUCwHeTq2XYCBAj0KOCQzB6hfKxVAsZ9q8qpMwQIEBhTQLAdk8ebBAgQaIeAmat21FEvxifgdj/j8/JpAgQIDLKAYDvI1bPtBAgQIECAAAECBAgQIJAEW4OAAAECGQg4JDODIuviIwTc7ucRJF4gQIBAawUE29aWVscIECDwsIDb/Txs4VE+An7QyafWekqAAAHB1hggQIAAAQIECBAgQIAAgYEWEGwHunw2ngABAr0JuN1Pb04+RYAAAQIECAymgGA7mHWz1QQIEBiXgEMyx8Xlwy0RMO5bUkjdIECAQA8Cgm0PSD5CgACBQRdwu59Br6Dtnx8B55bPj5rvECBAYDAFBNvBrJutJkCAAAECBAgQIECAAIGOgGBrKBAgQCADAYdkZlBkXXyEgHPLH0HiBQIECLRWQLBtbWl1jAABAg8LCLYPW3iUj4Bxn0+t9ZQAAQKCrTFAgAABAgQItFLAueWtLKtOESBAYEQBwXZEFi8SIECgXQJ28NtVT70hQIAAAQIEhgsItsM9PCNAgEArBRyS2cqy6tQ8BIz7eQB5mwABAi0SEGxbVExdIUCAwGgCJ86eXb41Y/r00T7idQKtE3C7n9aVVIcIECAwqoBgOyqNNwgQIECAAAECBAgQIEBgEAQE20Gokm0kQIDAAgrEzNW0qVPTzBlmbBeQ0tcHSMDtfgaoWDaVAAECCygg2C4goK8TIEBgEAScazgIVbKNEy1g3E+0qPYIECAweQUE28lbG1tGgAABAgQILICAc8sXAM9XCRAgMGACgu2AFczmEiBAYH4E3O5nftR8hwABAgQIEBgUAcF2UCplOwkQILAAAg7JXAA8Xx1YAeeWD2zpbDgBAgTGLSDYjpvMFwgQIDB4Ag7JHLya2eIFF/CDzoIbaoEAAQKDIiDYDkqlbCcBAgQIECBAgAABAgQIjCgg2I7I4kUCBAi0S8BtT9pVT73pTcC55b05+RQBAgTaICDYtqGK+kCAAIF5CDgkcx5A3m6lgHHfyrLqFAECBEYUEGxHZPEiAQIE2iVg5qpd9dSb3gScW96bk08RIECgDQKCbRuqqA8ECBAgQIAAAQIECBDIWECwzbj4uk6AQD4CDsnMp9Z6+rCA2/08bOERAQIE2i4g2La9wvpHgACBQiB28NeeNjXNmD6dB4FsBPygk02pdZQAAQJJsDUICBAgQIAAAQIECBAgQGCgBQTbgS6fjSdAgEBvAm7305uTTxEgQIAAAQKDKSDYDmbdbDUBAgTGJeCQzHFx+XBLBIz7lhRSNwgQINCDgGDbA5KPECBAYNAF3O5n0Cto++dHwLnl86PmOwQIEBhMAcF2MOtmqwkQIECAAAECBAgQIECgIyDYGgoECBDIQCDOsZ01e3a64/bbMuitLhJIKY5SiHF/1pln4CBAgACBDAQE2wyKrIsECBCIHfzY0Z85Y3qaNnUqEAKtF6h+zIlga8y3vtw6SIAAAbf7MQYIECCQm0AEXDv6uVU9z/4a63nWXa8JEMhTwIxtnnXXawIEMhWoZrFmTp9ezt5myqDbLRaojk5wCHKLi6xrBAgQGEFAsB0BxUsECBBoq0DMYMWVYuNc23gcIaA6PDmex1LN5nY/734cnxnp+Ujfqz471nvxmXh/pDar93ppxzomxrEyH6seY73XS60meh0xjqdNm1qOI8E2dC0ECBDIT0Cwza/mekyAQOYCEUoiBEbAjcfVOYhxz89YqtAb71czu9VnR3ovgkRcmKq7nWg/no/0nnX0blU5Rp16rUdVq17r0ZZ1VOMq/loIECBAID8BwTa/musxAQIEhgS6Z95OLMJpLDOKw5RjiedTi4AawSc+d3Xx31jvVZ/tbqf63kjv5bKO1dd6Sdptl3emXXfZZchxJA9WI4+5Xqwqu2p8lgPYPwQIECCQlYBgm1W5dZYAAQIE+i3w8le+Kq0+ZUqadcLx/V619REgQIAAgWwEBNtsSq2jBAgQINCEgGDbhLp1EiBAgEBuAoJtbhXXXwIECBDoq4Bg21duKyNAgACBTAUE20wLr9sECBAg0B8BwbY/ztZCgAABAnkLCLZ511/vCRAgQKBmAcG2ZmDNEyBAgACBQkCwNQwIECBAgECNAoJtjbiaJkCAAAECHQHB1lAgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0OBAAECBAjUKCDY1oiraQIECBAg0BEQbA0FAgQIECBQo4BgWyOupgkQIECAQEdAsDUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZQIECAAAECNQoItjXiapoAAQIECHQEBFtDgQABAgQI1Cgg2NaIq2kCBAgQINAREGwNBQIECBAgUKOAYFsjrqYJECBAgEBHQLA1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUCBAgAABAjUKCLY14mqaAAECBAh0BARbQ4EAAQIECNQoINjWiKtpAgQIECDQERBsDQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwNRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lAgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0OBAAECBAjUKCDY1oiraQIECBAg0BEQbA0FAgQIECBQo4BgWyOupgkQIECAQEdAsDUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZQIECAAAECNQoItjXiapoAAQIECHQEBFtDgQABAgQI1Cgg2NaIq2kCBAgQINAREGwNBQIECBAgUKOAYFsjrqYJECBAgEBHQLA1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUCBAgAABAjUKCLY14mqaAAECBAh0BARbQ4EAAQIECNQoINjWiKtpAgQIECDQERBsDQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwNRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lAgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0OBAAECBAjUKCDY1oiraQIECBAg0BEQbA0FAgQIECBQo4BgWyOupgkQIECAQEdAsDUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZQIECAAAECNQoItjXiapoAAQIECHQEBFtDgQABAgQI1Cgg2NaIq2kCBAgQINAREGwNBQIECBAgUKOAYFsjrqYJECBAgEBHQLA1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUCBAgAABAjUKCLY14mqaAAECBAh0BARbQ4EAAQIECNQoINjWiKtpAgQIECDQERBsDQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwNRQIECBAgEBNAqfNmZNOnXN6Wn3KlDTrhONrWotmCRAgQIAAAcHWGCBAoG8CsZNvIZCTQITaWATbnKqurwQIECDQhIBg24S6dRLIUGDmXnun62+4IcOe6zIBwdYYIECAAAECdQsItnULa58AgVSF2pi12mnHHYgQyEIgxnsszrHNotw6SYAAAQINCwi2DRfA6gnkIFAF28svuzSH7uojgWECgu0wDk8IECBAgEAtAoJtLawaJUCgW8COfbeGx7kJGP+5VVx/CRAgQKAJAcG2CXXrJJCZgB37zAquu8MEjP9hHJ4QIECAAIFaBATbWlg1SoBAt4Ad+24Nj3MTMP5zq7j+EiBAgEATAoJtE+rWSSAzATv2mRVcd4cJGP/DODwhQIAAAQK1CAi2tbBqlACBbgE79t0aHucmYPznVnH9JUCAAIEmBATbJtStk0BmAnbsMyu47g4TMP6HcXhCgAABAgRqERBsa2HVKAEC3QJ27Ls1PM5NwPjPreL6S4AAAQJNCAi2TahbJ4HMBOzYZ1Zw3R0mYPwP4/CEAAECBAjUIiDY1sKqUQIEugXs2HdreJybgPGfW8X1lwABAgSaEBBsm1C3TgKZCdixz6zgujtMwPgfxuEJAQIECBCoRUCwrYVVowQIdAvYse/W8Dg3AeM/t4rrLwECBAg0ISDYNqFunQQyE7Bjn1nBdXeYgPE/jMMTAgQIECBQi4BgWwurRgkQ6BawY9+t4XFuAsZ/bhXXXwIECBBoQkCwbULdOglkJmDHPrOC6+4wAeN/GIcnBAgQIECgFgHBthZWjRIg0C1gx75bw+PcBIz/3CquvwQIECDQhIBg24S6dRLITMCOfWYF191hAsb/MA5PCBAgQIBALQKCbS2sGiVAoFvAjn23hse5CRj/uVVcfwkQIECgCQHBtgl16ySQmYAd+8wKrrvDBIz/YRyeECBAgACBWgQE21pYNUqAQLeAHftuDY9zEzD+c6u4/hIgQIBAEwKCbRPq1kkgMwE79pkVXHeHCRj/wzg8IUCAAAECtQgItrWwapQAgW4BO/bdGh7nJmD851Zx/SVAgACBJgQE2ybUrZNAZgJ27DMruO4OEzD+h3F4QoAAAQIEahEQbGth1SgBAt0Cduy7NTzOTcD4z63i+kuAAAECTQgItk2oWyeBzATs2GdWcN0dJmD8D+PwhAABAgQI1CIg2NbCqlECBLoF7Nh3a3icm4Dxn1vF9ZcAAQIEmhAQbJtQt04CmQnYsc+s4Lo7TMD4H8bhCQECBAgQqEVAsK2FVaMECHQL2LHv1vA4NwHjP7eK6y8BAgQINCEg2Dahbp0EMhOwY59ZwXV3mIDxP4zDEwIECBAgUIuAYFsLq0YJEOgWsGPfreFxbgLGf24V118CBAgQaEJAsG1C3ToJZCZgxz6zguvuMAHjfxiHJwQIECBAoBYBwbYWVo0SINAtYMe+W8Pj3ASM/9wqrr8ECBAg0ISAYNuEunUSyEzAjn1mBdfdYQLG/zAOTwgQIECAQC0Cgm0trBolQKBbwI59t4bHuQkY/7lVXH8JECBAoAkBwbYJdeskkJmAHfvMCq67wwSM/2EcnhAgQIAAgVoEBNtaWDVKgEC3gB37bg2PcxMw/nOruP4SIECAQBMCgm0T6tZJoOUC199wQzptzulp1gnHlz3t3rGP92butXf53upTprRcQvcIpNQ9/nkQIECAAAEC9QgItvW4apVA1gKnzZmTTi2CbQTXCLfVjv1OO+5QhtrA2bl4vNOOO2btpPN5CFTjv/qhJ49e6yUBAgQIEOivgGDbX29rI5CNQHe4jVna7kWo7dbwuO0Cgm3bK6x/BAgQIDAZBATbyVAF20CgpQJVuO3unlDbreFxDgKCbQ5V1kcCBAgQaFpAsG26AtZPoOUC3eFWqG15sXVvRAHBdkQWLxIgQIAAgQkVEGwnlFNjBAiMJBDhNhbn1JYM/slMQLDNrOC6S4AAAQKNCAi2jbBb6WQRmHXi7HTV1VeXm1P9nSzbZjsIjEdg2tSp5cdnzpieqsfj+b7P1icg2NZnq2UCBAgQIFAJCLaVhL9ZCUSgnTV7dlZ91tl8BCLYxn8Rci3NCwi2zdfAFhAgQIBA+wUE2/bXWA/nEugOtXsWO/4zptv5n4vI0wEViKMOuo9CmFmMbeG2+WIKts3XwBYQIECAQPsFBNv211gPuwSqUBuzWWedeUbXOx4SaI9ABNxtttu+7JBw23xdBdvma2ALCBAgQKD9AoJt+2ush10CK6y0cnmIplDbheJhKwW6w+0dt9/Wyj4OSqcE20GplO0kQIAAgUEWEGwHuXq2fVwC1WxthFoX1xkXnQ8PqEA15s3aNltAwbZZf2snQIAAgTwEBNs86qyXhUAcmhmzWGavDIdcBKpZW8G22YoLts36WzsBAgQI5CEg2OZRZ70sBByGbBjkKGDcN191wbb5GtgCAgQIEGi/gGDb/hrrYUfADr6hkKNAjPtYHKnQXPUF2+bsrZkAAQIE8hEQbPOpdfY9FWyzHwJZAgi2zZddsG2+BraAAAECBNovINi2v8Z62BEQbA2FHAUE2+arLtg2XwNbQIAAAQLtFxBs219jPewICLaGQo4Cgm3zVRdsm6+BLSBAgACB9gsItu2vsR52BARbQyFHAcG2+aoLts3XwBYQIECAQPsFBNv211gPOwKCraGQo4Bg23zVBdvma2ALCBAgQKD9AoJt+2ushx0BwdZQyFFAsG2+6oJt8zWwBQQIECDQfgHBtv011sOOgGBrKOQoINg2X3XBtvka2AIC8H/3EwAAHQhJREFUBAgQaL+AYNv+GuthR0CwNRRyFBBsm6+6YNt8DWwBAQIECLRfQLBtf431sCMg2BoKOQoIts1XXbBtvga2gAABAgTaLyDYtr/GetgREGwNhRwFBNvmqy7YNl8DW0CAAAEC7RcQbNtfYz3sCAi2hkKOAoJt81UXbJuvgS0gQIAAgfYLCLbtr7EedgQEW0MhRwHBtvmqC7bN18AWECBAgED7BQTb9tdYDzsCgq2hkKOAYNt81QXb5mtgCwgQIECg/QKCbftrrIcdAcHWUMhRQLBtvuqCbfM1sAUECBAg0H4Bwbb9NdbDjoBgayjkKCDYNl91wbb5GtgCAgQIEGi/gGDb/hrrYUdAsDUUchQQbJuvumDbfA1sAQECBAi0X0CwbX+N9bAjINgaCjkKCLbNV12wbb4GtoAAAQIE2i8g2La/xnrYERBsDYUcBQTb5qsu2DZfA1tAgAABAu0XEGzbX2M97AgItoZCjgKCbfNVF2ybr4EtIECAAIH2Cwi27a+xHnYEBFtDIUcBwbb5qgu2zdfAFhAgQIBA+wUE2/bXWA87AoKtoZCjgGDbfNUF2+ZrYAsIECBAoP0Cgm37a6yHHQHB1lDIUUCwbb7qgm3zNbAFBAgQINB+AcG2/TXWw46AYGso5Cgg2DZfdcG2+RrYAgIECBBov4Bg2/4a62FHQLA1FHIUEGybr7pg23wNbAEBAgQItF9AsG1/jfWwIyDYGgo5Cgi2zVddsG2+BraAAAECBNovINi2v8Z62BEQbA2FHAUE2+arLtg2XwNbQIAAAQLtFxBs219jPewICLaGQo4Cgm3zVRdsm6+BLSBAgACB9gsItu2vsR52BARbQyFHAcG2+aoLts3XwBYQIECAQPsFBNv211gPOwKCraGQo4Bg23zVBdvma2ALCBAgQKD9AoJt+2ushx0BwdZQyFFAsG2+6oJt8zWwBQQIECDQfgHBtv011sOOgGBrKOQoINg2X3XBtvka2AICBAgQaL+AYNv+GuthR0CwNRRyFBBsm6+6YNt8DWwBAQIECLRfQLBtf431sCMg2BoKOQoIts1XXbBtvga2gAABAgTaLyDYtr/GetgREGwNhRwFBNvmqy7YNl8DW0CAAAEC7RcQbNtfYz3sCAi2hkKOAoJt81UXbJuvgS0gQIAAgfYLCLbtr7EedgQEW0MhRwHBtvmqC7bN18AWECBAgED7BQTb9tdYDzsCgq2hkKOAYNt81QXb5mtgCwgQIECg/QKCbftrrIcdAcHWUMhRQLBtvuqCbfM1sAUECBAg0H4Bwbb9NdbDjoBgayjkKCDYNl91wbb5GtgCAgQIEGi/gGDb/hrrYUdAsDUUchQQbJuvumDbfA1sAQECBAi0X0CwbX+N9bAjINgaCjkKCLbNV12wbb4GtoAAAQIE2i8g2La/xnrYEag72P73v/9N8d9Yy6Me9agU/422/PWvf03/+te/0lOf+tTRPjLq69X657WOURvwxpgCC1KbMRuu+U3BtmbgHpoXbHtA8hECBAgQILCAAoLtAgL6+uAI1B1sDz7k0HTW2WePCbLB+uunk06cNeJnfvvb36bXrL9Beuihh9JXv/yltNLznz/i50Z78ehjjkmfPvW0tPWWW6ajjjxitI+N+HqE6bt//evyveWXW27Ez9T54t/+9rf0x3vvTYstumhaZpll6lzVmG2Pth0LWpsxV1rzm4JtzcA9NH/anDnp1Dmnp5133CFNmTIlrV78ZyFAgAABAgQmVkCwnVhPrU1igckebG+55da0yeabl4Knn3Zqeum6645Lc0GC7e0/+Una6E0bp4UWWijdfust41rvRHz4jDM/kw474oi07jrrpDPmnDYRTc5XG6Ntx4LWZr42ZoK+JNhOEOQCNjNzr73T9TfcsICt+DqBwRKIH3F2Kn7Q8WPOYNXN1hIYVAHBdlArZ7vHLVB3sH3wwQfTv/7973K77i1mH1/92teVj7947ufTCiusUD5euAiOj33sY0fd9u9857vpgQcfSK977WvHPGR5pAYE25FUxvfaaME2WlmQ2oxvKyb204LtxHouSGsxc3v9DTcuSBO+S2CgBKofcy6/7NKB2m4bS4DAYAoItoNZN1s9HwJ1B9vuTYpgO23dl5Yvfe3884YdVnz2Oeek3//+nrTRRhumn/3sZ+mmm25Om2yycYpDgE86+ZTyO29/+87p8UsskS6//Ir0w+uuKw5fXC0tV7z/pS99Of30pz9Nq6yySnr96zdIz19xxaHVjhZsf/mrX6VLLrm0bGfppZ6Wpk2bll79qleVs7M/v/POdN5556fY3rM/97kyTL9r993LNt/4xo3SCs973lD7cz+44cYbi+27PN3649vSyiutlF7xipcP/Sp/6WWXpRtv/FFaYonF09t33nkopP/q7rvTF7/4pbKprYpDpqP/111/fbrp5pvSd757eXrWM5+ZNtl44/L93XfbNT360Y8eMolf/c+/4ILykOm999yz/IHgP//5Tzr3C19INxRhIfqw3PLLpW3e9ra03HOeM/fmlsH06muuKdf5vKJf6667ztCs+HeLdfe6HVVtqhXEd6+59tqyLisW9XjJWmuVFtX7cZh3Vdddd9klXXHlFSm248lPelJ65StfmVZZeeXqo7X8FWxrYdUoAQI9CHQfhr/Tjjv28A0fIUCAwPwLCLbzb+ebAyYwWYLtpltskW6++ZYyBFa/Zp9y0uwiaK2bVlt9jVL1iu9cVp5rWoXVF6+6avr1b35ThreKffHHPS6dXhy2O2W11cqXqs92n2Mbh9Buu8MOKc4d7V62KrYhzsONALrLbv8Lst3vx+OTZ5+Y1n/d/2ad537vC1/8YnrfBw4YdrGsuGjVMUcfnTbfbNP0u9/9Lm208SYpLrh00AEHpO2327Y8d3ib7bYvQ+BrX/3q9LFTTk5HffCD6dTT5szdfPn8umuuTgstvPCQSRzKVnldf+01abHFFkvb7bBj2V53A4ssskj6fHGu86qrvqh8OS6qdeRRR6U5Z5zZ/bHy8R677Zb22XuvcW1HVZto96iiv6edfsYj2o0Q/v73vrcM9H//xz+G+rDxm96Yzjv/gqHPL1z075Mf+1h6+ctfNvTaRD8QbCdaVHsECIxHwMXTxqPlswQILIiAYLsger47UAKTLdg+5jGPSRu/8Y1pzTXXKGYOX5qWfOKSQwGoCk9VWA3o9YoZ0W232Sb95S9/TaefeUYZjuPqyd+/4vIyQFWfrYLtv4vDotd9+SvSn/70p7RpMSO89VZbpbvv/nX6yPHHFzPGv09HHHZoGVxvvfXHxSzo3emAgw4uZ0hP/eQny7qussrK6SlPecojanzrrbemTbfYsgy1++y1ZxnIr7rqqvTh444vt+OC876aViwOvf7WRRelPabPSIsWF4Q6/6tfSZdcfEk6+kMfSksttVT6ejGL/cQnPjHdeddd6dfFNn374ovTZz772fSCF7wg7b/vvuU61157WnFY9oNDJtHXzTfdtDis+3npTYVbzGTvWoTyJR7/+DKEL7P00unoYz6ULvja19LrXvOadMrJJ5XtxAz5gQcfkiJE7rfPPmn1NVZP1193fTr2uONSGH3+nLPTk4rZ0163o6rNZ4vwfFBxwbDo31vf8ub0yvXWS5d95zvpnGLm+/77/5kOP/SQ4vW3pO5g++QnP7m8gNDKxSztacXFhK783vfKWepLL/72I5wn6gXBdqIktUOAwPwICLbzo+Y7BAjMj4BgOz9qvjOQApMt2G6x2WbpmA8ePWTZHYCq8FSF1Zid/UERghZbbNHy8z8pDkfe8I1vKh9f+I2vp+c997lFqBt+VeSYFY7Z4Tik+eRiRjiCdCznFzOGESJfv8EGafasj5avjefiUacWV14+qlhXzKC+9z37l9+Pfz5YhMqYUT34wAPTdttuU75+UBEoP1sEy2c/61npd0WYjiAZF4dauzgcunsZ7dzWbpMPFbO7MRvcvfzzn/8sZ7Kjb3FYchyS/O799y8P677owm+WH939XdPTRd/+dtp7z5npXXvsMfT1mMW9tgjHO++4UxGUNypf72U7qtpU7VY/JFQNf+CAA9Pnzj23PE86ZuK7+/Ce/d6d3vmOd5Qf7a7hD4rDk+fnFk/VOsf6K9iOpeM9AgTqFhBs6xbWPgEClYBgW0n423qByRZsjy3C4WabbjLk3h2AqvBUhdUN3/CGNOuE44c+Gw9ev+FG6Y7iHNUPF7OgMSNbfbYKWtWM4rAvdT1Zdtmnp+9e+r8Leown2MbVXb/+jW90tTT8YfQp+hZLBM+4hVHMEMeybXH+6yEHH1Q+7v6nl0AZ2xrbXC33/f3v6eBDDknfvPBb6YEHHqheLv8+8xnPSJddcnH5OM51jvNvzypmuadNnTrsc3M/6WU7qtpU7cYMd5xfXC1xzu3O73xnOdt91feuHBZsYzY7zkeulpVf+KIy7MeMdl3n2gq2lba/BAg0ISDYNqFunQTyFBBs86x7lr2ebMG2CqRVMcYKthF6IvxUSxzqunZxTm58p7o10NzBNg7v3W2Pd5WH/L6va2a1amORRYpDoYtzPmMZT7A9Ms4rLQ6jXXONNYrDm7esmhv6u+yyy6Z11l67fB5XEn57ccGkannGM5ZNF3z1q+nxxeHD3ct4AmX1vWo74oJTG7/pTWnxxR+X7rrrF+nzxcWkuoNt3EIpzjU+/iMfGZqZjTbigk9xDvBaa65ZGsVr49mOjTfbPMVh2Qe8//1pxx22j6+Xy5zC5ojCKA6rPq+4H/FIda0+u8qLVk1xcSnBthLxlwCBtgkItm2rqP4QmLwCgu3krY0tm2CBQQ62QVEF2LhoUQSww488sjwn9rriQkpLLL74I2Zs//znP6eXrL1OqfjpT3wirbfeK8rHZxWHId922+1p+rv2SEsX56XGUgXbuArxj66/rjxvtHxjhH++eeGFafrMPctDnL/1zW+kpz3taeWn3l9cTGr55ZcrDkPetvz+H//4x/ICUjFbGofgXnLpZWWY3GjDDdNHjz9uWMtVoIzDm8/93DlD740VCrd681vKQ5+7g+XBxTmvZ519drlNMbMa9+WtAvAaq6+e5hT3B35ccdGpv913X9ps8y3SXb/4Rdq3uHjU7sVFpGIZz3ZU7caPDqd9+lPlocTR553e/o7049tuK+/d+IH3vU+wHaqmBwQI5Cgg2OZYdX0m0IyAYNuMu7U2IDDowTbI4jY/9xVXOI7b5sQSVzc++qgjy8dzz9jGi4ccelh5Pm08jqsEP/jAg2WIjecfL65K/Jri6sSxRNBb56UvKw8djvNh42JKn/jYKSNePCrC5nbb75B+dNNN5QWZ4vY2P/v5z9M999xTzsR+7bzz0tOfvkx6e3E47neL2xXF+bRnnj6n3OY3vmnj9I/77y+unnxU2qKYSa2WuIjSDjvtXD6NPsY2nHTirDFD4RFFsI8rHccFrtYv7vt72+23l4EyzrWNWdC4VdF5X/lyitsdbVtsb4TO6Fdc2OrGH/2oPHw5QvmFX/9aesITnlCuezzbEYeBV+3Ghale9MIXpptvuaU8tDjOl/3MGaeX2zBWODdjW40AfwkQaKuAYNvWyuoXgcknINhOvprYopoEBjnYxoWm4vY2MRsZM7ZxJd43bbRROuLww8pZySAbKdjGZ4859tj0pS9/pbw6cnwuwtyhxXmuc9/KZ05x25qPF+eL/uEPf4iPpepc0vLJXP/E7YP22/896crvf6+8AnC8/cIXvqA8tzburVsdjhszyRcUV0COQ4Njidnig4uwHbOm5xWHVlf3m33ooYdSzPh+rbgQVhxmHcH2km9fNGawjcOI9yqucnz5FVeWbccFpI495oPpt7/9bZp90skpzsG9+cYbSqu4+vL+73lvcb/cm8vgGTO5cSj1cR8+trytUtlA8c94tyNmfKPdCPlxYawIuHFrpg8V21H1TbCtdP0lQCBHAcE2x6rrM4FmBATbZtyttQGBfgbbiere3GE1bt0T94hdoZh1rK5y3Ou6fn7nnWWgXGaZZXr9yjw/F2EuZi6fUZxXO/d5s/P88gR94C9/+UsZZpdbbvmhq0aP1nSE5rt+cVcROpeb52dHa2Ok1+MiWRGel19uuTEP4x7pu3W/FuM+ljtuv63uVWmfAAECjxAQbB9B4gUCBGoSEGxrgtXs5BNoQ7CdfKq2aLILCLaTvUK2j0C7BQTbdtdX7whMJgHBdjJVw7bUKiDY1sqr8UkqINhO0sLYLAKZCAi2mRRaNwlMAgHBdhIUwSb0R2AQg+21P/xheauaFVdcIa27zv+ucNwfLWtpi4Bg25ZK6geBwRQQbAezbraawCAKCLaDWDXbPF8Cgxhs56ujvkSgS0Cw7cLwkACBvgsItn0nt0IC2QoIttmWPr+OC7b51VyPUxJsjQICBJoUEGyb1LduAnkJCLZ51Tvr3gq2WZc/284LttmWXscJTAoBwXZSlMFGEMhCQLDNosw6GQKCrXGQo4Bgm2PV9ZnA5BEQbCdPLf6fnXvLjeKKogDaQyI/kLlEyQiAzIUwAqLMJfAThhQ3yBao/ehH1T2vhYTi2N11z1nbKtXGJCYh0F1Ase2esP0eBBTbBwofDBJQbAeFbVUCCQUU24ShGIlAUwHFtmmw1joVUGxPTXymv4Bi2z9jGxLILKDYZk7HbAR6CSi2vfK0zTMCiu0zOL7UVkCxbRutxQiUEFBsS8RkSAItBBTbFjFa4hwBxfYcJa/pJqDYdkvUPgRqCSi2tfIyLYHKAopt5fTMfpGAYnsRlxc3EVBsmwRpDQJFBRTbosEZm0BBAcW2YGhGvk5Asb3OzbtqCyi2tfMzPYHqAopt9QTNT6COgGJbJyuT3iig2N4I6O0lBRTbkrEZmkAbAcW2TZQWIZBeQLFNH5EBtxJQbLeSdJ1KAoptpbTMSqCfgGLbL1MbEcgqoNhmTcZcmwsotpuTumABAcW2QEhGJNBYQLFtHK7VCCQTUGyTBWKc/QQU2/1sXTmvgGKbNxuTEZggoNhOSNmOBHIIKLY5cjDFAgHFdgGyI9IJKLbpIjEQgVECiu2ouC1LIFRAsQ3ld/hKAcV2pbazsggotlmSMAeBmQKK7czcbU0gQkCxjVB3ZoiAYhvC7tBgAcU2OADHExguoNgO/wawPoGFAortQmxHxQootrH+To8RUGxj3J1KgMB3AcXWdwIBAqsEFNtV0s4JF1BswyMwQICAYhuA7kgCBB4EFNsHCh8QILCzgGK7M7DL5xFQbPNkYZJ1AortOmsnESBwKqDYnpr4DAEC+wgotvu4umpCAcU2YShG2l1Asd2d2AEECDwjoNg+g+NLBAhsKqDYbsrpYpkFFNvM6ZhtLwHFdi9Z1yVA4BwBxfYcJa8hQGALAcV2C0XXKCGg2JaIyZAbCyi2G4O6HAECFwkothdxeTEBAjcIKLY34HlrLQHFtlZept1GQLHdxtFVCBC4TkCxvc7NuwgQuFxAsb3czDuKCii2RYMz9k0Ciu1NfN5MgMCNAortjYDeToDA2QKK7dlUXlhdQLGtnqD5rxFQbK9R8x4CBLYSUGy3knQdAgReElBsXxLy9TYCim2bKC1ygYBiewGWlxIgsLmAYrs5qQsSIPCEgGL7BIxP9xNQbPtlaqOXBRTbl428ggCB/QQU2/1sXZkAgZ8FFNufPfxbYwHFtnG4VntSQLF9ksYXCBBYIKDYLkB2BAEC3wQUW98IYwQU2zFRW/QHAcX2BwwfEiCwXECxXU7uQAJjBRTbsdHPW1yxnZe5jQ8HxdZ3AQECkQKKbaS+swnMElBsZ+U9elvFdnT8Y5dXbMdGb3ECKQQU2xQxGILACAHFdkTMljwKKLa+DyYKKLYTU7czgTwCim2eLExCoLuAYts9Yfs9CCi2DxQ+GCSg2A4K26oEEgootglDMRKBpgKKbdNgrXUqoNiemvhMfwHFtn/GNiSQWUCxzZyO2Qj0ElBse+Vpm2cEFNtncHyprYBi2zZaixEoIaDYlojJkARaCCi2LWK0xDkCiu05Sl7TTUCx7ZaofQjUElBsa+VlWgKVBRTbyumZ/SIBxfYiLi9uIqDYNgnSGgSKCii2RYMzNoGCAoptwdCMfJ2AYnudm3fVFlBsa+dnegLVBRTb6gman0AdAcW2TlYmvVFAsb0R0NtLCvi+LxmboQm0EVBs20RpEQLpBRTb9BEZcCsBP7naStJ1qgh8/vLl8NvvfxzevH59+OfvT1XGNicBAo0EFNtGYVqFQHIBxTZ5QMbbTuDDXx8PHz5+PLx/+/bw/t3b7S7sSgSSChxL7bHcHkvtsdz6RYAAgdUCiu1qcecRmCug2M7NfuTm9z+19aA/Mv5RS9//QY6f1o6K3bIE0gkotukiMRCBtgKKbdtoLfaYwP3D/vFryu1jQj7XQcD3eYcU7UCgh4Bi2yNHWxCoIKDYVkjJjJsK/PjQf/xp1v1fS/ZXNTdldrHFAse/cvz5893v4z/vfh9/+cObxSE4jgCBEwHF9oTEJwgQ2ElAsd0J1mVzCxwf/I8F974A5J7WdAQuE/jz7r8hf333hzb+sOYyN68mQGB7AcV2e1NXJEDgcQHF9nEXnx0icCy2X+5+/3v3ky6/9hP47+vXbxf/5dWr/Q4ZfuVf33z/n0O9u/ufo/lFgACBLAKKbZYkzEGgv4Bi2z9jGxIIF/BgEx6BAQgQIBAi4P4fwu5QAiMFFNuRsVuawFoBDzZrvZ1GgACBLALu/1mSMAeB/gKKbf+MbUggXMCDTXgEBiBAgECIgPt/CLtDCYwUUGxHxm5pAmsFPNis9XYaAQIEsgi4/2dJwhwE+gsotv0ztiGBcAEPNuERGIAAAQIhAu7/IewOJTBSQLEdGbulCawV8GCz1ttpBAgQyCLg/p8lCXMQ6C+g2PbP2IYEwgU82IRHYAACBAiECLj/h7A7lMBIAcV2ZOyWJrBWwIPNWm+nESBAIIuA+3+WJMxBoL+AYts/YxsSCBfwYBMegQEIECAQIuD+H8LuUAIjBRTbkbFbmsBaAQ82a72dRoAAgSwC7v9ZkjAHgf4Cim3/jG1IIFzAg014BAYgQIBAiID7fwi7QwmMFFBsR8ZuaQJrBTzYrPV2GgECBLIIuP9nScIcBPoLKLb9M7YhgXABDzbhERiAAAECIQLu/yHsDiUwUkCxHRm7pQmsFfBgs9bbaQQIEMgi4P6fJQlzEOgvoNj2z9iGBMIFPNiER2AAAgQIhAi4/4ewO5TASAHFdmTsliawVsCDzVpvpxEgQCCLgPt/liTMQaC/gGLbP2MbEggX8GATHoEBCBAgECLg/h/C7lACIwUU25GxW5rAWgEPNmu9nUaAAIEsAu7/WZIwB4H+Aopt/4xtSCBcwINNeAQGIECAQIiA+38Iu0MJjBRQbEfGbmkCawU82Kz1dhoBAgSyCLj/Z0nCHAT6Cyi2/TO2IYFwAQ824REYgAABAiEC7v8h7A4lMFJAsR0Zu6UJrBXwYLPW22kECBDIIuD+nyUJcxDoL6DY9s/YhgTCBTzYhEdgAAIECIQIuP+HsDuUwEgBxXZk7JYmsFbAg81ab6cRIEAgi4D7f5YkzEGgv4Bi2z9jGxIIF/BgEx6BAQgQIBAi4P4fwu5QAiMFFNuRsVuawFoBDzZrvZ1GgACBLALu/1mSMAeB/gKKbf+MbUggXMCDTXgEBiBAgECIgPt/CLtDCYwUUGxHxm5pAmsFPNis9XYaAQIEsgi4/2dJwhwE+gsotv0ztiGBcAEPNuERGIAAAQIhAu7/IewOJTBSQLEdGbulCawV8GCz1ttpBAgQyCLg/p8lCXMQ6C+g2PbP2IYEwgU82IRHYAACBAiECLj/h7A7lMBIAcV2ZOyWJrBWwIPNWm+nESBAIIuA+3+WJMxBoL+AYts/YxsSCBfwYBMegQEIECAQIuD+H8LuUAIjBf4HAAD//7at7cQAAEAASURBVOydBbxVxdqHxwK722snJhjnYGNfu7uw6wCKLfa1QVTAVsRAr4V17W6xuz8DuxMR85v/wGzW2e69z+4V88zvx9lrrzVrZt7nXcye/5qa6JeffvzbECAAAQg0kMCqPdYw3bp2NYPOPquBuZA0BCAAAQgkjQD1f9I8QnkgkF0CEyFss+tcLINAUgjQsEmKJygHBCAAgeYSoP5vLm9yg0DIBBC2IXsf2yHQJAI0bJoEmmwgAAEIJIwA9X/CHEJxIJBhAgjbDDsX0yCQFAI0bJLiCcoBAQhAoLkEqP+by5vcIBAyAYRtyN7Hdgg0kMALL77o5tUqi/yGTfRaA4tA0hCAAAQgEAOBaB1P/R+DA8gSAoESQNgG6njMhkAjCfQ+8CCjhs3uPXc1u/Xs2U7YXjZsmBk67PLctUaWg7QhAAEIQKC5BKj/m8ub3CAAgQkEELYTWHAEAQjUiYBErRo3ChK3ErJaFblb12Vyx6yQXCfYJAMBCEAgQQSo/xPkDIoCgcAIIGwDczjmQqBZBKKNm2iebPsTpcExBCAAgewRoP7Pnk+xCAJpIICwTYOXKCMEUkogv3GDqE2pIyk2BCAAgQoJUP9XCIzoEIBAzQQQtjUjJAEIQKAUAd+4QdSWosQ1CEAAAtkjQP2fPZ9iEQSSTABhm2TvULamEBg0eIjLp3evNvcZ/T7y6afNyJFPm9bWFtPa0mJKXfNxo+n4+8q55uOWyiN6TYXVd39fkvO48KKLzNixv+XKmlY7PGPPPEl2RJ8F9yDzBwIQ6JCA/z/cYUQiVE3gxZdeNF2X6Vr1/dxYHgH/u1RebGJBIJsEELbZ9CtWlUFAIsWL1UFDhpjhV17hvi+06GLu7nffetMozo4772J6t7UZCVYd61yha2og5aej9JVuqWuV5OHzj5aVPAr7I8ms/PNQznPl7dAzp6DnM9/nSkfPnj/vIvIHAhAoSEB1rl5Y6v8MAQJZIqDfALVV9EmAQIgEELYhej1wm72QFAYvUJ+2DZ1eVhwo6LqC/2HQ9+hxJdd83EJp+mv6JI8JzENgVauN/tmJphM9lhhW0AsQAgQgMIGAf6nkz/SxIqAFEeBx8JliAnq2o78D1P8pdiZFr5oAwrZqdNyYZgL6AZhoIpMTs2m2hbJDIJ8Az3c+Eb5DYNzUDd9LK0HrX2bCBgJZIuBf3uiFPOI2S57FlnIIIGzLoUSczBBQTxbDdDLjTgwpg4De4PsRB2VEJwoEMkvATzNB1GbWxRg2noAXt366C2AgEAoBhG0onsZON0RHwpa3mDwMoRDIn58bit3YCYF8AnrBo/8PiNp8MnzPKgH/Isevz5BVO7ELAlECCNsoDY4zT4Deq8y7GAMjBBiSHIHBYdAE/Esev/Be0DAwPggC9NoG4WaMzCOAsM0DwtfsEoguqpBdK7EMAhCAAATyCURXE8+/xncIZJUAz31WPYtdxQggbIuR4XzmCFDBZ86lGFQGAd9TxXC0MmARJZME/DBkpqFk0r0YVYIA7Z4ScLiUSQII20y6FaMKERg8fs9CVsIsRIdzWSWgho0CwjarHsaujgggbDsixPWsEkDYZtWz2FWMAMK2GBnOQwACEIAABCCQegII29S7EAOqJICwrRIct6WWAMI2ta6j4JUS0JBMDUXTdj8ECIRCgLnloXgaO4sRQNgWI8P5rBNA2Gbdw9iXTwBhm0+E75klQAWfWddiWAkCeu4VGIpcAhKXMk0AYZtp92JcCQK0e0rA4VImCSBsM+lWjIIABCAwjgBzy3kSQieAsA39CQjXfoRtuL4P1XKEbaiex24IQAACEIBAAAQQtgE4GRMLEkDYFsTCyQwTQNhm2LmY1p4AFXx7HnwLg4DmlisMv/KKMAzGSgjkEUDY5gHhazAEaPcE42oMHU8AYcujEAwBNfC7t7YYtvsJxuUYagmoYaPAHFuHgT8BEkDYBuh0THYEELY8CKERQNiG5nHshQAEIAABCAREAGEbkLMxtR0BhG07HHwJgADCNgAnY+I4AoMGDzGttsdWW/4QIBAKATXqFXjuQ/E4duYTQNjmE+F7KAQQtqF4Gjs9AYStJ8Fn5glQwWfexRhYgICeewWGIheAw6kgCCBsg3AzRhYgQLunABROZZoAwjbT7sW4KAF6rqI0OA6FANv9hOJp7CxGAGFbjAzns04AYZt1D2NfPgGEbT4RvkMAAhCAAAQgkBkCCNvMuBJDKiSAsK0QGNFTTwBhm3oXYkC5BKjgyyVFvCwRYLufLHkTW6ohgLCthhr3ZIEA7Z4seBEbKiGAsK2EFnFTTYDtflLtPgpfJQE1bBSYY1slQG5LPQGEbepdiAFVEkDYVgmO21JLAGGbWtdRcAhAAAIdE1CjXoFVkTtmRYxsEkDYZtOvWNUxAYRtx4yIkS0CCNts+RNrShBgu58ScLgEAQhAIKMEELYZdSxmdUgAYdshIiJkjADCNmMOxZziBKjgi7PhSnYJ6LlXYChydn2MZaUJIGxL8+FqdgnQ7smub7GsMAGEbWEunM0gAbY9yaBTMalDAiwe1SEiImScAMI24w7GvKIEELZF0XAhowQQthl1LGZBAAIQgAAEIGAMwpanIFQCCNtQPR+u3QjbcH0fnOXqudICOr17tQVnOwaHS0BzyxV47sN9BkK3HGEb+hMQrv0I23B9H6rlCNtQPR+g3VTwATodk42eewXm2PIwhEoAYRuq57Gbdg/PQGgEELaheRx7IQCBoAioUa/Adj9BuR1jIwQQthEYHAZFAGEblLsx1hJA2PIYBEOABn4wrsZQCEAAAjkCCNscCg4CI4CwDczhmIuw5RkIhwAVfDi+xtIJBPTcKzAUeQITjsIigLANy99YO4EA7Z4JLDgKgwA9tmH4GSstAbb74TEIkQDb/YTodWyOEkDYRmlwHBIBhG1I3sZWEUDY8hxAAAIQgAAEIJBZAgjbzLoWwzoggLDtABCXM0cAYZs5l2JQMQJs91OMDOezTECNegUWj8qyl7GtFAGEbSk6XMsyAYRtlr2LbYUIIGwLUeFcJglQwWfSrRjVAQE99wrMse0AFJczSwBhm1nXYlgHBGj3dACIy5kjgLDNnEsxCAIQgMAEAswtn8CCozAJIGzD9DtWG7ePuUbrDL/yCnBAIAgCCNsg3IyREIAABCAAgTAJIGzD9DtWI2x5BsIjgLANz+fBWsyQnGBdH7ThrIoctPsx3hJA2PIYhEqAdk+ong/XboRtuL4PznI18Lu3tphebW3B2Y7B4RJgjm24vsfycQQQtjwJoRJA2Ibq+XDtRtiG63sshwAEIAABCGSeAMI28y7GwCIEELZFwHA6swQQtpl1LYblExg0eIhptT22bHuST4bvWSagRr0Cz32WvYxtpQggbEvR4VqWCSBss+xdbCtEAGFbiArnMkmACj6TbsWoDgjouVdgu58OQHE5swQQtpl1LYZ1QIB2TweAuJw5AgjbzLkUg4oRoOeqGBnOZ5kA2/1k2bvYVg4BhG05lIiTRQII2yx6FZtKEUDYlqLDNQhAAAIQgAAEUk0AYZtq91H4GgggbGuAx62pJICwTaXbKHQ1BKjgq6HGPWknwHY/afcg5a+VAMK2VoLcn1YCtHvS6jnKXS0BhG215LgvdQTY7id1LqPAdSCgho0Cc2zrAJMkUkkAYZtKt1HoOhBA2NYBIkmkigDCNlXuorAQgAAEKiOgRr0CqyJXxo3Y2SGAsM2OL7GkMgII28p4ETv9BBC26fchFpRJoNHb/fz9999llWSiiSYqGm/06NHmzz//NNNOO23ROMUuRPMvlUex+xt1Pqnl8vb+8ccf5tvvvjOzzjKLP9Xh59fffGOmnWYa06lTpw7jEgECEIiXQBKErerBaF1YiIjq7STV3YXK2Khzns/EE0/cqCyCTBdhG6TbgzYaYRu0+8MyvtEV/FXDrzYPPvxwSajLdutmDthv34Jxvv32W3PUMceav/76yxx7dD/zr7nmKhiv2MnrbrjB3H3PvWbVlVc2PXfdpVi0gucl7iTWFGafbbaCcSo9+djjj5uHHn7EfPzJJ+b33383W22xuVn/3/+uNJm6xC9mnxpTxx5/gvn0s8/MzjvuYHqsvnouvy+/+sr5YsYZZmgnYJ9+5hlz4cWXmBns+dNPOdlMMskkuXuSeKDnXoGhyEn0DmVqBoEkCNvjbD0z/JprSpq73rrrmnMHDyoZJ6sXN9tyS/Pqq6+ZAWecYTbbdJNUm/nll1+a0b/8YvTbMd1008VqS6PbPbEaR+YQKEAAYVsACqeySaDR257UKmw//HCUOfHkkx38gw860CzepUtFjqhF2Ep8HnfCiUZvyy++4PyK8i0U+SEr8K+0Ql9h6qmnNrPNOqtZw4rGFVfsXih6w88Vs0+Ct++hhxn1lG+0wQZm8802zZWl90F93fkjDjvULLzQQrnz99x7n7n2+utN586dzJn9+5spJp88dy2JBywelUSvUKZmEkDYNpN2dXllSdge0Ku3fcl8j+l7YB+z/377VQekTnchbOsEkmRSQwBhmxpXUdCkE1Cv5J+2t1Xhp59+Mkcc1c8d9zvyCDPnnHO640mscJxsssnccaE/L7/yqvnjj99Nt65dKx6SliRhe9oZ/c07775rVllpJbPrLjs7wVzI3madKyZslf9HH39sRo0aZZZbbjkzeefOuSIVE7by87PPPmdmn312M//88+XicwABCCSTQBKE7W+//WZ+ty/SFL6xo2PWXHsdd3zj9deZhca/OJvUjv7oHKmDXIRA/iBsG+NohG1juJJqcgkgbJPrG0pWZwLqudICOr17tdU55X8mJ2F74MGHuAsnHHdsu2HF6s38/vsfTEvLCuYzOwT2/fc/cD2Z6tX83+13uHvWW29d1xP46muvm3etQFxggfnNbHaI8BNPPGk+sb2r88wzjxViy5q5xgtm3VRM2H719dfmpZdedkJzhumnM4suuqhZZumlndj8/IsvzFNPjXRC/KFHHnFiWj2XCirfnHPM4Y6/sEOrXrGi++133nFDlRdfvItZdJFFiorvfnZItdLu06uXWXqpJV0aEpcShNNOO41Zc4013Llif8aMGWNeePFF89Zbb5u//v7LdFlsMdN1mWXMlFNOmbslynHs2LG2fK+Ysbbx2GWxLmbJJRZ38cqxz6ez7LLdzBxWrN5+x53u3rvvvdeoMbryiiuaGWec0fpgAWeLT3OqqaYy66y9Vq485ZRZ6b1pbXrttVfNz7aXWHYtteSSDR2uprnlCs147nMwOIBAgggkQdhGcUjYtq60sjt1+223uro0ev3Fl14yjz76qHn9jTfNYra+Xm21Vd3LTh/n0UcfM889/7zp2nUZtzaA6ixNifi3/d1YfPHFjex98KGH7Iu6yc366/+7XfrX/Pe/5osvvjQbbriBE9j32nruc/t9heWXNxtvtKGZaaaZfDbu89dffzUapfLCCy8YTc9YZumlzKqrrurqLh/xvfffN7feepu7d+211jS33nab6dyps+nZc1cX5a233za33fY/8479/Zh6mqnNit2729Exm7WbxlGusH3YTm955NFHzIf2ZeRss85mNrJlVnr5QfEefuRh89XX35jlll3WbLftNubqq68xP9rf5q232srMNde4l826rxLeCy+0sBEz5d/NTi1aZ+21zRRTjBu149needdd5v/ee8+1N8R1lllmNjvusEN+EZvyHWHbFMxkkiACCNsEOYOiNJZAMyv4UsJWw4017HhBK5T046fQtv9+posdeqwhTAoDTj/NzeH0YnX++eZzc2CVrg/qXTy470Fmgfnnd6d83OgcW+XTf+BAI9EVDYqjntSXrRgcNOTc6KXcseYCa07w62+8Yc46Z5Cbb6qFTfwCKFtvuYVtSK2Xix89GHHTzeb2O+90jbHdbeNGgtTPTdXcYYn9YuEXOzfpjDMHmo8++qhdFIn5Qw/ua6acYgp33nNc3va0SgRr0S0fNtloI7PpJhubl15+uUP7fDp77b676dqta84HPi3/uY5tsG237baO2TlWLGqxqVNPPsldLrfMZww406iRp+BZaq7uCcceYySUGxH03Cswx7YRdEkzDQTSJGxvuPFGc2S/o3P1rPiqrjj91FPNFptv5nCfevrp5tKhl5lFFl7YfGxHnPwyvn5X3bhbz57mgosuytWHU9t6ZfiVV5olxr/s8wKyx+qrmUcfezwXTwkvtOCC5uqrrnQv8vT9p59/Nnvvs6955tln9TUXJp10UjNwQH+zwfrru3MS0XvZeNNPP72Z3s4p/eDDD53wve2Wm819999veh94kHtJmEvAHuTPJ/blKjXHdoD9XZBt+eGYfv3c75k/f97555uBZ5/jv7pP/U689dZbzibZ2LLCCu58Jbz1Yvz9Dz4wmkPrwyorr2QuvvBCNxJr0y22sC8tX/eXcp96OfG/W2/JfW/mQTPbPc20i7wgUIwAwrYYGc5DoAYC5QhbDUlutT+uCy+8kOtlnGrqqXKiKl/YqihLLbmE6+kc/fNoc+8D9ztxrNWTB/Y/wzV88oWthN7Bhx3uemNX7N5qVrNv2b/+6msz4pZbzHd2FeBddtrRCdcPR31k39x/ba64arhL58De48T1vPPMbaaxK/9eMnSoedL26mqO7LbbbO16fs8eNNgJ8z69e7UbvuuRKe977FvtG0bc5E7JVi2KpfNqpKlhtNMO25tVrMDOD+eef4F53vYOSLBvuMH6tmd5EtuLeod59//+zzVG9tlrT3eLF6Tqqeix2mqu9+L551/ILeB1hm0Iduo0mX2zXto+n46ErXqp1UuicP4FF5hfbU/wtltv7YaSzzzzTK63Wi8D8oVtOWVWb4carGJx4vHHGTU4hw673PHcZqstzcp22HYjghr1Cmz30wi6pJkGAmkRtq+//rrZbMutnKjV/MyVbJ0wcuRIM2DgWa7elDjSfH8vbFWPHnXEEWa+eee1aySc4KZVyB96AbikHQlyyqmnuRdpu9nFBPsddZRzlReQWk9he/uiTj23L9keYtVFX9k6SmJ10NlnubgSpHfYF5SadrHrzjvZ36qFzY22TlePpO5XeSSuvbDVTRrJo5eKC1qRvNaaa5o9997bLSK49557mt136+nKs+fe+7gFBW+7+Sb3Qlf3+XIVE7Y//vij2WDjTWxv8xfm7IFnmpXsSJobR4wwmvai36kXnn1Gybjfjm22294da80E9Qxrqsll1j7/ItkL20p5K1H9Du5oFxr8v3f/z5xtF/oaM+ZX09++aFBe6vn9+aefzZDzzjPPPvecexGxyUYbG/22a3pRHAFhGwd18oyTAMI2Tvrk3VQCzWzglyNsNcRVP/Q+SEQV67FV7+zAAQPcgkWK/8mnn7rVfHV80oknuCG0+cLWL0alxY0OsD3Cfm7vyJFPmwfsG3YNz9p/332UhFu5uNjiUTfdfIv5nxWWGpa8vu2hXXiRhV1DIjof1SUS+SP7hw4bZns3X3U9rBre9suYX6yA/taVQysva9ibyhAN6g1WY0o9ED1tj/Ic44dCa8j2sCuudAtRnWMbNQpekGqos4Y8K+h+LQalRpAEsH8rX2qOrU9Hwra7fQHgQ7E5tvnCttwyy78H9j3YNeg0hFlDq+f+17/sMLYpYp+D7G3mEwJZJJAWYTvU9sKeYkWSRNARhx+Wc8Vpp5/hRqUcd8wxZmf7QtILW9VvEmkKZ1rxe77tOZTwvfP2/7lzl102zJx82mnupdbwK69w57yA1PDdKy8f5s7pz1XDh5vjT/yPmXnmmc1Tjz/m6tLlW7ubH3744R8rFa+97nquV/ZoK5a1Ar8Xtnpp+cB997p6LZewPZCgnM6+hNX0C4W+dpqO6tGzzjzT/Q7onC9XMWGrOHo5qrUbZrA9w/qN0OJ/G1qxqxemTz72qB3yO4t7IXnmWWe7F6933zluao/uffzxJ8yuto5X8MK2Ut7T2IUQnxn5lHsxq3Taevcxd919t9lhu+3MiSccr1MusHiUJ8EnBJpPAGHbfObkGBOBZr65LEfY7rnbbu1WCS4lbDVPZ9+992pH7pjjjnfb1HhBli9soysTt7tx/JeZZprRqFdToZTw+/777416JDWPyoeZrVDdfNNN2wlBf02fQ849z7xg316vtsoqdm7R9q4hUM5QZG27I7tKhdNPPcUofy9I1euw9lpr5m4ZePbZ5rXX33C9Ef58Kft8Op6jT6hcYVtJmeWT/153vRO3ykcvGyRwt7fzvxq1LQRDkb1H+QyVQFqEre8hLeYn9Qqqd9AL223sXNFTxk+HuNAO0e1vh+qus9Za5vzzxk0vue76681RRx/jXiBee824Veq9gNSokR22H9ezqfyi834fe/ghJ0L/vcGGbh7s87Y3dKrI+gb97ZSKCy++ONe764WtXtQ9eP997Yqvua7HWtH3ySeftjuvL2dY0e2HV/tyFRO2eoEoG7XVmn5f88PDDzzg5s16sbn/vvuavnZ3AR8kipdboaXdUORKea+7zjrmvCGDfZI5Ea15tuefO24tA11E2OYQcQCBphNA2DYdORnGRaDR2/1E7SpH2OYLqVLCdp655zbHHXN0LouxY38zfQ85xA2V9VsD5QtbDYsabAWm5m5uu/VWuXv9waSTTGpaW1vc11LCTxH0RlxvyjV/6I233nQLXun8YYcc3G5hEp1T0A+77Dn80EPcUDWdK0fYai5wL9tjq0aMhudqq6D8oN4MzdktJkjPOucco0W3ooK3lH3F0ilX2FZSZtmiYeCvvPqqXUTqLfv5mtH8XM3B0vDBRgS2+2kEVdJME4G0CNuT7YtGDZnVSJZtCtTZWl1fPa31ELbR4cnypebRbr/jTu4l5IvPPevmxKrHVoJQc2W10J0P++1/gLnXzp3dza6f0O/II3M9tvqdUo+tD+rtbVlxJff7oRE6Pg3t5yuhW4mwvd8K133229+NANKUGPXO6ndJc2n1e+GF7Wl2H9xLLh3qOEV7pLW2gXp3FXyPbS28lc4Ftodcw8QRtqJBgEAyCCBsk+EHSpExAvUWtsLjBax+xO9/4EFzzbXXunlXQwad4+a55gvbn+3CH33s0FeF6OrEerv+8cefmI3s3CotXKTghZ+Gkp1n5w116tTJndcfzbHVkOK+ffqY+eab150fct75bmjc5ptuYtPZMBfXHxx7/AluuLTmvqrHVvOxyhG2ul9DolUeDXvecovNnY0aVn2znc+1qW2Y+DIUE6SlhG0h+4ql44XtQdZuv8qyypc/FLncMmsRrutvHGFmsszbDthft5lRdoGsE/5zkusVucC+8RcnAgQgUF8CaRG2GtaqHkcNeb3nrjudeBOJo+zc/Pnnn88OQ97JTG6nltRD2GrI8S0jbnSr7WtV+cOPPMquyn+7WcpO7bjphhuUrdl4s83NG7be2souinS8XfBPeeuF3OZ2HrC2PbvA9gyvbXuIfY9tvrB9zC5O1XOPPdxolGftEF7Vv5oju/qaa7lhxNFe4456bP1Q66iI1Pxf9boqaPi1hmFrsap9rfBWXur9Xf/f6xmt6n/qaae7dR8U1wvbWngrnY6E7X777OMWeFTcuEIzR6rFZSP5QiBKAGEbpcFxpgkkZbufYkKqVI+td8zc9o34GNvD97XdLkIhugJyvrDV9eFXX+Pm0+pYgvCP3/9wolHfe1lxpWGwCmPslg59DznUvaXXar/qKe3ddoCbSzvs8ivMo48/7s6ttGJ3M/bXseYpu6CJttbpY7dOWnqppVwa0T9qMEjEKWhhj1lsI0pCWwsodbQqsgTwRZdc6t7Ca7j0TDPO5OZo6e38uuus7RZzUrrFOBYStqXsK5bOqXZemxas8uXfZOON3QJehYRtOWWW7RL8ahAuZRcCm2fuecwbb77phnjLN8eMX9xFttUzqFGvwOJR9aRKWmkikBZhO9rW7Tvvsqt7eaaFoTQFRfNTtQqv6qHbb73VLmQ3R12Erfynhfe0WrBeuullrMSgelE15FlBwlG/C5rLqvznsQsK+lV/NXLm8mGXuR7UYsJW01jUY6teXy2Op+3U1NP7l63LteKyFtA7uG9fN2+4I2GrxQj3b+vlpm9sYLcw+mX0L+ZhuyVSZ/sSVmlpOzy95F3Cbne0tx2G/JidU6ugPMRVn5qXq98RL2xr4a20iwnbgXaO73l28UG9IFYvtabE7GfLFEdA2MZBnTzjJICwjZM+eTeVQDMr+Hr32Gqhqc52AakH7RxN9djqB1MrKu9iV6r0vXyFhK3i3mBXjnzc7n+rMiloLqdWJNZWPtFw3/0PmDvsapcaPqbgV2aWEBtx883m5ZdfcXvT6prezEsoad/EYuGBBx8yTzz5pBPSSsOHjoSt4mmBq5ttI05iUEGNF20tpF5mb28xQVpI2CqNYvYVS0eNvWvtfFj1Hiv4oeOFhK2ul1NmpakG2ttvv+NeDGh7Dm3zpHlmWlCrEYE5to2gSpppIpAWYSumqqcPtavZP/7kE27FXZ3TVj2aW6sViBXq0WN7tB1CfNc997jVe5WmRu/oReVOO+6or7nwwIMPGi1epW1u9HsigdijRw83t9dvvVZM2CoR9QL3s/N8JSIVJKT7n3G62dcOK9bwYK2WfJidstKRsJUg7W8Xm9JQbR0raCj0GrYshx5+hOsJvtTOwV3dbmPkViq22xE9/Mijbh2KxW0d+x87z7fnHnuab7/9NidslUa1vHVvMWH76aef2bnN/ezv31NO1EfnQuu+ZoZmtnuaaRd5QaAYAYRtMTKch0ACCOSLVf0Ia46mVgv2qxyXW8zP7RAwCUQ//Ljc+6LxlLeEZaMWOormpWOJbL1ll+hTb0IaQjllVg+IhsfJLvWaNDI0c255I+0gbQhUSyBpwrYcO1RHaMTIXHZerXpL6xXyBaRe3Gmev4bxlqpj1fuqF43a69a/XCy3TBKi6nmeeqqpXY9zufcViifR+sEH77vfQO2b21GQGPd2qfc4X9j6+xvF26cf1yfCNi7y5BsXAYRtXOTJFwJlEMgXtmXcQhQIQAACEIgQSKOwjRS/rof5wrauiSckMa3g/6BdhyIaNH1H60VI6N584412n98lopcze4ywzaxrMawIAYRtETCczh6BNFbwCNvsPYfNtohVkZtNnPySRgBhO8EjIQjb6KJSEywfd6RpNPffe0+uFzf/eta+p7HdkzUfYE9zCSBsm8ub3GIkoAZ+d7u9Ta+2thhLUVnW2mJHKwJrwRDNEyJAoFICatgovGu3aSJAIEQCCNsJXtec12+++dasuuoqZoH5559wIUNHH3z4odH+uflB03DWXnstt+BV/rWsfkfYZtWz2FWMAMK2GBnOQwACEIAABCCQegII29S7EAOqJICwrRIct6WWAMI2ta6j4JUSGDR4iGm1PbZse1IpOeKnmYAa9Qo892n2ImWvhQDCthZ63JtmAgjbNHuPsldDAGFbDTXuSSUBKvhUuo1C10hAz70CQ5FrBMntqSWAsE2t6yh4jQRo99QIkNtTRwBhmzqXUeBqCdBzVS057kszAbb7SbP3KHs9CCBs60GRNNJIAGGbRq9R5loIIGxroce9EIAABCAAAQgkmgDCNtHuoXANJICwbSBckk4kAYRtIt1CoRpBgAq+EVRJM+kE2O4n6R6ifI0mgLBtNGHSTyoB2j1J9QzlahQBhG2jyJJu4gikcbufxEGkQKkjoIaNAnNsU+c6ClwnAgjbOoEkmdQRQNimzmUUuEYCCNsaAXI7BCAAgSQTUKNegVWRk+wlytZIAgjbRtIl7SQTQNgm2TuUrREEELaNoEqaiSTAdj+JdAuFggAEINBQAgjbhuIl8QQTQNgm2DkUrSEEELYNwUqiSSRABZ9Er1CmRhPQc6/AUORGkyb9pBJA2CbVM5Sr0QRo9zSaMOknjQDCNmkeoTwNI8C2Jw1DS8IJJsDiUQl2DkVrCgGEbVMwk0kCCSBsE+gUitRQAgjbhuIlcQhAAAIQgAAE4iSAsI2TPnnHSQBhGyd98o6DAMI2DurkGQsB9VxpAZ3evdpiyZ9MIRAHAc0tV+C5j4M+eSaBAMI2CV6gDHEQQNjGQZ084ySAsI2TPnk3lQAVfFNxk1lCCOi5V2CObUIcQjGaTgBh23TkZJgQArR7EuIIitE0AgjbpqEmIwhAAALNJ6BGvQLb/TSfPTkmgwDCNhl+oBTNJ4CwbT5zcoyXAMI2Xv7k3kQCNPCbCJusIAABCCSEAMI2IY6gGE0ngLBtOnIyjJkAwjZmB5B98whQwTePNTklh4CeewWGIifHJ5SkuQQQts3lTW7JIUC7Jzm+oCTNIYCwbQ5nckkAAbb7SYATKELTCbDdT9ORk2HCCCBsE+YQitM0AgjbpqEmo4QQQNgmxBEUAwIQgAAEIACB+hNA2NafKSmmgwDCNh1+opT1I4CwrR9LUko4Abb7SbiDKF5DCKhRr8DiUQ3BS6IpIICwTYGTKGJDCCBsG4KVRBNMAGGbYOdQtPoSoIKvL09SSwcBPfcKzLFNh78oZf0JIGzrz5QU00GAdk86/EQp60cAYVs/lqQEAQhAIHEEmFueOJdQoCYTQNg2GTjZJYYAwjYxrqAgTSKAsG0SaLKJnwBDMuP3ASWAAAQg0GwCCNtmEye/pBBA2CbFE5SjWQQQts0iTT6xE6CCj90FFCAGAqyKHAN0skwUAYRtotxBYZpIgHZPE2GTVSIIIGwT4QYK0QwCauB3b20xvdrampEdeUAgEQTUsFFgjm0i3EEhYiCAsI0BOlkmggDCNhFuoBBNJICwbSJssoIABCAAAQhAoLkEELbN5U1uySGAsE2OLyhJcwggbJvDmVwSQGDQ4CGm1fbYsu1JApxBEZpGQI16BZ77piEno4QRQNgmzCEUp2kEELZNQ01GCSGAsE2IIyhG4wlQwTeeMTkkj4CeewWGIifPN5SoOQQQts3hTC7JI0C7J3k+oUSNJYCwbSxfUk8QAXquEuQMitI0Amz30zTUZJRQAgjbhDqGYjWcAMK24YjJIGEEELYJcwjFgQAEIAABCECgfgQQtvVjSUrpIoCwTZe/KG3tBBC2tTMkhZQQoIJPiaMoZl0JsN1PXXGSWAoJIGxT6DSKXBcCtHvqgpFEUkQAYZsiZ1HU2giw3U9t/Lg7nQTUsFFgjm06/UepayeAsK2dISmkkwDCNp1+o9TVE0DYVs+OOyEAAQgknoAa9Qqsipx4V1HABhFA2DYILMkmngDCNvEuooB1JoCwrTNQkksuAbb7Sa5vKBkEIACBRhFA2DaKLOkmnQDCNukeonz1JoCwrTdR0kssASr4xLqGgjWQgJ57BYYiNxAySSeaAMI20e6hcA0kQLungXBJOpEEELaJdAuFagQBhmQ2gippJp0Ai0cl3UOUr9EEELaNJkz6SSWAsE2qZyhXowggbBtFlnQhAAEIQAACEIidAMI2dhdQgJgIIGxjAk+2sRFA2MaGnoybTUA9V1pAp3evtmZnTX4QiI2A5pYr8NzH5gIyjpkAwjZmB5B9bAQQtrGhJ+OYCCBsYwJPts0nQAXffObkGD8BPfcKzLGN3xeUIB4CCNt4uJNr/ARo98TvA0rQXAII2+byJjcIQAACTSWgRr0C2/00FTuZJYwADfyEOYTiNIUAz31TMJNJggggbBPkDIrSeAIalsmQzMZzJgcIQAACSSLAyIUkeYOyNIMAIxWaQZk8kkYAYZs0j1CehhGQqB00xArbtjbEbcMok3CSCPhnfviVV9BjmyTHUJamE/D/F6j/m46eDGMioHVFJG6p/2NyANnGQgBhGwt2Mo2LwGArbHtZYUuAQAgE1KhRg14NGwIEQiaAsA3Z++HZTm9teD7H4nEEELY8CUESUKXPnMMgXR+M0TzjwbgaQ8sk4Huw6LUtExjRUknAi1oVvo/dBYKX+al0I4WukgDCtkpw3JZeAv7NPcNz0utDSl6aAM94aT5cDZeAF7d+6zdecIb7LGTRcl/3yzZEbRY9jE0dEUDYdkSI65kk4Ick682mfgh8I0fHOifRW+qaoET3xfVxtTCV0ip1rdw8fJq+bP47eYzbi7gUx6Sx0vOg0NFz5ctdjc+jz5zYTDSR4U29o84fCLQnoP8r+r+moP9rBAhkgYB/pmULojYLHsWGagggbKuhxj2ZISABoAWlfO+tb/Boz0/9SOi7H7YWvSYA0WX089MpdS2aTqk8/DU1vFQ+8ijuj6Sziq7I6sta6LnKv1atzzPzHxRDINAgAvq/pv9f+iRAICsEELRZ8SR2VEsAYVstOe6DAATKJrBqjzVMt65dzaCzzyr7HiJCAAIQgED6CVD/p9+HWACBtBBA2KbFU5QTAikmQMMmxc6j6BCAAARqIED9XwM8boUABCoigLCtCBeRIQCBagjQsKmGGvdAAAIQSD8B6v/0+xALIJAWAgjbtHiKckIgxQRo2KTYeRQdAhCAQA0EqP9rgMetEIBARQQQthXhIjIEIFANARo21VDjHghAAALpJ0D9n34fYgEE0kIAYZsWT1FOCKSYAA2bFDuPokMAAhCogQD1fw3wuBUCEKiIAMK2IlxEhgAEqiFAw6YaatwDAQhAIP0EqP/T70MsgEBaCCBs0+IpygmBFBOgYZNi51F0CEAAAjUQoP6vAR63QgACFRFA2FaEi8gQgEA1BGjYVEONeyAAAQiknwD1f/p9iAUQSAsBhG1aPEU5IZBiAjRsUuw8ig4BCECgBgLU/zXA41YIQKAiAgjbinARGQIQqIYADZtqqHEPBCAAgfQToP5Pvw+xAAJpIYCwTYunKCcEUkyAhk2KnUfRIQABCNRAgPq/BnjcCgEIVEQAYVsRLiJDAALVEKBhUw017oEABCCQfgLU/+n3IRZAIC0EELZp8RTlhECKCdCwSbHzKDoEIACBGghQ/9cAj1shAIGKCCBsK8JFZAhAoBoCNGyqocY9EIAABNJPgPo//T7EAgikhQDCNi2eopwQSDEBGjYpdh5FhwAEIFADAer/GuBxKwQgUBEBhG1FuIgMAQhUQ4CGTTXUuAcCEIBA+glQ/6ffh1gAgbQQQNimxVOUEwIpJkDDJsXOo+gQgAAEaiBA/V8DPG6FAAQqIoCwrQgXkSEAgWoI0LCphhr3QAACEEg/Aer/9PsQCyCQFgII27R4inJCIMUEaNik2HkUHQIQgEANBKj/a4DHrRCAQEUEELYV4SIyBCBQDQEaNtVQ4x4IQAAC6SdA/Z9+H2IBBNJCAGGbFk9RTgikmAANmxQ7j6JDAAIQqIEA9X8N8LgVAhCoiADCtiJcRIYABKohQMOmGmrcAwEIQCD9BKj/0+9DLIBAWgggbNPiKcoJgRQToGGTYudRdAhAAAI1EKD+rwEet0IAAhURQNhWhIvIEIBANQRo2FRDjXsgAAEIpJ8A9X/6fYgFEEgLAYRtWjxFOSGQYgI0bFLsPIoOAQhAoAYC1P81wONWCECgIgII24pwERkCEKiGAA2baqhxDwQgAIH0E6D+T78PsQACaSGAsE2LpygnBFJMgIZNip1H0SEAAQjUQID6vwZ43AoBCFREAGFbES4iQwAC1RCgYVMNNe6BAAQgkH4C1P/p9yEWQCAtBBC2afEU5YRAignQsEmx8yg6BCAAgRoIUP/XAI9bIQCBigggbCvCRWQIQKAaAjRsqqHGPRCAAATST4D6P/0+xAIIpIUAwjYtnqKcEEgxARo2KXYeRYcABCBQAwHq/xrgcSsEIFARAYRtRbiIDAEIVEOAhk011LgHAhCAQPoJUP+n34dYAIG0EEDYpsVTlBMCKSZAwybFzqPoEIAABGogQP1fAzxuhQAEKiKAsK0IF5EhAIFqCNCwqYYa90AAAhBIPwHq//T7EAsgkBYCCNu0eIpyQiDFBGjYpNh5FB0CEIBADQSo/2uAx60QgEBFBBC2FeEiMgQgUA0BGjbVUOMeCEAAAuknQP2ffh9iAQTSQgBhmxZPUU4IpIzACy++aLp17epKTcMmZc6juBCAAATqRCC//o/+NtQpC5KBAAQg4AggbHkQIACBuhO4bNgwM3TY5WbQ2Wc5cRtt2KhR0/vAg3LX6p45CUIAAhCAQGwEVP+/8OJLro5XIaL1f/5vQ2yFJGMIQCCTBBC2mXQrRkEgXgK+8aJSSNxKyKr3dreeu7pjnd/dHu/Ws6cOCRCAAAQgkBECvv5Xna/63wvbbl2XcS88ZaZ/6ZkRkzEDAhBICAGEbUIcQTEgkDUCvnFTyC5EbSEqnIMABCCQDQK+/pe41SidaEDURmlwDAEI1JMAwraeNEkLAhBoR8A3bqInEbVRGhxDAAIQyCaBQvU/ojabvsYqCCSFAMI2KZ6gHBDIKIFo4wZRm1EnYxYEIACBAgSi9T+itgAgTkEAAnUlgLCtK04SgwAEChFQ40aBObUOA38gAAEIBENA9X9XOyTZr5IfjOEYCgEINJ0AwrbpyMkwSQQGDR5iBg0ZkqQiURYI1ESgd1ubaW1tMa0tLTWlw80QyDKBkU8/7f6P+N+A4Vde4b4vtOhi7lPf86/tuPMuRve9+9ab7lPf9f+td682U+ia/g8WSifuPJS/Qrl2eBvzeZSygzzGtS3Kea5qZSX/qB3j/ZTl/7fYBoGOCCBsOyLE9UwS8D/Q3jhEgCfBZ5oJqNHtA40cT4JPCLQnoPpfQYJUx/p/o2P9DkigdrcvhnpJLORd898lVnSPvvv7Cl0rlk7ceSh/hXLtyLfRfy9lB3mU/1zVykrPbf4zrHPyEwECoRFA2IbmcezNvVlXxe8bHmCBQFYI+Aa3a+iM703Kim3YAYF6EIgKsnqkRxoQSBKBaE96kspFWSDQDAII22ZQJo/EEFCDRg1+iVq9rSZAIKsE/LNOz21WPYxdlRLwdX+l9xEfAmkiwHOeJm9R1noTQNjWmyjpJZaAKns19hG1iXURBaszgejcrTonTXIQSBUBX//zoidVbqOwNRDQ8HjNvdVcagIEQiGAsA3F09iZG4LsF3MACQSyTsA3bGjMZ93T2NcRAQnb6JzYjuJzHQJpJ6DnfaKJjGmxI9T0Qp8AgRAIIGxD8DI2OgL0XvEghEiA+VYheh2bIQABCEAAAuERQNiG5/NgLaaBH6zrgzac5z5o92P8eAJ+GgorxfJIhERAvbZs/xaSx7EVYcszEAwBGvjBuBpDIwT03CswzyoChcOgCPj5tayvEJTbMdYSoN3DYxAaAYRtaB4P2F4q+ICdH7DpCNuAnY/pEIBA0AT0UkeBObZBPwZBGY+wDcrdYRuLsA3b/6Faj7AN1fPYHSVAAz9Kg2MIQAAC2SSAsM2mX7GqAAGEbQEonMo8AYRt5l2MgR0QYChyB4C4nFkCtHsy61oMK0IAYVsEDKezR4AKPns+xaKOCSBsO2ZEjOwTGGz381To1daWfWOxEALjCWjRtO6tLTz3PBHBEEDYBuNqDEXY8gyESABhG6LXsRkCEIAABCAQHgGEbXg+D9ZihG2wrg/acIRt0O7HeEtAQ5HdtictLYbtfngkQiLA3PKQvI2tIoCw5TkIhgDCNhhXY2iEAMI2AoPDIAkwxzZIt2O0JUC7h8cgNAII29A8HrC9VPABOz9g0xG2ATsf0yEAgaAJMLc8aPcHaTzCNki3h2k0wjZMv4duNcI29CcA+0WAIZk8BxCAAASyTwBhm30fY+F4AghbHoUQCSBsQ/Q6NkcJMBQ5SoPjkAhoVeRW5paH5PLgbUXYBv8IhAMAYRuOr7F0AgGE7QQWHIVJQMJWi0ex7UmY/g/Zato9IXs/TNsRtmH6PUirqeCDdHvwRiNsg38EAAABCEAAAhAIggDCNgg3Y6QIIGx5DkIkgLAN0evYHCWgHtuRI582ra0tblhm9BrHEMgyAeaWZ9m72FaIAMK2EBXOZZIAwjaTbsWoDgggbDsAxOXME2CObeZdjIFFCNDuKQKG05klgLDNrGsxLJ8AFXw+Eb6HQABhG4KXsbEjAvRcdUSI61kkwHY/WfQqNpUigLAtRYdrmSKAsM2UOzGmTAII2zJBEQ0CEIAABCAAgVQTQNim2n0UvhICCNtKaBE3KwQQtlnxJHZUS4ChyNWS4760E2C7n7R7kPJXSgBhWykx4qeWAMI2ta6j4DUQQNjWAI9bM0FAwpbtfjLhSoyokADtngqBET31BBC2qXchBpRLgAq+XFLEyxIBhG2WvIktEIAABMonwNzy8lkRMxsEELbZ8CNWlEEAYVsGJKJkjgDCNnMuxaAKCahxz3Y/FUIjOgQgAIEUEkDYptBpFLk6Agjb6rhxV7oJIGzT7T9KXzsB5tjWzpAU0kmAdk86/UapqyeAsK2eHXemjAAVfMocRnHrQgBhWxeMJJJyAgzJTLkDKX5VBLR4VPfWFtOrra2q+7kJAmkjgLBNm8cob9UEELZVo+PGFBNA2KbYeRQdAhCAAAQgAIGyCSBsy0ZFxLQTQNim3YOUvxoCCNtqqHFPlgiot1arIre2tJjevei5ypJvsaU0Affc2x5bPfsECIRAAGEbgpex0RFA2PIghEgAYRui17E5SoA5tlEaHIdEgHZPSN7GVhFA2PIcBEOACj4YV2NohADCNgKDQwhAAAIBEWBueUDOxlRHAGHLgxAMAYRtMK7G0AgBhG0EBofBEqCBH6zrMRwCEAiIAMI2IGeHbirCNvQnIEz7EbZh+h2rJxBgKPIEFhyFRYB2T1j+xlqGIvMMBESACj4gZ2NqjgDCNoeCg4AJDB4yxFnPticBPwQBms52PwE6PXCT6bEN/AEIyXyEbUjexlZPAGHrSfAJAQhAAAIQgECWCSBss+xdbGtHAGHbDgdfAiGAsA3E0ZhZlICGIrPdT1E8XMgwAeaWZ9i5mFaQAMK2IBZOZpEAwjaLXsWmjgggbDsixPWsE2CObdY9jH3FCNDuKUaG81klgLDNqmex6x8EqOD/gYQTARBA2AbgZEyEAAQgUIAAc8sLQOFUpgkgbDPtXoyLEkDYRmlwHAoBhG0onsbOUgQYklmKDtcgAAEIZIMAwjYbfsSKMgggbMuARJTMEUDYZs6lGFQhAYYiVwiM6JkhoFWRW1taTO9ebZmxCUMgUIoAwrYUHa5ligDCNlPuxJgyCSBsywRFtMwSkLDV4lHdW1sM2/1k1s0YVoAA7Z4CUDiVaQII20y7F+OiBKjgozQ4DoUAwjYUT2MnBCAAAQhAIGwCCNuw/R+U9QjboNyNseMJIGx5FEInoB7bkSOfNq22x1bDMgkQCIUAc8tD8TR2egIIW0+Cz8wTQNhm3sUYWIAAwrYAFE4FRYA5tkG5G2MjBGj3RGBwGAQBhG0QbsZIEaCC5zkIkQDCNkSvY3M+AXqu8onwPQQCbPcTgpexMUoAYRulwXGmCSBsM+1ejCtCAGFbBAynIQABCEAAAhDIFAGEbabciTGlCDRT2P7111+limImnnjiktcrvfjDDz+Y33//3cw888yV3pr6+J51vZkKTBa4ImxT/4hjQI0EkjAU+e+//y7LiokmmqiseFmL5PmEan+j/Ml2P40iS7pJJYCwTapnKFfdCTRT2K6x1trmo48/LmjDfPPOa+675+6C10qd/PLLL83oX34xM84wg5luuulyUT/77DOz1rrrGQm8W24aYRZdZBF3TUL3408+ccfzzzdfLn6WDsRjmW7LOpMee/ghM/vss1dsXqVcK84g5hsQtjE7gOxjJyBhG/d2P1cNv9o8+PDDJVks262bOWC/fUvGyerFE08+2Xz44Siz1+67m+7dW7NqZtPtama7p+nGkSEEChBA2BaAwqlsEmhmBd8IYXtAr97m7nvuMX0P7GP232+/nJNee+11s+kWW7jvl1821Ky80kru+K233zYbbryJmWSSScxbr7+Wi5+lg3oI20q5po0fwjZtHqO8WSSAsC3tVYRtaT7VXmVuebXkuC+tBBC2afUc5a6YQBzC9tijjzZbbjlOdPoCTzzRxGaKKSb3X8v+LCbAlMDDDz9ixv421qyz9trGD+VC2JaHtlKu5aWanFgI2+T4gpLEQ0CN+7i3+9EImj/HT1H56aefzBFH9XMw+h15hJlzzjnd8SR2ispkk00WD6SYc0XYxuwAsodARgggbDPiSMzomEAcwvbk/5xott1mm4KFe+/9982tt95mZpppJrPFFpubu+66y7zyyqtmoYUWNOuus46ZddZZ3X3X/Pe/5osvvjR32uv/9957bh/GFZZf3swyy8xmxx12cHNrzz3vfBd3jz12N1999ZVL95tvvjHXXHutE7oHjO/h3WijDc1CCy5ohg273Hxv5+VuuukmJjpM+b82/ueff2HWW29d02WxxQqW25dnww03MP/3f//nyqx0Fll4YRf/xZdeMo8++qh5/Y03zWKLLmpWW21V061r13ZpffDhh06MP/Pss2aB+ec3K6+8kmlZYYWcKPeRH3nkUaM477zzjlnYpi+7lZ4PhXps773vPqNe7OWXW86sssrKPqot02PmueefN0sssbh7AeDtKJfrNFNPnUuro3KpEet9ss/ee5vHHn/MPP3MM24YeY8ePYqyzWVQxwOEbR1hklQqCSRhjm0UnITtgQcf4k6dcNyx5l9zzRW9bPTb8Oqrr5pRH31s5v7Xv8ySSy5hFlxggVycV2399u6775oFFpjfTG+npTz9zLNu3Ybll1vWzDPPPEYvNV9+5RUz2aSTmeWXX65d+g/Z4dDff/+DaWlZwfz444/mhRdeMN9+972bwtJqz00zzTS5fHTw22+/2Tgvut+e777/3pZjfrP44oubeeaeOxfv8y++ME89NdJMO+20pusySxvxnmSSSe3v2NoujqbE6MXCp59+aia3L3X127LSiiu2W2uiI2H7xx9/mP/dfodLb52113J5fPPtt2azTTZxLwM0Feexxx+3v0nvGfGddbZZzRq2rp1t/O+oboxym2vOuczz1nb9XoptV/sb1blzJ5e+//PRRx/Z34wX3JSeeeb+lx0NtbL5cNSHZtSoj8xiiy3qft983K++/tq89NLL5h3rlxmmn84san/7lll66XY2+rjN/Gxmu6eZdpEXBIoRQNgWI8P5zBFoZgXvhyL3O+IIJx6jMKeaair7A9rZPPjQQ2avffZ1Albi0g8ZUlzNFb3ummvsm/w53DBjCbX8INH4v1tvcfNuo/NMX3/jDbP3vhOGKkfvO2/IYCeaffkuuehC02P11XNRNt9qKydU+59+utl8s01z56MHm225pW10vebE6gsvvugunX/uECcWb7jxRnNkv6ONXwhEF9WDfPqpp5otNt/MxX38iSfM7nvuZf788093zcc97JCDzd577eXi6Nwp9p7LLr/CfY/+2a3nruYoy1XpFhK2Rxx5lLlhxAizpxX5Rxx2WO7W0844w1xy6VCzlR22fdqpp1TMVT6pplybbLyRufW2/+XKMemkk5qLL7jArLrqKrlzjTxA2DaSLmmnhYCvX1tbWmIvcilhK3E27Ior/1GH7r7rrmallVZ0Zb/uhhvstJR7zVy2p/drK6jGWvGp0LlTJ1e/337nnW7NBZ2b3P7WHHbIIWbeeefRV+MF5NJLLemEnl98T9fmnGMOG/fgnLgd8+uvbm7y2/bFYjRoestetn7Vi0YFiehzBg8x+m2b2v77wq4HIeF73DFHG73ovOCii90L2Gga+fOJfbmKzbH9dexYo9E1ChKiesmrMOScs00na/eAgWeZ/HKqrj3S/gbMN9+8Lq7npnUoVMbvrVD3YYnFu5jebW1G9yjod3TQkHPblXsGu77F1PYFpwTvZptsbDbeaCMXV3OD+w8caMaMGeO++z+rrryy2XWXnf/xwtZfb8anFo/q3tpielnbCBAIgQDCNgQvY6MjEIewLYT+jNNOcyLPC1vF0Q/tnnvs4aIPOfdc+1Z4VE6AqWHw808/myHnnWeefe45d+8mG22/zkoEAABAAElEQVRsppp6Kicu88WdfuRff/0N+5b5Y3P0sce5N8ZDL77Ypd2ly2Kuh7gewlb5bGJ/2JezvQR6k/3999+ZzbbcyjXINA94JTvXd+TIka7BIREqEb7wQguZQ2xD4+ZbbjU7br+9OcoOw1MvqoSuenUvufgiM9WUU5qrrag/9vgTzOSTT262325bJ77V06Ae5TFjfjX/OeF4e367moRtpVwlbKsp14wzzmh2t2J8MdtLcZntKZewVy/Mg/ff53zS6D8I20YTJn0IVEagmLAdZev9E08+xSW2uR0F06VLF/O27X29YcRNThypd1fi0ws0Ccxtt97avRy9avhw87UdpaOwlR0BNK9dpPDa6653vY3rrLWm2W7bbd01LyBVJ/dYbTXXc/ueFYn33He/WwVeYnXfvce9YJQg1YgZCbq111zDDZl+/Ikn3e+Q7ld5JK69sFUG6n1e0S7+pPqy6zLLWME72F5/1ay/3nquB1e9txLB6oE93grfucf3/PpylSNs1TO8su3x1YtfjfR5144cGmxF6BT2t2P/ffexPabTW0Y3ulEy3WwZ2g7Y39nuuenLMkstZXr0WN32In9mbv3fbWbs2N/MnrvtZlZcsbsrW5+D+hqJaY1wWtvy0xDxBx580Lxmf1sVvLDVC9qDDzvc9RLL7tVWXdV8/dXXZsQtt5jvvvvO7LLTjmZ1y5kAAQg0hwDCtjmcySUBBOIQtnr7qwZANJxqV3/czDZaosJ2xA3Xm6XtD62CGijHn/gf91b67jvHDb3S+WJzQfOFrRoUCqXm2NZD2G65+ebm9NNOdXnpz9Chl5lTbE+vBOoRh0d6Sk8/w6hn97hjjjE72x/5gWedbc6zPZZqMKiHVkPlJP70pt+H/Q5oMxpSvI3tQT7l5JP8adPv6GPMtddf73qH1UtcyPZye2x9opVwraZchx96iNlrzz1ddupR2MC+lFB4yg5Pbsb2TAhbh5s/ARNQb61WRVZvbe9e8fdcFRO26oWV+FKP5DZbb5Xz2HXX3+B6KPUycM01euSEraZ/qH5RGHHTzUY9tRK+evGncM+997n6Ui9O1ROr4AWkhgMf0vcgd05/JNqGX/NfN5z4rAH93QvKPn0PNqNHj/7HSsVH2XpYPZ7bW7Es0eeFrX7rTjvlZDOznV4TDZ99/rl7YakeYIWLL7nUvP/BB2ZvWy9q+LOCL1c5wnaPnj1zvdfuZvtHQ6Y1NFkCVGLz/ffeNxcPHWpmn202oylBCl7YTmFfmJ5z1kC3sKLOn3/hRU6sr2FHL+204w5OKJ9qf7dkT3/7Gydhr6Dy9z3kUJeXF7bqrVXZleYB+++XmyOtodcP2FFZyy27rBPbLoEY/rjn3vbYJmGkQgzmk2WABBC2ATo9VJPjELal5th6YTu9fbv8zFNP5gSw5v1ss932bjjYC88+k3NXJQJMN1UjbP0w43KGIufH6X3gQeYO27AqFjS0Wfdoe53923q5IWo+rnow+/Tu7QS/zrXaHmDNEVZPc3ROrea27m7FsOYlj3zi8YqE7ak270ut+PZDkX3elXCtplzqqdawcR8WW2JJ1yNw2y03N2WuLcLWk+czVAIStn4/z+FX/nN6Q7O5FBO2voe0WHlWsr2Je9heRS/QNNS15667uOhaK0A9u9Eeykcfe8wNa9ZLxCPHv2z0AnJnK+Ci01CiZRpw+mlOxB1z3PFuxM9gO9xXQ5p9uOHGEebOu+92Q5HVu+uFrQTt6XaaRzSot/aqq4fb+vzb6Gl3HBWovlzlCNsz7DSVmWaaMZeeelavvOoqNx9W6xtEQ7RMnlv+MGj9bt1oXwzopWybFacPPPiQFfnXuJevnptPU0LxJTv02gtbjSS60m7lVCyonCpvXKGZ7Z64bCRfCEQJIGyjNDjONIFmVvC+R7QcYau5SA/cd2+OvXo3t952u4YK23X/vb5boGTggAFGc0AVfrVvo5dv7e4+80VrrnD2wIvfAXbOqnqefThZc2LtUFu9oY72NvjrWvlzxe7d3VcNQ9MQZC3o9IQV9S+//Io7r0an3ixvsvkWdjj16+boo47KNdwUQYtenWTz0eIlt9o9ewv12B5jh19r0azt7KJdJ41/U6971bBVA7cWYVtLuVQGhS5LLuXmbSFsx/HgLwRCIxAVkdHFo/573XV2pMr9TlCtVmAOvka2qKfVC7RahG10eLL4azTJ6f0HuF5MzVtVHd3bDsfVugKaKxtdLGrIueeZF+wUGS0OpaHQXtjOOsss5tTICBv19mqRLM3jVc+sT0M9mRK61QpbCW/fi6qyaxSPeqclYvUbM/nknd0iiI/a+cqFhG2Um+7PF7beHol5/Ub6RaXUE3zI4Ue4Rbe8sNWUlsGWh+YXbxvpZVe6CpPaRbRabY9pXCFJc8vjYkC+YRFA2Ibl76CtjUPYHtOvn1vxOB+8Vtj1PbaVCtv99tnHHBwZQlZI3Ck/32M7sd1C4uUXnnfzVX05fO/qeuuua/Q2XkOutEqw5rUqVCNs77Jv8Nt69zGy7Z677rSrNs/i0jrKLiY1//zz2WHIO7kyaI7tgw89bIZdeqlZaqklXRw/xPegPr3tcK79jRfJasRdduklbsiuFknZbY89zRtvvmm0gFS/I48sKGz9PFitKn2/3fdXWyu9+dZbZrMttnSNtWLCthyutZTLGWr/IGw9CT4h0DwCSWrgFxO2etl33gUXumGteik6nV3xWGGYXURv9tlns8OQ13ALJdVD2Gqe6rH9jnICUb2cQ+1LQ63croWWjrEvFBWO/89JbqGkVex6CTvusL3L+6OPPzYnnXKqq0t72bmrmkfrhWC+sNUqxGedc44TfecMPNP9zmje6eF2qyOJxGivcSU9tvnC9pTTTndDtf3QaJXd7xsshoqv38FC3BQ3X9j+8ssvOVEv8b7h+us7wa+XDrfcdptuyfXY/vzzz0ZDthX69OplpxSN+03T7/vHH39iNrK7B0RFuIvIHwhAoGEEELYNQ0vCSSMQh7AtxGDKKaYwL7/4QsXC1s9N1aJNEnya27TfvvsWFHfK9yf7g7viyqu4HliJZ/24XnTB+W4YrxehijebnYOkMo2yKz1qMRLNVapG2Epg77zLrq6Ro7nFWoREK1dq6LG2kLj91lvdYh8SumpgqDwanjzmlzHmFnvtF7uipF+lWYuB7GTTkphVWksusYRdwfM115jSvNSrrrjc9WoUEvVqeG2y6WbOfi1EtaDdPkk9whK4WngqX9hWwrWWcom1AsJ2HAf+QqBZBNIyFFlDagecOdDNP1VdrDm0mp+q1XunsHX0Ccce64bgFhJolQ5FFnuJPS3op7pfK/rqBad6UbWAkoIWjrrYriQvEar8Z511FqM5pQqaB6wXrFqJuZiwVY+tRJ96fRe3C2HNaOt89fT+bXtwVd+rR3RLu0r9mmv0qGiObb6w1aKC997/gPudWa5bN6PfAP1TT7F6njXv+Nij+5mb7IJOmsfcUY+t7NMCh7fdfrsO3W+Q2CgtzaVV2X2Pra4Pv/oaN59Wx3ox8Mfvf7hFu/Tdi38dxxGa2e6Jwz7yhEA+AYRtPhG+Z5ZAMyt4PxS5EMxqha1WbzzK/jg/8eRT7gfbL6xUSNz5fPWm/0I7T1V79Sk89vBDbrVKHV9x5VXmoksusUO2xi3s0e+oI81NN9/iGjPVCFulqZ6IQ+0KkY8/+YQTkTqnfWOVnt/ndqwab3ZrhIcffsQNh1YcCXXtR6h9eH3QXreH2WFfajSpQSGBqwW2zrBv3+ezK34qFLNdDdkTbW+Deq0lqrfacgsr3qc0555//j+EbaVcaymXyoywFQUCBJpLYPCQIS7DJGx7UqzHVgWUwNRaAK+/+YZbqVfntFWP5tZqBWKFeghbTdVQD7H2XVXQNjab2mkp6hWOhpdeftlo8SotFiWBKjG6tN2fVXN7JWoViglbXVMv8OV2+yKJdgUJaW3FplWMtUKyVktW/VxLj60EtH7L1EOsoAWktBK9eoe11ZryPt9udXezfYFarrBVOuqhferpkbbX+mMzkx0Gvtmmm7q9b7U7QVTYiou2mNOK0fKtgnqKd7K93JrPG2dgu5846ZN3HAQQtnFQJ89YCDRT2MZiYJWZapEm9Z7q7f32O+7UobAtJxsJUfVuqiEmYVksSFSrZ8IPWy4UT3N/tYKm9vrV9j+VhB9//NE12GRbvUMt5ap3WUqlp+de4d233iwVjWsQgECCCKiX9NPPPnNzRNVbWq+QLyC1RZBeNqpXU72SxYLE4/c//NBhvEL3q+dUPc+Td5683aJPheLWck5l/NaujDzrrLPl5sXWkp6/V8LVs/ErKEeFrY+nz8+/+MIJfoYfR6lwDIHmEUDYNo81OcVMAGHb3gHX2oVKtD+uD2N/G+vmd0mwnTt4kNH8W0L6CSBs0+9DLKiNgEZwJGm7n9qsqe3ufGFbW2rZvVv72mqebPvwt91S6S6jObgaMbXeuuu0v5zAb0maW55APBQpgwQQthl0KiYVJoCwbc+lx5pr5eYBRa9oP9nHH3vU7TsYPc9xOgkgbNPpN0pdPwJJm2NbP8sqTwlhWx6z6HDx/Ds0AuiUk/5jZrHrPSQ90O5JuocoX70JIGzrTZT0EkuACr69a0bcdJOdDzShx1ZXp556Krso1Vq51Tjb38G3NBJA2KbRa5QZAo0hoDmvP/74k1lyySXM7HbhQEJhAlpE8RG7HV1+6NRpMrfWg/afT0NI0tzyNPCijOkngLBNvw+xoEwCCNsyQREtUwQQtplyJ8ZUSYAhmVWC4zYIQAACKSKAsE2RsyhqbQQQtrXx4+50EkDYptNvlLp+BBiKXD+WpJQuAloVubWlxfTu1ZauglNaCFRJAGFbJThuSx8BhG36fEaJayeAsK2dISmkm4CErRaP6t7aYpKw3U+6aVL6NBGg3ZMmb1HWehBA2NaDImmkggAVfCrcRCHrTABhW2egJAcBCEAAAhCAQCIJIGwT6RYK1QgCCNtGUCXNpBNA2CbdQ5Sv0QTUYzty5NOm1fbYalgmAQKhEGBueSiexk5PAGHrSfCZeQII28y7GAMLEEDYFoDCqaAIMMc2KHdjbIQA7Z4IDA6DIICwDcLNGCkCVPA8ByESQNiG6HVszidAz1U+Eb6HQIDtfkLwMjZGCSBsozQ4zjQBhG2m3YtxRQggbIuA4TQEIAABCEAAApkigLDNlDsxphQBhG0pOlzLKgGEbVY9i13lEmAocrmkiJc1Amz3kzWPYk9HBBC2HRHiemYIIGwz40oMqYAAwrYCWETNJAEJW7b7yaRrMaoDArR7OgDE5cwRQNhmzqUYVIwAFXwxMpzPMgGEbZa9i20QgAAEIAABCHgCCFtPgs/ME0DYZt7FGFiAAMK2ABROBUVAPbZs9xOUyzEWAhAIlADCNlDHh2g2wjZEr2MzwpZnIHQCzLEN/QkI137aPeH6PlTLEbahej5Au6ngA3Q6JrttroTh3bfehAYEgiUgcavQ2tISLAMMD4+AFo/q3tpierW1hWc8FgdJAGEbpNvDNBphG6bfQ7eaHtvQnwDshwAEIAABCIRBAGEbhp+x0hJA2PIYhEgAYRui17E5SsCviqze2t696LmKsuE42wS0Gnir7bFlpEK2/Yx1EwggbCew4CjjBBC2GXcw5hUkgLAtiIWTARFgjm1AzsbUdgRo97TDwZcACCBsA3AyJo4jQAXPkxAiAYRtiF7HZghAAALGMLecpyA0Agjb0DwesL0I24CdH7DpCNuAnY/pOQI08HMoOIAABCCQWQII28y6FsPyCSBs84nwPQQCCNsQvIyNpQgwFLkUHa5lmQDtnix7F9sKEUDYFqLCuUwSoILPpFsxqgMCCNsOAHE5CAKDhwxxdrLtSRDuxsjxBNjuh0chNAII29A8HrC9CNuAnR+w6QjbgJ2P6RCAAAQgAIGACCBsA3J26KYibEN/AsK0H2Ebpt+xegIBDUV2256w3c8EKBwFQYDtfoJwM0ZGCCBsIzA4zDYBhG22/Yt1hQkgbAtz4Ww4BJhjG46vsbQ9Ado97XnwLfsEELbZ9zEWjidABc+jECIBhG2IXsdmCEAAAsYwt5ynIDQCCNvQPB6wvQjbgJ0fsOkI24Cdj+k5Amz3k0PBAQQgAIHMEkDYZta1GJZPAGGbT4TvIRBA2IbgZWwsRYChyKXocC3LBLQqcitzy7PsYmzLI4CwzQPC1+wSQNhm17dYVpwAwrY4G66EQcAvHtW9tcWw3U8YPsfKcQRo9/AkhEYAYRuaxwO2lwo+YOcHbDrCNmDnYzoEIAABCEAgIAII24CcHbqpCNvQn4Aw7UfYhul3rJ5AQD22I0c+bVptj62GZRIgEAoB5paH4mns9AQQtp4En5kngLDNvIsxsAABhG0BKJwKigBzbINyN8ZGCNDuicDgMAgCCNsg3IyRIkAFz3MQIgGEbYhex+Z8AvRc5RPhewgE2O4nBC9jY5QAwjZKg+NME0DYZtq9GFeEAMK2CBhOQwACEIAABCCQKQII20y5E2NKEUDYlqLDtawSQNhm1bPYVS4BhiKXS4p4WSPAdj9Z8yj2dEQAYdsRIa5nhgDCNjOuxJAKCCBsK4BF1EwSkLAdNHiIYbufTLoXo0oQoN1TAg6XMkkAYZtJt2JUIQJU8IWocC7rBBC2Wfcw9kEAAhCAAAQgIAIIW56DYAggbINxNYZGCCBsIzA4DJKAemzZ7idI12M0BCAQGAGEbWAOD9lchG3I3g/XdoRtuL7H8nEEmGPLkxAqAdo9oXo+XLsRtuH6PjjLqeCDczkGWwIIWx4DCBgjcavQ2tICDggEQ0CLRzG3PBh3Y6glgLDlMQiGAMI2GFdjaIQAz30EBocQgAAEIAABCGSWAMI2s67FsHwCWhVz0JAhZviVV/DWPh8O3zNJgCGYmXQrRlVBwNf/7771ZhV3cwsE0kdA9b+ee7V5CBAIhQDCNhRPY6er4CVse7e1md692iACgcwT0DA0NW54mZN5V2NgBwTUwNf/BdX9DEfuABaXM0GAlzmZcCNGVEgAYVshMKKnm4Cfb4i4TbcfKX3HBHyjRo143th3zIsY4RCQwEXchuPvkC3lWQ/Z+2HajrAN0+/BWq1KXr1YCojbYB+DzBvuRa0Mpbc28+7GwAoI+P8b/L+oABpRU0VAz7jaOrzQTJXbKGydCCBs6wSSZNJDICpu9dbe/Wtlpcz0eJCSFiOgvTo13N4HGu+eBJ8QGEcg2ujXb4GC770t9b3aa0pf95LHOM6lOMKq/erdlbDSc91q2zF6zqLPuJgSIBASAYRtSN7G1hwB/WD4yj93kgMIZIRAHzuPsJedS06AAAT+ScALzfw56NEVxBVH1/3IHh9Xi08Vu+ZfJEXT0e9MdNHC6LVi6dQzD59/JXb4BbaiZfXplLKRPMZN+4iLlZ5077t/PvWcgUAYBBC2YfgZK0sQUOPiafuP0DgCQ4ddbrp1Xcb+69q4TEjZEUDQ8iBAoHwCqv8V1NM1ePxoB/9/SN9bxo/q8b8Tpa75uNF0/H2FrinfRueRn7//XsqO6DWVUd/9fYXsyL/mv/t0ui2/gtl3773MPnvvnUvHXyuXlU/T5++/R9Mpda0ednTkq6TkoXIQIBAqAYRtqJ7Hbgg0kcCqPdZwonbQ2Wc1MVeyggAEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIRAbARo2saEnYwhAAAKxEqD+jxU/mUMgKAII26DcjbEQiIcADZt4uJMrBCAAgbgJUP/H7QHyh0A4BBC24fgaSyEQGwEaNrGhJ2MIQAACsRKg/o8VP5lDICgCCNug3I2xEIiHAA2beLiTKwQgAIG4CVD/x+0B8odAOAQQtuH4GkshEBsBGjaxoSdjCEAAArESoP6PFT+ZQyAoAgjboNyNsRCIhwANm3i4kysEIACBuAlQ/8ftAfKHQDgEELbh+BpLIdBUAi+8+KLp1rWryzO/YXPZsGFmt549m1oeMoMABCAAgeYTyK//m18CcoQABEIhgLANxdPYCYEmEpBwHTrscrN7z12dgI02bHofeJCR6B109lk54dvEopEVBCAAAQg0kUC0/m9itmQFAQgESABhG6DTMRkCzSDgBazErUSu772VqPWCtxnlIA8IQAACEIiPAMI2PvbkDIHQCCBsQ/M49kKgiQS8uI1miaiN0uAYAhCAQLYJIGyz7V+sg0CSCCBsk+QNygKBDBKIiltEbQYdjEkQgAAEShBA2JaAwyUIQKCuBBC2dcVJYhCAQCECErfdui7DglGF4HAOAhCAQIYJIGwz7FxMg0DCCCBsE+YQitN8AoMGD3GZtra2mNaWFrPjzru478OvvMKMfPppo+s637tXmzvWuULXfFzF8+n4+8q55uMqv2J5+Gvk0bE/ssZKz5yCnk//rESfK9nrnwsXkT8QgAAEEkAAYZsAJ1AECARCAGEbiKMxsz0BiQAvZHU8aMgQJ1YlGBZadDEX+d233nQCU0Kid1ubEw06lpgodK1QOkpPgqTUNaVXbh4+f6Xpy0oehf2RZFb+eSjnufJ26JlT0POZ73Olo2fYn9czpaDvBAhAAAJxEkDYxkmfvCEQFgGEbVj+xtrxBPLFq04jAng80kxAYtY/w/liOM12UXYIQCDdBBC26fYfpYdAmgggbNPkLcpaMwHf+Nfn0/ZfL9vTRYBA1gioR3iiiQzPd9Yciz0QSCEBhG0KnUaRIZBSAgjblDqOYldHQD21fvhndSlwFwTSQ0AC1w+5T0+pKSkEIJAlAgjbLHkTWyCQbAII22T7h9LVkYB6adXQV/AL8dQxeZKCQOII+Lm8fk524gpIgSAAgcwTQNhm3sUYCIHEEEDYJsYVFAQCEIBAfQnoZY6Cn3tb39RJDQIQgEDHBBC2HTMiBgQgUB8CCNv6cCSVFBBgWGYKnEQRG0LAzy1vSOIkCgEIQKAEAYRtCThcggAE6koAYVtXnCSWZALRbVKSXE7KBoF6EoiuAF7PdEkLAhCAQDkEELblUCIOBCBQDwII23pQJI1UEGBYZircRCHrTEBb/ygwr7zOYEkOAhAoiwDCtixMRIIABOpAAGFbB4gkAQEIQAACEIAABCDwTwII238y4QwEINAYAgjbxnAl1QQSUM+VFtHp3Yu9axPoHorUIAJ+JXCe+wYBJlkIQKAkAYRtSTxchAAE6kgAYVtHmCSVbALMsU22fyhdYwgwx7YxXEkVAhAojwDCtjxOxIIABGongLCtnSEpQAACEEgsAeaWJ9Y1FAwCQRBA2AbhZoyEQCIIIGwT4QYK0QwCNPCbQZk8IAABCEAAAhMIIGwnsOAIAhBoLAGEbWP5knqCCDAUOUHOoChNI8BQ5KahJiMIQKAAAYRtASicggAEGkIAYdsQrCSaRAKDhwxxxerVxuJRSfQPZWoMAbb7aQxXUoUABMojgLAtjxOxIACB2gkgbGtnSAoQgAAEIAABCEAAAgUIIGwLQOEUBCDQEAII24ZgJdEkEmC7nyR6hTI1mgDb/TSaMOlDAAKlCCBsS9HhGgQgUE8CCNt60iStRBNgjm2i3UPhGkSAObYNAkuyEIBAWQQQtmVhIhIEIFAHAgjbOkAkCQhAAAJJJcDc8qR6hnJBIAwCCNsw/IyVEEgCAYRtErxAGZpCgO1+moKZTCAAAQhAAAI5AgjbHAoOIACBBhNA2DYYMMknhwBDkZPjC0rSPAKsitw81uQEAQj8kwDC9p9MOAMBCDSGAMK2MVxJNYEE1MDv3tpi2O4ngc6hSA0jwBzbhqElYQhAoAwCCNsyIBEFAhCoCwGEbV0wkggEIAABCEAAAhCAQD4BhG0+Eb5DAAKNIoCwbRRZ0k0cAW170mp7bFtbWhJXNgoEgUYRYG55o8iSLgQgUA4BhG05lIgDAQjUgwDCth4USSMVBJhjmwo3Ucg6E2Aocp2BkhwEIFARAYRtRbiIDAEI1EAAYVsDPG5NFwF6rtLlL0pbHwJs91MfjqQCAQhURwBhWx037oIABCongLCtnBl3QAACEIAABCAAAQiUQQBhWwYkokAAAnUhgLCtC0YSSQMBhiKnwUuUsd4E2O6n3kRJDwIQqIQAwrYSWsSFAARqIYCwrYUe96aKANv9pMpdFLZOBJhjWyeQJAMBCFRFAGFbFTZuggAEqiCAsK0CGrdAAAIQgAAEIAABCHRMAGHbMSNiQAAC9SGAsK0PR1JJAQG2+0mBkygiBCAAAQhkigDCNlPuxBgIJJoAwjbR7qFw9STAHNt60iSttBBgKHJaPEU5IZBNAgjbbPoVqyCQRAII2yR6hTI1hADb/TQEK4kmnACLRyXcQRQPAhkngLDNuIMxDwIJIoCwTZAzKAoEIAABCEAAAhDIEgGEbZa8iS0QSDYBhG2y/UPp6khAPVetLS2md6+2OqZKUhBINgHNLVfguU+2nygdBLJKAGGbVc9iFwSSRwBhmzyfUKIGEWCObYPAkmyiCTDHNtHuoXAQyDwBhG3mXYyBEEgMAYRtYlxBQSAAAQjUnwBzy+vPlBQhAIHyCSBsy2dFTAhAoDYCCNva+HF3igjUu4H/999/l2X9RBNNVDTe6NGjzZ9//mmmnXbaonGKXYjmXyqPYvc36nxSy1Wuvb78zWYaV77lciEeBCAAgWoIIGyrocY9EIBANQQQttVQ455UEqj3UOSrhl9tHnz44ZIslu3WzRyw374F43z77bfmqGOONX/99Zc59uh+5l9zzVUwXrGT191wg7n7nnvNqiuvbHruukuxaAXP//HHH+brb75x12afbbaCcSo9+djjj5uHHn7EfPzJJ+b33383W22xuVn/3/+uNJlY4/86dqw5oFdvV4YBp59mZphhhqaV58CDDzE//fSTOfzQQ8wiCy9ct3wZilw3lCQEAQhUQQBhWwU0boEABKoigLCtChs3pZHA4CHjFtHp1VafxaNqFbYffjjKnHjyyQ7lwQcdaBbv0qUirLUIW4nP40440Uw88cTm4gvOryjfQpEfsgL/Siv0Faaeemoz26yzmjVWX92suGL3QtETey6LwpbtfhL7uFEwCARBAGEbhJsxEgKJIICwTYQbKEQaCahX8k/b26qgnrYjjurnjvsdeYSZc8453fEkVjhONtlk7rjQn5dfedX88cfvplvXrqbSoa9JEranndHfvPPuu2aVlVYyu+6ysxPMhexN+rksCtukM6d8EIBAtgkgbLPtX6yDQJIIIGyT5A3K0lACjdzuR8JWQ0kVTjju2HbDitWb+f33P5iWlhXMZ599Zt5//wPXk6lezf/dfoe7Z7311jVTTD65efW11827ViAusMD8ZjY7RPiJJ540n9je1Xnmmccst9yyZq7xglk3FRO2X339tXnppZed0Jxh+unMoosuapZZemknNj//4gvz1FMjnRB/6JFHnJjeaIMNXBlUvjnnmMMdf/Hll+YVK7rffucdo6HKiy/exSy6yCJFxXc/O6Raaffp1cssvdSSLg31Cj/77HN2/vA0Zs011nDnCv0pxsfb+t7775tXX33VjProYzP3v/5lllxyCbPgAgu0S6rc8r7y6mvmHWvTp59+6l4+LGyH/C5l0/MhX9h26tTJ3Hvf/e7yOmuvZaaaaiof1Tz+xBPmq6++NgsttJBZconF3flyyqqIL7/yirXpNaPh6PPOO49Ze+21zZH9jm7IUGS2+8m5jAMIQCAGAgjbGKCTJQQCJYCwDdTxIZpd7zm2UYalhK2GG2vYscTY/733nrutbf/9TBc79Dh/PqcXq/PPN5+bA6t0fZi8c2dzcN+DzALzz+9O+bjRObbKp//AgWbMmDH+NvepOOpJlaAaNOTcdtf8F80F1pzg1994w5x1ziA391e9yH5Ro6233ML8e731fPR2nyNuutncfuedrud59567mimnnNI8/cwz5sKLL3EiX2K/WCjGR73Ymrc77Iorc2VQGirT7rvualZaaUWXZDnllQ3XXneduff+B/5RDAnWbbfe2qWbL2ynn356c8jhR9gXE9+bvXbf3XTv3uru14JffQ7qa8b8+qvpdcD+pusyy5RVVt18h+V0o+UVDRK3n3/+uRk79jfm2EbBcAwBCKSeAMI29S7EAAikhgDCNjWuoqBJJlCOsNWQ5NYVVjALL7yQ6bJYFzPV1FMVFbayVT2J6ukc/fNoc+8D9ztxrNWTB/Y/w4mwfGErsXXwYYe7Xr8VrQBbbdVVzde2R3HELbeY7777zuyy045OuH446iPzzTdfmyuuGu7SObD3uMWS5p1nbjPNNNOYS4YONU/aXl3Nkd12m61dz+/ZgwY7Yd6ndy8jgZ0flPc9995rbhhxk7skW7Uols5LiE466aRmpx22N6tYgZ0fvLDN5zN69M92DvIpLvrmm27iXgS8/fbbLg+lKbGsHuZyyuvnAKsHdvXVVrW9yks5kf/Io486MbnzjjuYHtbefGGrxaOGX32NeeChh0z31haz1x57uPKoJ/v0/gMci7MHnul64sspq3p0Tz71NJdGq+0hF48vbe+4eoXV461Q78Wj6j233BWSPxCAAATKJICwLRMU0SAAgZoJIGxrRkgCaSFQ7+1+onaXI2xXXnFFs/tuPXO3FRJRXqxKPA4cMMB07tzJxf/EDp099vgT3PFJJ55g5ph99n8MRfaLUWlI8wG2R9jP7R058mknzJZbdlmz/777uDRKLR510823mP/dcYcTjevbHtqFF1nYCd5CgtYbI/uHDhtmxeKrZsoppjAzzTST+WXML1ZAf+vKoeHMG2+0oVEZ8oMXtvl8tOKzeKine5utt8rddt31N7ie7x23394K/x6mnPIOOe9888KLL/5jBenLbW/wI4895nqa1YteyCfqET7zrLPdolhnnznACfUbrYC/4667zPLLLWf222dvtzp1OWW96+67zfU3jjCzzjKLOfXkk3I2ids5gwe77/UWtrlMOIAABCAQAwGEbQzQyRICgRJA2Abq+BDNjnso8p677dZuleBCIsoL2xWWX97su/de7dx0zHHHm0/tHF0/JNbH9UORfa9ku5siX2aaaUZzxqmnujOlhK2G3Z57/gVGvYs+zGyF6uabbpobiuvP+88h555nXnjpJbPaKquYHW3PrHpoKx2KnM/ngosuNs88+6zP4h+fK9kVl/ewTMspr99KR73T0Tm1mnN79qBBTrhLtBbyiXqddf8vv/xijj7qSKNh4if85yQ75/cjs/eeexr1vJZb1vMvvMg8+9xzRi8MtrJDu31QHr0PPMjlX29hy6rInjKfEIBAHAQQtnFQJ08IhEkAYRum34O0Wg18DSet13Y/UYjl9Nh6QervKySivFidZ+65zXHHHO2juuGyfQ85xAkfvzWQj+uF7YtWWA62AlMLHG0b6eH0iUw6yaSm1dqvUErY6rqEllY5fs0uZvXGW2+6Ba90/rBDDnaLSOk4GjRXWPZERVmlwjafz381J9YO0V1owQXtsOpVotm54xlnnNEO6V7MHXdU3hNOOtmMGjXKbL/ttmbttdbMpaX0lY8W5zrO7iVcyCeKfOlll5knnnzKbLrxRm6It4Z8S7xrGLJ6yMst6zX//a+574EHTTc7J7fNzs31QXsKa1VtzQWOMvTXa/lkH9ta6HEvBCBQKwGEba0EuR8CECiXAMK2XFLEg0AJAvUWtsrKC1iJnfutGLrm2mvdMNghg85xczvzhe3PP/9s+vQ92JUyujrxg3Z+6Mcff2I22nADozmjCl7Yaq7qeYMHGc099UFzVjU0tm+fPma++eZ1p/1QXs113WjDDX3U3KeGSWu4dI/VVnM9ttoft1Zh+9zzz5vzLrjQCceT/3OimW666Vx+wy6/wsw++2xu/rHKXU55vfDUC4OD+vS2KzVPa3788Ue3SJZ6XrWA1HbbbFNU2PqXBlq4q8fqq9lh15e71Z/FWaHcso58+hlz0SWXOFGsFxeaIyxRfsOIEXaO8n0urXoLW5cofyAAAQjERABhGxN4soVAgAQQtgE6PVSTte2JeixbW8b1WtaTQyOErco3txViY+wQWPXoKfjeWR3nC1ud8wsd6Vii9I/f/3AiVt/96r061mq+fQ851Pz2229uvufUU09tercd4IbkSjg+alcj1jkN9x3761jz1MiRZqyN26dXm1t4SWlEg587qnNagGqWmWc2EtpffvVV2asi5/fYqvd0wJkDzfsffGAmmWQSs4jdmuczu3Kwhh5PYefxnnDssXYu74ymnPJqCHd/m5bErNKa1/bQfmh7cCUqJXIPPbivE5nFemzF6UD70uA3u3exxKhE/K477+R6b2VzuWXVcGYtHuUXitL8YflW5fKrT9db2DZybrlsJ0AAAhAoRQBhW4oO1yAAgXoSQNjWkyZpJZpA3HNsCwm3Ytv9aCGlznYBqQftHrgSPOqZ1IrKu1gxpd5QhULCVnHV+/e43f9WYltBPZ1akVhb+UTDfXbrGy2A9MMPP7jTA04/zfXo/m7F24ibbzYvv/xKToCpp1MvBP5t99stFh548CE7XPdJJ6SVhg//mmsut4Kx/57/6RePyuejeNq26NKhl5nX33zDDcfWOW2No7m1fp/bcsurvW6HXjbMCWUJWglczZfVgl7aU1ihmLDVNfUeq2dWQT3dZw3o70S8O2H/lFNWxdUK1UpLgl3+0tDxPXffzVx19dVusa16C1uGInsP8QkBCMRBAGEbB3XyhECYBBC2Yfo9SKvT0HOVL1YlTiWE5rC9hH6V43Kdp17BzlYQ++HH5d4Xjae8JaT9MODotWYeS4iq11WLWKm3tlgop7zqfRUbrdQcHYJdLM1Kz5dbVvVo/zx6tBPVEsqNCmz30yiypAsBCJRDAGFbDiXiQAAC9SCAsK0HRdKAQJ0I5AvbOiVLMhCAAAQgAIFYCCBsY8FOphAIkgDCNki3h2l0I4ci14sowrZeJEnHE2C7H0+CTwhAIA4CCNs4qJMnBMIkgLAN0+9BWt3I7X7qBVRb7Hz44Sgz55xzmMW7dKlXsqQTMAHm2AbsfEyHQAIIIGwT4ASKAIFACCBsA3E0ZkIAAhCAAAQgAIFmE0DYNps4+UEgXAII23B9H5zljdzuJziYGAwBCEAAAhAogwDCtgxIRIEABOpCAGFbF4wkkgYCaZhjmwaOlDFdBBiKnC5/UVoIZI0AwjZrHsUeCCSXAMI2ub6hZHUmkIbtfupsMslBwLB4FA8BBCAQJwGEbZz0yRsCYRFA2Iblb6yFAAQgAAEIQAACTSOAsG0aajKCQPAEELbBPwLhAFDPVWtLi+ndqy0co2O29I8//jDffvedmXWWWcouydfffGOmnWYa06lTp7LvIWJxAppbrsBzX5wRVyAAgcYRQNg2ji0pQwAC7QkgbNvz4FuGCTDHtjHOlXiVGFWYfbbZcpn8/fff5tjjTzCffvaZ2XnHHUyP1VfPXfvyq6/MX3/9ZWacYYZ2AvbpZ54xF158iZnBnj/9lJPNJJNMkruHg+oIMMe2Om7cBQEI1IcAwrY+HEkFAhDomADCtmNGxIAABEoQ+PiTT8xxJ5xoJp54YnPxBefnYkrw9j30MDN69Giz0QYbmM032zR3rfdBfd35Iw471Cy80EK58/fce5+59vrrTefOncyZ/fubKSafPHeNg+oIMLe8Om7cBQEI1IcAwrY+HEkFAhDomADCtmNGxMgIARr4jXFkMWGr3D76+GMzatQos9xyy5nJO3fOFaCYsP3999/Ns88+Z2affXYz//zz5eJzAAEIQAAC6SSAsE2n3yg1BNJIAGGbRq9R5qoIMBR5HLYxY8aYF1580bz11tvmr7//Ml0WW8x0XWYZM+WUU+a4PvT/7N0HmCRVuQbgg0gSFAUleAUTShB0McwSzGCOoIKIRDGyuyCYQEVAgiSB3UUxIEkUQbnqVURRwCwYQDIIBoKKgoIBAQFv/UXX2DvMzM7OdnVV93n7edjp6XDC+x/6qW8q9He/m2699bY0MvKMdOedd6ZLLrkk3XnXXcVr103rP2m98nV/vOmm9JOfnJ/+/ve/p/O+9720xBJLlHtm48l43yNXXz1V7Tz1qRum1Yuw+vUzv1G+95tnn53uKtrbdOON00orrZQe97jHpSdvsH6q2lx++eXTCzbfrHxt/DOVMUd7VxZzuuyyS9M/ir3EMa8N1l8/rbjiiqPt5HjHocg5Vt2cCbRHQLBtTy2MhMCwCwi2w15h8xsVmDf/vovozJ6V78Wjbr/99nToER9N119//ahL3FlzzTXTu/fcIz1oueXKx/c/8MD0u99dl55e7GmNEHzPPfeMvv6VL395etUrX5F+efHFae78Y0Yf776z69vflp664YapaufNO++cZmw4I+06e073y0bvv2Cz56fXb711urgI0EcXFzuKi00dfOAB5fNTHfOhhx+Rrrr66vI9EbLjHN84V3e/fT6YIijnevN1P7lW3rwJtENAsG1HHYyCQA4Cgm0OVTZHAh2BYz5+bPrFhRemxz32sellL31JcV7sksVe1DPTNddem0ae8Yz01jfvUr6yCqRx8abnPvvZacaMp6Rf/OLCdG6xJzduhx58cHHRp6XS7667Pt1yy83ppM+eUu6x3X3OfcH10WuukR5cXNm4aieCbezFvfyKK8v3f/zYY9MdxZ7grV/3uvTIRz4yPfzhK5cXnhov2E5lzHExqr3e/4G01FJLpf33/VBaoQiynznhxPSra65JW732NWnTTTYp+/UPAQIECPRXQLDtr7feCOQsINjmXP3M5p771/3EHsw5u78z3V4cirzj9tul1YtDheP2h+KqxSecdHJaYYUV0tEfPaJ8rAqkcXjwbrNnl4/F++NiUH/729/KABxBOG6TnWNbtRPBdqONZpavj38mOsd2bLCd6pgjJO++x54pztGNQ5jj0Oo1HvWotFyxBzouapXzzdf95Fx9cyfQvIBg23wNjIBALgKCbS6VNs+U+zm28bU7H/zQvpOuhEMOPig9fOWVR/e0blMcHrx5cZhwdfvoUUelyy6/InU/XmewXZQxx/m8p552ehluY7yx9zYC7jZbb5X1ebbOsa1Wr58ECDQhINg2oa5PAnkKCLZ51t2sMxSICzDNLvbYxl7QODw39tCOvW04Y0Z5EamJ9rQeefTR6dLLLu9bsF2UMcdc/vrXv6ZLLr20uIjUVcXPy1Kcn7vO2muX5w+PnWsuvzu3PJdKmyeBdgoItu2si1ERGEYBwXYYq2pO4wr4up9Uft9s7GF9yYtelF6z5RblebFxkagvf/Ur6VWveGV6zGMeXdpNJ9jGBZs+Nm9uce7t0qP+E7VTHYr8zt12G73Kcrxp7KHI8Vh8R+7Cxnz5FVek0790Rlq5uFjUrF3fEW9L1xUXyNrvwwekOE/42GPmZ39IconiHwIECPRZQLDtM7juCGQsINhmXPzcpp77ochR7wt++tP0yU8fV+61XXnlldLKK62crv31r8urHr/wBZuXF3OK100USMfbY/uvO+5Ie7zr3eXX98TVjGNP8JxZu97v4lHd59gefMih5QWr4gJTj3j4w9MrX/GK4qt5njRusJ3KmOPiUfvsu195GHK0s+Yaa6Yrrrwy/fo3vynD+gf33jumleXNVZGzLLtJE2iNgGDbmlIYCIGhFxBsh77EJlgJOCTzPonzz7+g2EP71RRhMG7LFHtYX1zswX35y146uldzUYJttPHt75yTzjzrrHTbbbfFr+nwQz5SftXORO3EHtYvFOfDxp7YuFUXlxpvj208P5UxR5vfKr4f9+qrf1V+5258ddG6666bttzi1eUVl6OdHG/Osc2x6uZMoD0Cgm17amEkBIZdQLAd9gqbH4EJBCKExhWSV1t11fKQ5Ale1qqHpzLmu+++O930pz+V84rDkN0IECBAoDkBwbY5ez0TyE1AsM2t4hnPN772ZObMkTRzZCRjBVPPTcC55blV3HwJtEtAsG1XPYyGwDALCLbDXF1zW0DAObYLcPglEwGHImdSaNMk0FIBwbalhTEsAkMoINgOYVFNaXwBe67Gd/HocAs4t3y462t2BNouINi2vULGR2B4BATb4amlmRAgQIAAAQIEWiUg2LaqHAZDYKgFBNuhLq/JdQs4FLlbw/1cBHzdTy6VNk8C7RQQbNtZF6MiMIwCgu0wVtWcxhWIDfyNiotHzZ41a9znPUhgGAWcYzuMVTUnAoMjINgOTq2MlMCgCwi2g15B4ydAgAABAgQItFRAsG1pYQyLwBAKCLZDWFRTGl/A1/2M7+JRAgQIECBQl4BgW5esdgkQGCsg2I4V8fvQCjjHdmhLa2KTCDgUeRIcTxEgULuAYFs7sQ4IEOgICLaWQjYCvu4nm1KbaJeAi0d1YbhLgEDfBQTbvpPrkEC2AoJttqU3cQIECBAgQIBAvQKCbb2+WidA4L8Cgu1/LdwbcgGHIg95gU1vXIE4tzxuc2a7Gvi4QB4kQKBWAcG2Vl6NEyDQJSDYdmG4O9wCgu1w19fsxhdwju34Lh4lQKA/AoJtf5z1QoBASoKtVUCAAIEhFnBu+RAX19QIDICAYDsARTJEAkMiINgOSSFNY+ECNvAXbuQVBAgQIECglwKCbS81tUWAwGQCgu1kOp4bKgGHIg9VOU1migIORZ4ilJcRIFCLgGBbC6tGCRAYR0CwHQfFQ8MpMG/+fRfRmT3LRXSGs8JmNZ6Ar/sZT8VjBAj0S0Cw7Ze0fggQEGytAQIECBAgQIAAgVoEBNtaWDVKgMA4AoLtOCgeGk6B2HM1c2TE154MZ3nNagIBX/czAYyHCRDoi4Bg2xdmnRAgUAgItpZBNgLOsc2m1CbaJeAc2y4MdwkQ6LuAYNt3ch0SyFZAsM229CZOgEAOAs4tz6HK5kigvQKCbXtrY2QEhk1AsB22iprPhAK+7mdCGk8QIECAAIFaBATbWlg1SoDAOAKC7TgoHhpOAYciD2ddzWpyAVdFntzHswQI1Csg2Nbrq3UCBP4rINj+18K9IRdwSOaQF9j0xhVwju24LB4kQKBPAoJtn6B1Q4CAi0dZAwQIECBAgAABAvUICLb1uGqVAIH7C9hje38TjwypQHztycyZI+VX/gzpFE2LwP0EnFt+PxIPECDQRwHBto/YuiKQuYBgm/kCyGn6zrHNqdrmWgk4FLmS8JMAgSYEBNsm1PVJIE8BwTbPumc5a3uusix79pN2bnn2SwAAgUYFBNtG+XVOICsBwTarcpssAQIECBAgQKB/AoJt/6z1RCB3AcE29xWQ0fwdipxRsU11VMDX/YxSuEOAQAMCgm0D6LokkKmAYJtp4XOcdmzgb1RcPGr2rFk5Tt+cMxVwjm2mhTdtAi0REGxbUgjDIJCBgGCbQZFNkQCBvAXi/PKZIyN5I5g9AQKNCAi2jbDrlECWAoJtlmXPc9LxdT9xmzPbHts8V0B+s3bBtPxqbsYE2iYg2LatIsZDYHgFBNvhra2ZjRGIYDt3/vw0pzgUWbgdg+PXoRSIw+8j3J5y8kn22A5lhU2KQPsFBNv218gICQyLgGA7LJU0jykJxFefOMd2SlReNAQCEWovKP6z5oegmKZAYEAFBNsBLZxhExhAAcF2AItmyIsnEBv7sfc29mK5ERhGgVjj559/gSMThrG45kRgwAQE2wErmOESGGABwXaAi2fo0xOoDkmuDs+MEODCOtOz9K52Coxd4+0cpVERIJCDgGCbQ5XNkUA7BATbdtTBKPosUIXZ+BnnIVbn3UYgiMci9MbP+D1Cb5yT2/1cDDfeVz1XvTZeF49N9lx3O9X7qnYme656rT7uX4/KpnKsfm+LVayHuC1sXVXjns484mt9utfxEkskhyCX6v4hQKBJAcG2SX19E8hLQLDNq95mO0agChLdASgeu+aqK8tg2x164371XDQTQSICSISVCKRxYapqL/Bkz3W3E+1N1Ef1nD4WXo+2W3V/l2w11iqETrYeFnVdxfc0jxRrMtaMGwECBNogINi2oQrGQCAPAcE2jzqbJYFGBWzYNMqvcwIECDQm4PO/MXodE8hOQLDNruQmTKD/AjZs+m+uRwIECLRBwOd/G6pgDATyEBBs86izWRJoVMCGTaP8OidAgEBjAj7/G6PXMYHsBATb7EpuwgT6L2DDpv/meiRAgEAbBHz+t6EKxkAgDwHBNo86myWBRgVs2DTKr3MCBAg0JuDzvzF6HRPITkCwza7kJkyg/wI2bPpvrkcCBAi0QcDnfxuqYAwE8hAQbPOos1kSaFTAhk2j/DonQIBAYwI+/xuj1zGB7AQE2+xKbsIE+i9gw6b/5nokQIBAGwR8/rehCsZAIA8BwTaPOpslgUYFbNg0yq9zAgQINCbg878xeh0TyE5AsM2u5CZMoP8CNmz6b65HAgQItEHA538bqmAMBPIQEGzzqLNZEmhUwIZNo/w6J0CAQGMCPv8bo9cxgewEBNvsSm7CBPovYMOm/+Z6JECAQBsEfP63oQrGQCAPAcE2jzqbJYFGBWzYNMqvcwIECDQm4PO/MXodE8hOQLDNruQmTKD/AjZs+m+uRwIECLRBwOd/G6pgDATyEBBs86izWRJoVMCGTaP8OidAgEBjAj7/G6PXMYHsBATb7EpuwgT6L2DDpv/meiRAgEAbBHz+t6EKxkAgDwHBNo86myWBRgVs2DTKTi1qBAAAQABJREFUr3MCBAg0JuDzvzF6HRPITkCwza7kJkyg/wI2bPpvrkcCBAi0QcDnfxuqYAwE8hAQbPOos1kSaFTAhk2j/DonQIBAYwI+/xuj1zGB7AQE2+xKbsIE+i9gw6b/5nokQIBAGwR8/rehCsZAIA8BwTaPOpslgUYFbNg0yq9zAgQINCbg878xeh0TyE5AsM2u5CZMoP8CNmz6b65HAgQItEHA538bqmAMBPIQEGzzqLNZEmhUwIZNo/w6J0CAQGMCPv8bo9cxgewEBNvsSm7CBPovYMOm/+Z6JECAQBsEfP63oQrGQCAPAcE2jzqbJYFGBWzYNMqvcwIECDQm4PO/MXodE8hOQLDNruQmTKD/AjZs+m+uRwIECLRBwOd/G6pgDATyEBBs86izWRJoVMCGTaP8OidAgEBjAj7/G6PXMYHsBATb7EpuwgT6L2DDpv/meiRAgEAbBHz+t6EKxkAgDwHBNo86myWBRgVs2DTKr3MCBAg0JuDzvzF6HRPITkCwza7kJkyg/wI2bPpvrkcCBAi0QcDnfxuqYAwE8hAQbPOos1kSaFTAhk2j/DonQIBAYwI+/xuj1zGB7AQE2+xKbsIE+i9gw6b/5nokQIBAGwR8/rehCsZAIA8BwTaPOpslgUYFbNg0yq9zAgQINCbg878xeh0TyE5AsM2u5CZMoP8CNmz6b65HAgQItEHA538bqmAMBPIQEGzzqLNZEmhUwIZNo/w6J0CAQGMCPv8bo9cxgewEBNvsSm7CBPovYMOm/+Z6JECAQBsEfP63oQrGQCAPAcE2jzqbJYFGBWzYNMqvcwIECDQm4PO/MXodE8hOQLDNruQmTKD/AjZs+m+uRwIECLRBwOd/G6pgDATyEBBs86izWRJoVMCGTaP8OidAgEBjAj7/G6PXMYHsBATb7EpuwgT6L2DDpv/meiRAgEAbBHz+t6EKxkAgDwHBNo86myWBRgVs2DTKr3MCBAg0JuDzvzF6HRPITkCwza7kJkyg/wI2bPpvrkcCBAi0QcDnfxuqYAwE8hAQbPOos1kSaFTAhk2j/DonQIBAYwI+/xuj1zGB7AQE2+xKbsIE+i9gw6b/5ovS4/kXXJBmjoyUb4n7cRvv9+k+F+3p47+ukzlOxWq82lTvi5/xfG59dK+vMHBrj4DP//bUwkgIDLuAYDvsFTY/Ai0QsGHTgiKMGUIVBObOm5/mzp+fTjn5pDIQrbX2OuXP+L16bs6sWWnO7Flp2+22LwPTNVddWf6M38d7Lroarx193N9xOlaV41TrEbWO10bg7a5r1c5ktRqEPmINxhqu5jdmqfu1YQGf/w0XQPcEMhIQbDMqtqkSaErAhk1T8uP32x1WIrwusURKI0XoiWAwrwgIcZtdhIUIRBcU/1XPVb/Hc3GL1072XLxmvHb0cZ9rtyOrC8q1Eg7TWVexjuOPL7GGqxAfv7s1L+Dzv/kaGAGBXAQE21wqbZ4EGhSwYdMg/jhdV2G2ClbjvMRDBAZWIIJt3GKPtFvzAj7/m6+BERDIRUCwzaXS5kmgQQEbNg3id3Vd7dXqeshdAkMtUB1yP9STbPnkfP63vECGR2CIBATbISqmqRBoq4ANm+YrM/Y8y+ZHZAQE6hWIc4fjFueEuzUn4PO/OXs9E8hNQLDNreLmS6ABARs2DaCP02WE27jFeYhuBIZdwCH37aiwz/921MEoCOQgINjmUGVzJNCwgA2bhgugewIECDQk4PO/IXjdEshQQLDNsOimTKDfAjZs+i1+//66v9Ll/s96hMBwCsRe27i5QnJz9fX535y9ngnkJiDY5lZx8yXQgIANmwbQx3QZV4rdaObI6FeqjHnarwSGUsAfdJovq8//5mtgBARyERBsc6m0eRJoUMCGTYP4uiZAgECDAj7/G8TXNYHMBATbzApuugSaELBh04T6gn3GIZkziz22Lhy1oIvfCBCoV8Dnf72+WidA4L8Cgu1/LdwjQKAmARs2NcEuQrMOyVwELC8dGgHrvvlS+vxvvgZGQCAXAcE2l0qbJ4EGBWzYNIjf6dpX/TRfAyPov4Bzy/tvPrZHn/9jRfxOgEBdAoJtXbLaJUBgVMCGzSiFOwQIEMhKwOd/VuU2WQKNCgi2jfLrnEAeAjZsmq+zQzKbr4ER9F/AueX9Nx/bo8//sSJ+J0CgLgHBti5Z7RIgMCpgw2aUorE7gm1j9DpuUMC6bxC/07XP/+ZrYAQEchEQbHOptHkSaFDAhk2D+LomkLGAc8ubL77P/+ZrYAQEchEQbHOptHkSaFDAhk2D+J2ubeA3XwMjIJCjgM//HKtuzgSaERBsm3HXK4GsBGzYNF9uh2Q2XwMj6L+Add9/87E9+vwfK+J3AgTqEhBs65LVLgECowI2bEYpGrszb/78su/Zs2Y1NgYdE+i3gK/76bf4/fvz+X9/E48QIFCPgGBbj6tWCRDoErBh04XhLgECBDIS8PmfUbFNlUDDAoJtwwXQPYEcBGzYNF/l2HM1c2QkzZltj23z1TCCfgn4up9+SU/cj8//iW08Q4BAbwUE2956ao0AgXEEbNiMg9Lnh5xr2Gdw3bVCwLpvvgw+/5uvgREQyEVAsM2l0uZJoEEBGzYN4uuaQMYCzi1vvvg+/5uvgREQyEVAsM2l0uZJoEEBGzYN4ne69nU/zdfACAjkKODzP8eqmzOBZgQE22bc9UogKwEbNs2X2yGZzdfACPov4Nzy/puP7dHn/1gRvxMgUJeAYFuXrHYJEBgVsGEzStHYHYdkNkav4wYF/EGnQfxO1z7/m6+BERDIRUCwzaXS5kmgQQEbNg3i65oAAQINCvj8bxBf1wQyExBsMyu46RJoQsCGTRPqC/bpa08W9PBbHgLOLW++zj7/m6+BERDIRUCwzaXS5kmgQQEbNg3id7p2SGbzNTCC/gtY9/03H9ujz/+xIn4nQKAuAcG2LlntEiAwKmDDZpSisTv2XDVGr+MGBZxb3iB+p2uf/83XwAgI5CIg2OZSafMk0KCADZsG8XVNgACBBgV8/jeIr2sCmQkItpkV3HQJNCFgw6YJ9QX7dEjmgh5+y0PA1/00X2ef/83XwAgI5CIg2OZSafMk0KCADZsG8Ttdxwb+RjNH0uxZs5ofjBEQ6JOAP+j0CXqSbnz+T4LjKQIEeiog2PaUU2MECIwnYMNmPBWPESBAYPgFfP4Pf43NkEBbBATbtlTCOAgMsYANm+aL6+t+mq+BERDIUcDnf45VN2cCzQgIts2465VAVgI2bJovt0Mym6+BEfRfwLrvv/nYHn3+jxXxOwECdQkItnXJapcAgVEBGzajFI3d8XU/jdHruEEB55Y3iN/p2ud/8zUwAgK5CAi2uVTaPAk0KGDDpkF8XRMgQKBBAZ//DeLrmkBmAoJtZgU3XQJNCNiwaUJ9wT4dkrmgh9/yEHBuefN19vnffA2MgEAuAoJtLpU2TwINCtiwaRC/07Vg23wNjKD/AtZ9/83H9ujzf6yI3wkQqEtAsK1LVrsECIwK2LAZpXCHAIE+Cji3vI/YE3Tl838CGA8TINBzAcG256QaJEBgrIANm7Ei/f/dBn7/zfVIgEBKPv+tAgIE+iUg2PZLWj8EMhawYdN88R2S2XwNjKD/AtZ9/83H9ujzf6yI3wkQqEtAsK1LVrsECIwK2LAZpWjszrz588u+Z8+a1dgYdEyg3wK+7qff4vfvz+f//U08QoBAPQKCbT2uWiVAoEvAhk0XhrsECBDISMDnf0bFNlUCDQsItg0XQPcEchCwYdN8lWPP1cyRkTRntj22zVfDCPol4Ot++iU9cT8+/ye28QwBAr0VEGx766k1AgTGEbBhMw5Knx9yrmGfwXXXCgHrvvky+PxvvgZGQCAXAcE2l0qbJ4EGBWzYNIivawIZC7gaePPF9/nffA2MgEAuAoJtLpU2TwINCtiwaRC/03W/N/D/85//TGnSSyyxxJReN2wvqnxynf+w1dN8Jhbw+T+xjWcIEOitgGDbW0+tESAwjoANm3FQ+vxQvw/J/Owpn0vnfve7k87yqRtumHZ9+9smfc2wPrn/gQem3/3uuvTmnXdOG200cyCneeutt6Y77rwzPXiFFdLyyy/fyjk4t7z5svj8b74GRkAgFwHBNpdKmyeBBgVs2DSI3+m631/3I9hOXvNhCLbHfPzY9IsLL0xbvOqV6eUve9nkE27o2X7/Qaehaba6W5//rS6PwREYKgHBdqjKaTIE2ilgw6Z/dZmz+zvLzuYedWT/Oh2np3//+9/pnnvvLZ/5+9//nt639/vL++/f633pkY98ZHl/yQc8IC211FLjvHv4HxJsm6vxhRddlOL/k5133CHttOOOzQ0kk559/mdSaNMk0AIBwbYFRTAEAsMuYMOmfxU+/oQT0mdOODFtOGNG6g63TX7tSQTb3fd8V4mw34f2SY/6n/9ZAOTXv/lNuvTSS9N119+Q1njUo9L66z8pPf5xjxt9zaWXXZ6uueaa9LjHPTY9dMUV0wU//Vl6QBGKn/60p6Y111wzXXX11eniSy5JSz1wqfT0pz9tgfbPKw6HvvXW29LIyDPS3/72t3RhsYfxL3+9Na39xCcWX3/0jPTgBz94tJ+4c9dddxWvuShd++tfp78Wh9o+vuhzvfXWS2uuscbo6/54003pJz85Pz3kIQ9JM57y5BTnLy+55APTC1+wefmaG268MZ1//gXp97//fVp2uWXTuuuskzbZeONyzFUjUw22f7755vTLX16cflXM/2EPXTGtvfba6SlPfnLZ1j//+c909re/Uzb5gs03W+Bw4B/+6Efpz3++Oa211lpp/SetV75mYc7d89pkk43Tz3/+8/Tb3/4urb76aikOG3/oQx9atlOZ/qx4/g9//GNapxjTE4p+VlzxIel5z31u+ZpwvPKqq9Nll12a/lGMMww2WH/94jUrls/365+x55ZXoTb6F2z7UwWf//1x1gsBAikJtlYBAQK1C8SGTdy+f965tfelg5TGC7dNHpI5WbD9wQ9/mE446eRUXUwp6hcXVNp5hx1ShKu4nfbFL6Zvfuvs9D/Fnt6bi6B3ZxGa4rbM0ksXYfIF6evf+Ea6t7N3eNlllknvede70qMfvWb5mipAPnmD9VME5Op18eQjV1+9eO2eo+H2X3fckeIPAFf/6lfle6t/llxyyfTmN+2cnvH0p5cPRYg+unhdnFe6QvHfTX/6Uxl8P/TBD6SLfvnLdOwnP5Vij3X3bez5xNW4JjvHNs7BPeyjH03/+te/uptKz9p007TD9tuVj73rve8rgvutC5yre88996Td3rlHivnM3vUdRfh+SpqKczWvCLCrrrJK+QeDquOHPexhaa/3vCetvPJKqRp79Vz1M/4ose8+Hyx/PfTwI0bfH/WM+kYb+xXP9/N83O51L9RWlerfz8p87B/a+jcCPREgkJOAYJtTtc2VQEMC3UFrp+LwP7f6BY4v9trGRmW1QTl2z1X9I/hvDxMF2+uuu64ISQeVL4zzNNddd910dbH39Ytn/G8ZbmPvboTPKthGwNz6da9LqxSh67OnnJJuvuWW8r2v3XKLIsg+On3htNNT7C19wWbPT6/feuvyuSqERbh67rOfXe65/XWxN/ZbxZ7O2267rQyrb3vLm8vXRiD96c9+VgawzZ//vPKQ6R/+6Mcp9kzG+2M8Ea6rABhvir3PGxcXf1pttdXKAHn0vHnF85eml7zoReUe3BhPhOC777477VsE3zU6e36rcU0UbCOc7vme96awi/af/axnpZuLPbBnfOUr6a9//Wva/o3bpucU8znlc59P55x3Xtpo5kgRvt9UziOC+SGHHZ4i5B/10SPSH/7whyk5j53Xi1/4wrK9r37ta+lPf/5zeuYmmxSH7u6QYs/v7bf/K33t618v9yRvWvwBYuQZI2m5Yu907GmP1+71/g+Uh5nvv++HyvAfRxHEXuetXvuatGnRTr9u1bnlz3zmM8vDj6Pf+H/C51D9Fbio+PyJusctjh4JdzcCBAjUKSDY1qmrbQIERgWqcDv6gDt9E2j6kMuJgm3shY3QGmFoq9e9dtTjtNO/WB4KvO0226TnP++5o8H2iU94Qnrvu+87pPmM//1yuac2gu+H99u3fO+3zv52+sLpp5eHGcee2LhVATIOhX3XHvedfxyPn3PuuemUz59aHk585OGHlXsUd9tjzxSH944Nm3t/4IPlXtltirC8eRGaqwAYYfcjBx2YHr7yytHk6C0Oz13+QQ8q95jGg5/69HHpN7/9bXrLLruUhz/HY9W4xvYVz8Ut9tbGa5Zbdtm06zvePnouchziHEH2aU99anrH296aLr/iinTEkUelFYorEx91xOFlAP9S8YeBM886qzhU+2np7W99S7m3eyrO1byi/w/svVd67GMeE3dHrVYvwvsB++9XPhb/THTxqLhS8u6FZey1jkOkY49x7M1dbrnlFjgce7ShPtypjhrpQ1e6GCPQ9OfPmOH4lQCBIRYQbIe4uKZGoG0CsQcxbvGXfLd6Bao9JdUe2+5DMuvt+f6tTxRsqz2k93/HfY9ssvFG6U077TQabOMQ3B132L588htFcIs9uxsWoWlWcbht3L7/gx+UhzWv9fjHp73e+57ysSpAbrftG9Jzn/Oc8rH4p3tMhx/ykTKEfvBD+5bBa97RR5V7O6sXf/FLZ6RvfPObo3t3qwAYgfaQg+/b41y9NvbWfvZzp6RbbvlL9dDozzcVFyqqDq+uxjVRsI3zWE8uvjJpolscEnzowQen2LMb5y/ffvvto2F0vw8fUJyvfP1okJ6qczWvOFT46GJPbwT3uF1z7bXp4EMOLYPp/MKmuk0UbOP5GP+pxR706pDsuEhYBNxttt6qr+fZVl/386xnLbjHdsMZT6mm4WeNAjOKvbT21NYIrGkCBBYQEGwX4PALAQIEBl+g2jtehdqYUWzgx+Gqs2fN6vsEu0Nk98WjTj3ttPLiRxFEn10Ej7G3lVZaqbzoUHUo8uIE2+7Dk6Of6nDdOLw5wlocKjynOC81zgWNc2W7LxY1/5iPpQuLc2fj4lBxKHQVAFd5xCPSwQceMDrs2NsbITPO440LU1VtxB7WCLqLEmzjXN15Rb8RMrfu2ptddfbA4mJVM4t6xu24449PP/rxT9KrXvHy8pDlOIT5gQ98YHkYcuzxnarzRPOKC2kd9JFDFinYxrjikOlLiouCXXnVVcXPy8rwHReaeveee8TTfbl1/0GnOt8zOrYXsS/8OiFAgEBfBQTbvnLrjAABAvUKjBdq6+1x4a1PFGx//otfpI8d+4nycNsDP7z/6J68E048qThnddXiMOTnpaWLC0T1ItjGFYz3ef/e5fmzsRcx9mhf8NOfpsc85tHpg3vvXU5i32JP5/XFns44l3TbN2xT9n39DTekAw46uAy+1YWYJgqAcXGqI48+ugyj1R7PCHfvLb7qKPasdu81Xtge23/84x8pDo2O226zZ6e4+FXczi1C8g033Fh8b+xLy7nEY1UIftxjH1vslX52Obd4fbwvblN1nmheCwu2L3vJS9KWW7y67Cv+icOjTy/2cq9cXCyq2psee5BjT3L8IeHYY+Y3dkiycDtaJncIECAwdAKC7dCV1IQIEMhZYKLvsW3j1/3EuZiHH/HR8vzTCDxxDm2cnxpX+Y3zMffbZ5/yKry9CLaxJuIrguJraSJkxZWG41Db2Iu6cXHIc9ziwlGfOu4zZQiN/ldZ5RHlua7xXJwHvGdxjm5ciXmiABh7bCOMxl7f9YoLYa1UBLvY0/ufYg/u7UV/cTGn12y5ZXne8MKCbfRZXRgq7kcAv/vfd5cXx4rfq5Ad9+OrdeKc1ruKwB7nHN9YfM3QDtu9sdx7G89P1XmieU0UbP/3y19JXzvzzPL83ziHNg7vfWkRcuPiUfvsu195GPIGxVc3rbnGmumKK68sLzrV/YeEGFvdt/EumlaFW3tt69bXPgECBPorINj211tvBAgQaESg+5DMfg9goj22MY4ImMd95vh0+ZVXpDvvvO9rfOKreuLc2rgCcdx6EWxfv9VW5Z7LuDJv3OJiS3HobuwV7r798uKLU1y8Kr7CJwJqhNEnF98bG+f2RqiN20QBMJ6LvcAnFl9fFGEybhGkdym+Kmje/GPKUBpXS37ta7Zc6MWj4r3R/xfPOCPFlZnDMG7xPbBvLPYmx9cHdd9iz3fsmY1bBPa4IFb3d/ROxXmieU0UbOPw6hNPPqnYQ3tlOdbuQ8Vjr+23zj67uMr1r8qvZ3pQ8YeCuOp17NldbdVVu4de6/2J1n2EW+d+1kqvcQIECPRdQLDtO7kOCRAg0H+B8fZc9X8UE/cYh+r+vvhamrggU+wt7dVt7J7R+IqgO4vQGXs2q4sjjddX7H29tfg6oIW9brz3xjm2sed52WWWLfc4j/eaRX3sjzfdVAbr+C7YxbnV5TzRmOLc5fgjQYTZ2Cvf71uT55b3e676I0CAQO4Cgm3uK8D8CRAgMMQCY4PtEE/V1AgQIECAQNYCgm3W5Td5AgRyEZjokMxhn79gO+wVnnx+TZ5bPvnIPEuAAAECvRYQbHstqj0CBAi0UCDXYBvnvP7tb39P6xcXMernuZ0tXAJZDinXdZ9lsU2aAIHsBQTb7JcAAAIECBAgMJwCbT+3fDjVzYoAAQLNCAi2zbjrlQABAn0VsIHfV26dESBAgAABAn0WEGz7DK47AgQINCHgkMwm1PXZtIB133QF9E+AAIH+CQi2/bPWEwECBBoTmDd/ftn37FmzGhuDjgn0W8DX/fRbXH8ECBBoTkCwbc5ezwQIECBAgAABAgQIECDQAwHBtgeImiBAgEDbBWLP1cyRkTRntj22ba+V8fVOwNf99M5SSwQIEGi7gGDb9goZHwECBHog4FzDHiBqYuAErPuBK5kBEyBAYNoCgu206byRAAECBAgQaLOAq4G3uTrGRoAAgd4KCLa99dQaAQIEWilgA7+VZTEoAgQIECBAoEcCgm2PIDVDgACBNgs4JLPN1TG2ugScW16XrHYJECDQPgHBtn01MSICBAj0XMDX/fScVIMDIOAPOgNQJEMkQIBAjwQE2x5BaoYAAQIECBAgQIAAAQIEmhEQbJtx1ysBAgT6KuBrT/rKrbOWCDi3vCWFMAwCBAj0QUCw7QOyLggQINC0gEMym66A/psQsO6bUNcnAQIEmhEQbJtx1ysBAgT6KmDPVV+5ddYSAeeWt6QQhkGAAIE+CAi2fUDWBQECBAgQIECAAAECBAjUJyDY1merZQIECLRGwCGZrSmFgfRRwNf99BFbVwQIEGhYQLBtuAC6J0CAQD8EYgN/o5kjafasWf3oTh8EWiHgDzqtKINBECBAoC8Cgm1fmHVCgAABAgQIECBAgAABAnUJCLZ1yWqXAAECLRLwdT8tKoah9E3ARdP6Rq0jAgQINC4g2DZeAgMgQIBA/QIOyazfWA/tE7Du21cTIyJAgEBdAoJtXbLaJUCAQIsE7LlqUTEMpW8Czi3vG7WOCBAg0LiAYNt4CQyAAAECBAgQIECAAAECBBZHQLBdHD3vJUCAwIAIOCRzQAplmD0VcG55Tzk1RoAAgVYLCLatLo/BESBAoDcCgm1vHLUyWALW/WDVy2gJECCwOAKC7eLoeS8BAgQIECDQWgHnlre2NAZGgACBngsItj0n1SABAgTaJ2ADv301MSICBAgQIECgdwKCbe8stUSAAIHWCjgks7WlMbAaBaz7GnE1TYAAgZYJCLYtK4jhECBAoA6BefPnl83OnjWrjua1SaCVAr7up5VlMSgCBAjUIiDY1sKqUQIECBAgQIAAAQIECBDol4Bg2y9p/RAgQKBBgdhzNXNkJM2ZbY9tg2XQdZ8FfN1Pn8F1R4AAgQYFBNsG8XVNgACBfgk417Bf0vppk4B136ZqGAsBAgTqFRBs6/XVOgECBAgQINCQgKuBNwSvWwIECDQgINg2gK5LAgQI9FvABn6/xfVHgAABAgQI9FNAsO2ntr4IECDQkIBDMhuC122jAs4tb5Rf5wQIEOirgGDbV26dESBAoBkBX/fTjLtemxXwB51m/fVOgACBfgoItv3U1hcBAgQIECBAgAABAgQI9FxAsO05qQYJECDQPgFfe9K+mhhR/QLOLa/fWA8ECBBoi4Bg25ZKGAcBAgRqFHBIZo24mm6tgHXf2tIYGAECBHouINj2nFSDBAgQaJ+APVftq4kR1S/g3PL6jfVAgACBtggItm2phHEQIECgZoEItzNHRmruRfMECBAgQIAAgf4LCLb9N9cjAQIE+i4Q59jOnT8/zZk1K82ZPavv/euQQL8FYs3HH3NOOfmkfnetPwIECBBoQECwbQBdlwQIEOi3QGzkL7FESiPFHlt7bfutr78mBKo/5lxz1ZVNdK9PAgQIEOizgGDbZ3DdESBAoGkBhyQ3XQH91y1QrfHqZ939aZ8AAQIEmhcQbJuvgREQIECgbwLbbrf96OGZ9tz2jV1HfRSo9tTGIcjWeB/hdUWAAIGGBQTbhgugewIECPRTIPZgxYZ/bPRX9+Oc2wgA8Xjc4vd47vzzi4tNzbzv0OXJnqteW527G6+t3jfec/q4YPQ854VZjXWsfp+sHt3PhXVufcR8Y905tzaq70aAAIF8BATbfGptpgQIEFhAIAJAXFCq2rMV3/kZtzgnMYJB7N2tLjZV7ekd77nx2omgHO2O95w+FjSfzKp6blHqUdWqu65VO+PVo3pu0Puo1lX8dCNAgACB/AQE2/xqbsYECBAYFYgwE8EmbnE/bt2/d99flOeq147XZvVc/Fyc/qt22t7HzE02TW97y5vTTjvuOK7xoMxjYbVqeh7VWo1xuBEgQIBAfgKCbX41N2MCBAgQ6KPAs577vLThjBlp7lFH9rFXXREgQIAAgbwEBNu86m22BAgQINBnAcG2z+C6I0CAAIEsBQTbLMtu0gQIECDQLwHBtl/S+iFAgACBnAUE25yrb+4ECBAgULuAYFs7sQ4IECBAgEASbC0CAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQI0Cgm2NuJomQIAAAQIdAcHWUiBAgAABAjUKCLY14mqaAAECBAh0BARbS4EAAQIECNQoINjWiKtpAgQIECDQERBsLQUCBAgQIFCjgGBbI66mCRAgQIBAR0CwtRQIECBAgECNAoJtjbiaJkCAAAECHQHB1lIgQIAAAQI1Cgi2NeJqmgABAgQIdAQEW0uBAAECBAjUKCDY1oiraQIECBAg0BEQbC0FAgQIECBQo4BgWyOupgkQIECAQEdAsLUUCBAgQIBAjQKCbY24miZAgAABAh0BwdZSIECAAAECNQoItjXiapoAAQIECHQEBFtLgQABAgQI1Cgg2NaIq2kCBAgQINAREGwtBQIECBAgUKOAYFsjrqYJECBAgEBHQLC1FAgQIECAQA8Fjj/hhHThRb9Mc486smy1O9heeNFFac7u7yyf23DGjB72qikCBAgQIJC3gGCbd/3NngABAgR6LBDB9jMnnJgiuEa4rYLtTjvuUIba6G7n4v5OO+7Y4541R4AAAQIE8hUQbPOtvZkTIECAQE0C3eE29tJ234Tabg33CRAgQIBAbwQE2944aoUAAQIECCwgUIXb7geF2m4N9wkQIECAQO8EBNveWWqJAAECBAgsINAdboXaBWj8QoAAAQIEeiog2PaUU2MECBAgQGBBgQi3cXNObcngHwIECBAgUIuAYFsLq0YJECDQfoG58+anufPnt3+gRkhgCgIzR0ZS/Ddn9qwpvNpLCBAgQGDYBATbYauo+RAgQGAhAmMDbYQBNwKDLnD+BReMTmHOrFkC7qiGOwQIEMhDQLDNo85mSYAAgVJg2+22TxEAduvs1ZpdBAA3AsMiEGs71njchNthqap5ECBAYGoCgu3UnLyKAAECAy/QHWoF2oEvpwlMICDcTgDjYQIECAy5gGA75AU2PQIECIRAtbEfhx2fcvJJUAgMtUC13mOS11x15VDP1eQIECBA4D4BwdZKIECAQAYC1d7aCLXOqc2g4KaYqnPJHZJsMRAgQCAPAcE2jzqbJQECmQustfY6ZaC1tzbzhZDZ9GPdC7aZFd10CRDIVkCwzbb0Jk6AQE4Cgm1O1TbXSsC6ryT8JECAwPALCLbDX2MzJECAQLKBbxHkKGDd51h1cyZAIFcBwTbXyps3AQJZCdjAz6rcJtsRsO4tBQIECOQjINjmU2szJUAgYwEb+BkXP+OpW/cZF9/UCRDITkCwza7kJkyAQI4CNvBzrLo5W/fWAAECBPIREGzzqbWZEiCQsYAN/IyLn/HUrfuMi2/qBAhkJyDYZldyEyZAIEcBG/g5Vt2crXtrgAABAvkICLb51NpMCRDIWMAGfsbFz3jq1n3GxTd1AgSyExBssyu5CRMgkKOADfwcq27O1r01QIAAgXwEBNt8am2mBAhkLGADP+PiZzx16z7j4ps6AQLZCQi22ZXchAkQyFHABn6OVTdn694aIECAQD4Cgm0+tTZTAgQyFrCBn3HxM566dZ9x8U2dAIHsBATb7EpuwgQI5ChgAz/HqpuzdW8NECBAIB8BwTafWpspAQIZC9jAz7j4GU/dus+4+KZOgEB2AoJtdiU3YQIEchSwgZ9j1c3ZurcGCBAgkI+AYJtPrc2UAIGMBWzgZ1z8jKdu3WdcfFMnQCA7AcE2u5KbMAECOQrYwM+x6uZs3VsDBAgQyEdAsM2n1mZKgEDGAjbwMy5+xlO37jMuvqkTIJCdgGCbXclNmACBHAVs4OdYdXO27q0BAgQI5CMg2OZTazMlQCBjARv4GRc/46lb9xkX39QJEMhOQLDNruQmTIBAjgI28HOsujlb99YAAQIE8hEQbPOptZkSIJCxgA38jIuf8dSt+4yLb+oECGQnINhmV3ITJkAgRwEb+DlW3Zyte2uAAAEC+QgItvnU2kwJEMhYwAZ+xsXPeOrWfcbFN3UCBLITEGyzK7kJEyCQo4AN/Byrbs7WvTVAgACBfAQE23xqbaYECGQsYAM/4+JnPHXrPuPimzoBAtkJCLbZldyECRDIUcAGfo5VN2fr3hogQIBAPgKCbT61NlMCBDIWsIGfcfEznrp1n3HxTZ0AgewEBNvsSm7CBAjkKGADP8eqm7N1bw0QIEAgHwHBNp9amykBAhkL2MDPuPgZT926z7j4pk6AQHYCgm12JTdhAgRyFLCBn2PVzdm6twYIECCQj4Bgm0+tzZQAgYwFbOBnXPyMp27dZ1x8UydAIDsBwTa7kpswAQI5CtjAz7Hq5mzdWwMECBDIR0CwzafWZkqAQMYCNvAzLn7GU7fuMy6+qRMgkJ2AYJtdyU2YAIEcBWzg51h1c7burQECBAjkIyDY5lNrMyVAIGMBG/gZFz/jqVv3GRff1AkQyE5AsM2u5CZMgECOAjbwc6y6OVv31gABAgTyERBs86m1mRIgkLGADfyMi5/x1K37jItv6gQIZCcg2GZXchMmQCBHARv4OVbdnK17a4AAAQL5CAi2+dTaTAkQyFjABn7Gxc946tZ9xsU3dQIEshMQbLMruQkTIJCjgA38HKtuzta9NUCAAIF8BATbfGptpgQIZCxgAz/j4mc8des+4+KbOgEC2QkIttmV3IQJEMhRwAZ+jlU3Z+veGiBAgEA+AoJtPrU2UwIEMhaoawP/3nvvLVUf8IAHNKr7n//8J8V/3eO44cYb08NXXjktu+yyCx1bzGOJJZYo/1voi6f4gn//+9/pD3/8Y1pzjTWm+A4v67VAXeu+1+PUHgECBAgsvoBgu/iGWiBAgEDrBerawH/eZpun62+4IR344f3T1ltt1ZjDq1/zmnTppZelww89NL36Va9MXz/zzLTbO/dIq622WjrvO99OD3zgAycc2ymf+1z60H77p41mzkyfPenECV833hMRXiNAx+2xj3lM+TP+iZD90pe/Iv3qmmvSh/fbN23z+tePPufOfQJ///vf08233JKWK/7wEHWq41bXuq9jrNokQIAAgcUTEGwXz8+7CRAgMBACdW3gtzXYHn/8CenAj3wkLbfcsulHP/hBevAKK0xYp8UJtlddfXV62StemZZccsl01eWXjfYRgXfjZz4r3Xrrrekdb3tb2uOdu48+5859Aied/Nm0/wEHpE023jiddMLxtbDUte5rGaxGCRAgQGCxBATbxeLzZgIECAyGQF0b+G0NtnfeeWc68xtnpcc/7nHpyU/eYNIi1RFso8Mrr7oqXXbZZenFL35xWv5BD5p0DDk+KdjmWHVzJkCAQH0Cgm19tlomQIBAawT6FWx//ZvfpK9+9f/SysW5rVtuuUU666yz0iWXXJrWWuvx6YUveEFaZZVVSpPjjvtM+vs//pE232yztP76Txp1Ov+CC9KPf/yT4tDUVdPrt966fDz2iv7f/30t/epXv0orPHiFtPFGG6UtXv3qci9p9caxhyJX43joiiumHXfcoXpZ+tOf/pS+/vUz0wU/+1l6cNHWlltska699tpxD0WerN+q/VuKQ2k//4UvlOfm7vr2t5f9vPzlL0trPf7x6fOnnppuuulP6UUvemFad511FhjDt7/znXThRReVhyw/dcMNS4fKJl74/e//IP38F79IM2Y8JT1hrSeks88+O/3uuuvShsVrX7D55uWe6NEGx7kz2di7X37FFVekb37r7BSvX2/ddQqPLdOll12arrjiyrTxxhulmSMjoy+/7vrr0znnnFuOa9VVHpFmFoduP/95zxutQ2WysNp/73vfT7+48MJ0yaWXpO8W99d41KPSq175yrKft7/trWmZZZYZ7XNx79S17hd3XN5PgAABAr0XEGx7b6pFAgQItE6grg38sXtszz3vvPTmt76tDLBxzmkE1eoW51Ge9vnPp0c+cvW0+x57pq99/etpq9e+Nh104AHVS9Iub3lLOu+730s7FWH0/XvtlSIAztn9nemuu+4afU3cedELX5iOmTd39LGxwbYaR1y46Zxvn12+7qabbkqvf8O25TnB1RvjYlMznvKUMmh1n2O7sH7POffc9Ja33Rdkq7aqnx+bP68M8WPHFM9fXYTzHXd+Uxmwq9fHzwi1J3zmuPTEJzyhfPjgQw5Jx33m+DJY/ua3v13g9c/cdJP0qU98Ii211FLdTYzeX9jYqxf+8Ec/KucQe7er26qrrppWWmmlIthekXafMzvN2nXX8qnLLrs8vXGHHVKcF9t9e11xbnPULy68VZnHXCar/UHFIeKfKQ4VH+/2i59ekB7ykIeM99S0Hqtr3U9rMN5EgAABArUKCLa18mqcAAEC7RCoawN/omAbs177iU9Mu7zpTSXA/GOOKfc4vnbLLdNHDj4ofaPYkzt7t91TBKkffu+75WsiYD1tZGa644470qmfOyU9/WlPGw26b9lll7TzTjuWexZ3ectbU5zD+n9f/t+07rrrlu8dGyKrkNUdbN/05jeXewgjWO+8w45p3fXWLfcuf+H008s2uoNtFbAn6jfGffnlVxQXjrohfWCfD5VXY/7Mpz5VtrNusecz9lqOHVNcUGqTZz07/fnPfy4Pj95u2zeWrz/5lM+miy++JD3iEY8oLSJsV8E2XvC85zwnbbvtG9K111ybjirC/L/+dUc6rAi+W7z6VeX7x/6zsLGHWfg9vbD+5+23p6c99alph+23S0svvXT67CmnpB/88Edlk1Wwvfvuu8tx/+UvfykvzLXV616XbrjhxnTEkUcWe6RvSgfsv1+5d70yjzdPVvsI6jcW748A/tniwl3rrbdees+ee5Z9brTRzEkv9FW+aBH+qWvdL8IQvJQAAQIE+iQg2PYJWjcECBBoUqCuDfzJgu0ZXzw9PXmD+85vjcC07/4fLs95/eY3ziwD1chGG6cIs1/76lfSOmuvXR5+u1MRYB/+8IenH33/e6Nf3XPtr3+dViz24v3jn/8sCffY813p4ksuSUcecUR6RXHYb9zGhsgqZFXB9p577klPffozyn7HhsIti6AWwbI72EabU+k3DuEd7+JR443piiuvTK941avLvZvfO/ectPrqq8fL0h+LrwR61nOfVx6W/H9f+XJ52HIVbOOiVz89/yejYW/WnN3SWd/8ZnpDcZXl/YurLU90W9jY41DgrV6/TWn8/fPOLf/AEG3F4eEbb/rM8o8LVbCNq02Hb4zlY8fMLwNwvDYOD49g+uIXvSjNn3v06B7beG6y2sfzcXOO7X0O/iVAgACB3ggItr1x1AoBAgRaLdDvYPvQhz40/fQnPy5DXMBUQerBD35wuvBnPy2t3locyvud4pDe9777XenNRaA98KCD0vEnnpS2Kc6t/XCxFzBu3y0OS96nCHA33vj78vfufw4tDmndcotXlw8tLNjG1+685GUvL88H/UXRf/fFnD716U+nQw47fIFgO9V+FyXYfq44DHufffdLT3nyk9OXTj+teyrpNa/bKv3y4ovT/vt+KL1hm21G99jGeclxaHN1+/ixxxZ7So8qz7P9eBEyx7tNZewnf/aUtN+HP5zi/N7TTv38As28udgjfu53vzt6KHI17gVe1PVL7AH/XlHH6o8JU6l9vF2w7UJ0lwABAgQWW0CwXWxCDRAgQKD9Av0OttWe0komLpT0uq1fX1yw6b/B9ktnnJHeu9fe5Xmkp5x8Unrhi1+S4gJEcUjvs5/9rHTbbbelkY03SbG3NfbMVhdgOqUIiBF0FyXYxtfuPH3mRuVwug9hjgfeV4zhi8VYqj22i9LvogTb75xzTnrr29+RHvawh6Uf/+D7o3th41Df+Gqgv/71r+kTH/9Y2uz5zx8NtmPPQT62OLf28I8eOWGwnerYzyuCaxzSvcLyy6cf//CHoxejirE88znPTTfffPNosI1Dht/2jl1TBNa93vueqqSjP5daaun0yle8fDTYTqX28WbBdpTQHQIECBDogYBg2wNETRAgQKDtAm0MthE2Z26yablX93+/9MXyMN043PWCYk9vXBjpBz/4YdqxOEd3xeLKxj8rDseNCxTFOZ3Pef5mKQJYtXcz7Be2xzZe84IXvTjF+Z0RFvcr9oxGHzfceGN6xStfVR6CWwXbRem3CrZxXuzFF/4iLbvsstFVeRs7pr/97W9luL733nvL81K33mqr8nVfOO200fN0Y55x8aTqUORFDbZTHXuMJc5njvN+49zlt7/1rWXQPv6EE9Pc+fftCa4ORY7A/YzisPG4HffJT6bnPOfZ5f34mqQrr7yquMDUO8pDmas9tosabDecMSOd/oVTyzZ7/U9d677X49QeAQIECCy+gGC7+IZaIECAQOsF6trAn+gc26mGmzduv0P6yfnnl+fYxve+xp6/jx5+eOkZwTf22EYQ3HSTTdLqxVWVzy72Ht5b7MGNc0Fjb+Oee+yRtnvjtlMKttV5vtF47H18wlprpZ/9/OdlYI4+qmC7KP12n5Mac469sZ889uPjXjwq+j3gwAPTCSedHHfLr7mJn9ffcEP8SDsWF3D6wPvfX96fbrBdlLEfdfTcNP9jHyv7i5Af4TwuKhWHace8qmAbL9h3v/3L82nj/gYbrJ/uuvOu8kJe8Xu1l3lRg21clXmHnXaOJsqLgIVf95WuyycW85+61v1iDsvbCRAgQKAGAcG2BlRNEiBAoG0CdW3gL26wrc71rLziIkRxMaLqFl8J9P4PfLC86FM8FldKPuzQQ9LbikN6Y29pXLX4PcU5umP3jk4Usj593HHp45/4ZHmYcwS55z/3uemZz9y0vLBVFWyjn6n2G689oTgv+BPF4dNxteO4/eC75xXfw7va/cZUPln8E1eIPuXzp46+Pq6GvO02rx/9ap143XSDbbx3kcZe7KH9ytf+r/ze2kcWF7N65+67p28V35kbV63uDraxZ/eQww5LZ/zvl1NcHTluMe79PrRP+dVG8ftE5uMdhh6vjz8m7P3+D6SvFxcTiys9j/1jSLxmcW91rfvFHZf3EyBAgEDvBQTb3ptqkQABAq0TGOQN/DjHNq7yu8LyK5Tfgbu4uBGorrn22vKqxHHo80S3Xvc7tp84DDpuj/qf/xn71GL/vqhjj+Aah3rHLb6GaWyw7R5QnAf9oOWWK8N79+NtvD/I676NnsZEgACBNgsItm2ujrERIECgRwI28HsEOUTNxF7SzxXnyXbf7rn3nnTsJz+V4hzcvd/73rTzzjt1Pz1w9637gSuZARMgQGDaAoLttOm8kQABAoMjYAN/cGrVr5Hecsst5cW7xutvySWXTGd/86zy8ODxnh+Ux6z7QamUcRIgQGDxBQTbxTfUAgECBFovYAO/9SXq+wDvuOOO9IXTTr9fv8sss3R6/vOel1ZZZZX7PTdoD1j3g1Yx4yVAgMD0BQTb6dt5JwECBAZGwAb+wJTKQHsoYN33EFNTBAgQaLmAYNvyAhkeAQIEeiFgA78XitoYNAHrftAqZrwECBCYvoBgO3077yRAgMDACNjAH5hSGWgPBaz7HmJqigABAi0XEGxbXiDDI0CAQC8EbOD3QlEbgyZg3Q9axYyXAAEC0xcQbKdv550ECBAYGAEb+ANTKgPtoYB130NMTREgQKDlAoJtywtkeAQIEOiFgA38XihqY9AErPtBq5jxEiBAYPoCgu307byTAAECAyNgA39gSmWgPRSw7nuIqSkCBAi0XECwbXmBDI8AAQK9ELCB3wtFbQyagHU/aBUzXgIECExfQLCdvp13EiBAYGAEbOAPTKkMtIcC1n0PMTVFgACBlgsIti0vkOERIECgFwI28HuhqI1BE7DuB61ixkuAAIHpCwi207fzTgIECAyMgA38gSmVgfZQwLrvIaamCBAg0HIBwbblBTI8AgQI9ELABn4vFLUxaALW/aBVzHgJECAwfQHBdvp23kmAAIGBEbCBPzClMtAeClj3PcTUFAECBFouINi2vECGR4AAgV4I2MDvhaI2Bk3Auh+0ihkvAQIEpi8g2E7fzjsJECAwMAI28AemVAbaQwHrvoeYmiJAgEDLBQTblhfI8AgQINALARv4vVDUxqAJWPeDVjHjJUCAwPQFBNvp23knAQIEBkbABv7AlMpAeyhg3fcQU1MECBBouYBg2/ICGR4BAgR6IWADvxeK2hg0Aet+0CpmvAQIEJi+gGA7fTvvJECAwMAI2MAfmFIZaA8FrPseYmqKAAECLRcQbFteIMMjQIBALwRs4PdCURuDJmDdD1rFjJcAAQLTFxBsp2/nnQQIEBgYARv4A1MqA+2hgHXfQ0xNESBAoOUCgm3LC2R4BAgQ6IWADfxeKGpj0ASs+0GrmPESIEBg+gKC7fTtvJMAAQIDI2ADf2BKZaA9FLDue4ipKQIECLRcQLBteYEMjwABAr0QsIHfC0VtDJqAdT9oFTNeAgQITF9AsJ2+nXcSIEBgYARs4A9MqQy0hwLWfQ8xNUWAAIGWCwi2LS+Q4REgQKAXAjbwe6GojUETsO4HrWLGS4AAgekLCLbTt/NOAgQIDIyADfyBKZWB9lDAuu8hpqYIECDQcgHBtuUFMjwCBAj0QsAGfi8UtTFoAtb9oFXMeAkQIDB9AcF2+nbeSYAAgYERsIE/MKUy0B4KWPc9xNQUAQIEWi4g2La8QIZHgACBXgjYwO+FojYGTcC6H7SKGS8BAgSmLyDYTt/OOwkQIDAwAjbwB6ZUBtpDAeu+h5iaIkCAQMsFBNuWF8jwCBAg0AsBG/i9UNTGoAlY94NWMeMlQIDA9AUE2+nbeScBAgQGRsAG/sCUykB7KGDd9xBTUwQIEGi5gGDb8gIZHgECBHohYAO/F4raGDQB637QKma8BAgQmL6AYDt9O+8kQIDAwAjYwB+YUhloD08wp3gAAEAASURBVAWs+x5iaooAAQItFxBsW14gwyNAgEAvBGzg90JRG4MmYN0PWsWMlwABAtMXEGynb+edBAgQGBgBG/gDUyoD7aGAdd9DTE0RIECg5QKCbcsLZHgECBDohYAN/F4oamPQBKz7QauY8RIgQGD6AoLt9O28kwABAgMjYAN/YEploD0UsO57iKkpAgQItFxAsG15gQyPAAECvRCwgd8LRW0MmoB1P2gVM14CBAhMX0Cwnb6ddxIgQGBgBLbdbvt0/gUXpGuuunJgxmygBBZHINZ7rPuZIyPplJNPWpymvJcAAQIEBkBAsB2AIhkiAQIEFldg7rz5ae78+WnOrFlpzuxZi9uc9xNovUD1x5wItRFu3QgQIEBguAUE2+Gur9kRIEBgVCAOy4ybcDtK4s6QClR/yLG3dkgLbFoECBAYR0CwHQfFQwQIEBhGgWpjP+Ym3A5jhc0pBKp1LtRaDwQIEMhLQLDNq95mS4BA5gLVRn8wxIa/w5IzXxBDNP3zz7+gPNy+WtvOqx2i4poKAQIEpiAg2E4ByUsIECAwTAJxUZ0IuPHTjcCwCexWnEM+uziX3I0AAQIE8hIQbPOqt9kSIEBgAYEItxcIuAuY9PqXz5xwYtpwxlOK/2b0umntjREQaMeA+JUAAQIZCQi2GRXbVAkQIECg/wLPeu7zylA796gj+9+5HgkQIECAQCYCgm0mhTZNAgQIEGhGQLBtxl2vBAgQIJCXgGCbV73NlgABAgT6LCDY9hlcdwQIECCQpYBgm2XZTZoAAQIE+iUg2PZLWj8ECBAgkLOAYJtz9c2dAAECBGoXEGxrJ9YBAQIECBBIgq1FQIAAAQIEahQQbGvE1TQBAgQIEOgICLaWAgECBAgQqFFAsK0RV9MECBAgQKAjINhaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKRAgQIAAgRoFBNsacTVNgAABAgQ6AoKtpUCAAAECBGoUEGxrxNU0AQIECBDoCAi2lgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYWgoECBAgQKBGAcG2RlxNEyBAgACBjoBgaykQIECAAIEaBQTbGnE1TYAAAQIEOgKCraVAgAABAgRqFBBsa8TVNAECBAgQ6AgItpYCAQIECBCoUUCwrRFX0wQIECBAoCMg2FoKBAgQIECgRgHBtkZcTRMgQIAAgY6AYGspECBAgACBGgUE2xpxNU2AAAECBDoCgq2lQIAAAQIEahQQbGvE1TQBAgQIEOgICLaWAgECBAgQqFFAsK0RV9MECBAgQKAjINhaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKRAgQIAAgRoFBNsacTVNgAABAgQ6AoKtpUCAAAECBGoUEGxrxNU0AQIECBDoCAi2lgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYWgoECBAgQKBGAcG2RlxNEyBAgACBjoBgaykQIECAAIEaBQTbGnE1TYAAAQIEOgKCraVAgAABAgRqFBBsa8TVNAECBAgQ6AgItpYCAQIECBCoUUCwrRFX0wQIECBAoCMg2FoKBAgQIECgRgHBtkZcTRMgQIAAgY6AYGspECBAgACBGgUE2xpxNU2AAAECBDoCgq2lQIAAAQIEahQQbGvE1TQBAgQIEOgICLaWAgECBAgQqFFAsK0RV9MECBAgQKAjINhaCgQIECBAoEYBwbZGXE0TIECAAIGOgGBrKRAgQIAAgRoFBNsacTVNgAABAgQ6AoKtpUCAAAECBGoUEGxrxNU0AQIECBDoCAi2lgIBAgQIEKhRQLCtEVfTBAgQIECgIyDYWgoECBAgQKBGAcG2RlxNEyBAgACBjoBgaykQIECAAIEaBQTbGnE1TYAAAQIEOgKCraVAgAABAgR6KHDhRReli4r/dtpxx7LVscH2+BNOGH2uh91qigABAgQIZC0g2GZdfpMnQIAAgV4LzNn9nSnC7c477lAG2O5gWz0396gj04YzZvS6a+0RIECAAIFsBQTbbEtv4gQIECBQl0AVYCPcfuaEE0dDbHfgratv7RIgQIAAgRwFBNscq27OBAgQIFC7QBVuuzuq9uJ2P+Y+AQIECBAgsPgCgu3iG2qBAAECBAiMK9AdboXacYk8SIAAAQIEeiIg2PaEUSMECBAgQGB8gQi3G854igtGjc/jUQIECBAg0BMBwbYnjBohQIDAYArMnTc/nX/BBWnO7Flp5shI2na77cuf8Xs8Hs/H4/F79dpTTj5p0udCYrx29HF/x+lYVY5TrcfYOla/V+1MVqtB6CPWZ8ypWqeD+X+iURMgQIDA4goItosr6P0ECBAYMIEIK3Grwurc+fNThNUIBmutvU75M36P18Vzc2bNKl8bASgCxDVXXVn+jN/Hey7aHq8dfdzfcTpWleNU6xE1q8Jrd12rdiar1SD0EWsw1mms32p+M2eOlL+HrxsBAgQI5CEg2OZRZ7MkQIDAqEAEmbhVATUCgRuBQRao9tjGHLrX9yDPydgJECBAYNEEBNtF8/JqAgQIDKxAtfEfP+Mm0A5sKQ18EoE40mCJJVKaXezJdSNAgACBfAQE23xqbaYECGQuEHuyqkOHM6cw/QwEug+5z2C6pkiAAIHsBQTb7JcAAAIEchGI8yU3Ks49tCcrl4rnPc/qHPHqXOK8NcyeAAECwy8g2A5/jc2QAAECBAhkJ1Adep/dxE2YAAECmQoItpkW3rQJEMhLIPZeuVJsXjU32/sEBFwrgQABAnkICLZ51NksCRDIXKD7K10ypzD9jASs+4yKbaoECGQvINhmvwQAECCQg4ArIedQZXMcK+C88rEifidAgMDwCgi2w1tbMyNAgAABAgQIECBAgEAWAoJtFmU2SQIEchdwSGbuKyDP+Tu3PM+6mzUBAnkKCLZ51t2sCRDITMAhmZkV3HRLAX/QsRAIECCQj4Bgm0+tzZQAAQIECGQl4NzyrMptsgQIZC4g2Ga+AEyfAIE8BGzg51FnsyRAgAABArkKCLa5Vt68CRDISsAhmVmV22Q7Ata9pUCAAIF8BATbfGptpgQIZCwwb/78cvazZ83KWMHUcxNwbnluFTdfAgRyFhBsc66+uRMgQIAAAQIECBAgQGAIBATbISiiKRAgQGBhArHnaubISJoz2x7bhVl5fngEfN3P8NTSTAgQILAwAcF2YUKeJ0CAwBAIONdwCIpoCossYN0vMpk3ECBAYGAFBNuBLZ2BEyBAgAABApMJuBr4ZDqeI0CAwHAJCLbDVU+zIUCAwLgCNvDHZfEgAQIECBAgMCQCgu2QFNI0CBAgMJmAQzIn0/HcsAo4t3xYK2teBAgQuL+AYHt/E48QIEBg6AR83c/QldSEpiDgDzpTQPISAgQIDImAYDskhTQNAgQIECBAgAABAgQI5Cog2OZaefMmQCArAYdkZlVuk+0IOLfcUiBAgEA+AoJtPrU2UwIEMhZwSGbGxc946tZ9xsU3dQIEshMQbLMruQkTIJCjgD1XOVbdnJ1bbg0QIEAgHwHBNp9amykBAgQIECBAgAABAgSGUkCwHcqymhQBAgQWFHBI5oIefstDwLnledTZLAkQIBACgq11QIAAgQwEYgN/o5kjafasWRnM1hQJ3CfgDzpWAgECBPIREGzzqbWZEiBAgAABAgQIECBAYCgFBNuhLKtJESBAYEGBufPmp5nFHtuZIyMLPuE3AkMs4KJpQ1xcUyNAgMAYAcF2DIhfCRAgMIwCDskcxqqa08IErPuFCXmeAAECwyMg2A5PLc2EAAECEwrYczUhjSeGWMC55UNcXFMjQIDAGAHBdgyIXwkQIECAAAECBAgQIEBgsAQE28Gql9ESIEBgWgIOyZwWmzcNuIBzywe8gIZPgACBRRAQbBcBy0sJECAwqAIOyRzUyhn34gj4g87i6HkvAQIEBktAsB2sehktAQIECBAgMEUB55ZPEcrLCBAgMAQCgu0QFNEUCBAgsDABG/gLE/I8AQIECBAgMMgCgu0gV8/YCRAgMEUBh2ROEcrLhkrAuh+qcpoMAQIEJhUQbCfl8SQBAgSGQ2De/PnlRGbPmjUcEzILAlMQcG75FJC8hAABAkMiINgOSSFNgwABAgQIECBAgAABArkKCLa5Vt68CRDISiD2XM0cGUlzZttjm1XhM5+sr/vJfAGYPgECWQkItlmV22QJEMhVwLmGuVY+73lb93nX3+wJEMhLQLDNq95mS4AAAQIEshFwNfBsSm2iBAgQSIKtRUCAAIEMBGzgZ1BkUyRAgAABAhkLCLYZF9/UCRDIR8AhmfnU2kz/K+Dc8v9auEeAAIFhFxBsh73C5keAAIFCwNf9WAY5CviDTo5VN2cCBHIVEGxzrbx5EyBAgAABAgQIECBAYEgEBNshKaRpECBAYDKBfh6S+Z///Gd0KEssscTo/epO9fx4z1WvGftzvPfcfMst6SEPfnBaeumlx778fr+P9/77vajPD1Rjim4XxaLPwxzo7pxbPtDlM3gCBAgskoBgu0hcXkyAAIHBFOjnIZmnnnZaOvvb30lPWGut9L73vHsBsN//4Q/pgx/at3zsw/vtmx65+uoLPD/RL/sfeGD63e+uS2/eeee00UYz0wU//Wn6xKc+nR72sIelQw46MC255JITvTWde9556bOf+3xaZ+2107v33GPC1433xN13350iQMdttVVXHe8l037s45/4ZPrZz3+eXv3KV6RXvPzl026nyTf+61//Srf97W9pmeKPC1GLtt36ue7bNnfjIUCAQG4Cgm1uFTdfAgSyFOjnnquLfvnLNO+Yj6WllloqzTvqyPJnhf7d730vnfTZU9KKK66YPnrYodXDC/05Nth+6+xvpy+cfnpaZpml0xGHHZaWW3bZCdtYnGB7w403pg/tt396wAMekD517Mcn7GM6TwxDsP3OOeemz516alpv3XXTnu/cfToMtb7HueW18mqcAAECrRIQbFtVDoMhQIDA4AvEXrzZu78zxaG273nXnmntJz5xdFKfOu649JPzL0gjz3hGeuubdxl9fGF3xgbbf//73+lnP/t5Wm211dJjH/uYSd8u2E7Ks1hPtj3YLtbkvJkAAQIEBkpAsB2ochksAQIEpifQ70MyqyC6xatemV7+speNDvrd79sr/eUvf0k7bPfG9OxnPat8PPaKnl+E3d///vdp2eWWTeuus07aZOONy72k1Rur9qpDkf94003pJz85Py2//PLpBZtvVr0s3XrrrcVhyj9LV//qV+lBD1qubOcPxeHP4x2KPFm/Vft///vf03nFXuY4B/blL31p2c/IyDNGD6H+8803p1/+8uL0q2uuSQ976Ipp7eJw56c8+ckLjD3edN1116VfXHhR+fMRj3h42myzzdKXzvjfKR2KHH8ouPCii9JVV12d7v3PvaXPjKc8pZjfg8rxnPXNb6U77rgjbThjRnr0o9csH4t/rrzqqnTllVcVhwg/ND3n2c8uH1/YeOPQ6699/czytS958YvT5VdcXlquUDhvsMEGac011iifu+TSy9K1116bfvu736a4//CVV04bb7RR+dzLXvqSci/9XXfdVYzh6nTZZZemf/zzn+W4N1h//XJvffnCPvzTz3PL+zAdXRAgQIDAJAKC7SQ4niJAgMCwCMQG/kYzR9LsWbP6MqXTv/SlFIHrSeutm/bY/b5DVONc1ffutXfZ/0EHfDitusoqKQ5bPvaTn0qxB7b79tQNN0y7vv1tow+NDbYXX3JJOnre/LTKIx6RDj7wgPJ1f/3rX9NHDj1s9JzYeDAC6eMf97h0TRHCus+xXVi/v7z44jR3/jGj/XffiXHF+OKc38M++tEUwbP79qxNN007bL/d6AWhrrjyynKs3XN8cHHRq+WLYBoBerJzbG+//fZ06BEfTddff313F2nNNdcszxd+0HLLlecaxznH0e+OO2w/+rqj581LF19yaXrhCzZPW7/udVMa7x133pl2nT2nbCPWS+xdr25xHvOcYv2s/6T1ysPA43Dw8W5x+HmE7kMPPyJddfXV5UuiDrEHP87D3W+fD5Z/kBjvvb1+rN9/0On1+LVHgAABAlMXEGynbuWVBAgQIDBFgQhUEayWXWaZNLcIOhGKfvzjn6RPH398GW4OP+QjZUtV+HrJi15UBrDYixqBNfYc7vvBD6Q1OnsIpxJsj5o7t9x7uPLKK6UXbLZ58d5HlXuCv/eDH5R9dQfbhfX70Ic+NP3uuuvTLbfcXJ4THMFs9zn3Bb5Hr7lGGdz2fM97U+zR3bi4mFXsfb75zzenM77ylRQBe/s3blvuJb3nnnvSbu/cI/2r2KMaAXvzzZ6fHvjAB6Zzzj0vReCN22TB9piPH1vs6b0wPe6xj02xJ/QBD1gyff3MM8ugXh3OHRegivN1IzRWrhGi5xT9xl7TuIBXvH8q4+0OthG+X1jsDX/Uox5VXgzs8iuuKPfMHnLwQWUgv/nmW4q91b9M5xQX54qg/Zottijns+46a6dbir3ye73/A+We2/33/VCKPb6fOeHEcs/2Vq99Tdp0k03K1/qHAAECBAj0SkCw7ZWkdggQINBigblFWJxZ7IGbOTLSl1FGQJpTnGcbwe4De+1Vngd74kknpwiZEQR3Ka5uXN3+8Mc/lnsvI/zF7VOfPi795re/TW/ZZZdivM8oH1tYsL333nvT7N12T9HvLjvtlDbe+L7DYuPNBxx8cPrNb367wB7beHwq/U508ajYWxtjiotW7fqOt49eICsOqY6g97SnPjW9421vLedxwEEHl3tvDznooBShO26xJ/ad73p3GeAnCraxhzMMby/2CO9Y7AFevXMF6Ti0+oTCcoUVVkhHf/SIcs6777Fnudd732Jv6BpFEL30ssvTkUcfnR7ykIeUF+m6rgjpUxlvd7B93Wu2TC8u/uAQtxuLw8T32Xe/8v6Rhx9Wthu/THSObbRTjSkOFY9Dp2NcyxV7mONCXP269fOiaf2ak34IECBAYHwBwXZ8F48SIEBgqASaOCTzwIM/kn79m9+Uh8HG4bDv/+A+5Z6+nYrDZZ9ZHDYbt9iz+9nPnVLsGf3L/bzftOOOaZNNNi4fX1iwrb5GKELTvKOPKvcUVw2e9c1vptO/dMYCwXaq/U4UbM/77nfTyad8rurifj8jwB5aBOrqwlWxx/T9e71vgddVe40nCrbVnBZ405hfYu9pnN86rzhs+qLi8OkqjJ76hS+ks79zTnpOsSd5++J85qmOtzvYViG56vItb39H+YeKDxV70qtzbScKtvGe6PPU004fPcw8rpIdAXebrbfq23m2Taz7ystPAgQIEOivgGDbX2+9ESBAoBGBJvZcxcWRzjzrrLRhEWYiXMUeyrhVYeyfxQWFdt/zXSn2tsae2SosxR7PCLqLEmyjrTj0Nm7dhzDH78cXh8D+4Ec/Gg22i9LvRMG2+kqjuHjV1q97bXSzwO2BSz6w3EMehxHH4cSxdzW+3qj7+3bjfOM473iiYNt9dek4fDfaGHuLC0bF+aw/LOYXh/pWh1tXf0SIw6c3WP9J5bnM8RVMCxtvd7CNw5q7v5v2re/YtdzDPNVgG2ONw7IvufTS8kJWcZGp2FNdjXHsXOr43df91KGqTQIECLRTQLBtZ12MigABAgMvUB0OG2EqzjmN80CrPZkxue7n45DaOI81gtB7935/uWdwu23fkJ77nOeUDgvbYxsvqsJcXETpjcV741zWCI77Ft9DG4c5V4FqUfqtgm2M7WPz5qall166HM8//vGPtFtx+G/cdps9Oz15g/XL+7GH9oYbbiyuBP3SMhTedtttaY93v6d8rntPdRV444mJgm08F9+hG2OIc5Bfs+UWpVEcBv3lr34lveoVr0yPecyj42WpCusxzg/svVfa78MHpLiw1JFHHF46THW80w22cf7w3u97bzmW+CfOx4295CsX5/3O2vUd5ePXFRfAinFFuD/2mPl9PSR5dGDuECBAgMDQCgi2Q1taEyNAgMB/BZo4JPPOO+8qvs929zKkxtfQRCDbtPgan5132rEcWISxCIdxLul6666bVipC0IXFxYj+U+zBjfNK48JTr9lyy/T85z23PD803l993c94V0U+59xz0ymfP7VsO8L0/zzykeXFiuKB6KMKtovSbwTiPYo9zXERprgCc+w1nTNr1xQXVjrlc58vz6eN9iNg3v3vu8sQGr/PLsJcHHYbtwj0cYGnuK226qpl0IywGiE0xjVZsI2rHX+yOOc4Xhd/FFh5pZXTtb/+dWlaXe24bLj457Di6snxFT9xLuv1N9xQXgX7zW96U/X0lMa7qME2AuwRRx5V9hEX+nrEwx9eXs36T3/+c3lOblzEKvYYr7nGmuXFsuLQ9LD64N73XR17dHA13en3ueU1TUOzBAgQIDAFAcF2CkheQoAAgUEX6PfX/VRe8fU78R2v1W3shZ0iuMVFpSJQxe0Ja62VdnnTzuU5o9WeytcWFzGayh7beP83v/Wt9PVvnFXuwYzgOKP4Ttn1iq8cisBbBdt43VT7jdd+uzhXNQ6pjr2vcasO0Y2w+cUzzigOA/5xeXXkeG7FFVdMb3zDNuXXAcXvcYsrPB9/4onp57+4sDzfNM41jT2wNxdXXP5RcaXoyYJtvD8uSPXlr341RViM2zLFXuO4qFPsFe6+EFNcafmUz3++fE38ExeviotYVbepjHdRg220ecKJJ6Wf/vxnKf6Q0f31SxF6v3X22enqq3+V7iz+MBB7kNct/oCx5RavLgN+Na46fzbxB50656NtAgQIEJhYQLCd2MYzBAgQINAHgTjHNq5QvOwyy45eNXhxuo2wFRdeWmmllcqrFk/UVi/7je+jjcDZfU7q2H5jr2+E02qv7djnF/Z7BOvYkx3vj9C+OLepjHdx2u9+bwT7m/70p3Lc3ecYd7+mrvtNnFte11y0S4AAAQKTCwi2k/t4lgABAkMhYAN/KMpoEgQIECBAgMAEAoLtBDAeJkCAwDAJOCRzmKppLlMVsO6nKuV1BAgQGHwBwXbwa2gGBAgQWKiArz1ZKJEXDKFAU+eWDyGlKREgQKD1AoJt60tkgAQIECBAgAABAgQIECAwmYBgO5mO5wgQIDAkArHnaubISJoze9aQzMg0CCxcwNf9LNzIKwgQIDAsAoLtsFTSPAgQIDCJgHMNJ8Hx1NAKWPdDW1oTI0CAwP0EBNv7kXiAAAECBAgQGAYBVwMfhiqaAwECBKYmINhOzcmrCBAgMNACNvAHunwGT4AAAQIECCxEQLBdCJCnCRAgMAwCDskchiqaw6IKWPeLKub1BAgQGFwBwXZwa2fkBAgQmLKAr/uZMpUXDpGAYDtExTQVAgQILERAsF0IkKcJECBAgAABAgQIECBAoN0Cgm2762N0BAgQ6ImAr/vpCaNGBkzAueUDVjDDJUCAwGIICLaLgeetBAgQGBQBh2QOSqWMs5cC1n0vNbVFgACBdgsItu2uj9ERIECgJwL2XPWEUSMDJuDc8gErmOESIEBgMQQE28XA81YCBAgQIECAAAECBAgQaF5AsG2+BkZAgACB2gUcklk7sQ5aKODc8hYWxZAIECBQk4BgWxOsZgkQINAmgdjA32jmSJo9a1abhmUsBGoV8AedWnk1ToAAgVYJCLatKofBECBAgAABAgQIECBAgMCiCgi2iyrm9QQIEBhAgbnz5qeZxR7bmSMjAzh6QyYwPQEXTZuem3cRIEBgEAUE20GsmjETIEBgEQUckrmIYF4+FALW/VCU0SQIECAwJQHBdkpMXkSAAIHBFrDnarDrZ/TTE/B1P9Nz8y4CBAgMooBgO4hVM2YCBAgQIECAAAECBAgQGBUQbEcp3CFAgMDwCjgkc3hra2YTCzi3fGIbzxAgQGDYBATbYauo+RAgQGAcAV/3Mw6Kh4ZewB90hr7EJkiAAIFRAcF2lMIdAgQIECBAYJgEnFs+TNU0FwL/3959QElVpG0cf4cMEiQYSYIKiwoqIqCABBVUwIxZWSVIBmUNqAgo2YQkQVwFjCBJRYL7uQb2fEYUM5hWwA8UJQsKCHz1FOeOzdi0M8OM3r73f89hZ7r79u2qX/We4zNv3SoEEEgtQLBN7cOrCCCAQCQE+A/8SAwjnUAAAQQQQACBfQgQbPcBw9MIIIBAlASYkhml0aQv2RXge59dKc5DAAEE0l+AYJv+Y0gPEEAAgT8UYNuTPyTihAgKcG95BAeVLiGAAAL7ECDY7gOGpxFAAAEEEEAAAQQQQAABBNJDgGCbHuNEKxFAAIH9ElDlqkH9+tarZ4/9ug5vRiCdBNjuJ51Gi7YigAAC+ydAsN0/P96NAAIIpIUA9xqmxTDRyDwW4Hufx6BcDgEEEAixAME2xIND0xBAAAEEEEAg9wKsBp57O96JAAIIpJsAwTbdRoz2IoAAArkQ4D/wc4HGWxBAAAEEEEAgbQQItmkzVDQUAQQQyL0AUzJzb8c701eA7336jh0tRwABBHIqQLDNqRjnI4AAAmkowHY/aThoNHm/BQi2+03IBRBAAIG0ESDYps1Q0VAEEEAAAQQQQAABBBBAAIFkAgTbZCo8hwACCERMgO1+IjagdCdbAtxbni0mTkIAAQQiIUCwjcQw0gkEEEAgtQBTMlP78Go0BfjeR3Nc6RUCCCCQTIBgm0yF5xBAAIGICVC5itiA0p1sCXBvebaYOAkBBBCIhADBNhLDSCcQQAABBBBAAAEEEEAAgfgKEGzjO/b0HAEEYiTAlMwYDTZdzRTg3vJMCn5BAAEEIi9AsI38ENNBBBBAwEz/gd+wQX3r2aMHHAjERoA/6MRmqOkoAgggYARbvgQIIIAAAggggAACCCCAAAJpLUCwTevho/EIIIBA9gRGjxnrT+zVk4pt9sQ4K90FWDAt3UeQ9iOAAAI5EyDY5syLsxFAAIG0FFCwHT12rD35+FRrUL9+WvaBRiOQEwFNv1e45TufEzXORQABBNJXgGCbvmNHyxFAAIEcCeg/8gm1OSLj5DQW0Pf9bfeP+8rTeBBpOgIIIJADAYJtDrA4FQEEEEh3AVVugypWuveF9iOQTEDf77feetuYdp9Mh+cQQACB6AoQbKM7tvQMAQQQ+J1A1inJVHF/R8QTaSoQfJezfsfTtDs0GwEEEEAghwIE2xyCcToCCCCQ7gJBANBP3YcY3IOorVF0fLlsqa/q6rVebnsgVb6C+xWTvZY1SCRusZLsNT7jt3ud/8hKU8c1PsFYZWc8grFKHNfgOsnGI3gt3T8jsFEfMzKMKcj+/838DwIIIBAfAYJtfMaaniKAAAJ7CSjIKAQouCrcEGz3XmDrj0KnMJMF/SBYJnstVbBM9Vq6h878Ds8yZ5/mvf7vzQMEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEAgdgIE29gNOR1GAAEEEEAAAQQQQAABBKIlQLCN1njSGwQQQAABBBBAAAEEEEhTgV27dpntDlfjMwpkWEZGRrgalaQ1BNskKDyFAAIIIIAAAggggAACCPxZAiNGjrRBdw/+sz4ux59TtGhRW//jDzl+35/5BoLtn6nNZyGAAAIIIIAAAggggAACCQLPzphp7a+9NuGZcP5asGBB27hurRUoUCCUDSTYhnJYaBQCCCCAAAIIIIAAAgjEQaBEqdJp081PPvzAqlWrFsr2EmxDOSw0CgEEEEAAAQQQQAABBOIgkE7BtlXLljZ75oxQDgvBNpTDQqMQQAABBBBAAAEEEEAgDgLpFGybNW1q8+a+EMphIdiGclhoFAIIIIAAAggggAACCMRBgGCbN6NMsM0bR66CAAIIIIAAAggggAACCORYgGCbY7KkbyDYJmXhSQQQQAABBBBAAAEEEEAg/wUItnljTLDNG0euggACCCCAAAIIIIAAAgjkWIBgm2OypG8g2CZl4UkEEEAAAQQQQAABBBBAIP8FCLZ5Y0ywzRtHroIAAggggAACCCCAQEqB3bt327bt223btm22Y8cOM/fYMjKsWNFiVrRoEStUqJB7mJHyGnF5UVYy2rlrl2NyTu4oUKCAFSlc2Bulctq5c6f5f+69gbHeV7BgwVDy5UWwTfQIvPKjs6yKnB+qXBMBBBBAAAEEEEAAgZALKGT8/PPPtn7DBluxYoUtW7bMPv30M1v93Xe23YXckgccYFWqVLHatY+z6tWrW6WKFa1UqVJW2AUxBbk4HrtcIP35l19s9uzZtm7dekewJ9gWKVLEmjVrZtWrVTP9vq9j3bp1tvCll2zt2nUu1+6yYsWKWds2bezQQw/d11v+0ufzIthu3bzJfnFmOo4/sa6t/PbbfOkTwTZfWLkoAggggAACCCCAAALhFdhTdfzVXnv9dZszZ469+tprtmr1avv1118zq5BqvaptCmo1a9Swc84+yy668CI7+uijfAU3vL3Lv5Yp8H/w4Yd2xZVX2Xfff5/5QSVLlrTrO3ey3j17WtmyZTOfz/rLUvfHg46dOttnS5d663Llytm0p5+y+iefnPXUUDzOq2CrzuiPArWOq20rV67Ml74RbPOFlYsigAACCCCAAAIIIBBOAU2FXbt2rT07Y4Y9/cw0++LLL33lVs8nmyqq6qymIh944IF2TK1a1qtnDzv1lFOsdOnS4exgPrZqg6tujxo92iZOfNg2btqU+UmqvNY76SQbOWK4nXD88ZnPZ/1FgbZDp0722WcKtjusXNlyNn3aNGtQn2Cb1Sqnjwm2ORXjfAQQQAABBBBAAAEE0lRAVbOtW7e6QPuMDRh0l/3000/+nk+FV00x1j9VaXU7rW4fVdhVFVf3lCr06nVNTx46+G5reeaZPvDGaVqyqrU33XyLvbt4sb8fWVZykUE5V6m9a+BAu+qqK/3jxHtLg68LwZaKbfBd4CcCCCCAAAIIIIAAAgjkUkBTaWe7qcd33DnAvnP30iroauGigw8+2Bo2aGAtmjdzU42P9vd+rl+/3pYsWWKvuunKixe/Z1u2bPFpV+G2gTt30IABdvzxdfy5uWxO2rxN4VVWTz75lPV3/V7nbBRcVbWWi1wVbttfc7X1v+MOq1C+fNIFoeIebGu4iv+qVavzZdyp2OYLKxdFAAEEEEAAAQQQQCBcAgpfmnbcqfP1/h5PrYCsKbQVDz/cunbpYi1bnul/17RjlWx3uyCnc77++r/21NNP2yy3YJIWllLA07TkS9u1s1tvudmHYvVUleBf3Pk6FH6DVYJV7VX406JLumbx4sWtRIkSVsz91GcVUHl4H4cCpdqgRa70fv1UEPfvd20v4a6hx1mro/o8vU9LO6kthd3n6BwZqEqtdup5Xcdfq2jR310jsUmqXP/opm8PHjzEJk+d6g0OOuggO//cc+0Vd3/yl85Vba1Tu7Y9cN99VrfuiW416aKJl/C/xznYCkDfHf1LPPT49JYt/R9PEp/P6e8E25yKcT4CCCCAAAIIIIAAAmkooPtDx44bZ+MemmAbN270PajoVjoePnSonX1WKx/wknVLoW6DO3/4iBH26GOT/Qq3Cola+Gj6M0/byfXq+VCn8Pv++0v8JbSA0vnnn+dD7/z58/1KwFpsadfOXVa+fDlr0rixnX/e+Va5ciUfbrMGU11EQVHToJd88IFb4Oo5e99Vjze5FXYLFiholSpVssaNTrXzzjvPDnHV5sTtcna5902ZPMU++vgjdw2zMmVK28UXX2wHuFWeZ8+eY6+8+qrvv4LnscccY5deeom/P1YhO1k71BaFZH1+z1697ZNPP9VTdvLJ9WzC+PE2bPgIm/Pcc37adpkyZfwCUt27dTUtKJX1iHuwzeqhxxrjpi1aZH53kp2TnecIttlR4hwEEEAAAQQQQAABBNJcQMHsdjdN9s233vZBTVNnb+jdy2684Qa/jU9iOEzsqgKmqmqffPKpdXer/n708cf+nltVQfv07u3e38dXJ3v17mNznn/ev7Vs2QPtysuvsAULF/pVcLe6SmtQqdPnFnOhsoKrePbq0d1an9PaDjnk4MSP9OFZW+M8NHGiTX/2Wdu0cZPtcIst7XTBWIc+u4i7hrYguqFPb1dtbmmlXJBUONX+sp3cysPzFywwhVwFTE0RnjVrtq+6quqrPinE6jrl3bThPs7hsksv9eFX7ct6/OQqwGPHjnULR42xzZs3+6pz+6uvtmFDh9iMGTPt5n79fFiWocLynNmzrLwL/lmvRbDdU7VN9FWwbX76Gf4PB4nP5/R3gm1OxTgfAQQQQAABBBBAAIE0FJj+7AwbeNdd9q3bR1TBTpXOSQ9PtKannfa7AJase1oFeMKEiXbv/ff7qcUKcQ3q17fHp06xsm5q8vVdu/mVlvVebRGkiqhCpAKkHrsfvmK7zU0HVsjV+zWluZubBt25U0dXWS3j26G2ff7FF3bf/Q/Ycy4oB3ugFndTjzV1Wq8rKGtasX7XHrsK6BddeKEPpnru6mva2/Nz5/rP0ZRjtUXn6zMLFy7kg/mOHb/6amGhQgVd9bm8jXlwlJ1x+uk+tCb2XxXrNT/8YBe3u8RXa/X4YBfKJzw03s484wz7Zvlya//3a31lWSFNU5sffWSSf03tTTziHmybNG2WWfFOdNHYBH/4SHw+J78TbHOixbkIIIAAAggggAACCKSpwOgxY+3uIUN82FTQbHTqKTZi+HC/hU92uqTwsfi99+yCiy62TS7kqhqp+3NnzZzhw2WXhGCrMBv8O/LII61pkyZ+oaXv3XRkLUalhasUEHWNatWqWT93r26b1q19MN3kKqL33Xe/TXrkEdvi7ttVGFV4Pa9tW7+HrsLj/77xhr04b75perWuccQRR9gjDz/sttqp4x8nBlu1Q9fQgk7N3eJYR7n2fPXV1/byK6/YDy6wKggr+DY69VR7cNQDVt21J/FQOJ/nplN3697DVLlVVfjsVq3sQReE9ccB3c87ecoUvyCXpizrWme510c9cL9/PfFacQ62Cq7HuH1sV7CPbeJXgt8RQAABBBBAAAEEEEAgJwK6F3TIsGG+MqaqYpvW59hAt8LvEVWrZusyCqKrVq+2hqc2Mq2YrECp1ZQfnzLZ6p54onXp1j2zYqvXihQp7CqgZ/h9b6tWqeoXa9r681Y/pXmcuzf1rbff9pVTVTWbN2tmI1zbDj/8MHv7nXfsllv7+SnPCqQnnnCC/aNvX39Paxm3CrGCqILxS//6l9+ySItW6byrr7zS7ho00E+rTgy2qthqKx7dS1yv3kl2oPt9g2v/a68vsjv697fNbjEptVf3G9/j7iNufc7Ze3msWbPGurpQ+28XhLUQVvHixWzSxIetlVtsSwthKWgvX7HC2rQ91/uofYcdeqiNHTPaV20TLxb3YFvLBduVBNvErwS/I4AAAggggAACCCCAQE4Ehrnq7OChw3wwPOCAEta2TRsbcOedVtXtS5udQxW3INjq/leFQa0MrGB7Ut26ewVbhcnjjj3WprnFpQ4/7DB/bvAZCn4vzptn/W673QdCXVf3wc6YPs3fn6pK7agHR7uFojb7529yobbL9Z19BdjPZ9aF3DX0uhZz+p+XX/bV38Nd9Xj2jBlWo8bRe01F1qJRV7nQO2jAnb5qHLRDfenRs5e96lY1VmDVtOg7brvNru/cKTjF/9R9wr369HFh+nvfhr/VrGnPzZntq7GqBuvYsGGj3XbH7S7Yz/SrQyusd+rQwYa4/X7lFJxHsCXY+i8M/4MAAggggAACCCCAAAK5ExjjFj+6e8hQH7y0Fc8ppzS0ka5CqcWOsnNoKvK7ixfbhRe3+20qsqtyKkxWq17NEqciKyT+48YbrcN11/owGQS74HMUKhVs5774or+HVuFvzIMPWosWzX0Vdd78BX7KtKqjrVq2cuG7snvrnhAZXENh9J3F72ZuE6NVmseOHm3nnH3WXsFWi0PdM2K4D/IKucGh7XtG3nOPm0Y81Zto9eRbbrrZV5h1jgK4+nzngIH2yKOP+naWLl3KOnfs5M/RPcHBsXXrz27l54Wu7XfaSncPc0HXn0aNGvnpyNWrVffVa51LsCXYBt8ZfiKAAAIIIIAAAggggEAuBFRNHDhokA9eevuhbrrsQ+PG+sWjNJU3a/jM+hFaPGr8+Ifs/lGjMhePatigga/YKsgmLh5VqVJFG+mmPmtxJVWHsx7abmi823boARdmta+sgm1/V/G88IILXBW2l5um/I5fuTloU/Az63UUPnXo/ZqmrFWKr7j88r2CrSrG48aOsdPcfb6aOhwc69att9FuuvCEhyf5NpR277/15ptcaO3pT1Fw1r6/N9zY1xb95z/+OZ3TpHEjq1mjhruX9reFobRi83erv/NbCf3fqlX+3MqVK7sKcD+74PzzM7f+IdgSbIPvHz8RQAABBBBAAAEEEEAgFwJLlnxg/W6/3d/bqpWGFQa1zc3NN91kJV0lU49THdouSFv6aLsfVTK1iNJNfW+03m7LHy1GdX2Xrpn32CrU3TtypJ3uKrC6nzfrocWnJritfLTycXCPa//bb7MLXLDV9OB33n03W8E2uK7aXrpUKRt891129VVX7R1s3RTl8S7Yau/cnARbtWvmzJlu+vZQW7Vqtf+oAgUynFNBb5UYthWw9U/3IQer+6o6fN65bf1078pu310dBFuCrf8i8D8IIIAAAggggAACCCCQOwFVSce5iutYt3CTVhPWoartSHfvbcszVVk9wC/ClPXq27ZttzVrvrcHRj1oTz3zjK/WKkhWqFDBnnriCbe40/E+1HVOCLaa1ntT33/4qciJU3aDa692iz/d6haImuvutdWqw6oYa7udFi1a+CnKC196yU/91Xt7du9mx7r7dbMeKtbu3r3Lf7ZCplYjrlmjplVx05YTF4/Svbe5CbYrV35r/d19uXNfnOenKuszEsNs1vYEj4OQqz1y9dmTH3vM34OsbYXiHmyPqe1WRV6xMqDK059s95OnnFwMAQQQQAABBBBAAIFwCmhq7Vdff23Xdejo9xLVYwVUTdXt7yq5pzU9zQ5yYbWgC2S6m1UBTSv+6j3Tpk23Z6ZPt9Xu3liFOwXOS9pdbP1uvdXv6brdXavz9V0yK7YKmVrNWNvn1Dj6aL8islR0TVV7Fyx8yQa5PXX/+803vsqpqcxPP/mE33roIbdX7vgJE2yzWxxKU3/7uKnJ3bt19cE1qCqrKqr2a/shrYocBNt6J53kq8f7G2xVedXqzFe3/7tpiyK1W22pdsQRvlK9rxFWu9b8sMZXeIPtjO5207+1IJWqxUuXLbMOnTrZZ58tdbY73GrN5Wz6tGluP+CT93XJv/T5EqVK7/fn/7Rxz5ZMslE1fvLUqft9zWQXINgmU+E5BBBAAAEEEEAAAQQiJrBr124XBrfbC3Pn2oCBg+yb5ct9DzWlWIH2BBdET3bb4dSqVcuHMK18rOnHCnhLly7zlVoFXYVLTevVir/HuIWntBBV1mCrczQ9Wdv4dO7U0e8Rq89RCNU2PY/881EfSne4kFvMBT5NWR7mpvyqgrxo0SK3wnB/95lLfSVXqyv3vfEGa9G8hbtXdc/iT6o4a+EpVaC1OrKqow3c/b733jPS32u7P8G2Zw+3X62bhjx23DgbPvIeH+61yvFFbpp0x44d7IASvy1AlfUrontt33zzTe+rqcwK3PXr17cpjz3q9/z9/IsvYhds/7VwgR//wKq2+55lrdrqjxT7exBs91eQ9yOAAAIIIIAAAgggkCYCqpptcFOSZ82a5UObwuu2bdt8RVJBVPfaqhqrqcEKq9qvdsuWLf6+UYVVVWKruO2BhrpQe7qbNqxtfXRkDbZ6TucrEKoirJWXy7r9Y7VisMLdjz/+6Kca63OOcFXQ2/v18/vH6vx17jOHuNWbVSFWENZnHnrIIX7xpzp1arv3bfP3CS9xoVurK++pIJd2043HWTNXddY19ifYdu/e3b51e61ectnlvrKtvmhhqskunCrQ6/r7OhT8f3B9a3X2Obbc/eFAj9XvYYMH22WXXeoWo/rKOrrqbZwqtpri/sN3e+5RlptMMtx3Izj0x40qbuVo/TFhfw6C7f7o8V4EEEAAAQQQQAABBNJQYL2reM6ePdtN+Z1on3++zIWNnZm9UFAMDk3BDQ6FXlVzR7qtczTNWEFYh59enGUqskKtQq+mHWc9gmvqnLJuCnKH666zW2+52QfY4LPfe/99X/X83zfe8AE46zUSHx9y8MH29/btrXevnn66sML7/gTbbl27+oryXS6M6r5kVZrr1Klj81543kq5Bar+6NA9w8PcitATJ03y06nlcNppTeyZJ5/0+/Z27Nw5VsFWXl1cn1VN15hnPRR0D69chWCbFYbHCCCAAAIIIIAAAgggkFpAUz9VDdU9qpqa/LbbXmf5ihX+OQVDHYq3Bd2CRyVLlvIV18ZuX9Zz3Sq/1atXt6Iu1AYhJVmwPeigCnZWq7Psq6++8hVaVeOC6+p9Coi1/vY3O7dtW7vwwgtM4TQItfpstU1b7TzuFqdatOg//l5cBaDgGtonVlOY67jFiNq2aeOu08YOcVVdhUjd29rB7TU7b/582+WCuaq9o93CVKeecspe1VZNZ9ZU5kn//Kf/PLXpxj597Morr/Dvf8NNKVY1saR7XtsAtb/mmr3er3YmO7Zv32EffvSh39dX073VX1WtHxo/zve7Z6/etuzzz33lUnvvPjF1iune4DAeeXGPbdCvim4hrS+WLQ0eZv4k2GZS8AsCCCCAAAIIIIAAAgjkRkBBUdVbTevV9FgFLk0TVvDVNj0KZMe4Ku2xxx1rRx11lJ+Sm/VzkgXbqm66svaU1TRc3Sv70Ucf249rf3Shc5dfbOq4446zunVP9JXQ4vuY2quAulb3+brq7bvvLvbhVhXUggULuHuCD/L399Zz9wRrT1kt7BQcCrOqRi9zCzWpbWXKHGitWrU0tSmoMuvcLS48v/XWW+76S/x07GLFilrDhg399Wa4bX7koEPvb936HNOWPare/tGhdms7owULFtrX//3an64/DjRp0tgqlK9gL//7ZbfK9BpvUbx4MWvXrp1Vqljxjy77l7yel8E2vzvAVOT8Fub6CCCAAAIIIIAAAgiEWEBBTFUz/VOgVdjVBGRVUAu6PVsLFy7kK6G6Hzao0iZ2J2mwrVrF7hkx0ho3buTfq8pncF1VW1VZ1T8FxWTX1PV1Xb1H7dKUZv1UaFUlWe/R+xVUk7VL+/QGCxLp9eCzEqvCurbuDdZ1d7vf9VrQLr3/V+eio9A+3u9fTPI/avdOdz19fmYbXHuDUK3P89d257kPtRKu8qw2hvEg2ObNqGRs3bzpt0n9eXNNroIAAggggAACCCCAAAJ5KJA82Fa1e0eOtObNm/nglocfx6X+RAGCbd5gE2zzxpGrIIAAAggggAACCCCQbwIE23yj/csvTLDNmyEg2OaNI1dBAAEEEEAAAQQQQCDfBAi2+Ub7l1+YYJs3Q0CwzRtHroIAAggggAACCCCAQL4JKNjqXtKevXvbc8+/oJtjraJbDGnY0KFu79nU+77mW6O4cJ4IEGzzhNEItnnjyFUQQAABBBBAAAEEEMhXAS2INHPWLL/6sT6oTJky1tZtwXPkkUda4WysJJyvjePiuRYg2Oaabq83Emz34uABAggggAACCCCAAAJhFdjt9oL9xa1evM03UKsdFymiVY8L73PV47D2hHb9JpBOwfbMM06359w2T2E8CLZhHBXahAACCCCAAAIIIIAAArEQSKdgO++FF6xZs6ahHBeCbSiHhUYhgAACCCCAAAIIIIBAHAQmPjzJbujbNy266raKDW07CbahHRoahgACCCCAAAIIIIAAAnEQ6Nq9u02Z+niou/rtiuVWrmzZ0LaRYBvaoaFhCCCAAAIIIIAAAgggEAcBrXqdkZFhr7++yDa5qqj7NRRHRkYBq1mzph1ZvXoo2pOqEQTbVDq8hgACCCCAAAIIIIAAAgggEHoBgm3oh4gGIoAAAggggAACCCCAAAIIpBIg2KbS4TUEEEAAAQQQQAABBBBAAIHQCxBsQz9ENBABBBBAAAEEEEAAAQQQQCCVAME2lQ6vIYAAAggggAACCCCAAAIIhF6AYBv6IaKBCCCAAAIIIIAAAggggAACqQQItql0eA0BBBBAAAEEEEAAAQQQQCD0AgTb0A8RDUQAAQQQQAABBBBAAAEEEEglQLBNpcNrCCCAAAIIIIAAAggggAACoRcg2IZ+iGggAggggAACCCCAAAIIIIBAKgGCbSodXkMAAQQQQAABBBBAAAEEEAi9AME29ENEAxFAAAEEEEAAAQQQQAABBFIJEGxT6fAaAggggAACCCCAAAIIIIBA6AUItqEfIhqIAAIIIIAAAggggAACCCCQSoBgm0qH1xBAAAEEEEAAAQQQQAABBEIvQLAN/RDRQAQQQAABBBBAAAEEEEAAgVQCBNtUOryGAAIIIIAAAggggAACCCAQegGCbeiHiAYigAACCCCAAAIIIIAAAgikEiDYptLhNQQQQAABBBBAAAEEEEAAgdALEGxDP0Q0EAEEEEAAAQQQQAABBBBAIJUAwTaVDq8hgAACCCCAAAIIIIAAAgiEXoBgG/ohooEIIIAAAggggAACCCCAAAKpBAi2qXR4DQEEEEAAAQQQQAABBBBAIPQCBNvQDxENRAABBBBAAAEEEEAAAQQQSCVAsE2lw2sIIIAAAggggAACCCCAAAKhFyDYhn6IaCACCCCAAAIIIIDBcDmXAAABO0lEQVQAAggggEAqAYJtKh1eQwABBBBAAAEEEEAAAQQQCL0AwTb0Q0QDEUAAAQQQQAABBBBAAAEEUgkQbFPp8BoCCCCAAAIIIIAAAggggEDoBQi2oR8iGogAAggggAACCCCAAAIIIJBKgGCbSofXEEAAAQQQQAABBBBAAAEEQi9AsA39ENFABBBAAAEEEEAAAQQQQACBVAIE21Q6vIYAAggggAACCCCAAAIIIBB6AYJt6IeIBiKAAAIIIIAAAggggAACCKQSINim0uE1BBBAAAEEEEAAAQQQQACB0AsQbEM/RDQQAQQQQAABBBBAAAEEEEAglQDBNpUOryGAAAIIIIAAAggggAACCIRegGAb+iGigQgggAACCCCAAAIIIIAAAqkECLapdHgNAQQQQAABBBBAAAEEEEAg9AL/D/joYCAq+X36AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.1. Load transcripts\n", + "For the purposes of this cookbook, we have selected the [\"Earnings Calls Dataset\" (jlh-ibm/earnings_call)](https://huggingface.co/datasets/jlh-ibm/earnings_call) which is made available under the Creative Commons Zero v1.0 license. This dataset contains a collection of 188 earnings call transcripts originating in the period 2016-2020 in relation to the NASDAQ stock market. We believe this dataset is a good choice for this cookbook as extracting information from - and subsequently querying information from - earnings call transcripts is a common problem in many financial institutions around the world. \n", + "\n", + "Moreover, the often variable character of statements and topics from the same company across multiple earnings calls provides a useful vector through which to demonstrate the temporal knowledge graph concept. \n", + "\n", + "Despite this dataset's focus on the financial world, we build up the Temporal Agent in a general structure, so it will be quick to adapt to similar problems in other industries such as pharmaceuticals, law, automotive, and more. \n", + "\n", + "For the purposes of this cookbook we are limiting the processing to two companies - AMD and Nvidia - though in practice this pipeline can easily be scaled to any company. \n", + "\n", + "Let’s start by loading the dataset from HuggingFace." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "\n", + "hf_dataset_name = \"jlh-ibm/earnings_call\"\n", + "subset_options = [\"stock_prices\", \"transcript-sentiment\", \"transcripts\"]\n", + "\n", + "hf_dataset = load_dataset(hf_dataset_name, subset_options[2])\n", + "my_dataset = hf_dataset[\"train\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['company', 'date', 'transcript'],\n", + " num_rows: 150\n", + "})" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "row = my_dataset[0]\n", + "row[\"company\"], row[\"date\"], row[\"transcript\"][:200]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import Counter\n", + "\n", + "company_counts = Counter(my_dataset[\"company\"])\n", + "company_counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Database Set-up**\n", + "\n", + "\n", + "Before we get to processing this data, let’s set up our database. \n", + "\n", + "For convenience within a notebook format, we've chosen SQLite as our database for this implementation. In the \"Prototype to Production\" section, and in [Appendix section A.1 \"Storing and Retrieving High-Volume Graph Data\"](./Appendix.ipynb) we go into more detail of considerations around different dataset choices in a production environment. \n", + "\n", + "If you are running this cookbook locally, you may chose to set `memory = False` to save the database to storage, the default file path `my_database.db` will be used to store your database or you may pass your own `db_path` arg into `make_connection`.\n", + "\n", + "We will set up several tables to store the following information:\n", + "- Transcripts\n", + "- Chunks\n", + "- Temporal Events\n", + "- Triplets\n", + "- Entities (including canonical mappings)\n", + "\n", + "This code is abstracted behind a `make_connection` method which creates the new SQLite database. The details of this method can be found in the `db_interface.py` script in the GitHub repository for this cookbook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from db_interface import make_connection\n", + "\n", + "sqlite_conn = make_connection(memory=False, refresh=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.2. Creating a Semantic Chunker" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before diving into buidling the `Chunker` class itself, we begin by defining our first data models. As is generally considered good practice when working with Python, [Pydantic](https://docs.pydantic.dev/latest/) is used to ensure type safety and clarity in our model definitions. Pydantic provides a clean, declarative way to define data structures whilst automatically validating and parsing input data, making our data models both robust and easy to work with." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Chunk model\n", + "This is a core data model that we'll use to store individual segments of text extracted from transcripts, along with any associated metadata. As we process the transcripts by breaking them into semantically meaningful chunks, each piece will be saved as a separate `Chunk`.\n", + "\n", + "Each `Chunk` contains:\n", + "- `id`: A unique identifier automatically generated for each chunk. This helps us identify and track chunks of text throughout\n", + "- `text`: A string field that contains the text content of the chunk\n", + "- `metadata`: A dictionary to allow for flexible metadata storage" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import uuid\n", + "from typing import Any\n", + "\n", + "from pydantic import BaseModel, Field\n", + "\n", + "\n", + "class Chunk(BaseModel):\n", + " \"\"\"A chunk of text from an earnings call.\"\"\"\n", + "\n", + " id: uuid.UUID = Field(default_factory=uuid.uuid4)\n", + " text: str\n", + " metadata: dict[str, Any]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Transcript model\n", + "As the name suggests, we will use the `Transcript` model to represent the full content of an earnings call transcript. It captures several key pieces of information:\n", + "- `id`: Analogous to `Chunk`, this gives us a unique identifier\n", + "- `text`: The full text of the transcript\n", + "- `company`: The name of the company that the earnings call was about\n", + "- `date`: The date of the earnings call\n", + "- `quarter`: The fiscal quarter that the earnings call was in\n", + "- `chunks`: A list of `Chunk` objects, each representing a meaningful segment of the full transcript\n", + "\n", + "To ensure the `date` field is handled correctly, the `to_datetime` validator is used to convert the value to datetime format. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "\n", + "from pydantic import field_validator\n", + "\n", + "\n", + "class Transcript(BaseModel):\n", + " \"\"\"A transcript of a company earnings call.\"\"\"\n", + "\n", + " id: uuid.UUID = Field(default_factory=uuid.uuid4)\n", + " text: str\n", + " company: str\n", + " date: datetime\n", + " quarter: str | None = None\n", + " chunks: list[Chunk] | None = None\n", + "\n", + " @field_validator(\"date\", mode=\"before\")\n", + " @classmethod\n", + " def to_datetime(cls, d: Any) -> datetime:\n", + " \"\"\"Convert input to a datetime object.\"\"\"\n", + " if isinstance(d, datetime):\n", + " return d\n", + " if hasattr(d, \"isoformat\"):\n", + " return datetime.fromisoformat(d.isoformat())\n", + " return datetime.fromisoformat(str(d))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Chunker class" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we define the `Chunker` class to split each transcript into semantically meaningful chunks. Instead of relying on arbitrary rules like character count or line break, we apply semantic chunking to preserve more of the contextual integrity of the original transcript. This ensures that each chunk is a self-contained unit that keeps contextually linked ideas together. This is particularly helpful for downstream tasks like statement extraction, where context heavily influences accuracy.\n", + "\n", + "The chunker class contains two methods:\n", + "\n", + "- `find_quarter`\n", + "\n", + " This method attempts to extract the fiscal quarter (e.g., \"Q1 2023\") directly from the transcript text using a simple regular expression. In this case, this is straightforward as the data format of quarters in the transcripts is consistent and well defined.\n", + "\n", + " However, in real world scenarios, detecting the quarter reliably may require more work. Across multiple sources or document types the detailing of the quarter is likely to be different. LLMs are great tools to help alleviate this issue. Try using GPT-4.1-mini with a prompt specifically to extract the quarter given wider context from the document. \n", + "\n", + "- `generate_transcripts_and_chunks`\n", + "\n", + " This is the core method that takes in a dataset (as an iterable of dictionaries) and returns a list of `Transcript` objects each populated with semantically derived `Chunk`s. It performs the following steps:\n", + "\n", + " 1. *Transcript creation*: Initializes `Transcript` objects using the provided text, company, and date fields\n", + " 2. *Filtering*: Uses the `SemanticChunker` from [chonkie](https://chonkie.ai/) along with OpenAI's text-embedding-3-small model to split the transcript into logical segments\n", + " 3. *Chunk assignment*: Wraps each semantic segment into a `Chunk` model, attaching relevant metadata like start and end indices\n", + "\n", + "The chunker falls in to this part of our pipeline:" + ] + }, + { + "attachments": { + "5463dc6a-17fc-4f35-adde-5a77dc191925.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBwAAAl0CAYAAACz62TyAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAEHKADAAQAAAABAAAJdAAAAABBU0NJSQAAAFNjcmVlbnNob3S9Ml0nAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNDIwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjEwNTI8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KZg5IrwAAABxpRE9UAAAAAgAAAAAAAAS6AAAAKAAABLoAAAS6AAEmIRrFnrIAAEAASURBVHgB7J0JvFXTF8eXIWTMFDKPlSGKokLGknmsDCVFQiplTMiUIWOSQimVIfM8ZEpIoUFKZCZDZEoD8fffa9e5zr29d99995z33j5nf7dP794z7bPWd+173f07e6+93IJ5v/8rFAhAAAIQgAAEIAABCEAAAhCAAAQgECOB5RAcYqRJVRCAAAQgAAEIQAACEIAABCAAAQhYAggONAQIQAACEIAABCAAAQhAAAIQgAAEYieA4BA7UiqEAAQgAAEIQAACEIAABCAAAQhAAMGBNgABCEAAAhCAAAQgAAEIQAACEIBA7AQQHGJHSoUQgAAEIAABCEAAAhCAAAQgAAEIIDjQBiAAAQhAAAIQgAAEIAABCEAAAhCInQCCQ+xIqRACEIAABCAAAQhAAAIQgAAEIAABBAfaAAQgAAEIQAACEIAABCAAAQhAAAKxE0BwiB0pFUIAAhCAAAQgAAEIQAACEIAABCCA4EAbgAAEIAABCEAAAhCAAAQgAAEIQCB2AggOsSOlQghAAAIQgAAEIAABCEAAAhCAAAQQHGgDEIAABCAAAQhAAAIQgAAEIAABCMROAMEhdqRUCAEIQAACEIAABCAAAQhAAAIQgACCA20AAhCAAAQgAAEIQAACEIAABCAAgdgJIDjEjpQKIQABCEAAAhCAAAQgAAEIQAACEEBwoA1AAAIQgAAEIAABCEAAAhCAAAQgEDsBBIfYkVIhBCAAAQhAAAIQgAAEIAABCEAAAggOtAEIQAACEIAABCAAAQhAAAIQgAAEYieA4BA7UiqEAAQgAAEIQAACEIAABCAAAQhAAMGBNgABCEAAAhCAAAQgAAEIQAACEIBA7AQQHGJHSoUQgAAEIAABCEAAAhCAAAQgAAEIIDjQBiAAAQhAAAIQgAAEIAABCEAAAhCInQCCQ+xIqRACEIAABCAAAQhAAAIQgAAEIAABBAfaAAQgAAEIQAACEIAABCAAAQhAAAKxE0BwiB0pFUIAAhCAAAQgAAEIQAACEIAABCCA4EAbgAAEIAABCEAAAhCAAAQgAAEIQCB2AggOsSOlQghAAAIQgAAEIAABCEAAAhCAAAQQHGgDEIAABCAAAQhAAAIQgAAEIAABCMROAMEhdqRUCAEIQAACEIAABCAAAQhAAAIQgACCA20AAhCAAAQgAAEIQAACEIAABCAAgdgJIDjEjpQKIQABCEAAAhCAAAQgAAEIQAACEEBwoA1AAAIQgAAEIAABCEAAAhCAAAQgEDsBBIfYkVIhBCAAAQhAAAIQgAAEIAABCEAAAggOtAEIQAACEIAABCAAAQhAAAIQgAAEYieA4BA7UiqEAAQgAAEIQAACEIAABCAAAQhAAMGBNgABCEAAAhCAAAQgAAEIQAACEIBA7AQQHGJHSoUQgAAEIAABCEAAAhCAAAQgAAEIIDjQBiAAAQhAAAIQgAAEIAABCEAAAhCInQCCQ+xIqRACEIAABCAAAQhAAAIQgAAEIAABBAfaAAQgAAEIQAACEIAABCAAAQhAAAKxE0BwiB0pFUIAAhCAAAQgAAEIQAACEIAABCCA4EAbgAAEIAABCEAAAhCAAAQgAAEIQCB2AggOsSOlQghAAAIQgAAEIAABCEAAAhCAAAQQHGgDEIAABCAAAQhAAAIQgAAEIAABCMROAMEhdqRUCAEIQAACEIAABCAAAQhAAAIQgACCA20AAhCAAAQKJjB79rey2mqrSo0aNQq+pqpP/HjWLNlyiy2kWrVqVW0K94cABCAAAQhAAAJeEXBWcHjyqaflqr59yx2Mnud0l9atWpX7Oi4onsCHH34oJ3fomKlg/BvjZIUVVshsl/am2X77ycKFi+zhAf1vlUYNG5Z2amr3F8suLiD7H9hc5v3xh63ulptulCaNG8dVNfUUSWDkqFHSf8Dt9upd6tWTOwcPKrKm+C+76uqrZfiIkbLiiivKZZf0ljatW8d/kyJqLO275J9//pFjzP8PPvhguqy11loyfOhQ2XHHHYq4A5dAAAIQgAAEIAABCBRDwFnB4eFHHpELe11cbp969+ol7U9uV+7ruKB4Au+/P02OPu64TAUzp39gOySZHaW82WmXXTKCw/B7hkrTJk1KOTO9u4tlFxeR+rs1lHnz5tnqhtx5pzRrtndcVVNPkQTuHjJErr2+n7161wYN5MH77yuypngv03bSqHETWbx4sa1YRwyMeeH5eG9SZG2lfZeMHfu6dOzUKVPr8UYgufKKyzPbvIEABCAAAQhAAAIQqFgCCA4Vy9eL2ovtNJfWSfAC2lIni2UXFyMEh7hIxlePq4LDv//+K/sdcKB8/c031tkD999f7hi4ZCRGfN4XV1Np3yVqq9qstmvpfdFF0r79ycXdhKsgAAEIQAACEIAABMpNwFnBQYd5//jjj1kOffXVV3Jqp9Mz+2679RapXbt2ZlvfrLfuurLmmmtm7WOjYgkU22kurZNQsda6VXux7OLyAsEhLpLx1eOq4KAeTpk6VYbeM0zWMt+xp57aUTbfbLP4HI9QU77vEp2e98STT8jO9XaWDh1OkdVXWy3CnbgUAhCAAAQgAAEIQKA8BJwVHEpyYtYnn0jLQw7NHHr04Yek3k47Zbbzvfn7778LGuafr46KOPa///1Pll9++aKq1vnJheRKKKpyc5E+FVT7yrpHsZ3mfJ2EYm2Ocl1F8yzJtmLYFduWS/KvPIJDoe2hJD+DfcXaHlxf0mtF1FnSfUriV9J5+fYV8nmvKsGhENvy+ZbvWLF163Xa7sr6DnLpu6Sy2mM+3hyDAAQgAAEIQAACrhBIreCwYOFCGWWSrz3x5FPyxZdfyp9//inrmtEPTRrvIR1P6SA77LD9MjG4feBAmTbtA7v/qKOOtEkM77p7iLz73nvy9z9/S8PddrMJKbfackvRzseo++6XCRMnyqeffirbb19X9jdJEA85+OBl6j27W3dZ/Ndfdv8FF5wvq626qtwxaLBMnjpFZs78SLS+pk0aS8uWLaVB/frLXB/smGfmUD/19NMyafJkmTRpsnz73Xf2vruaaxo1aiQHHnBAcGrWa+79f/75Z3n88Sfk8y++kN0bNZSzu3TJnK/HBt5xh7xvOHz88ceyyHDbZOONre96Xq1aG2XODd4U02nWa/N1Et586y0ZYZLTBWVLw+i8c3tacSY3TspdO2ljXnpZfvnlF8NkexvnlgcdJGuvvXZQxTKvxfDsed55Mv+P+bau7t27SZ2lI2w00d8bb7yZdY8GDepLp9NOs/u++vpr6dv3Gvt+eZNQ8/bb+styyy0nhbArpi0HhugoIc2H8uZb4227WXnllaX2dttJ59M7yT7NmklZgoN2nvT6N958S96eMMHme9D20K5tWzm5XVsZNmy43a/3a968uRxtPje5ZfKUKTJs+L32szJ37lxRG3T+/zFHHSUnnHC8rLTSSrmXlLmtyTafevoZeevt8TJjxoeyavXq0tgkvLzQfL70/SWXXpap4zaTkDRYnUC/C6699jp7bEWzYoEmK9XviFdfe01++uknm//lADNVICgzZsyQe4YPlw8/nCmffvaZVDPJEjczT/VbND9QOnbsaO8VnBu8ltQ+Bw0ebDhNNN8v02S11Ve3n/dme+8thx5ySHBZ5rUkweGFF1+URx99zH6X1axZ07bvAw88ULbZeuvMdWW9Kcl3jc19998vkydPkW9mz5Zddt7Z2naUiY3GObeEfdPvqyMOPyxzSu73TLHfc7oKxrB7h8uYMS/J9z/8YOvfaMMN5aAWLaTDKe1l/fXXz9wzeJPvuyRsV7duXaVunTr2spJ46Pf/4Lvust/pK628kjTeYw/7Odlj992DWy3zGuXzuUxl7IAABCAAAQhAAAIpI5BKwWHRokV26oV2kEoqq6yyigwbOkR223XXrMOnmuRir5kkY1qOOvIIKwZ8OHNm1jn6Y1+TuN1xxyAZ/fDDWcd047yePeT0UJIy3Rf+Mdz3qitl8J13yZdmekhu0czvg43oUVLiPtsZMitBzPzoo9zLMtvtTQfwYpM0Uzuy4RK+v67iMWjwnTJ/wQJ7iv6I106XFhVPuvfoucxUFnvQ/NGO4T1D7jYiRaNgl30tpNOcdcHSjbBd4aSR06fPkBNOOiljo3Z8HrhvlGxoOh1awnHqYTr92hHUTmNu2W7bbeX+USNtdvrcY8XyPPyoo00Hd4at7uYbb5TDDl3SYWx7cnsZ//bbWbdRUeuJRx+1+8LJ69Sf11552e4vi12xbVkr1859mxNOtMKSvVnOn4svvFBu6d8/wzk3aaSKDd3O6SHa2S2pnGLmwn/91dfy0iuv2MOdTj1Vzj/v3KxTX3n1VTmzy9midZVUmptOs06NKusJdvhaFQA7dDxVtKOXW/TzeeH550uPc/+z4wMj7OlnXkuYt4oQ+nkIEjTq8T6XXiInnXiivpV7jeB1zXXXZZIk2p2hPxtttJE8/sjDVsgM7c5qn9pB/vKLL+Vlw6GkcmbnztLD2BAuYcFBV1TYZ+9mMsB8L+QWnRowwoghO+20Y+6hErfDvutnWVclUQEtWCkmfJF+1vQzlys6hD97ubaHP8/Ffs+pMHf8iSfJD0uFhrBN+l6ncOj373rrrZd1KHzv8HeJnlTasTAPFcH0u6Kd+Rz/MX+JoBi+wVUm0WRJK3JE+XyG6+c9BCAAAQhAAAIQSCuB1AkOOpLh9DPOsE9kg6BpZ6OmeSqmP2aDsoZ5yjhqxL32aXiwL/xjOtinoyL+MPkktN6SinY6vjMjDcLlmaeetE+Rg33hH7zBPrVJn/L+ZDqF4VwVun/IXXdmder1iV+79qbjEhIp9Cmu/uie/e23drRFUK8+Yb7GLF0X7sCVdP/g/EBw0M6bLpEY2KIdksZ77G7FC306HmSm147IC889a0dpBHWEf7jrviirVGiMWrU53j5t1ro22GAD2xHYbNNNddOWkuKk/m644Qby7bffZRLE6cn6xPbh0Q8uuXDp3yg89Wnpc88vycx/4fnnyanmKbeWJnvtLXPmzJGNN64lq6y8ihVBNEZTJ0+yDEc/9JD06n2JPVdX49BOkZZ87KK05XlmNIx23MICldqzuWlzaqeKEbklLDjoMHbttOsogqCoIKajcbSTpcn49JxwyRUcVGTpfNZZmbaj52oc55hRF1pHULTNXnfNNcsIZcHx8Kvy0s9CuFOon1FtJ1+Z0Qvh/cF1pQkOwfHwayA46DKKRx17bMZHXVJxz6ZNzXfIV5lRUHqdjiq64/YB4SqyBIfggLbPLTbf3LLQkQQ6VSAoFxiR5jQj1gQlLDgE+/RVP3s6AumvpaOldJ+O4Hnq8ccyYpzuK63ktrXgPPVtYyOCfW2+X4IlUvWYxko79+ERBeHPXj7BIai7PN9zykXbbPj7VGOr7Uz9DoqOULhv5AhZY401gl2ligp6Qvj7LyxGlMZDcwCpaPvbb79l6tdpb3cNGpQlBkf5fGYq5g0EIAABCEAAAhBIOYHUCQ7h5TS1g9TPPKHUIdLVq68iH8+aJVdceVVmCHjuknPhH9Ma95tuuEEObnmQLDSdo4vMEp3Pv/BCpjlo7ojrr7vWDmnWTt3Rxx6X6QjkPg0L/+DVCvTJcM9zzsk8ddWO2XnmaXPwo1qH8Y4YPixzr7PO7pp5yqzDlPtcdpkcecTh9kexdrCuN0vo3ffAA5nzb735pqypHbn319EbLczw97p16sqqq1a3nZZ33n1Xzr/gQtuR1B/yL5nl7vTHvhbtoDbbb/9Mx3GkGe4cHmKc+8O9WMFBOxIqNuhQZy3rrLOOFRu23morux38yY2TZsu/7tprbLJQ7bTcbabBjLzvv6UEdek+FXeCEoXnjTfdLHeY4fFaTjHLr+qIEo3BLg2WjJbRIeaaUO/ekaPsOeNee1VUlLptwAC59bYlHdMT2rSRKy7vY4/nYxelLesw+Uv7XG7voX+6nHmmnHXmGZmpBS+OGSMXXNQrsySmnhMWHD4y02kOOexw3W2LClNX9LnMxkR36Gep53nnm6kGHy45wfzNFRz22mffTOdxH7Pc5oUXXGA/LypuPf/8C+b+F2U69OGOYKbCEt506dot8znUdnpt36ttW9ZTdRTF0HvukX433pSpV/fnExxUeGzV6jjRkRYbbbiRrFVjLSum6egGHf3x+++/2+lE+nnU7xMt+j2gdmjRfdOmTM5w1X257VMFpuuu6ZsRBT77/HMr5qiooUWfrk+d9F6m/lzBQdv/ADMFZ9tttrGCwDPPPCOXXNYn42Pu942ttIQ/uW1NxQCN6dFm+oQWnSZ2770j5Jrrr88IIueYKQhnmbYTlLBvZQkO5f2eO8+0j8fMVC8tm26yif1M6yg0FRx0VEt49FW+e+e2pfD3X/hYLg8dMXJDv+vt/y+0LY174w3L+fvvv7c26WgmHdUUlCifz6AOXiEAAQhAAAIQgEDaCaROcFBh4CEz51xLSWuu6xSJw488yv6I1R/6U957N9NZCP+Y1s7vU088nom/5hQ42eR+CIoOGW513HHBppxx5lky5uUlw+SPPfpoudZ0MIIS/sG79157ytC77w4OZV7DnRgVFSa9+44dpaBP2XZv0jQzJD14Apu5cOmbE9u2s1MidDP3HuH7a46I0Q/cn3t5Zlt/hOs99zJ2hkun0zvLK2aeu5ZLe/c2c/hPsu/1T+4P92IEB31KrB15rUuLPmXUESjBfGu7c+mfcJz0Ce+rL7+UlXlen9I22qNxRiC5/tprM7kFovIMdzKC0SE671ufhmvRKR5rrLGmXH7llXZ7+NCh0rRpE7nYjG540Ixy0NLLdKw0W76WfOyitOVw503ziqgIlVseMlOCLrq4d2Z3WHB44MEHpffSPAg6quFpk+U/N9eCjkbRJK7B6J+w4KBPqVVw0KJTF1T0yR2er1MtVPjQ0r3r2dLFjIYoqzTec6/MKJzrjcgUdJbD14VZ6/58gkNuxzVcj3Y63zS5KzbcaMOsEUu6v6FpX/PMKBItuSOawu1TRyGNef65rKfxeo2OsjnokIMz0xnCCXBzBQcdoaMjdcLlmONaydT337e7NBeGCm5lldy2VtL0L63j8iuulBEmJ4kWFYruvvNO+17/hH3LZRf+nsn9DgoqKO17To/r8pXBKLTwdKXg2uFGDLnSjN7SooKnCp9BCd87LCro8dKOFcKj3w032pwOWk94KpRuR/l86vUUCEAAAhCAAAQg4AOB1AkOzQ9qKfoEUYsOCV49NOw2CKgmQ9ROg5ZHHhptlkurZ9+Hf0zr3OteZtRBUHQI+b77HxBs2k6uPoULytVmSPg9JoGeFk1WqPPSgxL+wRvu/AbH9VWHWO+48y6ZURI6TLpu3bomeeM0O3oiOHeyEUj0qWxuCQ/Z12H9Y5fOq9fzwve/5uqr5LilnePcOnRbk8hNnfq+zDJPsH8NDSme9sE0O11Bz8l96pn7w70YwUHrDYo+aRw+7J5MXIL9wWs4Tpp0T+ei55ZTzFSHcW+8aXfrk9aLzdN0LVF5TnznHZNfoq2tK5iu8fgTT8q5Jm+AFs2HoU/eA3EqEGfCNg8aeLt9iqrn52MXpS2HO2/h++k9g6IjDertUj/YzBrhoP6oX1pO7djB5kXInBh6c1zrNrbN6K6w4PC0eQqvT6S16OiiLbfMHqWi+3/99ZdMm2q2915mKtFdurvUop1R9UuLDnmfYkYFqDiXWzR5Z/ulU130WD7B4ZWXxtjvidw6dDt4yj3TiJSfmMSwixb9N61q7OuvZ6aF6Nx/TSgblHCs84kB2kZUyNTS27TP9qadagkLDjqdYfwb4+z+8B9NQnmDGW2jRZOkPvnYo+HDJb7PbWv6HaHfFbnlvUmTpPXxJ9jdKvy9N3FCZrpL2Ld8gkN5v+d0KpeKSUFRoXE5M40hXP5evNiOrNF9Oj1IvwuDqWPh77hiBYcXjTCk4lq46PehtvGghL9/o3w+g/p4hQAEIAABCEAAAmknkCrBIbcDVUjwLr/sUjnxhCU/rvP9mM4VHN5+842sxGWFCg65nZOwjeEfsMHT25fMqInOZvSEFp1rrT/+SypvjR9v5rafYg/pE+UPjUAQlHw/xoNzdF741WYVhVFmKH5ZpaIFh25nd8laOSPXnnCcwp3c8Hmaf+DJp562u9qddKJcesmS/AlReer0Es3XoEWnSuiUiZtuvkUGmvndWvRpt06p2LPZPna7rUlAeNmll9jpCTpNQctzzzxth8fr+9xOYCDWRGnLmhB05/oNtHpbcp/AB/v1VUfPBPkcwiMcjjCjdDR5p5bLDLu2hmFJRZNKPvPss/ZQOBbXmWk+d5mVQwotOn1m4vglne/SrtEElJ06n2EP16hRQ96dkJ2kM7hOk4i2aPnfajH5BIeAd3Bt8Kpx7tr9HDuUP9hX2mvuZzrcPnM/K+E6dCWN+81IEi2ax0I76VrCgoNO3dLRD7nlwdGj5eJLLrW7ddURjXFZJdzWdCqIfkfkJpjVOnI7/5rgNBidEvYtn+CQyyRsW0nfc+GkquFz870Pf47yfceVdizMQ+8TbifBfXV61wHNWwSbts1p24vy+cxUxhsIQAACEIAABCDgAYFUCQ46B3n7neplkijuv+++olnr85WWJkdDE7OcnpZ8P6bjEhz0CbgOxS+pNGjYyM4Z12NBngRdOUKnS2jRp3n6ozhY4s/uXPpHk/ud03PJE2XNvTDhrSVP9/VwaT+4w9ffcmv/rEz4moRv2222zpzy0cezMkPZcztRuT/cS+vEZSpb+iZsl3aAglEnOnT/7jsHZ+KSe12+OAXnliY4xMlTbZ4x7X3bMdWh4ppYTufz61Qd7fBrx1/b1r1mtMaujXa3U1W0g6cx1HO0lMYualvebfc9zAiCX+099P5BG7c7lv5R3jqqJuAeFhwKHeFwbKvWMmXqVFtjWHAI56zQp/QHmKVL85VVVlnZ5sPId06hIxzGjXtDTgklYQx3JEvjnXtfTV6oeU2Coiue1Ky5frBpjr2XmUqS27kOt8+w2JW5eOmb8JSSs810km5mWomWsOCQm2dm6aUSVXDQelSw0c5zbtGcNIcefoTdrd81Ou0saK9h3/IJDlG+5/Qz0tpMVytJDAnbeuYZna3op/vC3yXFjnAo6XurNMEh6ucz7AfvIQABCEAAAhCAQJoJpEpw0EA1Mx0bnR+tpbR8Bzo8uqT16/P9mI5LcAgSDVoDQ380Cd/Bhx5m96iwoEN3ddiwJkHcxyRsDIomr9Okkrkl/LS0Xj3zVHRpvgA9L9+P8aCe8BPt08xw9AvMCgzhEh7+XRGCw12DB9nlQjU5nBYdKq9L/qkvuSVfnIJzSxMc4uCpnbFg9Qcd7t7eLFeqoxd0Co8O0ddy5DHHiCYFVOHm5RdfsB173R+MitD3WvJ1gKO05dM6nS6vjh1r79G1SxfpakaN5BZlrctmBiUsOIRzOOjqCvoEPeh0Bud//sUXduRGsGpCWHB49LHH5PwLl0xj0TwGb74+NjP8Pbj+l19+sblUdHRDoSWcw6G06UEXmPs+Yu4flPIKDvNMbgYVbLRTqUXFr32aNQuqs/vrGUEpyF2RT3DQ6Q5PPPrIMp1nZbafWRUmSEg41Ewn2dtMK7H3MyNDgqU6K1Jw0LwpuspGbhlp8jf0MXkctOh0M512FpR8n73w90zU77lnn35KVOQJF512pgJA7rQHPSd878oQHPSeUT6fej0FAhCAAAQgAAEI+EAgdYJDeGqDPunXhGvhXAv6hFunHugP6Z49zslafjLfj+m4BAd9Kn7PkLuzRAPNhH+q6SBOmjzZtrncOdlhMUCFEr1eO65B0aHmOu0iWGrv/HN7SqfTTgsO5/0xHpxUf9fdMkvi6coeupJFUGZ98okcefQxmQ5W7lPbfJ3moI6SXnM7CTvusINdpUKHxGvRp68P3DdqGXEoX5yC+5QmOOjxqDzDq1xo+9KcDtqBDCfY63neefLEk09Zc3R+/eFHHW3f5ya7y8cuSlu+w0zxuNFM9dCiqxFoAs4gV4nu++mnn2yeiWCah+4LCw65q1Rox1RXQwhWLlHBpee551mhRa/VEhYcVExQcSAYPaHHzjPtMnhqrW21g9k3efIUs2pLe+lo8kSUlJtkSc3//c1apcLkMrnGrFIRjBjSe91pOu433XLrfxeYd+UVHGbMmJGJl9qruQ5q1frv8xZOHKo3yn2aH26felwTiZ7RuXPGdxUy+pqcL8NHjNTDdv+kdyZmEktW1ggH/V4cNWJElm8qxqoIFYyOCec/UVvDvuUb4VDM99xhJplvsOrJ7o0ayV1G6FHRNSi3DxxoV3rR1SK6de2alXsj97tEVwYJSmnH8n32gmtLG+Ggx6N8PoP6eYUABCAAAQhAAAJpJ5A6wUFHNxxnlh3UOdhaNGHdIWY+t06teHvCBDv8O+iY6zDvQXcMzMQ434/puAQHvZl2YnS6hyaF1I7fS6ZDo/Omg3KxSVZ5iklaGRSd39zZDLlebJKmadGOWTPzxHX99deTjz76WDR/Q1B0+ceHHnwga6h0aT+4g2v09YyzusiYl16yu1TMOPH4Niah3CZ236smT8HChYsyp6v9utSodiD1aWMhP9wzF4felGSXjkDQJG0Bjw033FAeNEtchpPb5YtTUH0+wSEqz+v73SB3Ll1ppHOnTjJoaRb/cKJR7RzdbKapaAmf06ZVK7nqyisCM/Oyi9KWVSQ61qxkoNM6tOioGRUNdGnFH374QZ5/8cXM9J3AmLDgoEsRKkOdqhMU7URq+1pokk3O/vbbzLKMwfGw4KD7wrktdHunnXaUpo2byJwf58jY18dlckdovbpyiuYrKKtoW2tnBApdijQoOkJCR5J8ZZ5+B/4Gx/S1vIKDfj80MnYGnW5NDnrsMUdbf59+5lk71SL4DtH6NbGiJr0MlkwMt089rkV9U7Hp73+WrHwRFnr0u2DwoDuWnGj+VpbgoDfUkUQtWjQ3ORo2MaMHvjBLfr6YSVyr0ynuGzlC6u+yS8a2sG/5BAe9oJjvudPNEpyBSKWf/YOaH2iTR+pnNkgGrHXnfkeW9F2i52kp7Vgh31v5BIcon88llvEXAhCAAAQgAAEIpJ9A6gQHDZn+MNW8B0GntaQwahZ0nduuyyoGJd+P6bgEh32NUDB23LjMaITg3sFruNMa7NNXnZd+phkWH+74h4/rexUwhpnRD8FT6OB4aT+4g+P6qqMkdE558GM/fEzf61KOt91+e2YUhO7TTqIus1nID3c9P7eUZpc+YdY59EHnUTu5OtIh8CtfnIJ75BMc9JwoPMPz54P76auOAGjTurXd9dzzz8vZ3bqHD9v3F5x3rpwWyi9QFrti27LeTAW2jqd1yoxMyTVGV1N54403MjENCw56rrYFXWlC81OUVHQUzDffzM7kOsgVHPSaviYR4tB7hpV0ud2nYsNll/SW441IWGjRqSAdOp5qE/flXqNinOZD6GtG6QSlvIKDXhdeDjGoJ3jVTvo53brJVWaUQlDUD80BoCXcPlWs0NwTP//8c3Bq1utuu+5qRiwNscJocKCyBAcVOl42n/uSigpUutJO8wOXrAoSnBP2LZ/gUOz33AtGCNNEpKV9D6kdRx5xuOgoLBU0glLad4keL+1YWZ89vTaf4KDHo3w+9XoKBCAAAQhAAAIQSDuBVAoOGjQdln/pZX1Ep1CEiy5ZeLTpKF1glv3T5IThku/HdFyCg84v/vnnX+xwXB3dEBTNAn/kEUdI925dg13LvOqUiwGm0z95ylSZZ+aZB0WHRusQ5It7XZQZlh0c09fSfnCHz9H3yqqHGSavT8CDoh2p800yyg4dTpHHHn9C7jJP9jXfhJaKEhy0bhUETjPD0IOOh04z0WkB2qHMFye9VktZgoOeUyxP7cif1G7JEoZaT1D0aXCjhg3tZu6UhOCc22/rLy2aNw82CxJrimnLwQ2U4y39+8sH06dnchJoZ7Jd25Pssq9777uffPfdd/b0XMFBdyp/nULw5lvjZfzbb9vRDZrToZVJ6nfiCcdbUSUYGVOS4KB16PSOoWbJWJ1mERRNsKlz9K+4vI8VrYL9hb7q0HsdffHW2+PNMPyZoqMc9Em8TpPS6S2HHXFkpqpiBAe9eNjwe820lJuyRD4VKG81+zQJ57XXX29XQtHRVKUJDtop13hf2KuXfGiW1wyKrjiz9157Gv8vX2YqSWUJDrpKxa39bzOxGZYZ1aCdeBUuO3c6TQ5u2TIwN/Oa77OX+z1T7PecriSjo4jCIxrUAB3F0rXLWdLajBLKLbn3rowpFYENUT6fQR28QgACEIAABCAAgbQSSJTgUEwQtDOlye10GPi2poOjnfPwk7Fi6izvNSX9GF60aJF8+uln8t3338l2Zlk7TThYaNHh7jpk/lszrH0H0xHXVQDiLN9++52Zm/+R7cQps/A86jjv40pdFc0zLj+jtOV5f/wh75mRASssv4LUqVO7qDajnLSEPz/hqTilCQ56jU4HUmHg+x++t8vJ1jEjjOJqV5oTQUWUoGjHvjTBITin0FetWzu+X5rpGpuaz+jWW21lxYV815fUKdcpGFrP12a0w3rrric77LC9XdUkXz1xHyvtif5vv/1mBVp91REZ4VFf5bEh7u85FTa/M99FGtvtt69rv4/KY09lnxvl81nZtnI/CEAAAhCAAAQgUFkEUi84VBbIfPcp6Yd4vvM5BoEkENBOdKs2x5e4LGZV2q/z/Tua3BpBCY9wCPZV5GtJgkNF3q/QuksTHAq9vqzz+J4rixDHIQABCEAAAhCAgH8EEBwqIeb8EK8EyNyiQghcd30/+WzpqiG5N/jZTJGYPGVKZndvM22g/cntMtsV9UZzfOhUgNLKu5MmiT6t16IrnUwc/1aljiZAcBDJXZqytFixHwIQgAAEIAABCEAg3QQQHCohvggOlQCZW1QIAV0xJCwqlHYTHfb+5utj7XSJ0s6Ja/8bb7wp7Tt2LKi63CVcC7oo4kkIDggOEZsQl0MAAhCAAAQgAIHUEEBwqIRQIjhUAmRuUSEEChEcapscJCe3a2sTSVaIETmVFiI46HK4B7VoId26djVLPm6cU0PFbiI4IDhUbAujdghAAAIQgAAEIJAcAggOlRCr77//3iyDuSTh3rrrriMrr7xyJdyVW0AgOgFdSeWvvxaXWtGKK64gNWvWLPV4RRz4888/Ze7ckpeZDO5XY+0asSWlDOos9FWXwFy06E97+hprrrHMKhSF1hP3eZq488cf/1sZp1atjWK9Bd9zseKkMghAAAIQgAAEIJAKAggOqQgjTkAAAhCAAAQgAAEIQAACEIAABNwigODgVjywBgIQgAAEIAABCEAAAhCAAAQgkAoCCA6pCCNOQAACEIAABCAAAQhAAAIQgAAE3CKA4OBWPLAGAhCAAAQgAAEIQAACEIAABCCQCgIIDqkII05AAAIQgAAEIAABCEAAAhCAAATcIoDg4FY8sAYCEIAABCAAAQhAAAIQgAAEIJAKAggOqQgjTkAAAhCAAAQgAAEIQAACEIAABNwigODgVjywBgIQgAAEIAABCEAAAhCAAAQgkAoCCA6pCCNOQAACEIAABCAAAQhAAAIQgAAE3CKA4OBWPLAGAhCAAAQgAAEIQAACEIAABCCQCgIIDqkII05AAAIQgAAEIAABCEAAAhCAAATcIoDg4FY8sAYCEIAABCAAAQhAAAIQgAAEIJAKAggOqQgjTkAAAhCAAAQgAAEIQAACEIAABNwigODgVjywBgIQgAAEIAABCEAAAhCAAAQgkAoCCA6pCGP6nfhr8d/pdxIPIQABCEAAAhCAAAQgUE4CK1VbsZxXcDoEKo8AgkPlseZORRD4Y/5CWbBgYRFXcgkEIAABCEAAAhCAAAT8ILDaatWlWrVqgvjgR7yT5CWCQ5Ki5ZGtOqLh119/98hjXIUABCAAAQhAAAIQgEA0AjVqrInoEA0hV8dMAMEhZqBUF50AYkN0htQAAQhAAAIQgAAEIOAnAUQHP+PuqtcIDq5GxmO75vz4s8fe4zoEIAABCEAAAhCAAASiEai5/jrRKuBqCMREAMEhJpBUEw8BRjfEw5FaIAABCEAAAhCAAAT8JaA5HVZbtbq/APDcGQIIDs6EAkOUwC8mb8NiVqSgMUAAAhCAAAQgAAEIQCASAUY5RMLHxTERQHCICSTVxEOA6RTxcKQWCEAAAhCAAAQgAAG/CZDLwe/4u+I9goMrkcAOYToFjQACEIAABCAAAQhAAALxEEBwiIcjtUQjgOAQjR9Xx0gAwSFGmFQFAQhAAAIQgAAEIOA1AQQHr8PvjPMIDs6EAkMQHGgDEIAABCAAAQhAAAIQiIcAgkM8HKklGgEEh2j8uDpGAggOMcKkKghAAAIQgAAEIAABrwkgOHgdfmecR3BwJhQYguBAG4AABCAAAQhAAAIQgEA8BBAc4uFILdEIIDhE48fVMRJAcIgRJlVBAAIQgAAEIAABCHhNAMHB6/A74zyCgzOhwBAEB9oABCAAAQhAAAIQgAAE4iGA4BAPR2qJRgDBIRo/ro6RAIJDjDCpCgIQgAAEIAABCEDAawIIDl6H3xnnERycCQWGIDjQBiAAAQhAAAIQgAAEIBAPAQSHeDhSSzQCCA7R+HF1jAQQHGKESVUQgAAEIAABCEAAAl4TQHDwOvzOOI/g4EwoMATBgTYAAQhAAAIQgAAEIACBeAggOMTDkVqiEUBwiMaPq2MkgOAQI0yqggAEIAABCEAAAhDwmgCCg9fhd8Z5BAdnQoEhCA60AQhAAAIQgAAEIAABCMRDAMEhHo7UEo0AgkM0flwdIwEEhxhhUhUEIAABCEAAAhCAgNcEEBy8Dr8zziM4OBMKDEFwoA1AAAIQgAAEIAABCEAgHgIIDvFwpJZoBBAcovHj6hgJIDjECJOqIAABCEAAAhCAAAS8JoDg4HX4nXEewcGZUGAIggNtAAIQgAAEIAABCEAAAvEQQHCIhyO1RCOA4BCNH1fHSADBIUaYVAUBCEAAAhCAAAQg4DUBBAevw++M8wgOzoQCQxAcaAMQgAAEIAABCEAAAhCIhwCCQzwcqSUaAQSHaPy4OkYCCA4xwqQqCEAAAhCAAAQgAAGvCSA4eB1+Z5xHcHAmFBiC4EAbgAAEIAABCEAAAhCAQDwEEBzi4Ugt0QggOETjx9UxEkBwiBEmVUEAAhCAAAQgAAEIeE0AwcHr8DvjPIKDM6HAEAQH2gAEIAABCEAAAhCAAATiIYDgEA9HaolGAMEhGj+ujpEAgkOMMKkKAhCAAAQgAAEIQMBrAggOXoffGecRHJwJBYYgONAGIAABCEAAAhCAAAQgEA8BBId4OFJLNAIIDtH4cXWMBBAcYoRJVRCAAAQgAAEIQAACXhNAcPA6/M44j+DgTCgwBMGBNgABCEAAAhCAAAQgAIF4CCA4xMORWqIRQHCIxo+rYySA4BAjTKqCQAoJTJo8SRrUb2A90/da2IaHtgOf20P4c6EsKBCAAAQCAggOAQleq5IAgkNV0ufeWQQQHLJwsAEBCCwlMGToENF/Wt6ZMNG+Nty9EdsJ46Hi0OBBg2Ty5MnSqfPpVixiOxqP3Rs1kjsGD7IsB9w2wH4m+AMBCEAgIIDgEJDgtSoJIDhUJX3unUUAwSELBxsQ8JpAIDJMNZ3T1VatLtvUriPauRo14l7L5cS27ewr28nhsYcRic7u0kUmTJwo/U3nmO3oPP79VyzPM4yAU98IOspVBR3EB6+/PnEeAhkCCA4ZFLypQgIIDlUIn1tnE0BwyObBFgR8JnBOj+62I6WCggoNFAhAoGwCKsxpUcEhmG5U9lWcAQEIpJUAgkNaI5ssvxAckhWvVFuL4JDq8OIcBAoioPPR99qzqR3VoE/CERsKwsZJELAE9DMz0fzr0KGjzJ+/ECoQgIDnBBAcPG8AjriP4OBIIDBDBMGBVgABvwmo2NDl7C7S1Qy772peKRCAQPEEbrzpZvv/1Y5GfKBAAAJ+EkBw8DPurnmN4OBaRDy2B8HB4+DjOgQMgSBvQzcjNuhcfwoEIFAcAc3l0H/AAFGxAcGhOIa+XjV//nwZM2aMfPHlFzJ37lypVauW1K5dW/Zpto8sv/zyGSyffvapvPvuu3a71XGtZLnllsscq4o3Tzz5hCxatEh22H4H2XHHHavCBCfvieDgZFi8MwrBwbuQu+swgoO7scEyCFQWgc8//4RpFJUFm/ukmsBtRnBo3fqEVPuIc/ESGDt2rPS7sZ/8/PPPy1S8ww47yJWXXykbbrihPfbEE0/Idf2us+/HjR0nK6ywwjLXVOaOw444zAok7U9uL51O61SZt3b6XggOTofHG+MQHLwJtfuOIji4HyMshEBFEqhWbUVZu8aaFXkL6oaAVwTmL1hILgevIl68s9/M/kbatmsrf/75px3J0Mgk611zjTXljTffkAULFtiKd22wq9zW/zb7HsGheNaVeSWCQ2XS5l6lEUBwKI0M+yudAIJDpSPnhhBwhkAwnYL8Dc6EBEMSTkATSN540y1mucz6TKtIeCwrw/xLLr1EXn7lZXur6669ziTv3cu+12kKOurhueees9sDbx8ou+y8iyA4VEZUot8DwSE6Q2qITgDBITpDaoiJAIJDTCCpBgIJJIDgkMCgYbLTBMjj4HR4nDOudZvW8vU3X9spE4889EhWToYPZ34oHU9dknz03J7nytFHHb2M4PD6uNdtTodq1aqJjoRo0qRJ1jSLZ559Rr755hvZYostpEXzFln+3zPsHvnrr7+kUcNGViDTgyNGjrAjK3TfpptuKlr/Rx99JFttuZU0NSsZbbLxJll1lDSl4ocffpDHn3jcnrf66qtLm9ZtMja9+967MmnSJJnx4QzZfLPNrc2NGzcWtT8oL7/8snzy6Sey6SabSsOGDeWFF1+QuT/Plc6dOsvKK68cnOb0K4KD0+HxxjgEB29C7b6jCA7uxwgLIVCRBFZbrbpdDrMi70HdEPCFgI5wWLz4b9luuzq+uIyfRRL4+5+/Zd/99pV//vnH5P1oLd3O7rZMTaPuGyV///237LTjTtKgQYMsweHwww6XJ596Muua/fffXy6/7PJMoslu3bvJO+++I3vvvbdc2/farHMPbHGgmfozX07vdLqc3O5keywQEFoe1FKmTJ0i3333XeaaVauvaqd21K1bN7MvOD/I4fD7779L5zM7yxdffCHVq1eXW2++NZNMcvCdg2X4vcMz1wZv1Larr7w6I0pc2udSeemll2SzzTaz+z7//HN76ovPvygqYCShIDgkIUrptxHBIf0xToyHCA6JCRWGQqBCCCA4VAhWKvWYADkcPA5+OVzXaRP7HbCfveLUjqdKh1M6lHl1eEqFrlChIwB223U3Gfv6WJk+fbq9vtdFveTQQw6174sVHPTitddeW1TU+O333+wKGipO1KxZUx5/dMnoBT0nLDioaNG1W1eZ9sE0WWmlleTGG260Ixj0vMcef0z63dBP31rxY49Ge8jMj2ba0Quav0JX3Ojerbs9HggOurHiiitaHzfYYAMryDDCwSLiDwQKIoDgUBAmTqoMAggOlUGZe0DATQJMqXAzLliVXALkcEhu7Crb8qiCg3bwdXSCFh0tcdjhh8lvv/0mLVu2lEsuvsTuL1ZwUMHg2WeeFR3VoOXB0Q/Krf1vte916sdGG21k3weCQ7u27eTzLz6XceOWrJyh+SiaNG5iz9E/Xbp2sVMpdN8N/W7I7L/r7rtEp3asu+668tQTT9n9YcFh6JChUqd28kYLMcIhE2LeVCEBBIcqhM+tswkgOGTzYAsCPhFAcPAp2vhaGQTI4VAZlNNxj0IEhz/++EP+/fdfO2JAn+6HRzjcfdfdsn3d7TMwgo563Tp1ZcjdQ+z+YgWHxns0tiMUgsq/+uoraXNCG7upgkEgJgSCQ3CeLtN5xeVXyL777BvssmJI8xbNRf3VUROrr/bftAgd3TDnxzn23IdHPyy1atWSwA/NGzFyxMhMPUl6g+CQpGil11YEh/TGNnGeITgkLmQYDIFYCTClIlacVOY5AXI4eN4Ayul+kEdhr732kuuuuS7r6gULF0iLg1rYHA863UKnXYQFh9fHvi4rrrBi5pprrr1Gnnr6KZM/ZDsZNnSY3V+a4KDJIg9ofoDND1FSDofw6AmtSEWBI4860tYZXk0jV3DQERG3D7hdateubc/VP/PmzZMWLVvYbR05EbY5c5J5c/1119s8FYHgsHO9neWOgXeET0nMewSHxIQq1YYiOKQ6vMlyDsEhWfHCWgjETQDBIW6i1Oc7AXI4+N4CCvf/1E6nyowZM+wqDc8+/aysttpqmYtfHPOi9Lm8j92+os8VcsABB2QJDuPGLpm+EFxQkuAQdN51dYnRD44OTpXxb4+Xnuf2tNslCQ5BEsjggrIEB00yqatZfPb5Z1KjRg0ZfMdgu8pFcH3r481qHF9/LUceeaScf+75wW6TYHWxXSkj7HdgM4JDBhNvIFAUAQSHorBxUUUQQHCoCKrUCYFkEGBKRTLihJXJIUAOh+TEygVLR44aKQPvGGhNadasmZxx+hmy5pprypiXxti8Cd9++61dCvLBBx6UmuvXLLfgEM690LtXb2nevLnMmjVL+t/WX6a+P9XeNw7BQQWKI484UlRA+emnn0STPA4eNNjarDe5uu/Vokt06rQQnXKhUzI0CeWA2wfYhJc6gqN1q9bWHgQHi4E/EIhMAMEhMkIqiIsAgkNcJKkHAskjgOCQvJhhsdsEyOHgdnxcs06TPXbq1Mmu2FCabWeecaacdOJJ9nB4SkUhIxx0ZELHUzvK3Llz7fXa4de8CZpLQac66JKbcQkOnU7rJJ9++qldFlPFhC222EIG3j5QaqxVw07JOKvLWTJ79mxrhy5vuXDhQjtdRHd069oNwcGS4Q8E4iOA4BAfS2qKSADBISJALodAwgkwpSLhAcR8pwiQw8GpcCTCGO14Dxs+TEY/NNqKAYHR6623nnQ5q4s0P7B5sKvcIxz0wk8/+1T69etnp27o9na1t5PLLrlMzuxyphUi4hQctP533n1HevTsYcUETWrZ/9b+suqqq8qcOXOk7zV97cgKFT20qPBxdpez5aAWB9lt/cMIhwwK3kAgEgEEh0j4uDhOAggOcdKkLggkjwCCQ/JihsVuEyCHg9vxcdW6//3vf/L999/L3J/nSq2NatmlIuO0VZNQLmf+q169epzVlruuf/75R2Z9MkvWWWedzJSLclfi+AUkjXQ8QJ6Yh+DgSaCT4CaCQxKihI0QqBgCTKmoGK7U6i8Bcjj4G3s8h0BAAMEhIMFrVRJAcKhK+tw7iwCCQxYONiDgFQEEB6/CjbOVQIAcDpUAmVtAwHECCA6OB8gT8xAcPAl0EtxEcEhClLARAhVHgCkVFceWmv0jQA4H/2KOxxDIJYDgkEuE7aoggOBQFdS5Z4kEEBxKxMJOCHhDAMHBm1DjaCURIIdDJYHmNhBwlACCg6OB8cwsBAfPAu6yuwgOLkcH2yBQsQSYUlGxfKndPwLkcPAv5ngMgVwCCA65RNiuCgIIDlVBnXuWSADBoUQs7ISAFwQQHLwIM05WIgFyOFQibG4FAUcJIDg4GhjPzEJw8CzgLruL4OBydLANAhVPgCkVFc+YO/hDgBwO/sQaTyFQGgEEh9LIsL8yCSA4VCZt7pWXAIJDXjwchEDqCSA4pD7EOFjJBMjhUMnAuR0EHCOA4OBYQDw1B8HB08C76DaCg4tRwSYIVA4BplRUDmfu4g8Bcjj4E2s8hUBpBBAcSiPD/sokgOBQmbS5V14CCA558XAQAqkmgOCQ6vDiXBUQIIdDFUDnlhBwjACCg2MB8dQcBAdPA++i2wgOLkYFmyBQeQSYUlF5rLlT+gmQwyH9McZDCJRFAMGhLEIcrwwCCA6VQZl7FEQAwaEgTJwEgdQSQHBIbWhxrIoIkMOhisBzWwg4QgDBwZFAeG4GgoPnDcAl9xEcXIoGtkCgcgkwpaJyeXO39BMgh0P6Y4yHECiLAIJDWYQ4XhkEEBwqgzL3KIgAgkNBmDgJAqkkgOCQyrDiVBUSIIdDFcLn1hBwhACCgyOB8NwMBAfPG4BL7iM4uBQNbIFA5RNgSkXlM+eO6SVADof0xhbPIFAoAQSHQklxXkUSQHCoSLrUXS4CCA7lwsXJEEgdAQSH1IUUh6qYADkcqjgA3B4CVUwAwaGKA8DtLQEEBxqCMwQQHJwJBYZAoNIJMKWi0pFzw5QTIIdDygOMexAogACCQwGQOKXCCSA4VDhiblAoAQSHQklxHgTSRwDBIX0xxaOqJUAOh6rlz90h4AIBBAcXooANCA60AWcIIDg4EwoMgUCVEGBKRZVg56YpJUAOh5QGFrcgUA4CCA7lgMWpFUYAwaHC0FJxeQkgOJSXGOdDIF0EEBzSFU+8qXoC5HCo+hhgAQSqkgCCQ1XS594BAQSHgASvVU4AwaHKQ4ABEKgyAkypqDL03DilBMjhkNLA4hYEykEAwaEcsDi1wgggOFQYWiouLwEEh/IS43wIpIcAgkN6YoknbhAgh4MbccAKCFQlAQSHqqTPvQMCCA4BCV6rnACCQ5WHAAMgUKUEmFJRpfi5ecoIkMMhZQHFHQgUQQDBoQhoXBI7AQSH2JFSYbEEEByKJcd1EEgHAQSHdMQRL9whQA4Hd2KBJRCoCgIIDlVBnXvmEkBwyCXCdpURQHCoMvTcGAJVToApFVUeAgxIGQFyOKQsoLgDgSIIIDgUAY1LYieA4BA7UioslgCCQ7HkuA4CySeA4JD8GOKBWwTI4eBWPLAGAlVBAMGhKqhzz1wCCA65RNiuMgIIDlWGnhtDwAkCTKlwIgwYkRIC5HBISSBxAwIRCCA4RIDHpbERQHCIDSUVRSWA4BCVINdDINkEEBySHT+sd48AORzciwkWQaAyCSA4VCZt7lUaAQSH0siwv9IJIDhUOnJuCAFnCDClwplQYEhKCJDDISWBxA0IRCCA4BABHpfGRgDBITaUVBSVAIJDVIJcD4HkEkBwSG7ssNxNAuRwcDMuWAWByiSA4FCZtLlXaQQQHEojw/5KJ4DgUOnIuSEEnCLAlAqnwoExCSdADoeEBxDzIRADAQSHGCBSRWQCCA6REVJBXAQQHOIiST0QSCYBBIdkxg2r3SVADgd3Y4NlEKgMAggOlUGZe5RFAMGhLEIcrzQCCA6VhpobQcA5AkypcC4kGJRwAuRwSHgAMR8CMRBAcIgBIlVEJoDgEBkhFcRFAMEhLpLUA4HkEUBwSF7MsNhtAuRwcDs+WAeByiCA4FAZlLlHWQQQHMoixPFKI4DgUGmouREEnCTAlAonw4JRCSVADoeEBg6zIRAjAQSHGGFSVdEEEByKRseFcRNAcIibKPVBIFkEEBySFS+sdZ8AORzcjxEWQqAiCSA4VCRd6i6UAIJDoaQ4r8IJIDhUOGJuAAFnCfg4peKTTz+Vr776qsyYrL766tKoYcMyz0vLCb/88ou8MGaMbFCzpuy7zz5pcavS/SCHQ6Uj54YQcI4AgoNzIfHSIAQHL8PuptMIDm7GBasgUBkEfBQcHnr4EXn+xRfLxLvZppvKZZf0LvO8tJxw74iRMnbcOOvOJb16yRZbbF60a2Nff10WLlwoW265pdTebrui60niheRwSGLUsBkC8RJAcIiXJ7UVRwDBoThuXFUBBBAcKgAqVUIgQQR8m1Lx7HPPyWumQxyUP+b9IX/+9Zcsv/zysvbaNYLdUmujjaR7166Z7bS/efqZZ+SxJ56UFVZYQa7re7VhsXbRLl9wUS/5ae5cOah5cznu2GOKrieJF5LDIYlRw2YIxEsAwSFentRWHAEEh+K4cVUFEEBwqACoVAmBBBHwTXDIDc3QYcPkzbfGy1prrSU39bs+97A32//++698PGuWrLc38rxEAABAAElEQVTuerLuuutE8ttnwUHBkcMhUvPhYggkngCCQ+JDmAoHEBxSEcZ0OIHgkI444gUEiiHg45SKXE75BId333tPvvlmts1rULduHZkw8R357fff5KgjjpBq1arZqiZMmCizPvlEfpgzR9Zccw3Zvm5dabzHHnbERHCvP/74Q156+RW72WzvveSP+fNl+vTp8tNPc2WbrbeWevV2klVXXTU43b4uXLRIZs6cKR98MF1+nzdP6tapLTvuuKPUXH/9rPN048effpJp06aJ5qf466/FsqWZDlFvp51kUzMtJCi5Nnz19dfyySefyjbbbC0716snn3/+hUx9/317+pFHHG5fg30rrLC8HHbooTLxnXeMTR/Jr7/+KrVrbyf169fP2KMjGt5440173cuvvCILzJSKrbfayvLQnQcesL+sttpq9nia/5DDIc3RxTcIFEYAwaEwTpxVsQQQHCqWL7WXgwCCQzlgcSoEUkYAwUEkn+Aw+K67bSd7ow03tALC7G+/tS1gQP9bZSUjONw+8A6Zajr6uUVFhx7du8lyyy1nD333/ffS+9LL7PuDDzpIxrz8sixevDhz2SYbbywXnHduRnTQDv2Vfa+xHfvMSeaNTvs4r2cP2W7bbTO7dVSC5g1QgSJcVlxxRWl74gmyZ9OmdnfYhl0bNJD3Jk2y+5sfeIC0Pu44eW3sWBkx6j677+7Bg6ztwT6dZrH3nnvKq+accFEB4fxze4raP/Ojj6TfjTeFD2e9v/rKK2TDDTbI2pfGDXI4pDGq+ASB8hFAcCgfL86uGAIIDhXDlVqLIIDgUAQ0LoFAiggwpaL0KRWB4KDh1k63jjJYd5115fg2rWX822/LcJNoUcvh5um/PvGfMeNDecbkiNDSudNp0nC33ez7cGdfd2h+iMZ77C6fffa5FSz+97//yZ5Nmsgp7U+25z//wgvy0COPyiorryynm3qqV68uzzz7rEwzox10FYnLL7vUjrD4ZvZsufqaa82ohr9knXXWkSZmZMWqq1aXCWYkwpdfLlmJQxNfagLMXBt02kSd7Wrb0RW77bprXsFBjVLxRBNA1t9lFzvy4v0PPpB//vnHjOpY0+Z8mGdyYYx/e/wS+18cY5NGbrvNNrLjDtvbfbryhS8jHBYv/lu2266O9Zs/EICAfwQQHPyLuYseIzi4GBVPbUJw8DTwuA2BpQQQHAoTHC69+GLZfPPNMu1GO9vTjcDwww8/2OkCwYFL+1wuOhKiZYsWcuwxR9vd4c6+dsIvPP+84HQ7OkFHSehUiWuuvsruV3Hh0cefsB10PVcFit9++00+/+ILI3rUlZVXXsme99zzz8vDjz5mR0aosLDeuuva/X/++Zdc2qePTdy4/777ygnHt8kSHHYxUyjO7nJWxgZ9E4xm0Pe5Ixx0n06JaNOqlb61RVeiuHfkKPteR2eER12Qw2GhzJ+/cCkpXiAAAd8IIDj4FnE3/UVwcDMuXlqF4OBl2HEaApYAUyoKm1KhUwZ0VEFu+ezzz0XzPHz33XeinXwtX3/zjSxYsMBOQTi5XVu7Lyw4HHfMMXJQi+Z2v/559bXXZOR999vtQbcPsCMXvjcixhVXXZWpU0cjaId+px13kkYNd8tM1bilf3876qH+zjtLl7POzNSpb9S2lVZaSTauVcueH7bhzM6ni06rCJeyBIdcwWW+yUPR47zz5e+//5bjjLBykBFYguKz4EAOh6AV8AoBfwkgOPgbe5c8R3BwKRqe24Lg4HkDwH2vCSA4FCY4aGdfn+KHy1tmZYthI0bYaQXh/cF7zXlQkuBwbo9zzCiF/4bbjx//ttx9zz32soEDbpOVjUigRUWHhx9+RGbM/DAjPOh+TTLZo3t3O8qhzxVXWoGj2V57Sbu2J+nhUktYcNA8EHVq1846N5/goNMp+t9ys6xqpnaEy7kXXCi//PKLBHkggmM+Cw7kcAhaAa8Q8JcAgoO/sXfJcwQHl6LhuS0IDp43ANz3ngBTKsqeUlGS4HD5lVeJrvSg4kHbk060y2pqY+pz+RV21YjSBIfczn5JgoPmdPjyq6/slIq1a9SwUykmmSSPY5audHHWGZ2lgVkhYqRJ8qiJHHU1ij5mSkW43Hn33fKXGXWh+Rn2MPkioggOWm8Hk1+iqckzEZRPP/tM+l57nd3s1LGj7L57o+CQ+Cw46AgHcjhkmgJvIOAlAQQHL8PunNMIDs6FxF+DEBz8jT2eQ0AJIDgUJzh0PaeHmac/X/bfdx+TI+F425h02UhNNKlFRxDoaAYdHZCvs1+S4HDt9f3sUpv1dtpRupx5pk1YqatanHPueTYZY6tjj5UWzQ+0K2gE9zv04IPl4INbyr///ivvGDuG3TvC2nFCmzay/3775rVBT8w3wkGP67QSTZapiSO/NkLLw48+anNY6LHrrumbyR+h24HgUNJUDz2e9jJ/ATkc0h5j/INAPgIIDvnocKyyCCA4VBZp7lMmAQSHMhFxAgRSS4ApFcVPqdARBBMmvmPbxqabbCKLzLKUP/70k11F4oc5c+z+tdZaS27qd33ezn5JgsNb48fLkHuG2TrWX289m4fh69nfyNy5P1vxoXevi+zKEypCqOAwecoUe66upKFLZwZLbqpI0OuiC+00jXyih15cluCg+SB0NQxdMWPhwv8SIh5gxIzjjagRLkPMFJG3zFQRLSq4rL766nLLjTeET0nte3I4pDa0OAaBggkgOBSMihMrkACCQwXCperyEUBwKB8vzoZAmgggOBQvOGinW0WH96d9kGkSmohRl7YccPtA+XjWLNvRvvmGfuUWHLTC18eNkyeffsbmSAhuoEtftj7uWDtNItin0y9GP/SQWQrzXfn999/tbl3FYud6O9scErq0ppaogoOugjH4zrtsbgmtT/M5NG3axNhzXCaJpe7Xoqt0PPTww/LB9Bl2xIUKDrfedOOSgyn/Sw6HlAcY9yBQAAEEhwIgcUqFE0BwqHDE3KBQAggOhZLiPAikk4DvUyqiRlVXpNAEj7ok5Zprrhm1uqzrdenNuT//bJfEXGONNURHO+gohtLKnB9/tKMQdBlNHekQteSOetDpGnqPPxf9afJGbBLLPaLa6Nr15HBwLSLYA4HKJ4DgUPnMueOyBBAclmXCnioigOBQReC5LQQcIYDg4EggHDQjV3DQ6RGUsgmQw6FsRpwBgTQTQHBIc3ST4xuCQ3JilXpLERxSH2IchECpBJhSUSoaDhgCCA7lbwbkcCg/M66AQNoIIDikLaLJ9AfBIZlxS6XVCA6pDCtOQaAgAggOBWHy9iRddeMpk0dCyxV9LlsmV4O3YPI4Tg6HPHA4BAFPCCA4eBJox91EcHA8QD6Zh+DgU7TxFQLLEmBKxbJM2AOBYgmQw6FYclwHgfQQQHBITyyT7AmCQ5KjlzLbERxSFlDcgUA5CSA4lBMYp0OgDALkcCgDEIchkHICCA4pD3BC3ENwSEigfDATwcGHKOMjBEomwJSKkrmwFwLFEiCHQ7HkuA4C6SGA4JCeWCbZEwSHJEcvZbYjOKQsoLgDgXIQQHAoByxOhUABBMjhUAAkToFAygkgOKQ8wAlxD8EhIYHywUwEBx+ijI8QKJ0AUypKZ8MRCJSXADkcykuM8yGQPgIIDumLaRI9QnBIYtRSajOCQ0oDi1sQKJAAgkOBoDgNAgUSIIdDgaA4DQIpJYDgkNLAJswtBIeEBSzN5iI4pDm6+AaB/ASYUpGfD0chUF4C5HAoLzHOh0D6CCA4pC+mSfQIwSGJUUupzQgOKQ0sbkGgAAIIDgVA4hQIlIMAORzKAYtTIZBSAggOKQ1swtxCcEhYwNJsLoJDmqOLbxAomwBTKspmxBkQKJQAORwKJcV5EEgvAQSH9MY2SZ4hOCQpWim3FcEh5QHGPQiUQQDBoQxAHIZAOQmQw6GcwDgdAikjgOCQsoAm1B0Eh4QGLo1mIzikMar4BIHCCDClojBOnAWBQgmQw6FQUpwHgfQSQHBIb2yT5BmCQ5KilXJbERxSHmDcg0AeAggOeeBwCAJFECCHQxHQuAQCKSOA4JCygCbUHQSHhAYujWYjOKQxqvgEgcIJMKWicFacCYGyCJDDoSxCHIdA+gkgOKQ/xknwEMEhCVHyxEYEB08CjZsQKIUAgkMpYNgNgSIJkMOhSHBcBoGUEEBwSEkgE+4GgkPCA5gm8xEc0hRNfIFA+QgwpaJ8vDgbAmURIIdDWYQ4DoH0E0BwSH+Mk+AhgkMSouSJjQgOngQaNyFQAgEEhxKgsAsCEQiQwyECPC6FQEoIIDikJJAJdwPBIeEBTJP5CA5piia+QKD8BJhSUX5mXAGB0giQw6E0MuyHgD8EEBz8ibXLniI4uBwdz2xDcPAs4LgLgRwCCA45QNiEQEQC5HCICJDLIZBwAggOCQ9gSsxHcEhJINPgBoJDGqKIDxAojgBTKorjxlUQKI0AORxKI8N+CPhDAMHBn1i77CmCg8vR8cw2BAfPAo67EAgRQHAIweAtBGIgQA6HGCBSBQQSTgDBIeEBTIn5CA4pCWQa3EBwSEMU8QECxRNgSkXx7LgSArkEyOGQS4RtCPhHAMHBv5i76DGCg4tR8dQmBAdPA4/bEFhKAMGBpgCBeAmQwyFentQGgaQRQHBIWsTSaS+CQzrjmkivEBwSGTaMhkAsBJhSEQtGKoFAhgA5HDIoeAMBbwkgOHgbeqccR3BwKhx+G4Pg4Hf88d5vAggOfscf7+MnQA6H+JlSIwSSRgDBIWkRS6e9CA7pjGsivUJwSGTYMBoCsRFgSkVsKKkIAkIOBxoBBCCA4EAbcIEAgoMLUcAGSwDBgYYAAb8JIDj4HX+8j58AORziZ0qNEEgSAQSHJEUrvbYiOKQ3tonzDMEhcSHDYAjERoApFbGhpCIIWALkcKAhQAACCA60ARcIIDi4EAVssAQQHGgIEPCXAIKDv7HH84ohQA6HiuFKrRBIEgEEhyRFK722IjikN7aJ8wzBIXEhw2AIxEqAKRWx4qQyzwmQw8HzBoD7EDAEEBxoBi4QQHBwIQrYYAkgONAQIOA3AQQHv+OP9/ETIIdD/EypEQJJIoDgkKRopddWBIf0xjZxniE4JC5kGAyB2AgwpSI2lFQEAUuAHA40BAhAAMGBNuACAQQHF6KADZYAggMNAQL+ElDBYfLkydKzR3fZvVEjf0HgOQRiIkAOh5hAUg0EEkwAwSHBwUuR6QgOKQpm0l1BcEh6BLEfAtEIMKUiGj+uhkCYADkcwjR4DwE/CSA4+Bl317xGcHAtIh7bg+DgcfBxHQKGwMcfzZRqK63ICAdaAwRiIkAOh5hAUg0EEkoAwSGhgUuZ2QgOKQtokt1BcEhy9LAdAtEIkMMhGj+uhkAuAXI45BJhGwL+EUBw8C/mLnqM4OBiVDy1CcHB08DjNgQMAXI40AwgEC8BcjjEy5PaIJBEAggOSYxa+mxGcEhfTBPrEYJDYkOH4RCIhQA5HGLBSCUQsATI4UBDgAAEEBxoAy4QQHBwIQrYYAkgONAQIOA3AXI4+B1/vI+fADkc4mdKjRBIEgEEhyRFK722IjikN7aJ8wzBIXEhw2AIxEaAHA6xoaQiCFgC5HCgIUAAAggOtAEXCCA4uBAFbLAEEBxoCBDwlwA5HPyNPZ5XDAFyOFQMV2qFQJIIIDgkKVrptRXBIb2xTZxnCA6JCxkGQyBWAuRwiBUnlXlOgBwOnjcA3IeAIYDgQDNwgQCCgwtRwAZLAMGBhgABvwmQw8Hv+ON9/ATI4RA/U2qEQJIIIDgkKVrptRXBIb2xTZxnCA6JCxkGQyA2AuRwiA0lFUHAEiCHAw0BAhBAcKANuEAAwcGFKGCDJYDgQEOAgL8EyOHgb+zxvGIIkMOhYrhSKwSSRADBIUnRSq+tCA7pjW3iPENwSFzIMBgCsRIgh0OsOKnMcwLkcPC8AeA+BAwBBAeagQsEEBxciAI2WAIIDjQECPhNoFq1FeXjj2fK7o0a+Q0C7yEQE4Fffv1dFi/+O6baqAYCEEgaAQSHpEUsnfYiOKQzron0CsEhkWHDaAjERqDJnk1sXZ98NDO2OqkIAj4S0NENJ7ZtJw3qN5ABtw3wEQE+QwAChgCCA83ABQIIDi5EARssAQQHGgIE/CageRxWMqMc9tyzKaMc/G4KeB+RAIJDRIBcDoGUEEBwSEkgE+4GgkPCA5gm8xEc0hRNfIFA8QRqrr+OaIeJqRXFM+RKfwkEn51XXh0rO+64k78g8BwCEGCEA23ACQIIDk6EASOUAIID7QACEFACI0YMlzsGD5auXbpI17O7AAUCECiQQLAyxZ2DBiM2FMiM0yCQZgKMcEhzdJPjG4JDcmKVeksRHFIfYhyEQEEEdGqF/hs2ZIidXhE8sS3oYk6CgIcEgs9IIDh07NBR9B8FAhDwmwCCg9/xd8V7BAdXIoEdjHCgDUAAAhkCkydPlvr160u1atWk4e4N7X5NJqkdK02Gp9MtRo24l2140B7M5+GM00+X00/vLAsWLLRiHWJD5quENxDwmgCCg9fhd8Z5BAdnQoEhjHCgDUAAAiUR6LJ0WoVm2580eZLodpB9n2140B7++zyU9PlhHwQg4C8BBAd/Y++S5wgOLkXDc1sQHDxvALgPAQgkgsAxxx1j7XzkoUcSYS9GQgACEPCVAIKDr5F3y28EB7fi4bU1CA5ehx/nIQCBhBBAcEhIoDATAhDwngCCg/dNwAkACA5OhAEjlACCA+0AAhCAgPsEEBzcjxEWQgACEFACCA60AxcIIDi4EAVssAQQHGgIEIAABNwngODgfoywEAIQgIASQHCgHbhAAMHBhShggyWA4EBDgAAEIOA+AQQH92OEhRCAAASUAIID7cAFAggOLkQBGywBBAcaAgQgAAH3CSA4uB8jLIQABCCgBBAcaAcuEEBwcCEK2GAJIDjQECAAAQi4TwDBwf0YYSEEIAABJYDgQDtwgQCCgwtRwAZLAMGBhgABCEDAfQIIDu7HCAshAAEIKAEEB9qBCwQQHFyIAjZYAggONAQIQAAC7hNAcHA/RlgIAQhAQAkgONAOXCCA4OBCFLDBEkBwoCFAAAIQcJ8AgoP7McJCCEAAAkoAwYF24AIBBAcXooANlgCCAw0BAhCAgPsEEBzcjxEWQgACEFACCA60AxcIIDi4EAVssAQQHGgIEIAABNwngODgfoywEAIQgIASQHCgHbhAAMHBhShggyWA4EBDgAAEIOA+AQQH92OEhRCAAASUAIID7cAFAggOLkQBGywBBAcaAgQgAAH3CSA4uB8jLIQABCCgBBAcaAcuEEBwcCEK2GAJIDjQECAAAQi4TwDBwf0YYSEEIAABJYDgQDtwgQCCgwtRwAZLAMGBhgABCEDAfQIIDu7HCAshAAEIKAEEB9qBCwQQHFyIAjZYAggONAQIQAAC7hNAcHA/RlgIAQhAQAkgONAOXCCA4OBCFLDBEkBwoCFAAAIQcJ8AgoP7McJCCEAAAkoAwYF24AIBBAcXooANlgCCAw0BAhCAgPsEEBzcjxEWQgACEFACCA60AxcIIDi4EAVssAQQHGgIEIAABNwngODgfoywEAIQgIASQHCgHbhAAMHBhShggyWA4EBDgAAEIOA+AQQH92OEhRCAAASUAIID7cAFAggOLkQBGywBBAcaAgQgAAH3CSA4uB8jLIQABCCgBBAcaAcuEEBwcCEK2GAJIDjQECAAAQi4TwDBwf0YYSEEIAABJYDgQDtwgQCCgwtRwAZLAMGBhgABCEDAfQIIDu7HCAshAAEIKAEEB9qBCwQQHFyIAjZYAggONAQIQAAC7hNAcHA/RlgIAQhAQAkgONAOXCCA4OBCFLDBEkBwoCFAAAIQcJ8AgoP7McJCCEAAAkoAwYF24AIBBAcXooANlgCCAw0BAhCAgPsEEBzcjxEWQgACEFACCA60AxcIIDi4EAVssAQQHGgIEIAABNwngODgfoywEAIQgIASQHCgHbhAAMHBhShggyWA4EBDgAAEIOA+AQQH92OEhRCAAASUAIID7cAFAggOLkQBGywBBAcaAgQgAAH3CSA4uB8jLIQABCCgBBAcaAcuEEBwcCEK2GAJIDjQECAAAQi4TwDBwf0YYSEEIAABJYDgQDtwgQCCgwtRwAZLAMGBhgABCEDAfQIIDu7HCAshAAEIKAEEB9qBCwQQHFyIAjZYAggONAQIQAAC7hNAcHA/RlgIAQhAQAkgONAOXCCA4OBCFLDBEkBwoCFAAAIQcJ8AgoP7McJCCEAAAkoAwYF24AIBBAcXooANlgCCAw0BAhCAgPsEEBzcjxEWQgACEFACCA60AxcIIDi4EAVssAQQHGgIEIAABNwngODgfoywEAIQgIASQHCgHbhAAMHBhShggyWA4EBDgAAEIOA+AQQH92OEhRCAAASUAIID7cAFAggOLkQBGywBBAcaAgQgAAH3CSA4uB8jLIQABCCgBBAcaAcuEEBwcCEK2GAJIDjQECAAAQi4TwDBwf0YYSEEIAABJYDgQDtwgQCCgwtRwAZLAMGBhgABCEDAfQIIDu7HCAshAAEIKAEEB9qBCwQQHFyIAjZYAggONAQIQAAC7hNAcHA/RlgIAQhAQAkgONAOXCCA4OBCFLDBEkBwoCFAAAIQcI/Ag6MftEa1btXavuYKDrnH3fMAiyAAAQj4SQDBwc+4u+Y1goNrEfHYHgQHj4OP6xCAgJMEpk+fLpf2udTa1uq4VqKiQ1hwULFh9EOj7fEr+lwhO+ywg5N+YBQEIAABHwkgOPgYdfd8RnBwLybeWoTg4G3ocRwCEHCYQFhUUNEhEBhy3wcjIBx2BdMgAAEIeEUAwcGrcDvrLIKDs6HxzzAEB/9ijscQgEAyCIRFh1yLg5EPufvZhgAEIACBqiWA4FC1/Ln7EgIIDrQEZwggODgTCgyBAAQgsAyBkkQHxIZlMLEDAhCAgDMEEBycCYXXhiA4eB1+t5xHcHArHlgDAQhAIJdAWHRAbMilwzYEIAABtwggOLgVD1+tQXDwNfIO+o3g4GBQMAkCEIBADgEVHbSQsyEHDJsQgAAEHCOA4OBYQDw1B8HB08C76DaCg4tRwSYIVC2BIUOHiP6jQAACpRNoUL+BdOjQQfSVAgEIQCAggOAQkOC1KgkgOFQlfe6dRQDBIQsHGxDwmgBCg9fhx/kIBDp26Cj6jwIBCEAAwYE24AIBBAcXooANlgCCAw0BAhBQAmGxodvZXSyUs7sseYUQBCCwLIEJEydK/9sGiL5qQXRYlhF7IOAjAQQHH6Puns8IDu7FxFuLEBy8DT2OQyBDICw2jBpxr+zeqFHmGG8gAIH8BFRwOLFtO3sSokN+VhyFgA8EEBx8iLL7PiI4uB8jbyxEcPAm1DgKgRIJTJo8SbosHdGA2FAiInZCoEwCiA5lIuIECHhDAMHBm1A77SiCg9Ph8cs4BAe/4o23EMgloGKDig46qkEFBwoEIFAcAZ1e0X/AAKZWFIePqyCQGgIIDqkJZaIdQXBIdPjSZTyCQ7riiTcQKC+BJns2sZcwuqG85DgfAssS2KZ2HbvzrTfeWvYgeyAAAS8IIDh4EWbnnURwcD5E/hiI4OBPrPEUArkEgukUjG7IJcM2BIojwCiH4rhxFQTSRADBIU3RTK4vCA7JjV3qLEdwSF1IcQgCBRMIkkV2NatRdF2ax6HgizkRAhBYhgCCwzJI2AEB7wggOHgXcicdRnBwMix+GoXg4Gfc8RoCSgDBgXYAgXgJIDjEy5PaIJBEAggOSYxa+mxGcEhfTBPrEYJDYkOH4RCITADBITJCKoBAFgEEhywcbEDASwIIDl6G3TmnERycC4m/BiE4+Bt7PIcAggNtAALxEkBwiJcntUEgiQQQHJIYtfTZjOCQvpgm1iMEh8SGDsMhEJkAgkNkhFQAgSwCCA5ZONiAgJcEEBy8DLtzTiM4OBcSfw1CcPA39ngOAQQH2gAE4iWA4BAvT2qDQBIJIDgkMWrpsxnBIX0xTaxHCA6JDR2GQyAyAQSHyAipAAJZBBAcsnCwAQEvCSA4eBl255xGcHAuJP4ahODgb+zxHAIIDrQBCMRLAMEhXp7UBoEkEkBwSGLU0mczgkP6YppYjxAcEhs6DIdAZAIIDpERUgEEsgggOGThYAMCXhJAcPAy7M45jeDgXEj8NQjBwd/Y4zkEEBxoAxCIlwCCQ7w8qQ0CSSSA4JDEqKXPZgSH9MU0sR4hOCQ2dBgOgcgEEBwiI6QCCGQRQHDIwsEGBLwkgODgZdidcxrBwbmQ+GsQgoO/scdzCCA40AYgEC8BBId4eVIbBJJIAMEhiVFLn80IDumLaWI9QnBIbOgwHAKRCSA4REZIBRDIIoDgkIWDDQh4SQDBwcuwO+c0goNzIfHXIAQHf2OP5xBAcKANQCBeAggO8fKkNggkkQCCQxKjlj6bERzSF9PEeoTgkNjQYTgEIhNAcIiMkAogkEUAwSELBxsQ8JIAgoOXYXfOaQQH50Lir0EIDv7GHs8hgOBAG4BAvAQQHOLlSW0QSCIBBIckRi19NiM4pC+mifUIwSGxocNwCEQmgOAQGSEVQCCLAIJDFg42IOAlAQQHL8PunNMIDs6FxF+DEBz8jT2eQwDBgTYAgXgJIDjEy5PaIJBEAggOSYxa+mxGcEhfTBPrEYJDYkOH4RCITADBITJCKoBAFgEEhywcbEDASwIIDl6G3TmnERycC4m/BiE4+Bt7PIcAggNtAALxEkBwiJcntUEgiQQQHJIYtfTZjOCQvpgm1iMEh8SGDsMhEJkAgkNkhFQAgSwCCA5ZONiAgJcEEBy8DLtzTiM4OBcSfw1CcPA39ngOAQQH2gAE4iWA4BAvT2qDQBIJIDgkMWrpsxnBIX0xTaxHCA6JDR2GQyAyAQSHyAipAAJZBBAcsnCwAQEvCSA4eBl255xGcHAuJP4ahODgb+zxHAIIDrQBCMRLAMEhXp7UBoEkEkBwSGLU0mczgkP6YppYjxAcEhs6DIdAZAIIDpERUgEEsgggOGThYAMCXhJAcPAy7M45jeDgXEj8NQjBwd/Y4zkEEBxoAxCIlwCCQ7w8qQ0CSSSA4JDEqKXPZgSH9MU0sR4hOCQ2dBgOgcgEEBwiI6QCCGQRQHDIwsEGBLwkgODgZdidcxrBwbmQ+GsQgoO/scdzCCA40AYgEC8BBId4eVIbBJJIAMEhiVFLn80IDumLaWI9QnBIbOgwHAKRCSA4REZIBRDIIoDgkIWDDQh4SQDBwcuwO+c0goNzIfHXIAQHf2OP5xBAcKANQCBeAggO8fKkNggkkQCCQxKjlj6bERzSF9PEeoTgkNjQYTgEIhNAcIiMkAogkEUAwSELBxsQ8JIAgoOXYXfOaQQH50Lir0EIDv7GHs8hgOBAG4BAvAQQHOLlSW0QSCIBBIckRi19NiM4pC+mifUIwSGxocNwCEQmgOAQGSEVQCCLAIJDFg42IOAlAQQHL8PunNMIDs6FxF+DEBz8jT2eQwDBgTYAgXgJIDjEy5PaIJBEAggOSYxa+mxGcEhfTBPrEYJDYkOH4RCITADBITJCKoBAFgEEhywcbEDASwIIDl6G3TmnERycC4m/BiE4+Bt7PIcAggNtAALxEkBwiJcntUEgiQQQHJIYtfTZjOCQvpgm1iMEh8SGDsMhEJkAgkNkhFQAgSwCCA5ZONiAgJcEEBy8DLtzTiM4OBcSfw1CcPA39ngOAQQH2gAE4iWA4BAvT2qDQBIJIDgkMWrpsxnBIX0xTaxHCA6JDR2GQyAyAQSHyAipAAJZBBAcsnCwAQEvCSA4eBl255xGcHAuJP4ahODgb+zxHAIIDrQBCMRLAMEhXp7UBoEkEkBwSGLU0mczgkP6YppYjxAcEhs6DIdAZAIIDpERUgEEsgggOGThYAMCXhJAcPAy7M45jeDgXEj8NQjBwd/Y4zkEEBxoAxCIlwCCQ7w8qQ0CSSSA4JDEqKXPZgSH9MU0sR4hOCQ2dBgOgcgEEBwiI6QCCGQRQHDIwsEGBLwkgODgZdidcxrBwbmQ+GsQgoO/scdzCCA40AYgEC8BBId4eVIbBJJIAMEhiVFLn80IDumLaWI9QnBIbOgwHAKRCSA4REZIBRDIIoDgkIWDDQh4SQDBwcuwO+c0goNzIfHXIAQHf2OP5xBAcKANQCBeAggO8fKkNggkkQCCQxKjlj6bERzSF9PEeoTgkNjQYTgEIhNAcIiMkAogkEUAwSELBxsQ8JIAgoOXYXfOaQQH50Lir0EIDv7GHs8hgOBAG4BAvAQQHOLlSW0QSCIBBIckRi19NiM4pC+mifUIwSGxocNwCEQmUBGCw1vjx8v06dPl41mzpOb6NaVu3TrStEkTWXvttSPbm8QK/vrrLxkydKgsXLhITjvtVFlj9dVjdeOrr7+WV155VT777DNZ9Oci2WrLLaWJ4V1vp52y7vPGG2/KF19+ITVr1pTmBx6YdayyN37//Xd58qmn7G0PPOAA2WCDDUo14fvvv5ch99wjW2y+uZx4wgmlnufKAQQHVyKBHRCoOgIIDlXHnjv/RwDB4T8WvKtiAggOVRwAbg+BKiQQp+CwaNEiubDXxfL0M88s45F2cgcPHCg77bTjMsfSsOOjjz+W119/3bpySvv2suKKK2bcevKpp6XHuefa7YvOP186duyQORb1ze2G6e13DBIVNcJlueWWk1bHHiuX97ksY0u3c3rIM88+K40aNpT7Ro4In17p7z814kiLlgfb+468d7jssfvupdrQ+5JL5YHRo+3xxx5+2Pk2hOBQaig5AAFvCCA4eBNqpx1FcHA6PH4Zh+DgV7zxFgJhAnEKDn2vvVaG3jPMVr/N1lvLbrvuKr/+9puMfX2sfbq/yiqryNhXXpZ11103bEIq3j/62ONy/oUXWl+mTZki1auvkvHr3ffekzYnnGi3b735Jjnk4CUd7cwJRb556uln5JyePe3VOmpCRzUsWDBf3nxrvPzvf/+z+8/r2UNO79TJvk+q4DDwjjvkpltutcKJtp98oyGKRBnrZQgOseKkMggkkgCCQyLDljqjERxSF9LkOoTgkNzYYTkEohKIU3DQJ9b65Hr3Ro1k1Ih7M6ZNff99Oea4Vnb7lptulEMPOSRzLC1v8gkO6qNOL1lkplTUq5c9zSGK/4333Et+/PFHO0XjGTM9oVatjWx1OgXhlI6nyqxPPrHCx+R337Wd9aQKDv/++69MfOcd2XSTTTM+RuFW0dciOFQ0YeqHgPsEEBzcj5EPFiI4+BDlhPiI4JCQQGEmBCqAQFyCg3YK6++6m/wxf760b9dWel98cZa1ezbbR7QjfHzr1nLlFZdnjv3555/y2tix8q7pFH/+xReyy847S9OmTaX+LrtkztE3d919t8yfv8AcayJrrrmmPPfc8zJv3u+yuxmKr/kItB6dyjFlylTZZJON5WAzimDTTTbJqmPBwoUy+sHRMv3DGTJnzo+yycYby2GHHbrMcP73358mr7z6qumkryBdzjpLNPeBdng1P0KTxo1lT2NfMGXikUcfla+//kZmzpwpL73yir1fZzOiQI/XqVNbDmrRQn755RcZfu+SKQzHHHN0ll3z5s2Tl03+hUmTJsnsb2dLndp17JSHZs32zrI9d2POnDnSZK8l5xx15BHS77rrsk4ZfOed0u/Gm+y+MS88L1tusYWEBYd7htwtox962NqtQsVee+21TM4H7TjrSIl99mlm4xLcQEWOUffdbzfbtG4lG264YZaPuk9HtowbN86yadCggey37z42bkEdpU2pUM5vmREaWgJ+QTx0X/duXfVFgn2FxMhesPTPe4bza6+NlRmmDdTezsTnoBay7jrrykNmqoaWU9qfLGuttdbSs4t7QXAojhtXQSBNBBAc0hTN5PqC4JDc2KXOcgSH1IUUhyBQMIG4BAe94WmdTpdXjXiw0korydlnnWk684fZTr0ee3/aNDPcf4Gss846st222+ouKxJ06nyGmQLwlt0O/7nECBYnG+EiKHs03VN++ukn2+GfZuqa98cfwSHRDv6nn34qY15+ObNvvfXWs6Mstt5qK7tv9uxvpX2HDlbUyJy09M05phN71plnZnbf/8ADcsllfaxo0OnUU2XgoEGZY/rmyCMOtx18zZNwYtt2MmHixKzjwcZhhx4iN994ox31UVK+AhUNTj6lgx2JEFwTvJ7Qpo1ceknvjLAR7A9e354wQU5qd7LdHDTwdjlg//2DQ/ZVxZ1HH3vMvtc4qPgSCA463UUTeL5jRJ5wufrKK6R1qyUjUXR/7e13kH/++UdyYzF9+gw54uij7aWPPDRadq5XL8tHjcfQYcOy8krU3m47uX/UyIzoUJLgMG3aB4ZnW1FhSOOmeSZ0+k0QD73hrJkfinIP9qmwU1aMrKHmj4oKvXpfIiqOBUXb6jFHHSX3P/ig3fXKS2Nks003DQ4X9YrgUBQ2LoJAqgggOKQqnIl1BsEhsaFLn+EIDumLKR5BoFACcQoOk03uAhUQ9Il+UDbfbDM58MADpOVBB9mOabBfX4MO8KrVq9tpFttvX9eOdnht7Ou2U6kd6f33289eEggOyy+/vBzcsqXsYM7Vp+zfzJ5tj9eoUUO0k75w0UIZMXKU/P3339LupBNNp/0Se1yTNmryRhU8VGDYZONNbCfzxTFjZIUVVpBxr71qV2/Qk4POrL3Q/NEVNpo03kNeMOfqk3UtOqJARxY89vgT8t1338r0GR/KCy++aI+dbUZFVKu2omxrhBVdgaGkzrXa1/yglqIrTKy88so2weMWZhSCihdqk5bevXpJ+5Pb2fe5f8YaRh2X5mbQjnzD3XbLPWWZ7YC3HtCO9mFmaovmQ3jiqSdFBRll+/KYFzMjMIoVHLT+bbfZRo44/DA74kRFKBUujjUixbXX9NXDyzCpVauWHNe6jcydO9fe/4H7RmVyNYTjkSs42MrMn3wx0nM0j8YJJ7W1IzZ0BMMRZmSL+v74E09mCT4IDgFRXiEAgSgEEByi0OPauAggOMRFknoiE0BwiIyQCiCQWAJxCg4KQQWA228fKC++9JL8ZobVh0vbE0+UXhddaDrj1WTx4sWyc4Nd7VPw3JUbWrU5XiZNnmxHEtxw/fW2ikBwaFC/vox+YMlwfn2Cf/6FF9njF5uEjaec0t6+D0Za6IoYuqqBFh0RMWbMS7LGGqtbEUD3/fzzz7J7k6b2ifcQMwUhmMYQ7uCe2bmz9Dinu55uRYxGjZuILumoK0D0vfoqu1//5MvhUJLgMGXqVDm2VWt7fe4Iha7dz5Fnn3vOjgR59uklS0dmbrT0TVTBYfg9Q20nXavTkQVHGX+0KG8dwaGlWMFBk4WqYBCUIB46ckA79FrCTDSvx00332LFF52eoQKKjsgISjgeJQkOhcToxptuljsGD7ZC1qsvv5QZeaP30NEaOmpDC4KDxcAfCEAgIgEEh4gAuTwWAggOsWCkkjgIIDjEQZE6IJBMAnELDgEFfYKv8+XffPMtm1tBn+RrCTqHOhpCn2hr0c6lihBB+eXXX+0oiXAHNRAcdLj+uWblBS1af+vjT7Dvw8slXn3NNXLPsOGioyv0iX1QdEnICRMmyhdffmmfuOt+zRmgQ+xv7NfPPpHXfeEObrhePXZ2t+7y3PPP29EaOp0gKOUVHO686y65/oYbjQCyhkx6Z6LtCAd1ffnVV/ZJ//Z164qu7FFSKUtw0BEFOjVBS3VTh049CEY46IoW70x4O2u6hgovOrrg9NNOk/POXbLyRbGCQ66ANOq+++Syy6+wtkx/f6od0REWHOwB88dOnzBiw1Zbbhnssq/heJQkOBQSIx3doLHOTWiqNxg2/F65qu+SkRcIDlno2YAABIokgOBQJDgui5UAgkOsOKksCgEEhyj0uBYCySYQl+Dw6muvyUUX97YwdIWKIHeC7tDRDJpvQAWCOrVr/5+9+wCTparzBnxcRQUUQUE/ZRVQWJCgAgqSwbAGggHBQBDBBFySgAiKICjiKga8urKSEVeiOSIgkuSqXHKSXVBQzCJKdvWrU9BjT0/3THdVh6pTb/twZ7rCqXPef7fPU7+pOhW+8bWv5rcN7DZvj3z7+AjJR2T/6/a6cuHl+cl4K3CItyvstedD+7UHDrHN2HZ8dQsc3pvdu3/aGWd0O0S+rFfgcFM2uWC81aD1es+BB4Uzs4ki26+eiOsGDRw++KEPhROziSTjyfX3vvPtVvN9/2yfR6FzjoXYSLdAohU4xNsv4lUE7a/NXvyScNvtt4e37rJzeM+7352v6hU4xDk34twT8dVtDodTTjoxrPfCF+br4z/xtpP9Dzggf3/VFQtDvIWmW+AQ53mIV0bEEKb9NVfg0E+NtnrNa8N1112XP5I0Ppq0/dX+eFGBQ7uM3wkQKCogcCgqZ79hCggchqmprVICAodSfHYmUGuBYQUOd9xxR9ho081yiz3nzQt77jFvmss+++4b4oldvG/+4h9ekD0l4p9PWfj0pz6Zz/HQ2uHO7AqHeNIZ51ZovcoEDrG9eCtEfOLCztltF2/bZZew2OKLZ3Mv3BFe/sqHHtHZK3Bo/UW91Y9hBQ7xaosYAMQJEH+64LKpyRTjcU7Mrs6IE2DGv8bPyybfbA88Wv24Nz5iM7u9JH86SPZEjzNO+1JrVf7zwIPeG84466z89wWXXpLPXdEKHNZ5wQvyCRnbd+gWOLTM35BNJPnBbELJ1uvD2fwVxx1/Qv62W+DwhZNPmvbkj7kCh9133TW7yuCkcHc2qWi8HePE44+bdmXHXIFDPzU6NLvC4gvZlRbxipFLL74of5Roazy7ZFd1XPDDC/O3AoeWip8ECJQREDiU0bPvsAQEDsOS1E5pAYFDaUINEKitwLAChwgQJ0H831tuyS+NP2D//cImG2+cX91w4UUX5U99iLdZvH6bbcKHPnh47tU6yY1/2T4yu6Q9XjUQb73YfY89wwPZYy7jUxriZIDx1Tr5LXKFw4033RQ23/KheQnmH/2p/FGVsS9HZLdenJxNMBlf7e12O8HNN8r+6RU4tJ9Uf+3LZ4dVV121tcu0v+a3TsbjoyXX23CjfJuNNtwgn4QyPjkiThq5z7775bc3vOzf/z185tNHT7XT+UvrRDmGFntnV31sm9nGk/azzjo7ewznyfktFc/Obsv4+lceelrFoIHDrrvtngcfsV+fP+ZzYfXVVsse4Xle+MDhH8wDo9ifYQQO0eT+++4P78ieFBLrsmn2SNDPffazU7d8dKtHt2Utn241io9M3ftdD90qEq++2H67N4WnPvWp4eyzv5xPHhpvQYkvgUNL0U8CBMoICBzK6Nl3WAICh2FJaqe0gMChNKEGCNRWYJiBw4UXXpTNcbBX+Ovdd+ce8US4/RGEyyyzTDjhuGOnbn245NJL86da3Hffffn28UkT8WqE+IpPUTgt+4t0DCHiq0zgEPuwwcab5CfJcS6D56yxRrg5e4zmX7OJJP912WXzkCMeY4vsqQ1xAsNBT2bjvjEoedFLXhp/zV9x7Ie+/+Cw3Zve1DVwiBt9/thjw0c++rGHdsj+XXyxxfLAIC5YYokl8qsQWreJTG3U9kucoHOLLEhpebetyn+NV4jEKx/ieONr0MAh1vNt2aSZMQSIr3h1QKxVnNgxPnYzvoYVOLxw3XXzx1a2bsvZKnuKxMeyCSzj1R3d6tFtWd6h7J9ugUP8DBxw4IH5rS+t7Vo/4+0/8RaP+BI4tFT8JECgjIDAoYyefYclIHAYlqR2SgsIHEoTaoBAbQWGGThEhBtuvDEccugHssdEXpefnMZl8UT6+c9fO3zo8MPzk9W4rPWKk0r+x1EfC9dff0N+y0NcHk+yP5JdfbDaav+8SqBM4BDbjFc5zMuunLjl1lvj2/xE9oDsUZnrr79efkVBDCA2f+UrQ7y/f9CT2bzB7J///NznwimnfnHqr/8xcNg+ezJH+3wFrSscWvucns0r8V+fPzafyDIuiyHBGquvHj76Hx8JKyy/fGuznj/j4yzjhIfxyoN4y0jrFUOGww49NKy++mqtRQMHDnHHeGXAZz77n/mjI2MdN9poo7DrO96RP9khrh9m4BDbO/rT88PR8+fHX0N8qskhmWG3enRblu+U/dMtcIjr4lUMx2RPIzn3vPPzz+fSSy8d3vj6bTPvNcLO2W0V8SVwyBn8Q4BASQGBQ0lAuw9FQOAwFEaNDENA4DAMRW0QqKfAsAOHlkL8q3g8iY9XKiy/3HJd5yFobRt/xsdW3pLdjhFPsjsnDWzfruzvcd6G3/3+9+GZ2V+1H5fN41CVV3xE5+23/zKstNJKIU6iOejrgQceyMOUB+5/ICy/QmaYPYlimK8//elP+VUX7fNqDLP9cbcVr3iIV6HE10UXXRx2yub1iC+BQ87gHwIESgoIHEoC2n0oAgKHoTBqZBgCAodhKGqDQD0FRhU41FNDr1MW+H0WNN1ww40zhvjVr38tf5JGXHFBdqXIsss+bcY2gyxoXaWxy867hPifFwECzRMQODSv5lUcscChilVpaJ8EDg0tvGETyAQEDj4GTRH49ne+k80xsnfP4a74rGeF73zrmz3X97tC4NCvlO0IpCsgcEi3tnUamcChTtVKvK8Ch8QLbHgEZhEQOMyCY1VSAnESzCOOPLLrmFbO5g2Jj0xtTbDZdaM+Fwoc+oSyGYGEBQQOCRe3RkMTONSoWKl3VeCQeoWNj0BvAYFDbxtrCBQREDgUUbMPgbQEBA5p1bOuoxE41LVyCfZb4JBgUQ2JQJ8CAoc+oWxGoE8BgUOfUDYjkLCAwCHh4tZoaAKHGhUr9a4KHFKvsPER6C0gcOhtYw2BIgIChyJq9iGQloDAIa161nU0Aoe6Vi7BfgscEiyqIRHoU0Dg0CeUzQj0KSBw6BPKZgQSFhA4JFzcGg1N4FCjYqXeVYFD6hU2PgK9BQQOvW2sIVBEQOBQRM0+BNISEDikVc+6jkbgUNfKJdhvgUOCRTUkAn0KCBz6hLIZgT4FBA59QtmMQMICAoeEi1ujoQkcalSs1LsqcEi9wsZHoLeAwKG3jTUEiggIHIqo2YdAWgICh7TqWdfRCBzqWrkE+y1wSLCohkSgTwGBQ59QNiPQp4DAoU8omxFIWEDgkHBxazQ0gUONipV6VwUOqVfY+Aj0FhA49LaxhkARAYFDETX7EEhLQOCQVj3rOhqBQ10rl2C/BQ4JFtWQCPQpIHDoE8pmBPoUEDj0CWUzAgkLCBwSLm6NhiZwqFGxUu+qwCH1Chsfgd4CAofeNtYQKCIgcCiiZh8CaQkIHNKqZ11HI3Coa+US7LfAIcGiGhKBPgUEDn1C2YxAnwIChz6hbEYgYQGBQ8LFrdHQBA41KlbqXRU4pF5h4yPQW0Dg0NvGGgJFBAQORdTsQyAtAYFDWvWs62gEDnWtXIL9FjgkWFRDItCngMChTyibEehTQODQJ5TNCCQsIHBIuLg1GprAoUbFSr2rAofUK2x8BHoLCBx621hDoIiAwKGImn0IpCUgcEirnnUdjcChrpVLsN8ChwSLakgE+hQQOPQJZTMCfQoIHPqEshmBhAUEDgkXt0ZDEzjUqFipd1XgkHqFjY9AbwGBQ28bawgUERA4FFGzD4G0BAQOadWzrqMRONS1cgn2W+CQYFENiUCfAgKHPqFsRqBPAYFDn1A2I5CwgMAh4eLWaGgChxoVK/WuChxSr7DxEegtIHDobWMNgSICAociavYhkJaAwCGtetZ1NAKHulYuwX4LHBIsqiER6FNA4NAnlM0I9CkgcOgTymYEEhYQOCRc3BoNTeBQo2Kl3lWBQ+oVNj4CvQUEDr1trCFQREDgUETNPgTSEhA4pFXPuo5G4FDXyiXYb4FDgkU1JAJ9Cggc+oSyGYE+BQQOfULZjEDCAgKHhItbo6EJHGpUrNS7KnBIvcLGR6C3gMCht401BIoICByKqNmHQFoCAoe06lnX0Qgc6lq5BPstcEiwqIZEoE8BgUOfUDYj0KeAwKFPKJsRSFhA4JBwcWs0NIFDjYqVelcFDqlX2PgI9BYQOPS2sYZAEQGBQxE1+xBIS0DgkFY96zoagUNdK5dgvwUOCRbVkAj0KSBw6BPKZgT6FBA49AllMwIJCwgcEi5ujYYmcKhRsVLvqsAh9QobH4HeAgKH3jbWECgiIHAoomYfAmkJCBzSqmddRyNwqGvlEuy3wCHBohoSgT4FBA59QtmMQJ8CAoc+oWxGIGEBgUPCxa3R0AQONSpW6l0VOKReYeMj0FtA4NDbxhoCRQQEDkXU7EMgLQGBQ1r1rOtoBA51rVyC/RY4JFhUQyLQp4DAoU8omxHoU0Dg0CeUzQgkLCBwSLi4NRqawKFGxUq9qwKH1CtsfAR6CwgcettYQ6CIgMChiJp9CKQlIHBIq551HY3Aoa6VS7DfAocEi2pIBPoUEDj0CWUzAn0KCBz6hLIZgYQFBA4JF7dGQxM41KhYqXdV4JB6hY2PQG8BgUNvG2sIFBEQOBRRsw+BtAQEDmnVs66jETjUtXIJ9lvgkGBRDYlAnwIChz6hbEagTwGBQ59QNiOQsIDAIeHi1mhoAocaFSv1rgocUq+w8RHoLSBw6G1jDYEiAgKHImr2IZCWgMAhrXrWdTQCh7pWLsF+CxwSLKohEehTQODQJ5TNCPQpIHDoE8pmBBIWEDgkXNwaDU3gUKNipd5VgUPqFTY+Ar0FBA69bawhUERA4FBEzT4E0hIQOKRVz7qORuBQ18ol2G+BQ4JFNSQCfQoIHPqEshmBPgUEDn1C2YxAwgICh4SLW6OhCRxqVKzUuypwSL3Cxkegt4DAobeNNQSKCAgciqjZh0BaAgKHtOpZ19EIHOpauQT7LXBIsKiGRKBPAYFDn1A2I9CngMChTyibEUhYQOCQcHFrNDSBQ42KlXpXBQ6pV9j4CPQWEDj0trGGQBEBgUMRNfsQSEtA4JBWPes6GoFDXSuXYL8FDgkW1ZAI9CkgcOgTymYE+hQQOPQJZTMCCQsIHBIubo2GJnCoUbFS76rAIfUKGx+B3gICh9421hAoIiBwKKJmHwJpCQgc0qpnXUcjcKhr5RLst8AhwaIaEoE+BQQOfULZjECfAgKHPqFsRiBhAYFDwsWt0dAEDjUqVupdFTikXmHjI9BbQODQ28YaAkUEBA5F1OxDIC0BgUNa9azraAQOda1cgv0WOCRYVEMi0KfA5QsvD/P2mBfWXWedcOopJ/e5l80IEOglsN0OO4bLFiwI8z89P6y15lq9NrOcAIGEBQQOCRe3RkMTONSoWKl3VeCQeoWNj8DsAutvuH6+wc033jD7htYSIDCnwIorr5JvI3CYk8oGBJIVEDgkW9paDUzgUKtypd1ZgUPa9TU6AnMJuK1iLiHrCfQnEK9siFc4xCsbYuDgRYBAMwUEDs2se9VGLXCoWkUa3B+BQ4OLb+gEMoFW4BAx4m0V8fYKLwIEBhNohQ1xL1c3DGZnawKpCQgcUqtoPccjcKhn3ZLstcAhybIaFIGBBIQOA3HZmMA0gfawYZeddwnxPy8CBJorIHBobu2rNHKBQ5Wq0fC+CBwa/gEwfAIPC7SHDvEqhz0fnkwSEAEC3QXiEyni6+j5D/0UNnR3spRA0wQEDk2reDXHK3CoZl0a2SuBQyPLbtAEugq0hw6tDdxi0ZLwk8A/BeJVDe0vYUO7ht8JNFtA4NDs+ldl9AKHqlRCP4LAwYeAAIFOgRg8LFy4MMTHZnoRINBbQNDQ28YaAk0VEDg0tfLVGrfAoVr1aHRvBA6NLr/BE5hTIAYPXpMXeP+h7887cdihh02+M3oQ1lxzTQoECBDoKiBw6Mpi4ZgFBA5jBne43gICh9421hAgQKAqAltvs3XelbPOOKsqXdIPAgQIEOgiIHDogmLR2AUEDmMnd8BeAgKHbB9gmgAAQABJREFUXjKWEyBAoDoCAofq1EJPCBAgMJuAwGE2HevGJSBwGJe048wpIHCYk8gGBAgQmLiAwGHiJdABAgQI9CUgcOiLyUYjFhA4jBhY8/0LCBz6t7IlAQIEJiUgcJiUvOMSIEBgMAGBw2Beth6NgMBhNK5aLSAgcCiAZhcCBAiMWUDgMGZwhyNAgEBBAYFDQTi7DVVA4DBUTo2VERA4lNGzLwECBMYjIHAYj7OjECBAoKyAwKGsoP2HISBwGIaiNoYiIHAYCqNGCBAgMFIBgcNIeTVOgACBoQkIHIZGqaESAgKHEnh2Ha6AwGG4nlojQIDAKAQEDqNQ1SYBAgSGLyBwGL6pFgcXEDgMbmaPEQkIHEYEq1kCBAgMUUDgMERMTREgQGCEAgKHEeJqum8BgUPfVDYctYDAYdTC2idAgEB5AYFDeUMtECBAYBwCAodxKDvGXAICh7mErB+bgMBhbNQORIAAgcICAofCdHYkQIDAWAUEDmPldrAeAgKHHjAWj19A4DB+c0ckQIDAoAICh0HFbE+AAIHJCAgcJuPuqNMFBA7TPbyboIDAYYL4Dk2AAIE+BQQOfULZjAABAhMWEDhMuAAOnwsIHHwQKiMgcKhMKXSEAAECPQUEDj1prCBAgEClBAQOlSpHYzsjcGhs6as3cIFD9WqiRwQIEOgUEDh0inhPgACBagoIHKpZl6b1SuDQtIpXeLwChwoXR9cIECDwsIDAwUeBAAEC9RAQONSjTqn3UuCQeoVrND6BQ42KpasECDRWQODQ2NIbOAECNRMQONSsYIl2V+CQaGHrOCyBQx2rps8ECDRNQODQtIobLwECdRUQONS1cmn1W+CQVj1rPRqBQ63Lp/MECDREQODQkEIbJgECtRcQONS+hEkMQOCQRBnTGITAIY06GgUBAmkLCBzSrq/RESCQjoDAIZ1a1nkkAoc6Vy+xvgscEiuo4RAgkKSAwCHJshoUAQIJCggcEixqDYckcKhh0VLtssAh1coaFwECKQkIHFKqprEQIJCygMAh5erWZ2wCh/rUKvmeChySL7EBEiCQgIDAIYEiGgIBAo0QEDg0osyVH6TAofIlak4HBQ7NqbWREiBQXwGBQ31rp+cECDRLQODQrHpXdbQCh6pWpoH9Ejg0sOiGTIBA7QQEDrUrmQ4TINBQAYFDQwtfsWELHCpWkCZ3R+DQ5OobOwECdREQONSlUvpJgEDTBQQOTf8EVGP8Aodq1EEvMgGBg48BAQIEqi8gcKh+jfSQAAECUUDg4HNQBQGBQxWqoA+5gMDBB4EAAQLVFxA4VL9GekiAAIEoIHDwOaiCgMChClXQh1xA4OCDQIAAgeoLCByqXyM9JECAQBQQOPgcVEFA4FCFKuhDLiBw8EEgQIBA9QUEDtWvkR4SIEAgCggcfA6qICBwqEIV9CEXEDj4IBAgQKD6AgKH6tdIDwkQIBAFBA4+B1UQEDhUoQr6kAsIHHwQCBAgUH0BgUP1a6SHBAgQiAICB5+DKggIHKpQBX3IBQQOPggECBCovoDAofo10kMCBAhEAYGDz0EVBAQOVaiCPuQCAgcfBAIECFRfQOBQ/RrpIQECBKKAwMHnoAoCAocqVEEfcgGBgw8CAQIEqi8gcKh+jfSQAAECUUDg4HNQBQGBQxWqoA+5gMDBB4EAAQLVFxA4VL9GekiAAIEoIHDwOaiCgMChClXQh1xA4OCDQIAAgeoLCByqXyM9JECAQBQQOPgcVEFA4FCFKuhDLiBw8EEgQIBA9QUEDtWvkR4SIEAgCggcfA6qICBwqEIV9CEXEDj4IBAgQKD6AgKH6tdIDwkQIBAFBA4+B1UQEDhUoQr6kAsIHHwQCBAgUH0BgUP1a6SHBAgQiAICB5+DKggIHKpQBX3IBQQOPggECBConsC1116bd2q11VbLf3YGDnH9NddeE16/7eur13k9IkCAQIMFBA4NLn6Fhi5wqFAxmt4VgUPTPwHGT4BA1QRimPD+Q9+fd+uwQw8LMXRoDxy6ra/aGPSHAAECTRUQODS18tUat8ChWvVodG8EDo0uv8ETIFBRgdNOPy2cfsbpee9i6NAeQLR+33abbV3hUNH66RYBAs0VEDg0t/ZVGrnAoUrVaHhfBA4N/wAYPgEClRVoDx06Oyls6BTxngABAtUQEDhUow5N74XAoemfgAqNX+BQoWLoCgECBDoEuoUOwoYOJG8JECBQIQGBQ4WK0eCuCBwaXPyqDV3gULWK6A8BAgSmC7SHDsKG6TbeESBAoGoCAoeqVaSZ/RE4NLPulRy1wKGSZdEpAgQITBOIoUN8eSrFNBZvCBAgUDkBgUPlStLIDgkcGln2ag5a4FDNuugVgUkLXL7w8nD88cfn3Zj/6fn5z3l7zPM+E6iTx5prrhl22XmX0Kqn9+U9omH8brQs8y+FfwgQIPCwgMDBR6EKAgKHKlRBH3IBgYMPAgECLYHjjj8u/zWeoC6++KLhudmJVXxdd83V+c9VV1/D+5p5rLvOOuGErK4LLlsQdtpll+B9eY9oePT8+eHEzHW11dYIly1YkH8v1lpzrfynfwgQaLaAwKHZ9a/K6AUOVamEfgSBgw8BAQItgfU3XD//dc9588Ke2dUMrROpeIIVX94/dGLJo9mfh/zLkP3T+hxst8OO+XcjBnXxPy8CBJotIHBodv2rMnqBQ1UqoR8CB58BAgSmBG666YawMLuVYo8scPAiQKA/gaOzW45iGPeJj3+yvx1sRYBA0gICh6TLW5vBCRxqU6r0O+oKh/RrbIQEZhNo3dsfr2rY8OErHGbb3joCBLoLPPDgg+GoLHRwlUN3H0sJNEVA4NCUSld7nAKHatenUb0TODSq3AZLYIZAnAgyhg7x8vBTTzl5xnoLCBDoTyBe5RBvr3BrRX9etiKQqoDAIdXK1mtcAod61Svp3gocki6vwRGYU2DhwoXhmmxSyHh1Q+ue9Dl3sgEBAl0FVlx5FYFDVxkLCTRHQODQnFpXeaQChypXp2F9Ezg0rOCGS6BDYJFFHhWWWnKJjqXeEiBQVODue+4Nd999b9Hd7UeAQM0FBA41L2Ai3Rc4JFLIFIYhcEihisZAoJhAa/6GDTdYP38qRbFW7EWAQLvAUR//RFgte4Ssx2S2q/idQHMEBA7NqXWVRypwqHJ1GtY3gUPDCm64BNoEjjv+uBD/az0Gs22VXwkQKCAQn1hx9Pz5bqsoYGcXAqkICBxSqWS9xyFwqHf9kuq9wCGpchoMgYEE4vwN8ZaKF222yUD72ZgAge4CrUdk7pBNHukKh+5GlhJIXUDgkHqF6zE+gUM96tSIXgocGlFmgyTQU2DxxRcNiy+2aM/1VhAgMJiAORwG87I1gdQEBA6pVbSe4xE41LNuSfZa4JBkWQ2KQF8CcQ6HU7JHYcanU+yZPR7TiwCB8gLnnX9BeODBB13hUJ5SCwRqKSBwqGXZkuu0wCG5ktZ3QAKH+tZOzwmUFTCHQ1lB+xOYLmAOh+ke3hFoooDAoYlVr96YBQ7Vq0ljeyRwaGzpDZxAMIeDDwGB4QqYw2G4nlojUEcBgUMdq5ZenwUO6dW0tiMSONS2dDpOYCgC5nAYCqNGCEwJmMNhisIvBBopIHBoZNkrN2iBQ+VK0twOCRyaW3sjJ2AOB58BAsMXMIfD8E21SKBOAgKHOlUr3b4KHNKtbe1GJnCoXcl0mMDQBMzhMDRKDRHIBczh4INAgIDAwWegCgIChypUQR9yAYGDDwKB5gqYw6G5tTfy0QiYw2E0rlolUCcBgUOdqpVuXwUO6da2diMTONSuZDpMYKgC5nAYKqfGCARzOPgQEGi2gMCh2fWvyugFDlWphH5kzwr/W7jzzrtIECDQQAFzODSw6IY8cgFzOIyc2AEIVFpA4FDp8jSmcwKHxpS6+gMVOFS/RnpIYFQC5nAYlax2mypgDoemVt64CfxTQODwTwu/TU5A4DA5e0fuEBA4dIB4S6BBAuZwaFCxDXUsAuZwGAuzgxCotIDAodLlaUznBA6NKXX1BypwqH6N9JDAKAXM4TBKXW03UcAcDk2sujET+KeAwOGfFn6bnIDAYXL2jtwhIHDoAPGWQIMEzOHQoGIb6tgEzOEwNmoHIlBJAYFDJcvSuE4JHBpX8uoOWOBQ3droGYFRC5jDYdTC2m+agDkcmlZx4yUwU0DgMNPEkvELCBzGb+6IPQQEDj1gLCbQAAFzODSgyIY4VgFzOIyV28EIVFJA4FDJsjSuUwKHxpW8ugMWOFS3NnpGYBwC5nAYh7JjNEnAHA5NqraxEpgpIHCYaWLJ+AUEDuM3d8QeAgKHHjAWE2iAgDkcGlBkQxy7gDkcxk7ugAQqJSBwqFQ5GtsZgUNjS1+9gQscqlcTPSIwLgFzOIxL2nGaImAOh6ZU2jgJ9BYQOPS2sWZ8AgKH8Vk70hwCAoc5gKwmkLCAORwSLq6hTUTAHA4TYXdQApUSEDhUqhyN7YzAobGlr97ABQ7Vq4keERingDkcxqntWE0QMIdDE6psjAR6CwgcettYMz4BgcP4rB1pDgGBwxxAVhNIWMAcDgkX19AmJmAOh4nROzCBSggIHCpRhsZ3QuDQ+I9AdQAEDtWphZ4QGLeAORzGLe54qQuYwyH1ChsfgbkFBA5zG9li9AICh9EbO0KfAgKHPqFsRiBBAXM4JFhUQ5qogDkcJsrv4AQqISBwqEQZGt8JgUPjPwLVARA4VKcWekJgEgLmcJiEumOmLGAOh5Sra2wE5hYQOMxtZIvRCwgcRm/sCH0KCBz6hLIZgQQFzOGQYFENaeIC5nCYeAl0gMBEBQQOE+V38IcFBA4+CpUREDhUphQ6QmDsAuZwGDu5AyYuYA6HxAtseAT6EBA49IFkk5ELCBxGTuwA/QoIHPqVsh2B9ATM4ZBeTY1osgLmcJisv6MTqIKAwKEKVdAHgYPPQGUEBA6VKYWOEJiIgDkcJsLuoAkLmMMh4eIaGoE+BAQOfSDZZOQCAoeREztAvwICh36lbEcgPQFzOKRXUyOavIA5HCZfAz0gMEkBgcMk9R27JSBwaEn4OXEBgcPES6ADBCYmYA6HidE7cKIC5nBItLCGRWAAAYHDAFg2HZmAwGFktBoeVEDgMKiY7QmkI2AOh3RqaSTVEDCHQzXqoBcEJikgcJikvmO3BAQOLQk/Jy4gcJh4CXSAwEQFzOEwUX4HT1DAHA4JFtWQCAwgIHAYAMumIxMQOIyMVsODCggcBhWzPYF0BMzhkE4tjaQ6AuZwqE4t9ITAJAQEDpNQd8xOAYFDp4j3ExMQOEyM3oEJTFzAHA4TL4EOJCZgDofECmo4BAoICBwKoNll6AICh6GTarCogMChqJz9CNRfwBwO9a+hEVRLwBwO1aqH3hCYhIDAYRLqjtkpIHDoFPF+YgICh4nROzCBSgiYw6ESZdCJhATM4ZBQMQ2FQAEBgUMBNLsMXUDgMHRSDRYVEDgUlbMfgfoLmMOh/jU0gmoJXLZgQbjooovDaquvEdZac61qdU5vCBAYi4DAYSzMDjKHgMBhDiCrxycgcBiftSMRqJqAORyqVhH9qbuAORzqXkH9J1BeQOBQ3lAL5QUEDuUNtTAkAYHDkCA1Q6CGAuZwqGHRdLnSAq5wqHR5dI7AWAQEDmNhdpA5BAQOcwBZPT4BgcP4rB2JQBUFzOFQxaroU50FzOFQ5+rpO4HyAgKH8oZaKC8gcChvqIUhCQgchgSpGQI1FDCHQw2LpsuVFnCFQ6XLo3MExiIgcBgLs4PMISBwmAPI6vEJCBzGZ+1IBKomYA6HqlVEf+ouYA6HuldQ/wmUFxA4lDfUQnkBgUN5Qy0MSUDgMCRIzRCooYA5HGpYNF2utIArHCpdHp0jMBYBgcNYmB1kDgGBwxxAVo9PQOAwPmtHIlBFAXM4VLEq+lRnAXM41Ll6+k6gvIDAobyhFsoLCBzKG2phSAIChyFBaoZADQXM4TB40e69777w4x//ONzx61+Hu+66Kyyz9DJhueWeEZ733OeGRzziEVMN/vJXvwo33nhj/v5Fm202tXxSv1x8ySXh/vvvDyussEJYYfnlJ9WN5I/rCofkS2yABOYUEDjMSWSDMQgIHMaA7BD9CQgc+nOyFYEUBczhMFhVr7jyynDyF04Nf/7zn2fs+G8rrRTe/tZdwlJLLZWv+8EFF4RTTv1i/vuxx3xuWhgxY+cxLNhnv/3zgGSrLbYIr9pqyzEcsZmHMIdDM+tu1ATaBQQO7Rp+n5SAwGFS8o47Q0DgMIPEAgKNETCHQ/+l/u3vfhcO+cBh4YEHHsjDg1WfvUpYbLHFw1VXXRXuz5bF1xqrrxb23nPP/HeBQ87QuH9c4dC4khswgRkCAocZJBZMQEDgMAF0h+wuIHDo7mIpgaYImMOhv0of8/ljw4LsVor42mP33fJbKOLv92W3KZzyhS+EH122IL4NB73ngPCsZz4zCBxyjkb+Yw6HRpbdoAlMCQgcpij8MkEBgcME8R16uoDAYbqHdwSaJGAOh/6rfdD7Dg6/+e1vw5Oe9MTwkSOOmHaLxP/eckv40IePzBt78w7bh4032mhG4LDwiivCDTfcEB75qEeFZ6+ySlht1VXDIx/5yKkOXHLJpSFeRfG0pz01rPOCF0wtj79881vfCg8++Lew2mqrhpVWXDFf953vfjfcd9/9YdVVnx2e8uQnh3i7x89//ouw7LLLhuc8Z41sbomlp7XR7ZaKP/zhj+HCiy7Kt1tsscXCS1/y4nxccZ6K2Ndrrrk23PWXv2T9XTmsvvrq4cnLLDOtTW9mCrjCYaaJJQSaJiBwaFrFqzlegUM169LIXgkcGll2gyaQC5jDob8Pwv/93/+Fd+4+L/z973/PT8rfsO22M3b81re/na9fMQsEVll55WmBwyZZAHHBhRdO22e9F64bdnnLW6aCi6M+8clw3fXXh7XWXDPsvus7p227+x575ldSbLP1a8PLX/ayfF0rQNhg/fWyySlvCr//wx+m9nnsYx4T3r3ffvlklq2Fre1bczjcfffd4cj/+Gj41R13hLj9u/bZO78y48477wyHH/HhEH+2v/7lX/4l7L/vu0Kcq8Krt4A5HHrbWEOgKQICh6ZUutrjFDhUuz6N6p3AoVHlNlgC0wTM4TCNo+eb++9/IOy2xx75+te8aquwxeab99y2taL9loq4bNVnPzv7b5Xw04ULwy233Jpv9tYscFhvvRfmvxcNHOLOj3/848PGG24Y/vrXv+a3fcQrFJZ+0pPCRz58RN52/Kc9cHjFy18W4vFu/p//CYssskg278QeeUgSt4tXTpxx1tl5CPGOt78tLLroovkVFldnVzvEKyk+cMj7833itl4zBVzhMNPEEgJNExA4NK3i1RyvwKGadWlkrwQOjSy7QROYEjCHwxRFz1/KBg5bvPKV4TWvflXefrxaYu999wv33HNP2GiDDcJOb94xX140cHj0ox8dPnHUx/KAIDb0ne9+LwsMzsrb/NhHjpx6akYrcNj8Fa8Iv8oe2bkwuwUj3tIxb7fdwnPWWD3fPv4Tb984+ytfDYsvvnh4z7v3D0976lPzp3Lccuut2a0Vzw6Pecyjp7b1S3cBczh0d7GUQFMEBA5NqXS1xylwqHZ9GtU7gUOjym2wBKYJmMNhGkfPN/0EDvGqgn/84x9hkWyOhnjVQPsVDgcfdFBYfvnlptr/z2P+K/zkpz8Nz1xhhfDeA9+TLy8aODx3jTXCnnvMm2o73iJx8CGH5u/jEzPikzPiqxU45G+yf+ItEu9421vD89deu7Uo//nr3/wmHPbBD4Y45viKc1bE2yjWWH2NbG6J50/dApKv9M8MAVc4zCCxgEDjBAQOjSt5JQcscKhkWZrZKYFDM+tu1ASigDkc+v8czNtzrxBDhW5zLMTle+3zrhCvXmjdctEeOBx7zOemnaifcOJJ4aJLLslDiBhGxFevwCE+hnPeXnvnbXebw2HL7PaOV2e3ebRecSLIdx94YP52ryyIeE4WSMRXZ+AQ522IVzA8/elPz9e3/xNDhzPPPCtcd8P1U8FDXL/is54V3rX33q5yaMfq+N0cDh0g3hJooIDAoYFFr+CQBQ4VLEpTuyRwaGrljZtACOZw6P9T8MFsIsV4W0G8eiHewrDoYx87tfOll/4oHHvCCfn7Xd/x9vyqgUEDh9ZjN+M8CUd88PCptq+6+urwqU/Pz993Cxxak0C2dpgrcFg/mzPi1lt/nk8WucQSS4QDD3j3tKdPxIkxf/6LX+S3VCy15JL5mC+//PJwzrnn5YeIE1rG0MWru4ArHLq7WEqgSQIChyZVu7pjFThUtzaN65nAoXElN2AC0wTM4TCNo+eb1mSKcYN4wr31a18TFs8eJbngxz8J3zvnnPwpEXF+gyMOPzwsmZ2oDxo4nPP9c8OXTj89P36cTPIF2e0Lv7jttnDa6WfkkzvGFcMIHGJAsWE2d8SHjjwyn5shTi4Zr3RYaqml8mPHJ1f87Oab83kd4vwOcZ6HBx98ML9C4t577w3bvu514WX//tJ8W/90FzCHQ3cXSwk0RUDg0JRKV3ucAodq16dRvRM4NKrcBktgmoA5HKZxzPom3i4RT9J//vNf9Nyu/WR80MDhT3/6U/44yj//+c95+3EyyHg7RbwKIT7CMh5/WIHDq7baMtyWhRkxXLjv/vvziSFj6BAnirzk0kvDcSecmPdhmaWXDss+7Wnhtl/eHuKVEzF8eN9BB4ZndLkNoydKw1a4wqFhBTdcAl0EBA5dUCwau4DAYezkDthLQODQS8ZyAukLmMNhsBrfnwUAX//6N8K555+fhwGtvePVAdu+butsUsUXtBYNfIVD3PH2X/4ynPKFU/PbGOL75Z7xjPDWXXbOg4G77rprqIFDbP+aa68LR8+fn4cZcQLLfd+1T/60ix9eeGH42je+GWII0no98YlPDK/f5nUzJplsrffzIQFzOPgkECAgcPAZqIKAwKEKVdCHXEDg4INAoLkC5nAoVvv4NIrf/+EPIYYA8SqAeBXCMF/xqoNHPOIR4THZVQ6TesUrKv7wxz/mt108/vGPz8cZr3Dwml3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAl0FzOHQlcVCAoUFzOFQmM6OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAIzBMzhMIPEAgKlBMzhUIrPzgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACXQXM4dCVxUIChQXM4VCYzo4EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAjMEzOEwg8QCAqUEzOFQis/OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAJdBczh0JXFQgKFBczhUJjOjgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACMwTM4TCDxAICpQTM4VCKz84EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAl0FzOHQlcVCAoUFzOFQmM6OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAIzBMzhMIPEAgKlBMzhUIrPzgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACXQXM4dCVxUIChQXM4VCYzo4EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAjMEzOEwg8QCAqUEzOFQis/OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAJdBczh0JXFQgKFBczhUJjOjgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACMwTM4TCDxAICpQTM4VCKz84EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAl0FzOHQlcVCAoUFzOFQmM6OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAIzBMzhMIPEAgKlBMzhUIrPzgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACXQXM4dCVxUIChQXM4VCYzo4EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAjMEzOEwg8QCAqUEzOFQis/OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAJdBczh0JXFQgKFBczhUJjOjgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACMwTM4TCDxAICpQTM4VCKz84EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAl0FzOHQlcVCAoUFzOFQmM6OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAIzBMzhMIPEAgKlBMzhUIrPzgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACXQXM4dCVxUIChQXM4VCYzo4EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF3AFQ6z+1hLoAkCAocmVLn6YxQ4VL9GjemhwKExpTZQAjMEzOEwg8QCAqUEzOFQis/OBJIQEDgkUcbaD0LgUPsSpjMAgUM6tTQSAoMKmMNhUDHbE5hdwBUOs/tYS6AJAgKHJlS5+mMUOFS/Ro3pocChMaU2UAJdBczh0JXFQgKFBczhUJjOjgSSEBA4JFHG2g9C4FD7EqYzAIFDOrU0EgKDCpjDYVAx2xOYXcAVDrP7WEugCQIChyZUufpjFDhUv0aN6aHAoTGlNlACMwTM4TCDxAICpQTM4VCKz84EkhAQOCRRxtoPQuBQ+xKmMwCBQzq1NBICgwqYw2FQMdsTmF0gXuEQQ4cddtgxrLXmWrNvbC0BAkkKCBySLGvtBiVwqF3J0u2wwCHd2hoZgX4EzOHQj5JtCPQv8Kc77woPPvi3/newJQECSQkIHJIqZ20HI3CobenS67jAIb2aGhGBQQRat1XcfOMNg+xmWwIEughsl13ZsMvOu4TVV1+jy1qLCBBogoDAoQlVrv4YBQ7Vr1FjeihwaEypDZRAV4FW4HDqKSeHdddZp+s2FhIgMLdAvJ0iBg7xVor52W0VXgQINFNA4NDMuldt1AKHqlWkwf0RODS4+IZOIBOI8zhsuOH6YfHFFuVBgEBJgfPOvyA88OCD5m8o6Wh3AnUWEDjUuXrp9F3gkE4taz8SgUPtS2gABIYicM01V4d4tUO80sGLAIHBBOLVDauttka45557B9vR1gQIJCcgcEiupLUckMChlmVLs9MChzTralQEBhWYt8e8cPnCy/PAwa0Vg+rZvskCHoXZ5OobO4GZAgKHmSaWjF9A4DB+c0fsISBw6AFjMYEGCsQrHN75jneG+OSKt+y8cy4Qr3iIf7297LIFYd1118nnefCeR9M/DzFkiMHcztkEkccc87nsO/Jj8zY08P8zDZlANwGBQzcVy8YtIHAYt7jj9RQQOPSksYJAYwXilQ7xioc4+d0xnzsmXHvNVWGnXXbJ3x9/3HHhimy99zzi56PJn4f4fxCXXHRJY/9/wsAJEOguIHDo7mLpeAUEDuP1drRZBAQOs+BYRaDBAnEyyfhac80185/x6of4io/8iy/vx+vxsle8LHf/7re/y78Cn7/4/Wh9N/KC+IcAAQIPCwgcfBSqICBwqEIV9CEXEDj4IBAgQKD6Altvs3XeybPOOKv6ndVDAgQINFhA4NDg4ldo6AKHChWj6V0RODT9E2D8BAjUQUDgUIcq6SMBAgRCEDj4FFRBQOBQhSroQy4gcPBBIECAQPUFBA7Vr5EeEiBAIAoIHHwOqiAgcKhCFfQhFxA4+CAQIECg+gICh+rXSA8JECAQBQQOPgdVEBA4VKEK+pALCBx8EAgQIFB9AYFD9WukhwQIEIgCAgefgyoICByqUAV9yAUEDj4IBAgQqL6AwKH6NdJDAgQIRAGBg89BFQQEDlWogj7kAgIHHwQCBAhUX0DgUP0a6SEBAgSigMDB56AKAgKHKlRBH3IBgYMPAgECBKovIHCofo30kAABAlFA4OBzUAUBgUMVqqAPuYDAwQeBAAEC1RcQOFS/RnpIgACBKCBw8DmogoDAoQpV0IdcQODgg0CAAIHqCwgcql8jPSRAgEAUEDj4HFRBQOBQhSroQy4gcPBBIECAQPUFBA7Vr5EeEiBAIAoIHHwOqiAgcKhCFfQhFxA4+CAQIECg+gICh+rXSA8JECAQBQQOPgdVEBA4VKEK+pALCBx8EAgQIFB9AYFD9WukhwQIEIgCAgefgyoICByqUAV9yAUEDj4IBAgQqL6AwKH6NdJDAgQIRAGBg89BFQQEDlWogj7kAgIHHwQCBAhUX0DgUP0a6SEBAgSigMDB56AKAgKHKlRBH3IBgYMPAgECBKovIHCofo30kAABAlFA4OBzUAUBgUMVqqAPUwK//d0fp373CwECBAhUT0DgUL2a6BEBAgS6CQgcuqlYNm4BgcO4xR1vVoE/3XlXePDBv826jZUECBAgMDkBgcPk7B2ZAAEC/QosssijwlJLLtHv5rYjMDIBgcPIaDVcRODue+4Nd999b5Fd7UOAAAECYxAQOIwB2SEIECBQUsDVDSUB7T40AYHD0Cg1NCwBt1UMS1I7BAgQGL6AwGH4plokQIDAsAWevMwTh92k9ggUEhA4FGKz0ygFHnjwwXDnnX8Z5SG0TYAAAQIFBQQOBeHsRoAAgTEJuLphTNAO05eAwKEvJhuNW0DoMG5xxyNAgEB/AgKH/pxsRYAAgUkICBsmoe6YswkIHGbTsW7iAjF4iHM6mEhy4qXQAQIECOQCAgcfBAIECFRPYPHFFw2LL7Zo9TqmR40XEDg0/iNQD4AYPHgRIECAwOQFXvzSf887ce4535t8Z/SAAAECBMKjF1mEAoHKCggcKlsaHSNAgAABAtUT2GjTzfJOXfiD86vXOT0iQIAAAQIEKiUgcKhUOXSGAAECBAhUW0DgUO366B0BAgQIEKiSgMChStXQFwIECBAgUHEBgUPFC6R7BAgQIECgQgIChwoVQ1cIECBAgEDVBQQOVa+Q/hEgQIAAgeoICByqUws9IUCAAAEClRcQOFS+RDpIgAABAgQqIyBwqEwpdIQAAQIECFRfQOBQ/RrpIQECBAgQqIqAwKEqldAPAgQIECBQAwGBQw2KpIsECBAgQKAiAgKHihRCNwgQIECAQB0EBA51qJI+EiBAgACBaggIHKpRB70gQIAAAQK1EBA41KJMOkmAAAECBCohIHCoRBl0ggABAgQI1ENA4FCPOuklAQIECBCogoDAoQpV0AcCBAgQIFATAYFDTQqlmwQIECBAoAICAocKFEEXCBAgQIBAXQQEDnWplH4SIECAAIHJCwgcJl8DPSBAgAABArUREDjUplQ6SoAAAQIEJi4gcJh4CXSAAAECBAjUR0DgUJ9a6SkBAgQIEJi0gMBh0hVwfAIECBAgUCMBgUONiqWrBAgQIEBgwgIChwkXwOEJECBAgECdBAQOdaqWvhIgQIAAgckKCBwm6+/oBAgQIECgVgLdAoeFV1wR1nze82o1Dp0lQIAAAQIERi8gcBi9sSMQIECAAIHaCuy59z5534/+5Cfyn52BQ1wfA4e4XuhQ2zLrOAECBAgQGImAwGEkrBolQIAAAQJpCLQChRgmxFChPXDoXJfGiI2CAAECBAgQGJaAwGFYktohQIAAAQKJCrQHC/FqhviKAUTrVorW1Q+JDt+wCBAgQIAAgYICAoeCcHYjQIAAAQJNEmiFDu1jbl310L7M7wQIECBAgACBloDAoSXhJwECBAgQIDCrQHvoIGyYlcpKAgQIECBAIBMQOPgYECBAgAABAn0LxNAhvtxG0TeZDQkQIECAQGMFBA6NLb2BEyBAoB4CR396/lRHL1uwYOp3vxAgEMK666wT1l03+y/76UWAAAECBKomIHCoWkX0hwABAgRygRg0HD3/n2EDFgIEZheIocOee8wTPszOZC0BAgQIjFFA4DBGbIciQIAAgbkF4lUM2+2w49SG8STqhdlfcONrHX/FnXLxC4EosCD7vvzosgWh/eqfU085Wejg40GAAAEClRAQOFSiDDpBgAABAlGgPWzYK/tLbQwYXCrus0FgboH43YlXBbWCB6HD3Ga2IECAAIHRCwgcRm/sCAQIECDQp8CKK6+SbxnDhj3mzetzL5sRINASaL8V6eYbb2gt9pMAAQIECExEQOAwEXYHJUCAAIFOgdbVDfGKhvjXWS8CBIoJtEKHPbPQLs7p4EWAAAECBCYlIHCYlLzjEiBAgMA0gThvQwwdXAo+jcUbAgMLtAKHuKOrHAbmswMBAgQIDFFA4DBETE0RIECAQDEBVzcUc7MXgV4CrduTBHi9hCwnQIAAgXEICBzGoewYBAgQIDCrgMBhVh4rCQws0LrKwW0VA9PZgQABAgSGKCBwGCKmpggQIECgmICTo2Ju9iLQS8B3qpeM5QQIECAwTgGBwzi1HYsAAQIEugo4OerKYiGBwgK+U4Xp7EiAAAECQxQQOAwRU1MECBAgUEzAyVExN3sR6CXgO9VLxnICBAgQGKeAwGGc2o5FgAABAl0FnBx1ZbGQQGEB36nCdHYkQIAAgSEKCByGiKkpAgQIECgm4OSomJu9CPQS8J3qJWM5AQIECIxTQOAwTm3HIkCAAIGuAk6OurJYSKCwgO9UYTo7EiBAgMAQBQQOQ8TUFAECBAgUE3ByVMzNXgR6CfhO9ZKxnAABAgTGKSBwGKe2YxEgQIBAVwEnR11ZLCRQWMB3qjCdHQkQIEBgiAIChyFiaooAAQIEigk4OSrmZi8CvQR8p3rJWE6AAAEC4xQQOIxT27EIECBAoKuAk6OuLBYSKCzgO1WYzo4ECBAgMEQBgcMQMTVFgAABAsUEnBwVc7MXgV4CvlO9ZCwnQIAAgXEKCBzGqe1YBAgQINBVwMlRVxYLCRQW8J0qTGdHAgQIEBiigMBhiJiaIkCAAIFiAk6OirnZi0AvAd+pXjKWEyBAgMA4BQQO49R2LAIECBDoKuDkqCuLhQQKC/hOFaazIwECBAgMUUDgMERMTREgQIBAMQEnR8Xc7EWgl4DvVC8ZywkQIEBgnAICh3FqOxYBAgQIdBVwctSVxUIChQV8pwrT2ZEAAQIEhiggcBgipqYIECBAoJiAk6NibvYi0EvAd6qXjOUECBAgME4BgcM4tR2LAAECBLoKODnqymIhgcICvlOF6exIgAABAkMUEDgMEVNTBAgQIFBMwMlRMTd7Eegl4DvVS8ZyAgQIEBingMBhnNqORYAAAQJdBZwcdWWxkEBhAd+pwnR2JECAAIEhCggchoipKQIECBAoJuDkqJibvQj0EvCd6iVjOQECBAiMU0DgME5txyJAgACBrgJOjrqyWEigsIDvVGE6OxIgQIDAEAUEDkPE1BQBAgQIFBNwclTMzV4Eegn4TvWSsZwAAQIExikgcBintmMRIECAQFcBJ0ddWSwkUFjAd6ownR0JECBAYIgCAochYmqKAAECBIoJODkq5mYvAr0EfKd6yVhOgAABAuMUEDiMU9uxCBAgQKCrgJOjriwWEigs4DtVmM6OBAgQIDBEAYHDEDE1RYAAAQLFBJwcFXOzF4FeAr5TvWQsJ0CAAIFxCggcxqntWAQIECDQVcDJUVcWCwkUFvCdKkxnRwIECBAYooDAYYiYmiJAgACBYgJOjoq52YtALwHfqV4ylhMgQIDAOAUEDuPUdiwCBAgQ6Crg5Kgri4UECgv4ThWmsyMBAgQIDFFA4DBETE0RIECAQDEBJ0fF3OxFoJeA71QvGcsJECBAYJwCAodxajsWAQIECHQVcHLUlcVCAoUFfKcK09mRAAECBIYoIHAYIqamCBAgQKCYgJOjYm72ItBLwHeql4zlBAgQIDBOAYHDOLUdiwABAgS6Cjg56spiIYHCAr5ThensSIAAAQJDFBA4DBFTUwQIECBQTMDJUTE3exHoJeA71UvGcgIECBAYp4DAYZzajkWAAAECXQWcHHVlsZBAYQHfqcJ0diRAgACBIQoIHIaIqSkCBAgQKCbg5KiYm70I9BLwneolYzkBAgQIjFNA4DBObcciQIAAga4CTo66slhIoLCA71RhOjsSIECAwBAFBA5DxNQUAQIECBQTcHJUzM1eBHoJ+E71krGcAAECBMYpIHAYp7ZjESBAgEBXASdHXVksJFBYwHeqMJ0dCRAgQGCIAgKHIWJqigABAgSKCTg5KuZmLwK9BHyneslYToAAAQLjFBA4jFPbsQgQIECgq4CTo64sFhIoLOA7VZjOjgQIECAwRAGBwxAxNUWAAAECxQScHBVzsxeBXgK+U71kLCdAgACBcQoIHMap7VgECBAg0FXAyVFXFgsJFBbwnSpMZ0cCBAgQGKKAwGGImJoiQIAAgWICTo6KudmLQC8B36leMpYTIECAwDgFBA7j1HYsAgQIEOgq4OSoK4uFBAoL+E4VprMjAQIECAxRQOAwRExNESBAgEAxASdHxdzsRaCXgO9ULxnLCRAgQGCcAgKHcWo7FgECBAh0FXBy1JXFQgKFBXynCtPZkQABAgSGKCBwGCKmpggQIECgmMAgJ0eXXHppuPbaa8NNP/tZePIyTw7PfvYqYYP11w9LLbVUsYPbq7TA9889N/z617/u2c5iiy0WXvua1/Rcn+KKr339G2HhwoVhhx22D89cYYWxD3GQ79TYO+eABAgQINAYAYFDY0ptoAQIEKiuQD8nR/fdd194z0HvDd/45jdnDOTJT35yOOaznw1rrLH6tHU33nRT+OEPf5gve8tOO4VHPepR09YP8maYbQ1y3Els+6XTTgt/+ctfwnOe85yw7jrrzNmFHXd6S4hBUK/XU57ylHDxDy/otXrW5X/561/Dl770pXybl73sZeEZT3/6rNuPa+Vs/Yrhy8abvSj8/e9/D5ttskn4/H8dM65uTR2nn+/U1MZ+IUCAAAECIxIQOIwIVrMECBAg0L9APydHRxx5ZDj+hBPzRld81rPC89deO9z55z+HC7IT2XvvvS889rGPDRecd2540pOeNHXgs7/8lfDu97wnf3/1FVeERRd97NS6QX8ZZluDHnvc22/6oheH23/5y/C2XXYJB7x7/zkP3wocFllkkbDMMkvP2H7pJy0dzj7zjBnL+1nwy1/+Kmzyohflmx73X/8VNtlk4352G/k2s/XrnnvvDRtsuFGIocSb3vCGcNgHDh15fzoP0M93qnMf7wkQIECAwLAFBA7DFtUeAQIECAws0M/J0cte8crwP//7v/lf3E895eSpY1x51VVh6222zd9/8uNHhS0233xq3TBDgmG2NdXBiv5SNHCIV5h8+cwzhzqq2U7sh3qgARubq1+///3vQ7wqJl4hUubKmgG7NbV5P9+pqY39QoAAAQIERiQgcBgRrGYJECBAoH+BuU6O/vGPf4Q1135++Ovdd4eddtwhvO+9753W+IabbJrPIfDG178+HH7YB8JZZ58dbrvt9nDDDTeE7593Xr7tO9/+9vzEb5VVVg4vzy7Nb71+8tOfhjgHwc+yOSEe+9hFw+qrrRq233778PjHPS7fZJC2fnbzzeHiiy4OC37yk7DE4x8f1l133bDZppuEJZdcsnW4cNVVV4fzzj8/68sjw67vfGf48le+Eq688qqw3HLPCK/MQpWnPe2p4brrrsv6dF7405/+FNZZ5wXhFS9/+dT+rV/uv//+8IMLLgg/yY51y623huc997lhgw02CGs+73mtTfKfnz/22HD33fdk69YPyy+3XDg387j22uvCSiutFDbN+ta6RSFe0XDmmWfl+5x08sn5X+djW3F+jPja6c07ThtHvvDhf1pXOMwVOJx2+unhjjt+HRZZ5FHh7W97W/ZzkalmvvXtb4ebbvpZeMQjHhHestObw3XXXx9+9KPLwl//+pdw4smn5NttucXmYblnLBce97jFw1uzqy/iq318iy26WGZ7Xla7x4edsjbiK15tcPppp4drr78u/Pa3vwv/uuyyYcsttwgvzGrT7RUDrEuz20MWLrwiLPGEJbLPw+pZXV6eXbmxTL75jy67bKB+rbvuOmG9F75w6lDxNosLstt8Lr98YTbG6zL/Z4Q111wzbLbZplOfubhxrP1JD4/7Da/fNr+a58ILL8w/12uttVZ4Ubb9EkssMdVu5y9zfac6t/eeAAECBAiMQkDgMApVbRIgQIDAQAL9nBy97e3vCOdnJ9iPfvSjwx6775adNG6ZnzzGA1119dXhnnvuCU984hPDv2Un0tvtsGO4bMGCrn2IJ62fOOqofN1/fu5z4eOf/FSIgUb7K84J8bUvnx2WXnrpvtu64IIfhnfuvnt48MEH25vKJwz80hdPzfsWV/x3Nh/BwYccmocfm2y0UTg3Cx9arxg27L3nXtn6Q0IMFFqvzpAlrnv7O3cNF19ySWuTqZ8HZ2HMm7NQpvV64QYbhvjX9te+5tVhwYIf57dKtNY9bvHFwxeycGH11VfLvaJbr9c53/1OWGH55buu7jdwWPDjH4ftd3xzPrfBru94R9j3Xfvk7cUAZOtttw1/+9vfwvZvelM49JD3h9ZnotsB48n/pRddmK9qjW/jjTYMP/3p5eHu7HOw6qqr5vWLVyHstPPOeSDT2c4+e+0Zdt9tt2mLTzzxpPDBD3942rL4Jh4vzhHynOesMXC/9sg+E3vtuUfeZhzfu/bbP8RwpfO18r/9Wzjx+OOmgo14NU+8qie+Ylh2/IknhgceeGBqt7j9f5/6hZ6hQ8tvz3nzwp57zJvazy8ECBAgQGCcAgKHcWo7FgECBAh0Fejn5GhhNgdDPMmOf/ltvZZ7xjPCS1/6kvwKgOdmExy2Xl/+ylezv6T/Klx73fXhu9/7Xr44nvjFv6zHv+y/9CUvyW/PeMXmW+Qnv5u/8pVhm623Dj//xc/DUZ/4ZLjrrrvCdm98Y/jAoYdkVyDM3db12V/jt9729fkJYTx53/KVm4c//PGP4ctf/Wr43e9+l5/Qf+Wsh64eaAUOsVNP/9d/Da/fdptw8//8T/jKV7/W6n5Yf7318skGv/qNr4drrrk2X/6Ty340dYXBXvu8K3zzW98Kiy26aH4LyaqrPju/2uEHWegRrxD43Gc/E1788LwHrRPy2EgMZF6/zTa5Ydw/zjEQ+3D+ud8P8eT8q1/7an6szx93fD5pZJwnI57Ix9d2WRDwhCc8If+9859W4BBvHXh8dmVH5+vwbA6D1lUln/zU0WF+dvL+yEc+MsQgZrUsHHj1a7fOnzoST6LjXA+PecxjQgwn4tUbf85qcdzxJ+RNvubVr8pDj8UWWzy/4iIubB9fPPZGG24Ynp1dxRKvHnnXfvuF+LSIOO4YMPzrsv8a/jubEPN755yTH//CH5wfYrgUX2dm9YmTksbXc9ZYI/tMvSy/MuS0M87IaxjDp7h9/BwO0q/2wGH/Aw7IP0/xGDEU2Ty7cuLH2Rh/eOFF+ecwXoHy3W9/K+9be+AQt19pxRXDq7baMlxxxZV58PZ///d/4XWvfW048sNHxNUzXv18p2bsZAEBAgQIEBiygMBhyKCaI0CAAIHBBfo9OYqX/X/mM58N3/v+98Ofswkj2187bLddOOjA90y7TH+ueReuvvqa/BaDXd/5jvwkN7b3gcMOD6ecemp+0tk+0eFsbc3/zGfCJ4/+dH5FxHnfPycPAmJbF2W3V+z08KX/cXm8faE9cDjp+OPzWx3itnFixHjSHy+T//GPLs1POmP/XvO618XV4djsSQebZk88iFdQPHettfNw48B3vzvsssvO+fr4z7ZveGO4PHsU46tftVX42H/8R768dUIeJ9X80SUXh3hVQ3wdl4UKH354m4su+EH4f//v/+XL4z9F53CYaqDjl6M++tH8ZDkujifKb9xu+7yf8QR7rbXWDNE29i96xytU2l9zzZXQGl8MFWIgEMOK1isGKuec8/0sBHlcHjLF5X/MgqB1198gv6qlfRLKnd/61vzEP96a8sUvnJJfSRO3j7fJxGAqvuYf/amp4KTffrUCh3h1w1rPf0F+i0d7fWK78VaT9x78/vhrPgdGvDWlPXCIwU8MZ1qv1tU+8fMUP1fdXv1+p7rtaxkBAgQIEBiWgMBhWJLaIUCAAIHCAoOeHMWTt59efnm4+OJL8sdk/uK22/Jj7xb/qr3P3lP9mC0kiBvFxxeefsaZ+eR+d955Z77fL7NQIwYb8eqJc8956OqIuGK2tt6ShQoXZuFCPJlv/cU87hNv1YjzK8TXRz/ykRD/Qt8eOFx39VVTJ7ZvfsvO+S0S7Y9RjCfMce6K+GqdtMe/sG/z+jfky+LVCe3zIPwpG0O8AqT9RLR1Qt7ebty5/UT6+M9/Pmy88UZ5m/GfooFDnB9hj3m7T7XT+uUFL3jB1FwRcVk8Wd9iq63yKyxa2xyWXU3ypuyqks5Xvyf2O26/XXj/wQd37p5fCXLZZQvCrT//eR52xA3i1ROxNi3T+Hla+wXr5LdjvO/AA6fmf2g19sMfXhielT0ZZdlln9ZalI9htqdntNxbgcMVV14ZXpddBRNfJx53XNhwww2m2opX1MQQJIZJrRCpPXBoLWvtcOoXvxgO+cBh+dtrr7pyWsjS2mbQ71RrPz8JECBAgMAwBQQOw9TUFgECBAgUEpjr5Oj8H/wgHPje9+VtxydUPOuZz5w6TjxJi/MCxABilZVXDt94+LaAuMFsIcH12YSS8VaA9ls0phrNfhkkcNhiq1eFG268MZ+X4dFtEyG2txevooiX+bcHDj+74fr8Foi4XStw+PeXvjR8dv6n8127BQ7xdoDd5j00J0B8zOcjsv91e1258PK87daJ77xsvoK9s9sKWq9f/eqOsPFmm+VvW1dPtNYVDRzmmjSy1X6cODGGJnGCxviKt1d8K7t9pL2urW37DRxaJ/at/eLP95CHAAAAAEAASURBVL7v4BBviej1agUO8WqZtdd5aBLJzied9Np30H7FW3t23+Mh/x9kj2+N4Uz7a4ONNwm/+c1v8gkz35uFHu2BwyknnTht4sl4m0+8PSO+rrpi4dQVNe3tzfWdat/W7wQIECBAYFQCAodRyWqXAAECBPoWmOvk6I477ggbbfrQyXG3SfD22Xff8PVvfDM85SlPCRf/8IKp484WOHzoiCPCCSedHJ70pCeFz2eTRz7zWc/MT9AP/cAH8vvsBwkc3pddDv+l7LL4eDvAN7/+takQIXbkD3/4Q36MVqfKBg6//e1vw/obbZw39+lPfXLaEyziVRpxHoN4At96tQKHzhPySQYOcbLOOFdG7GecFyLe5hDnNDjr9NOmXbERxzDoiX1r3NFinfXWz+dG2PktO4W3ZVehLJZdgRI/Sy/P5tiIr1bgEH9vPXY1PiEjnvC3XvEpF2/MbteJtY1XYLSeAjJov+JcHutt+NBVJO959/5TT9mIx2m/aqV120Z74PCFk0+a9lQNgUOrOn4SIECAQNUFBA5Vr5D+ESBAoAECcwUOkeDfX/6K8L+33JKfvB+w/35hk403zi9Bv/Cii/KnPsTL4uOEiB/64OFTYu0nZvGpE/GktvWKf22Of3WOExXGkCC+fv6LX4Qts6sV4klmPBH+fvZkhqWWWipfN1tb7ev23/dd4U3ZBIuPyZ6mccaZZ4bDP3RE2DabhyHOLxHnKSgbOMTObPbil4Tbbr897/uRWXASryyIt5XEMT2QPcHi/Qe/b+pxlkUCh1b7L33xi8N/ZhNQzvVqTRoZQ5r3vfegrptvtumm+fJ4a8Eb3rRd/kSK+PSF+MjP1hMqYjBw0HveM23/9mCk2+0OvcZ34003hc233Cpvq3USHz8jR2RPoTj5Cw/Nh9Aewhz8/kPyCSXjU1A+/rGPhpdkY49ByGc++5/h1P/+77ydePVMvIomvor0q/UZjlc3vPegA7NHpm4arr7mmvCxoz6ePyUkTvh5WTbPRpyPQuCQM/uHAAECBGouIHCoeQF1nwABAikI9BM4XJjN5L/HXnuFv959dz7keHLW/jjL+OjCE447duqEMG4UT8Jf9JKXThHFfQ59/8H5Exe+lD2t4H3ZSWZ8PfWpT82CjCfmT4SIJ80xeGi94lMD4qX+s7UVb+vYbfd5+dMD4n5x4sJH/su/5MFFfB+f0BBPeuNrGIHDJZdemj+x47777svbXHLJJUNrDop4wnxado9/DCHiq9cJefsJc+ctFe1PU4hm8QQ4ngj3erUCh17r4/J4+0is3ate/ZrcMgY9Xzn7rPyKhlb947FOOPbYafMbxBpvmp38xysK4ituEz3j1R3x1Wt8cb94m0K8IiQ+PSM+eSI+DeSv2bwY8YS/Ne/HFptvHuJtFPHKh3hbSwy14is+AeS+LLyJt3/EV3yKyYeP+FD+e/ynSL8u/dGPwjt33S2fKyK2EQOoVg3juA7KbpN4Sxa6xJfAIWfwDwECBAjUXEDgUPMC6j4BAgRSEGidcHa7XaJ9fHGehEMO/UD2uMvrpk7UFl9ssfD8568dPnT44dOetNDaL16+f8qpX8xPPOOyGDhsn10iH08kP55d1n9s9qSI+Jfv+IqXzR/3+f/KHsN4fD6ZZLzSoRU4xPW92orrHnjggbxv3z/vvKl5IeJJa3yc5L7v2ic/6Y3bDSNwiO3ECTP/46iPheuvv2HqpDj+9f0j2V/wV1vtn1dy9Dohny1wuOlnPwsfyZ5gESfCjE7xKo/45Ixer34Dh/2yp2p89Wtfzy3OPuP0qStOov9rt9k2XJfVNQZH38yuJIghR+v1/XPPDZ/KngIS592Ir/YAp9f44nbxKod52VUfrYk7/yULgQ7IHpW5/vrrhX323S8PIOIjUT/1iY/HzfPbX95z4EH5pJJ333NPviyOfacddwi77brrtFtl4soi/brq6qvDoYcdlo31+vxzF4OGZ66wQnjH298WXvua1+THjP8IHKYo/EKAAAECNRYQONS4eLpOgACBVAT6DRxa440nqPGv1fGv+fHRivFEsujr/uyv2D/72c1hiScsEeJTH+IJYJlX/Mt37Fvs0wrLL1+qb/30I04seUv2V/l4rDh/g9dMgXj1wu9+//vwzOxKldZjQWdu9c8l8dGdN2VhxeOXWGLG5I7/3Krcb/HKhptu+llYbrln5LfvlGtt5t6DfqdmtmAJAQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKeDkqCSg3Ql0CPhOdYB4S4AAAQITERA4TITdQQkQIECgXcDJUbuG3wmUF/CdKm+oBQIECBAoLyBwKG+oBQIECBAoKXDZggVhux12zFu5+cYbSrZmdwIE4vcpfq9OPeXksO466wAhQIAAAQITERA4TITdQQkQIECgU2DFlVfJF+05b17Yc495nau9J0CgT4FWgBeDhhg4eBEgQIAAgUkJCBwmJe+4BAgQIDBNwCXg0zi8IVBYoHV1w15ZcLdHFuB5ESBAgACBSQkIHCYl77gECBAgMEPAVQ4zSCwgMJBAK7iLO7k9aSA6GxMgQIDACAQEDiNA1SQBAgQIFBNoXQoe946Xg8dbK9x/XszSXs0SiN+dyy5bEI6ePz8fuLkbmlV/oyVAgEBVBQQOVa2MfhEgQKChAu2hQySIgYPQoaEfBsPuSyAPG7LAofUSNrQk/CRAgACBSQsIHCZdAccnQIAAgRkCnX+tnbGBBQQIzBAwZ8MMEgsIECBAYMICAocJF8DhCRAgQGB2gRg+LGj76+3sW1s7aoHjTzwpP8TOO7151IfS/gACJoccAMumBAgQIDA2AYHD2KgdiAABAgQI1F9go003ywdx4Q/Or/9gjIAAAQIECBAYqYDAYaS8GidAgAABAmkJCBzSqqfRECBAgACBUQoIHEapq20CBAgQIJCYgMAhsYIaDgECBAgQGKGAwGGEuJomQIAAAQKpCQgcUquo8RAgQIAAgdEJCBxGZ6tlAgQIECCQnIDAIbmSGhABAgQIEBiZgMBhZLQaJkCAAAEC6QkIHNKrqRERIECAAIFRCQgcRiWrXQIECBAgkKCAwCHBohoSAQIECBAYkYDAYUSwmiVAgAABAikKCBxSrKoxESBAgACB0QgIHEbjqlUCBAgQIJCkgMAhybIaFAECBAgQGImAwGEkrBolQIAAAQJpCggc0qyrUREgQIAAgVEICBxGoapNAgQIECCQqIDAIdHCGhYBAgQIEBiBgMBhBKiaJECAAAECqQoIHFKtrHERIECAAIHhCwgchm+qRQIECBAgkKyAwCHZ0hoYAQIECBAYuoDAYeikGiRAgAABAukKCBzSra2RESBAgACBYQsIHIYtqj0CBAgQIJCwgMAh4eIaGgECBAgQGLKAwGHIoJojQIAAAQIpCwgcUq6usREgQIAAgeEKCByG66k1AgQIECCQtIDAIenyGhwBAgQIEBiqgMBhqJwaI0CAAAECaQsIHNKur9ERIECAAIFhCggchqmpLQIECBAgkLiAwCHxAhseAQIECBAYooDAYYiYmiJAgAABAqkLCBxSr7DxESBAgACB4QkIHIZnqSUCBAgQIJC8gMAh+RIbIAECBAgQGJqAwGFolBoiQIAAAQLpCwgc0q+xERIgQIAAgWEJCByGJakdAgQIECDQAAGBQwOKbIgECBAgQGBIAgKHIUFqhgABAgQINEFA4NCEKhsjAQIECBAYjoDAYTiOWiFAgAABAo0QEDg0oswGSYAAAQIEhiIgcBgKo0YIECBAgEAzBAQOzaizURIgQIAAgWEICByGoagNAgQIECDQEAGBQ0MKbZgECBAgQGAIAgKHISBqggABAgQINEVA4NCUShsnAQIECBAoLyBwKG+oBQIECBAg0BgBgUNjSm2gBAgQIECgtIDAoTShBggQIECAQHMEBA7NqbWREiBAgACBsgICh7KC9idAgAABAg0SEDg0qNiGSoAAAQIESgoIHEoC2p0AAQIECDRJQODQpGobKwECBAgQKCcgcCjnZ28CBAgQINAoAYFDo8ptsAQIECBAoJSAwKEUn50JECBAgECzBAQOzaq30RIgQIAAgTICAocyevYlQIAAAQINExA4NKzghkuAAAECBEoICBxK4NmVAAECBAg0TUDg0LSKGy8BAgQIECguIHAobmdPAgQIECDQOAGBQ+NKbsAECBAgQKCwgMChMJ0dCRAgQIBA8wQEDs2ruRETIECAAIGiAgKHonL2I0CAAAECDRQQODSw6IZMgAABAgQKCggcCsLZjQABAgQINFFA4NDEqhszAQIECBAoJiBwKOZmLwIECBAg0EgBgUMjy27QBAgQIECgkIDAoRCbnQgQIECAQDMETjjxxLDwiivD0Z/8RD7gzsChc30zVIySAAECBAgQ6EdA4NCPkm0IECBAgEBDBVoBw5rPe14eOrTeX/iD80MMG44/8aRcJgYScRsvAgQIECBAgEBLQODQkvCTAAECBAgQmCGw8Iorwp5775Mvj4FCfB9fO+/0ZmFDLuEfAgQIECBAoJeAwKGXjOUECBAgQIBALtAeOnSSuLKhU8R7AgQIECBAoCUgcGhJ+EmAAAECBAj0FOgWOggbenJZQYAAAQIECGQCAgcfAwIECBAgQKAvgfbQQdjQF5mNCBAgQIBAowUEDo0uv8ETIECgHgKXLVgQLrtsQdhzj3l5h4/+9Pz8p/fj94ihw6fnzw/Pe+7zBqrHuuuuE9ZdZ53QqqX3w/OIX4Zo60WAAAECBKomIHCoWkX0hwABAgRygXhi2jpB3W6HHfNlN994Q/5zxZVX8T4TqJNHrOWpp5ycBw6xnt6X94iGR2fhT8sy/1L4hwABAgQIVEhA4FChYugKAQIECDwkEE9IY+DQOqGO71+Y/YV8j3kP/UU//oU9vrznET8HTf08/OMfIf+exCt9YujQCuZisONFgAABAgSqICBwqEIV9IEAAQIEpgnEWybiX27jiVM8kfIiQGBugVZQ53szt5UtCBAgQGA8AgKH8Tg7CgECBAj0IdC6jaKPTW1CgEAXgXi1R+vKny6rLSJAgAABAmMVEDiMldvBCBAgQKCXQAwb4l9o98xum2hNBtlrW8sJEOgtEL9LcZLV+PJd6u1kDQECBAiMXkDgMHpjRyBAgACBPgTcRtEHkk0I9CHQ+i6ZTLIPLJsQIECAwEgFBA4j5dU4AQIECBAgQGD8Am6tGL+5IxIgQIDATAGBw0wTSwgQIEBgAgLxMvD4MknkBPAdkgABAgQIECAwAgGBwwhQNUmAAAECgwm0LgE3f8NgbrYm0EvAnCi9ZCwnQIAAgXEKCBzGqe1YBAgQINBVIAYO8QQpTnDnCoeuRBYSGEhAiDcQl40JECBAYEQCAocRwWqWAAECBAgQIECAAAECBAg0WUDg0OTqGzsBAgQqJGAOhwoVQ1cIECBAgAABAkMQEDgMAVETBAgQIFBOwOXf5fzsTaBTwHeqU8R7AgQIEJiEgMBhEuqOSYAAAQLTBMzhMI3DGwKlBQQOpQk1QIAAAQJDEBA4DAFREwQIECBAgAABAgQIECBAgMB0AYHDdA/vCBAgQGBCAuZwmBC8wxIgQIAAAQIERiQgcBgRrGYJECBAoH8Bl3/3b2VLAv0I+E71o2QbAgQIEBi1gMBh1MLaJ0CAAIE5BczhMCeRDQgMJCBwGIjLxgQIECAwIgGBw4hgNUuAAAECBAgQIECAAAECBJosIHBocvWNnQABAhUSMIdDhYqhKwQIECBAgACBIQgIHIaAqAkCBAgQKCfg8u9yfvYm0CngO9Up4j0BAgQITEJA4DAJdcckQIAAgWkC5nCYxuENgdICAofShBogQIAAgSEICByGgKgJAgQIECBAgAABAgQIECBAYLqAwGG6h3cECBAgMCEBczhMCN5hCRAgQIAAAQIjEhA4jAhWswQIECDQv4DLv/u3siWBfgR8p/pRsg0BAgQIjFpA4DBqYe0TIECAwJwC5nCYk8gGBAYSEDgMxGVjAgQIEBiRgMBhRLCaJUCAAAECBAgQIECAAAECTRYQODS5+sZOgACBCgmYw6FCxdAVAgQIECBAgMAQBAQOQ0DUBAECBAiUE3D5dzk/exPoFPCd6hTxngABAgQmISBwmIS6YxIgQIDANAFzOEzj8IZAaQGBQ2lCDRAgQIDAEAQEDkNA1AQBAgQIECBAgAABAgQIECAwXUDgMN3DOwIECBCYkIA5HCYE77AECBAgQIAAgREJCBxGBKtZAgQIEOhfwOXf/VvZkkA/Ar5T/SjZhgABAgRGLSBwGLWw9gkQIEBgTgFzOMxJZAMCAwkIHAbisjEBAgQIjEhA4DAiWM0SIECAAAECBAgQIECAAIEmCwgcmlx9YydAgECFBMzhUKFi6AoBAgQIECBAYAgCAochIGqCAAECBMoJuPy7nJ+9CXQK+E51inhPgAABApMQEDhMQt0xCRAgQGCagDkcpnF4Q6C0gMChNKEGCBAgQGAIAgKHISBqggABAgQIECBAgAABAgQIEJguIHCY7uEdAQIECExIwBwOE4J3WAIECBAgQIDAiAQEDiOC1SwBAgQI9C/g8u/+rWxJoB8B36l+lGxDgAABAqMWEDiMWlj7BAgQIDCngDkc5iSyAYGBBAQOA3HZmAABAgRGJCBwGBGsZgkQIECAAAECBAgQIECAQJMFBA5Nrr6xEyBAoEIC5nCoUDF0hQABAgQIECAwBAGBwxAQNUGAAAEC5QRc/l3Oz94EOgV8pzpFvCdAgACBSQgIHCah7pgECBAgME3AHA7TOLwhUFpA4FCaUAMECBAgMAQBgcMQEDVBgAABAgQIECBAgAABAgQITBcQOEz38I4AAQIEJiRgDocJwTssAQIECBAgQGBEAgKHEcFqlgABAgT6F3D5d/9WtiTQj4DvVD9KtiFAgACBUQsIHEYtrH0CBAgQmFPAHA5zEtmAwEACAoeBuGxMgAABAiMSEDiMCFazBAgQIECAAAECBAgQIECgyQIChyZX39gJECBQIQFzOFSoGLpCgAABAgQIEBiCgMBhCIiaIECAAIFyAi7/LudnbwKdAr5TnSLeEyBAgMAkBAQOk1B3TAIECBCYJmAOh2kc3hAoLSBwKE2oAQIECBAYgoDAYQiImiBAgAABAgQIECBAgAABAgSmCwgcpnt4R4AAAQITEjCHw4TgHZYAAQIECBAgMCIBgcOIYDVLgAABAv0LFLn8+4orrwx//OMfwxJLLBGev/ba/R9sli3vueee8KPLLsu3WPN5zwtLLbXULFsPvuriSy4J999/f1hhhRXCCssvnzdwzbXXhd/+9jdhySWXDGutuebgjc6yx//ecku49dZbw2Mf89iw/vrrzbLlQ6tuu/32cPPNN4fbbrs9PPKRjwzPeMbTw0orrRT+31OeMue+NqiWQJHvVLVGoDcECBAgkIKAwCGFKhoDAQIEai5QZA6Hoz7xyXDd9deH5ZdfLhx80EFDEbjj178O73v/IXlb++/7rrDKyisPpd1WI/vst3+46667wlZbbBFetdWW+eJjPn9sWPDjH4d/y07sD9h/v9amQ/l59pe/Er757W/nwcnHPnLkrG1+93vnhDPPPjv8/e9/n7bdox71qPDmHbYP6683PbC4/Ze/DNdcc02+7Utf8pI8oJi24wBv7r3vvnDBBRfke6ydhUfLLL30AHvXa9Orrr4m/OpXvwxPWOIJYb31XjiyzgscRkarYQIECBAYQEDgMACWTQkQIECgOgICh7lr0W/gcOVVV4Wj538mb/AJT3jC/2fvTuCtq+f9gf+EFNW9dA0NiEKzJpXmkkLGEtIsFJ6eSirNA5VKSrimhqdShKLxigYKKRroosF1VSqlDBkaLn//9V3Zx37OOfs8Z+2z9l57rfVer5ees9dee63f7/09yzm/z1nrt7Kg5cUpgoaf/fyW9Pvf/z5fP3vW+9JLV1557KDf//416ZQ5c/LX//mJT6SnPGX+sfeKfvHgg79L++6/f/6xPXbfPa280opFd1Gb7U89bU763jXXZFe5LJUO+mefa9N4DSVAgAABAgUFBA4FwWxOgAABAoMRKDqHg8Bh3nWYbuDwhbPOTldmVxgsuMAC6bhjj8n/jb3/5S9/SYce8aE8dNhogw3S9tttO3ZQgcMYRaEvBA6FuGxMgAABAjUXEDjUvICaT4AAgSYI9HP5d9HA4fZsboKY9+Hu7FaAJz95/rTU85+XNt544/TUBRccIxx/S8V8882Xvvu976U//OEP2fZLpZVXXikts/TSY9t3vvi///u/dHN2e8Ftt92W7rv//vTCbI6G5ZdfPi39whd2Nsn/LXpLxS233prt8/b0v7/63/Sc5zwnv8VjxRVWmHD7QtwGccONN6af/ezn6cHfPZgWy7bdNLvN4aqrrp7WLRXh/+Obb07PXXLJdNghB8/V5pNPPTVd84Nr83kcjvzQESnmofjtbx9Iv87me7gx84zlNa96Vd6mJZdcYq75NOZlHv275ZZb0yOPPJy+dfkV+b7WWvNl6VnPfFZacMEF0uabbZavi//ErShhfOutt6W4BSNud1kpuxLiWc985tg2f/7zn9Nl/9zPhhusn+6+597sto+bs6svFkirrPLSfN6MuGLjhz+6Pv0mu30m5qhYe+21szkunjK2j84X07H/0fXXZw53p2c/61lp9dVXy7+/Yg6MmFdkhaxOnXk6Yp9fP/+CfNdxNcmdd92Vz9mx/rrr5utWeelL81uD4kX07ZZbbsna/dP00J/+lJZb9iVpxRXn7mf+oXn8p59zah679DYBAgQIECgsIHAoTOYDBAgQIFC2QAyO4gqH2bvPSmutuea0dl8kcLgkm8fgvK+fn/7xj3/Mte+YqPHQgw7MB4jxRnfgsObLXpYNTH8012ee8IQnpF122mmue+8jbIjbEWI+ifHLNm99a9r0FZuMrS4SOMQA9cKLLx77bOeLmCBz13e9M0UYEkv06bQ5p+eX6Xe2iX8XWmih9LznPjdvV0x+OdUcDt+49JvpK+eem3983WxyyU022jg9Pwtkor+/ue++PHCJWywibDn2o8enW7NgZbIlwoJ3v/Od+VvTMb/gwovS+RdeONmuUtza8bHjjs3fe+DBB9Mxx300nyS0e+OnzD9/2vv9e40FO931i0k/b7zpprHNo/3bb/v2dPEl/5Xu/+1vx9ZHn96/154p9tVZpmvfmX/jBS9YKi2y0MJ5aNPZR/wbc19ssP76+apd3r1r91tzfd3ZLoKtDx11dO7dvUHUOuYUiXk+prsIHKYrZTsCBAgQGKSAwGGQuvZNgAABAgMTmG7gEIPQgw89LB+YR4iw7jrrZH+hvz8PIOKpFBtvuGHaLhuIxtI9YI3XcaVADMBjjoEIRP768MP5QP+A/fbL78GPbTqDzhiwxv7jr+bxl/iYHDAG7LPe+54Uf8GOZbqBw7ez2xvOzG5ziGXV7LMrrLB89rSJO9K12eSSEXBsvtkr01ve/Ob8/W9cemkWFpyXf/0fiy6a1l9v3fTn7FaIuCoh/uIfy7wCh7h64MRsHoY77rgz3z7+E4HFS1daKa222qpppewv7PHUiliuueYH+VUUd9x5V35VRayLSTCf+MT50hJLLJFioD9d89tuvz2/KiRcY9LKWNbJJlKMKwYWWGDBPKx57LHH8vpF6BD9ePlaa6WnPe2pWT1+mF8psGB2hcoRhx6SnvGMZ8xVv7g9ZIPsKocnzvfEdPkVV6RHs/3EEjUNo1/8zy/H2v/e3XZNq6+2Wv5+EftO7eODT37yk9Oaa6yRt/GaazOj7Hsm6v+Ro45MUZeL/hkeXX/jTenOO+/Mt9soa18sK2fOz3ve81KnlnHFxa7vfld2lceCWUBySfb99NPc5PCsn3EcCwECBAgQqIuAwKEuldJOAgQINFxgkHM4xGA9bqfY4jWvHhuwnf3FL6XLr7wyv+z9oAMen7CwO3CIAWBc/dBZ4i/9Bx58SP7yTW94fXrtFlukv/3tb2nWHnvmIcDWW22VXrX5v24BOPqYY7NB7f+kl6+9VnrnO96Rf266gcNxx38sxSX9MeCPqz46y2RzMsRf/mPgvuiiz0jHHHVUPsiN7f+UXY6/9777pb///e/zDBxi+xjYX3TxJflVHd1XAMR78Zf13bIBcFx10FnmNYfDdM1jf1NNGhl9iz7GEpMsvuAFS2VfPT6/xL4f3D89kj1mdOcdd0jrZbcndNdvi1e/Om35pjfm256aTW75vWySy1gOOfDA/OqNcNlz7w+kCJ2iblG/WIrYdwcOe2dXSSy/3HL5PqLvH8pqEcu7stqvnX0PdJap5nCIcCGuxHna056WPrjvPmnxxRZLf/zjH7Nban6V3Vqx3Iwm5uwc378ECBAgQGCYAgKHYWo7FgECBAhMKtDP5d/TvcIhDhj37V/93e+lu7J5B2IixFgezP5iHn81jzkAjj7yw/m67gFrXEEQVxJ0LzGIjMHkSiuukPacPTv9zy9/mY76yDH5JvFX7Lhsv7PEVQZxhUE84jH+yh3LdAKHGAjvvuee6dFHH8tv9eieY+Kx7OqG3/3ud/m+jvvI0XkAEIFHhAUxj8JWW74pf6/znxNPOin/6/i8rnDobN/5N5xiPoiYFyJCk1ji1oP999u3s0maV+AwXfPY4VSBQ9yacW72eM+4wmL84zJ//4ff504xF8JOWejQXb+99tgjrZhdGRJLZyAfVw586hMn5eviP4d/+Mj8aoMN1lsv7bjD9nk4M137uKKiEzhEjU782PFjV4HEviPMiNDn1Ztvnt681ZaxKl+mChwi1Driwx/O+xQbR4gUYc9KK66UXT2zxliY9Piepv5vP+fU1Hv0LgECBAgQKC4gcChu5hMECBAgULLAIOdwiAn6Ipzo3F4wvum9Aoc9sisL4lL37uXzp5ySfnDtdfnl73H1QwzIP/Xpz+Sb5I+FnHuKiLGPxiA3Lq+fTuAQgcjsvd6ffzYun58v+9xky557zE5LLL742La77LxTdjvCy+fa9EvnnJNPxjhV4BDHOyi75SSWrbIrAuJKge7lK189N33jm9/M23/i8R/Nb7WI96cKHIqYx76mChw6fQi/+XvcTvCiFy2TImDoDhxizoOYWDKWTuDw1Kc+NX3ixBPydfGf8YFDEfsIAjqBQ3y93z4fGNtvfLHf/gfkgVb31ROxfqrAId6P0OGrmfnPbvn5WPAQ6/O5JrIgarqPHxU4hJqFAAECBKoWEDhUXQHHJ0CAAIG+BKZ7hUNnwLrwwgunPWbNSostvlh+vLPOPjt9P5uPoFfgEHMJ7LLzzmNti7kT9sr+ah1PEdgwmwhwh2xCwJjkL25biOU9u757ric0xOA17sHvTO4Y20wncIjtDjjo4PxpF5tstFHa9u3bxKp8iTb8LbsCIuYn6Cydge3K2RMb9th9987qfM6KfbJbDuJKg6kCh/jABw84MP32gQfSS1784rTvB/Ye20d8cdXVV6fTz/xCvi6uBOk8FWKqwKGIeex4qsDh2izg+VwW9MQVDsdkV4pEXzpLXEEQde0sMw0cYj9F7MsOHOJpI3dk8zvELRVPzyY0jVspbrjhhrEneLzvPbul1VZdtdNd/xIgQIAAgZEXEDiMfIk0kAABAu0Q6HcOhxgAb/O2t05Ami+bLDAuqY8rEOJKhCWzCQ1j0r1YYo6Cww4/Ip9IMAZ3R2WPe4xJErsHrHH5/Q7bbZdPmhhXR8SEfpddcWX++e6rCToD/tj/zjvumJZa6vn54D2O+7csIHj7Nm8bu7d/uoFDPHXiu9njJ+fPJqKMIGOF7BGbj2RBxzlf/kq6KXusYkzS2Hn6ReeqixiQ77DdtmmNbOLCx7J5DS7P2npRNidALPMKHM78wlnp21ddlW8bVzmslk2gGPM13JrNI/Glc76c96c7mIkNY/LIk087Lf9MXO0Rc150liLm8ZnuwOGtW2+dNnvlpp1dzfVeTMr55i23zCaIfHqKR25+/KRPpGWWWTqb9HPb/HaL7vr1c4VDHLSIfT+BQ2f/cUvGEYcdOld49JFjj8v7FeHRrPe+Nw9Z8qDrA/ukh7OJNSe7zWcMyhcECBAgQGAEBQQOI1gUTSJAgEDbBPq5/LtzhUMvq87l891/oY9B3sILL5Q/jSEG0N2TI374iMPzXR10yKH5v3F1Qgzy4mqCmJiw80jNpV/4wvxRjJ3HKMbjMD/xqf/M51GID0aAEVc3xBK3RHxwn33yECJeTzdwiKsSYqLEuOoglmjLo1kb4i/gsWy7zTZpk403yr++59578207t4xEu+IqiJgLotOHeQUOMZfFCSd+PL+cP99p9p+4haHT5wgz4nGga631r0eWRtviyojOEttvm4UrG2dXZRQxj6dGxHH2O+CAPFyI/cW+4qkREbbE0pnHIb6O96K2HeOY1+GQgw9KMY9CGYFDEft+AofvZUHSqVmg1OlL/BvBQ0wQ+f1rrkmnnDYnVuUBStwyc9fdv85dogYxuWk86nQ6Sz/n1HT2axsCBAgQIFBEQOBQRMu2BAgQIDAQgZnM4dCrQZ3AIQaz8XSHS7/1rXwQHtvHQG7P2bunb2brrrr6u/mVDuMDh/gL+WWXX5F+nF1REAP9mBBy+eWWTe9+5zvzgXz3cX+aTbB47tfOyyYgvGtskP7cJZfMr3h4/vP/9Zf/6QYOse/4q/+cM87IJ22MSSFjWWSRRdLbsisAugf+sT4eZ3na6afnk2LG67jPPyaRjOVr518wzyscYrt4WkPcOvHzW24ZG8zHIDcedbnNW9+ST14Y23UvEQRcfuW381tLYn0EDptsvHFuMF3zCBxiiaeInH/BhfmjLuP1GquvPhY4xOtvfuuydEX2VJFOCBNtW2mFFfLJIju3VZQROMSxpmvfT+AQ4dXZZ38x/ej668ce1RmBQ3xPxhJhzQUXXZzfCpOvyP4TQdlbt37zXLfsdN7r9a/AoZeM9QQIECAwTAGBwzC1HYsAAQIEKhOIS9PvuefetOBTF8z/ehx/KZ/O8mg22L/n7nvS4tmAcF4T9sX8Dr/5zW/Sc5797AmhxHSONdk2caXCr399dxY2LDzX/AWTbfvQQw/lj1GMtsaAvN8lrnj4y5//kvV5sbHHiPazr37NpzpWXIHw0EN/mnHbpjpG570i9p3PlPFvHPfB7Gkk8UjMCFPiKo6Z1LOMNtkHAQIECBDoR0Dg0I+azxAgQIBA6QJF53AovQF2SIAAAQIECBAgUKqAwKFUTjsjQIAAgX4EXP7dj5rPEOgt4JzqbeMdAgQIEBiegMBheNaORIAAAQI9BPqZw6HHrqwmQCATEDj4NiBAgACBURAQOIxCFbSBAAECBAgQIECAAAECBAg0TEDg0LCC6g4BAgTqKmAOh7pWTrsJECBAgAABApMLCBwmd7GWAAECBIYo4PLvIWI7VCsEnFOtKLNOEiBAYOQFBA4jXyINJECAQPMFzOHQ/Brr4XAFBA7D9XY0AgQIEJhcQOAwuYu1BAgQIECAAAECBAgQIECAwAwEBA4zwPNRAgQIEChPwBwO5VnaEwECBAgQIEBgFAQEDqNQBW0gQIBAywVc/t3ybwDdL13AOVU6qR0SIECAQB8CAoc+0HyEAAECBMoVMIdDuZ72RkDg4HuAAAECBEZBQOAwClXQBgIECBAgQIAAAQIECBAg0DABgUPDCqo7BAgQqKuAORzqWjntJkCAAAECBAhMLiBwmNzFWgIECBAYooDLv4eI7VCtEHBOtaLMOkmAAIGRFxA4jHyJNJAAAQLNFzCHQ/NrrIfDFRA4DNfb0QgQIEBgcgGBw+Qu1hIgQIAAAQIECBAgQIAAAQIzEBA4zADPRwkQIECgPAFzOJRnaU8ECBAgQIAAgVEQEDiMQhW0gQABAi0XcPl3y78BdL90AedU6aR2SIAAAQJ9CAgc+kDzEQIECBAoV8AcDuV62hsBgYPvAQIECBAYBQGBwyhUQRsIECBAgAABAgQIECBAgEDDBAQODSuo7hAgQKCuAuZwqGvltJsAAQIECBAgMLmAwGFyF2sJECBAYIgCLv8eIrZDtULAOdWKMuskAQIERl5A4DDyJdJAAgQINF/AHA7Nr7EeDldA4DBcb0cjQIAAgckFBA6Tu1hLgAABAgQIECBAgAABAgQIzEBA4DADPB8lQIAAgfIEzOFQnqU9ESBAgAABAgRGQUDgMApV0AYCBAi0XMDl3y3/BtD90gWcU6WT2iEBAgQI9CEgcOgDzUcIECBAoFwBcziU62lvBAQOvgcIECBAYBQEBA6jUAVtIECAAAECBAgQIECAAAECDRMQODSsoLpDgACBugqYw6GuldNuAgQIECBAgMDkAgKHyV2sJUCAAIEhCrj8e4jYDtUKAedUK8qskwQIEBh5AYHDyJdIAwkQINB8AXM4NL/GejhcAYHDcL0djQABAgQmFxA4TO5iLQECBAgQIECAAAECBAgQIDADAYHDDPB8lAABAgTKEzCHQ3mW9kSAAAECBAgQGAUBgcMoVEEbCBAg0HIBl3+3/BtA90sXcE6VTmqHBAgQINCHgMChDzQfIUCAAIFyBczhUK6nvREQOPgeIECAAIFREBA4jEIVtIEAAQIECBAgQIAAAQIECDRMQODQsILqDgECBOoqYA6HulZOuwkQIECAAAECkwsIHCZ3sZYAAQIEhijg8u8hYjtUKwScU60os04SIEBg5AUEDiNfIg0kQIBA8wXM4dD8GuvhcAUEDsP1djQCBAgQmFxA4DC5i7UECBAgQIAAAQIECBAgQIDADAQEDjPA81ECBAgQKE/AHA7lWdoTAQIECBAgQGAUBAQOo1AFbSBAgEDLBVz+3fJvAN0vXcA5VTqpHRIgQIBAHwIChz7QfIQAAQIEyhUwh0O5nvZGQODge4AAAQIERkFA4DAKVdAGAgQIECBAgAABAgQIECDQMAGBQ8MKqjsECBCoq4A5HOpaOe0mQIAAAQIECEwuIHCY3MVaAgQIEBiigMu/h4jtUK0QcE61osw6SYAAgZEXEDiMfIk0kAABAs0XMIdD82ush8MVEDgM19vRCBAgQGByAYHD5C7WEiBAgAABAgQIECBAgAABAjMQEDjMAM9HCRAgQKA8gfiL7FprrZnWWnPN8nZqTwRaKhBzojiXWlp83SZAgMAICQgcRqgYmkKAAIE2CyzzkmXz7s+eNSvN3n1Wmyn0ncCMBCJs2Hb7HfLA4awzz5jRvnyYAAECBAjMREDgMBM9nyVAgACB0gTiCocnPCGl3bPAwUKAQP8CnTlRYg8Ch/4dfZIAAQIEZi4gcJi5oT0QIECAQMkCLgcvGdTuWiPg3GlNqXWUAAECtRAQONSiTBpJgACB9giYXb89tdbTcgU6505c1WD+hnJt7Y0AAQIE+hMQOPTn5lMECBAgMCCB8YOmeN09mWT8BTeWzoDKax6+Hx4/Hzrnzh7ZHChuTcr/b8J/CBAgQKBiAYFDxQVweAIECBCYKNC5LDz+jcnvYvnFrbekzusIG+KvuF7PPTkgj3Z6dE+0+olPflLYMPH/UqwhQIAAgYoEBA4VwTssAQIECMxbIAbQ8VfbtbPHZcZfbL2u3mPnXd6Z1+PUk09Wj4q/P+MMikCuc37M+4yyBQECBAgQGK6AwGG43o5GgAABAgRqLbD+Rhvn7b/621fWuh8aT4AAAQIECAxeQOAweGNHIECAAAECjREQODSmlDpCgAABAgQGLiBwGDixAxAgQIAAgeYICByaU0s9IUCAAAECgxYQOAxa2P4JECBAgECDBAQODSqmrhAgQIAAgQELCBwGDGz3BAgQIECgSQIChyZVU18IECBAgMBgBQQOg/W1dwIECBAg0CgBgUOjyqkzBAgQIEBgoAICh4Hy2jkBAgQIEGiWgMChWfXUGwIECBAgMEgBgcMgde2bAAECBAg0TEDg0LCC6g4BAgQIEBiggMBhgLh2TYAAAQIEmiYgcGhaRfWHAAECBAgMTkDgMDhbeyZAgAABAo0TEDg0rqQ6RIAAAQIEBiYgcBgYrR0TIECAAIHmCQgcmldTPSJAgAABAoMSEDgMStZ+CRAgQIBAAwUEDg0sqi4RIECAAIEBCQgcBgRrtwQIECBAoIkCAocmVlWfCBAgQIDAYAQEDoNxtVcCBAgQINBIAYFDI8uqUwQIECBAYCACAoeBsNopAQIECBBopoDAoZl11SsCBAgQIDAIAYHDIFTtkwABAgQINFRA4NDQwuoWAQIECBAYgIDAYQCodkmAAAECBJoqIHBoamX1iwABAgQIlC8gcCjf1B4JECBAgEBjBQQOjS2tjhEgQIAAgdIFBA6lk9ohAQIECBBoroDAobm11TMCBAgQIFC2gMChbFH7I0CAAAECDRYQODS4uLpGgAABAgRKFhA4lAxqdwQIECBAoMkCAocmV1ffCBAgQIBAuQICh3I97Y0AAQIECDRaQODQ6PLqHAECBAgQKFVA4FAqp50RIECAAIFmCwgcml1fvSNAgAABAmUKCBzK1LQvAgQIECDQcAGBQ8MLrHsECBAgQKBEAYFDiZh2RYAAAQIEmi4gcGh6hfWPAAECBAiUJyBwKM/SnggQIECAQOMFBA6NL7EOEiBAgACB0gQEDqVR2hEBAgQIEGi+gMCh+TXWQwIECBAgUJaAwKEsSfshQIAAAQItEBA4tKDIukiAAAECBEoSEDiUBGk3BAgQIECgDQIChzZUWR8JECBAgEA5AgKHchzthQABAgQItEJA4NCKMuskAQIECBAoRUDgUAqjnRAgQIAAgXYICBzaUWe9JECAAAECZQgIHMpQtA8CBAgQINASAYFDSwqtmwQIECBAoAQBgUMJiHZBgAABAgTaIiBwaEul9ZMAAQIECMxcQOAwc0N7IECAAAECrREQOLSm1DpKgAABAgRmLCBwmDGhHRAgQIAAgfYICBzaU2s9JUCAAAECMxUQOMxU0OcJECBAgECLBAQOLSq2rhIgQIAAgRkKCBxmCOjjBAgQIECgTQIChzZVW18JECBAgMDMBAQOM/PzaQIECBAg0CoBgUOryq2zBAgQIEBgRgIChxnx+TABAgQIEGiXgMChXfXWWwIECBAgMBMBgcNM9HyWAAECBAi0TEDg0LKC6y4BAgQIEJiBgMBhBng+SoAAAQIE2iYgcGhbxfWXAAECBAj0LyBw6N/OJwkQIECAQOsEBA6tK7kOEyBAgACBvgUEDn3T+SABAgQIEGifgMChfTXXYwIECBAg0K+AwKFfOZ8jQIAAAQItFBA4tLDoukyAAAECBPoUEDj0CedjBAgQIECgjQIChzZWXZ8JECBAgEB/AgKH/tx8igABAgQItFJA4NDKsus0AQIECBDoS0Dg0BebDxEgQIAAgXYKCBzaWXe9JkCAAAEC/QgIHPpR8xkCBAgQINAygRtvuimdNuf0FP/GcvW3r2yZgO4SIECAAAECRQUEDkXFbE+AQK0ETpszJ52aDZIsBAiUKyBwKNfT3ggQIECAQBMFBA5NrKo+ESCQC8zec6+xv8YiIUBgZgKrrrJKWnWVl44FeAKHmXn6NAECBAgQaIOAwKENVdZHAi0U6IQNMUg66cQTWiigywQGI2AOh8G42isBAgQIEGiigMChiVXVJwIEUidwiLAhQgcLAQLlCAgcynG0FwIECBAg0AYBgUMbqqyPBFooYFDUwqLr8lAEnFtDYXYQAgQIECDQCAGBQyPKqBMECIwXMCgaL+I1gXIEnFvlONoLAQIECBBog4DAoQ1V1kcCLRQwKGph0XV5KALOraEwOwgBAgQIEGiEgMChEWXUCQIExgsYFI0X8ZpAOQLOrXIc7YUAAQIECLRBQODQhirrI4EWChgUtbDoujwUAefWUJgdhAABAgQINEJA4NCIMuoEAQLjBQyKxot4TaAcAedWOY72QoAAAQIE2iAgcGhDlfWRQAsFDIpaWHRdHoqAc2sozA5CgAABAgQaISBwaEQZdYIAgfECBkXjRbwmUI6Ac6scR3shQIAAAQJtEBA4tKHK+kighQIGRS0sui4PRcC5NRRmByFAgAABAo0QEDg0oow6QYDAeAGDovEiXhMoR8C5VY6jvRAgQIAAgTYICBzaUGV9JNBCAYOiFhZdl4ci4NwaCrODECBAgACBRggIHBpRRp0gQGC8gEHReBGvCZQj4Nwqx9FeCBAgQIBAGwQEDm2osj4SaKGAQVELi67LQxFwbg2F2UEIECBAgEAjBAQOjSijThAgMF7AoGi8iNcEyhFwbpXjaC8ECBAgQKANAgKHNlRZHwm0UMCgqIVF1+WhCDi3hsLsIAQIECBAoBECAodGlFEnCBAYL2BQNF7EawLlCDi3ynG0FwIECBAg0AYBgUMbqqyPBFooYFDUwqLr8lAEnFtDYXYQAgQIECDQCAGBQyPKqBMECIwXMCgaL+I1gXIEnFvlONoLAQIECBBog4DAoQ1V1kcCLRQwKGph0XV5KALOraEwOwgBAgQIEGiEgMChEWXUCQIExgsYFI0X8ZpAOQLOrXIc7YUAAQIECLRBQODQhirrI4EWChgUtbDoujwUAefWUJgdhAABAgQINEJA4NCIMuoEAQLjBQyKxot4TaAcAedWOY72QoAAAQIE2iAgcGhDlfWRQAsFDIpaWHRdHoqAc2sozA5CgAABAgQaISBwaEQZdYIAgfECBkXjRbwmUI6Ac6scR3shQIAAAQJtEBA4tKHK+kighQIGRS0sui4PRcC5NRRmByFAgAABAo0QEDg0oow6QYDAeAGDovEiXhMoR8C5VY6jvRAgQIAAgTYICBzaUGV9JNBCAYOiFhZdl4ci4NwaCrODECBAgACBRggIHBpRRp0gQGC8gEHReBGvCZQj4Nwqx9FeCBAgQIBAGwQEDm2osj4SaKGAQVELi67LQxFwbg2F2UEIECBAgEAjBAQOjSijThAgMF7AoGi8iNcEyhFwbpXjaC8ECBAgQKANAgKHNlRZHwm0UMCgqIVF1+WhCDi3hsLsIAQIECBAoBECAodGlFEnCBAYL2BQNF7EawLlCDi3ynG0FwIECBAg0AYBgUMbqqyPBFooYFDUwqLr8lAEnFtDYXYQAgQIECDQCAGBQyPKqBMECIwXMCgaL+I1gXIEnFvlONoLAQIECBBog4DAoQ1V1kcCLRQwKGph0XV5KALOraEwOwgBAgQIEGiEgMChEWXUCQIExgsYFI0X8ZpAOQLOrXIc7YUAAQIECLRBQODQhirrI4EWChgUtbDoujwUAefWUJgdhAABAgQINEJA4NCIMuoEAQLjBQyKxot4TaAcAedWOY72QoAAAQIE2iAgcGhDlfWRQAsFDIpaWHRdHoqAc2sozA5CgAABAgQaISBwaEQZdYIAgdPmzMkRdt5pp/zf8YOi8e/nG/kPAQKFBcafW4V34AMECBAgQIBAawQEDq0ptY4SaK7AjTfdlGbvuVfewXfstGOK0KF7UBRhw6lzTs/fP+nEE9Kqq6zSXAw9IzBgge5za8CHsnsCBAgQIECg5gICh5oXUPMJEHhcoDtUiNChEzCM/7pzBQQ3AgT6ExA49OfmUwQIECBAoI0CAoc2Vl2fCTRUoDt0GN/FzpUP49d7TYBAMQGBQzEvWxMgQIAAgTYLCBzaXH19J9BAgclCB2FDAwutS5UJCBwqo3dgAgQIECBQOwGBQ+1KpsEECMxLoDt0EDbMS8v7BIoJCByKedmaAAECBAi0WUDg0Obq6zuBBgtE6BCLORtyBv8hUJqAwKE0SjsiQIAAAQKNFxA4NL7EOjgMgZM+8cl07XXX5f8bxvEcg0AdBdZac800e/dZKf611FdA4FDf2mk5AQIECBAYtoDAYdjijtcogQgaTvrkJxvVJ50hMAyB2bNm5eHDMI7lGOUKCBzK9bQ3AgQIECDQZAEurWzeAAAlvUlEQVSBQ5Orq28DFegOG+IvtmuvtWbaPRtEWQgQmFwgrgLqXA0UWwgdJnca9bUCh1GvkPYRIECAAIHRERA4jE4ttKRGAt1hwx7ZJeKChhoVT1MrF4jgYdvtd8jbIXSovByFGyBwKEzmAwQIECBAoLUCAofWll7H+xXoHiwJG/pV9Lm2C3SfR0KHen03CBzqVS+tJUCAAAECVQoIHKrUd+xaCsRfZmOwFLdRnHXmGbXsg0YTGAWBzpVCAodRqMb02yBwmL6VLQkQIECAQNsFBA5t/w7Q/8ICy7xk2fwzETaYbb8wnw8QmEugcz794tZb5lrvxegKCBxGtzZaRoAAAQIERk1A4DBqFdGekRboXAbu6oaRLpPG1UjAVQ41KtY/mypwqF/NtJgAAQIECFQlIHCoSt5xaykgcKhl2TR6hAUEDiNcnB5NEzj0gLGaAAECBAgQmCAgcJhAYgWB3gIGR71tvEOgHwHnVD9q1X5G4FCtv6MTIECAAIE6CQgc6lQtba1cwOCo8hJoQMMEnFP1K6jAoX4102ICBAgQIFCVgMChKnnHraWAwVEty6bRIyzgnBrh4vRomsChB4zVBAgQIECAwAQBgcMEEisI9BYwOOpt4x0C/Qg4p/pRq/YzAodq/R2dAAECBAjUSUDgUKdqaWvlAgZHlZdAAxom4JyqX0EFDvWrmRYTIECAAIGqBAQOVck7bi0FDI5qWTaNHmEB59QIF6dH0wQOPWCsJkCAAAECBCYICBwmkFhBoLeAwVFvG+8Q6EfAOdWPWrWfEThU6+/oBAgQIECgTgIChzpVS1srFzA4qrwEGtAwAedU/QoqcKhfzbSYAAECBAhUJSBwqErecWspYHBUy7Jp9AgLOKdGuDg9miZw6AFjNQECBAgQIDBBQOAwgcQKAr0FDI5623iHQD8Czql+1Kr9jMChWn9HJ0CAAAECdRIQONSpWtpauYDBUeUl0ICGCTin6ldQgUP9aqbFBAgQIECgKgGBQ1XyjltLAYOjWpZNo0dYwDk1wsXp0TSBQw8YqwkQIECAAIEJAgKHCSRWEOgtYHDU28Y7BPoRcE71o1btZwQO1fo7OgECBAgQqJOAwKFO1dLWygUMjiovgQY0TMA5Vb+CChzqVzMtJkCAAAECVQkIHKqSd9xaChgc1bJsGj3CAs6pES5Oj6YJHHrAWE2AAAECBAhMEBA4TCCxgkBvAYOj3jbeIdCPgHOqH7VqPyNwqNbf0QkQIECAQJ0EBA51qpa2Vi5gcFR5CTSgYQLOqfoVVOBQv5ppMQECBAgQqEpA4FCVvOPWUsDgqJZl0+gRFnBOjXBxejRN4NADxmoCBAgQIEBggoDAYQKJFQR6Cxgc9bbxDoF+BJxT/ahV+xmBQ7X+jk6AAAECBOokIHCoU7W0tXIBg6PKS6ABDRNwTtWvoAKH+tVMiwkQIECAQFUCAoeq5B23lgIGR7Usm0aPsIBzaoSL06NpAoceMFYTIECAAAECEwQEDhNIrCDQW8DgqLeNdwj0I+Cc6ket2s8IHKr1d3QCBAgQIFAnAYFDnaqlrZULGBxVXgINaJiAc6p+BRU41K9mWkyAAAECBKoSEDhUJe+4tRQwOKpl2TR6hAWcUyNcnB5NEzj0gLGaAAECBAgQmCAgcJhAYgWB3gIGR71tvEOgHwHnVD9q1X5G4FCtv6MTIECAAIE6CQgc6lQtba1cwOCo8hJoQMMEnFP1K6jAoX4102ICBAgQIFCVgMChKnnHraWAwVEty6bRIyzgnBrh4vRomsChB4zVBAgQIECAwAQBgcMEEisI9BYwOOpt4x0C/Qg4p/pRq/YzAodq/R2dAAECBAjUSUDgUKdqaWvlAgZHlZdAAxom4JyqX0EFDvWrmRYTIECAAIGqBAQOVck7bi0FDI5qWTaNHmEB59QIF6dH0wQOPWCsJkCAAAECBCYICBwmkFhBoLeAwVFvG+8Q6EfAOdWPWrWfEThU6+/oBAgQIECgTgIChzpVS1srFzA4qrwEGtAwAedU/QoqcKhfzbSYAAECBAhUJSBwqErecWspYHBUy7Jp9AgLOKdGuDg9miZw6AFjNQECBAgQIDBBQOAwgcQKAr0FDI5623iHQD8Czql+1Kr9jMChWn9HJ0CAAAECdRIQONSpWtpauYDBUeUl0ICGCTin6ldQgUP9aqbFBAgQIECgKgGBQ1XyjltLAYOjWpZNo0dYwDk1wsXp0TSBQw8YqwkQIECAAIEJAgKHCSRWEOgtYHDU28Y7BPoRcE71o1btZwQO1fo7OgECBAgQqJOAwKFO1dLWygUMjiovgQY0TMA5Vb+CChzqVzMtJkCAAAECVQkIHKqSd9xaChgc1bJsGj3CAs6pES5Oj6YJHHrAWE2AAAECBAhMEBA4TCCxgkBvAYOj3jbeIdCPgHOqH7VqPyNwqNbf0QkQIECAQJ0EBA51qpa2Vi5gcFR5CTSgYQLOqfoVVOBQv5ppMQECBAgQqEpA4FCVvOPWUsDgqJZl0+gRFnBOjXBxejRN4NADxmoCBAgQIEBggoDAYQKJFQR6Cxgc9bbxDoF+BJxT/ahV+xmBQ7X+jk6AAAECBOokIHCoU7W0tXIBg6PKS6ABDRNwTtWvoAKH+tVMiwkQIECAQFUCAoeq5B23lgIGR7Usm0aPsIBzaoSL06NpAoceMFYTIECAAAECEwQEDhNIrCDQW8DgqLeNdwj0I+Cc6ket2s8IHKr1d3QCBAgQIFAnAYFDnaqlrZULGBxVXgINaJiAc6p+BRU41K9mWkyAAAECBKoSEDhUJe+4tRQY5uDohhtvTD/72c/m6fT0pz89bfGa1/Tc7rHHHkunnHpqevjhR9K73vXOtPBCC/Xcdqo3vvvd76Vf3fGr9KxnPStt9spXTrWp9wYocNOPf5zOO+9reQ3WW2/dAR5pOLse5jk1nB41/ygCh+bXWA8JECBAgEBZAgKHsiTtpxUCwxwcHXPscenzp5wyT9flll02XXj+13tud8GFF6X3f+AD+fv777tv2mWXd/Tcdqo39tjr/eniSy5Ja77sZensL5w51aY937v1ttvSVVddlb+/8047pSc96Uk9tx3GG18655z0pz/9Ka288spprTXXHMYhp3WMqdq16WabZ8HPHWmRRRZJ137/e+nJT37ytPY5qhsN85waVYO6teu0OXPSqXNOT6uuskraeacd83/r1gftJUCAAAECBIYjIHAYjrOjNERgmIOjz3z2s+nsL31pTO4Pv/9D+uvDD6cnPvGJ6dnPftbY+hcts0w65fOfH3s9/osfXX99etvbt81Xf/yEj015NcT4z3a/LiNwOO9rX0/7fvCD+W5vvummtOCCC3QfYuhfb7TJK9Kv7747vWuXXdJ+++4z9OP3OuBU7dphp53T96+5Ji2z9NLpG5dc3GsXtVk/zHOqNig1aOjsPfdKN2bnsIUAgXIEIsA76cQTytmZvRAgQGCEBAQOI1QMTRl9gSoHRzFQjwH7M5/5zHTNd68uhHXb7benR7JbKlZeeaVCn+veWODQrTHYr6cKHB555JF03XU/TKuutmrft8cMtvXF9l7lOVWspbYeLxChQyyCh/EyXhPoT0Do0J+bTxEgMNoCAofRro/WjZhAlYOjqQKH//rGN9Ktt96Wnv/856d113l5uuiii9N9v70/7b3XXukvf/lLOv2Mx2+B2GqrLdNzl1wyV/38ySdn7/01rbvuOmnxxRZPX/v619JPfnJzes5znpPWyfYR8zTMN998YxWYKnC49rrr0rXXXpd+cvNP0gte8IL08rXXThusv/7YLRPnnndeuuuuX6dbbrklXXbFFfk+d3v3u/P3l132JelVm28+dpzJvnjggQfSd7JbMWKg/ac//zmtvdZaacMNN0jPf97z8s3vuPPO9LUsjIllrbXWzI+fv8j+8/vf/36s/8svv1xafvnl01e/em7+9ulnnJHvL37JW3eddfJ1O+24Q/r3f//3NJXp/PPPn28bV49cdvnl6fYs0FlggQXTiissn7bbbrtJg4A777orv53k+htuSI888mhaeaUV00YbbpiWW265fF9xpUWRdi255BLpzVttlX+285+f3Hxzuia7+uGmm36cFlp4obTaqqum9bM6LLnEEp1N8n+7a79U9j1zeVaTn/70Z+lFL3pR2mijDdPznvvcubYf5Isqz6lB9su+CRAgUESgc9XQO7LblOKWQwsBAgSaIiBwaEol9WMoAlUOjqYKHDphwNIvfGF+y0Vc0RDLjdf/KN1///1p81c/PqnkF844PR+sx3trr7teioH85pttlmIiwvvuuy9Wjy1ve8tb0oc/dMTY684xxs/hcMKJH0+f+vSnx7brfBEhQtzCEbeAbLv9DilCicmW1712i3TC8cdP9la+7q5f/zq9fbvt07333jvXNk9dcMF0+pzT8vvH//GPf6Sds9sivvu976d/+7d/S9+4+KL8SpD4wPt2n50u/eY300JPe1q6IJvrIvYT7em1fOvSb6QXLLVU6vR3MtOYePPTn/lM+ljW9zh29xKTal7wtfPSf/zHf4ytvu6HP0y77vaePNwYW5l9EfMvfOjww/LgIHyKtGt8HeZk99Qf+ZGPTGjPwgsvnE7+3GfT6qutNnboTu23fNMb8xAnwo7OEk5fyIKYFVdcobNqoP9WeU4NtGN2ToAAgYICJmQtCGZzAgRqISBwqEWZNHJUBKocHE0ncAinmIhxnZevnZZYfIl00IEH5HMUTBU4xGee8YxnpDe+4fX5X+bPzZ6A0BmAHrT//mmn7K8tsXQG4N0D3S9mc0wcfOhh+fubbrJJ9tf09dLNN/93uvDii9Ojjz6adnnHzmn//fbLrp44Pxvo35N++rOf54P/+MDu73tfNuB+Uv5X9Vduumm+j/H/idsHXvWaLfL2xJUXb3z967NAYZEUE2H+PLtaIgbTl1x4QVpsscXSb3/727TF69+Qfve732VXDmyQDbI/l75+/gXpA9lEmbEcf9xx6Q2vf126++570vkXnJ+v+/wpp+aTRq6x+urZFRnr5eu2ffvb89Ci099YOZnpq7d4bfp//+//5XNibJ1daXDHnXek4084MT300ENp2222SYcfdmi+v5goc6ut35Jd1fBI3s43veEN2YSPC6eLsgk4//u/f5pvE5N+LrLwIoXa1V2Hr557bvrgAQfm+3r2s5+dtnrTm3KPmOQz5v2IuTK+lm0T8z7E0gkc4uuo/Vu33jq/EiS2jytI4iqYKy+/LN4e+FLlOTXwzjkAAQIECggIHApg2ZQAgdoICBxqUyoNHQWBKgdH0w0cvp4NLLv/Ov0/v/zllFc4xGA65oSIx2vG8ve//z1tsPEm+RUPcWvEmafPydd3BuDdA93tdtgx/eDaa9PG2a0Bn8/+it5Zjv/YCenT2aSXERJ89zvf7qzO56CIfsQynUkj48qAuLohlvO+8pWxOSj+8Ic/pJjn4M/Z7SJHH/nhtPWb35xv853vXJV2yW7ViOWd2dM4zvnyV/JA4U1vfEM67phj8vXd/5lqroROf2P78aaxLoKVuBXhPbvtmp7ylKfEqnT4ER9KZ551Vna7xErpvK9+JV/32Sz4OO74j+VPlbggu22lc3tDPKb01Vs8HqZsv+226dBDDs63j/9Mp13ddYirO67OHlu6xBKLpyu+9a38qpLYz//+6lfplZu/Kr5M3U8o6QQOCyywQPpB9qSLuKohllOyAOboY4/Nv466Rf0GvVR5Tg26b/ZPgACBIgIChyJatiVAoC4CAoe6VEo7R0KgysHRdAKHl7z4xeni7C/+3cu8AodNNtoofe6zn+n+SDo6G5yfcupp6WlPfWq64Uc/zAewnQF4Z6D7t7/9La26xhopBs5x+8Ai2dUGneXh7K/5nVsgrv72lflf9uO9ok+piCd1fDQLLyIUGT+vwL2/uTc/dlxdcPRRR3YOnY486qh02ulnjL2Oz8WtFJ1B9dgb2RfTGdhPZhr7+M1vfpO+/JWvpriCIQKQWO7Obk2Iq0NibonLv/XNfN0u73pXNv/E1emVr3hF+vR/fipf1/lP3MqyYHZrSDxppHu+jOm0q7sOq63xsvxKhvfsumva+/2PT+TXOcaW2dULMTdHdyjUCRy618X2t//iF1kI8tr8o6dmTz7ZYIP1O7sZ2L9VnlMD65QdEyBAoA8BgUMfaD5CgMDICwgcRr5EGjhKAlUOjqYTOHQGod1m8wocOrc9dH/mnC9/OR148CH5qpgHIuYsGB84/PGPf0yrr7lWvk1MovikbK6GyZaTP/+5FO2KpWjg8OEjj0xzsgkvn/CEJ6QFs7/GT7asscbq6dRsAszO0n2VQ6yL2yjidorJliID++7Px+0c8XjKmJBysqU7cHhtdpvHLbfemrZ561vTh444fLLNJ6wr0q7uOhz7kaPTltntFN3L+z/wgfwWlJgsM+aWiKUTOMx673vTnnvMHtv8nnvuza5u2Th/HfM+xKSWg16qPKcG3Tf7J0CAQBEBgUMRLdsSIFAXAYFDXSqlnSMhUOXgaFCBQ1yG/+3sSQsxqO8sO//zEv14gsFl37w0Xz0+cIiVm262efrVHXek7bJ5Dw479PGAItY/9thj6dHsfxFUdC9FA4eYqyEGzHGFw3euuDzF/ASd5cEHH0yLLrpo52X+bwQAr3nd6/P5C+LxoTGvQyyf+PiJ6dWvevzWgnzFP/9TZGDf/bnOVRRx/M9nk0e+cOkX5n6HHX54Pl9Fd+BwSDbHxdnZXBfxNIoLs1squpe99t47f1zp5tkEmzGHRmcp2q7NXvXq9Mv//d+xuSs6+4l5NNZeZ918XoYdtts2HXLw47dtdAKHmEdjj9m7dzZPAocxCl8QIEBg6AICh6GTOyABAkMQEDgMAdkhmiPQxMAhqjN71qy03bZvT0/JriK4OJvwMSaCjLkc4ikGx2ZPPohlssDhg/sfkL6aPfIy5gKIQf36662XP4bzqKM/kj/+Mva74w6Pz8EQ+4jJI/fJJpGMJf7aHn91n2rpHgBv8ZrXpP322Se7PeM56Yc/+lF69667pdVWWzULOg4du90ingRx+ZVXjj2p4rBsToV4QkVMLnnxBRekxRdfbK7DbfyKTVM8BWOy2x0m62/nw50nX3TfbhGP5nxddjVDTNIYT8q4LHvaRcyLcVHmuef7984/+t7ddku7ZXM+xJMtwvmAgx4PAA456KC0w/bbdXafirbr4EMOTV8855w8mDnkoAPT6173uvw2j5NPPiWd9cUv5vv95EkfH3v8qMBhjNoXBAgQGBkBgcPIlEJDCBAoUUDgUCKmXTVfoImBQ4QF8QSFuIpg/uwxjTFgjiWeXvDFs76Q4rGQsUw2AI95DGJSxzvvuivfJgb2f/3rX/OwIlYcmv1FffvsL+udJbbbZNNXdl4+flVANlliPBmi1xKPn4ynP8QSV2EsssgiKW4jiCXmZzg/u2ogrqT4QjZZYwQMscRjNuNxm/HEildlcxLEvy/L5puIx4LGYzo7S4QfEYLEEvuOPl+bTaIYy2T9zd/I/vOlbHB/UDbIjyWekLHoos/InzgRVzZE8NBZLv2vS/InPsS+vnXZ4099COdoQ1x9EEuEFl/58jkpHvPZWYq2K+bL2HHnd+RXOcQ+YhLLuMqk88jOeETpCcd/NH8MZ7wvcAgFCwECBEZLQOAwWvXQGgIEyhEQOJTjaC8tEWhi4BD38T/y6CPptDmn50FBDLyXfclLsisbjs5vA+iUttcAPK5C2P/AA9P1N9yQBxexfUwiGY/DjPkTxi8RIJx51tnp/vvvz986LAsctsue0jDVctppc/KnP3SCjRi0b7j++umo7AkVcVtDTNy45Zu3zgfxMbiOv+Z3lm9cemmaNXuP/OVe2XwF78v621luu/32dEz2VIZ4wkM84jKuSPjhD67J3+7V33gztv1YFoKcfOqpKSbPjOXFL3pROiWbr+KUbF1MJhnBTQQOEdjE1SJHZ1eKXHTJf6UHHngg3z4eVfmK7EkbR374Q/nknPnKf/6nn3ZFqLJ/9mjMa6+7Ln96R+wqbiuJ4CWuDOkOWgQO3dq+JkCAwGgICBxGow5aQYBAuQICh3I97a3hAlUGDmXTjh90xpMW4q/z8djG8XMjTOfYMfC+5ZZbs7Bh0YE9TvG+++7LBuwPpmWWWXrsUZTTadugtomrFG6//RdpkX9bJL+SoXsejF7HjNDk4SyMWGbppecKAXptX3R9hBvxtImFsqs+Oo/gLLqPYW7fpHNqmG6ORYBA8wQEDs2rqR4RIJBdRfzXPz30DxAECExPoEmDo/GBw/QEbEWgXIEmnVPlytgbAQJtExA4tK3i+kugHQICh3bUWS9LEmjS4EjgUNI3hd3MSKBJ59SMIHyYAIHWCwgcWv8tAIBAIwUEDo0sq04NSqBJg6OY7DEeI/n2bbaZa2LHQdnZL4HJBJp0Tk3WP+sIECAwXQGBw3SlbEeAQJ0EBA51qpa2Vi5gcFR5CTSgYQLOqYYVVHcIEOhbQODQN50PEiAwwgIChxEujqaNnoDB0ejVRIvqLeCcqnf9tJ4AgfIEBA7lWdoTAQKjIyBwGJ1aaEkNBAyOalAkTayVgHOqVuXSWAIEBiggcBggrl0TIFCZgMChMnoHrqOAwVEdq6bNoyzgnBrl6mgbAQLDFBA4DFPbsQgQGJaAwGFY0o7TCAGDo0aUUSdGSMA5NULF0BQCBCoVEDhUyu/gBAgMSEDgMCBYu22mgMFRM+uqV9UJOKeqs3dkAgRGS0DgMFr10BoCBMoREDiU42gvLREwOGpJoXVzaALOqaFROxABAiMuIHAY8QJpHgECfQkIHPpi86G2ChgctbXy+j0oAefUoGTtlwCBugkIHOpWMe0lQGA6AgKH6SjZhsA/BQyOfCsQKFfAOVWup70RIFBfAYFDfWun5QQI9BYQOPS28Q6BCQIGRxNIrCAwIwHn1Iz4fJgAgQYJCBwaVExdIUBgTEDgMEbhCwLzFjA4mreRLQgUEXBOFdGyLQECTRYQODS5uvpGoL0CAof21l7P+xAwOOoDzUcITCHgnJoCx1sECLRKQODQqnLrLIHWCAgcWlNqHS1DwOCoDEX7IPAvAefUvyx8RYBAuwUEDu2uv94TaKqAwKGpldWvgQgYHA2E1U5bLOCcanHxdZ0AgbkEBA5zcXhBgEBDBAQODSmkbgxHwOBoOM6O0h4B51R7aq2nBAhMLSBwmNrHuwQI1FNA4FDPuml1RQIGRxXBO2xjBZxTjS2tjhEgUFBA4FAQzOYECNRCQOBQizJp5KgIGByNSiW0oykCzqmmVFI/CBCYqYDAYaaCPk+AwCgKCBxGsSraNLICBkcjWxoNq6mAc6qmhdNsAgRKFxA4lE5qhwQIjICAwGEEiqAJ9REwOKpPrbS0HgLOqXrUSSsJEBi8gMBh8MaOQIDA8AUEDsM3d8QaCxgc1bh4mj6SAs6pkSyLRhEgUIGAwKECdIckQGDgAgKHgRM7QJMEDI6aVE19GQUB59QoVEEbCBAYBQGBwyhUQRsIEChbQOBQtqj9NVrA4KjR5dW5CgScUxWgOyQBAiMpIHAYybJoFAECMxQQOMwQ0MfbJWBw1K566+3gBZxTgzd2BAIE6iEgcKhHnbSSAIFiAgKHYl62brmAwVHLvwF0v3QB51TppHZIgEBNBQQONS2cZhMgMKWAwGFKHm8SmFvA4GhuD68IzFTAOTVTQZ8nQKApAgKHplRSPwgQ6BYQOHRr+JrAPAQMjuYB5G0CBQWcUwXBbE6AQGMFBA6NLa2OEWi1gMCh1eXX+aICBkdFxWxPYGoB59TUPt4lQKA9AgKH9tRaTwm0SUDg0KZq6+uMBQyOZkxoBwTmEnBOzcXhBQECLRYQOLS4+LpOoMECAocGF1fXyhcwOCrf1B7bLeCcanf99Z4AgX8JCBz+ZeErAgSaIyBwaE4t9WQIAgZHQ0B2iFYJOKdaVW6dJUBgCgGBwxQ43iJAoLYCAofalk7DqxAwOKpC3TGbLOCcanJ19Y0AgSICAociWrYlQKAuAgKHulRKO0dCwOBoJMqgEQ0ScE41qJi6QoDAjAQEDjPi82ECBEZUQOAwooXRrNEUMDgazbpoVX0FnFP1rZ2WEyBQroDAoVxPeyNAYDQEBA6jUQetqImAwVFNCqWZtRFwTtWmVBpKgMCABQQOAwa2ewIEKhEQOFTC7qB1FTA4qmvltHtUBZxTo1oZ7SJAYNgCAodhizseAQLDEBA4DEPZMRojYHDUmFLqyIgIOKdGpBCaQYBA5QICh8pLoAEECAxAQOAwAFS7bK6AwVFza6tn1Qg4p6pxd1QCBEZPQOAwejXRIgIEZi4gcJi5oT20SMDgqEXF1tWhCDinhsLsIAQI1EBA4FCDImkiAQKFBQQOhcl8oM0CBkdtrr6+D0LAOTUIVfskQKCOAgKHOlZNmwkQmJeAwGFeQt4n0CVgcNSF4UsCJQg4p0pAtAsCBBohIHBoRBl1ggCBcQICh3EgXhKYSsDgaCod7xEoLuCcKm7mEwQINFNA4NDMuuoVgbYLCBza/h2g/4UEDI4KcdmYwDwFnFPzJLIBAQItERA4tKTQukmgZQICh5YVXHdnJmBwNDM/nyYwXsA5NV7EawIE2iogcGhr5fWbQLMFBA7Nrq/elSxgcFQyqN21XsA51fpvAQAECPxTQODgW4EAgSYKCByaWFV9GpiAwdHAaO24pQLOqZYWXrcJEJggIHCYQGIFAQINEBA4NKCIujA8gWuvuy5tu/0Oaa0110xnnXnG8A7sSAQaKhDnU5xXcT7FeWUhQIBAWwUEDm2tvH4TaLaAwKHZ9dW7AQgs85Jl873+4tZbBrB3uyTQLoHO+SRwaFfd9ZYAgYkCAoeJJtYQIFB/AYFD/WuoB0MWcAn4kMEdrrECrhhqbGl1jACBPgQEDn2g+QgBAiMvIHAY+RJp4KgJdAKHaJe/yo5adbSnLgKdsCHa6zyqS9W0kwCBQQoIHAapa98ECFQlIHCoSt5xay0gdKh1+TS+YoHusGGP3Wel3WfNqrhFDk+AAIHqBQQO1ddACwgQKF9A4FC+qT22RKA7dIjJ7mZnAyeT3rWk+LrZl0AEDddee1066ZOfzD8vbOiL0YcIEGiogMChoYXVLQItFxA4tPwbQPdnJtAdOnT2JHToSPiXwL8EImzoXoQN3Rq+JkCAQEoCB98FBAg0UUDg0MSq6tNQBcb/1XaoB3cwAjUTEDTUrGCaS4DA0AQEDkOjdiACBIYoIHAYIrZDtUNg/F9y29Hr0evl7D33yht10oknjF7jWtgiV/60sOi6TIBAIQGBQyEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAQEDoNxtVcCBCoW8ItbxQVweAIECBAoJODnViEuGxMgUBMBgUNNCqWZBAgUE/CLWzEvWxMgQIBAtQJ+blXr7+gECAxGQOAwGFd7JUCgYgG/uFVcAIcnQIAAgUICfm4V4rIxAQI1ERA41KRQmkmAQDEBv7gV87I1AQIECFQr4OdWtf6OToDAYAT+PwAAAP//eWYtUwAAQABJREFU7N0HnBRF2sDhUu/OfOYcOfEwiwlMKOasZw4YMCdAzFnMYlYwK4pgRjGdihkTCgYw51Mw53gq6n1+9dZSY+8wO9Mz29MV+t/3O3dnpqe76nm3qO63q6un+OmH7/9QLAgggEBkAt26r2Vq9MTIRyOrGdVBAAEEEIhRgH4rxqhSJwQQmIKEA38ECCAQowAHbjFGlTohgAAC8QrQb8UbW2qGQJEFSDgUOfrUHYGIBThwizi4VA0BBBCIUIB+K8KgUiUEEFAkHPgjQACBKAU4cIsyrFQKAQQQiFaAfiva0FIxBAotQMKh0OGn8gjEK8CBW7yxpWYIIIBAjAL0WzFGlTohgAAJB/4GEEAgSgEO3KIMK5VCAAEEohWg34o2tFQMgUILkHAodPipPALxCIwdN85UZrnOnc3P8gO38s/jqTk1QQABBBAIUaC8X6LfCjGKlBkBBGoJkHCoJcTnCCDgvYActPXpe7Ap54ALzleSdEgeuFX63PtKUUAEEEAAgWgFKvVL9FvRhpuKIVBoARIOhQ4/lUcgHoFrBg9WVw++1lRIkg7JBIT9XRIR8hkLAggggAACrgXot1xHgP0jgEAeAiQc8lBmHwggkItA8uCtfIckG8pFeI0AAggg4FqAfst1BNg/Agg0W4CEQ7OF2T4CCOQqUOngjWRDriFgZwgggAACdQjQb9WBxaoIIBCcAAmH4EJGgRFAoJZA8uCNZEMtLT5HAAEEEHAtQL/lOgLsHwEEmiVAwqFZsmwXAQScCsjB29hxLzJng9MosHMEEEAAgbQC9FtppVgPAQRCEiDhEFK0KKvXAqPHjFGjR+v/65/XDx1iytpjl13NT17jIX8ILv4eunbpovr07mX+LgcMvEi5eN21axcl+5ZyyP5ZEEDADwFpl7JIv8WCAAKTC0i/JQt91+Q2vINAWgESDmmlWA+BCgL2IM12RB07LWbWeufNN8xPXuMhfwgu/x7kb1MSXvK3KgkPF69lnwMuukgdpA/cevdqSX6Ii2038jsLAgjkI2CTDNImWRBAIJ2A9FckzdNZsRYC5QIkHMpFeI1ASgF7Aier99EnUdIRDdQHcF10p2RPpMoTErxuuYqGT8tV/qL8PSSblMReEh9Sd9tukp/zOwIINE9Akg3JRIMkAWWRfosFAQQmF5A2Y/tq+ZR+a3Ij3kGglgAJh1pCfI5AFQHpiKaYQpmrtlVW4yMEEEgI2AM4e6tR4iN+RQCBJgkkkw12tFGTdsVmEYhKQBIOcsusTdaRdIgqvFQmBwESDjkgs4v4BOQKLSdL8cWVGiGAAAIxCsgJk51DhmRDjBGmTnkIJJN29lbJPPbLPhAIXYCEQ+gRpPy5C9gOR4aGk3TInZ8dRiRgT4K4WhRRUKmKlwL0W16GhUIFKGDbEv1WgMGjyM4ESDg4o2fHoQrISZJ0OEweFGoEKbcvAjbhwBVXXyJCOWIVsPOmSJLczqETa12pFwLNFLAJB9kHoxyaKc22YxIg4RBTNKkLAggggAACCCCQELCJPUblJVD4FYF2CJDAawceXy2kAAmHQoadSjcqwOiGRuX4HgJtC0i7koUrr20b8QkCjQqQcGhUju8hUFnAjnLgtorKPryLQLkACYdyEV4jUEWATqYKDh8h0IAAbaoBNL6CQB0CtLE6sFgVgRQCtKkUSKyCQEKAhEMCg18RqCXAldhaQnyOQH0CcuAm7Yo5UepzY20E0gpwcpRWivUQSCdAm0rnxFoIWAESDlaCnwgggAACCCCAQGQCnBxFFlCq41yANuU8BBQgMAESDoEFjOK6FZArsdLRyL3mckWWBQEE2i/AyKH2G7IFBNoS4OSoLRneR6AxAdpUY258q7gCJByKG3tq3oAAnUwDaHwFgSoCtKkqOHyEQAYCtLEMENkEAgkB2lQCg18RSCFAwiEFEqsgYAW4Emsl+IlANgJy4MYcDtlYshUEKglwclRJhfcQaFyANtW4Hd8spgAJh2LGnVojgAACCCCAQAEEODkqQJCpYq4CtKlcudlZBAIkHCIIIlXIT4A5HPKzZk/FEWDkUHFiTU3zF+DkKH9z9hi3AG0q7vhSu+wFSDhkb8oWIxagk4k4uFTNiQBtygk7Oy2QAG2sQMGmqrkI0KZyYWYnEQmQcIgomFSl+QJciW2+MXsoloAcuDGHQ7FiTm3zFeDkKF9v9ha/AG0q/hhTw2wFSDhk68nWEEAAAQQQQAABbwQ4OfImFBQkEgHaVCSBpBq5CZBwyI2aHcUgwBwOMUSROvgmwMgh3yJCeWIS4OQopmhSFx8EaFM+RIEyhCRAwiGkaFFW5wJ0Ms5DQAEiE6BNRRZQquOdAG3Mu5BQoMAFaFOBB5Di5y5AwiF3cnYYsgBXYkOOHmX3UUAO3JjDwcfIUKZYBDg5iiWS1MMXAdqUL5GgHKEIkHAIJVKUEwEEEEAAAQQQqFOAk6M6wVgdgRoCtKkaQHyMQJkACYcyEF4iUE2AORyq6fAZAo0JMHKoMTe+hUAaAU6O0iixDgLpBWhT6a1YEwERIOHA3wECdQjQydSBxaoIpBCgTaVAYhUE2iFAG2sHHl9FoIIAbaoCCm8hUEWAhEMVHD5CoFyAK7HlIrxGoH0CcuDGHA7tM+TbCFQT4OSomg6fIVC/AG2qfjO+UWwBEg7Fjj+1RwABBBBAAIGIBTg5iji4VM2JAG3KCTs7DViAhEPAwaPo+Qswh0P+5uwxfgFGDsUfY2roToCTI3f27DlOAdpUnHGlVs0TIOHQPFu2HKEAnUyEQaVKTgVoU0752XkBBGhjBQgyVcxVgDaVKzc7i0CAhEMEQaQK+QlwJTY/a/ZUDAE5cGMOh2LEmlq6EeDkyI07e41XgDYVb2ypWXMESDg0x5WtIoAAAggggAACzgU4OXIeAgoQmQBtKrKAUp2mC5BwaDoxO4hJgDkcYoomdfFFgJFDvkSCcsQowMlRjFGlTi4FaFMu9dl3iAIkHEKMGmV2JkAn44yeHUcqQJuKNLBUyxsB2pg3oaAgkQjQpiIJJNXITYCEQ27U7CgGAa7ExhBF6uCTgBy4MYeDTxGhLLEJcHIUW0Spj2sB2pTrCLD/0ARIOIQWMcqLAAIIIIAAAgikFODkKCUUqyGQUoA2lRKK1RCYJEDCgT8FBOoQYA6HOrBYFYGUAowcSgnFagg0IMDJUQNofAWBKgK0qSo4fIRABQESDhVQeAuBtgToZNqS4X0EGhOgTTXmxrcQSCtAG0srxXoIpBOgTaVzYi0ErAAJByvBTwRSCHAlNgUSqyBQh4AcuDGHQx1grIpAnQKcHNUJxuoI1BCgTdUA4mMEygRIOJSB8BIBBBBAAAEEEIhFgJOjWCJJPXwRoE35EgnKEYoACYdQIkU5vRBgDgcvwkAhIhNg5FBkAaU6XglwcuRVOChMBAK0qQiCSBVyFSDhkCs3OwtdgE4m9AhSft8EaFO+RYTyxCZAG4stotTHtQBtynUE2H9oAiQcQosY5XUqwJVYp/zsPEIBOXBjDocIA0uVvBHg5MibUFCQSARoU5EEkmrkJkDCITdqdoQAAggggAACCOQrwMlRvt7sLX4B2lT8MaaG2QqQcMjWk61FLsAcDpEHmOo5EWDkkBN2dloQAU6OChJoqpmbAG0qN2p2FIkACYdIAkk18hGgk8nHmb0UR4A2VZxYU1M3ArQxN+7sNV4B2lS8saVmzREg4dAcV7YaqQBXYiMNLNVyJiAHbszh4IyfHRdAgJOjAgSZKuYqQJvKlZudRSBAwiGCIFIFBBBAAAEEEECgkgAnR5VUeA+BxgVoU43b8c1iCpBwKGbcqXWDAszh0CAcX0OgigAjh6rg8BEC7RTg5KidgHwdgTIB2lQZCC8RqCFAwqEGEB8jkBSgk0lq8DsC7RegTbXfkC0gUE2ANlZNh88QqF+ANlW/Gd8otgAJh2LHn9rXKcCV2DrBWB2BGgJy4MYcDjWQ+BiBdghwctQOPL6KQAUB2lQFFN5CoIoACYcqOHyEAAIIIIAAAgiELMDJUcjRo+w+CtCmfIwKZfJZgISDz9GhbN4JMIeDdyGhQBEIMHIogiBSBW8FODnyNjQULFAB2lSggaPYzgRIODijZ8chCtDJhBg1yuyzAG3K5+hQthgEaGMxRJE6+CRAm/IpGpQlBAESDiFEiTJ6I8CVWG9CQUEiEZADN+ZwiCSYVMNLAU6OvAwLhQpYgDYVcPAouhMBEg5O2NkpAggggAACCCDQfAFOjppvzB6KJUCbKla8qW37BUg4tN+QLRRIIM85HN559101YcKEmrozzDCD6rLSSm2u99tvv6kHH3pITZz4q9pgg/XVdNNO2+a61T545dXX1Oeff6Zmnnlmtfxyy1Vb1dln3333nXp//Hj11VdfmTJ07dJFTT/99M7Kk3bH/3nvPTVq1NOqc+fOaqkll0j7NdXo91LvIKcVGTmUEzS7KaSAbydHL4wdq1577bWasZhlllnUJhtvXHO9oq3w/fffq7vuvttUe71111VzzTVX0Qic19e3NuUchAIgUEOAhEMNID5GICmQZycz7Nbb1IgHHkjuvuLvCy6wgOp3/HEVP5M3R48eo64YNMh8vu3WW6sNddKhkeXyK69SY559Vv1z0UXVkYcf1sgm1IcffaReeeUV8105UJpqqqka2k75l/744w91623DJ/M6qd8Jav755itf3cnrxx5/XP3888+qQ4cOqtM//9mqDMccd7z67PPP1XTTTafOP+ds9Ze//KX0eaPfK23A81/ybFOeU1A8BJoi4FsbO/Oss9WVk/qkahVefLHF1N133lFtlUJ+9u5//qM22KglEXPdkGvVyl27Rulw0803qx9++EEts8wySi4e+LT41qZ8sqEsCFQSIOFQSYX3EGhDIM8rsffed58aqU9S7fLjDz+qib/+qqaccko1yywz27fVvPPMo/r26VN6Xf7L2++8o/rrAzxZ9t17r6qjIcq/m3ydRcJBruIPGjzYbPaSgQPV1FP/LbmLhn9/5NGR6vobbzTflxEYSy2xhJpmmqnVxhttpGaaaaaGt5vlF488+hj1pR55seH666ttt9m61abPPf8C9drrr5tYnnLSia0+a/R7rTbi8Qs5cGMOB48DRNGCF/Dt5Oiyyy9XN9x0U8n122++VT/pZKwkoOeaa87S+4t27KgGXXll6TW/tAgUJeHQfe11zEWKvffcUx15xOFehd+3NuUVDoVBoIIACYcKKLyFgI8CV+sT9af0CbucQJ939ll1FfGjjz9Wv+pbKjp0WLiu7yVX9jnhcKFOXrz08itq1llnVf1POzWzkRPJ+rf392qJg191IunNt95WHTsuoqadZppWu2r0e602wgsEECisgO8nR0ccdZQafvsdao455lBPP/lEYeOUtuIkHNJKNW8939tU82rOlhFoTICEQ2NufKugAnnO4VBOXC3h8Nzzz6sPP/xIzTXnnGrxxRfTV4yfVd99/53acost9NwNE9VDDz9iNrf66qup2Webzfw+4v771S+/TFRLLLG4mm3W2dSop0ep995735y0yzZknoYpppiiVIxqCYc33nxTvaVPmN97/z0199xzq8U6ddJzESxZOvF/atQo9cUXX+oyfqjGvvii2ebGG25oPp9//vnUiiusYN773//+p2Tuilf1fBEffPiBWuQf/9DlW0J1WHjhVmUpFWrSL2eceZb5XrfVVlM9d9u19PHYcePU+PET9LwTM6nua65Zer+tX2S+i5f1LR9vvfWWucXhH/r2B9m/lCO5JO3EfJyuk+xnPn37xjLLLK3mmH12s7qMaHjyyafM7w8/8oi5imfqtPji5r311l3HzDFh4zf77LOp1XUdGv1esoy1YmLX/fmXX9Qbb7yhb3V5VX2vh68uvpiO3VJLqTn1wX9eS54jh/KqE/tBwBcB30+OaiUcvvzySyW3lo3R/doPP/5obiFYc8011EILLlgi/uabb9S1Q4aa1ztsv516++131ONPPK6mnXY6ta7+d3aZpZdWn332mbrvvhGmr5B+bwvdP06vb2Ozy30jRqg333xLLbTQQmqjDTdQN918i/m3XW7ZW23VVfR7G6oZZ5zRrl76+YHu15544gklc1P8978/qeU6L6vLuLLpC0or6V+S25ft/fvf96jPvvhcHXrwwepvf2sZ7XfX3f9Wzz33nJmLaI45ZlerrrKK+pcuZ/L2w3oTDtK/PPTww9rkbT3yb1ozT9DOO++sZtTzP5Uvz7/wgho58jE94u41fetfJ7WhdpDjg2G33mpW3b3nbq1GDTYSm2/1XEvi9cEHH6rll19erb1Wd/X3v//dbF9uu7xV304qy7VDhph4L6fnNlpt1VXNe9K/yyhG14vvbcq1D/tHoFyAhEO5CK8RqCLgspOplnCwyYB59Mm+3HIhIxpkuWjAherbb79Vx53Qz7w+/NBDTDJAXhx82OFKJp+SxMJ777+v5IAtuazZrZvadZedS2/ZfZTP4XDHnXepu++5p7Se/UWSCHILh5TnrHPO1Vfw37IftfrZtctKap+99lL/93//p86/cIC5taDVCvrF1lv+y9weUf6+fT3i/gfUsNtuU7PNNqs65sgjSwckg68dop546il9ALmgOuHYY+3qFX9KsmHARRdX3P+O22+v1l1n7dL3rJ0cNMoBqiQI7DLN1FOrIw47zOxTTvrPPvc8+9FkP0875WQ1t57wq9y20e/ZHaSJiawrfxunnH6G+Wm/Kz8lZvK3IrFu9uKyTTW7bmwfAR8EfG9j1RIOcjK/0867qE8++aQVpUx+fO3ga/TJfWfzfvIkXOYHkomS7fLXv/5Vya1ql1x6mZrwwQf2bdP3Db7m6tJEygcdfIi65957TR8pIwltItR+YamlllRDr7221Yn6szo5sM+++5kTY7ue/JRk/QnHHad22blH6W27fUk6SwLhLZ0AkGXs88+ZkW37H3CgevSxx0rr21/kZPuaQVeZf5flvWRda83hcOlll6nzLrhQSdIkucypE+V33T5czT4pOS6fSVJB5hNKriuJkK233FLdqOdTkOWRhx5UMm+ULI3EZr999lFyLCOj+uwicxrdeP11Jukg5j12+fOigV3H/nzw/hHmAoR97eqn723KlQv7RaAtARIObcnwPgIVBOwBiIsJjNIkHKTIciAjV6nlqsSOO2xvToarJRzkO3LVZpWVu5qDHrltw55Ab7/ttmr99daVVSY7KZb3RuqDo6HX3yC/quWWXVYtqZ+w8P7749VoPbmknMBvsP56artttlFPP/2M+urrr9T4CR+Yq0Cy/uabbqrLOqUZFSAHjZL0OFWf/Moi+5WT3dHPjlEPPPiQmURRJoCUk/NKizyB44677jQjOaT+Msrir3rixS/0lTGZdGpqfdAkow/kaR4yqqDSYk/6ZV1Zb8EFFzCjHeRWDTl47HXA/qqzrqMsNuEgv4vdGquvrn7UV95kUk0ZMSCjSM4843T9tIyv1dPPPC2r6QktHzSTRsp9yfZJFGt1725GONh922ROo9+T/aSNiSmTHuUyTE+2KUmSfffZW18NnNYccL+sRzvIyA0xl4P1Zi5y4Cbtqk/vXt5NDNbMerNtBPIS8P3kqK2Ewy/639INN97E3Mcv/6b/a/PN9dX1v+snNPxbva5HZcm/vffefZeaR89jlDwJlyv32223re4D/qqGDB1qRpaJtZzoy/w5Y8e9qO6fNCGzJOU33GADEwqbEJAXU+t/E6XvW3bpZUxC/cWXXjLrrLv22uqySy8xv0sSfettt9MjBX8xIyXkiRqz6X/7h99xhxlNISudfeaZast/bWHWT25fJgZedZWV1XzzzqeOO/YYdcedd6pjjz/BrNf7wANV165d1FNPjVKX6vkuZBlwwfmlpHuyrtUSDrLeRptsapL5UjaZNHr8hPFK5gySiw09dtxRnXRiy8UIGQUhiR1J/EuyZYvNNjVPv5DktcwDZRebcGg0NrId6QO32HwzNU7HQRIsMrJxm622Uv11n/nRRx+rO3VfLsuVg642/bdcvFij2+rmvR477dRqhIV508F/fG9TDkjYJQJVBUg4VOXhQwT8EUibcJAr+XJF3y6ffPpp1REOcoIuc0LI4zVlkQOOI/QEhzLiQWYJP+yQg8375SfF8qZcvZer8cvq4apywmgXuR/3Hj3ppTzW7Jwz+9u3zaMf25o0Um6lkFsjZNlPn/za2yzGPPucWkLf4lFpKGtpw/oXKYcYycl6W4skG3bYbrvJPv79999Vr4P6miRJ+ZM87O0akpDZa489zHdtwkGu/px/7jnmhF0+sCMt5Hept9TfLtXmYqhk2+j36omJXM0bfsedJulxlJ6USyYglUeLSvJn8cUWz2xST1sXfiKAQP4Cvp8ctZVwkASunATLMnzYsNItCjIySyYU/PG//1Vn6Dl7ttVJ7eRJ+AH77acOObiv+Z7dtry4c/hwkxSXf++7rLKqOenea8891FFHHGHWTSYELrvkYj2q7c/kdN9DDlX/1iP5JBExTo9IkESsTH55znnnm+8+/OADpVs85AS6+zrrmlEZa+lb+a68oiVpkNz+HXpEnoyYsIuUSRIM7+lHJPfUty3YZeNNNzMjIWQU4BGHtzwdKlnXagkH2cbLOmEut/Ptv9++puzy3kknn6IvFFxvbjMZfusweUudq+shyQ1Jrj/68EOtnu60hU4GyG2OstiEQ6OxkX79phuuN9uS/+y9z74m6SCjJmTbyYVJI5Ma/I5A2AIkHMKOH6XPWUCuxMrBm4xwSJ5g51GMNAkHeQSkXJVOLrUSDuXJAvnuLXpo5f36irxc+R544QVmKGf5SbEcVPXu21fPEfGrGQopQ1zt8qse3fD11y0n/mf3P8PMCyGfVXtKhQzjlJEYn+r7bGWRR0Quusgiek6KxZXMPVE+maJZadJ/5N7ZSy5rOViSp0AsvfRS5uqWHCCO01em5FaTPXff3ZRTbrsoX+QA7vT+Z5q3ZXRC8rGUclAroxdkXob+p59m1rEJh3K7j/Ww3+P7nWjWkSeHLJ04oMwj4VBvTMT65FNPNTGUQouNjLJYeqml9SiPFavOm2EqmdF/XI4cyqgKbAYBbwVCTTjYE3r599gO47fIn3z6iR4x9ou5an+G/nc5eRJ+zVVXqW6TrojLLQVyRV/manhx7Av262rzLbdSr732mhlNd9qpp5j3bULA3E4x6qlW/cCjI0eqvfWtE7LcNuwWtax+VOMeOgnw+BNPmts6ht3851M3ZB376E8ZbfHcmNFm5KHdvtxCcI8emVG+yFxAMs/Duzr5LnWTRUZyyGgEGfVny5msa62Ew6f6gsMtw241tzRKokaWj/Q8CTJXgsyBIYkSWSSxI0kEOba5fugQ8579j9yaeOrpp5uXNuHQaGyO1smdPXWSxy7X33CD6nfSyeblqy+9WEqKyBskHKwSPxEIX4CEQ/gxpAY5Crg8cEuTcLBD8pMktRIO9raH5Hce1xM6XTv0OvOWJBwkmVCecPivPhHvo+95lUWu9kyZmGDSvDnpP30P6lOaC6BawkFWl0ej3aGvuI/R98XKrRB2kadPHKRHUEhCpdJy2hn91X/0laHO+iCwd68DS6ukncNBEhYX6/t7ZTGP6mx9u2tpexcPHGBOwm3CYbNNNtETem1e+lxGVxxx9NHmtZRXJiqzSx4Jh0ZiIkkHmaTrtTdeLyUepMwddbLnEJ1QyurRpdah/KfLNlVeFl4jEKOA723MjkIof0rFqaedpgbriSDlqntbCecVV1xBXa0TDG2dhNuEg0xK+IK+Rc8u1RIOMvJARiAkl/fHj1frrt9y68Xl+paKdfStFZtstrk5kd9KzzF0Vv8/R/LJ926+5RZzi4SU/YXnnjXzPtiEg9yyd8N1Q5ObN0/pOEbP+SAjHSotjSQcJFmxa8/dJ5ufyW4/mXCwHnLrxYXnn2dXMT/v1pNbHnzooeZ3m3BoNDZDrx2sb99cubT923V/f7ied0mWl8aNLc2nIa9JOIgCCwJxCJBwiCOO1CInAZdXYpuVcJCr2mfqqxdyYGSX8y+8UL2ih1DKffynT7r6U55wkHVlgqnPPv9crd29u+qx04726+bWhN/1CIjyg8RaCQfZlpw0y1Mp5AqMDOOUYf+SiFh37bX0nBQ7lPaR/OWQw48wtwKspmf03mP3nqWP0iYc5MrPoUe0HPTsv+8+pds5ZENSHpnbQCZStItNOMg8FHIvql1cJxykHPXERG6fGT9hgrmlYhY987fcSvGCnqX8wUlPNTlw//3MxGq2fs34KSdDzOHQDFm2iUCLQKgJB5mr4RA9Aa+McHjskYfNnAI2pl/piXplvgS7ZJlwkG3aE2u7fXtFX16P0k+/kEkXj9cj8mQyRUlmjNYjIpLz3ey+557qiSef0k96+HM0Q7WEw2Zb/MuMZpCT8VNOPsk8IlRG/W2u35eJLhtJOJym+/Vr9OgEcbpSj/T4xyL/MP38iSedpOREP5lwOFGPMrhOjzaYRj+W+emnnmw1Meaee++tnxLyhKGwLlnERjZIwsGw8h8Eohcg4RB9iKlgLALNSjiIzxabbabW6r6m+quek+BZPaxyyHXXm7kc5CkMe/TsaQgrJRyuGXytelI/8lLmMpAT9SX1IyRlMqmbbxlmbmWQE/Lk0x1k8sirrrnGbK/fccfqiRn/nGvCPllBhrOedMLxpTkbLhgwQE/e+Opk80SYjUz6j9xOIY/zkgO+ffbaU98SoG+p0L+nTTjIZuwIBBlFsftuu6mFF17ITDopIx9+17eI7LTjDnouicXNHtuTcJDJNXsdeMCkkrf8qGRrV7DlSvu9emLS/6yzzYRgy+hbUHodcIAZ9iuTfUr9ftZJHpnwU0bAsCCAQLgCoSYcPv74E7XGWmsZeLnyfuThh+sJIudW9skQyy+/nDqxXz9zu0XWCQeZSFJG50nyWx5t3E+fpEsSfL755tXJj0dMmeSWPZnbQZZd9dMo9tBz/Mykkw933nWXOuW0081kiLv06KH66f5MlmoJhxW6dDVJc9nOCce3rJ/cvtzqIKMDJPHdVl3NThL/ObB3HzM5ZjLpIQnmzTbfwiTxpa99SD/1QeYaSu5Lkh4799jJTMY5fPjtJqkit+vJYhMOWcRGtlct4bCWngdDnoSxnp5L49JLLpbVvVl8b1PeQFEQBCYJkHDgTwGBOgR8n8OhkVsqJFkgj6iSySP/ov8/cdLjqmSSxiP1JFUy/4EslU6KZWLJM88+x5yYyzoyEmDixIkmWSGvZRbstdfqLr+aRZ4acdQxx9qX5mpLD30iL09rkEd5nqafUiH7n3766VVHPaP413r7csAhy856BIWsV2mRoaPySMvko7ZkxIZ9vFeax2K+9vrrauDFl5S2IWWQ0Q2ySPLiKH2wK0kIWRpJOAzSiZZROuEii5RNJum8QE84KUslW/OB/k+936snJqOeflpvf7DZlcxRMd+886oPPvrQTLwpfw/HHXP0ZPdO23Jl+dPlyKEs68G2EPBRwPeTo7ZuqRBLe0uE/C7/bspoApnYVhaZ1+HOO243V+PbOgm336/nlgoZUSF9h5xkSz9ob++TfxMvOO9ctdGGG5r9S3JWkggPPNgy2aGUT/oK2w/J0xgGXz2oNDKjWsJBblmQWxdkWaxTJ/XTTz+ZkQ0LL7SQkts5ZLG3nLRVV7NS4j836dEX9glV8iQPGc34ik7ey8gGSTzY5f777lX/6NBBJ92PNrd22PftT3m6h+xTFptwkN+trfzeSGzke9USDnKrhXwui2xfbq2UkSQ+LL63KR+MKAMCSQESDkkNfkeghoDLTqZZIxxkHoLffv/NPH5ShthLx77A/PPrkQ27qQX0AZ1d2jopltsIBg8ZouQpE/ZASw7udtCTXMmjvcqXe/XTKx5+dKSyE1hJwmHtSVex5PFbMkR1/Pg/D4bkMZXrr7deq7kSyrcpr+WA6L77Rqj39MGZ3bZdL03CQdZ99bXX1W23D1cT9OM7bbJCLGTEQ/LJH40kHCShIs85l1tVZNuScLhQH7zK0patfNbI9+qJiczXcZc+0JVEhV3kwG77bbdpdWuJ/Szrny7bVNZ1YXsI+CjgexurlnAQz2t0UlSeqiC3FsgiCYE1u3VTp+snVNjbKto6CbcnxfUkHGSOBRnRJhMA22SDnLDLnDb2EZemIPo/kpTorx99+e9771NffPGFeXsGnayWUQIymeXM+lY1u1RLOMh+JOkw8rHH7ermcZ2yjf32P0DJYytlJMIz+naHtupa+uKkX6Q/P09PmHnV1VeX5oaQixKDrrxCDdLvyWSScruiJBwkqSB1ufyKK/RTLR7VfeFranadhN5x++3MJMJ76NsqZEkmHOR1e2Ij36+WcHjr7bf15JtnmVtTpC5S/2cnPWZavuty8b1NubRh3whUEiDhUEmF9xBoQyCmK7HlJ81yNV/mUJAr3bUeQVmJRw5WPvzwI30FasZWj4OstG6t9+Tk9yv9lAt5BJncKytJhzyXn/VtITK799xzzWVGbeS57yz3lTYmsp54y5VDib38DcjVvDwWOXBjDoc8pNlHUQViOTn6TE9w++WXX6mOHRdp9TSDrOJanhCQJ0W8//57aho9ck9urai1yGg8GZkgIxuSc/7U+l7yc3kihUyALLf2yQl/FouMOnz77XfU32f6u7mYIBcVai2SFLfryS0lPfWcFLKUJxzsdpodG7sfX37G0qZ88aQc8QuQcIg/xtQQgYoC5QmHiivxJgIIIIBA0AKcHKULX3nCId234lnrS33L4xtvvDlZhe7Uj/C0tzbI/BUyj0XRF9pU0f8CqH+9AiQc6hVj/UILuJzDIWt4Eg5Zi7K9RgViGjnUqAHfQ6BZApwcpZMtesLhvhEjVO+D+raJJY9KHnFvyzwTba5UkA9oUwUJNNXMTICEQ2aUbKgIAjF1MjLZ448//mgmYkxO7FiEOFJHfwRialP+qFISBP4UoI39aVHttzP0XAyP68c/LrXUkups/XvRlieeeFKd3r9/xWp30hNZyiOnl1l66YqfF+1N2lTRIk592ytAwqG9gny/UAJciS1UuKlsDgJy4MYcDjlAs4vCCnByVNjQU/EmCdCmmgTLZqMVIOEQbWipGAIIIIAAAggUXYCTo6L/BVD/rAVoU1mLsr3YBUg4xB5h6pepQExzOGQKw8YQaIcAI4fagcdXEaghwMlRDSA+RqBOAdpUnWCsXngBEg6F/xMAoB4BOpl6tFgXgdoCtKnaRqyBQHsEaGPt0eO7CEwuQJua3IR3EKgmQMKhmg6fIVAmwJXYMhBeItBOATlwYw6HdiLydQSqCHByVAWHjxBoQIA21QAaXym0AAmHQoefyiOAAAIIIIBAzAKcHMUcXermQoA25UKdfYYsQMIh5OhR9twFmMMhd3J2WAABRg4VIMhU0ZkAJ0fO6NlxpAK0qUgDS7WaJkDCoWm0bDhGATqZGKNKnVwK0KZc6rPvIgjQxooQZeqYpwBtKk9t9hWDAAmHGKJIHXIT4EpsbtTsqCACcuDGHA4FCTbVdCLAyZETdnYasQBtKuLgUrWmCJBwaAorG0UAAQQQQAABBNwLcHLkPgaUIC4B2lRc8aQ2zRcg4dB8Y/YQkQBzOEQUTKrijQAjh7wJBQWJUICTowiDSpWcCtCmnPKz8wAFSDgEGDSK7E6ATsadPXuOU4A2FWdcqZU/ArQxf2JBSeIQoE3FEUdqkZ8ACYf8rNlTBAJciY0giFTBKwE5cGMOB69CQmEiE+DkKLKAUh3nArQp5yGgAIEJkHAILGAUFwEEEEAAAQQQSCvAyVFaKdZDIJ0AbSqdE2shYAVIOFgJfiKQQoA5HFIgsQoCdQowcqhOMFZHoA4BTo7qwGJVBFII0KZSILEKAgkBEg4JDH5FoJYAnUwtIT5HoD4B2lR9XqyNQL0CtLF6xVgfgeoCtKnqPnyKQLkACYdyEV4jUEWAK7FVcPgIgQYE5MCNORwagOMrCKQU4OQoJRSrIZBSgDaVEorVEJgkQMKBPwUEEEAAAQQQQCBSAU6OIg0s1XImQJtyRs+OAxUg4RBo4Ci2GwHmcHDjzl7jFmDkUNzxpXZuBTg5cuvP3uMToE3FF1Nq1FwBEg7N9WXrkQnQyUQWUKrjXIA25TwEFCByAdpY5AGmerkL0KZyJ2eHgQuQcAg8gBQ/XwGuxObrzd7iF5ADN+ZwiD/O1NCdACdH7uzZc5wCtKk440qtmidAwqF5tmwZAQQQQAABBBBwKsDJkVN+dh6hAG0qwqBSpaYKkHBoKi8bj02AORxiiyj18UGAkUM+RIEyxCrAyVGskaVergRoU67k2W+oAiQcQo0c5XYiQCfjhJ2dRixAm4o4uFTNCwHamBdhoBARCdCmIgomVclFgIRDLszsJBYBrsTGEknq4YuAHLgxh4Mv0aAcMQpwchRjVKmTSwHalEt99h2iAAmHEKNGmRFAAAEEEEAAgRQCnBylQGIVBOoQoE3VgcWqCGgBEg78GSBQhwBzONSBxaoIpBRg5FBKKFZDoAEBTo4aQOMrCFQRoE1VweEjBCoIkHCogMJbCLQlQCfTlgzvI9CYAG2qMTe+hUBaAdpYWinWQyCdAG0qnRNrIWAFSDhYCX4ikEKAK7EpkFgFgToE5MCNORzqAGNVBOoU4OSoTjBWR6CGAG2qBhAfI1AmQMKhDISXCCCAAAIIIIBALAKcHMUSSerhiwBtypdIUI5QBEg4hBIpyumFAHM4eBEGChGZACOHIgso1fFKgJMjr8JBYSIQoE1FEESqkKsACYdcudlZ6AJ0MqFHkPL7JkCb8i0ilCc2AdpYbBGlPq4FaFOuI8D+QxMg4RBaxCivUwGuxDrlZ+cRCsiBG3M4RBhYquSNACdH3oSCgkQiQJuKJJBUIzcBEg65UbMjBBBAAAEEEEAgXwFOjvL1Zm/xC9Cm4o8xNcxWgIRDtp5sLXIB5nCIPMBUz4kAI4ecsLPTgghwclSQQFPN3ARoU7lRs6NIBEg4RBJIqpGPAJ1MPs7spTgCtKnixJqauhGgjblxZ6/xCtCm4o0tNWuOAAmH5riy1UgFuBIbaWCpljMBOXBjDgdn/Oy4AAKcHBUgyFQxVwHaVK7c7CwCARIOEQSRKiCAAAIIIIAAApUEODmqpMJ7CDQuQJtq3I5vFlOAhEMx406tGxRgDocG4fgaAlUEGDlUBYePEGinACdH7QTk6wiUCdCmykB4iUANARIONYD4GIGkAJ1MUoPfEWi/AG2q/YZsAYFqArSxajp8hkD9ArSp+s34RrEFSDgUO/7Uvk4BrsTWCcbqCNQQkAM35nCogcTHCLRDgJOjduDxVQQqCNCmKqDwFgJVBEg4VMHhIwQQQAABBBBAIGQBTo5Cjh5l91GANuVjVCiTzwIkHHyODmXzToA5HLwLCQWKQICRQxEEkSp4K8DJkbehoWCBCtCmAg0cxXYmQMLBGT07DlGATibEqFFmnwVoUz5Hh7LFIEAbiyGK1MEnAdqUT9GgLCEIkHAIIUqU0RsBrsR6EwoKEomAHLgxh0MkwaQaXgpwcuRlWChUwAK0qYCDR9GdCJBwcMLOThFAAAEEEEAAgeYLcHLUfGP2UCyBHrvsahLl1w8dorp26VKsylNbBBoQIOHQABpfKbaAPXh75803ig1B7RHIQEDaU9euXThoy8CSTSBQSUBGEMkJkiz0W5WEeA+B+gRIONTnxdoIkHDgbwCBOgXoaOoEY3UE2hCwJ0JyhUiuFLEggEBzBGy/1adXL9Wnd6/m7IStIlAAAfqtAgSZKmYuQMIhc1I2GLuAdDayMIwu9khTv2YLSFuSEQ5yAkR7arY22y+ygB2ZR3KvyH8F1D0LAZu843aKLDTZRlEESDgUJdLUM3MBe7LEldnMadlgAQSk/ZBkKECgqaI3AvZEiaSDNyGhIIEJ2DYkxeb2pMCCR3GdCpBwcMrPzkMWsB0PWe6Qo0jZXQjYq60M73ahzz6LLGD7LUk6MLKoyH8J1L0eAemzJEku/5eF47569FgXAaVIOPBXgEA7BOTgzY5wkN9lsa+lg5LF3i9bz2vTsY3WV4AnTabHa93R4xH834NtDzbhwEGb+SeC/yCQq4BNOshO7Sgj+zPXgrAzBAIQGHBRy7GcLSr9lpXgJwLpBUg4pLdiTQTaFJCEgBzEJYeqduy0mFnfDrur53X59njd2hePMD2kQdj20GZj4gMEEGi6gPwbaq/aNn1n7ACBCAQO0nMN9daTrrIggED9AiQc6jfjGwhUFJADOFnslaKBk7LitoPidctVgrw8lltxJROPsc89a37in69/Je8uehi3bR8mKPwHAQScCth+a8yk/stpYdi5unrwtUZhj567oeGJAP2WJ4GgGEELkHAIOnwUHgEE2hLo1n0t89ETIx9taxXeRwABBBBAwBsB+i1vQkFBEEAgQwESDhlisikEEPBHgAM3f2JBSRBAAAEEagvQb9U2Yg0EEAhPgIRDeDGjxAggkEKAA7cUSKyCAAIIIOCNAP2WN6GgIAggkKEACYcMMdkUAgj4I8CBmz+xoCQIIIAAArUF6LdqG7EGAgiEJ0DCIbyYUWIEEEghwIFbCiRWQQABBBDwRoB+y5tQUBAEEMhQgIRDhphsCgEE/BHgwM2fWFASBBBAAIHaAvRbtY1YAwEEwhMg4RBezCgxAgikEODALQUSqyCAAAIIeCNAv+VNKCgIAghkKEDCIUNMNoUAAv4IcODmTywoCQIIIIBAbQH6rdpGrIEAAuEJkHAIL2aUGAEEUghw4JYCiVUQQAABBLwRoN/yJhQUBAEEMhQg4ZAhJptCAAF/BDhw8ycWlAQBBBBAoLYA/VZtI9ZAAIHwBEg4hBczSowAAikEOHBLgcQqCCCAAALeCNBveRMKCoIAAhkKkHDIEJNNIYCAPwIcuPkTC0qCAAIIIFBbgH6rthFrIIBAeAIkHMKLGSVGAIEUAhy4pUBiFQQQQAABbwTot7wJBQVBAIEMBUg4ZIjJphBAwB8BDtz8iQUlQQABBBCoLUC/VduINRBAIDwBEg7hxYwSI4BACgEO3FIgsQoCCCCAgDcC9FvehIKCIIBAhgIkHDLEZFMIIOCPAAdu/sSCkiCAAAII1Bag36ptxBoIIBCeAAmH8GJGiRFAIIUAB24pkFgFAQQQQMAbAfotb0JBQRBAIEMBEg4ZYrIpBBDwR4ADN39iQUkQQAABBGoL0G/VNmINBBAIT4CEQ3gxo8QIIJBCgAO3FEisggACCCDgjQD9ljehoCAIIJChAAmHDDHZFAII+CPAgZs/saAkCCCAAAK1Bei3ahuxBgIIhCdAwiG8mFFiBBBIIcCBWwokVkEAAQQQ8EaAfsubUFAQBBDIUICEQ4aYbAoBBPwR4MDNn1hQEgQQQACB2gL0W7WNWAMBBMITIOEQXswoMQIIpBDgwC0FEqsggAACCHgjQL/lTSgoCAIIZChAwiFDTDaFAAL+CHDg5k8sKAkCCCCAQG0B+q3aRqyBAALhCZBwCC9mlBgBBFIIcOCWAolVEEAAAQS8EaDf8iYUFAQBBDIUIOGQISabQgABfwQ4cPMnFpQEAQQQQKC2AP1WbSPWQACB8ARIOIQXM0qMAAIpBDhwS4HEKggggAAC3gjQb3kTCgqCAAIZCpBwyBCTTSGAgD8CHLj5EwtKggACCCBQW4B+q7YRayCAQHgCJBzCixklRgCBFAIcuKVAYhUEEEAAAW8E6Le8CQUFQQCBDAVIOGSIyaYQQMAfAQ7c/IkFJUEAAQQQqC1Av1XbiDUQQCA8ARIO4cWMEiOAQAoBDtxSILEKAggggIA3AvRb3oSCgiCAQIYCJBwyxGRTCCDgjwAHbv7EgpIggAACCNQWoN+qbcQaCCAQngAJh/BiRokRQCCFAAduKZBYBQEEEEDAGwH6LW9CQUEQQCBDARIOGWKyKQQQ8EeAAzd/YkFJEEAAAQRqC9Bv1TZiDQQQCE+AhEN4MaPECCCQQoADtxRIrIIAAggg4I0A/ZY3oaAgCCCQoQAJhwwx2RQCCPgjwIGbP7GgJAgggAACtQXot2obsQYCCIQnQMIhvJhRYgQQSCHAgVsKJFZBAAEEEPBGgH7Lm1BQEAQQyFCAhEOGmGwKAQT8EeDAzZ9YUBIEEEAAgdoC9Fu1jVgDAQTCEyDhEF7MKDECCKQQ4MAtBRKrIIAAAgh4I0C/5U0oKAgCCGQoQMIhQ0w2hQAC/ghw4OZPLCgJAggggEBtAfqt2kasgQAC4QmQcAgvZpQYAQRSCHDglgKJVRBAAAEEvBGg3/ImFBQEAQQyFCDhkCEmm0IAAX8EOHDzJxaUBAEEEECgtgD9Vm0j1kAAgfAESDiEFzNKjAACFQT69D3YvDvggvPNz/IDt2sGD1Zjx72o7OcVNsFbCCCAAAII5CZQq98q/zy3grEjBBBAIEMBEg4ZYrIpBBBwIzB23DhlD8yW69zZJBWSCQdJNlw9+FpTOEk4yDosCCCAAAIIuBKo1W9JnybryEK/5SpK7BcBBLIQIOGQhSLbQAAB5wLlB2/2QG2PnruRbHAeHQqAAAIIIFAu0Fa/JUlx24eRbChX4zUCCIQmQMIhtIhRXgQQaFMgefBWvhIHbeUivEYAAQQQcC1Av+U6AuwfAQSaLUDCodnCbB8BBHIVqHTwRrIh1xCwMwQQQACBOgTot+rAYlUEEAhOgIRDcCGjwAggUEsgefBGsqGWFp8jgAACCLgWoN9yHQH2jwACzRIg4dAsWbZbOIHRY8ao0aPHFK7evlZ43Istk211XpYJIn2IUdeuXUwxunZp+elDmSgDAgjoCQkHXmQY+vTuZX4W4bX8eyT/Ftl+25fXl19xhSnTvvvs42X5fPNqZnmS/zbQbyU1+B2B+gVIONRvxjcQaCVgD84GXNRy0NbqQ14ggEArATlwkxMbDuBasfACgVwF5ETNnnD32GVXs+933nzD/OzYabHoX0vdrx86xJzcS/15jUf534P8Tchxnf3byLWBsjMEIhMg4RBZQKlOvgJyoCIHbnY5aNIVIvuanwgg0CLwjB79k2wr8q4c4MnBHAsCCOQnYPstm2AYOClZ3rtXywgHXrdcPMCj2H8PXSThoEf/2AS5TcxJv8WCAAL1CZBwqM+LtREoCdiDNnlDEg324KS0Ar8ggMBkApJ0kIM4m3wg6TAZEW8g0FQBaX9y5Za211RmNh6ZgD3mo91EFliqk4sACYdcmNlJbAK242GoXWyRpT55Cdg2JPuzV1rz2jf7QaCIApLkY0RRESNPnbMSoA1lJcl2iiZAwqFoEae+7RaQDkdOlkg2tJuSDRRcwCYd+uih3HbCuoKTUH0EmiJg+y3aWlN42WiBBGhLBQo2Vc1MgIRDZpRsqCgC9iSJYXVFiTj1bJaAHdot22eUQ7OU2S4CLU+ikBMlez86Jggg0JgA/VZjbnyr2AIkHIodf2pfp4DNbMvXOEGqE4/VEaggYGfEJ4FXAYe3EEAAAQS8E5CJVZm3y7uwUCCPBUg4eBwciuafgE04cDuFf7GhRGEK2KtFDPUOM36U2n8B6bfswhwOVoKfCCCAAAJ5CZBwyEua/UQhwMlRFGGkEh4J0KY8CgZFiVKANhZlWKmUQwHalEN8dh2kAAmHIMNGoV0J0Mm4kme/sQrQpmKNLPXyRUDaGPM3+BINyhGDAP1WDFGkDnkKkHDIU5t9BS9AJxN8CKmAZwK0Kc8CQnEQQAABBBBAAIEMBUg4ZIjJpuIX4OQo/hhTw3wFaFP5erO3YgrYeRyYw6GY8afWCCCAgEsBEg4u9dl3cAKcHAUXMgrsuQBtyvMAUbzgBWhjwYeQCngmQJvyLCAUx3sBEg7eh4gC+iRAJ+NTNChLDAK0qRiiSB18FpA2xhwOPkeIsoUmQL8VWsQor2sBEg6uI8D+gxKgkwkqXBQ2AAHaVABBoogIIIAAAggggECDAiQcGoTja8UU4OSomHGn1s0ToE01z5YtI2AFmMPBSvATAQQQQCBvARIOeYuzv6AFODkKOnwU3kMB2pSHQaFIUQnQxqIKJ5XxQIA25UEQKEJQAiQcggoXhXUtQCfjOgLsPzYB2lRsEaU+vglIG2MOB9+iQnlCFqDfCjl6lN2FAAkHF+rsM1gBOplgQ0fBPRWgTXkaGIqFAAIIIIAAAghkIEDCIQNENlEcAU6OihNrapqPAG0qH2f2UmwB5nAodvypPQIIIOBSgISDS332HZwAJ0fBhYwCey5Am/I8QBQveAHaWPAhpAKeCdCmPAsIxfFegISD9yGigD4J0Mn4FA3KEoMAbSqGKFIHnwWkjTGHg88RomyhCdBvhRYxyutagISD6wiw/6AE6GSCCheFDUCANhVAkCgiAggggAACCCDQoAAJhwbh+FoxBTg5KmbcqXXzBGhTzbNlywhYAeZwsBL8RAABBBDIW4CEQ97i7C9oAU6Ogg4fhfdQgDblYVAoUlQCtLGowkllPBCgTXkQBIoQlAAJh6DCRWFdC9DJuI4A+49NgDYVW0Spj28C0saYw8G3qFCekAXot0KOHmV3IUDCwYU6+wxWgE4m2NBRcE8FaFOeBoZiIYAAAggggAACGQiQcMgAkU0UR4CTo+LEmprmI0CbyseZvRRbgDkcih1/ao8AAgi4FCDh4FKffQcnwMlRcCGjwJ4L0KY8DxDFC16ANhZ8CKmAZwK0Kc8CQnG8FyDh4H2IKKBPAnQyPkWDssQgQJuKIYrUwWcBaWPM4eBzhChbaAL0W6FFjPK6FiDh4DoC7D8oATqZoMJFYQMQoE0FECSKiAACCCCAAAIINChAwqFBOL5WTAFOjooZd2rdPAHaVPNs2TICVoA5HKwEPxFAAAEE8hYg4ZC3OPsLWoCTo6DDR+E9FKBNeRgUihSVAG0sqnBSGQ8EaFMeBIEiBCVAwiGocFFY1wJ0Mq4jwP5jE6BNxRZR6uObgLQx5nDwLSqUJ2QB+q2Qo0fZXQiQcHChzj6DFaCTCTZ0FNxTAdqUp4GhWAgggAACCCCAQAYCJBwyQGQTxRHg5Kg4saam+QjQpvJxZi/FFmAOh2LHn9ojgAACLgVIOLjUZ9/BCXByFFzIKLDnArQpzwNE8YIXoI0FH0Iq4JkAbcqzgFAc7wVIOHgfIgrokwCdjE/RoCwxCNCmYogidfBZQNoYczj4HCHKFpoA/VZoEaO8rgVIOLiOAPsPSoBOJqhwUdgABGhTAQSJIiKAAAIIIIAAAg0KkHBoEI6vFVOAk6Nixp1aN0+ANtU8W7aMgBVgDgcrwU8EEEAAgbwFSDjkLc7+ghbg5Cjo8FF4DwVoUx4GhSJFJUAbiyqcVMYDAdqUB0GgCEEJkHAIKlwU1rUAnYzrCLD/2ARoU7FFlPr4JiBtjDkcfIsK5QlZgH4r5OhRdhcCJBxcqLPPYAXoZIINHQX3VIA25WlgKBYCCCCAAAIIIJCBAAmHDBDZRHEEODkqTqypaT4CtKl8nNlLsQWYw6HY8af2CCCAgEsBEg4u9dl3cAKcHAUXMgrsuQBtyvMAUbzgBWhjwYeQCngmQJvyLCAUx3sBEg7eh4gC+iRAJ+NTNChLDAK0qRiiSB18FpA2xhwOPkeIsoUmQL8VWsQor2sBEg6uI8D+gxKgkwkqXBQ2AAHaVABBoogIIIAAAggggECDAiQcGoTja8UU4OSomHGn1s0ToE01z5YtI2AFmMPBSvATAQQQQCBvARIOeYuzv6AFODkKOnwU3kMB2pSHQaFIUQnQxqIKJ5XxQIA25UEQKEJQAiQcggoXhXUtQCfjOgLsPzYB2lRsEaU+vglIG2MOB9+iQnlCFqDfCjl6lN2FAAkHF+rsM1gBOplgQ0fBPRWgTXkaGIqFAAIIIIAAAghkIEDCIQNENlEcAU6OihNrapqPAG0qH2f2UmwB5nAodlR0RzsAAEAASURBVPypPQIIIOBSgISDS332HZwAJ0fBhYwCey5Am/I8QBQveAHaWPAhpAKeCdCmPAsIxfFegISD9yGigD4J0Mn4FA3KEoMAbSqGKFIHnwWkjTGHg88RomyhCdBvhRYxyutagISD6wiw/6AE6GSCCheFDUCANhVAkCgiAggggAACCCDQoAAJhwbh+FoxBTg5KmbcqXXzBGhTzbNlywhYAeZwsBL8RAABBBDIW4CEQ97i7C9oAZcnRw89/LD69NNP2/Sbbrrp1FZbbtnm5+35YNyLL6rhw29X66+3nlp99dXas6novnvb8OHq559/Vssss4xaZumlm1I/ifuga65RCy+0kOqx005N2YerjbpsU67qzH4RyFPAxzb2zrvvqgkTJtRkmGGGGVSXlVaquV7RVvjpp5/UM6NHm2ov17mzmmWWWYpG4LS+PrYppyDsHIEaAiQcagDxMQJJAZedzK49d1ejnn46WZxWv88111zqqccfa/VePS9uuvlm9cMPP5gT565durT66rrrb6DeHz9e/f3vf1ejRz2l/vrXv5rPf/jxR3XTTTeZ3zfYYAO14AILtPpeEV6svNrq6ssvv1S9DzxQHdSnd8NVfuyxx9Vbb7+lZp99DrXlv7ZotZ3jjj9B3XTLLea922+9VS299FKtPg/5hcs2FbIbZUcgrYC0Md/mcBh2621qxAMP1KyC9Cn9jj+u5npFW+ETnYQ+7oR+ptqHH3qIWqxTp6IROK0v/ZZTfnYeoAAJhwCDRpHdCbjsZGzCQU7255hj9skQZp9tdjX81mGTvZ/2je5rr6M+/Ogjtfeee6ojjzi81dfsvjsusogace89pc8++uhjtebaa5vXg664Qq255hqlz4ryS1YJhyOPOlrddvvtOuGztBo+rHUcL7n0UnXeBReqv/zlL+qxRx5WklyKZXHZpmIxpB4IhCZw7333qZGPP14q9o8//Kgm/vqrmnLKKfXV+plL7887zzyqb58+pdf80iJAwoG/BAQQCEmAhENI0aKszgVcnhzZk365ui1XubNeqiUcfvnlFzVmzLNqueWXUzPqIa52IeGgVB4Jhz/++EONefZZtcD8C6h5553H8kfx02WbigKQSiCQQsD3ORyuHjxYPTXqaTXTTDOp884+K0WNir0KCYdix5/aIxCaAAmH0CJGeZ0KuDw5qifhcOVVV6n//vcntdpqq5r7/h9+5BH16quvqUUXXVR1775m6dYHGdFwqx7aKsu1Q4YouUVC7gddbdVVzXs9d9tVzTzzzOq+ESPUm2++peaffz61zdZbm3tHn3lmtPrxxx/U4CFDzbqbbbqJWmjBhdQMM0yv9tKjJGQRr//7v/8z++y87LLmPfnPF198oa6/4Ubzeoftt1Nzzz136bPkL998840uV8v2Zb3XXn9dvfDCWLW8TnysvdZaZtWJEyeqkY89pp577jn13vvvK9nPaqutZuqR3Jb8/uZbb6knn3jSDC9euMPCavVVV1NduqykpplmmvJV1Usvv6ye1rewjBv3opphxhnU8sstp7p166bmn2++VutWSjjUU+8LLhxgticxev2NN9Scc86ptttmG/PeOnr0iCSYXnrpZfXIo4+a9/oe1Ppqn9wG88ijI3U5x6kJH0xQSy6xpPFZQ5dVrhbaxW7jL3+ZSvXSt388+eRTJonxy8Rf1KqrrKJW12YygiLvxWWbyruu7A8BFwIhtLFaCYfvv/9evfzKK6Yf+lknwOUWAvm3cc455iiR/qj7r4cefsS8XnONbuqjjz9Rr7zyspp66mlU587Lqg4LL6ykT3n2uefNfEgLLriAWnnlldU0U09d2sZzzz+vPvzwIzWX/nd4hRWWV4/r/uLd//zHfL7E4oupFVdYQU077bSl9e0vX371ld7XK0rmpvjll4mq4yL/UJ3+2Ul16LCwXcX8TG5/cb290TqR/93336ktt9iidKvi6NFj1NvvvKM++/xzfRvjjGqJxRdXq+hyJv89T5twKDeZ8MEH6p133lUdOy6iltXzDskiZR+lkz0ffPih+v3330x/vFb37q1sZb0R999v6rbEEosbH5nbafz4CWo+3SfKyLw5Zp985KXMNfH8Cy/ovvsN2YRaVO+32+qr6xg8pz7//Au1wALzqxWWX958Zv/zxptvqrfeelv35++Zskisl1pySTXVVFPZVZz/DKFNOUeiAAgkBEg4JDD4FYFaAi47mXoSDvYkeKst/2VGJkhiwS4zTD+9uk4nF5Zaaklz4t1jl13tR5P9fPD+EeYg7aCDD1H33HuvmbzrhuuGmkTCgIsummx9eWMOfQD49JNPmM866ZPf//3vf+r4Y49Vu+26S2l9SX5ssdVW5vVtw24pHfiUVpj0ixzobbDRxubVhnqOCDngkWX3nrupY48+WkmyYZ/99tdXxkaZ95P/Kd/nQF3eC3UCpHxZo9vqatCVV6opppii9NHgwdeq0/r3VzKyILnMOOOM6qorLm91gGStk3M41FPvjp0WS+6i1e+nnnyS2mH77dWNep6M4/udaD57+43XS2X9XB+Q9txjTz33w9utvicvNt9sU3WWroNNIthtyOt99tpLXXLZZa2+868tNldnn3lmadutPmziC5dtqonVYtMIeCMgbcy3ORzKcaolHOSE+Myzz1Fff/11q69N/be/qUMPOVgt8o9/mPeTJ+GSOB+rk7B2kX/3dumxk+7H7lOf64S3XeQ2wUMO7qtkW7JcfuVVk0aTza+m132lnPwml4UWWlAdfuihatpEklr+/RVjSYQkF+lTdtphB50c7156225/Hp1klwTCRx9/bD67aMCF6m/6dsmLL7lUvaiT3eWLJB0O6XtQ6d/nZF2rzeGQXE9O7OXkX5b111tXbb/ttuoV3Rdfdvnlk5VdTu4P1sntxRf7s386+LDDlSR+Vlt1FZP4kbjYRZI2Rxx2mBIfu0iy4exzz9OJ8A/sW+an1OW7774zdV9l5a5qrz32KH1+x513qbvv+fO2TfuBJHr23XuvVkkX+5mLn/RbLtTZZ8gCJBxCjh5lz13AZSdjEw5y4CQnvuXLKSedqOSkXBZ7Eiy/zzrrrObAQq7sSNJARjEsMP/86tGHH1JyS8Sdd90pq6krB11tJo2Ujl1OwmWRJyLIENfyhIMM75cRBd/pg49BV19j1pWJDuUK0nTTTa9kZIQs9Zx4my+U/SeZcJCP5ptvXrVyl65mxMRGG25YKtd0+orTpptsouTKi4x2GKknYJSDvcsuuVjJKAEZZdF5+RXUT/ppElLOXXfeRY92eNNMuvX777+rM884XW09KQFy6223qaOOOdaUROZK2Fo/+UNGZIidfH/aaadRt+t15EBVFmvdaMJB5meQZcQDD6rXXnvNzM/QY8cdzHvd11xT12mJigkHKff6G25kDubk4LCbfnqIxO6e+0ao1/VIEFm20XXqr+smi004mBf6PzKKZdVVVlb3P/igGUEh70vCoXzCSrt+s366bFPNqhPbRQCB+gTaSjj8qud1kGSrnNzKkxhW6dpVJwKmMyMD5ERWRhuc3O8E088lT64lIbCGHuUw1ZRTKRk9JvNDyCIn+vJv5Tvv/ke9MHasee+A/fYtJZFtQkA+kPmSll+us+7XOpgkxH/ee8+sv5weRdfrwAPM75LMP+2M/krKKSfdK624oplcedQzz5jRFLLSXrvvrlbR/9bKkty+/Lu9+GKd1GyzzqZ23GF79bT+zrVDrzPrbb7ppqpTp3/qPuF1/W/6fea9/fbZ22xfXiTrmjbhIN+bbbZZ1WJ65IWMSJCkzNHHHae++uprkyjYWPepkmSXpIyMdpD5M+S4wi424SCv5RhkDT1SQUZQyPGAJFtmn20205fa9c+74AL1qi6/LNJfio2MWnhh7DjjJe8nEw7Sdw+9/gZ5W4nxkksuod5/f7warbf/22+/qQ3WX680+s+sxH8QQCAYARIOwYSKgvog4PLkyCYc2nI49+yz1Rabb2Y+tifBcqvAM/qpEjKqQZZBOqlwxlkt98c++djIVrcyVJvDoTzhYDam/1NrDocsEw7r6FsoLr+s5eRc9i8HIMvqJIIc6B19xBFqzz3/vEqy3Q47moNJuWp/jq6vrLOiTlRIwkBGRxx68MHmNgp5MsQCeljtPzp0sFVSu+vbQZ7QtxtIcuMRfTJuh3HK7RrrbbChWS+5P2vdaMLB7rjapJHJZIEd4SBX77bdviUxccZpp6ptJ92GIds7WF+Bu/vf95j5Np4bM9rUIbmNA/bbz1zVk3UlcdFllVXNlSu5leN0va08F5dtKs96si8EXAqEOoeDjB6Q0Q2yHKdHtXXosLD+TelbBv+rjtAT7f6iR7ntrhPccktY8iR8k4020o+J/pdZ1yYz5MUJerSdXIWXkXd9Dz1MyVX4DTdYX22rbxWUJZkQ6K2TCslbAe1nkoi46MILzOgxmfzyttvvMN+Vf4ftLR6S5D5SJ65lVMay+nHJfXr3mmz7tizmA/0fKZOcoH/22WdqvXXXsW+rE048yYwG2EhfUNhm65aRgcm6pk04dNa3UPTudWBpu/KLJBvk9ga5PWW+eec1n8ltH5defoVJ2l88cEBp9IdNOPxNjwY5/9xzSreijLj/ATVMJ+FlOefM/iYxJAme3gf1NXVaXSe3pd+1y4svvaQGXHSxeZlMOMhoCBlRkvSSlYZrX0m6SMJJts+CAALhCZBwCC9mlNihgMuTI5twkDkEyg8ahGQl/axy+1hKexK8lr5CfqW+BcAucl/oRptsal5erW8jkCtAdvE94SBDTu0IDilz8oRbRmzYR3XKZ998+625uiQejzz0oLyljjn2OHXLpMk2p9ZXouSeUJm7YEt9UGrd5OR7+RVXMomJ/ffd1wzXNV+e9J+t9BBUmQsh6Wqt8044XK6fCiIHaFIXSSolJ/OURMqe++xjSm0fo5lMONj3bN3kwFDm6ZB7euUWlzwXl20qz3qyLwRcCYTQxmxSoHzSSHtCL4nf8jkCvvn2G31b3a+qm042yKi65En4wQcdpP+NX8KQy+i04XfcaU6Q5QTaLiedepqaMGGCuVJvb/mzSQW5neL8c84uJZzlOzKvj70t79ijjzKJ6vMvvNDcliC3dRxz1JF20+anffSnjLYYcMH55nYAu33px0/SIzPKFxlFISf8n3zyiambfC6jDSQxIiMKbDmTdU2bcEiO5LD7lcS9jAiU+X++/vobM8JBEvMfTLoNwiYQZH2bcChPCHysy2pv+ZMniiytb9eUxIH0T7Iccdihej6Lf5rf5T+SWDn0iCPNiEqbcJD3evfta+osj9+WUYt2+VWX0d5Oc3b/M8xoFvuZq58htClXNuwXgUoCJBwqqfAeAm0IuOxkbMIhzVMq7ElwrwMOUMlJBj/Wk2itMWmyRZmLQIbs2yXPhIPMubDb7i0jEtLO4XDdkGvVyno4rV0e0KMPDujV27yU2xym0P+rtLw49gVzpUauOF177RB14803Kzs0VtaXUSBnnHaakkkv5b7SFfRICFnO0gc2W+nbKZLLIfoe1bvu/re5zeGu24ebj6x1moRDtXrXO8LhlFNPNcNvZSTGY3rIcHJ5f/x4te76LbfXXH7pJea2kmTC4a3XX2t1L+xRRx+jbh0+3FzlasYTUJJlK//dZZsqLwuvEYhRQNpYqHM43KT/vX5QTwQpt8jJHAeVlkUX7ajnGzioVcIheRJuEw7TTTedGqhP/O1SLeEgoyBkBEJykUkcjznuePOWHf3Q76STzeOkZV6DPXr2TK6uJ5x8wvwbLWWXhIOcRNuEwz/1BM5HHn5Yq/Vl4sbBQ4eaE/JWH0x60d6EQ9JENimjQ/qfdXYpuVBpn5USDpvp2xdl9KBdZJTEEXr0iSwH6ZEcy+gRHTKh5MCLLzHvyVxEcitLcjn2+BPUp3okh004yIiVPnquKFnk4sGU2qzSIsczYud6od9yHQH2H5oACYfQIkZ5nQq47GQaSTgkT4IFLu+Egz0Z32G77dSpp5xcit0Zeq4AO/dDowkHmTBx1W5rmG0O1MNbZU4Hu3yrRzjIPab2dgh5/yt9D7DcD9tNz08ht4KM1rcaXHnVIDMbuFx9uefuu8zXZV4ESUh0X3MNPUHkFXaTZoLKlVddzcyBsevOPdQJx7cceNo6Jq3te/XUu96Ew7/1xFp9DznUlG/4sGHmnlxbWJkE7JzzzjcH6aP16AeZxyOZcLC3Zdj1SThYCX4igIALgbZGOMgTG64YNMj8W37m6aeZYfW2fPKEnuR8Rm1d9W8k4SD76K/3lxxVYUdbyGfnnnWmeYLT0OuuVyMff1zPXTSdGREhcyzZxY5+SI5mqJZwOOmUU82cPDJR4y66j5HRHrKcqJMaX3z5ZbtHOJQnHGSU4EV6kkpZZCLhZfRtFVPoiSyf1XMm2KdPVUo4yPwS9vZN+W6lhIPERm5ZkSV5e4u8lv5V5r2QxSYc5HdJ5khSZ+3u3fX8UTvKW2aRURi/6xEQyYk67Wf8RACBMARIOIQRJ0rpiYAPCYeFFlxQHXfsMRVF1tIdtSz2hDd5EizvV0s4rLXOumbo5nrrrKMu1ZMtJpe25nBIbk/ur+2ZuE9Tvr//AQfqq1MPm4PEKy+/zNzGIBN4yYGVJAxkaTThIN+1ZZaEQf/TTzdX6GUisQN791G/6qs3Jxx/nJkc8amnRqmeem4GmRDrphuuN5Mryvev0LeVnHXOuWaOi3EvPC9vqeNP6GdGQciB4wnHHas222wzJQmMq3Ry4vobbzTrJG/vqGTdSL3tSf88eqKue/99d6tbJColC2Qiy1VWb7klRm4Nkdnal9QTTIrvaWecYWItV4JkW7JU2ob5QP/H7jvN6Bn7nax+umxTWdWB7SDgu0CoczgkT2a76NsGt9ET4c466ywmUXzhgIHm8Y479+hhEgNZJxzkqQ5yJX9uPXmwPM3h+htuMJNXysSLZ+l/Y2WRCRMliSDLOmt1V+uvv76aXicfZALIG2++xUxYLPMP7TRpIuBqCQe5wi9X+mU7O+3YcsKd3L48HvIw/e+8jJhoq66mIIn/VFvv4UceVTfoJyBJYl5uVZAEx8/6dopzz7/APGJaNpNMUthbKtIkHOS7dhSDjOyQyZtXXHEF9Z5ONsijS+2Ts5IJh2v006Ge1KMfZY6I/ffdx/Rnv+jJKG++ZZgap+d9kP2uu87asmkWBBAITICEQ2ABo7huBVyeHNkRDtUE7JXrSifB8r1kgqD8lorDjzxS3a7vc5VFDmjkqrhcHZelrYSDnMB31wkKGTEgi3xP5lmQEQeyPKGfYb63nqBQ5kaQRW5fkAMIefqDTIwlS3sSDqOefto8FlO2KcvMM89skgPyuxy03KwPEOUkWq6QbLzpZuYgShIJcuAq78mwT/kpoyNsmeXeWbndw952IXMkyKST9hGZUj+ZMMvOGVHJuq16z62HlX766adSvMnqfZu+peFIfWuDLOIoiyQLFu3Ysc1kwZVXXVWaUE3Wt77yu8zpcJm+naJrly7yss1tyGckHESBBYE4BVz2W2lF2xrhIN9PjiyQfxtlNIGcmMsiIxAksSwntW2dXDcywkFOwuXffLkVT56EISfissijLOXxjPJEIFmkb5Mkgn3ihZRP+hjpV2SRJz3I4yxlwkNZqiUcrtD/no8e86xZT+Ylkn5NRjbMNeec5sq/fGDnuGirrubLif9UW09uaZCkgCziN6+eNFJux5N+ROZUsHWWx4nK7Zf1JhzGj5+gzj7vvNJ2bLFkVIq4SgyTCQd5kpZMECp1lkXc5dHXsq4sPXQSJvmIUfOmo/+E0KYc0bBbBCoKkHCoyMKbCFQWcNnJNDvhYGYD1090kCc0SAcvB0jPPvO0gWgr4SAfPqRHMMiVptffeMOsKyfkMgLALjL0X54tLhNWysGYPHKz14EHlp6w0J6Eg+xDRi+cpRMAr7/+RunARK4EnamvQMljtewiCQ4Zmvrwo4+W1pODxw30FSl5MkNy0kWZoOpoPcO4XBX80R7YzjGHmefhyMMPb3WrRqWEg+wzWW+54tWtWzd91WZftcWkx2+W1/u/elKwk08+xUzeKJN2ySIJBxmlUG10wjA9EabcGmITJHKwKyMdTurXTy2lJ++yS7VtkHCwSvxEID4B6bdCncPBRuOBBx9Sj+h/u+3JqCQEltYT/8pkkfa2irZOrhtJOMi/u2t1X1MN0bdM2BNvScJvtcUWpUdc2rJJf3mLvq1tzHPPm3mA5H15RKbcGiFPZ5AJKO1SLeEg+5Gkw0svv2JXN4/rlG1cpOdDkD56Bp1Ilsks26pr6YuTfqm1nkxQOVjPbSSPtZRFTvIP3H8/9e0336phOgku8xo1mnCQ7cljLeXRy3J8IKMOO+gnQskjQIfox3/KY6+TCQdZX0a0DB4yRD+29N3SozNlEskd9ITNXbu2JM9lPdeLy2NB13Vn/wg0IkDCoRE1vlNYATqZxkMvJ/HTTjud/v805kBjg402NhsrP/FudA8/6OeBy3DNDgsvXDoArbQtOYCaMOEDc/VqQf1ITBkV0dYiV3kkUSIHeXIfbiOLXLWRAyY5QG7mIrd9SL3k2e0yKiOUhTYVSqQoJwLuBeTf0++//0FfjZ+nNMosy1KVJwTkKRiff/6Z+qseMSe3VtRavtRzBcnIhPn0aAE7Uq3Wd8o/lydSyOiD2WebzfQd5Z9n/VpGckhiQkZryIgMSVo3Y5H9WJPT+59ZMeFg9yt974cffqTrP2NpdIj9jJ8IIBCeAAmH8GJGiR0KcHJUP74843viLxNbffFJfavGVYOuNu/doZ/fnbwS32pFXkQvQJuKPsRU0AMB3+dw8IDIFKE84eBLuUIth4xU+KWs/5848RczqkJG8q2m5x/aY/eeoVaPciOAQEoBEg4poVgNARHg5Kj+vwP7uM1K35xD36bw5GMjm371v9K+ec8PAdqUH3GgFPEK0MbSx5aEQ3qrNGse3+9E9bGeF6mtRebDkDmVQltoU6FFjPK6FiDh4DoC7D8oATqZ+sPVc4899ASRLU+kSH5b7uXcbdddSpMaJj/j9+II0KaKE2tq6kZA2pjvczi4kZl8r7foOXFe1nMoLLzwQmrP3XeffAXeqUtg4EUXq8/1E5XKl6mnmVqtqJ8CIk+vsBMwl6/j82v6LZ+jQ9l8FCDh4GNUKJO3AnQy3oaGggUqQJsKNHAUGwEEEEAAAQQQSCFAwiEFEqsgYAU4ObIS/EQgGwHaVDaObAWBagLM4VBNh88QQAABBJopQMKhmbpsOzoBTo6iCykVcixAm3IcAHYfvQBtLPoQU8GcBWhTOYOzu+AFSDgEH0IqkKcAnUye2uyrCAK0qSJEmTq6FJA2xhwOLiPAvmMToN+KLaLUp9kCJByaLcz2oxKgk4kqnFTGAwHalAdBoAgIIIAAAggggECTBEg4NAmWzcYpwMlRnHGlVu4EaFPu7NlzcQSYw6E4saamCCCAgG8CJBx8iwjl8VqAkyOvw0PhAhSgTQUYNIoclABtLKhwUdgABGhTAQSJInolQMLBq3BQGN8F6GR8jxDlC02ANhVaxChvaALSxpjDIbSoUV6fBei3fI4OZfNRgISDj1GhTN4K0Ml4GxoKFqgAbSrQwFFsBBBAAAEEEEAghQAJhxRIrIKAFeDkyErwE4FsBGhT2TiyFQSqCTCHQzUdPkMAAQQQaKYACYdm6rLt6AQ4OYoupFTIsQBtynEA2H30ArSx6ENMBXMWoE3lDM7ughcg4RB8CKlAngJ0Mnlqs68iCNCmihBl6uhSQNoYczi4jAD7jk2Afiu2iFKfZguQcGi2MNuPSoBOJqpwUhkPBGhTHgSBIiCAAAIIIIAAAk0SIOHQJFg2G6cAJ0dxxpVauROgTbmzZ8/FEWAOh+LEmpoigAACvgmQcPAtIpTHawFOjrwOD4ULUIA2FWDQKHJQArSxoMJFYQMQoE0FECSK6JUACQevwkFhfBegk/E9QpQvNAHaVGgRo7yhCUgbYw6H0KJGeX0WoN/yOTqUzUcBEg4+RoUyeStAJ+NtaChYoAK0qUADR7ERQAABBBBAAIEUAiQcUiCxCgJWgJMjK8FPBLIRoE1l48hWEKgmwBwO1XT4DAEEEECgmQIkHJqpy7ajE+DkKLqQUiHHArQpxwFg99EL0MaiDzEVzFmANpUzOLsLXoCEQ/AhpAJ5CtDJ5KnNvoogQJsqQpSpo0sBaWPM4eAyAuw7NgH6rdgiSn2aLUDCodnCbD8qATqZqMJJZTwQoE15EASKgAACCCCAAAIINEmAhEOTYNlsnAKcHMUZV2rlToA25c6ePRdHgDkcihNraooAAgj4JkDCwbeIUB6vBTg58jo8FC5AAdpUgEGjyEEJ0MaCCheFDUCANhVAkCiiVwIkHLwKB4XxXYBOxvcIUb7QBGhToUWM8oYmIG2MORxCixrl9VmAfsvn6FA2HwVIOPgYFcrkrQCdjLehoWCBCtCmAg0cxUYAAQQQQAABBFIIkHBIgcQqCFgBTo6sBD8RyEaANpWNI1tBoJoAczhU0+EzBBBAAIFmCpBwaKYu245OgJOj6EJKhRwL0KYcB4DdRy9AG4s+xFQwZwHaVM7g7C54ARIOwYeQCuQpQCeTpzb7KoIAbaoIUaaOLgWkjTGHg8sIsO/YBOi3Yoso9Wm2AAmHZguz/agE6GSiCieV8UCANuVBECgCAggggAACCCDQJAESDk2CZbNxCnByFGdcqZU7AdqUO3v2XBwB5nAoTqypKQIIIOCbAAkH3yJCebwW4OTI6/BQuAAFaFMBBo0iByVAGwsqXBQ2AAHaVABBooheCZBw8CocFMZ3AToZ3yNE+UIToE2FFjHKG5qAtDHmcAgtapTXZwH6LZ+jQ9l8FCDh4GNUKJO3AnQy3oaGggUqQJsKNHAUGwEEEEAAAQQQSCFAwiEFEqsgYAU4ObIS/EQgGwHaVDaObAWBagLM4VBNh88QQAABBJopQMKhmbpsOzoBTo6iCykVcixAm3IcAHYfvQBtLPoQU8GcBWhTOYOzu+AFSDgEH0IqkKcAnUye2uyrCAK0qSJEmTq6FJA2xhwOLiPAvmMToN+KLaLUp9kCJByaLcz2oxKgk4kqnFTGAwHalAdBoAgIIIAAAggggECTBEg4NAmWzcYpwMlRnHGlVu4EaFPu7NlzcQSYw6E4saamCCCAgG8CJBx8iwjl8VqAkyOvw0PhAhSgTQUYNIoclABtLKhwUdgABGhTAQSJInolQMLBq3BQGN8F6GR8jxDlC02ANhVaxChvaALSxpjDIbSoUV6fBei3fI4OZfNRgISDj1GhTN4K0Ml4GxoKFqgAbSrQwFFsBBBAAAEEEEAghQAJhxRIrIKAFeDkyErwE4FsBGhT2TiyFQSqCTCHQzUdPkMAAQQQaKYACYdm6rLt6AQ4OYoupFTIsQBtynEA2H30ArSx6ENMBXMWoE3lDM7ughcg4RB8CKlAngJ0Mnlqs68iCNCmihBl6uhSQNoYczi4jAD7jk2Afiu2iFKfZguQcGi2MNuPSoBOJqpwUhkPBGhTHgSBIiCAAAIIIIAAAk0SIOHQJFg2G6eAXCXqscuupnLvvPlGnJWkVgjkKCDtSdrV9UOHqK5duuS4Z3aFQHEEJLHXtWsX2lhxQk5NmyggfRb9VROB2XR0AiQcogspFWq2QMdOi5ld9OnVS/Xp3avZu2P7CEQrQAIv2tBSMc8E6Lc8CwjFCVbA9luScJBEOQsCCNQWIOFQ24g1EGglwBDwVhy8QKBhATu6gQO3hgn5IgKpBKTfmmIKpXrrRDkLAgg0LiAJB2lPspBwaNyRbxZLgIRDseJNbTMS4GpRRpBsprACNnEnANxOUdg/AyruQIDh4A7Q2WUUArSdKMJIJRwIkHBwgM4uwxdInixxa0X48aQG+Qok289B+rYkrrrm68/eiitgRxXRbxX3b4CaNyZg+y3aTmN+fKvYAiQcih1/at8OAdv52E3IsHDmdLAa/ERgcoHRo/VQ1ItahqLKpyQbJjfiHQSaKWD7LTuqSF4nJ5OUK7iy2AnxeI0Hfw8t7cG2Hfot808E/0GgLgESDnVxsTICrQXkYEw6IXtQ1vpTXiGAQCUBOWCThZENlXR4D4HmCkh/JQkF+SkjHuwcKrzGg7+HttuDtMqBOmFOv9Xcf5/YepwCJBzijCu1ylnAJhwk+cDih8DYceNMQZbr3NmPAlEKtbJ+LB8Ha/whIOCHgPRb0mfZdslr9x6777mXicfVV11lEkLEx93fp7RSScDY9uFHq6UUCIQpQMIhzLhRagQQqCHQrftaZo0nRj5aY00+RgABBBBAwL0A/Zb7GFACBBDIXoCEQ/ambBEBBDwQ4MDNgyBQBAQQQACB1AL0W6mpWBEBBAISIOEQULAoKgIIpBfgwC29FWsigAACCLgXoN9yHwNKgAAC2QuQcMjelC0igIAHAhy4eRAEioAAAgggkFqAfis1FSsigEBAAiQcAgoWRUUAgfQCHLilt2JNBBBAAAH3AvRb7mNACRBAIHsBEg7Zm7JFBBDwQIADNw+CQBEQQAABBFIL0G+lpmJFBBAISICEQ0DBoqgIIJBegAO39FasiQACCCDgXoB+y30MKAECCGQvQMIhe1O2iAACHghw4OZBECgCAggggEBqAfqt1FSsiAACAQmQcAgoWBQVAQTSC3Dglt6KNRFAAAEE3AvQb7mPASVAAIHsBUg4ZG/KFhFAwAMBDtw8CAJFQAABBBBILUC/lZqKFRFAICABEg4BBYuiIoBAegEO3NJbsSYCCCCAgHsB+i33MaAECCCQvQAJh+xN2SICCHggwIGbB0GgCAgggAACqQXot1JTsSICCAQkQMIhoGBRVAQQSC/AgVt6K9ZEAAEEEHAvQL/lPgaUAAEEshcg4ZC9KVtEAAEPBDhw8yAIFAEBBBBAILUA/VZqKlZEAIGABEg4BBQsiooAAukFOHBLb8WaCCCAAALuBei33MeAEiCAQPYCJByyN2WLCCDggQAHbh4EgSIggAACCKQWoN9KTcWKCCAQkAAJh4CCRVERQCC9AAdu6a1YEwEEEEDAvQD9lvsYUAIEEMhegIRD9qZsEQEEPBDgwM2DIFAEBBBAAIHUAvRbqalYEQEEAhIg4RBQsCgqAgikF+DALb0VayKAAAIIuBeg33IfA0qAAALZC5BwyN6ULSKAgAcCHLh5EASKgAACCCCQWoB+KzUVKyKAQEACJBwCChZFRQCB9AIcuKW3Yk0EEEAAAfcC9FvuY0AJEEAgewESDtmbskUEEPBAgAM3D4JAERBAAAEEUgvQb6WmYkUEEAhIgIRDQMGiqAggkF6AA7f0VqyJAAIIIOBegH7LfQwoAQIIZC9AwiF7U7aIAAIeCHDg5kEQKAICCCCAQGoB+q3UVKyIAAIBCZBwCChYFBUBBNILcOCW3oo1EUAAAQTcC9BvuY8BJUAAgewFSDhkb8oWEUDAAwEO3DwIAkVAAAEEEEgtQL+VmooVEUAgIAESDgEFi6IigEB6AQ7c0luxJgIIIICAewH6LfcxoAQIIJC9AAmH7E3ZIgIIeCDAgZsHQaAICCCAAAKpBei3UlOxIgIIBCRAwiGgYFFUBBBIL8CBW3or1kQAAQQQcC9Av+U+BpQAAQSyFyDhkL0pW0QAAQ8EOHDzIAgUAQEEEEAgtQD9VmoqVkQAgYAESDgEFCyKigAC6QU4cEtvxZoIIIAAAu4F6Lfcx4ASIIBA9gIkHLI3ZYsIIOCBAAduHgSBIiCAAAIIpBag30pNxYoIIBCQAAmHgIJFURFAIL0AB27prVgTAQQQQMC9AP2W+xhQAgQQyF6AhEP2pmwRAQQ8EODAzYMgUAQEEEAAgdQC9FupqVgRAQQCEiDhEFCwKCoCCKQX4MAtvRVrIoAAAgi4F6Dfch8DSoAAAtkLkHDI3pQtIoCABwIcuHkQBIqAAAIIIJBagH4rNRUrIoBAQAIkHAIKFkVFAIH0Ahy4pbdiTQQQQAAB9wL0W+5jQAkQQCB7ARIO2ZuyRQQQ8ECAAzcPgkAREEAAAQRSC9BvpaZiRQQQCEiAhENAwaKoCCCQXoADt/RWrIkAAggg4F6Afst9DCgBAghkL0DCIXtTtogAAh4IcODmQRAoAgIIIIBAagH6rdRUrIgAAgEJkHAIKFgUFQEE0gtw4JbeijURQAABBNwL0G+5jwElQACB7AVIOGRvyhYRQMADAQ7cPAgCRUAAAQQQSC1Av5WaihURQCAgARIOAQWLoiKAQNsC1wwebD7cvWdP87P8wK38c7MS/0EAAQQQQMATgfJ+y5NiUQwEEECgXQIkHNrFx5cRQMAHgbHjxqk+fQ82Rdmj525Kkg7JAzdJNlw9+Frz+YALzlfLde7sQ7EpAwIIIIAAAiWBZL9VepNfEEAAgcAFSDgEHkCKjwACLQLJpIIkHWyCofx3OwICNwQQQAABBHwSIOHgUzQoCwIIZCVAwiErSbaDAALOBZJJh/LC2JEP5e/zGgEEEEAAAR8ESDj4EAXKgAACWQuQcMhalO0hgIBTgUpJB5INTkPCzhFAAAEEUgiQcEiBxCoIIBCcAAmH4EJGgRFAoJZAMulAsqGWFp8jgAACCPggQMLBhyhQBgQQyFqAhEPWomyv8AKjx4xRXbt0MQ7yuyy8zt9Dkg6jxzyrJ5DcDX9P/h5NY+A/CCCAAAIVBUg4VGThTQQQCFyAhEPgAaT4/ggMGHiRGnDRRaZA77z5hvnZsdNivNYCeLj7e5Bk1/VDh+jkyxjVY5ddTfIl79dSBmkbtiymUfAfBBBAAIFWAiQcWnHwAgEEIhEg4RBJIKmGGwGbZEieUCdPquQETxY5wZOF13jI30Gefw8rd+2ievfqZRIO8vfq4vUffyiTcJB6m+SDLocsfXr3Mj/5DwIIIICAavU4ZzwQQACBWARIOMQSSerhREASCHLl2J5IOSkEO0UgMAHaTWABo7gIIJCLACMccmFmJwggkLMACYecwdldHALl8zTIVVsWBBBIJyDtZ4z+v4y8YEEAAQQQaBEg4cBfAgIIxChAwiHGqFKnpgrYe+H76JMlhoQ3lZqNF0BAbvOQhbZUgGBTRQQQqCpAwqEqDx8igECgAiQcAg0cxXYnYOdtOEjff84VWndxYM/hC9i2RPIu/FhSAwQQaL8ACYf2G7IFBBDwT4CEg38xoUQBCMgoB1m4lSKAYFFErwUG6qdXdNG3JNGWvA4ThUMAgRwESDjkgMwuEEAgdwESDrmTs0MEEEAAAQQQQAABBFoLkHBo7cErBBCIQ4CEQxxxpBY5Cdgh4HI11j7aMKddsxsEohSQ0ULSrqRNMY9DlCGmUgggkFKAhENKKFZDAIGgBEg4BBUuCutawCYcuOfcdSTYfywCtKlYIkk9EECgvQIkHNoryPcRQMBHARIOPkaFMiGAAAIFEWA+lIIEmmoigEBNARIONYlYAQEEAhQg4RBg0CgyAggggAACCCCAQFwCJBziiie1QQCBFgESDvwlIFCHAMO/68BiVQRSCDCHQwokVkEAgUIIkHAoRJipJAKFEyDhULiQU+H2CJBwaI8e30VgcgHa1OQmvIMAAsUUIOFQzLhTawRiFyDhEHuEqR8CCCDgsQBzOHgcHIqGAAK5CpBwyJWbnSGAQE4CJBxygmY3CCCAAAIIIIAAAgi0JUDCoS0Z3kcAgZAFSDiEHD3KnrsAw79zJ2eHkQswh0PkAaZ6CCCQWoCEQ2oqVkQAgYAESDgEFCyK6l6AhIP7GFCCuARoU3HFk9oggEDjAiQcGrfjmwgg4K8ACQd/Y0PJEEAAgegFmMMh+hBTQQQQSClAwiElFKshgEBQAiQcggoXhUUAAQQQQAABBBCIUYCEQ4xRpU4IIEDCgb8BBOoQYPh3HVisikAKAeZwSIHEKgggUAgBEg6FCDOVRKBwAiQcChdyKtweARIO7dHjuwhMLkCbmtyEdxBAoJgCJByKGXdqjUDsAiQcYo8w9UMAAQQ8FmAOB4+DQ9EQQCBXARIOuXKzMwQQyEmAhENO0OwGAQQQQAABBBBAAIG2BEg4tCXD+wggELIACYeQo0fZcxdg+Hfu5OwwcgHmcIg8wFQPAQRSC5BwSE3FigggEJAACYeAgkVR3QuQcHAfA0oQlwBtKq54UhsEEGhcgIRD43Z8EwEE/BUg4eBvbCgZAgggEL0AczhEH2IqiAACKQVIOKSEYjUEEAhKgIRDUOGisAgggAACCCCAAAIxCpBwiDGq1AkBBEg48DeAQB0CDP+uA4tVEUghwBwOKZBYBQEECiFAwqEQYaaSCBROgIRD4UJOhdsjQMKhPXp8F4HJBWhTk5vwDgIIFFOAhEMx406tEYhdgIRD7BGmfggggIDHAszh4HFwKBoCCOQqQMIhV252hgACOQmQcMgJmt0ggAACCCCAAAIIINCWAAmHtmR4HwEEQhYg4RBy9Ch77gIM/86dnB1GLsAcDpEHmOohgEBqARIOqalYEQEEAhIg4RBQsCiqewESDu5jQAniEqBNxRVPaoMAAo0LkHBo3I5vIoCAvwIkHPyNDSVDAAEEohdgDofoQ0wFEUAgpQAJh5RQrIYAAkEJkHAIKlwUFgEEEEAAAQQQQCBGARIOMUaVOiGAAAkH/gYQqEOA4d91YLEqAikEmMMhBRKrIIBAIQRIOBQizFQSgcIJkHAoXMipcHsESDi0R4/vIjC5AG1qchPeQQCBYgqQcChm3Kk1ArELkHCIPcLUDwEEEPBYgDkcPA4ORUMAgVwFSDjkys3OEEAgJwESDjlBsxsEEEAAAQQQQAABBNoSIOHQlgzvI4BAyAIkHEKOHmXPXYDh37mTs8PIBZjDIfIAUz0EEEgtQMIhNRUrIoBAQAIkHAIKFkV1L0DCwX0MKEFcArSpuOJJbRBAoHEBEg6N2/FNBBDwV4CEg7+xoWQIIIBA9ALM4RB9iKkgAgikFCDhkBKK1RBAICgBEg5BhYvCIoAAAggggAACCMQoQMIhxqhSJwQQIOHA3wACdQg0c/j3O+++qyZMmFCzNDPMMIPqstJKba7322+/qQcfekhNnPir2mCD9dV0007b5rrVPnjl1dfU559/pmaeeWa1/HLLVVvV2Wffffeden/8ePXVV1+ZMnTt0kVNP/30zsqT5Y6fGjVKx3Ci6tChg+qw8MJZbjr1tr7++ms17sUXzforr7xyw39L1XbIHA7VdPgMAQSKJEDCoUjRpq4IFEeAhENxYk1NMxBoZsJh2K23qREPPFCzlAsusIDqd/xxba43evQYdcWgQebzbbfeWm2okw6NLJdfeZUa8+yz6p+LLqqOPPywRjahPvzoI/XKK6+Y76637rpqqqmmamg75V/6448/1K23DZ/M66R+J6j555uvfPUgXx982OHq+++/V5tvuqnaYvPNnNRBkk7nX3ih2fcZp52q5pxjjszL0cw2lXlh2SACCCDQRAESDk3EZdMIIOBMgISDM3p2jEBrgXvvu0+NfPzx0ps//vCjmvjrr2rKKadUs8wyc+n9eeeZR/Xt06f0uvyXt995R/U/62zz9r5771V1NET5d5Ovs0g4jBr1tBo0eLDZ7CUDB6qpp/5bchcN//7IoyPV9TfeaL4vIzCWWmIJNc00U6uNN9pIzTTTTA1v16cvFiXhwBwOPv3VURYEEHApQMLBpT77RgCBZgmQcGiWLNtFoJ0CV/8/e/cBJjW1NnD8tSBiQQUVKwIWFEVRFERRwd6xC2LB7lWKiliwolLsgqj3u9eCKHrtvTcUlWIBxAKIIl1FRK+ogOV+5z2Y2ezO7O5MJpM5Sf55HtlMJjk55/dunDnvnpyYjvq7psOuHeibb7i+oNLmzJ0rS80tFU2bNinoOP/OLiccBpvkxceTPpEGDRrIIPOX97BGTvjbX+71tCQcyu3M+RFAAAFXBEg4uBIJ6oEAAmEKkHAIU5OyEi8Q5fDvmhIOH3z4ocyePUcarbuubLXVljJ23Pvy039/ksM7dbL3/b/2+hs2Fu3b7yprN2xo1196+WVZvHiJtGixlTRs0FDeG/2eTJ/+te20axk6T8Nyyy2XiWFNCYfJU6bI1KlfyPSvp8t6660nWzZvLttsvXWm46/zD8yf/72p42wZ//ccAAfuv799f6ONNpQdW7e25/nzzz9F56741AzdnzV7lmzarJmpXws7Z4G/LplK/b0y8Lrr7XG77bqrdDvpxMzb4ydMkBkzZpp5J9aQDnvskdmea8XvUXelujLx44lSr94qss/ee2V2r62d3o4LFy6UTz/7TPQWhLorrWTbsLVx1vk2qi7Tv/5aJk+eLF9++ZXUW6WebfM222yTiZO3f9WEg86l8PXXM6ROnRXloAMP9HazP7/86iuZZBIwuuy77z6ZuRbmzptnbmn5VHTUi87loXHadtuWOee50H0mTvxYZph5RHRETXtju3Tp7yW/pYI5HGzY+AcBBBAQEg78EiCAQBIFSDgkMaq0qWQCriQcvGTA+qazr7dc6IgGXYYOGSw//vijXHbFlfZ1n97n206mvvA6sJpY0E6vdpL9yx677SYnnnB8ZpN3jqpzODz19DPy7PPPZ/bzVjSJoLdwaH2uv/EmmTJ1qvdWpZ9t2+wkZ5x2mvz111+mMztEPvv880rv64sjDz/M3h6R9cbfG156+RV59PHHpWHDBtL3oovsxJb61rD7hsuod9+VTTZpLFdceml1h9vtnsc2W7eQadO+lMVmgsbGjRvLlZctOy6fdmpBWv9bh9wmmjzxL2uttZZcZeba8CcdXn3tdXn40UdF56DwL/VMMuDcnj1ks003zWz26ufN4eC/PeWafleJ3lrjLV6sNLl03cABdrOOALn9zjvljz/+8HazP9dr1EguvrCPrL766pntmiC619j566UJH43p+x98YPdjDocMFysIIIBASQRIOJSElUIRQKDMAiQcyhwATo9AdQI1jXDwOph6rN5OsNWWze2ohS6dj5XvzRMbako46DHa2Wy3c1upt/LK9rYNPUaXY48+WvbdZ2+77p3Dn3AY+dZbcv+IB+3722+3nWxtOuv6V/exZnJJfTrGfuav68ccdZSMHj1GFvywwPy1fJZ8NH683V87ziussLxsaCZ13L5VK5v0uHbAQPuenlfPM/b9cfLKq6/JiiuuKDoBpHaOcy36BI6nnnladCSHtl9HWdQxx8z//nv5+eef7SgDPY8+zcM/YsFflteh123a4dcRGhub0Rc6eiDfduqx3u0dmuTocuyx8ttvv8mIBx+ycdil3c5y6skn627yjkmEaKdeF01G7GKe+qCTQurEnDpXh85vcVnfvplEglc/L+Hwyy+/2KSRJjb8cdLETa/ze8uvv/5q29r5mGNk1qxZ0n/QdTYmWq82O+4kixYtkvfGjBF9soc/IaOjI3TEiCYb1KFd27Z2hIPezvPNt9/a+uo/pUo4MIdDhpgVBBBIuQAJh5T/AtB8BBIqQMIhoYGlWfEXyDfhoH/J1w6kt8z75psaEw7aQdc5Iby/vGuH9cJL+toRD1ttuaVccP55tqhcCYcbbrpZ9DaD7Vq2lJ49ununlCeefEqeN5Neakf6xusGZbb7/ypfddJIvZVCO7q6nHXG6ZnbLMa9/4G0MLd4+P8CnynQt6L1UKMFC37wba28qskG7YDnWrwOvZ7nhkEDza0KdTK7FdLOm2651Y5y0ITJ2WedaeutSZg//vzD3i7h3RqiT3vQWy50VMag/v3tSBA9oXbqL738Cntu/1NFvPp5CQfdwTtXi622kt7nnWuP8Tvq00S0Hs8+95xJyDwr9evXl0ED+tsEjO6c66kT/pEcVZMKV119jbnVZbY9T9X37Eb+QQABBBAITYCEQ2iUFIQAAg4JkHBwKBhUxX0B126p0EdA6kgA/1JbwqFqskCPfeSxx+TlV16VlevWldsG32o7w1UTDvqX9R7nnmvmiFhqO7I6J4C3LDWjG374YVnHXzvvOpmjLjUlHPQv6joSw/sr+iqrrCKbm1sKtjKdaZ17QkdfVLfoqIk7/vl/ds6J/ffdV1q23MaMcKgjz5lbPSZ8/LHorSY6skA73NrBz7V4Hfq9OnaQ47p0yexSaDvHjBkr/77nHnu8Jhc23GADcxvLFtLa3I6gnX9dbJm9jJ0ZyXCQeZLGEeaWEf9y7cCBdj4Nf2y8+vkTDm+OHCkPmNETmhwZfMvNNpHgJQw0cXLLjTdYEy+5ofHUp3j4F8/7NOPTzozA8JIYzZo2lUsvudi/q+g8F4+ax4/qUqqEA3M4VCLnBQIIpFiAhEOKg0/TEUiwAAmHBAeXpoUv4FrCQTu0+ldt/1JbwsG77cF/zNujRsl99z9gN2nCQZMJVRMOOqS/53nn2320w7u8b4JJf1nn9uqZ6WjXlHDQY341tx889dTTMs7ME6C3QniLJix6mREUmlDJtfQfOEi+mj5dWm27rfTofk5mlyBzOPg79FpQkHbqfAnPv/CCrZOOGPGWffbaUzqb2yz8ZZ56cjfZpV07bxf789933y1jxo6rNIdEroSDzs9xwUUX29sfepp2b2faf82AAfa2Fv8cHN7IBB3NsqL5L9dy0IEH2NtHrux3tcyeM0d23aWdnNKtW6VdNbFz+53/tNtKlXCI8pqq1DheIIAAAo4JkHBwLCBUBwEEQhEg4RAKI4UgEL5APrdUBEk46F/8rzOdVG+ov9bc+4u4PvViwLXX2MZUTTjoxr6XXS7ffved7Nmhg3Q9rmJUgM7f8IcZAVF1VEJtCQctSzvjTZs0sZ1efVqFdtw1EbH3nh2lS+fOti5V/zm/z4V2LoJdTcf9FNOB95YwEg5aViHt1BEf+oSHzTbbVP40EzTq+ltvv20f26kTaOrtKzr6QG+b0NEF25rRGL169PCqbOdZOK/3BfLb4sXiH22RK+GgB3nJFo3BoYccbOd10NEiWqaWrctwkzx6yySRdLSFjoDxx1oTO/7bVe4ddp+8YyaN1BEmOkJC58/wln/ddZd9Aoq+LlXCgTkcPG1+IoBA2gVIOKT9N4D2I5BMARIOyYwrrUqAQKkSDkrT6ZBDpGOHPaSOeYTj+2bSwuEPjLBPjfD/lTtXwsHrnK5kjvvHmWfI1uYRlotNR/nhRx61tzLoaIG9zV/1vUUnj7zr3nvtS336gz4Fwlu8WwHWWGMN6XfF5ZlO8K1Dhsgk8yhH/+0F3jHeT72d4sOPPrK3Fpxx2qnS0jxWUkddhJVwyLedmiTo3aePvc3kiMM6ZR5XqaMvNDGgizfHxv3GeKRJROiog+PM5J5t2rSxEz2+9NLL8qaZjFMXNfUeGVpdwsG7zUGfSHHYoYdaX0303HrzTZlkgd/9qCMOlw4mOaEjHXTiyocefkR2b99ejjn6KNE4+ke36ISh++69t31s5kcfjZfhIx6wbdO6lSrhoGWzIIAAAggIj8XklwABBBIpQMIhkWGlUaUSiHL4d6kSDtrJXGrmEvCG2+u8ArroX7319gyd/0CXXAkHfZTmdTfcaJ8GofvoUw2WmMdJercRdDVzIexp5kTwFn1qxMV9Kx5PqX9p79qls0l2dLCP8uxvnlKh51911VVls2bN5AdTvjdJ4fFmBIXul2v5fPJkGTL0dtsO730t23uso/8pDN77VX9W16HX/Qpp5z33DpN3R4+2xTdpsomsvtpqMu3Lr+zTKnQSzUH9r7WJAJ3jQudL8OZQ0ASJPrLSq7MmGk4/9ZRM0qC6+n03f75ccull9nyarNGnTniPGrUbzT9a7h3mVoiJkybZTd4tMF6sW++wg53gUt/Ux4HeaCYD1Uel6qKjMlYyddPtGl996oYupUo4MIeD5eUfBBBAgIQDvwMIIJBIARIOiQwrjSqVQBISDoccdJD8/sfv9vGTmijQjvrGG21k7t8/STbeeOPfmnZwAABAAElEQVQMXa6Eg76pT4UYNny46VR/menw6+SMnc2jLdu2bZM53lt5wTy94vU3R4rOP6CLJhz27NjRruvtBw89/LDMmDHTvtZ/6pqEyL777COHdTo0sy3Xij7O8cUXX5LpM2Zkyvb2KzbhoOXk206dEPLRxx+Xt98eZZMnXh30NpGTTjzB2nrb9HYGHYWhT9jQDr0umjTQhIE+oUI7+95SXcJB3/fmXfD29Y+M8LbpbS76eM7xEyfaR2LqdrXVJI5OWqkJJ2/RR2rq7ROfT55ikxVaj1bmsacd9thDbr71VrtbqRIOUV5TXnv5iQACCLgowC0VLkaFOiGAQLECJByKFeR4BGIiULUDq3Mn6BwK66y9duZ2hkKaoh3t2bPnmCdBrG4fh1nIsVX31REFC8wIgLrmqQrrmnkktGPsypJvO3Uuh/nfz7e3mDQwIxu8J3XkaocmeubMnWtHEOitEaVcdASFTiSqiaX1GjWqNJ9D1fPqCIi5c+bKBhtuEFkMmMOhahR4jQACaRUg4ZDWyNNuBJItQMIh2fGldQhkBKomHDJvsIIAAggggAACZRcg4VD2EFABBBAogQAJhxKgUmRyBeI8/JuEQ3J/L+PcMuZwiHP0qDsCCIQpQMIhTE3KQgABVwRIOLgSCeoRC4E4Jxx0ssdFixbZe/j9EzvGAp5KJlYgztdUYoNCwxBAoCwCJBzKws5JEUCgxAIkHEoMTPEIIIAAAtULMIdD9Ta8gwAC6RIg4ZCueNNaBNIiQMIhLZGmnQgggAACCCCAAALOCpBwcDY0VAwBBIoQIOFQBB6Hpk+A4d/pizktLq0AcziU1pfSEUAgPgIkHOITK2qKAAL5C5BwyN+KPREQEg78EiAQrgDXVLielIYAAvEVIOEQ39hRcwQQqF6AhEP1NryDAAIIIFBiAeZwKDEwxSOAQGwESDjEJlRUFAEEChAg4VAAFrsigAACCCCAAAIIIFAKARIOpVClTAQQKLcACYdyR4Dzx0qA4d9uh+v333+XV197TZYsWSr77bevrFKvXl4VXrhwobz86qvSaN117WND8zqInUIRYA6HUBgpBAEEEiBAwiEBQaQJCCCQJUDCIYuEDQhUL0DCoXqbqN6ZPWeOfPLJJ/Z0++y9t6ywwgqZU48dO07+dffd9vXRRx4p+5ukg7d8POkTmTt3jqxRfw1p125nb7P9Ofz+B+StUaPs+uV9+0qTJptUep8XpRPgmiqdLSUjgEC8BEg4xCte1BYBBPITIOGQnxN7IYCAIwLvvTda7h42zNbmjttuk7p1V8rU7Itp02TQ9TfY12eefpq02WmnzHv33DtM3h09Wpo2bSKXXXJJZruuPPf88/Lk08/Y5MV1A/rLWmutVel9XpROgDkcSmdLyQggEC8BEg7xihe1RQCB/ARIOOTnxF4IIOCIQE0JB63inLlzZam5paJp0ybmVcVSU8Lhf//7n0z94gtZu+Ha0rBhg4qDWEMAAQQQQCAiARIOEUFzGgQQiFSAhEOk3Jws7gIM/84/gpOnTJGpU7+Q6V9Pl/XWW0+2bN5cttl660q3QHzw4Ycye/YcO3dC69Y7yISJE2WaGaVQv3592drs27RJk8wJ333vPZk//3uz/2wZb/bT5cD997flbbTRhrJj69ayaNEiee31N+x77dvvahIIDeUpM3JBl4kffywzZ82SNddcU3bbdVe7rdV229nbJ6ZP/9q+rxsP63Sofc/7Z+68eeYWjk9FR0/onBDajm23bSmrrrqqt4v9+eeff8q0L7+UTz/9TGbNniWbNmsmLVq0sG1YbrnlKu3LiwoB5nCosGANAQTSLUDCId3xp/UIJFWAhENSI0u7SiJAwiE/Vu3kP2tuU6i6aFJAb3VYfvnl7Vv/9++7ZNz779vRCPVXW10mTppU6ZCTTjhedt9tN7vt+htvkilTp1Z633vRts1OcsZpp8m8b76Ry6640m7u0/t8mxw49Ywzvd2yfnrlj3zrLbl/xIP2/bv+75/iJQh03ofb77xT/vjjj0rHrteokVx8YR9ZffXV7fa//vpLbhk8RD77/PNK++mLIw8/TA484ICs7WxYJsA1xW8CAgggsEyAhAO/CQggkEQBEg5JjCptQqCMAv7O+/ZmBMHWW7eQr7+eIWNNYkGfIrHfvvvIMUcdZWvoJRz0RZ06daTNjjva+RNGjx0jCxb8YDv+g8ycCjpSYfRos+2HBTJj5iz5aPx4e/yhBx9sRjgsLxtuuKFs36pVzoSDzs+gy4fjJ8jMmTNt+R12X5bE2LZlS2ncuLH46+wlHGaZ0RD9B11n67zJJo1N3XayIyjeGzNGfvrpJ9FtV1x6qS17+tdfy7UDBtr1Y48+WrbYfHPT3nHyyquvyYorrij9rrxCNEnBki3AHA7ZJmxBAIF0CpBwSGfcaTUCSRcg4ZD0CNM+BCIWuOGmm0Vvp9jOdOZ79uieOfsTTz4lz7/4ou3w33jdILvdn3Dofd650mKrrex2TVBcM2CAXT/9lFNk553bZsqpaQ6HXCMcvANrmsMhV8Lh2eeek6eeedbe3qFJj7orLZuc8hNzy8QtgwfbYgf2v1bWXWcdeyvFwOuut9vOOuN0e3uHvhj3/gemTVtmRkLYHfgHAQQQQACBHAIkHHKgsAkBBGIvQMIh9iGkAVEKMPy7Zm2dx6DHuefKEjNpo87DoHMeeMtSM7rhhx9+sC9vGDRQGjRoIF7CQfe79eabKs3vcG7vC+Tnn3+WA/bbT4468givGIkq4aBJBU0urFy3rp33IVMBs/LNt9/al6edfLJ9xKZOOqm3cnjbV1llFdl8001lK5NA0bkk6q28sv9w1n0CzOHgw2AVAQRSLUDCIdXhp/EIJFaAhENiQ0vDSiFAwqFm1V9++UV6nne+3UlvkVi+mskSz+3V09524CUc9BaEi/pcUKnwiy7pK98vWCD777evHH3kkZn3oko4XHX1NWbyx9k2CbLiCitkzu9fOejAA+SgAw+0m3797Td56qmnZdwHH9hEibefJlZ6mZEeG5nbPliyBbimsk3YggAC6RQg4ZDOuNNqBJIuQMIh6RGmfQhELND3ssvl2+++kz07dJCux3XJnF3nb/jDjIDw/7Xf5YTD8PsfkLdGjZINN9jAzsHgTSSpDdKRF96EkV4Dtc2acNEna8yeM8c+reL5F14QTUTsvWdH6dK5s7crP30CzOHgw2AVAQRSLUDCIdXhp/EIJFaAhENiQ0vDECiPwL3D7pN3zCMsVzJzHvzjzDNka/NoyMWLF8vDjzwqE8yjKXWix7332tNWLkjCQSePvOvee+3xV152qZ300WtpTXM4ePXSEQdXX3VlpcRHrjkc/Oc56ojDpYNJoOhIh3fefVceevgR2b19eznm6KNsO72ncqyxxhrS74rLM8mIW4cMkUnmkZpV57Pw6stPBBBAAAEEPAESDp4EPxFAIEkCJBySFE3aUnIBhn/XTrxw4UK57oYbZf7339ud65n5GZYsWSL66EhdunbpInt27GDXgyQctNyL+y57OoQWoiMPunbpLB1NQqCmhMO7Jglyj0mGeMfoT008bLD++jmfUqGPwrzjzn9mHtXp3SKyZOlSW0brHXaQs89a9sjNOXPnSn/zlAp9b9VVV5XNmjWTH4yD3pKhy/FmpIfWjyVbgDkcsk3YggAC6RQg4ZDOuNNqBJIuQMIh6RGmfaEKkHDIj1MfaTls+HD79Ialf3fQdRLJzuaRkW3btskUEiThoAe/YJ528fqbI+XHH3+0ZWnCYc+OHWtMOCw2SY8HH3xIPvjwQ5sY0AM14aC3TOQa4aDv620gI8wx4ydOtI/E1G36tApNHhxx+GGVJrn8Yto0M/LhYZkxY6buZhfdd9999pHDOh3qbeJnFQGuqSogvEQAgdQKkHBIbehpOAKJFiDhkOjw0jgEyiugT62YPXuOeWLF6vZxmOWtTfCz61ModPSEjqZYr1Ej+7O60nSExwLzNI665ukW6667buZxmtXtn/btzOGQ9t8A2o8AAp4ACQdPgp8IIJAkARIOSYombUEAAQQQQAABBBCIpQAJh1iGjUojgEAtAiQcagHibQT8Agz/9muwjkDxAszhULwhJSCAQDIESDgkI460AgEEKguQcKjswSsEahQg4VAjD28iULAA11TBZByAAAIJFSDhkNDA0iwEUi5AwiHlvwA0HwEEECinAHM4lFOfcyOAgEsCJBxcigZ1QQCBsARIOIQlSTkIIIAAAggggAACCAQUIOEQEI7DEEDAaQESDk6Hh8q5JsDwb9ciQn3iLsAcDnGPIPVHAIGwBEg4hCVJOQgg4JIACQeXokFdnBcg4eB8iKhgzAS4pmIWMKqLAAIlEyDhUDJaCkYAgTIKkHAoIz6nRgABBNIuwBwOaf8NoP0IIOAJkHDwJPiJAAJJEiDhkKRo0hYEEEAAAQQQQACBWAqQcIhl2Kg0AgjUIkDCoRYg3kbAL8Dwb78G6wgUL8AcDsUbUgICCCRDgIRDMuJIKxBAoLIACYfKHrxCoEYBEg418vAmAgULcE0VTMYBCCCQUAESDgkNLM1CIOUCJBxS/gtA8xFAAIFyCjCHQzn1OTcCCLgkQMLBpWhQFwQQCEuAhENYkpSDAAIIIIAAAggggEBAARIOAeE4DAEEnBYg4eB0eKicawIM/3YtItQn7gLM4RD3CFJ/BBAIS4CEQ1iSlIMAAi4JkHBwKRrUxXkBEg7Oh4gKxkyAaypmAaO6CCBQMgESDiWjpWAEECijAAmHMuJzagQQQCDtAszhkPbfANqPAAKeAAkHT4KfCCCQJAESDkmKJm1BAAEEEEAAAQQQiKUACYdYho1KI4BALQIkHGoB4m0E/AIM//ZrsI5A8QLM4VC8ISUggEAyBEg4JCOOtAIBBCoLkHCo7MErBGoUIOFQIw9vIlCwANdUwWQcgAACCRUg4ZDQwNIsBFIuQMIh5b8ANB8BBBAopwBzOJRTn3MjgIBLAiQcXIoGdUEAgbAESDiEJUk5CCCAAAIIIIAAAggEFCDhEBCOwxBAwGkBEg5Oh4fKuSbA8G/XIkJ94i7AHA5xjyD1RwCBsARIOIQlSTkIIOCSAAkHl6JBXZwXIOHgfIioYMwEuKZiFjCqiwACJRMg4VAyWgpGAIEyCpBwKCM+p0YAAQTSLsAcDmn/DaD9CCDgCZBw8CT4iQACSRIg4ZCkaNIWBBBAAAEEEEAAgVgKkHCIZdioNAII1CJAwqEWIN5GwC/A8G+/BusIFC/AHA7FG1ICAggkQ4CEQzLiSCsQQKCyAAmHyh68QqBGARIONfLwJgIFC3BNFUzGAQggkFABEg4JDSzNQiDlAiQcUv4LQPMRQACBcgowh0M59Tk3Agi4JEDCwaVoUBcEEAhLgIRDWJKUgwACCCCAAAIIIIBAQAESDgHhOAwBBJwWIOHgdHionGsCDP92LSLUJ+4CzOEQ9whSfwQQCEuAhENYkpSDAAIuCZBwcCka1MV5ARIOzoeICsZMgGsqZgGjugggUDIBEg4lo6VgBBAoowAJhzLic2oEEEAg7QLM4ZD23wDajwACngAJB0+CnwggkCQBEg5JiiZtQQABBBBAAAEEEIilAAmHWIaNSiOAQC0CJBxqAeJtBPwCDP/2a7COQPECzOFQvCElIIBAMgRIOCQjjrQCAQQqC5BwqOzBKwRqFCDhUCMPbyJQsADXVMFkHIAAAgkVIOGQ0MDSLARSLkDCIeW/ADQfAQQQKKcAcziUU59zI4CASwIkHFyKBnVBAIGwBEg4hCVJOakS0E5S2zZtUtVmGosAAggggAACpRMg4VA6W0pGAIHyCZBwKJ89Z46pwGbNt7Q1nzZlckxbQLURcEdArydN3o24f7g7laImCCCAQBkESDiUAZ1TIoBAyQVIOJScmBMkTUDvOV9uOZE2ppPEKIekRZf2RCmgI4W6nnAiCYco0TkXAgg4K0DCwdnQUDEEEChCgIRDEXgcigC3VvA7gEBxAszhUJwfRyOAQHIESDgkJ5a0BAEEKgRIOFRYsIZAQQLMrl8QFzsjkBHQJINeP9xGkSFhBQEEEBASDvwSIIBAEgVIOCQxqrQpEgEv4dCrR3fp0b27MNohEnZOEmMB7xrxrh1NOHBbUowDStURQCBUARIOoXJSGAIIOCJAwsGRQFCNeAp4HSitfdXJJIt5reX6723nNR5J+H3oaRJzPU2CTpfbhg61iTr7gn8QQAABBBjhwO8AAggkUoCEQyLDSqPKIaAdQl28YeIkHComAyRhku6EiV4XVa8H3caCAAIIIFAhwAiHCgvWEEAgOQIkHJITS1qCAAI+Ab64+TBYRQABBBBwXoDPLedDRAURQCCAAAmHAGgcggAC7gvwxc39GFFDBBBAAIEKAT63KixYQwCB5AiQcEhOLGkJAgj4BPji5sNgFQEEEEDAeQE+t5wPERVEAIEAAiQcAqBxCAIIuC/AFzf3Y0QNEUAAAQQqBPjcqrBgDQEEkiNAwiE5saQlCCDgE+CLmw+DVQQQQAAB5wX43HI+RFQQAQQCCJBwCIDGIQgg4L4AX9zcjxE1RAABBBCoEOBzq8KCNQQQSI4ACYfkxJKWIICAT4Avbj4MVhFAAAEEnBfgc8v5EFFBBBAIIEDCIQAahyCAgPsCfHFzP0bUEAEEEECgQoDPrQoL1hBAIDkCJBySE0taggACPgG+uPkwWEUAAQQQcF6Azy3nQ0QFEUAggAAJhwBoHIIAAu4L8MXN/RhRQwQQQACBCgE+tyosWEMAgeQIkHBITixpCQII+AT44ubDYBUBBBBAwHkBPrecDxEVRACBAAIkHAKgcQgCCLgvwBc392NEDRFAAAEEKgT43KqwYA0BBJIjQMIhObGkJQgg4BPgi5sPg1UEEEAAAecF+NxyPkRUEAEEAgiQcAiAxiEIIOC+AF/c3I8RNUQAAQQQqBDgc6vCgjUEEEiOAAmH5MSSliCAgE+AL24+DFYRQAABBJwX4HPL+RBRQQQQCCBAwiEAGocggID7Anxxcz9G1BABBBBAoEKAz60KC9YQQCA5AiQckhNLWoIAAj4Bvrj5MFhFAAEEEHBegM8t50NEBRFAIIAACYcAaByCAALuC/DFzf0YUUMEEEAAgQoBPrcqLFhDAIHkCJBwSE4saQkCCPgE+OLmw2AVAQQQQMB5AT63nA8RFUQAgQACJBwCoHEIAgi4L8AXN/djRA0RQAABBCoE+NyqsGANAQSSI0DCITmxpCUIIOAT4IubD4NVBBBAAAHnBfjccj5EVBABBAIIkHAIgMYhCCDgvgBf3NyPETVEAAEEEKgQ4HOrwoI1BBBIjgAJh+TEkpYggIBPgC9uPgxWEUAAAQScF+Bzy/kQUUEEEAggQMIhABqHIICA+wJ8cXM/RtQQAQQQQKBCgM+tCgvWEEAgOQIkHJITS1qCAAI+Ab64+TBYRQABBBBwXoDPLedDRAURQCCAAAmHAGgcggAC7gvwxc39GFFDBBBAAIEKAT63KixYQwCB5AiQcEhOLGkJAgj4BPji5sNgFQEEEEDAeQE+t5wPERVEAIEAAiQcAqBxCAIIuC/AFzf3Y0QNEUAAAQQqBPjcqrBgDQEEkiNAwiE5saQlCCDgE+CLmw+DVQQQQAAB5wX43HI+RFQQAQQCCJBwCIDGIQgg4L4AX9zcjxE1RAABBBCoEOBzq8KCNQQQSI4ACYfkxJKWIICAT4Avbj4MVhFAAAEEnBfgc8v5EFFBBBAIIEDCIQAahyCAgPsCfHFzP0bUEAEEEECgQoDPrQoL1hBAIDkCJBySE0taggACPgG+uPkwWEUAAQQQcF6Azy3nQ0QFEUAggAAJhwBoHIIAAu4L8MXN/RhRQwQQQACBCgE+tyosWEMAgeQIkHBITixpCQII+AT44ubDYBUBBBBAwHkBPrecDxEVRACBAAIkHAKgcQgCCLgvwBc392NEDRFAAAEEKgT43KqwYA0BBJIjQMIhObGkJQgg4BPgi5sPg1UEEEAAAecF+NxyPkRUEAEEAgiQcAiAxiEIIOC+AF/c3I8RNUQAAQQQqBDgc6vCgjUEEEiOAAmH5MSSliCAgE+AL24+DFYRQAABBJwX4HPL+RBRQQQQCCBAwiEAGocggID7Anxxcz9G1BABBBBAoEKAz60KC9YQQCA5AiQckhNLWoIAAj4Bvrj5MFhFAAEEEHBegM8t50NEBRFAIIAACYcAaByCAALuC/DFzf0YUUMEEEAAgQoBPrcqLFhDAIHkCJBwSE4saQkCCPgE+OLmw2AVAQQQQMB5AT63nA8RFUQAgQACJBwCoHEIAgi4L8AXN/djRA0RQAABBCoE+NyqsGANAQSSI0DCITmxpCUIIOAT4IubD4NVBBBAAAHnBfjccj5EVBABBAIIkHAIgMYhCCDgvgBf3NyPETVEAAEEEKgQ4HOrwoI1BBBIjgAJh+TEkpYggIBPgC9uPgxWEUAAAQScF+Bzy/kQUUEEEAggQMIhABqHIICA+wJ8cXM/RtQQAQQQQKBCgM+tCgvWEEAgOQIkHJITS1qCAAI+Ab64+TBYRQABBBBwXoDPLedDRAURQCCAAAmHAGgcggAC7gvwxc39GOVbw7HjxsmQ24ba3UfcP9z+7HrCibw2AnHyaNumjfTs0V28ePK6eI+2bdvYa8OztBcF/8RWgM+t2IaOiiOAQA0CJBxqwOEtBBCIrwBf3OIbO625l2DQDqoumzXf0v6cNmUyr2PqoZ1iTZBowkETRrwu3kMNhwwdal11XW110XWW+AnwuRW/mFFjBBCoXYCEQ+1G7IEAAjEU4ItbDIPmq7KXYOjZvXvmr+L6tteRqtqx4nXljiYe6fDwLhnvutBEjsbeu2689/kZDwE+t+IRJ2qJAAKFCZBwKMyLvRFAICYCfHGLSaCqqaZ2msaZ/3qYhAMLAgjkJ6Ajg/Ta8W61ye8o9nJFgM8tVyJBPRBAIEwBEg5halIWAgg4I8AXN2dCkXdFtKOkHSa9jcL7i23eB7MjAghUEvCupUobeeG0AJ9bToeHyiGAQEABEg4B4TgMAQTcFuCLm9vxyVU7bzi4Jhv4C20uIbYhkJ+AJht0bgdurcjPy5W9+NxyJRLUAwEEwhQg4RCmJmUhgIAzAnxxcyYUBVVEO0o68z4jHApiY2cEsgR0HpReZrQQtyVl0Ti7gc8tZ0NDxRBAoAgBEg5F4HEoAgi4K8AXN3djQ80QQAABBLIF+NzKNmELAgjEX4CEQ/xjSAsQQCCHAF/ccqA4vMmbv0FHNniPwnS4ulQNgVgIMGIoFmHKVJLPrQwFKwggkCABEg4JCiZNQQCBCgG+uFVYxGGNe87jECXqGCcBrqk4RWtZXfncil/MqDECCNQuQMKhdiP2QACBGArwxS1eQdMRDrowd0O84kZt3RXQhINeVzz1xd0YVa0Zn1tVRXiNAAJJECDhkIQo0gYEEMgS4ItbFgkbEEAAAQQcFuBzy+HgUDUEEAgsQMIhMB0HIoCAywJ8cXM5Otl1Yw6HbBO2IFCsACOHihWM9ng+t6L15mwIIBCNAAmHaJw5CwIIRCzAF7eIwYs8HfebFwnI4QhUEeCaqgISg5d8bsUgSFQRAQQKFiDhUDAZByCAQBwE+OIWhyhV1JG/xFZYsIZAGALM4RCGYrRl8LkVrTdnQwCBaARIOETjzFkQQCBiAb64RQzO6RBAAAEEihLgc6soPg5GAAFHBUg4OBoYqoUAAsUJ8MWtOL+oj2YOh6jFOV8aBBg5FK8o87kVr3hRWwQQyE+AhEN+TuyFAAIxE+CLW7wCxv3m8YoXtXVfgGvK/RhVrSGfW1VFeI0AAkkQIOGQhCjSBgQQyBLgi1sWidMb+Eus0+GhcjEUYA6H+AWNz634xYwaI4BA7QIkHGo3Yg8EEIihAF/cYhg0qowAAgikWIDPrRQHn6YjkGABEg4JDi5NQyDNAnxxi1f0mcMhXvGitvEQYORQPOLk1ZLPLU+CnwggkCQBEg5JiiZtQQCBjABf3DIUsVjhfvNYhIlKxkiAaypGwfq7qnxuxS9m1BgBBGoXIOFQuxF7IIBADAX44havoPGX2HjFi9q6L8AcDu7HqGoN+dyqKsJrBBBIggAJhyREkTYggECWAF/cskjYgAACCCDgsACfWw4Hh6ohgEBgARIOgek4EAEEXBbgi5vL0cmuG3M4ZJuwBYFiBRg5VKxgtMfzuRWtN2dDAIFoBEg4ROPMWRBAIGIBvrhFDF7k6bjfvEhADkegigDXVBWQGLzkcysGQaKKCCBQsAAJh4LJOAABBOIgwBe3OESpoo78JbbCgjUEwhBgDocwFKMtg8+taL05GwIIRCNAwiEaZ86CAAIRC/DFLWJwTocAAgggUJQAn1tF8XEwAgg4KkDCwdHAUC0EEChOgC9uxflFfTRzOEQtzvnSIMDIoXhFmc+teMWL2iKAQH4CJBzyc2IvBBCImQBf3OIVMO43j1e8qK37AlxT7seoag353KoqwmsEEEiCAAmHJESRNiCAQJYAX9yySJzewF9inQ4PlYuhAHM4xC9ofG7FL2bUGAEEahcg4VC7EXsggEAMBfjiFsOgUWUEEEAgxQJ8bqU4+DQdgQQLkHBIcHBpGgJpFuCLW7yizxwO8YoXtY2HACOH4hEnr5Z8bnkS/EQAgSQJkHBIUjRpCwIIZAT44pahiMUK95vHIkxUMkYCXFMxCtbfVeVzK34xo8YIIFC7AAmH2o3YAwEEYijAF7d4BY2/xMYrXtTWfQHmcHA/RlVryOdWVRFeI4BAEgRIOCQhirQBAQSyBPjilkXCBgQQQAABhwX43HI4OFQNAQQCC5BwCEzHgQgg4LIAX9xcjk523ZjDIduELQgUK8DIoWIFoz2ez61ovTkbAghEI0DCIRpnzoIAAhEL8MUtYvAiT8f95kUCcjgCVQS4pqqAxOAln1sxCBJVRACBggVIOBRMxgEIIBAHAb64xSFKFXXkL7EVFqwhEIYAcziEoRhtGXxuRevN2RBAIBoBEg7ROHMWBBCIWIAvbhGDczoEEEAAgaIE+Nwqio+DEUDAUQESDo4GhmohgEBxAnxxK84v6qOZwyFqcc6XdAG9psaOHSdt27aRtm3aJL25iWgfn1uJCCONQACBKgIkHKqA8BIBBJIhwBe3eMWR+83jFS9q674A15T7MapaQz63qorwGgEEkiBAwiEJUaQNCCCQJcAXtywSpzcwh4PT4aFyMRTQa2qc+a+NGd3ACId4BJDPrXjEiVoigEBhAiQcCvNibwQQiIkAX9xiEiiqiQACCCBgBfjc4hcBAQSSKEDCIYlRpU0IICB8cYvXLwFzOMQrXtTWfQHmcHA/RlVryOdWVRFeI4BAEgRIOCQhirQBAQSyBPjilkXi9AbuN3c6PFQuhgJcU/ELGp9b8YsZNUYAgdoFSDjUbsQeCCAQQwG+uMUraMzhEK94UVv3BZjDwf0YVa0hn1tVRXiNAAJJECDhkIQo0gYEEMgS4ItbFgkbEEAAAQQcFuBzy+HgUDUEEAgsQMIhMB0HIoCAywJ8cXM5Otl1Yw6HbBO2IFCMAHM4FKNXnmP53CqPO2dFAIHSCpBwKK0vpSOAQJkE+OJWJviAp+V+84BwHIZANQJcU9XAOLyZzy2Hg0PVEEAgsAAJh8B0HIgAAi4L8MXN5ehk1405HLJN2IJAMQLM4VCMXnmO5XOrPO6cFQEESitAwqG0vpSOAAJlEuCLW5ngOS0CCCCAQCABPrcCsXEQAgg4LkDCwfEAUT0EEAgmwBe3YG7lOoo5HMolz3mTKsAcDvGLLJ9b8YsZNUYAgdoFSDjUbsQeCCAQQwG+uMUraNxvHq94UVv3Bbim3I9R1RryuVVVhNcIIJAEARIOSYgibUAAgSwBvrhlkTi9gTkcnA4PlYuhAHM4xC9ofG7FL2bUGAEEahcg4VC7EXsggEAMBfjiFsOgUWUEEEAgxQJ8bqU4+DQdgQQLkHBIcHBpGgJpFuCLW7yiX+45HKZ9+aXMnDmzVrTVVltN2uy0U637pW2HX3/9VcaMHWubvX2rVrLWWmuljcC59jKHg3MhqbVCfG7VSsQOCCAQQwESDjEMGlVGAIHaBfjiVruRS3uU+37zRx97XF565ZVaSRpvvLFcefllte6Xth3mffONXHbFlbbZfXqfL1s2b54Ygt8WL5a33nrLtqd169ayztprx6Jt5b6mYoHkWCX53HIsIFQHAQRCESDhEAojhSCAgGsCfHFzLSLL6jN+wgSZYP47uVu3ShUs9xwOL7z4oox8++1MnRb9vEiWLF0qyy+/vPlr/ZqZ7Rusv76c27Nn5jUrywSSnHBYsOAHufCSS2xDe/XoIdu23CYWYa9pDge9DnXR0Sgs7gjwueVOLKgJAgiEJ0DCITxLSkIAAYcE+OLmUDD+rop2cnqee559dUq3k7KSDi7V+J5hw+Td90bLGmusITffcL1LVXOyLiQcnAxLzkr5r8NRI9/MuQ8byyPA51Z53DkrAgiUVoCEQ2l9KR0BBMokwBe3MsHXctp7TUf+nmH32b38SYdyz+FQtdq1JRz++9//yqRPPpEpU6aKDrnXWwhamr98r7vOOpmiFi1aJK+9/oZ9vcfuu8mcufPkk08mSd26K0urVttJ0yZNZOHChfL+Bx/KN+aWhMaNN5add95ZVq5bN1PGBx9+KLNnz5FG664rrVvvIG+Peke+/Oor+36LrbaUHc0Q/3r16mX291a+X7DAnOsT0bkpFi9eIptt2kyab9FcmjZt4u1if/rL38qUN3bc+/LTf3+Swzt1kjp16th9xo4dJ19Mmybffved1K+/urTYaitpZ+qpoz+8pdCEQ21+M2fNko8+Gm+L79hhD5v48c71008/yZsjl93isMMO24ve5qJLbWXqPlVjsuiXX+TTTz+V779fYIw2lW23bSmrrLKK7iqTp0yRyZOnGL/f5NW/49i2zU4mxusa85Vlv333tfvpP7PnzDHen8rUqVOl0XqNjFEL4725rLTSSpl9ol7JNYeDP9ngv/6irhvnyy3A51ZuF7YigEC8BUg4xDt+1B4BBKoR0L+k65drvlRXA1TGzbmSDq7db15TwkE789fdcKP88MMPlRTrms5l7/PPk02bNbPb/Z1wHbquv4/esuKKK8oJXY+T5194Ub6bP9/bbDu95593rmhZuvzfv++Sce+/LxtvtJGsuuqqthOc2dmsbLJJY+nTu7fUW3nlzOapX3wh6qmJEP+y3HLLyXGdO8ueHTtkNnvlr7/eejaBMGfuXPve0CGDZSWTcLj9jjtl4qRJmf29FU06nH9uL9EydfG3tbY5HPLx89/GoE4d9tjDO7WMNPMp3D/iQfv6uoEDZO2GDSWfMqvW88D99zeJhNfl999/z5S90YYbykV9LrBJh2eefU6efvbZzHv+Ff/Il2fMPk+bfasu22zdwt5+4xlVfb/Ur6teUyQbSi1eXPlefPT/FUNuvaW4wjgaAQQQcEiAhINDwaAqCCAQnoC/U8uXt/BcwyrpXjPKweuAa1KoRYsWtui2bdqEdYqiyqku4bDUzOtw+ZVX2Q6uPomhXdu2JhGwih0ZoH+V19EGV195hTRo0KBSJ1wTArubUQ4rLL+CvP7GG3Z+CK2gdvR3a7+rGYnwlXw0ftlf9M8+60xpvcMOtv5eQkBf6IiDHbZvZUZGNLVJiK+mT7f7bL/ddtL9nLPtuv6lvf/AQaL11JESO+24oxmVUF/eGzPGjqbQnU47+WRp125nu7+//BVWWEG22rK5NGzQULp0PlZGm2Puu/8Bu9+hBx8szZtvIZ999rk8b+a70OWsM0635et6vgmHQvyu7t9fZsyYKa223VZ6dD9HT2OXobffIeMnTpSNzciGq8wEnoWU6a+nFqZzcrTbua189dV0m1j566+/pP0uu5jbfU4STdzoiIVff/tNXn7lVXvuXYybjjZZeeV6svdee8r//vc/OadHTxtPfW+vjnua0Q6zZfgDI+TPP/+0Cc9dTXnlWPxzOOhIC+92Ju3QavtY3BHQeW1yjfxyp4bUBAEEEAguQMIhuB1HIoCA4wL+pIPjVU199VwbiVJdwkE7oTq6QZfLzESCTZs2MWsiv5ih+RdefIksXrJETj7pRGm/666VOuEHHXCAHHH4YXZfr2x9ccWll9pRCto5Pbf3BaKPl9x/v33l6COPtPv6EwI9TFKhlUkueIv3niYihg6+VXTUhE5++fiTT9ldBva/NnOLh3akL+p7qR2VsV3LltKzR/es8r26eOVrnT41CYZvv/1W9tl7L2+zXHFVP3N7yFw5YL/95Kgjj7Db/R35mkY4FOL33PPPy5NPP2NHewy+5WabcPnjjz+k13nnW+fDOx0qBx90kE0MBInJ5pttJhdf2CfTLh0RoKM59LYYtfMW/2iLqpNG6ugIrY9OMKpGRxx2mL2N4uNJn8i6664j6zVq5BVTtp/eX87LVgFOnLeAa/8fzLvi7IgAAgjUIEDCoQYc3kIAgfgL6Jdt/Ws6i3sC3ggH/Ytr1+O62NsAdISD1xkuZ429pIB/6LzWx+vQ62iAqo9HXPjjQlmyZKnsZpIN3UzSwd8JP69XL9Eh9ro8/8IL8sRTT9sRCLffNsRu03/6XdtfZs6cKbu3by8nnXiC3e4lFfR2iltuvEH0vN7ysekcDzadZF0uveRiada0qdwyeLB88uln9raOvhdf5O1qf3qP/tTRFjrqR+dg8MrXWwn6mZEZVRcdRaHzPMybN8+2Td+fNXu2TYz46+lva00Jh0L85ppz6mgSXXqb20z0No7PJ0+WG29eNtxc66v1LqRMfz01qaPJHW95c+RIeeDBh+zLf94+NDOHRU0JB9152H3DZdS779rjNPmzSePGy+a5MCMe/HN62B0i/Mc/h8Nnn32W+Qu6VkGvORZ3BLY3c7roUvXpPe7UkJoggAACwQVIOAS340gEEEAAgQAC/r+4evcrV73fPECxoR5SXcLhPw8/bCcQ1PvydY6DXMvmm28mmmDwd279nXAv4aCTE97mu1e7poSDztWgIxD8i07i2Peyy+0mb/TDlf2uthMY7rpLOzOcv5t/dzPh5Ch7i4TWXRMOq5jbP7yEwxabb27nLvAf8J55Ssew+++3twb4t3vrQRIOhfjpeS69/Ar5xoyw2HefveXYo4+WRx9/XF56+RV7W8OAa6+xVSmkTH9MLjDzbWy15ZZec2T06DFy17332td3DL0tM49GbQkHva3i1ddel7fMY1W1rt6itzF0O/FE0Ykmy7FUvab8I740/iQdyhEVzokAAgikT4CEQ/piTosRQACBsgnkSjZoZfSvsbq4PoeDPrHhX3ffbUcaXDegv+g8Dt7y888/y+qrr+69DDXhoIUOMufzj6rw/rKv7910/XWy5ppryv1m7oCRpuOryQwdEaG3WXiLN/rBP5qhpoRDv2uuFZ2XQjvlJxzfNfOkiKtMUmP+999XGonh78j7kyveub2fhfjpMY8/8aS88NJLdq6Fa/pdlfN2jkLKrKmeQRMOGvcZM2fZESyanJgydYq8+NLLoiM0/NaeQVQ//XM4eNcVSYeo9DkPAggggIAnQMLBk+AnAggggEBJBapLNpT0pAELr26Eg/+v3W122kmOOuIIM0HkWvaxkYOH3CabbbapHN+1q00MVNe5DTLCQZuhE0keZuYt0HkB9LaJEQ8+aCevbNiwgVw/cKBtqT7RQpMIuuzVsYPsax7duKpJPugEkA89/IjoXA57dewox3XpbPepKeHQ08xNoHNTaDnHdeli9/eXr48C1VECOmKiurbag3z/FOKnh03/+mu5dsCytul8C4Ouv8GW5t1Coi8KKbOmeuaTcNBRFjrawlt0jgtN5OgoB62fzguhy0svv2xGYzyRdduMd1w5f/qTDqNGvlnOqnBuBBBAAIEUCJBwSEGQaSICCCDgioB2dsZPmJj12Df9a6wOAXd9Dgd19I8s0M62jibQjrkuOgLhCvPkBL1dobrObZCEg87doJ1aTRjokzB+M09O0EXnYTjz9NNkx9at7WudVFGTCN4TL7R+OsrBe/SjPpVBH2fpjcyoKeHwr7vusk/f0IL1sZyLzWM2dWSDPqVBb+fQxZvjorq22p2q/JOvnx6mbe5jJuNcuHChPddPP/1k637DoIGZR3LqfvmWWVM9q0s4aB0u6tvXJjb0XGqqyZ9/nHmGqLfexqK3UmiMmm+xhd2mc1/oexoX3a8ci38OB2+Eg1cPvQ51Yc4Ay8A/CCCAAAIlFCDhUEJcikYAAQQQyE+g6v3m+R1Vur2qG+HgnfGVV1+TN95803bAdZt2NltuvbWdLNK7raK6zm2QhIPOsdCxwx72cYteskEfvXlEp06ZR1x6ddOkxCOPPirjPvhQtIOuiz4iU2+N0Mch6gSU3lJTwkHPo0kHfeKCt2hHW8vQR1PqEydWW201e+tGdW31jqv6Mx8/75gHH3pIXn9zpPey0giNzEazkk+ZNdWzuoSDnmOCeQzn0888a28x0df+RIImQ0aYySYnfPyxTZDo+15SQif/1ORTORbXrqlyGHBOBBBAAIHyC5BwKH8MqAECCCCQegHX5nDINyDa2fzvf3+WDTZYP/NUg3yPzWe/qgkBfQrGd999K3XMhIT5PHLx+wUL7MiEDTfYoNKIgHzO7e2jj+rUv+Cv3bCh1K9f39scys9S+JWizHwaq6Nc5s//3iYd9JGY/sROPseHvU+uORzCPgflIYAAAgggUJsACYfahHgfAQQQQACBMglUTTiUqRqcFgEEEEAAAQQQCCRAwiEQGwchgAACCIQp4NocDmG2rZiySDgUo5fuY2uawyHdMrQeAQQQQCBKARIOUWpzLgQQQACBnALcb56TRR557DGZZOZQaNJkEzn15JNz78RWBHIIcE3lQGETAggggEDkAiQcIifnhAgggAACVQXiOodD1XbwGgFXBJjDwZVIUA8EEEAg3QIkHNIdf1qPAAIIIIAAAggggAACCCCAQEkESDiUhJVCEUAAAQQKEWAOh0K02BeB2gWYw6F2I/ZAAAEEECi9AAmH0htzBgQQQACBWgS437wWIN5GoEABrqkCwdgdAQQQQKAkAiQcSsJKoQgggAAChQgwh0MhWuyLQO0CzOFQuxF7IIAAAgiUXoCEQ+mNOQMCCCCAAAIIIIAAAggggAACqRMg4ZC6kNNgBBBAwD0B5nBwLybUKN4CzOEQ7/hRewQQQCApAiQckhJJ2oEAAgjEWID7zWMcPKrupADXlJNhoVIIIIBA6gRIOKQu5DQYAQQQcE+AORzciwk1ircAczjEO37UHgEEEEiKAAmHpESSdiCAAAIIIIAAAggggAACCCDgkAAJB4eCQVUQQACBtAowh0NaI0+7SyXAHA6lkqVcBBBAAIFCBEg4FKLFvggggAACJRHgfvOSsFJoigW4plIcfJqOAAIIOCRAwsGhYFAVBBBAIK0CzOGQ1sjT7lIJMIdDqWQpFwEEEECgEAESDoVosS8CCCCAAAIIIIAAAggggAACCOQlQMIhLyZ2QgABBBAopQBzOJRSl7LTKMAcDmmMOm1GAAEE3BMg4eBeTKgRAgggkDoB7jdPXchpcIkFuKZKDEzxCCCAAAJ5CZBwyIuJnRBAAAEESinAHA6l1KXsNAowh0Mao06bEUAAAfcESDi4FxNqhAACCCCAAAIIIIAAAggggEDsBUg4xD6ENAABBBCIvwBzOMQ/hrTALQHmcHArHtQGAQQQSKsACYe0Rp52I4AAAg4JcL+5Q8GgKokQ4JpKRBhpBAIIIBB7ARIOsQ8hDUAAAQTiL8AcDvGPIS1wS4A5HNyKB7VBAAEE0ipAwiGtkafdCCCAAAIIIIAAAggggAACCJRQgIRDCXEpGgEEEEAgPwHmcMjPib0QyFeAORzylWI/BBBAAIFSCpBwKKUuZSOAAAII5CXA/eZ5MbETAnkLcE3lTcWOCCCAAAIlFCDhUEJcikYAAQQQyE+AORzyc2IvBPIVYA6HfKXYDwEEEECglAIkHEqpS9kIIIAAAggggAACCCCAAAIIpFSAhENKA0+zEUAAAZcEmMPBpWhQlyQIMIdDEqJIGxBAAIH4C5BwiH8MaQECCCAQewHuN499CGmAYwJcU44FhOoggAACKRUg4ZDSwNNsBBBAwCUB5nBwKRrUJQkCzOGQhCjSBgQQQCD+AiQc4h9DWoAAAggggAACCCCAAAIIIICAcwIkHJwLCRVCAAEE0ifAHA7pizktLq0AcziU1pfSEUAAAQTyEyDhkJ8TeyGAAAIIlFCA+81LiEvRqRTgmkpl2Gk0Aggg4JwACQfnQkKFEEAAgfQJMIdD+mJOi0srwBwOpfWldAQQQACB/ARIOOTnxF4IIIAAAggggAACCCCAAAIIIFCAAAmHArDYFQEEEECgNALM4VAaV0pNrwBzOKQ39rQcAQQQcEmAhINL0aAuCCCAQEoFuN88pYGn2SUT4JoqGS0FI4AAAggUIEDCoQAsdkUAAQQQKI0AcziUxpVS0yvAHA7pjT0tRwABBFwSIOHgUjSoCwIIIIAAAggggAACCCCAAAIJESDhkJBA0gwEEEAgzgLM4RDn6FF3FwWYw8HFqFAnBBBAIH0CJBzSF3NajAACCDgnwP3mzoWECsVcgGsq5gGk+ggggEBCBEg4JCSQNAMBBBCIswBzOMQ5etTdRQHmcHAxKtQJAQQQSJ8ACYf0xZwWI4AAAggggAACCCCAAAIIIFByARIOJSfmBAgggAACtQkwh0NtQryPQGECzOFQmBd7I4AAAgiURoCEQ2lcKRUBBBBAoAAB7jcvAItdEchDgGsqDyR2QQABBBAouQAJh5ITcwIEEEAAgdoEmMOhNiHeR6AwAW/UUM8e3aVtmzaFHczeCCCAAAIIhCRAwiEkSIpBAAEEEEAAAQQQQAABBBBAAIEKARIOFRasIYAAAgiUUcAbAj5tyuQy1oJTI5AMga4nnCiMbkhGLGkFAgggEGcBEg5xjh51RwABBBIk4CUcRtw/nCHgCYorTYleQG+n0ISD3kqh1xMLAggggAAC5RIg4VAuec6LAAIIIFBJQDtJ3GteiYQXCAQWYF6UwHQciAACCCAQogAJhxAxKQoBBBBAoHgBb7I7/jJbvCUlpE+AxF36Yk6LEUAAAZcFSDi4HB3qhgACCKRQQIeCa6eJWytSGHyaXJSAd1tSz+7d7fwNRRXGwQgggAACCIQgQMIhBESKQAABBBAIV+C2oUOlh+k06aIJCF00AaGJiLFjza0XbdvY2y94jUfafx80yaC3IukEkbruJevsRcM/CCCAAAIIlFmAhEOZA8DpEUAAAQSqF9DOk3/yO17jwe9DxWSQ3vWgVxBPd6n+/yO8gwACCCBQPgESDuWz58wIIIAAAnkIaKdKF29CSR39oIs3AoLX0Xpsv+NO1n/8B+/bn/hH61/VW68P79qwAeEfBBBAAAEEHBIg4eBQMKgKAggggAACrgvs1qGjreKokW+6XlXqhwACCCCAAAJlFiDhUOYAcHoEEEAAAQTiJEDCIU7Roq4IIIAAAgiUV4CEQ3n9OTsCCCCAAAKxEiDhEKtwUVkEEEAAAQTKKkDCoaz8nBwBBBBAAIF4CZBwiFe8qC0CCCCAAALlFCDhUE59zo0AAggggEDMBEg4xCxgVBcBBBBAAIEyCpBwKCM+p0YAAQQQQCBuAiQc4hYx6osAAggggED5BEg4lM+eMyOAAAIIIBA7ARIOsQsZFUYAAQQQQKBsAiQcykbPiRFAAAEEEIifAAmH+MWMGiOAAAIIIFAuARIO5ZLnvAgggAACCMRQgIRDDINGlRFAAAEEECiTAAmHMsFzWgQQQAABBOIoQMIhjlGjzggggAACCJRHgIRDedw5KwIIIIAAArEUIOEQy7BRaQQQQAABBMoiQMKhLOycFAEEEEAAgXgKkHCIZ9yoNQIIIIAAAuUQIOFQDnXOiQACCCCAQEwFSDjENHBUGwEEEEAAgTIIkHAoAzqnRAABBBBAIK4CJBziGjnqjQACCCCAQPQCJByiN+eMCCCAAAIIxFaAhENsQ0fFEUAAAQQQiFyAhEPk5JwQAQQQQACB+AqQcIhv7Kg5AggggAACUQuQcIhanPMhgAACCCAQYwESDjEOHlVHAAEEEEAgYgESDhGDczoEEEAAAQTiLEDCIc7Ro+4IIIAAAghEK0DCIVpvzoYAAggggECsBUg4xDp8VB4BBBBAAIFIBUg4RMrNyRBAAAEEEIi3AAmHeMeP2iOAAAIIIBClAAmHKLU5FwIIIIAAAjEXIOEQ8wBSfQQQQAABBCIUIOEQITanQgABBBBAIO4CJBziHkHqjwACCCCAQHQCJByis+ZMCCCAAAIIxF6AhEPsQ0gDEEAAAQQQiEyAhENk1JwIAQQQQACB+AuQcIh/DGkBAggggAACUQmQcIhKmvMggAACCCCQAAESDgkIIk1AAAEEEEAgIgESDhFBcxoEEEAAAQSSIEDCIQlRpA0IIIAAAghEI0DCIRpnzoIAAggggEAiBEg4JCKMNAIBBBBAAIFIBEg4RMLMSRBAAAEEEEiGAAmHZMSRViCAAAIIIBCFAAmHKJQ5BwIIIIAAAgkRIOGQkEDSDAQQQAABBCIQIOEQATKnQAABBBBAICkCJBySEknagQACCCCAQOkFSDiU3pgzIIAAAgggkBgBEg6JCSUNQQABBBBAoOQCJBxKTswJEEAAAQQQSI4ACYfkxJKWIIAAAgggUGoBEg6lFqZ8BBBAAAEEEiRAwiFBwaQpCCCAAAIIlFiAhEOJgSkeAQQQQACBJAmQcEhSNGkLAggggAACpRUg4VBaX0pHAAEEEEAgUQIkHBIVThqDAAIIIIBASQVIOJSUl8IRQAABBBBIlgAJh2TFk9YggAACCCBQSgESDqXUpWwEEEAAAQQSJkDCIWEBpTkIIIAAAgiUUICEQwlxKRoBBBBAAIGkCZBwSFpEaQ8CCCCAAAKlEyDhUDpbSkYAAQQQQCBxAiQcEhdSGoQAAggggEDJBEg4lIyWghFAAAEEEEieAAmH5MWUFiGAAAIIIFAqARIOpZKlXAQQQAABBBIoQMIhgUGlSQgggAACCJRIgIRDiWApFgEEEEAAgSQKkHBIYlRpEwIIIIAAAqURIOFQGldKRQABBBBAIJECJBwSGVYahQACCCCAQEkESDiUhJVCEUAAAQQQSKYACYdkxpVWIYAAAgggUAoBEg6lUKVMBBBAAAEEEipAwiGhgaVZCCCAAAIIlECAhEMJUCkSAQQQQACBpAqQcEhqZGkXAggggAAC4QuQcAjflBIRQAABBBBIrAAJh8SGloYhgAACCCAQugAJh9BJKRABBBBAAIHkCpBwSG5saRkCCCCAAAJhC5BwCFuU8hBAAAEEEEiwAAmHBAeXpiGAAAIIIBCyAAmHkEEpDgEEEEAAgSQLkHBIcnRpGwIIIIAAAuEKkHAI15PSEEAAAQQQSLQACYdEh5fGIYAAAgggEKoACYdQOSkMAQQQQACBZAuQcEh2fGkdAggggAACYQqQcAhTk7IQQAABBBBIuAAJh4QHmOYhgAACCCAQogAJhxAxKQoBBBBAAIGkC5BwSHqEaR8CCCCAAALhCZBwCM+SkhBAAAEEEEi8AAmHxIeYBiKAAAIIIBCaAAmH0CgpCAEEEEAAgeQLkHBIfoxpIQIIIIAAAmEJkHAIS5JyEEAAAQQQSIEACYcUBJkmIoAAAgggEJIACYeQICkGAQQQQACBNAiQcEhDlGkjAggggAAC4QiQcAjHkVIQQAABBBBIhQAJh1SEmUYigAACCCAQigAJh1AYKQQBBBBAAIF0CJBwSEecaSUCCCCAAAJhCJBwCEORMhBAAAEEEEiJAAmHlASaZiKAAAIIIBCCAAmHEBApqrTq8wAAQABJREFUAgEEEEAAgbQIkHBIS6RpJwIIIIAAAsULkHAo3pASEEAAAQQQSI0ACYfUhJqGIoAAAgggULQACYeiCSkAAQQQQACB9AiQcEhPrGkpAggggAACxQqQcChWkOMRQAABBBBIkQAJhxQFm6YigAACCCBQpAAJhyIBORwBBBBAAIE0CZBwSFO0aSsCCCCAAALFCZBwKM6PoxFAAAEEEEiVAAmHVIWbxiKAAAIIIFCUAAmHovg4GAEEEEAAgXQJkHBIV7xpLQIIIIAAAsUIkHAoRo9jEUAAAQQQSJkACYeUBZzmIoAAAgggUIQACYci8DgUAQQQQACBtAmQcEhbxGkvAggggAACwQVIOAS340gEEEAAAQRSJ0DCIXUhp8EIIIAAAggEFiDhEJiOAxFAAAEEEEifAAmH9MWcFiOAAAIIIBBUgIRDUDmOQwABBBBAIIUCJBxSGHSajAACCCCAQEABEg4B4TgMAQQQQACBNAqQcEhj1GkzAggggAACwQRIOARz4ygEEEAAAQRSKUDCIZVhp9EIIIAAAggEEiDhEIiNgxBAAAEEEEinAAmHdMadViOAAAIIIBBEgIRDEDWOQQABBBBAIKUCJBxSGniajQACCCCAQAABEg4B0DgEAQQQQACBtAqQcEhr5Gk3AggggAAChQuQcCjcjCMQQAABBBBIrQAJh9SGnoYjgAACCCBQsAAJh4LJOAABBBBAAIH0CpBwSG/saTkCCCCAAAKFCpBwKFSM/RFAAAEEEEixAAmHFAefpiOAAAIIIFCgAAmHAsHYHQEEEEAAgTQLkHBIc/RpOwIIIIAAAoUJkHAozIu9EUAAAQQQSLUACYdUh5/GI4AAAgggUJAACYeCuNgZAQQQQACBdAuQcEh3/Gk9AggggAAChQiQcChEi30RQAABBBBIuQAJh5T/AtB8BBBAAAEEChAg4VAAFrsigAACCCCQdgESDmn/DaD9CCCAAAII5C9AwiF/K/ZEAAEEEEAg9QIkHFL/KwAAAggggAACeQuQcMibih0RQAABBBBAgIQDvwMIIIAAAgggkK8ACYd8pdgPAQQQQAABBISEA78ECCCAAAIIIJCvAAmHfKXYDwEEEEAAAQRIOPA7gAACCCCAAAJ5C5BwyJuKHRFAAAEEEECAEQ78DiCAAAIIIIBAvgIkHPKVYj8EEEAAAQRSKNDz3PNsq4fceov9WTXhUPX9FBLRZAQQQAABBBCoRoCEQzUwbEYAAQQQQAABEU0ojJ8wQbZv1Uo06eBPOHjvqZO+p/uwIIAAAggggAACngAJB0+CnwgggAACCCCQU8BLLGhCQZMPuvjXSTbkZGMjAggggAACqRcg4ZD6XwEAEEAAAQQQqF3ASzpU3ZNkQ1URXiOAAAIIIICAJ0DCwZPgJwIIIIAAAgjUKFA16UCyoUYu3kQAAQQQQCD1AiQcUv8rAAACCCCAAAL5C3hJB5IN+ZuxJwIIIIAAAmkVIOGQ1sjTbgQQQCAmAmPHjZOxY8fFpLbpqOaEiROk1XZMEOlKtNu2bSNt27RxpTrUAwEEEEAAgYwACYcMBSsIIIAAAi4JDLltqAwZOtSlKlEXBJwV0IRDzx7dSTw4GyEqhgACCKRTgIRDOuNOqxFAAAFnBXREQ9cTTqxUv16mI8WCAAK5BcaYEUB63XjLiPuHk3jwMPiJAAIIIFBWARIOZeXn5AgggAACfgF/skH/YruzGSreozvJBr8R6wjkEtBrR0cFeYkHkg65lNiGAAIIIBC1AAmHqMU5HwIIIIBAtQKbNd/SvqfJBu0wsSCAQGECOjrISzpMmzK5sIPZGwEEEEAAgZAFSDiEDEpxCCCAAALBBLzRDSQbgvlxFAKegJd06GlGB+m8DiwIIIAAAgiUS4CEQ7nkOS8CCCCAQCUBr5PEUPBKLLxAoGAB/4SrjHIomI8DEEAAAQRCFCDhECImRSGAAAIIBBPwRjfo0XSQghlyFAJ+Ae/2JBJ4fhXWEUAAAQSiFiDhELU450MAAQQQyBLwEg7cTpFFwwYEAgl4oxy4rSIQHwchgAACCIQkQMIhJEiKQQABBBAILkDnKLgdRyKQS4BrKpcK2xBAAAEEohYg4RC1OOdDAAEEEMgSoHOURcIGBIoS4Joqio+DEUAAAQRCEiDhEBIkxSCAAAIIBBegcxTcjiMRyCXANZVLhW0IIIAAAlELkHCIWpzzIYAAAghkCdA5yiJhAwJFCXBNFcXHwQgggAACIQmQcAgJkmIQQAABBIIL0DkKbseRCOQS4JrKpcI2BBBAAIGoBUg4RC3O+RBAAAEEsgToHGWRsAGBogS4pori42AEEEAAgZAESDiEBEkxCCCAAALBBegcBbfjSARyCXBN5VJhGwIIIIBA1AIkHKIW53wIIIAAAlkCdI6ySNiAQFECXFNF8XEwAggggEBIAiQcQoKkGAQQQACB4AJ0joLbcSQCuQS4pnKpsA0BBBBAIGoBEg5Ri3M+BBBAAIEsATpHWSRsQKAoAa6povg4GAEEEEAgJAESDiFBUgwCCCCAQHABOkfB7TgSgVwCXFO5VNiGAAIIIBC1AAmHqMU5HwIIIIBAlgCdoywSNiBQlADXVFF8HIwAAgggEJIACYeQICkGAQQQQCC4AJ2j4HYciUAuAa6pXCpsQwABBBCIWoCEQ9TinA8BBBBAIEuAzlEWCRsQKEqAa6ooPg5GAAEEEAhJgIRDSJAUgwACCCAQXIDOUXA7jkQglwDXVC4VtiGAAAIIRC1AwiFqcc6HAAIIIJAlQOcoi4QNCBQlwDVVFB8HI4AAAgiEJEDCISRIikEAAQQQCC5A5yi4HUcikEuAayqXCtsQQAABBKIWIOEQtTjnQwABBBDIEqBzlEXCBgSKEuCaKoqPgxFAAAEEQhIg4RASJMUggAACCAQXoHMU3I4jEcglwDWVS4VtCCCAAAJRC5BwiFqc8yGAAAIIZAnQOcoiYQMCRQlwTRXFx8EIIIAAAiEJkHAICZJiEEAAAQSCC9A5Cm7HkQjkEuCayqXCNgQQQACBqAVIOEQtzvkQQAABBLIE6BxlkbABgaIEuKaK4uNgBBBAAIGQBEg4hARJMQgggAACwQXoHAW340gEcglwTeVSYRsCCCCAQNQCJByiFud8CCCAAAJZAnSOskjYgEBRAlxTRfFxMAIIIIBASAIkHEKCpBgEEEAAgeACdI6C23EkArkEuKZyqbANAQQQQCBqARIOUYtzPgQQQACBLAE6R1kkbECgKAGuqaL4OBgBBBBAICQBEg4hQVIMAggggEBwATpHwe04EoFcAlxTuVTYhgACCCAQtQAJh6jFOR8CCCCAQJYAnaMsEjYgUJQA11RRfByMAAIIIBCSAAmHkCApBgEEEEAguACdo+B2HIlALgGuqVwqbEMAAQQQiFqAhEPU4pwPAQQQQCBLgM5RFgkbEChKgGuqKD4ORgABBBAISYCEQ0iQFIMAAgggEFyAzlFwO45EIJcA11QuFbYhgAACCEQtQMIhanHOhwACCCCQJUDnKIuEDQgUJcA1VRQfByOAAAIIhCRAwiEkSIpBAAEEEAguQOcouB1HIpBLgGsqlwrbEEAAAQSiFiDhELU450MAAQQQyBKgc5RFwgYEihLgmiqKj4MRQAABBEISIOEQEiTFIIAAAggEF6BzFNyOIxHIJcA1lUuFbQgggAACUQuQcIhanPMhgAACCGQJ0DnKImEDAkUJcE0VxcfBCCCAAAIhCZBwCAmSYhBAAAEEggvQOQpux5EI5BLgmsqlwjYEEEAAgagFSDhELc75EEAAAQSyBOgcZZGwAYGiBLimiuLjYAQQQACBkARIOIQESTEIIIAAAsEF6BwFt+NIBHIJcE3lUmEbAggggEDUAiQcohbnfAgggAACWQJ0jrJI2IBAUQJcU0XxcTACCCCAQEgCJBxCgqQYBBBAAIHgAnSOgttxJAK5BLimcqmwDQEEEEAgagESDlGLcz4EEEAAgSwBOkdZJGxAoCgBrqmi+DgYAQQQQCAkARIOIUFSDAIIIIBAcAE6R8HtOBKBXAJcU7lU2IYAAgggELUACYeoxTkfAggggECWAJ2jLBI2IFCUANdUUXwcjAACCCAQkgAJh5AgKQYBBBBAILgAnaPgdhyJQC4BrqlcKmxDAAEEEIhagIRD1OKcDwEEEEAgS4DOURYJGxAoSoBrqig+DkYAAQQQCEmAhENIkBSDAAIIIBBcgM5RcDuORCCXANdULhW2IYAAAghELUDCIWpxzocAAgggkCVA5yiLhA0IFCXANVUUHwcjgAACCIQkQMIhJEiKQQABBBAILhBF5+i111+Xb775Rho2bCgH7L9/8MqGfOQ777wrX8/4WtZdd13Zd599bOkTJk6UJ5540r5u337XWs84b948ef2NN+x+nTp1ktVXW63WYwrZYenSpXL3PffIb78tltNPPy308gupC/vmJxDFNZVfTdgLAQQQQCDNAiQc0hx92o4AAgg4IhBF5+jEbifLe6NHS8uW28iTjz3mSMtFep13vjz/wgvSZqed5MEH7rf12nvf/UwSYobUr19fxr73rtSpU6fG+mrSotupp9p93njtVWm88cY17p/rzSlTp8rbb79t3zq5WzdZccUVM7s98+xzcv4FF9jXl1x4oZx66imZ91jJT+DnRYvkP//5j915v/32CxSj/M60bK8orqlC6sO+CCCAAALpFCDhkM6402oEEEDAKYEoOkdxSjh4dd1s003lpReerzVWYSQcnnjyKbnw4ovtuSZNmCD16q2cOe8HH34onY/ral8PvuVmOejAAzPvsZKfwJw5c2WPPfe0O9/9r3/JHnvsnt+BAfeK4poKWDUOQwABBBBIkQAJhxQFm6YigAACrgpE0TnyOvFxGOGwePFiGTfufdl+h+3zun2h1AkH/b2Z+sUXstjcUrHtti1d/TVyul4kHJwOD5VDAAEEECiRAAmHEsFSLAIIIIBA/gLlSji8+NJLMmXKVNlkk03MvA77ic7z8NFHH9l5HnbbbTfZtuWyzrUOh7/77ntsg3bffTfZYfvtKzXuzn/+U5YsWSpbb91C9tl7b/ver7/9Jo88/Ih8+vln8t1382WjDTeUQw45WHZu27bSsbluqfDqtdFGG8pRRx5ZaX8dbfDmmyPlk08/lUaN1pWjjzpKlixeUu0tFbq/tusLkzBYeeV6so2p4/HHH59JZDz+xBMya9ZsmTx5srz29zwQZ51xhr2lYsstm8v+Zvj/woUL5b7hy273OPLII2TjjTbK1Omvv/6St8ytGB99NF4+M21tvHFj2d74dOzYIXMO3dlfRudjj5Eff/pJRo0aZc+9ww47yJ5mf72FJJ9Fb/H44IMP7G0n66yztuzSrp0cZuauWGGFFSodrnV75dVXZfToMXb+jlattrP7zZw1y26rv/rqcsopJ1c65otp0+Rdc4vKOFO+vt/WxKtjhz1kzTXXzOxXSFvGjB0rY8aMlUWLfpZhfxsecvBBsknjTWS11VaV0/6+FSZTeEgrUVxTIVWVYhBAAAEEEixAwiHBwaVpCCCAQFwEougc5Rrh4HX29a/2DddqIG++9VYlsv7XXC3HHnOM3dZxr71l1uzZcuABB8iQW2/J7PflV1/Jfgcsu8Xg+kED5YjDDxf9a3a3U06R6V9/ndnPWzmvV0855+yzvZc553Dw6uWf10EP0OTAxX0vlf/973+Z45dffnmbFHjhxRftNv8cDpoIufnWwZX21510gspnnnxC1l57bel6wokydty4THn+Fe0Y33LTTeJv4wPD78skTf744w8zt0Mf8c7tP7b5FlvIsHvulnXWWcdu9pehCY17hg0TnYzSW3T/h0Y8UGPSQc/3j7PPyYqTlrHrLrvIvXffJeqhixpddMkloreK+Jf111/fJF22lldfe03WW289eeetkZm333rrbTnrnHPk999/z2zTlWZNm8p/HhwhDRo0sNsLaYv3u12pwL9fqM3od0bleqvobd55e3bvLj17dC+6PApAAAEEEEAgiAAJhyBqHIMAAgggEKpAFJ2jmhIO2piVVlpJDjnoIDNqoJE8/ewzNmmgndfXX33F/kV/wKBBcs+9w2yH+P0xozN/TR827D65duBAOyJgzLvv2L+E6wSL+ld47aBqgmGjDTeShx5+2P61Xf8KP2rkm7bTr+fNlVzItW28mVfh2C7Hif7VfnXzl/dOhxxiOsyNbIf6q+nTtSi7eAkH7RQfcNDBdn+dc+FoM1JixswZctMtt8p///tf6dqli/S76kp58qmnZd68ufLpZ5/Ly6+8YsvoYTrddeqsKJtvvrkdseHvYPsTDn0uusgerwe1aNFCDjpgf3nfjAx4e9Q79rxNzMiRl198wVr5y9D9N99sM+l06CEyYcJEm0D4888/5agjjpBBAwfo2zmXhx95RC69/Ar7ntaxbds28u6778md//d/dpsmgjQhpIsmW7StumzSuLEcecThdlTF0888KwsWLLDb/QmHzz//XI485libBNlmm63lkAMPkgU//CBPPv20zJ8/X3TbU48/bo8rpC3j3n/fjsb4yZjffc+99vjDD+skTZs0kVVWWVW6nXSi3Rb2P1FcU2HXmfIQQAABBJInQMIheTGlRQgggEDsBKLoHNWWcLjv3nvsX8kVb9KkT+Rwc6uCLjdef70Zhn+o+CdOfPihB6W1uQ1AFx3J8I7p9LbbeWe5/75hdpvegvHqq6+ZxMBqmVssfjCd17a77Gr/8u6fNDBXciHXtlsHD5Ghd9xhy/eSCvaF+efgQzvJ5ClTst7TdujjMv9x1plSt25d+36/q6+R+0eMsLeLPPHYo14RNnFR3aSR/g62l3DQ0QY77LiT6K0j6qNO3uJPDOgTQXTeDH8ZO7ZubUcMePuffsaZNumgT9fQtlW36Dk1wTDdJFi6dTsps9uBBx9i55g447TT5MI+y56mcfSxnUWTNFqmJo2WW245u/+PP/4oO+/aXrQsf8Jh6O23y61DbrOjPrQOq9SrZ/fPNT9GkLYwh0MmXKwggAACCKRIgIRDioJNUxFAAAFXBcqdcFh9tdXk/bFjKj0KUpMD+pfwM08/Xfpc0Nv+xX6X3XaX77//Xs4+6yw5/7xz5TcziWLrNm3sX8WvvPxyOeH4ZU9yUGd91OXYsePsPAP613td9K/dOtT/phtusH/d1225kgu5tnkJk1bbbSePPfKwHppZ/vXvf8v1N95kX/uTEd9884088uhjoo+81I62LnPmzJHZ5j/9q792xL2lpqdU+DvYXsJhwsSJcpQZEaDLsLvvlvbtd/WKsiMo1E9vTfAeo+kvw9vmHTDiwQflyn5X25effjwxkxzx3vf/1PPqHBdffvml9df3PjfzT+iojWOPPlr6X3uNmU9jibRqvaM9fy9zO0EPc1uBf/nHOd2zbqk42cylMMrM3bDaqqtmRp/oMRov79aYG667TnR0QpC2kHDwR4B1BBBAAIG0CJBwSEukaScCCCDgsEC5Ew477bijnT/AT+TN2XDaqafIxRdeaN+6/Ior7a0ROjnk02Y+hZFmzofTzF/n9a/nOheA3o6hy6WXXS4PP1oxesBu9P0TJOFw0CGH2sTBEYcfJteb2zv8i06MeHb3HnaTl3DQTrgmKXSCw1xLsQkHvf3inB49bdEj33jdTorpP8+uu+8h3377rZxsRiJcauZS8HfSdSSIjgjxFr2tQ2/P0OXjCeMzowu8972fmhTpe9lldnSCt83/00s4/Pzzz7LDTm1ssuCafldJl86d/buJF0f/CAdvlMiKK64oK9WpU2l/74WOFPmHSTYFaQsJB0+RnwgggAACaRIg4ZCmaNNWBBBAwFGBciccqk7OqEy5Eg6jzNwEJ5th+5pg0Mn+br/jzqzbE3QkQZt2u9gREaec3E1ON385X8X81XzevHmyv5kXQJcgCYeLL+krj5kkhz7JYex775o5Fio6xef17i3PPve8LdtLOPQfMEDuvW+4feLGv818Bs02bWbrfVW/fnbehWITDjqvQbv2u9lzXnxhn0pPW9BbGfSWBl2GDhlsJ7X0d9K9URJ2B/NPvgmHQzodZkczaLLimqv72QkpdQTCoWa7PnnCSzhouTp/hT5xYvtWreTRh//jncqORtHRF5qU8CccLjNzQ/zHzBGxhZm34nkzh4d3C4YeqCNdGjZsmCkjSFtIOGT4WEEAAQQQSJEACYcUBZumIoAAAq4KxCXhoPf979R2Z9E5GnR4/W1Dh9qO7oXmloszzK0XuujtCzoaQRevs63HDTATSw5/YITdrhMe9uq5bERCrtsncm3zz4ugowZOM3NHrLHGGvLSy6/I5Vdekbm9wEs46OgDHYWgT3/QDrQuM2bOlEPMfA8674Ie+9rLL8laa61l3/N3+vUJFjoJpLdU18Hed/8DRCes1Ed+Xtr3EvP4yA4y6ZNP5MabbrZPvtBOuyZHdPLM6srQc/jPXdMIh9Zt2spP5nGaJ5pbV64wt7Do8tzzz8u55/e2623N7S06ekIn+/RGMegbmojQx3nqsXr7xkjzNApd/AkHfx369D5fjjvuOKlrJhJ91MxBcU3/AXKMmdOj7yUXm0eLrhyoLXPnzpPdO3a0573MjPjwz0FhN4b8TxTXVMhVpjgEEEAAgQQKkHBIYFBpEgIIIBA3gSg6R94cCDqBoU5kqEuujr1nl2uEg77Xu08f0Scd6CMN9a/8urxqOu761AFd9C/uejvBd999Z+eE2LZlS5lm5htYZJIU2jHXv8TrcrB5IsatN9+Usw656rXol1/kxJO6yceTJtnj9WkX9UznV7frUyv0L/a6eAmH/5inYlxmbgHRRR8F2bBhA/nkk0/t3A2aePAWfYrEps2a2Xrtufc+3uZloyGuuFy6mo53dcmC0WPGyFn/OFt++fVXe5x2xhcvXmzXNdnQ19wmcbIZ5aFLdWXoe/7Ofk0JB/9Iji2bN5dfzXnVU5+G8fWMGVqUjYuOPtHkwvEnnmRHRNg3/v5H3TQOauBPOOh8E2ebuR28R6PqJJsrmMSFJmd02X+//WwCSdeDtEV/LzrstZd9+omWoT5a5m2Dlz1JQ7eFuURxTYVZX8pCAAEEEEimAAmHZMaVViGAAAKxEoiicxRWwuGll1+W7j17ZXx1CP4Lzz2bea0rOsqhuxlh4E02qH9xv8g8KnOXXdrJeb0vsAkIfVTl4FtuzjvhoOXqxIja6X5v9Bg7IaJ2nvc2ndjjzBwFJ5kRD7p4CQd9fObN5rGQd91zT2bOA63r3f/+l3k84z12MkntTHsJBz1WHyV5/4gHbbJEX19lEg7Hd+1aYwdbEyBXXX21fPbZ5/Y82pFu1rSpnHnG6XLE4YdrMXYJ0kn3jvV+alJF2++NUNDt2mkfOKC/TXzok0R0xIY+nlQXfTLIYPPkifdGj5ZZs2fbep1rHlOqT+/QR2n6Ew66/9KlS+XKq/rJa+bJHt7cF/q0Ck269D7/vMykokHb8trrr9v66PwauviTGHZDiP9EcU2FWF2KQgABBBBIqAAJh4QGlmYhgAACcRJIaudI522Yb55q0cyMINCnH4S1aKJg2hfTZLPNN6t2gkXvXPrEhi/MvvXXqC8bb7RRpbkJvH3C+KkjG6ZO/UI22aSxvV0jjDKrK0MTL96tHGuvvXZ1u1XariMMNBmiy00335Iz4eAdoPvqqBRNFOnIFf0ZtyWp11Tc4kB9EUAAgbQLkHBI+28A7UcAAQQcEKBz5EAQElgFTRp8M++brJZdf9NNZkTGZ/bWCn3CRhIXrqkkRpU2IYAAAvETIOEQv5hRYwQQQCBxAnSOEhdSJxp0Vb+r5QEzSWR1i96KcnW/q6p7O9bbuaZiHT4qjwACCCRGgIRDYkJJQxBAAIH4CtA5im/sXK75HXfemXlcqL+eeouEzqehT/po1KiR/63ErHNNJSaUNAQBBBCItQAJh1iHj8ojgAACyRCgc5SMONIKdwS4ptyJBTVBAAEE0ixAwiHN0aftCCCAgCMCdI4cCQTVSIwA11RiQklDEEAAgVgLkHCIdfioPAIIIJAMATpHyYgjrXBHgGvKnVhQEwQQQCDNAiQc0hx92o4AAgg4IkDnyJFAUI3ECHBNJSaUNAQBBBCItQAJh1iHj8ojgAACyRCgc5SMONIKdwS4ptyJBTVBAAEE0ixAwiHN0aftCCCAgCMCdI4cCQTVSIwA11RiQklDEEAAgVgLkHCIdfioPAIIIJAMATpHyYgjrXBHgGvKnVhQEwQQQCDNAiQc0hx92o4AAgg4IkDnyJFAUI3ECHBNJSaUNAQBBBCItQAJh1iHj8ojgAACyRCgc5SMONIKdwS4ptyJBTVBAAEE0ixAwiHN0aftCCCAgCMCdI4cCQTVSIwA11RiQklDEEAAgVgLkHCIdfioPAIIIJAMATpHyYgjrXBHgGvKnVhQEwQQQCDNAiQc0hx92o4AAgg4IkDnyJFAUI3ECHBNJSaUNAQBBBCItQAJh1iHj8ojgAACyRCgc5SMONIKdwS4ptyJBTVBAAEE0ixAwiHN0aftCCCAgCMCdI4cCQTVSIwA11RiQklDEEAAgVgLkHCIdfioPAIIIJAMATpHyYgjrXBHgGvq/9u7DzBJiroPwEWSnHMOkhREEDhAUAkCSk4qQZLED48j5yMnyUiUJIhKTqKIknNGQJAkSk4iGcnhq38fs8zeLXsbZnZ7pt9+Hm53Zrqrq97a5Xnqt9VV5ekLNSFAgECVBQQOVe59bSdAgEBJBAyOStIRqtE2An6n2qYrNYQAAQItLSBwaOnuU3kCBAi0h4DBUXv0o1aUR8DvVHn6Qk0IECBQZQGBQ5V7X9sJECBQEgGDo5J0hGq0jYDfqbbpSg0hQIBASwsIHFq6+1SeAAEC7SFgcNQe/agV5RHwO1WevlATAgQIVFlA4FDl3td2AgQIlETA4KgkHaEabSPgd6ptulJDCBAg0NICAoeW7j6VJ0CAQHsIGBy1Rz9qRXkE/E6Vpy/UhAABAlUWEDhUufe1nQABAiURMDgqSUeoRtsI+J1qm67UEAIECLS0gMChpbtP5QkQINAeAgZH7dGPWlEeAb9T5ekLNSFAgECVBQQOVe59bSdAgEBJBAyOStIRqtE2An6n2qYrNYQAAQItLSBwaOnuU3kCBAi0h4DBUXv0o1aUR8DvVHn6Qk0IECBQZQGBQ5V7X9sJECBQEgGDo5J0hGq0jYDfqbbpSg0hQIBASwsIHFq6+1SeAAEC7SFgcNQe/agV5RHwO1WevlATAgQIVFlA4FDl3td2AgQIlETA4KgkHaEabSPgd6ptulJDCBAg0NICAoeW7j6VJ0CAQHsIGBy1Rz9qRXkE/E6Vpy/UhAABAlUWEDhUufe1nQABAiURMDgqSUeoRtsI+J1qm67UEAIECLS0gMChpbtP5QkQINAeAgZH7dGPWlEeAb9T5ekLNSFAgECVBQQOVe59bSdAgEBJBAyOStIRqtE2An6n2qYrNYQAAQItLSBwaOnuU3kCBAi0h4DBUXv0o1aUR8DvVHn6Qk0IECBQZQGBQ5V7X9sJECBQEgGDo5J0hGq0jYDfqbbpSg0hQIBASwsIHFq6+1SeAAEC7SFgcNQe/agV5RHwO1WevlATAgQIVFlA4FDl3td2AgQIlETA4KgkHaEabSPgd6ptulJDCBAg0NICAoeW7j6VJ0CAQHsIGBy1Rz9qRXkE/E6Vpy/UhAABAlUWEDhUufe1nQABAiURMDgqSUeoRtsI+J1qm67UEAIECLS0gMChpbtP5QkQINAeAgZH7dGPWlEeAb9T5ekLNSFAgECVBQQOVe59bSdAgEBJBAyOStIRqtE2An6n2qYrNYQAAQItLSBwaOnuU3kCBAi0h4DBUXv0o1aUR8DvVHn6Qk0IECBQZQGBQ5V7X9sJECBQEgGDo5J0hGq0jYDfqbbpSg0hQIBASwsIHFq6+1SeAAEC7SFgcNQe/agV5RHwO1WevlATAgQIVFlA4FDl3td2AgQIlETA4KgkHaEabSPgd6ptulJDCBAg0NICAoeW7j6VJ0CAQHsIGBy1Rz9qRXkE/E6Vpy/UhAABAlUWEDhUufe1nQABAiURuPOuu9IGG25U1OaJxx4tSa1Ug0DrCsTvU/xe/f63Z6fFhgxp3YaoOQECBAi0tIDAoaW7T+UJECDQPgJzzjNv0ZhhQ4emYdsObZ+GaQmBARYQ4A0wuNsRIECAwJcKCBy+lMYHBAgQIDCQAqaAD6S2e7WzQG12w3Y5uNs2B3gOAgQIECAwWAICh8GSd18CBAgQGEXALIdRSLxBoFcCteAuLvI4Ra/onEyAAAECTRAQODQBVZEECBAg0DeB+qng8dx5PFrh+fO+WbqqegL1YYPZDdXrfy0mQIBAGQUEDmXsFXUiQIBAhQXqQ4dgqAUPFSbRdAJfKnDnnXcVnx13wgkd5wgbOih8Q4AAAQKDLCBwGOQOcHsCBAgQGFUgQof4a218dRAg0DOBCBrisG5Dz7ycRYAAAQLNFxA4NN/YHQgQIECgHwK18KEfRbi0gQL33X9/UdpCCy7YwFIV1VeBxRcbseWlkKGvgq4jQIAAgWYKCByaqatsAgQIECDQZgLfWXqZokU333B9m7VMcwgQIECAAIFGCwgcGi2qPAIECBAg0MYCAoc27lxNI0CAAAECDRYQODQYVHEECBAgQKCdBQQO7dy72kaAAAECBBorIHBorKfSCBAgQIBAWwsIHNq6ezWOAAECBAg0VEDg0FBOhREgQIAAgfYWEDi0d/9qHQECBAgQaKSAwKGRmsoiQIAAAQJtLiBwaPMO1jwCBAgQINBAAYFDAzEVRYAAAQIE2l1A4NDuPax9BAgQIECgcQICh8ZZKokAAQIECLS9gMCh7btYAwkQIECAQMMEBA4No1QQAQIECBBofwGBQ/v3sRYSIECAAIFGCQgcGiWpHAIECBAgUAEBgUMFOlkTCRAgQIBAgwQEDg2CVAwBAgQIEKiCgMChCr2sjQQIECBAoDECAofGOCqFAAECBAhUQkDgUIlu1kgCBAgQINAQAYFDQxgVQoAAAQIEqiEgcKhGP2slAQIECBBohIDAoRGKyiBAgAABAhUREDhUpKM1kwABAgQINEBA4NAAREUQIECAAIGqCAgcqtLT2kmAAAECBPovIHDov6ESCBAgQIBAZQQEDpXpag0lQIAAAQL9FhA49JtQAQQIECBAoDoCAofq9LWWEiBAgACB/goIHPor6HoCBAgQIFAhAYFDhTpbUwkQIECAQD8FBA79BHQ5AQIECBCokoDAoUq9ra0ECBAgQKB/AgKH/vm5mgABAgQIVEpA4FCp7tZYAgQIECDQLwGBQ7/4XEyAAAECBKolIHCoVn9rLQECBAgQ6I+AwKE/eq4lQIAAAQIVExA4VKzDNZcAAQIECPRDQODQDzyXEiBAgACBqgkIHKrW49pLgAABAgT6LiBw6LudKwkQIECAQOUEBA6V63INJkCAAAECfRYQOPSZzoUECBAgQKB6AgKH6vW5FhMgQIAAgb4KCBz6Kuc6AgQIECBQQQGBQwU7XZMJECBAgEAfBQQOfYRzGQECBAgQqKKAwKGKva7NBAgQIECgbwICh765uYoAAQIECFRSQOBQyW7XaAIECBAg0CcBgUOf2FxEgAABAgSqKSBwqGa/azUBAgQIEOiLgMChL2quIUCAAAECFRUQOFS04zWbAAECBAj0QUDg0Ac0lxAgQIAAgaoKCByq2vPaTYAAAQIEei8gcOi9mSsIECBAgEBlBQQOle16DSdAgAABAr0WEDj0mswFBAgQIECgugICh+r2vZYTIECAAIHeCggceivmfAIECBAgUGEBgUOFO1/TCRAgQIBALwUEDr0EczoBAgQIEKiygMChyr2v7QQIECBAoHcCAofeeTmbAAECBAhUWkDgUOnu13gCBAgQINArAYFDr7icTIAAAQIEqi0gcKh2/2s9AQIECBDojYDAoTdaziVAgAABAhUXEDhU/AdA8wkQIECAQC8EBA69wHIqAQIECBCouoDAoeo/AdpPgAABAgR6LiBw6LmVMwkQIECAQOUFBA6V/xEAQIAAAQIEeiwgcOgxlRMJECBAgAABgYOfAQIECBAgQKCnAgKHnko5jwABAgQIEEgCBz8EBAgQIECAQE8FBA49lXIeAQIECBCooMCZZ51VtHrTTTYpvo4cOIz8eXGSfwgQIECAAAECWUDg4MeAAAECBAgQ+FKBWsDws002ThE61F7ffMP1KcKGX5/1m+La4449Ji204IJfWo4PCBAgQIAAgeoJCByq1+daTIAAAQIEeixw3/33p2Hb71CcH6FDLWCo/17Y0GNOJxIgQIAAgUoJCBwq1d0aS4AAAQIEei9QHzqMfLWwYWQRrwkQIECAAIGagMChJuErAQIECBAg8KUCXYUOwoYv5fIBAQIECBAgkAUEDn4MCBAgQIAAgR4J1IcOwoYekTmJAAECBAhUWkDgUOnu13gCBAi0hsCdd91VVHSxIUOKr14PnkeEDnfl/lgwLxCpPwb/5zF+F2r90Bq/zWpJgAABAlUSEDhUqbe1lQABAi0kUBtIHXf8Cem4E04oav7EY48WX+ecZ16vs0ArecSg+Pe/PTtFv26w4UbFINnr/nmEafxu1GyLXwr/ECBAgACBEgkIHErUGapCgAABAiMEaiFDbUAdA9Q4YoAah9et57H4YkPStkOHFoFD9K/X/ff47LNUeA7bdmgROoz8e1H8sviHAAECBAgMooDAYRDx3ZoAAQIEuhaIgVP8JTwCBtPFuzbyLoGRBWozf/zejCzjNQECBAgMloDAYbDk3ZcAAQIERhGoPUYRH9R/P8qJ3iBAoEuB4/MjFjGTxEGAAAECBMogIHAoQy+oAwECBAgUAUPMbBiWB0sxRdxBgEDfBOKRldrhd6km4SsBAgQIDIaAwGEw1N2TAAECBEYRqK3bYDr4KDTeINArgdrvkvCuV2xOJkCAAIEmCAgcmoCqSAIECBAgQIDAYAp4tGIw9d2bAAECBGoCAoeahK8ECBAgMKgC1mwYVH43J0CAAAECBAg0XEDg0HBSBRIgQIBAbwVMAe+tmPMJdC8QAV78XsUuL9Zx6N7KpwQIECDQPAGBQ/NslUyAAAECPRSIgVEMkGJgZBvMHqI5jUA3AkK8bnB8RIAAAQIDJiBwGDBqNyJAgAABAgQIDIxABHhxCPAGxttdCBAgQKBrAYFD1y7eJUCAAIEBFjBAGmBwtyNAgAABAgQINFlA4NBkYMUTIECAwOgFTP8evZEzCPRGwBoOvdFyLgECBAg0S0Dg0CxZ5RIgQIBAjwWs4dBjKicS6JGAEK9HTE4iQIAAgSYLCByaDKx4AgQIECBAgMBAC3hEaaDF3Y8AAQIEuhIQOHSl4j0CBAgQGHABA6QBJ3dDAgQIECBAgEBTBQQOTeVVOAECBAj0RMD0754oOYdAzwWs4dBzK2cSIECAQPMEBA7Ns1UyAQIECPRQwBoOPYRyGoEeCgjxegjlNAIECBBoqoDAoam8CidAgAABAgQIDLyAR5QG3twdCRAgQGBUAYHDqCbeIUCAAIFBEDBAGgR0tyRAgAABAgQINFFA4NBEXEUTIECAQM8ETP/umZOzCPRUwBoOPZVyHgECBAg0U0Dg0ExdZRMgQIBAjwSs4dAjJicR6LGAEK/HVE4kQIAAgSYKCByaiKtoAgQIECBAgMBgCHhEaTDU3ZMAAQIERhYQOIws4jUBAgQIDIqAAdKgsLspAQIECBAgQKBpAgKHptEqmAABAgR6KmD6d0+lnEegZwLWcOiZk7MIECBAoLkCAofm+iqdAAECBHogYA2HHiA5hUAvBIR4vcByKgECBAg0TUDg0DRaBRMgQIAAAQIEBkfAI0qD4+6uBAgQINBZQODQ2cMrAgQIEBgkAQOkQYJ3WwIECBAgQIBAkwQEDk2CVSwBAgQI9FzA9O+eWzmTQE8ErOHQEyXnECBAgECzBQQOzRZWPgECBAiMVsAaDqMlcgKBXgkI8XrF5WQCBAgQaJKAwKFJsIolQIAAAQIECAyWgEeUBkvefQkQIECgXkDgUK/hewIECBAYNAEDpEGjd2MCBAgQIECAQFMEBA5NYVUoAQIECPRGwPTv3mg5l8DoBazhMHojZxAgQIBA8wUEDs03dgcCBAgQGI2ANRxGA+RjAr0UEOL1EszpBAgQINAUAYFDU1gVSoAAAQIECBAYPAGPKA2evTsTIECAwBcCAocvLHxHgAABAoMoYIA0iPhuTYAAAQIECBBogoDAoQmoiiRAgACB3gmY/t07L2cTGJ2ANRxGJ+RzAgQIEBgIAYHDQCi7BwECBAh0K2ANh255fEig1wJCvF6TuYAAAQIEmiAgcGgCqiIJECBAgAABAoMp4BGlwdR3bwIECBCoCQgcahK+EiBAgMCgChggDSq/mxMgQIAAAQIEGi4gcGg4qQIJECBAoLcCpn/3Vsz5BLoXsIZD9z4+JUCAAIGBERA4DIyzuxAgQIBANwLWcOgGx0cE+iAgxOsDmksIECBAoOECAoeGkyqQAAECBAgQIDC4Ah5RGlx/dydAgACBEQICBz8JBAgQIFAKAQOkUnSDShAgQIAAAQIEGiYgcGgYpYIIECBAoK8Cpn/3Vc51BLoWsIZD1y7eJUCAAIGBFRA4DKy3uxEgQIBAFwLWcOgCxVsE+iEgxOsHnksJECBAoGECAoeGUSqIAAECBAgQIFAOAY8olaMf1IIAAQJVFxA4VP0nQPsJECBQEgEDpJJ0hGoQIECAAAECBBokIHBoEKRiCBAgQKDvAqZ/993OlQS6ErCGQ1cq3iNAgACBgRYQOAy0uPsRIECAwCgC1nAYhcQbBPolIMTrF5+LCRAgQKBBAgKHBkEqhgABAgQIECBQFgGPKJWlJ9SDAAEC1RYQOFS7/7WeAAECpREwQCpNV6gIAQIECBAgQKAhAgKHhjAqhAABAgT6I2D6d3/0XEtgVAFrOIxq4h0CBAgQGHgBgcPAm7sjAQIECIwkYA2HkUC8JNBPASFePwFdToAAAQINERA4NIRRIQQIECBAgACB8gh4RKk8faEmBAgQqLKAwKHKva/tBAgQKJGAAVKJOkNVCBAgQIAAAQINEBA4NABREQQIECDQP4HBnP796GOPpRdeeCGNMcYYaenvfa/4Wt+a9957L91+xx3FW3PNOWeaeeaZ6z/u9vt333033XHnncU5Cy24YJp88snTRx99lK6+5pr0wQcfphVXXCFNMP743Zbx2WefpetvuKE4Z955500zTD99t+cP5of3/u1v6c0330zTTTdd+vrXvjaYVan8va3hUPkfAQAECBAohYDAoRTdoBIECBCotsBgruFw3fXXp9+fe17RAfvvu0+aacYZO3VGDKJP+tUpxXs77bB9rwbSL770Uhq+z77FtbvstGOad5550p133pVOPeOM4r0frb12+kEOHbo7Pv7447TVNj8vTtl0443SUksu2d3pX/rZjTfdlCI8mX322dM8c8/9pef154NDfnFY+te//52WWHyxtPnPftafokp37d8ffCgHU8+nSSeZNC2xxOKlq9/IFRrMEG/kunhNgAABAtUVEDhUt++1nAABAgSywAsvvpj23ne/wuKn66+Xlll66eL72j/nnX9+uvra69LYY4+djjvmmDTuuF+pfTTar10FDv984on0i8OPKK7daovN05BFF+22nEYFDrvtsWf676uvph+ssEL60Tprd3vPvn7YzoHDr888K916++05sJktDd9jj74SDdh1HlEaMGo3IkCAAIFuBAQO3eD4iAABAgQGTmAwB0g77LxLeuutt4rBf4QA9cf+Bx2cnnnmmTT3XHOl3XbZuf6j0X7fVeAQFz2fH+H4MD9SMfvss+VX3R8Ch+59BurTVgscBsrFfQgQIECAQHcCAofudHxGgAABAgMiMNjTv0857fR01913p8kmmywddfhhHW1+Nz+CMGz7HVKso7DaKquk1VdbteOzeDQiZiu8/J//pEkmmbh41GKJxRdPY445Zsc5XQUO77zzTromz5iIY6mllkxTTTllx/n/eeWV9Lf8CMdjjz+eZ1KMlxaYf/606KKLpK1/PrQ4Z+RHKmLGwm233Z6efe659PHHHxVrJ8QMjWmmnro4Pz6/5ZZbi++vve66FO356hxzdDwWsvz3l0sTTjhh8XmsLfHgQw+lx/O9o01z5Ecvvv71rxfnFyfU/RNrU9xz773p4UceTR99+GGaY47Z03LLLZeOPubYHj9S0ZP7XX3Ntel///tfmj6vCbHYYkPqapCKR1PCd4IJJkgrLP/9js9iTY7HH/9nevKpJwuPeIxl/vnmS2ONNVbHOVH35557Pk07zTRp4YW/le5/4IH0RO7LSSaZJM2Xz519ttk6zr3sD5cX3z/w97+nZ559tvgZ+c7nj7Us+M1vptlmm7X4/L3330+PPvpoeuihf6S33n47fW3efN/cf7W+6ChwgL6xhsMAQbsNAQIECHQrIHDolseHBAgQIDAQAoO5hkO0L9Y3OPt3vy+a+otDDk5TTzVV8X08t//L448vvq+twfDJJ5+kE086OT3w4IPF+/X/xEKJO26/XcfCk10FDl29F2U8mwezhx15VLHOQn2Z8chFhCFx1AcOD/3j4fSrU05JMdCtP2JgvcN2w/KAd94Ug+8jjjq6/uNO3x984AFpummnLRayPO6EE3OA8Einz+PFej/5Sfr+cst2vB/rQEQ9o771RwQUMUskQo7RreEQYUNP7lebVRBBwNFHHN7hGgHQTrvuVixQueS3l0g/22SToioRDvzxiivqq1V8v8jCC6eYuVILg2oB0+yzz5YmmWjiUfpy4w1/mr77ne8U12625VbF167+qZ33xhtvpAMPOTTF1/oj7hc/NzE7ZqCPwQ7xBrq97keAAAEC5RQQOJSzX9SKAAECBAZQ4KWXX0577b1PccfNNt0kfXuJJYrvL77k0vTnv/wljTPOOOn4Y48pvt50883pN7/9XfF5zHqYZ56508MPP5KuuPLK4r2tt9wiLbrIIsX3XYULXb33/gcfpN333Cu9nf8yHoHBNxdYoFjY8W/33Zce/+c/ixkWUWAtcIjQY4/hw9Orr76WZp11lrTSD35QnHPFn68sZjvEThYH7r9f8fntd9xe1OUvV11dhBmx08b88329eC9mQ8QMh9oAfNyvfKV4rGSWWWYuZjtE4BK7dwzd5v9S/DU/jghg4v04ImRYbMiQYlbDffffXwQX8f7oAoee3i9mFUQwEcc+e+1VtDW+j0dc4lGXOLb9+TZF3W648cb029+fU7y3UK7rfLmNTz31dLozhzURcKy4wvLpx+usU3xeu3+8iL4dkvsrdhC5/c47CrNocwRPMfvkT58HGPfed39x3zhv6e+OCCMW+MY30iyzzJL+8te/pgsvviSNN+64aavc/+PnnUeu+POfs+E/ilkUsRhp3Gcgj8F8RGkg2+leBAgQIFBuAYFDuftH7QgQIFAZgcEeIO282+7p9ddfT0t9+9tp0002LtwPPezw9MS//lXsLhF/qY4jBvv/yAHDyzmkiEcSasc+++1frM3wwxVXTOusvVbxdlfhQlfvPZKn4h959DHFNbVQoVbuueedl6657vpRPouw4e577knf+Mb8acYZZig+j0cFTj7l1CIkOPH441IECLXjyxaNjDUihm63fTEoH3nXjFr7awFCDNx/Pmy7wqD2Xq38CEdOPPlXxcuRP6udE197e7/td9wpRSCz1hqrp5VXWqko6s853Ln40suK9h179FHpK7mdMZMjZnR8M4cAw7Yd8QhKnHxJPi/CoAgKjjzsF8X19YFD/c4jEVAceMghxTlb5F02Fs+7bdSO2myL2WcfddHICBcuuewPRXiz+667FFuXxvagTz71VJ5p8rVeLTRau5+vBAgQIECgHQQEDu3Qi9pAgACBFhcow/Tv0/JWlXfkdRnimftDDz4ofZjXJtg2r98QA+Q1V18trbLyyh3K/37yyWINgxfzDhcf5MUf44h1FGJtg+8utVTaeKMNi/e6Che6ei/+in5pfhwg/gp+9JFHpAnyX8hrR9zr4ENHDJTrw4gY/N9w4015XYFn0muvvV7McIg1GmqPOsTgOgbZtePLAofYxjJ2l4gj/qIfu3HUjnfy+gmx5kQ8YhJ/8a/fYWOH7bbrmCkR50d9dsyLb0YdugscenO/KDcClAhS5vzqV9Meu+0ab6XDjjiymPmx8Le+lbbZeqsiANl2++2LvojHL+r9Psz1eu2114rrjvjFoWmKKabomNER50VgUb++w/Y77VzMNKkPjuLi7gKHmCFzwEEHdfwsTDnlFMVjFN+Y/xt5xsgiHY+CFJUYoH+s4TBA0G5DgAABAt0KCBy65fEhAQIECAyEwGCv4RBtvOXWW9OZvzm7aG6sFxDBQG39g/irdTyKEEcs0njWb39bDHKLN0b6py+Bwznnnpuuvf6GFAPVww89tFOJsWjisB1GzK6oBQ7xF//YWrMWLnS64PMXPQ0c6mcmFFt+ftZVaSnFjIk496RfnVKccNihh3Ra8DLe3O+AA4vgpbvAoTf3i0cb7rzr7nTq6acX6y8cd8zRKaoXsx5ipsmWm21WLCZZbxShzZj5uq6O7fPaFrGeQm2GQ1c7j3QEMyvm7UPX/mL70O4Ch7hXhA4XXXRxevjRRzqCh3g/gpIdcxjSm+1U47r+HmUI8frbBtcTIECAQOsLCBxavw+1gAABAgQaIPDKf/9brKMQRcU6DPHIRMw6iIHi8cce2/FX8P0PPKjYrSAWZdzwpxukSSedtLj7fvsfkKKMvgQOt99+Rzr9zDOLcobvsUen7TLr14yoBQ6xXsIJeeHKOLbcfPO0QH6sYoy8QOHdeb2Cs87+bfF+TwOHWOgwFmCM4/+22jLFAou1IwbysR5BbbHFeIxj11y/OH68ztp5XYQVaqcWA+7aOhjdBQ69uV8UHotiRsAQM02ifnHErIeYiXHMUUd2zGbYc/jexe4ay+Z1KTZYf73ivPgnZl58nMOJ8ccbr+O9RgcOn376aXo6rysR62FMnnc6iUcpYreRqz/fjeTn/7d1+tZCC3XcfyC+GexHlAaije5BgAABAuUXEDiUv4/UkAABApUQKMMAKQbTMahebpllihkOsWvDfF+PnSe27+iDmG0QA/Hlllk6rb/eiIFt7CIRg9g4YhvGnXfcoZhG39XjE129F9tQxoA5jljQcZ211kozzTRTirUdzj3v/PRCfnQjjlrgcG1e0+GcvLZDPAoQjwlE6BG7RxyVt6WMwW4ctV01ihf5n9pf7mNBxaF5ocX6o/bZTDPOmO+xcYqtHiM8iTUZPs4D9vXXW7djK80IJyI0iMcsov1R32jTpXmthPvy9pJxdBc4xOe9uV+cX1uoMtbXiFkPN+fZKN+Yf760/bBh8XFxnHnWb9Itt91WrOcQwcR8eUvP93NYcf4FF6b78+KTscBnbbeNvgQOtfLjkYwD9tu3U4ARs03icZMIfoZus03RLxF07JAfMYl+icUqY9FKBwECBAgQqJqAwKFqPa69BAgQKKFAWaZ/16bN1wbwsY7D2muukVb64Q871GJ6f0zzj2PmHArEoDYG59NOM03xF/Z4P66vPZYxfJ99462OAKCrwCE+/13eYeH6vNNC7YiZBTFYjXUGYl2EOGqBQ/2uGvH5DDPMkJ56+uk0Xv4rfjxqENfFseEG66elv/e94vsz8gyK2/JMijhi0D7RRBOlY/MMgTgiWDn+xJOKdSvidfylPkKVOOIRhd132aUIIeJ1tD3Wu4itKeOo1TNmHIw11pjF4wSjCxx6c7+4x8233FLM3IhdIOKIR0o2rtu6Mt6LBT9jbYfoiziiXh/k82L2QRwb5HBk2RwSxbbiixEAAC/DSURBVNGXwOHWHGb8OocacYRfHBE8xI4gt91+ezrjzLOK9yKIiUU8n33+uSK8ilBo+J57pFlmnrn4fKD+sYbDQEm7DwECBAh0JyBw6E7HZwQIECAwIAJlWMMhGlr/aEOt4XvtsXux/WPtdQzmI3SobQ0Z78fihbGzxQl50B7bWMZg/pi8+GNX4UJX70UZMYA//4IL0q15jYhawBCBRsxG2GOv4cXAuRY4xPmxkOJZec2JeOQgjhhgx9T9N15/I114ySUpdkmoDxyef+GFdOFFF6WH/vFwca+o4y/zgom1I3beuPjSS/LWj892hAlx/5jxEFtv1h8xwI5dGWKQH8fEE0+cNtt003TV1VcX4cXoAoe4pjf3i+1CY7ZALeSIAX8EOrFAZP0Rs1POOvvsYmeRCIviiHPW/dGPirUeauf2JXCIkOOcc84t3D/4vOwIHGo7hMSjL5f/6YoOk7hXzIb4yY/W6fSYSq0Ozf5alhCv2e1UPgECBAiUW0DgUO7+UTsCBAgQKKlA7EgRMw1iZ4eRB779qXL8Rf7ZZ5/Lg9XJi4F8d2XFADwCjFjfIP7SXr/DRHfXdfdZBBgv5TKnm3baIsTo7txof6zvEDt79PXozf16eo+Y5fHcc8/nfpm4004dPb2+r+fFfV/NO2JE2BMhTMx2qN8Bo6/l9uW6Mjyi1Jd6u4YAAQIE2ktA4NBe/ak1BAgQaFkBA6SW7ToVJ0CAAAECBAh0KSBw6JLFmwQIECAwkAKmfw+ktntVQcAaDlXoZW0kQIBA+QUEDuXvIzUkQIBA2wuUZQ2HtofWwMoICPEq09UaSoAAgVILCBxK3T0qR4AAAQIECBDovYBHlHpv5goCBAgQaLyAwKHxpkokQIAAgT4IGCD1Ac0lBAgQIECAAIESCwgcStw5qkaAAIGqCJj+XZWe1s6BErCGw0BJuw8BAgQIdCcgcOhOx2cECBAgMCAC1nAYEGY3qZCAEK9Cna2pBAgQKLGAwKHEnaNqBAgQIECAAIG+CHhEqS9qriFAgACBRgsIHBotqjwCBAgQ6JOAAVKf2FxEgAABAgQIECitgMChtF2jYgQIEKiOgOnf1elrLR0YAWs4DIyzuxAgQIBA9wICh+59fEqAAAECAyBgDYcBQHaLSgkI8SrV3RpLgACB0goIHErbNSpGgAABAgQIEOibgEeU+ubmKgIECBBorIDAobGeSiNAgACBPgoYIPURzmUECBAgQIAAgZIKCBxK2jGqRYAAgSoJmP5dpd7W1oEQsIbDQCi7BwECBAiMTkDgMDohnxMgQIBA0wWs4dB0YjeomIAQr2IdrrkECBAoqYDAoaQdo1oECBAgQIAAgb4KeESpr3KuI0CAAIFGCggcGqmpLAIECBDos4ABUp/pXEiAAAECBAgQKKWAwKGU3aJSBAgQqJaA6d/V6m+tbb6ANRyab+wOBAgQIDB6AYHD6I2cQYAAAQJNFrCGQ5OBFV85ASFe5bpcgwkQIFBKAYFDKbtFpQgQIECAAAECfRfwiFLf7VxJgAABAo0TEDg0zlJJBAgQINAPAQOkfuC5lAABAgQIECBQQgGBQwk7RZUIECBQNQHTv6vW49rbbAFrODRbWPkECBAg0BMBgUNPlJxDgAABAk0VsIZDU3kVXkEBIV4FO12TCRAgUEIBgUMJO0WVCBAgQIAAAQL9EfCIUn/0XEuAAAECjRIQODRKUjkECBAg0C8BA6R+8bmYAAECBAgQIFA6AYFD6bpEhQgQIFA9AdO/q9fnWtxcAWs4NNdX6QQIECDQMwGBQ8+cnEWAAAECTRSwhkMTcRVdSQEhXiW7XaMJECBQOgGBQ+m6RIUIECBAgAABAv0T8IhS//xcTYAAAQKNERA4NMZRKQQIECDQTwEDpH4CupwAAQIECBAgUDIBgUPJOkR1CBAgUEUB07+r2Ova3EwBazg0U1fZBAgQINBTAYFDT6WcR4AAAQJNE7CGQ9NoFVxRASFeRTteswkQIFAyAYFDyTpEdQgQIECAAAEC/RXwiFJ/BV1PgAABAo0QEDg0QlEZBAgQINBvAQOkfhMqgAABAgQIECBQKgGBQ6m6Q2UIECBQTQHTv6vZ71rdPAFrODTPVskECBAg0HMBgUPPrZxJgAABAk0SsIZDk2AVW1kBIV5lu17DCRAgUCoBgUOpukNlCBAgQIAAAQL9F/CIUv8NlUCAAAEC/RcQOPTfUAkECBAg0AABA6QGICqCAAECBAgQIFAiAYFDiTpDVQgQIFBVAdO/q9rz2t0sAWs4NEtWuQQIECDQGwGBQ2+0nEuAAAECTRGwhkNTWBVaYQEhXoU7X9MJECBQIgGBQ4k6Q1UIECBAgAABAo0Q8IhSIxSVQYAAAQL9FRA49FfQ9QQIECDQEAEDpIYwKoQAAQIECBAgUBoBgUNpukJFCBAgUF0B07+r2/da3hwBazg0x1WpBAgQINA7AYFD77ycTYAAAQJNELCGQxNQFVlpASFepbtf4wkQIFAaAYFDabpCRQgQIECAAAECjRHwiFJjHJVCgAABAv0TEDj0z8/VBAgQINAgAQOkBkEqhgABAgQIECBQEgGBQ0k6QjUIECBQZQHTv6vc+9reDAFrODRDVZkECBAg0FsBgUNvxZxPgAABAg0XsIZDw0kVWHEBIV7FfwA0nwABAiUREDiUpCNUgwABAgQIECDQSIGY5bDYkCGNLFJZBAgQIECgVwICh15xOZkAAQIEmilggNRMXWVXScDvUpV6W1sJECBQXgGBQ3n7Rs0IECBQKYE555m3aO/vf3u2v8pWquc1ttECETZssOFGxe9R/D45CBAgQIDAYAkIHAZL3n0JECBAoJNAPHM+xhgpbTt0aKf3vSBAoHcCtfUb4nEKgUPv7JxNgAABAo0VEDg01lNpBAgQINAAAdPBG4CoiEoK+N2pZLdrNAECBEorIHAobdeoGAECBKopUPvr7LA802HYtmY7VPOnQKv7IlD73fFYUl/0XEOAAAECzRAQODRDVZkECBAg0GeBkQdN8RfbOKy232dSF7axQP3vR+13Z7sc1Hk0qY07XdMIECDQQgIChxbqLFUlQIBAVQRq08Ljayx+F8cTjz2aaq9rz6Z73XlxQB7V9KifDXT8CScIG6ryP0rtJECAQAsICBxaoJNUkQABAlUWiMBh8cWGFIMoA+pqDqgFTCMWfxz55z/+v1D/+1Hl/09oOwECBAiUU0DgUM5+USsCBAgQIECAAAECBAgQINDSAgKHlu4+lSdAgAABAgQIECBAgAABAuUUEDiUs1/UigABAgQIECBAgAABAgQItLSAwKGlu0/lCRAgQIAAAQIECBAgQIBAOQUEDuXsF7UiQIAAAQIECBAgQIAAAQItLSBwaOnuU3kCBAgQIECAAAECBAgQIFBOAYFDOftFrQgQIECAAAECBAgQIECAQEsLCBxauvtUngABAgQIECBAgAABAgQIlFNA4FDOflErAgQIECBAgAABAgQIECDQ0gICh5buPpUnQIAAAQIECBAgQIAAAQLlFBA4lLNf1IoAAQIECBAgQIAAAQIECLS0gMChpbtP5QkQIECAAAECBAgQIECAQDkFBA7l7Be1IkCAAAECBAgQIECAAAECLS0gcGjp7lN5AgQIECBAgAABAgQIECBQTgGBQzn7Ra0IECBAgAABAgQIECBAgEBLCwgcWrr7VJ4AAQIECBAgQIAAAQIECJRTQOBQzn5RKwIECBAgQIAAAQIECBAg0NICAoeW7j6VJ0CAAAECBAgQIECAAAEC5RQQOJSzX9SKAAECBAgQIECAAAECBAi0tIDAoaW7T+UJECBAgAABAgQIECBAgEA5BQQO5ewXtSJAgAABAgQIECBAgAABAi0tIHBo6e5TeQIECBAgQIAAAQIECBAgUE4BgUM5+0WtCBAgQIAAAQIECBAgQIBASwsIHFq6+1SeAAECBAgQIECAAAECBAiUU0DgUM5+USsCBAgQIECAAAECBAgQINDSAgKHlu4+lSdAgAABAgQIECBAgAABAuUUEDiUs1/UigABAgQIECBAgAABAgQItLSAwKGlu0/lCRAgQIAAAQIECBAgQIBAOQUEDuXsF7UiQIAAAQIECBAgQIAAAQItLSBwaOnuU3kCBAgQIECAAAECBAgQIFBOAYFDOftFrQgQIECAAAECBAgQIECAQEsLCBxauvtUngABAgQIECBAgAABAgQIlFNA4FDOflErAgQIECBAgAABAgQIECDQ0gICh5buPpUnQIAAAQIECBAgQIAAAQLlFBA4lLNf1IoAAQIECBAgQIAAAQIECLS0gMChpbtP5QkQIECAAAECBAgQIECAQDkFBA7l7Be1IkCAAAECBAgQIECAAAECLS0gcGjp7lN5AgQIECBAgAABAgQIECBQTgGBQzn7Ra0IECBAgAABAgQIECBAgEBLCwgcWrr7VJ4AAQIECBAgQIAAAQIECJRTQOBQzn5RKwIECBAgQIAAAQIECBAg0NICAoeW7j6VJ0CAAAECBAgQIECAAAEC5RQQOJSzX9SKAAECBAgQIECAAAECBAi0tIDAoaW7T+UJECBAgAABAgQIECBAgEA5BQQO5ewXtSJAgAABAgQIECBAgAABAi0tIHBo6e5TeQIECBAgQIAAAQIECBAgUE4BgUM5+0WtCBAgQIAAAQIECBAgQIBASwsIHFq6+1SeAAECBAgQIECAAAECBAiUU0DgUM5+USsCBAgQIECAAAECBAgQINDSAgKHlu4+lSdAgAABAgQIECBAgACBRgrccsutafU110zvvf9+I4ttSlljjTVmWvCb30w333hjU8rvb6ECh/4Kup4AAQIECBAgQIAAAQIE2kJg3fU3SJf/8Y8t15axxhorvfLSi2m88cYrVd0FDqXqDpUhQIAAAQIECBAgQIAAgcEQePiRR9IiQxYbjFs35J5fm3fedO/ddzWkrEYVInBolKRyCBAgQIAAAQIECBAgQKBlBbbcauv0u3POadn6R8XfffutUtVf4FCq7lAZAgQIECBAgAABAgQIEBgMgR+stHK66eabB+PWDbunwKFhlAoiQIAAAQIECBAgQIAAAQKNERA4NMaxvhQzHOo1fE+AAAECBAgQIECAAAEClRRoh8DhzddeTeOMM05p+k/gUJquUBECBAgQIECAAAECBAgQGCwBgUPj5QUOjTdVIgECBAgQIECAAAECBAi0mEA7BA5vvf5aGnvssUsjL3AoTVeoCAECBAgQIECAAAECBAgMlkA7BA4WjRysnx73JUCAAAECBAgQIECAAAECXyLQDoGDNRy+pHO9TYAAAQIECBAgQIAAgZ4KfPbZZ2nEfynl79IYn184xhhjpNp/PS3Ledkwe8Yx4t8RImGaNeOf0R/5wuiHOOrLGDP3R6scAofG95RHKhpvqkQCBAgQIECAAAECBJooEIPj999/Pz33/PPp1f++mv73v/8Vg91xxx03TTnFlGmGGaZPk046aRE8NLEabVX0O++8k95488306Sef5naNiAzGGmvsNNVUU6avfOUro7X85JNP0utvvJHee/fdEeFFDhomGH/8fP1ULePUyMBhjjnmSDPOMEPR9vh5ve3229Onn4Ztcw8zHJrrq3QCBAgQIECAAAECBNpQIAZtH330UXrxpZfSXXfdlR544O/pyaeeTP955ZX0v3dy4JA/H2+88dKUU06ZZpl55jTffF9Piw1ZLM0115zFInpjjTVWG6r0v0nh9uGHH6Yr//LXdMUVV6QIDmozFCaacMK09lprpSWX/PZot1p8I4cN519wYbrn3nvSJx9/UgQUiy66aNp6qy37X8kBKqGRgcMB+++Xhm07LI2ZJ3h8/PHHafqZZk4ffPBB01sicGg6sRsQIECAAAECBAgQINBOAjEojhkN1153XbrwoovzoPbe9OyzzxYDua7aOeaYY6ap81/WF1hggbTaqqukVVdZJU099dSj/St9V2W1+3vxV/dnnnk2HXDQgUVgENa1Y8IcOPzkRz9Khx5ycJp44olrb3f59YUXXkx7DR+eLvvDH9IHOcCIPlhn7bXSWb/+dZfnl/HNRgcOO26/feEQgcPU000vcChjp6sTAQIECBAgQIAAAQLVFIjBb/z3n//8J51z7rnpvPMvSP9+8sli4BYD5frBcb1QbQ2HccYZJ007zTTphz/4Qdpyiy3SnHN+dbR/qa8vpwrfx+yGa669Nu22x57pX//6V6cmh9/8882Xjjn6qDQkz1bo7hA4dNaJGQ4Ch7z8R94244sIq7ORVwQIECBAgAABAgQIEBg0gQgVYqr+6WeckY4/8aTi+5jyXwsUal9HrmAEEfWBRPx1fpWVV0677rxTfsRiro7rR76uiq/jkZQTTjgxnXjyyem9994rCMI1DGOWwmSTTZa223Zo2nmnnTo+68pJ4NBZReAwwkPg0PnnwisCBAgQIECAAAECBEoiEAsZXnTxJWnvffdNr7/+eseMhrHHHjtNMMEEaZFFFk4/WGGFPHMhr9OQFzh87vnn0g033phuvPGm9Fo+P9Z8iIFzrN8Q12y95ZZp2LBt0zT58QprOuSlIbPN3x98MG0zdNv0YP4aU//DJYKG+D6OCB9ihsixRx+dpptu2i91Ezh0/qUROIzwEDh0/rnwigABAgQIECBAgACBEgjEgPeBv/89bbb5FsVjFPE6BsKxE0VM8991l53TMksvXTwiEe/HEQPoOO/hRx5Jhxz6i3TLrbemCC1itkMcsWPC4YcemlZbbdUisIj34rOYNVE7oqwYZMcR5X2SP/80fx7nxWe1AXn9ebVrv+xrXFv7r1iU8fMQJMqo/Ve7Z30Zn+bz4t5Rjzjq71nULe8o8cmnue758/isvm715XT1fVwfay1ckgOdbbbdtghn4rzpp58+fXuJJdIfLr+8472555477bv38LTySisVO1Z0VZ7AobNKfeAQn9x22+35UaD3O5+U9xv98KMP05prrzPS+31/adHIvtu5kgABAgQIECBAgACBigi8mbdo3P/Ag9IZedHBCBFigBzbLH73u99NBx14QJrzq1/tGGDXk4wYiH+S3nrrrSJ0+N055xShQ7wfsxwWGzIknXbqKWnWWWYpLnv11dfS4/98vCg/Bv3j53vMnR+7iAH8s889l57L/7366qv5cYP3c0gxfrELxkwzzphmzjthRPjRVVBQX58IGuL6p595pliL4vXXXi9CgoknnqTYcjK2Tpwxl9fV1pOx3edD//hHsetDXs0inzNummOO2dN4+b6xJWgsnPnfvC3oxx9/VGwDOt1006Wv5u0YJ5ts8lz/EaFJfV3qv4/gIx6n2GnnXdLlf/xjR6Cy8UYbpp/8+Mdpw403LsoOt9itYtNNNkk750dSYjHOrg6BQ2eVkQOHzp9+8Spm4sw0y6xfvNHP7wQO/QR0OQECBAgQIECAAAEC7S9w3/0PpJ+su2564cUXi8FwDOwXXvhb6dCDD06LLLxwMdj/MoUYJMd/Tz/9TNpjr73SX/7612LrxygjQoJTf3VyWmP11Yuw4Kabbk6753MiGIgh+jR5kcn999uveMTgmmuvSff+7b70Sh6YR+gRgUV8/q2FFkrfX3bZHH58pwgeYnHF+iPuHbMT3nv33fS3++4rdte4+ZZb0xNP/DO9/fY7xYyEsfM1ETREW5ZbZpn07bz1ZIQPMUuhFmI8+dRTadOfbZbezeXEHIcY+O+Qdz54M69rceVf/5Luuefe9N8cZsT94hGTCEpWzI+YrLHG6h2BTK2s+vrF9/G4ye133JE23nTTHIS8UtxzkkkmSccde0xaYfnl08/zlo4RRES7o05Rzwh6llh88Y761ZcpcKjXSGmwAoe8RmPnigzyK49UDHIHuD0BAgQIECBAgAABAqMKHHb4EemwI47o2EpwvPHGTXvnYGCzn/0sxXaNMQNhdEcsgnj1Ndek3fMODE89/XRxeoQGa6+1ZjrxhBPSOPn7P195Zdpok02LxypicD755JOnpb/33RwSXJ/DgbeLICIujEF9bfAe9y4WosyPGGy++WY5CFk4jZmvrR0RXnzwwQfp3PPOS2f95uxilkJtPYkoJ45aWTGYjy0711h9taJtsR5F1CuORx97LC37/eWLesR14403Xlry299ODz70YDH7IO6TK1aEEVFe/BczNGJdi4PzNpcRaHyZU9Rvz72GpzPOPLMIH6IeSy25ZDrsF4emeeeZJ113/fVp4+zyTp5lEfeeaKKJ0gH77Zs23mijLmd2CByKLuv4p6eBQ6xNMmMDZzgIHDq6wDcECBAgQIAAAQIECBDoWmClVVYt1mCIqf8xaJ4nD4KPPPyw9L38SEVtsN71lV+8G9fGNpr77X9AuvSyy4oPYmAdj1PcfOMNRXARgcOGG2/SsY5DzFaI8uMv+3HfCChGDOZjVsDHxftRULwXswpiQcXdd901736RF67M58bgPMKFCBuOPOroIuiI9+L8eGwigoqxcx3ezmtLfPD++yPWiMjBwZRTTJHWWWfttN2wYWnmmWYqzn/s8cfT0ssu1xE41OoTQUPt+yg76hptrb0fwcQ2W2+d9txj9y7DgViX4sU8c2T5FVYsHs2IayNQ2HH77YrtQyeddNIUj7T8ZL310x133tkRxvz4R+ukfYbvnWaZZeZi1sMX0ikJHOo1Os9wiP6ZerrpO8Kzzmc29pXAobGeSiNAgAABAgQIECBAoA0FZp3jq/mv+P8tBvARAqz0wx+mfffZu/jre0+bG4Pxt/IsheOOOy4detjhxWUxUI9HE264/ro0+2yzpSv/8pdOgUOcNCJgGKPYQnPVVVZOs848S/GX/htvuqkIQWJthVqIEDMifpbXN9g+D9anyN/H4P3Bhx5K6//0p+mZZ54tQoAIIubKMxfWX2/dtPhii6dx82yNl156KV140cXpT1dckd7PwUMck+WB/i8OPSStkxcRjBkdIwcOcU7ULbaqXHvNNdOiiyyS3s2zOGI2QuzOETMy4ohQJR79+OMfLkvz5AUf43XtiHpHIHLmWb9Ju++5Z8cg+Bvzz188MhGBTnjHIPn0M36ddttjj46QZZYc1Bz/y2PTd7/znVEeaRE41IRHfK2f4SBw6GzjFQECBAgQIECAAAECBAZVYKJJJysG9TFAjpkB66+3Xtpjt93ymgkz9bhetcH1aaefngfOe3bMAIjFJy/Pg/GFFlxwlMAhBvQx4F51lVXS8D33KB53iNdRVoQXV1zx5xxeHFYsBBkzCiJMiMF6DDBj14x4VGHHnXfOMxzOL9aNiIAjHrmIui82ZNFiVkXcIwahL7/8cvHIxTG//GXHoH7ZvJ7DSSccX+wW8c8nnkj1MxwiOIh1FmKmx7J5DYl4tCR2sXj5P/9Jx59wYvrt736Xw4QPs8+ItSpiR46NN96oqGMNLeocwcQPV15lxIKU+fqozwbZNwKdafPCk/F4SLT38X/+M622xprFbIgIUoqZE/+3ddphu+2KxTNrZcZXgUO9hhkONQ1rONQkfCVAgAABAgQIECBAoDQCE04yaTHojQqNO+5X8oB4/bT7brummfLjBj09YtAcA/tTT4vAYY+OwCHWObj8skuLxR9HnuEQg/oICP6YP4/HDGIwXn98lMs78sgj0+FHHlXMFIh7xEA8wolthw5NERL8+CfrFrtSxOA+HpXYaccd0zZ5oD5yWVFu7EIRO0XcedddRf3ikYuLL7ygmL0Qj4PUBw4RvGyw/vp5i8q98wyGqeurVQQn++y7X7HuQ9w31oHYYovNi0U2IxSpHREcxGMkm22xZd55473COGZpDM+zHbbacovaacXX2F1j3/32T7HTx4d5C82wmSsvTHl+fj3XXHN2Olfg0Imj06KRZjh0tvGKAAECBAgQIECAAAECgyow2xz5kYo84C0Gz3mGwQ9XXDHtu+8+6WvzztvjesW1Ix6pOD794vARj1TEoDlmBtyYH6mYbdZ4pOKLNRwiEBg/hwcnnXhiWn21VUd5bCBuHAP2eBximbyYY6yDEK/jui022yztmUOH6669Lu0xfHjxOEjcf/rpp08bb/jTFItBxpGXdiy+jljqMaXXX38jXf6nP6abb76leD/Ci0MOOihtkmcmxC4V9YFDrBlx7NFHpTXXWKNoQ3HB5//EYxyxCORNN99chCwRMsSshePyIxC1wCHCkXh8Y+ttfp4u+8MfOs6LrUJjB4rYiaL+iHOvuvqaNDSvK/Haa68V7YzZHicdf3yx3kR8XwtRBA71cmY41DTMcKhJ+EqAAAECBAgQIECAQGkEVlo1LxqZt5KMAX08lhA7JxyRH2WIrSjjdU+OuLZYNDL/lf7SPMCOIwKHWDTylptuLBZ9rF80MgbP0047bbryij+lOWafvXi0YuT7RIgQA/HNt9wqXfHnPxezHOKcddZeK+2TZx5clhenPPrYX6a33nqrCEvis9qgPL7v6oggII44L2YxxCMLu+6yc7HgZH3gEDMRzjjt1OLRjdjes/6ImRV75l08rr7m2qJOsTBlzIaoDxzCI2ZUbLDhRunf//53cXmUE2sybPazTYsFLevLjPNja9ETTz45Pfroo8VH4bfCCsunM049tTg/XschcCgYOv6xhsMICoFDx4+EbwgQIECAAAECBAgQKIvAEfmRhVgrIdZEiCP+8r9XnkEQ22JOnB916EnoEAsqXnXVVXlxxL3yAo7PFOXEX/t/tM466YTjfln85T9Cg9ouFbF2wWx5Ick/5McpIpSozQwoLvz8nwgcok477LRTsU5DLMAYx+qrrZb222efdNHFF6UTTjq5WCchzo1jdIFDcdLn/0TgEI9fxBagsZVnfeAwRX4849enn5a+973vpXHzefVHTwKHeITi2LxeRNQvtmOMIxzjnjFboRYe1MqNICRCh3icIv6rnR+LVp5/7jlpSJ4ZUdvCU+BQUxvxVeAwwkHg0PnnwisCBAgQIECAAAECBEogcP8DDxTbMj7//PMdMwViV4YDD9i/GOjGgPvLBvK1gXI8krDPPvumK//612LAHOfH+g2nnHxSWi3PoIjXsUtELXCI11NOOWW67JKLi4UgYxA+8hEhwrvvvlvU7eZbbulY7HHdn/wkbxm5V/rD5ZcX6zvEtpJRj9h5YkheLHKyySb//GGKziWOmNsw4t944GKcccZOy+WtMNdcY/VidsaogcPpOXD4bp8Chwgltt9hx3TbbbelDz4PEDrXZvSvwihcYvbE0UceUYQV8Z7AobOdwGGEh8Ch88+FVwQIECBAgAABAgQIlEAgdlI4IK9lcMqpp3UM6mP6f2zbuP9++6b555uv+Ot8DHZHPuKv8rFzw2F53Ybzzr8gxTaWERTEQHmJxRcvAoeZZ565CAT++Kc/dQoc4q/9sYDi0J9v86VrONz/wN/T2nmWxKt5XYO4V8wSGLrNNmn33XdL119/Q9p5l13Sf155pSg/7rNbfjxiueWWG7maxesIJeK/2jHmGHnbzokmTJPmoCJ2iWhk4BC7WBx08CHphbq1J+K+IwhHdazVqVa/2tdo73R5N4ur8voXs806a9F+gUNNa8TXkQOHafJaHu+/P2K2TuczG/vq3bffamyB/SxN4NBPQJcTIECAAAECBAgQINB4gVjZP2Y5bPPzocXOC/E6woUIHWJxwy232CLPBFg2P2oxbvEoQG3gHufd+7e/pZN/9at0y623pTfyowOf5gF9XBvrMxyaQ4xVV12lWL8hwoL6wCFaEY9RzJIfp4g1Cr654DeLRwZqoUaUHQtZ7pG32Lw8BxW1xymmyrMihudHIGKhx2eefbbYpSJmE0T5sdDjhj/dIO25++5FiFB7bCHqG58/lWdhnJ2DgDfeeLMY+I/7lXHT/+VHKmIg36jAIQKCWFNiz+F7p3POPbeod7QpdtBYa80109h5VkVtMcuuejLq+syzz6Tbbr89bwf6WnFK9MMB++1X7GwRQc6LL76U9sqLZcZilDF7Iu4Z61qc9etfd1VkKd/7wUorF4tuNqJym+dHf44+6sji5yl+blb4wQ/THXfe2Yiiuy1D4NAtjw8JECBAgAABAgQIECCQir/6x8yES/MijPvuf0CxM0S4xEA5Bu2TTTZpmvOrc6al8+MFc889dzHAjccvbs4LTT6Qg4qYfRADvZjZENfEoHjYtkOLrStjoB0D4q4Ch1r5s+W1HGJmwqqrrFI8hhGD7ghAfnnc8emaa69N77zzTlHHKHepJZdMBx90YPrmAgsUC0ruf8CB6ZTTTivWeojyYqeKLTffPG280YZpqqmmKro37h3hxMGHHFosPhl1jTot/K1vpVNP+VWaacYZiy02GzHDIeZP3J7Dgr3z4yV333NPcf+YybHuj39cPKIS30c9v+wIw38+8a+03/77petvuLE4Ldq90EILposuuKAILgQOnfXC583XXu305vC8qOjvzz2v03vR57HbSaMOgUOjJJVDgAABAgQIECBAgEBbC8Sg/I28FsJvfnN2Ova441KsixAD8xj814KBCB9i4cIYVMfAOGYdxHW1c+K8CfK6DbGV5K677pJmz0FCvBf/dRU4BGgMAuO/+Ct+hAWz5Mci4hGP2PEigoa4R638GWaYIe20w/Z5dsPGxflRvwg+VvzhSunFvH1mvI46RlkLfOMbaamllkyTTDxJUdY111yTXvnvf4tgIu4XsyEOP/TQYsvJWGuiUTMcYpHLmPFx1DHHFobR9liE86ILzs/1WSrFjhbx3pcd0dZo8755t4/TTj89vZd36Yj6xnoXRx95ZFpj9dWKQGivPIPCDIcvFO+79540Tw7DascnEX7VXnz+9d57703fy2t2NOoQODRKUjkECBAgQIAAAQIECFRC4LU8W+Gc/JfhM878dd7O8cmO0KHW+NpgOQbG9UcM9GNQvPZaa6bt81aTM+ZwIAbKtaOrwCGuiccqartj1MquXVO7R5QTuzWsv956xWKRE044YcegPUKGa6+7Lu208y7FLIZ4HcfIZcV7UV68P3kuKxZijFkYM+bZDXE8+thjqREzHKKcCAtiZkYEB9HG+eefP1139VXF7I3iZj345/I//ints+++6V95S80Id2JmRNiekMOgmFEyXODQSTH69X9vvdnpvZFf3H333QKHkVG8JkCAAAECBAgQIECAwEAJRDDwfv6rejwuce5556UH/v73vCvCC+mD/F6sz1ALAWKAF//FdPZpppkmzTXnnMVuD/FYRGwpWfu8Vu+RA4f4PK5bdpll0l15IBhT3WM7yCi/FgzEOTETIdZYiJ0utth8s+IxiXi/dsRgPK6Lxw9OOvnk9MgjjxRrP3waMy/ySV2VteoqKxeBw0wzzdSxHedjjz+ellt+hWJ2RVwz+eSTpzNOOzV99zvfKQb7tfvF1yf+9a9iwH91DhVqsyrWX3fddGTeSeLPeevP3fO6E6/895UcFHxWXHtgfjwithgNq54eYb7jzjvnMOX6Ebt+5Avny4t3nnD8cWnqqacuQo3YpSNCjfBYO68PcUbexrNVjkau4VDf5l+deGJaf/31OoVd8XmEVnfffU8OHJatP71f35vh0C8+FxMgQIAAAQIECBAgUFWBGHS/nheBvOHGm4qtHf/95L/Ta6+9XmxTmSOB4rGFySadLM2cB+2xFeXSSy+dZs0LQNbPaqi3GzlwGDMPkmfLj1xckEONBx96MN14083pyfwYRTzKEYPoeCwigouvzTtvWnHFFYrHEb7SzYA9rnnq6afTlVdeme666+700ssvF+FBBBIjypo8zTPPPGn57y+fFl9sSJpkkknqq5eee+65NDyvu/Dee+/mkCKliSeeOO+e8fO8Q8fXRwkKYpeI3/3+98X6FR/nYGOsPJj9Tg4mfpoXrLzqqqvSBRdeWJQx5pgjApP9990vzTDD9MVsh0437eZFhCiXXHJpuurqq9M7eX2NOGLBzLXXWquYMXF+Xs/hzrvuSh9H4JDvEzuCbDdsWDclluujZgUO0cr4GYw+j8dX6o8IoOIxnUYdAodGSSqHAAECBAgQIECAAIHKCcRgPf6CH4Pfl156ufirfSwuGWHE+OONn6aYcopi3YUJxp8gzxQYqxjo1c8+qAcbJXDIg8IIHC675OI0/XTT590WPigG/a/nUOPDjz4s1j2Yeqqp8yMPM+TB43h50J93dxjji5kN9WXH91Gn2myHV/PuFhE4vPXmWykCgfHzGgpTTT1V8ZhHrNcQjzmMHIxEG2N7zSgjjrHHGjtNNvlkabw8cO3q3NiJImaC1HblmDDPxIgQI9afePvzQW3UduwckkRQEI+OdFf/4qZ1/8QaBO+++256O98n2hBHDKAnmmiiNG5uzzv5Pu+9F/cfsVZBtKu2SGZdMaX9tpmBw0A1WuAwUNLuQ4AAAQIECBAgQIAAgW4EvixwuPyyS4uFImNA7qiOgMCh8X09Rk5AOq+s0vh7KJEAAQIECBAgQIAAAQKlExA4lK5LBrVCAofG8wscGm+qRAIECBAgQIAAAQIEWkBA4NACnTSAVRQ4NB5b4NB4UyUSIECAAAECBAgQINACAgKHFuikAayiwKHx2AKHxpsqkQABAgQIECBAgACBFhCIwOEvf70qbbn11sXCjLGA4swzz5wuPO/cvDDkjL3awaEFmquKoxEQOIwGqA8fCxz6gOYSAgQIECBAgAABAgRaXyB2f3j4kUfTeeeflz77NC9tlwOHyfMuED/bdNM02aSTjrITROu3WAu6ExA4dKfTt88EDn1zcxUBAgQIECBAgAABAi0v8Fn65JNP00d5m828h2XRmmJ7yrHGTGOOMWavtoxseQoNSAKHxv8QCBwab6pEAgQIECBAgAABAgQIEGgxgS232jr97pxzWqzWnaubd6Hs/MYgvxI4DHIHuD0BAgQIECBAgAABAgQIDL7APx5+OC262OKDX5E+1mDeeedNf7v7rj5e3ZzLBA7NcVUqAQIECBAgQIAAAQIECLSYwAYbbpQuveyyFqt1KhY4ffmF59MEE0xQqroLHErVHSpDgAABAgQIECBAgAABAoMp8Oijj6YhS3w7fRxre5T8iJ1VFlrwm+mWm24qZU0FDqXsFpUiQIAAAQIECBAgQIAAAQKtLSBwaO3+U3sCBAgQIECAAAECBAgQIFBKAYFDKbtFpQgQIECAAAECBAgQIECAQGsLCBxau//UngABAgQIECBAgAABAgQIlFJA4FDKblEpAgQIECBAgAABAgQIECDQ2gICh9buP7UnQIAAAQIECBAgQIAAAQKlFBA4lLJbVIoAAQIECBAgQIAAAQIECLS2gMChtftP7QkQIECAAAECBAgQIECAQCkFBA6l7BaVIkCAAAECBAgQIECAAAECrS0gcGjt/lN7AgQIECBAgAABAgQIECBQSgGBQym7RaUIECBAgAABAgQIECBAgEBrCwgcWrv/1J4AAQIECBAgQIAAAQIECJRSQOBQym5RKQIECBAgQIAAAQIECBAg0NoCAofW7j+1J0CAAAECBAgQIECAAAECpRQQOJSyW1SKAAECBAgQIECAAAECBAi0toDAobX7T+0JECBAgAABAgQIECBAgEApBQQOpewWlSJAgAABAgQIECBAgAABAq0tIHBo7f5TewIECBAgQIAAAQIECBAgUEoBgUMpu0WlCBAgQIAAAQIECBAgQIBAawsIHFq7/9SeAAECBAgQIECAAAECBAiUUkDgUMpuUSkCBAgQIECAAAECBAgQINDaAgKH1u4/tSdAgAABAgQIECBAgAABAqUUEDiUsltUigABAgQIECBAgAABAgQItLaAwKG1+0/tCRAgQIAAAQIECBAgQIBAKQUEDqXsFpUiQIAAAQIECBAgQIAAAQKtLSBwaO3+U3sCBAgQIECAAAECBAgQIFBKAYFDKbtFpQgQIECAAAECBAgQIECAQGsLCBxau//UngABAgQIECBAgAABAgQIlFJA4FDKblEpAgQIECBAgAABAgQIECDQ2gICh9buP7UnQIAAAQIECBAgQIAAAQKlFBA4lLJbVIoAAQIECBAgQIAAAQIECLS2gMChtftP7QkQIECAAAECBAgQIECAQCkFBA6l7BaVIkCAAAECBAgQIECAAAECrS0gcGjt/lN7AgQIECBAgAABAgQIECBQSgGBQym7RaUIECBAgAABAgQIECBAgEBrCwgcWrv/1J4AAQIECBAgQIAAAQIECJRSQOBQym5RKQIECBAgQIAAAQIECBAg0NoCAofW7j+1J0CAAAECBAgQIECAAAECpRQQOJSyW1SKAAECBAgQIECAAAECBAi0toDAobX7T+0JECBAgAABAgQIECBAgEApBQQOpewWlSJAgAABAgQIECBAgAABAq0t8P+DKCBYwzNq/wAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import re\n", + "from concurrent.futures import ThreadPoolExecutor, as_completed\n", + "from typing import Any\n", + "\n", + "from chonkie import OpenAIEmbeddings, SemanticChunker\n", + "from tqdm import tqdm\n", + "\n", + "\n", + "class Chunker:\n", + " \"\"\"\n", + " Takes in transcripts of earnings calls and extracts quarter information and splits\n", + " the transcript into semantically meaningful chunks using embedding-based similarity.\n", + " \"\"\"\n", + "\n", + " def __init__(self, model: str = \"text-embedding-3-small\"):\n", + " self.model = model\n", + "\n", + " def find_quarter(self, text: str) -> str | None:\n", + " \"\"\"Extract the quarter (e.g., 'Q1 2023') from the input text if present, otherwise return None.\"\"\"\n", + " # In this dataset we can just use regex to find the quarter as it is consistently defined\n", + " search_results = re.findall(r\"[Q]\\d\\s\\d{4}\", text)\n", + "\n", + " if search_results:\n", + " quarter = str(search_results[0])\n", + " return quarter\n", + "\n", + " return None\n", + "\n", + "\n", + " def generate_transcripts_and_chunks(\n", + " self,\n", + " dataset: Any,\n", + " company: list[str] | None = None,\n", + " text_key: str = \"transcript\",\n", + " company_key: str = \"company\",\n", + " date_key: str = \"date\",\n", + " threshold_value: float = 0.7,\n", + " min_sentences: int = 3,\n", + " num_workers: int = 50,\n", + " ) -> list[Transcript]:\n", + " \"\"\"Populate Transcript objects with semantic chunks.\"\"\"\n", + " # Populate the Transcript objects with the passed data on the transcripts\n", + " transcripts = [\n", + " Transcript(\n", + " text=d[text_key],\n", + " company=d[company_key],\n", + " date=d[date_key],\n", + " quarter=self.find_quarter(d[text_key]),\n", + " )\n", + " for d in dataset\n", + " ]\n", + "\n", + " if company:\n", + " transcripts = [t for t in transcripts if t.company in company]\n", + "\n", + " def _process(t: Transcript) -> Transcript:\n", + " if not hasattr(_process, \"chunker\"):\n", + " embed_model = OpenAIEmbeddings(self.model)\n", + " _process.chunker = SemanticChunker(\n", + " embedding_model=embed_model,\n", + " threshold=threshold_value,\n", + " min_sentences=max(min_sentences, 1),\n", + " )\n", + " semantic_chunks = _process.chunker.chunk(t.text)\n", + " t.chunks = [\n", + " Chunk(\n", + " text=c.text,\n", + " metadata={\n", + " \"start_index\": getattr(c, \"start_index\", None),\n", + " \"end_index\": getattr(c, \"end_index\", None),\n", + " },\n", + " )\n", + " for c in semantic_chunks\n", + " ]\n", + " return t\n", + "\n", + " # Create the semantic chunks and add them to their respective Transcript object using a thread pool\n", + " with ThreadPoolExecutor(max_workers=num_workers) as pool:\n", + " futures = [pool.submit(_process, t) for t in transcripts]\n", + " transcripts = [\n", + " f.result()\n", + " for f in tqdm(\n", + " as_completed(futures),\n", + " total=len(futures),\n", + " desc=\"Generating Semantic Chunks\",\n", + " )\n", + " ]\n", + "\n", + " return transcripts\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raw_data = list(my_dataset)\n", + "\n", + "chunker = Chunker()\n", + "transcripts = chunker.generate_transcripts_and_chunks(raw_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, we can load just the `AMD` and `NVDA` pre-chunked transcripts from pre-processed files in `transcripts/`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle\n", + "from pathlib import Path\n", + "\n", + "\n", + "def load_transcripts_from_pickle(directory_path: str = \"transcripts/\") -> list[Transcript]:\n", + " \"\"\"Load all pickle files from a directory into a dictionary.\"\"\"\n", + " loaded_transcripts = []\n", + " dir_path = Path(directory_path).resolve()\n", + "\n", + "\n", + " for pkl_file in sorted(dir_path.glob(\"*.pkl\")):\n", + " try:\n", + " with open(pkl_file, \"rb\") as f:\n", + " transcript = pickle.load(f)\n", + " # Ensure it's a Transcript object\n", + " if not isinstance(transcript, Transcript):\n", + " transcript = Transcript(**transcript)\n", + " loaded_transcripts.append(transcript)\n", + " print(f\"✅ Loaded transcript from {pkl_file.name}\")\n", + " except Exception as e:\n", + " print(f\"❌ Error loading {pkl_file.name}: {e}\")\n", + "\n", + " return loaded_transcripts" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# transcripts = load_transcripts_from_pickle()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can inspect a couple of chunks:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "chunks = transcripts[0].chunks\n", + "if chunks is not None:\n", + " for i, chunk in enumerate(chunks[21:23]):\n", + " print(f\"Chunk {i+21}:\")\n", + " print(f\" ID: {chunk.id}\")\n", + " print(f\" Text: {repr(chunk.text[:200])}{'...' if len(chunk.text) > 100 else ''}\")\n", + " print(f\" Metadata: {chunk.metadata}\")\n", + " print()\n", + "else:\n", + " print(\"No chunks found for the first transcript.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this, we have successfully split our transcripts into semantically sectioned chunks. We can now move onto the next steps in our pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.3. Laying the Foundations for our Temporal Agent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before we move onto defining the `TemporalAgent` class, we will first define the prompts and data models that are needed for it to function." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Formalizing our label definitions " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For our temporal agent to be able to accurately extract the statement and temporal types we need to provide it with sufficiently detailed and specific context. For convenience, we define these within a structured format below. \n", + "\n", + "Each label contains three crucial pieces of information that we will later pass to our LLMs in prompts.\n", + "
    \n", + "
  • \n", + " definition
    \n", + "

    \n", + " Provides a concise description of what the label represents. It establishes the conceptual boundaries of the statement or temporal type and ensures consistency in interpretation across examples.\n", + "

    \n", + "
  • \n", + "\n", + "
  • \n", + " date_handling_guidance
    \n", + "

    \n", + " Explains how to interpret the temporal validity of a statement associated with the label. It describes how the valid_at and invalid_at dates should be derived when processing instances of that label.\n", + "

    \n", + "
  • \n", + "\n", + "
  • \n", + " date_handling_examples
    \n", + "

    \n", + " Includes illustrative examples of how real-world statements would be labelled and temporally annotated under this label. These will be used as few-shot examples to the LLMs downstream.\n", + "

    \n", + "
  • \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "LABEL_DEFINITIONS: dict[str, dict[str, dict[str, str]]] = {\n", + " \"episode_labelling\": {\n", + " \"FACT\": dict(\n", + " definition=(\n", + " \"Statements that are objective and can be independently \"\n", + " \"verified or falsified through evidence.\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"These statements can be made up of multiple static and \"\n", + " \"dynamic temporal events marking for example the start, end, \"\n", + " \"and duration of the fact described statement.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'Company A owns Company B in 2022', 'X caused Y to happen', \"\n", + " \"or 'John said X at Event' are verifiable facts which currently \"\n", + " \"hold true unless we have a contradictory fact.\"\n", + " ),\n", + " ),\n", + " \"OPINION\": dict(\n", + " definition=(\n", + " \"Statements that contain personal opinions, feelings, values, \"\n", + " \"or judgments that are not independently verifiable. It also \"\n", + " \"includes hypothetical and speculative statements.\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"This statement is always static. It is a record of the date the \"\n", + " \"opinion was made.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'I like Company A's strategy', 'X may have caused Y to happen', \"\n", + " \"or 'The event felt like X' are opinions and down to the reporters \"\n", + " \"interpretation.\"\n", + " ),\n", + " ),\n", + " \"PREDICTION\": dict(\n", + " definition=(\n", + " \"Uncertain statements about the future on something that might happen, \"\n", + " \"a hypothetical outcome, unverified claims. It includes interpretations \"\n", + " \"and suggestions. If the tense of the statement changed, the statement \"\n", + " \"would then become a fact.\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"This statement is always static. It is a record of the date the \"\n", + " \"prediction was made.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'It is rumoured that Dave will resign next month', 'Company A expects \"\n", + " \"X to happen', or 'X suggests Y' are all predictions.\"\n", + " ),\n", + " ),\n", + " },\n", + " \"temporal_labelling\": {\n", + " \"STATIC\": dict(\n", + " definition=(\n", + " \"Often past tense, think -ed verbs, describing single points-in-time. \"\n", + " \"These statements are valid from the day they occurred and are never \"\n", + " \"invalid. Refer to single points in time at which an event occurred, \"\n", + " \"the fact X occurred on that date will always hold true.\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"The valid_at date is the date the event occurred. The invalid_at date \"\n", + " \"is None.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'John was appointed CEO on 4th Jan 2024', 'Company A reported X percent \"\n", + " \"growth from last FY', or 'X resulted in Y to happen' are valid the day \"\n", + " \"they occurred and are never invalid.\"\n", + " ),\n", + " ),\n", + " \"DYNAMIC\": dict(\n", + " definition=(\n", + " \"Often present tense, think -ing verbs, describing a period of time. \"\n", + " \"These statements are valid for a specific period of time and are usually \"\n", + " \"invalidated by a Static fact marking the end of the event or start of a \"\n", + " \"contradictory new one. The statement could already be referring to a \"\n", + " \"discrete time period (invalid) or may be an ongoing relationship (not yet \"\n", + " \"invalid).\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"The valid_at date is the date the event started. The invalid_at date is \"\n", + " \"the date the event or relationship ended, for ongoing events this is None.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'John is the CEO', 'Company A remains a market leader', or 'X is continuously \"\n", + " \"causing Y to decrease' are valid from when the event started and are invalidated \"\n", + " \"by a new event.\"\n", + " ),\n", + " ),\n", + " \"ATEMPORAL\": dict(\n", + " definition=(\n", + " \"Statements that will always hold true regardless of time therefore have no \"\n", + " \"temporal bounds.\"\n", + " ),\n", + " date_handling_guidance=(\n", + " \"These statements are assumed to be atemporal and have no temporal bounds. Both \"\n", + " \"their valid_at and invalid_at are None.\"\n", + " ),\n", + " date_handling_example=(\n", + " \"'A stock represents a unit of ownership in a company', 'The earth is round', or \"\n", + " \"'Europe is a continent'. These statements are true regardless of time.\"\n", + " ),\n", + " ),\n", + " },\n", + "}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.4. Statement Extraction " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Statement Extraction\" refers to the process of splitting our semantic chunks into the smallest possible \"atomic\" facts. Within our Temporal Agent, this is achieved by: \n", + "\n", + "
    \n", + "
  1. \n", + " Finding every standalone, declarative claim
    \n", + "

    \n", + " Extract statements that can stand on their own as complete subject-predicate-object expressions without relying on surrounding context.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Ensuring atomicity
    \n", + "

    \n", + " Break down complex or compound sentences into minimal, indivisible factual units, each expressing a single relationship.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Resolving references
    \n", + "

    \n", + " Replace pronouns or abstract references (e.g., \"he\" or \"The Company\") with specific entities (e.g., \"John Smith\", \"AMD\") using the main subject for disambiguation.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Preserving temporal and quantitative precision
    \n", + "

    \n", + " Retain explicit dates, durations, and quantities to anchor each fact precisely in time and scale.\n", + "

    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Labelling each extracted statement
    \n", + "

    \n", + " Every statement is annotated with a StatementType and a TemporalType.\n", + "

    \n", + "
  10. \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Temporal Types\n", + "\n", + "The `TemporalType` enum provides a standardized set of temporal categories that make it easier to classify and work with statements extracted from earnings call transcripts.\n", + "\n", + "Each category captures a different kind of temporal reference:\n", + "\n", + "* **Atemporal**: Statements that are universally true and invariant over time (e.g., “The speed of light in a vacuum is ≈3×10⁸ m s⁻¹.”).\n", + "* **Static**: Statements that became true at a specific point in time and remain unchanged thereafter (e.g., “Person YY was CEO of Company XX on October 23rd, 2014.”).\n", + "* **Dynamic**: Statements that may change over time and require temporal context to interpret accurately (e.g., “Person YY is CEO of Company XX.”)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from enum import StrEnum\n", + "\n", + "\n", + "class TemporalType(StrEnum):\n", + " \"\"\"Enumeration of temporal types of statements.\"\"\"\n", + "\n", + " ATEMPORAL = \"ATEMPORAL\"\n", + " STATIC = \"STATIC\"\n", + " DYNAMIC = \"DYNAMIC\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Statement Types\n", + "\n", + "Similarly, the `StatementType` enum classifies the nature of each extracted statement, capturing its epistemic characteristics.\n", + "\n", + "* **Fact**: A statement that asserts a verifiable claim considered true at the time it was made. However, it may later be superseded or contradicted by other facts (e.g., updated information or corrections).\n", + "* **Opinion**: A subjective statement reflecting a speaker’s belief, sentiment, or judgment. By nature, opinions are considered temporally true at the moment they are expressed.\n", + "* **Prediction**: A forward-looking or hypothetical statement about a potential future event or outcome. Temporally, a prediction is assumed to hold true from the time of utterance until the conclusion of the inferred prediction window." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class StatementType(StrEnum):\n", + " \"\"\"Enumeration of statement types for statements.\"\"\"\n", + "\n", + " FACT = \"FACT\"\n", + " OPINION = \"OPINION\"\n", + " PREDICTION = \"PREDICTION\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Raw Statement" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `RawStatement` model represents an individual statement extracted by an LLM, annotated with both its semantic type (`StatementType`) and temporal classification (`TemporalType`). These raw statements serve as intermediate representations and are intended to be transformed into `TemporalEvent` objects in later processing stages.\n", + "\n", + "Core fields:\n", + "- `statement`: The textual content of the extracted statement\n", + "- `statement_type`: The type of statement (Fact, Opinion, Prediction), based on the `StatementType` enum\n", + "- `temporal_type`: The temporal classification of the statement (Static, Dynamic, Atemporal), drawn from the `TemporalType` enum\n", + "\n", + "The model includes field-level validators to ensure that all type annotations conform to their respective enums, providing a layer of robustness against invalid input.\n", + "\n", + "The companion model `RawStatementList` contains the output of the statement extraction step: a list of `RawStatement` instances." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pydantic import field_validator\n", + "\n", + "\n", + "class RawStatement(BaseModel):\n", + " \"\"\"Model representing a raw statement with type and temporal information.\"\"\"\n", + "\n", + " statement: str\n", + " statement_type: StatementType\n", + " temporal_type: TemporalType\n", + "\n", + " @field_validator(\"temporal_type\", mode=\"before\")\n", + " @classmethod\n", + " def _parse_temporal_label(cls, value: str | None) -> TemporalType:\n", + " if value is None:\n", + " return TemporalType.ATEMPORAL\n", + " cleaned_value = value.strip().upper()\n", + " try:\n", + " return TemporalType(cleaned_value)\n", + " except ValueError as e:\n", + " raise ValueError(f\"Invalid temporal type: {value}. Must be one of {[t.value for t in TemporalType]}\") from e\n", + "\n", + " @field_validator(\"statement_type\", mode=\"before\")\n", + " @classmethod\n", + " def _parse_statement_label(cls, value: str | None = None) -> StatementType:\n", + " if value is None:\n", + " return StatementType.FACT\n", + " cleaned_value = value.strip().upper()\n", + " try:\n", + " return StatementType(cleaned_value)\n", + " except ValueError as e:\n", + " raise ValueError(f\"Invalid temporal type: {value}. Must be one of {[t.value for t in StatementType]}\") from e\n", + "\n", + "class RawStatementList(BaseModel):\n", + " \"\"\"Model representing a list of raw statements.\"\"\"\n", + "\n", + " statements: list[RawStatement]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Statement Extraction Prompt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the core prompt that powers our Temporal Agent's ability to extract and label atomic statements. It is written in [Jinja](https://jinja.palletsprojects.com/en/stable/) allowing us to modularly compose dynamic inputs without rewriting the core logic.\n", + "\n", + "##### Anatomy of the prompt\n", + "
    \n", + "
  1. \n", + " Set up the extraction task
    \n", + "

    \n", + " We instruct the assistant to behave like a domain expert in finance and clearly define the two subtasks: (i) extracting atomic, declarative statements, and (ii) labelling each with a statement_type and a temporal_type.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Enforces strict extraction guidelines
    \n", + "

    \n", + " The rules for extraction help to enforce consistency and clarity. Statements must:\n", + "

    \n", + "
      \n", + "
    • Be structured as clean subject-predicate-object triplets
    • \n", + "
    • Be self-contained and context-independent
    • \n", + "
    • Resolve co-references (e.g., \"he\" → \"John Smith\")
    • \n", + "
    • Include temporal/quantitative qualifiers where present
    • \n", + "
    • Be split when multiple events or temporalities are described
    • \n", + "
    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Supports plug-and-play definitions
    \n", + "

    \n", + " The {% if definitions %} block makes it easy to inject structured definitions such as statement categories, temporal types, and domain-specific terms.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Includes few-shot examples
    \n", + "

    \n", + " We provide an annotated example chunk and the corresponding JSON output to demonstrate to the model how it should behave.\n", + "

    \n", + "
  8. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "statement_extraction_prompt = '''\n", + "{% macro tidy(name) -%}\n", + " {{ name.replace('_', ' ')}}\n", + "{%- endmacro %}\n", + "\n", + "You are an expert finance professional and information-extraction assistant.\n", + "\n", + "===Inputs===\n", + "{% if inputs %}\n", + "{% for key, val in inputs.items() %}\n", + "- {{ key }}: {{val}}\n", + "{% endfor %}\n", + "{% endif %}\n", + "\n", + "===Tasks===\n", + "1. Identify and extract atomic declarative statements from the chunk given the extraction guidelines\n", + "2. Label these (1) as Fact, Opinion, or Prediction and (2) temporally as Static or Dynamic\n", + "\n", + "===Extraction Guidelines===\n", + "- Structure statements to clearly show subject-predicate-object relationships\n", + "- Each statement should express a single, complete relationship (it is better to have multiple smaller statements to achieve this)\n", + "- Avoid complex or compound predicates that combine multiple relationships\n", + "- Must be understandable without requiring context of the entire document\n", + "- Should be minimally modified from the original text\n", + "- Must be understandable without requiring context of the entire document,\n", + " - resolve co-references and pronouns to extract complete statements, if in doubt use main_entity for example:\n", + " \"your nearest competitor\" -> \"main_entity's nearest competitor\"\n", + " - There should be no reference to abstract entities such as 'the company', resolve to the actual entity name.\n", + " - expand abbreviations and acronyms to their full form\n", + "\n", + "- Statements are associated with a single temporal event or relationship\n", + "- Include any explicit dates, times, or quantitative qualifiers that make the fact precise\n", + "- If a statement refers to more than 1 temporal event, it should be broken into multiple statements describing the different temporalities of the event.\n", + "- If there is a static and dynamic version of a relationship described, both versions should be extracted\n", + "\n", + "{%- if definitions %}\n", + " {%- for section_key, section_dict in definitions.items() %}\n", + "==== {{ tidy(section_key) | upper }} DEFINITIONS & GUIDANCE ====\n", + " {%- for category, details in section_dict.items() %}\n", + "{{ loop.index }}. {{ category }}\n", + "- Definition: {{ details.get(\"definition\", \"\") }}\n", + " {% endfor -%}\n", + " {% endfor -%}\n", + "{% endif -%}\n", + "\n", + "===Examples===\n", + "Example Chunk: \"\"\"\n", + " TechNova Q1 Transcript (Edited Version)\n", + " Attendees:\n", + " * Matt Taylor\n", + " ABC Ltd - Analyst\n", + " * Taylor Morgan\n", + " BigBank Senior - Coordinator\n", + " ----\n", + " On April 1st, 2024, John Smith was appointed CFO of TechNova Inc. He works alongside the current Senior VP Olivia Doe. He is currently overseeing the company’s global restructuring initiative, which began in May 2024 and is expected to continue into 2025.\n", + " Analysts believe this strategy may boost profitability, though others argue it risks employee morale. One investor stated, “I think Jane has the right vision.”\n", + " According to TechNova’s Q1 report, the company achieved a 10% increase in revenue compared to Q1 2023. It is expected that TechNova will launch its AI-driven product line in Q3 2025.\n", + " Since June 2024, TechNova Inc has been negotiating strategic partnerships in Asia. Meanwhile, it has also been expanding its presence in Europe, starting July 2024. As of September 2025, the company is piloting a remote-first work policy across all departments.\n", + " Competitor SkyTech announced last month they have developed a new AI chip and launched their cloud-based learning platform.\n", + "\"\"\"\n", + "\n", + "Example Output: {\n", + " \"statements\": [\n", + " {\n", + " \"statement\": \"Matt Taylor works at ABC Ltd.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Matt Taylor is an Analyst.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Taylor Morgan works at BigBank.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Taylor Morgan is a Senior Coordinator.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"John Smith was appointed CFO of TechNova Inc on April 1st, 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"John Smith has held position CFO of TechNova Inc from April 1st, 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Olivia Doe is the Senior VP of TechNova Inc.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"John Smith works with Olivia Doe.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"John Smith is overseeing TechNova Inc's global restructuring initiative starting May 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Analysts believe TechNova Inc's strategy may boost profitability.\",\n", + " \"statement_type\": \"OPINION\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"Some argue that TechNova Inc's strategy risks employee morale.\",\n", + " \"statement_type\": \"OPINION\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"An investor stated 'I think John has the right vision' on an unspecified date.\",\n", + " \"statement_type\": \"OPINION\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc achieved a 10% increase in revenue in Q1 2024 compared to Q1 2023.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"It is expected that TechNova Inc will launch its AI-driven product line in Q3 2025.\",\n", + " \"statement_type\": \"PREDICTION\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc started negotiating strategic partnerships in Asia in June 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc has been negotiating strategic partnerships in Asia since June 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc has been expanding its presence in Europe since July 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc started expanding its presence in Europe in July 2024.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"TechNova Inc is going to pilot a remote-first work policy across all departments as of September 2025.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"SkyTech is a competitor of TechNova.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"DYNAMIC\"\n", + " },\n", + " {\n", + " \"statement\": \"SkyTech developed new AI chip.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " },\n", + " {\n", + " \"statement\": \"SkyTech launched cloud-based learning platform.\",\n", + " \"statement_type\": \"FACT\",\n", + " \"temporal_type\": \"STATIC\"\n", + " }\n", + " ]\n", + "}\n", + "===End of Examples===\n", + "\n", + "**Output format**\n", + "Return only a list of extracted labelled statements in the JSON ARRAY of objects that match the schema below:\n", + "{{ json_schema }}\n", + "'''" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.5. Temporal Range Extraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Raw temporal range" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `RawTemporalRange` model holds the raw extraction of `valid_at` and `invalid_at` date strings for a statement. These both use the date-time [supported string property](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses ).\n", + "\n", + "- `valid_at` represents the start of the validity period for a statement\n", + "- `invalid_at` represents the end of the validity period for a statement" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class RawTemporalRange(BaseModel):\n", + " \"\"\"Model representing the raw temporal validity range as strings.\"\"\"\n", + "\n", + " valid_at: str | None = Field(..., json_schema_extra={\"format\": \"date-time\"})\n", + " invalid_at: str | None = Field(..., json_schema_extra={\"format\": \"date-time\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Temporal validity range" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While the `RawTemporalRange` model preserves the originally extracted date strings, the `TemporalValidityRange` model transforms these into standardized `datetime` objects for downstream processing. \n", + "\n", + "It parses the raw `valid_at` and `invalid_at` values, converting them from strings into timezone-aware `datetime` instances. This is handled through a field-level validator." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from utils import parse_date_str\n", + "\n", + "\n", + "class TemporalValidityRange(BaseModel):\n", + " \"\"\"Model representing the parsed temporal validity range as datetimes.\"\"\"\n", + "\n", + " valid_at: datetime | None = None\n", + " invalid_at: datetime | None = None\n", + "\n", + " @field_validator(\"valid_at\", \"invalid_at\", mode=\"before\")\n", + " @classmethod\n", + " def _parse_date_string(cls, value: str | datetime | None) -> datetime | None:\n", + " if isinstance(value, datetime) or value is None:\n", + " return value\n", + " return parse_date_str(value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Date extraction prompt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now create the prompt that guides our Temporal Agent in accurately determining the temporal validity of statements.\n", + "\n", + "##### Anatomy of the prompt\n", + "\n", + "This prompt helps the Temporal Agent precisely understand and extract temporal validity ranges.\n", + "\n", + "
    \n", + "
  1. \n", + " Clearly Defines the Extraction Task
    \n", + "

    \n", + " The prompt instructs our model to determine when a statement became true (valid_at) and optionally when it stopped being true (invalid_at).\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Uses Contextual Guidance
    \n", + "

    \n", + " By dynamically incorporating {{ inputs.temporal_type }} and {{ inputs.statement_type }}, the prompt guides the model in interpreting temporal nuances based on the nature of each statement (like distinguishing facts from predictions or static from dynamic contexts).\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Ensures Consistency with Clear Formatting Rules
    \n", + "

    \n", + " To maintain clarity and consistency, the prompt requires all dates to be converted into standardized ISO 8601 date-time formats, normalized to UTC. It explicitly anchors relative expressions (like \"last quarter\") to known publication dates, making temporal information precise and reliable.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Aligns with Business Reporting Cycles
    \n", + "

    \n", + " Recognizing the practical need for quarter-based reasoning common in business and financial contexts, the prompt can interpret and calculate temporal ranges based on business quarters, minimizing ambiguity.\n", + "

    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Adapts to Statement Types for Semantic Accuracy
    \n", + "

    \n", + " Specific rules ensure the semantic integrity of statements—for example, opinions might only have a start date (valid_at) reflecting the moment they were expressed, while predictions will clearly define their forecast window using an end date (invalid_at).\n", + "

    \n", + "
  10. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "date_extraction_prompt = \"\"\"\n", + "{#\n", + " This prompt (template) is adapted from [getzep/graphiti]\n", + " Licensed under the Apache License, Version 2.0\n", + "\n", + " Original work:\n", + " https://github.com/getzep/graphiti/blob/main/graphiti_core/prompts/extract_edge_dates.py\n", + "\n", + " Modifications made by Tomoro on 2025-04-14\n", + " See the LICENSE file for the full Apache 2.0 license text.\n", + "#}\n", + "\n", + "{% macro tidy(name) -%}\n", + " {{ name.replace('_', ' ')}}\n", + "{%- endmacro %}\n", + "\n", + "INPUTS:\n", + "{% if inputs %}\n", + "{% for key, val in inputs.items() %}\n", + "- {{ key }}: {{val}}\n", + "{% endfor %}\n", + "{% endif %}\n", + "\n", + "TASK:\n", + "- Analyze the statement and determine the temporal validity range as dates for the temporal event or relationship described.\n", + "- Use the temporal information you extracted, guidelines below, and date of when the statement was made or published. Do not use any external knowledge to determine validity ranges.\n", + "- Only set dates if they explicitly relate to the validity of the relationship described in the statement. Otherwise ignore the time mentioned.\n", + "- If the relationship is not of spanning nature and represents a single point in time, but you are still able to determine the date of occurrence, set the valid_at only.\n", + "\n", + "{{ inputs.get(\"temporal_type\") | upper }} Temporal Type Specific Guidance:\n", + "{% for key, guide in temporal_guide.items() %}\n", + "- {{ tidy(key) | capitalize }}: {{ guide }}\n", + "{% endfor %}\n", + "\n", + "{{ inputs.get(\"statement_type\") | upper }} Statement Type Specific Guidance:\n", + "{%for key, guide in statement_guide.items() %}\n", + "- {{ tidy(key) | capitalize }}: {{ guide }}\n", + "{% endfor %}\n", + "\n", + "Validity Range Definitions:\n", + "- `valid_at` is the date and time when the relationship described by the statement became true or was established.\n", + "- `invalid_at` is the date and time when the relationship described by the statement stopped being true or ended. This may be None if the event is ongoing.\n", + "\n", + "General Guidelines:\n", + " 1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ) for datetimes.\n", + " 2. Use the reference or publication date as the current time when determining the valid_at and invalid_at dates.\n", + " 3. If the fact is written in the present tense without containing temporal information, use the reference or publication date for the valid_at date\n", + " 4. Do not infer dates from related events or external knowledge. Only use dates that are directly stated to establish or change the relationship.\n", + " 5. Convert relative times (e.g., “two weeks ago”) into absolute ISO 8601 datetimes based on the reference or publication timestamp.\n", + " 6. If only a date is mentioned without a specific time, use 00:00:00 (midnight) for that date.\n", + " 7. If only year or month is mentioned, use the start or end as appropriate at 00:00:00 e.g. do not select a random date if only the year is mentioned, use YYYY-01-01 or YYYY-12-31.\n", + " 8. Always include the time zone offset (use Z for UTC if no specific time zone is mentioned).\n", + "{% if inputs.get('quarter') and inputs.get('publication_date') %}\n", + " 9. Assume that {{ inputs.quarter }} ends on {{ inputs.publication_date }} and infer dates for any Qx references from there.\n", + "{% endif %}\n", + "\n", + "Statement Specific Rules:\n", + "- when `statement_type` is **opinion** only valid_at must be set\n", + "- when `statement_type` is **prediction** set its `invalid_at` to the **end of the prediction window** explicitly mentioned in the text.\n", + "\n", + "Never invent dates from outside knowledge.\n", + "\n", + "**Output format**\n", + "Return only the validity range in the JSON ARRAY of objects that match the schema below:\n", + "{{ json_schema }}\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.6. Creating our Triplets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will now build up the definitions and prompts to create the our triplets. As discussed above, these are a combination of:\n", + "- **Subject** - the entity you are talking about\n", + "- **Predicate** - the type of relationship or property\n", + "- **Object** - the value or other entity that the subject is connected to\n", + "\n", + "Let's start with our predicate." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Predicate" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `Predicate` enum provides a standard set of predicates that clearly describe relationships extracted from text. \n", + "\n", + "We've defined the set of predicates below to be appropriate for earnings call transcripts. Here are some examples for how each of these predicates could fit into a triplet in our knowledge graph: \n", + "Here are more anonymized, generalized examples following your template:\n", + "\n", + "* `IS_A`: \\[Company ABC]-\\[IS\\_A]-\\[Software Provider]\n", + "* `HAS_A`: \\[Corporation XYZ]-\\[HAS\\_A]-\\[Innovation Division]\n", + "* `LOCATED_IN`: \\[Factory 123]-\\[LOCATED\\_IN]-\\[Germany]\n", + "* `HOLDS_ROLE`: \\[Jane Doe]-\\[HOLDS\\_ROLE]-\\[CEO at Company LMN]\n", + "* `PRODUCES`: \\[Company DEF]-\\[PRODUCES]-\\[Smartphone Model X]\n", + "* `SELLS`: \\[Retailer 789]-\\[SELLS]-\\[Furniture]\n", + "* `LAUNCHED`: \\[Company UVW]-\\[LAUNCHED]-\\[New Subscription Service]\n", + "* `DEVELOPED`: \\[Startup GHI]-\\[DEVELOPED]-\\[Cloud-Based Tool]\n", + "* `ADOPTED_BY`: \\[New Technology]-\\[ADOPTED\\_BY]-\\[Industry ABC]\n", + "* `INVESTS_IN`: \\[Investment Firm JKL]-\\[INVESTS\\_IN]-\\[Clean Energy Startups]\n", + "* `COLLABORATES_WITH`: \\[Company PQR]-\\[COLLABORATES\\_WITH]-\\[University XYZ]\n", + "* `SUPPLIES`: \\[Manufacturer STU]-\\[SUPPLIES]-\\[Auto Components to Company VWX]\n", + "* `HAS_REVENUE`: \\[Corporation LMN]-\\[HAS\\_REVENUE]-\\[€500 Million]\n", + "* `INCREASED`: \\[Company YZA]-\\[INCREASED]-\\[Market Share]\n", + "* `DECREASED`: \\[Firm BCD]-\\[DECREASED]-\\[Operating Expenses]\n", + "* `RESULTED_IN`: \\[Cost Reduction Initiative]-\\[RESULTED\\_IN]-\\[Improved Profit Margins]\n", + "* `TARGETS`: \\[Product Launch Campaign]-\\[TARGETS]-\\[Millennial Consumers]\n", + "* `PART_OF`: \\[Subsidiary EFG]-\\[PART\\_OF]-\\[Parent Corporation HIJ]\n", + "* `DISCONTINUED`: \\[Company KLM]-\\[DISCONTINUED]-\\[Legacy Product Line]\n", + "* `SECURED`: \\[Startup NOP]-\\[SECURED]-\\[Series B Funding]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Predicate(StrEnum):\n", + " \"\"\"Enumeration of normalised predicates.\"\"\"\n", + "\n", + " IS_A = \"IS_A\"\n", + " HAS_A = \"HAS_A\"\n", + " LOCATED_IN = \"LOCATED_IN\"\n", + " HOLDS_ROLE = \"HOLDS_ROLE\"\n", + " PRODUCES = \"PRODUCES\"\n", + " SELLS = \"SELLS\"\n", + " LAUNCHED = \"LAUNCHED\"\n", + " DEVELOPED = \"DEVELOPED\"\n", + " ADOPTED_BY = \"ADOPTED_BY\"\n", + " INVESTS_IN = \"INVESTS_IN\"\n", + " COLLABORATES_WITH = \"COLLABORATES_WITH\"\n", + " SUPPLIES = \"SUPPLIES\"\n", + " HAS_REVENUE = \"HAS_REVENUE\"\n", + " INCREASED = \"INCREASED\"\n", + " DECREASED = \"DECREASED\"\n", + " RESULTED_IN = \"RESULTED_IN\"\n", + " TARGETS = \"TARGETS\"\n", + " PART_OF = \"PART_OF\"\n", + " DISCONTINUED = \"DISCONTINUED\"\n", + " SECURED = \"SECURED\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also assign a definition to each predicate, which we will then pass to the extraction prompt downstream." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PREDICATE_DEFINITIONS = {\n", + " \"IS_A\": \"Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A electric-SUV'). Includes 'is' and 'was'.\",\n", + " \"HAS_A\": \"Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A electric-engine'). Includes 'has' and 'had'.\",\n", + " \"LOCATED_IN\": \"Specifies geographic or organisational containment or proximity (e.g., headquarters LOCATED_IN Berlin).\",\n", + " \"HOLDS_ROLE\": \"Connects a person to a formal office or title within an organisation (CEO, Chair, Director, etc.).\",\n", + " \"PRODUCES\": \"Indicates that an entity manufactures, builds, or creates a product, service, or infrastructure (includes scale-ups and component inclusion).\",\n", + " \"SELLS\": \"Marks a commercial seller-to-customer relationship for a product or service (markets, distributes, sells).\",\n", + " \"LAUNCHED\": \"Captures the official first release, shipment, or public start of a product, service, or initiative.\",\n", + " \"DEVELOPED\": \"Shows design, R&D, or innovation origin of a technology, product, or capability. Includes 'researched' or 'created'.\",\n", + " \"ADOPTED_BY\": \"Indicates that a technology or product has been taken up, deployed, or implemented by another entity.\",\n", + " \"INVESTS_IN\": \"Represents the flow of capital or resources from one entity into another (equity, funding rounds, strategic investment).\",\n", + " \"COLLABORATES_WITH\": \"Generic partnership, alliance, joint venture, or licensing relationship between entities.\",\n", + " \"SUPPLIES\": \"Captures vendor–client supply-chain links or dependencies (provides to, sources from).\",\n", + " \"HAS_REVENUE\": \"Associates an entity with a revenue amount or metric—actual, reported, or projected.\",\n", + " \"INCREASED\": \"Expresses an upward change in a metric (revenue, market share, output) relative to a prior period or baseline.\",\n", + " \"DECREASED\": \"Expresses a downward change in a metric relative to a prior period or baseline.\",\n", + " \"RESULTED_IN\": \"Captures a causal relationship where one event or factor leads to a specific outcome (positive or negative).\",\n", + " \"TARGETS\": \"Denotes a strategic objective, market segment, or customer group that an entity seeks to reach.\",\n", + " \"PART_OF\": \"Expresses hierarchical membership or subset relationships (division, subsidiary, managed by, belongs to).\",\n", + " \"DISCONTINUED\": \"Indicates official end-of-life, shutdown, or termination of a product, service, or relationship.\",\n", + " \"SECURED\": \"Marks the successful acquisition of funding, contracts, assets, or rights by an entity.\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Defining your own predicates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When working with different data sources, you'll want to define your own predicates that are specific to your use case. \n", + "\n", + "To define your own predicates:\n", + "1. First, run your pipeline with `PREDICATE_DEFINITIONS = {}` on a representative sample of your documents. This initial run will derive a noisy graph with many non-standardized and overlapping predicates\n", + "2. Next, drop some of your intial results into [ChatGPT](https://chatgpt.com/) or manually review them to merge similar predicate classes. This process helps to eliminate duplicates such as `IS_CEO` and `IS_CEO_OF`\n", + "3. Finally, carefully review and refine this list of predicates to ensure clarity and precision. These finalized predicate definitions will then guide your extraction process and ensure a consistent extraction pipeline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Raw triplet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With predicates now well-defined, we can begin building up the data models for our triplets. \n", + "\n", + "The `RawTriplet` model represents a basic subject-predicate-object relationship that is extracted directly from textual data. This serves as a precursor for the more detailed triplet representation in `Triplet` which we introduce later. \n", + "\n", + "Core fields: \n", + "- `subject_name`: The textual representation of the subject entity\n", + "- `subject_id`: Numeric identifier for the subject entity\n", + "- `predicate`: The relationship type, specified by the `Predicate` enum\n", + "- `object_name`: The textual representation of the object entity\n", + "- `object_id`: Numeric identifier for the object entity\n", + "- `value`: Numeric value associated to relationship, may be None e.g. `Company` -> `HAS_A` -> `Revenue` with `value='$100 mill'`\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class RawTriplet(BaseModel):\n", + " \"\"\"Model representing a subject-predicate-object triplet.\"\"\"\n", + "\n", + " subject_name: str\n", + " subject_id: int\n", + " predicate: Predicate\n", + " object_name: str\n", + " object_id: int\n", + " value: str | None = None" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Triplet" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `Triplet` model extends the `RawTriplet` by incorporating unique identifiers and optionally linking each triplet to a specific event. These identifiers help with integration into structured knowledge bases like our temporal knowledge graph." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Triplet(BaseModel):\n", + " \"\"\"Model representing a subject-predicate-object triplet.\"\"\"\n", + "\n", + " id: uuid.UUID = Field(default_factory=uuid.uuid4)\n", + " event_id: uuid.UUID | None = None\n", + " subject_name: str\n", + " subject_id: int | uuid.UUID\n", + " predicate: Predicate\n", + " object_name: str\n", + " object_id: int | uuid.UUID\n", + " value: str | None = None\n", + "\n", + " @classmethod\n", + " def from_raw(cls, raw_triplet: \"RawTriplet\", event_id: uuid.UUID | None = None) -> \"Triplet\":\n", + " \"\"\"Create a Triplet instance from a RawTriplet, optionally associating it with an event_id.\"\"\"\n", + " return cls(\n", + " id=uuid.uuid4(),\n", + " event_id=event_id,\n", + " subject_name=raw_triplet.subject_name,\n", + " subject_id=raw_triplet.subject_id,\n", + " predicate=raw_triplet.predicate,\n", + " object_name=raw_triplet.object_name,\n", + " object_id=raw_triplet.object_id,\n", + " value=raw_triplet.value,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### RawEntity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `RawEntity` model represents an Entity as extracted from the `Statement`. This serves as a precursor for the more detailed triplet representation in `Entity` which we introduce next. \n", + "\n", + "Core fields: \n", + "- `entity_idx`: An integer to differentiate extracted entites from the statement (links to `RawTriplet`)\n", + "- `name`: The name of the entity extracted e.g. `AMD`\n", + "- `type`: The type of entity extracted e.g. `Company`\n", + "- `description`: The textual description of the entity e.g. `Technology company know for manufacturing semiconductors`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class RawEntity(BaseModel):\n", + " \"\"\"Model representing an entity (for entity resolution).\"\"\"\n", + "\n", + " entity_idx: int\n", + " name: str\n", + " type: str = \"\"\n", + " description: str = \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Entity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `Entity` model extends the `RawEntity` by incorporating unique identifiers and optionally linking each entity to a specific event. \n", + "Additionally, it contains `resolved_id` which will be populated during entity resolution with the canonical entity's id to remove duplicate naming of entities in the database.\n", + "These updated identifiers help with integration and linking of entities to events and triplets ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class Entity(BaseModel):\n", + " \"\"\"\n", + " Model representing an entity (for entity resolution).\n", + " 'id' is the canonical entity id if this is a canonical entity.\n", + " 'resolved_id' is set to the canonical id if this is an alias.\n", + " \"\"\"\n", + "\n", + " id: uuid.UUID = Field(default_factory=uuid.uuid4)\n", + " event_id: uuid.UUID | None = None\n", + " name: str\n", + " type: str\n", + " description: str\n", + " resolved_id: uuid.UUID | None = None\n", + "\n", + " @classmethod\n", + " def from_raw(cls, raw_entity: \"RawEntity\", event_id: uuid.UUID | None = None) -> \"Entity\":\n", + " \"\"\"Create an Entity instance from a RawEntity, optionally associating it with an event_id.\"\"\"\n", + " return cls(\n", + " id=uuid.uuid4(),\n", + " event_id=event_id,\n", + " name=raw_entity.name,\n", + " type=raw_entity.type,\n", + " description=raw_entity.description,\n", + " resolved_id=None,\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Raw extraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Both `RawTriplet` and `RawEntity` are extracted at the same time per `Statement` to reduce LLM calls and to allow easy referencing of Entities through Triplets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class RawExtraction(BaseModel):\n", + " \"\"\"Model representing a triplet extraction.\"\"\"\n", + "\n", + " triplets: list[RawTriplet]\n", + " entities: list[RawEntity]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Triplet Extraction Prompt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The prompt below guides our Temporal Agent to effectively extract triplets and entities from provided statements.\n", + "\n", + "##### Anatomy of the prompt\n", + "
    \n", + "
  • \n", + " Avoids temporal details
    \n", + "

    \n", + " The agent is specifically instructed to ignore temporal relationships, as these are captured separately within the TemporalValidityRange.\n", + " Defined Predicates are deliberately designed to be time-neutral—for instance, HAS_A covers both present (HAS_A) and past (HAD_A) contexts.\n", + "

    \n", + "
  • \n", + "\n", + "
  • \n", + " Maintains structured outputs
    \n", + "

    \n", + " The prompt yields structured RawExtraction outputs, supported by detailed examples that clearly illustrate:\n", + "

    \n", + "
      \n", + "
    • How to extract information from a given Statement
    • \n", + "
    • How to link Entities with corresponding Triplets
    • \n", + "
    • How to handle extracted values
    • \n", + "
    • How to manage multiple Triplets involving the same Entity
    • \n", + "
    \n", + "
  • \n", + "
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "triplet_extraction_prompt = \"\"\"\n", + "You are an information-extraction assistant.\n", + "\n", + "**Task:** You are going to be given a statement. Proceed step by step through the guidelines.\n", + "\n", + "**Statement:** \"{{ statement }}\"\n", + "\n", + "**Guidelines**\n", + "First, NER:\n", + "- Identify the entities in the statement, their types, and context independent descriptions.\n", + "- Do not include any lengthy quotes from the reports\n", + "- Do not include any calendar dates or temporal ranges or temporal expressions\n", + "- Numeric values should be extracted as separate entities as an instance_of _Numeric_, where the name is the units as a string and the numeric_value is the value. e.g: £30 -> name: 'GBP', numeric_value: 30, instance_of: 'Numeric'\n", + "\n", + "Second, Triplet extraction:\n", + "- Identify the subject entity of that predicate – the main entity carrying out the action or being described.\n", + "- Identify the object entity of that predicate – the entity, value, or concept that the predicate affects or describes.\n", + "- Identify a predicate between the entities expressed in the statement, such as 'is', 'works at', 'believes', etc. Follow the schema below if given.\n", + "- Extract the corresponding (subject, predicate, object, date) knowledge triplet.\n", + "- Exclude all temporal expressions (dates, years, seasons, etc.) from every field.\n", + "- Repeat until all predicates contained in the statement have been extracted form the statements.\n", + "\n", + "{%- if predicate_instructions -%}\n", + "-------------------------------------------------------------------------\n", + "Predicate Instructions:\n", + "Please try to stick to the following predicates, do not deviate unless you can't find a relevant definition.\n", + "{%- for pred, instruction in predicate_instructions.items() -%}\n", + "- {{ pred }}: {{ instruction }}\n", + "{%- endfor -%}\n", + "-------------------------------------------------------------------------\n", + "{%- endif -%}\n", + "\n", + "Output:\n", + "List the entities and triplets following the JSON schema below. Return ONLY with valid JSON matching this schema.\n", + "Do not include any commentary or explanation.\n", + "{{ json_schema }}\n", + "\n", + "===Examples===\n", + "Example 1 Statement: \"Google's revenue increased by 10% from January through March.\"\n", + "Example 1 Output: {\n", + " \"triplets\": [\n", + " {\n", + " \"subject_name\": \"Google\",\n", + " \"subject_id\": 0,\n", + " \"predicate\": \"INCREASED\",\n", + " \"object_name\": \"Revenue\",\n", + " \"object_id\": 1,\n", + " \"value\": \"10%\",\n", + " }\n", + " ],\n", + " \"entities\": [\n", + " {\n", + " \"entity_idx\": 0,\n", + " \"name\": \"Google\",\n", + " \"type\": \"Organization\",\n", + " \"description\": \"Technology Company\",\n", + " },\n", + " {\n", + " \"entity_idx\": 1,\n", + " \"name\": \"Revenue\",\n", + " \"type\": \"Financial Metric\",\n", + " \"description\": \"Income of a Company\",\n", + " }\n", + " ]\n", + "}\n", + "\n", + "Example 2 Statement: \"Amazon developed a new AI chip in 2024.\"\n", + "Example 2 Output:\n", + "{\n", + " \"triplets\": [\n", + " {\n", + " \"subject_name\": \"Amazon\",\n", + " \"subject_id\": 0,\n", + " \"predicate\": \"DEVELOPED\",\n", + " \"object_name\": \"AI chip\",\n", + " \"object_id\": 1,\n", + " \"value\": None,\n", + " },\n", + " ],\n", + " \"entities\": [\n", + " {\n", + " \"entity_idx\": 0,\n", + " \"name\": \"Amazon\",\n", + " \"type\": \"Organization\",\n", + " \"description\": \"E-commerce and cloud computing company\"\n", + " },\n", + " {\n", + " \"entity_idx\": 1,\n", + " \"name\": \"AI chip\",\n", + " \"type\": \"Technology\",\n", + " \"description\": \"Artificial intelligence accelerator hardware\"\n", + " }\n", + " ]\n", + "}\n", + "\n", + "Example 3 Statement: \"It is expected that TechNova Inc will launch its AI-driven product line in Q3 2025.\",\n", + "Example 3 Output:{\n", + " \"triplets\": [\n", + " {\n", + " \"subject_name\": \"TechNova\",\n", + " \"subject_id\": 0,\n", + " \"predicate\": \"LAUNCHED\",\n", + " \"object_name\": \"AI-driven Product\",\n", + " \"object_id\": 1,\n", + " \"value\": \"None,\n", + " }\n", + " ],\n", + " \"entities\": [\n", + " {\n", + " \"entity_idx\": 0,\n", + " \"name\": \"TechNova\",\n", + " \"type\": \"Organization\",\n", + " \"description\": \"Technology Company\",\n", + " },\n", + " {\n", + " \"entity_idx\": 1,\n", + " \"name\": \"AI-driven Product\",\n", + " \"type\": \"Product\",\n", + " \"description\": \"General AI products\",\n", + " }\n", + " ]\n", + "}\n", + "\n", + "Example 4 Statement: \"The SVP, CFO and Treasurer of AMD spoke during the earnings call.\"\n", + "Example 4 Output: {\n", + " \"triplets\": [],\n", + " \"entities\":[].\n", + "}\n", + "\n", + "===End of Examples===\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.7. Temporal Event" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `TemporalEvent` model brings together the `Statement` and all related information into one handy class. It's a primary output of the `TemporalAgent` and plays an important role within the `InvalidationAgent`. \n", + "\n", + "Main fields include: \n", + "- `id`: A unique identifier for the event\n", + "- `chunk_id`: Points to the specific `Chunk` associated with the event\n", + "- `statement`: The specific `RawStatement` extracted from the `Chunk` detailing a relationship or event\n", + "- `embedding`: A representation of the `statement` used by the `InvalidationAgent` to gauge event similarity\n", + "- `triplets`: Unique identifiers for the individual `Triplets` extracted from the `Statement`\n", + "- `valid_at`: Timestamp indicating when the event becomes valid\n", + "- `invalid_at`: Timestamp indicating when the event becomes invalid\n", + "- `temporal_type`: Describes temporal characteristics from the `RawStatement`\n", + "- `statement_type`: Categorizes the statement according to the original `RawStatement`\n", + "- `created_at`: Date the event was first created.\n", + "- `expired_at`: Date the event was marked invalid (set to `created_at` if `invalid_at` is already set when building the `TemporalEvent`)\n", + "- `invalidated_by`: ID of the `TemporalEvent` responsible for invalidating this event, if applicable" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "from pydantic import model_validator\n", + "\n", + "\n", + "class TemporalEvent(BaseModel):\n", + " \"\"\"Model representing a temporal event with statement, triplet, and validity information.\"\"\"\n", + "\n", + " id: uuid.UUID = Field(default_factory=uuid.uuid4)\n", + " chunk_id: uuid.UUID\n", + " statement: str\n", + " embedding: list[float] = Field(default_factory=lambda: [0.0] * 256)\n", + " triplets: list[uuid.UUID]\n", + " valid_at: datetime | None = None\n", + " invalid_at: datetime | None = None\n", + " temporal_type: TemporalType\n", + " statement_type: StatementType\n", + " created_at: datetime = Field(default_factory=datetime.now)\n", + " expired_at: datetime | None = None\n", + " invalidated_by: uuid.UUID | None = None\n", + "\n", + " @property\n", + " def triplets_json(self) -> str:\n", + " \"\"\"Convert triplets list to JSON string.\"\"\"\n", + " return json.dumps([str(t) for t in self.triplets]) if self.triplets else \"[]\"\n", + "\n", + " @classmethod\n", + " def parse_triplets_json(cls, triplets_str: str) -> list[uuid.UUID]:\n", + " \"\"\"Parse JSON string back into list of UUIDs.\"\"\"\n", + " if not triplets_str or triplets_str == \"[]\":\n", + " return []\n", + " return [uuid.UUID(t) for t in json.loads(triplets_str)]\n", + "\n", + " @model_validator(mode=\"after\")\n", + " def set_expired_at(self) -> \"TemporalEvent\":\n", + " \"\"\"Set expired_at if invalid_at is set and temporal_type is DYNAMIC.\"\"\"\n", + " self.expired_at = self.created_at if (self.invalid_at is not None) and (self.temporal_type == TemporalType.DYNAMIC) else None\n", + " return self" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.8. Defining our Temporal Agent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we arrive at a central point in our pipeline: The `TemporalAgent` class. This brings together the steps we've built up above - chunking, data models, and prompts. Let's take a closer look at how this works.\n", + "\n", + "The core function, `extract_transcript_events`, handles all key processes:\n", + "\n", + "1. It extracts a `RawStatement` from each `Chunk`.\n", + "2. From each `RawStatement`, it identifies the `TemporalValidityRange` along with lists of related `Triplet` and `Entity` objects.\n", + "3. Finally, it bundles all this information neatly into a `TemporalEvent` for each `RawStatement`.\n", + "\n", + "Here's what you'll get:\n", + "\n", + "* `transcript`: The transcript currently being analyzed.\n", + "* `all_events`: A comprehensive list of all generated `TemporalEvent` objects.\n", + "* `all_triplets`: A complete collection of `Triplet` objects extracted across all events.\n", + "* `all_entities`: A detailed list of all `Entity` objects pulled from the events, which will be further refined in subsequent steps.\n", + "\n", + "The diagram below visualizes this portion of our pipeline:\n" + ] + }, + { + "attachments": { + "79ba1c3c-35e6-406a-aff4-24ab9b8fe9e4.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAjaCAYAAABqEHS9AAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAD2qADAAQAAAABAAAI2gAAAABBU0NJSQAAAFNjcmVlbnNob3S+q1FIAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMjY2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjk4NjwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoZbGYbAAAAHGlET1QAAAACAAAAAAAABG0AAAAoAAAEbQAABG0AARFDssT6YQAAQABJREFUeAHs3QecFEXexvG/4cx6nnpnPHOOYFgwYs45oSJBFOOCOSJGFLMSVEBEBD0jYs45g4IZwTNhzjmgvp5vPbX00Ds7oXvpgZ2pX/txd7anpqfrWz185umqrp7plx9/+MtYEEAAAQQQQAABBBBAAAEEEEAgE4GZCNqZOLIRBBBAAAEEEEAAAQQQQAABBLwAQZsDAQEEEEAAAQQQQAABBBBAAIEMBQjaGWKyKQQQQAABBBBAAAEEEEAAAQQI2hwDCCCAAAIIIIAAAggggAACCGQoQNDOEJNNIYAAAggggAACCCCAAAIIIEDQ5hhAAAEEEEAAAQQQQAABBBBAIEMBgnaGmGwKAQQQQAABBBBAAAEEEEAAAYI2xwACCCCAAAIIIIAAAggggAACGQoQtDPEZFMIIIAAAggggAACCCCAAAIIELQ5BhBAAAEEEEAAAQQQQAABBBDIUICgnSEmm0IAAQQQQAABBBBAAAEEEECAoM0xgAACCCCAAAIIIIAAAggggECGAgTtDDHZFAIIIIAAAggggAACCCCAAAIEbY4BBBBAAAEEEEAAAQQQQAABBDIUIGhniMmmEEAAAQQQQAABBBBAAAEEECBocwwggAACCCCAAAIIIIAAAgggkKEAQTtDTDaFAAIIIIAAAggggAACCCCAAEGbYwABBBBAAAEEEEAAAQQQQACBDAUI2hlisikEEEAAAQQQQAABBBBAAAEECNocAwgggAACCCCAAAIIIIAAAghkKEDQzhCTTSGAAAIIIIAAAggggAACCCBA0OYYQAABBBBAAAEEEEAAAQQQQCBDAYJ2hphsCgEEEEAAAQQQQAABBBBAAAGCNscAAggggAACCCCAAAIIIIAAAhkKELQzxGRTCCCAAAIIIIAAAggggAACCBC0OQYQQAABBBBAAAEEEEAAAQQQyFCAoJ0hJptCAAEEEEAAAQQQQAABBBBAgKDNMYAAAggggAACCCCAAAIIIIBAhgIE7Qwx2RQCCCCAAAIIIIAAAggggAACBG2OAQQQQAABBBBAAAEEEEAAAQQyFCBoZ4jJphBAAAEEEEAAAQQQQAABBBAgaHMMIIAAAggggAACCCCAAAIIIJChAEE7Q0w2hQACCCCAAAIIIIAAAggggABBm2MAAQQQQAABBBBAAAEEEEAAgQwFCNoZYrIpBBBAAAEEEEAAAQQQQAABBAjaHAMIIIAAAggggAACCCCAAAIIZChA0M4Qk00hgAACCCCAAAIIIIAAAgggQNDmGEAAAQQQQAABBBBAAAEEEEAgQwGCdoaYbAoBBBBAAAEEEEAAAQQQQAABgjbHAAIIIIAAAggggAACCCCAAAIZChC0M8RkUwgggAACCCCAAAIIIIAAAggQtDkGEEAAgRoS+L//+z+beeaZ/f8tuVq//fabzT777C15F9k3BBBAAAEEEECg2QItMmjf/8ADdvXQa1JVao/dd7N92rdP9RoKJxP48aefrOuBB/nCc845pw0fVr5tjjvhBJs06QP/mvPP62PLLrNMsjer4lLNccqiut0OPsS++/57v6mBV1xuCy64YBabZRsJBFracT7q9jvs3PPO8wG2T+/etvHGGyWoRWWKlPo8nHPuuXb9DTfaCissbwMvv9wWXXTRyuwEW0UAAQQQQAABBGaQQIsM2iOuu97OPPvsVCSHH3qoHXP0UaleQ+FkAt+7ELdOXRtfeJ6557aXx40t+8IddtrZJr71li93x2232WqrrVr2NdVeoDlOWdS57YYb2VdffeU39fQTj9siiyySxWbZRgKBlnacb77lVvbBhx/6PW/bpo1dN/zaBLWoTJFin4ePP/7ENt1iC/vrr7/8Gx/Vo7vVH3FEZXaCrSKAAAIIIIAAAjNIgKA9g+Cr6W2LfWEuVYeWFkBK7WtWzzXHKYv3Jmhnodi8bbS047zrQQfZk0897Suzz957W++zz2pexTJ4VbHPw+TJk239jTa2H3/80b/LJRddZDvvtGMG78gmEEAAAQQQQACBliPQIoP2r79Otp9+avgSFlFdceVAG3H99f7P7bbd1k47tWf0lP8951xzmXpbWbIXKPaFudQ7tbQAUmpfs3quOU5ZvDdBOwvF5m2jpR3nH370kY247jqba865bP8O+9lCCy3UvIpl8KpSn4ex48bZrbeOtNVXX8323msv+9vf/pbBO7IJBBBAAAEEEECg5Qi0yKBdiOeCCy+ywUOG+Kd2321Xu8Bdh1humfTBB7bAAgvYvPPMU65ok+f/+OOPol/+Sj3XZEOxFV9++aX973//s4UXXji2tvxD1ePv881n888/f/nCKUr8+eefpm3POuustvhii9kss8xS8NWlvjAXfIFbmXUA0cmXOeeco9jbFVz/8y+/2KeffmrLLL100boVfGEzV6Z1as7xqWPop59/tn8vsYRvN+1q0qD9y6+/2ueff25LL7WUzTTTTKlrqeHpOmbSHr+F3kjbee/9922pJZcs+jkr9Lo06z777DPTdcKymmOOdMeO3ifJ57XYca4JybTos5XVonbXPul4zmrR8G0dh7quP82/k6rf+5Mm+WOpWB3Tfh7K1ak5/wY05zNWbj94HgEEEEAAAQQQSCJQc0H7mWeftRtvutleePFFf92qwuNqq65qG224oR1x+GFNZrm9rG8/u9VdQ6zlhOOO84G2b//+Nv7NN+0f//iHbbjB+nb6aaf5L6HDrh1uo+643SZMmOjCxr9sEzf88dSepzT6Eq/hkNvtuJPf3kILLWijbr3VLrn0Mrvjrjvtk08+9euXW3ZZ23TTdnbcMccUDRmaEG7UqNtt3Msv27fffutfpwnFWrdqZYcddqj/gutXTvnxxBNPWk+3n1q23nILa+8mhuvjTka8Mf5NPxHZTTf8Z0pJs5fcNs85t4+9OWGCaeZfLfqyvOMO29sxRx1tiy3WeGKi5nxhLhZA9H5HdO9uEyY2XL+tEwiDBl5pSyy+uOXX4Rjn08vV6cGHHvb7ucLyy9sG67e1ww87rOiEX9rXvv362Qtjx9lb7hpxBTqNdFhzzTVtS3ddaKeO++cc9EDzAQy66iq/7sAuXeyAA7r4xxddfIndfued/nH04+QTT7Adtt/e/3n8iSfac8+P9o8vvfgiW2/ddS2JU9rjU2+gUKPj9NHHHrO3/vtf/55qLw0NPsnt06ZbbFnyGu3b3HF0izsO1e7a1nzOfP22be0cN6x40OCr7K577vHb7OWO5W223to/jn7oet9BgwbbmBde8MFY6xX0dP1vt24H2ZL//ndUNNFv7YO2N3rMGB+CNev0mmusYaecdJJ9+tmndlbvc/x2dCye5CbU05L/mbpu+HB/XLzw4lj72YXPJx971Oadd15f9osvvrAzzjrbnh892n744Qe/TicV1m7d2k484Xj/26+c8iN/22k/r/nH+aQPJtmAy6+wd997z+Zwdatbbz3bddddbPvttou/bcnHXbp2tbffedeX+c91I+zVV1+1KwcOsv++/bY/UffPf/7Tfw7070f+JGLxf8+6H3G4tXfHiJb8z9bRRx9tJ5/S05597jnvpH8n1Q7lJpX8zw03uM/jQ/bSSy+bTmTN5SZHXGedtf1xkz8ZZanPQ7yOV1812FZaccWC+9mcfwOa8xnzb84PBBBAAAEEEEAgQ4GaCtr6Mnmom1RHPc6Fls033dSuuHxAo16ms93MvNeOuM4X15fx115/vcnr9WW5TV2d9Xez4+YvChxDh1xls802m38q/uVSPUQbb7yx3Xvfffkv838r1PS77NImva3XDh9hvd2svNFkQfkv1nDQa64eYqusvHLuqQcefNAF2B7+bwX5yb9NNk06pGXllVayu++8wz8e6U4q9Ox1mg9cfkXej3/96192rzspEO89j9dpWiZDU29+DxfkdRJBi7Z1rZvBfC0XgrXE67DuOuv4kxDPPf+8fy7+Y1V34uT6EcOb9MCpt69L1wNzk7DFXxM97rDvvu7ESa/crY/udiHzqGOO9U/Hr2ndv1NnH9ai1+n3Id262fHHNZTdaZdd/YkKrX/04Yd84Czn1JzjU2YK9XfceZfeqsmiwPzKK6+Yequ15E+Gdv1//mOnn1n4Ol2FG/X0vuKCnJaLLrjAdt1lZ/9YPzQMeb/9O/pRAbmVsQfqKdYJHB0zSRa9T+cuB/ge+fzy+qxs6E6GRcfG3nvuaeee09sXi7sq2Kn9Xxw7dUK+cS+M8ScP3nQnxzq67X/33Xf5m/d/K0wquK6z9tq55+Pbbs7nNR60NdJGJzXyFwV9jcDZzQXuJEt8m3vtsYeNHDXKB+z81+qExw3XX9doeHj837Oe7uRFdOIo/tmS38wzz2Svv/5G/ib936eefLJ16dK5yXM6YXjFwIFN1kcrjj/2GDvk4IOjP0ueeIrXMT5ZYnw/m/NvQHM+Y7kd5gECCCCAAAIIIJChQM0EbV3z17FzF/v99989j0LEFptv7sLCh/bYY4/nvtznDzuPfzHVC9Wbu8N229urr73me93i1gq4mrTnnXfesaeefib35Vcz+ypwa4l/cY9eq6G6226zjc0991y+Z1CvjZYunTq6XvGp15sPG3at9e7TJ3ra98Ap5P/880/20COP5kKPevAUclZcYQVfNv4FNXqxegtXX20136Pd59xz/L6p91O9eFp22Xkn22rLLe2zTz+zm12PZ9Rbuv9++9kZpzf0jqtcvE7TErTPdD2N0XX2CnjqyVLdoqVQHTZtt4mtusqqrvf4ed8jG5VVAFGdokX7uNsee+ZmXFZo0rX8CoHjx4+3Rx9/PCrqe4KjSaJee+11282FOi16ryGDB/vHG2y8ial3VO02ceJE35u7lesRv/KKhpMt67Vd3480UM/yG6++4k+WlHJq7vGpnvWBU/ZJO6ZgrV59DaN96OGHfS+n3+EpP+JBWz3ghxx2eO6EzfLLLWdbb7WVH4KvER/RpFnR6+NBW2F11933sI8+/tg/Lcdt3GtnmWVmu++BB/0QdD2h4+/WW272PZvRdgr91jBujfSIjr2///3vtpsL9ZohXcfdnXfd3ejkT7GgHW1b4XXVVVdxJ2vm8SMidFzu22F/P5JFZRTSFGxnn30Ot+07c3XVqIj77rk72kyjYztamebzGg+Mer16m7fbZmt3su7/7N777/fb13odJw/ef1+iEQD529SxrLos5i7vyLfSybY7bx+VuxQg/u9ZsaCt/dGiz55G7Eye/Js98uijjU5QXd6/X6PRDUPd7RbPPf98/zqdsGg4+bie8x7r/52Mhspf4G7lt/tuu/lypT4P8ToWC9p+I+5H0n8DmvsZi96H3wgggAACCCCAQJYCNRO0e512ut1w003eJj8oasj2Fq73WD3d+pL40tgXc8Eg/sVUX/qfePSRXA/z7nvu5QO3NqqetNFumGV0nfChLsA87L6cajnW3VbsMHd7MS3xL5f6e6MNN7BBV17ZaMh6PEzri/lzTz+lon549IabtMv1yPWor7ce3ev9c/qhazR1P+txL73k1+3hvtDqHtVa8kNq/eGH+6G9c7tJ4qJFIecONxz63vvu9/W4esqQaT2vIb17td/HF9UERbePHBm9rFGdmhu0n3J1vOiSS/02NfHRoCuusE022Tj3HnqQX4fubnTCke7WP9Fy0803+954/a3e1MceeTh6yq6+eqj1cT2yWnQN8cibb2p0myv1lNb3ONI/r5CmXmhtQyat113Pr496/nVdb+t11vXrTnA92K+8+prfN40UeOC+e/3JnFXXaOiFVyh7+MGGHvp42+c7Nff4jN+uKX6caecUbrofeZQP3H5n3Y940FZPuO6rrEUnVPr3vazRaA6NnDj7nKknK+JBO97Tr5NWd7lLJmaeeWa/LfWyKyhpKLOWa9zcCeXu16yRFCeefIovL/eRLpxr/oRoedUZt3cneKLRKKWC9mbt2tk5vc9u1JOufVIb69h+9bVX7Z677sqNePCzXLtboKld1fb6/Kt9tMTbTH+n+byqfDww6lKTB+69J1cv1WWrbbbNnay40AXVJL3a8W3q34fbR97a6Lp4nQTce599cycmdEzq2NQS//esVNDWvw9HHdkwAkav07GkkR3RiAJdItH30kv0lF+23nY7Pxxef+g40kmsaLnn3nvtyKOP8X+2Wmstu9V99rTEbfM/D/E6lgraaf4NaO5nzO8sPxBAAAEEEEAAgYwFaiZox7+49T7rzEbDKWU2+KohuYAa74GOfzHdb5997Kwzz8gR9+3XPzdcXEHlSjfsPFp0reJpZ5zp/9SXZ32J1hL/cqm/73dfvNWTGF80JHy7HXZ012G+41crMCp8qJdRvXJaFl98MXvUXQupEwPx5WU3THjPvdv7Vephf/6Zhlv5xEOqvtQ+69br5ECxRV+sP3EThf3swke07Op6hHVNs3rLX3rxhWh1ozrlf2HOFcp7EG8PDZHX/mlRz56Gy6tnNX+J10HPRS5ROV1zW7f+BrmAobpHsyprNEM0zPxcF8I0k3H+Er/10dmunfd17a1l3TZt/ckNDZd/cfTz7prY12z3Ka9Xm6vXW0Nmte+vv/Kyd1MA1hLvBY+3fb5T3CPp8anJxzTRmRZdw66TA1HY9SvdD51E2mSzzaI/GwXteEiPB/BcYfdgGzd64513G64Hjgfts9x97Ie769e1dHbXta+//vr+cfRDQ3SjE1v5YSgqE/+t64FvmXLyJv4+8TLxoFQqaGu4tK6JL7YodH/99de569ZV7lR3Ii4aIq+TBtFlF/E2U7k0n1eVj7dr/N8BPaelj/t34WrXG6wl/98Xv7LAj/g2zzrjdNvPXe6Qv8Stzu9zrru2endfJP7vWbGgrdEJuq5dx3N80aUXuu2WFo3sedKNiNCi0Q36jGjRpGk6fnXCIlrkrZMoOmmlk2ivjBvrL6WJ25b6PJQK2mn+DYi7Jf2MRXXgNwIIIIAAAgggkLVATQRt9VSts15dbih3OaR4z2CxL6baxpUuXF3srkvU0u3AA/1kSv4P9+NWFxpOcuFBS/wLdvzLpXq/X3W9z/Evpf4F7sfRxx5rd919j/8zuo+shs8e4yZk0xIfpuxXTPmhofGrr9XK11Xb1bBlXR8eD6nx8Bd/rR5rpudT3TXa6vXT8ONCS/6X4nid8p8r9Hqti3/pjZcp1asXr0P+EN9oG/FgqOvO1QutZcutt/GzIOvxXW4o7SqrrKKHjZb4NaaHuxEIx7iRCFp04kInMLTIU72i6g3Wot5CBe/obw3/VYiLTogohPY69VRftphTc49PDQ0/7IiGEQ3Fjge9cXSiQI+jQK19bLPBhlrlr7fXCYRCi3oi1SOpJR6Ad3HB7Y03xhd6SZN16gUeNnRok/XxFdtuv0PuxNI9bih3NPlVvMwNN95ovU4/w68qFrR18ujVlxtGdMRfq8dy1gmCxx5/IjcqJL+M/o4Hu3ibpf28alvx4zy/p1fPx3t7dXLpigH9tbrkEt+mev6jOQziL7rRjd7RyQMt8bkFiv17Fv9stXMjSeKjWeLbVdBW4Nby7FNP+lEDugTh4EMPixcr+fjmG2/wl7zEbfP/3YjXMd4e8f1M829Acz9jJSvCkwgggAACCCCAwDQI1ETQjve4KHzqS12pRbPjagZiLcW+mOq5aQ3a+V8utc1oUXCLhvVqoiRdO66/o0Cna4MH9OsbFc/9Vk/0amuu5XuetVLBUNdix7+gbuF6ODWTd/6i4NShY8fc9er5z0d/5+93qS/M0Wvyf8e/SMef02RkZ7peukJLkjrEA1s8aMd7b4sFufgIhfjEZse52a1vv+NOv0vqNdb9feM92JqBXpcRaBnortHWCQqdKNHSy11f39ldZ6+lmFNzj8/73DW+GhqupdjxoOcUqBWstURBOx488tvTF5zyQ0FegV5LPGjH20+XH+T3pE95uf+1vLvu+ZabboyvavI4HtzjwSpeULP6axJALcWCdrG6qE122mWX3MmW+HbzH8ffv1ib5b+m0OdVZeJO8e1Gr9dEiJoAUEtzgrYu4dClHPlL/ERf/BKSYv+exT9bm7tJIQcPGpi/Sf+3RkdEd0d4wl0ao5E18deqF3zOMrdKu/iiC21zt51StsXc4u9V7N+xQv8GNPczVhCBlQgggAACCCCAQAYCNRG05RBdQ6hAMNbNQqwJhOKLhmsX6lku9sVUr53WoK1tPO6u+daw3/wlHjyiayx1SyLNdq1FMwo/9MD9+S/zM11rxmst0VBnPU7yBfU8dw3zkKsbeh7V633MUUfZv6fcnknXsWoCMDnlh5lSX5j13oWW+BfpI9115roHetSDHu9Njr82SR0KfcnWNjQ7tm5BpSUaIeD/iP2Ih8rTe/Wyjvt38M/2HzDA+vZvuCxAs1IPd7PQ61pV3U5NPdgKrfFrtmeZeZbc9eBXu4nK2jlLLaWcmnN86h7gG2/aMCw82hf/RrEf33zzjR9OH62Kgrb+jrdBfLh0VFajIzZzQ+B1b20t8aAdH5o8ZPAgN0S+XfQy/7vY56lRodgf8c/ZqaecYl06d4o92/BQ19BH1winDdqPP/GEHXTwIX5DugxDM5brtn7RZ76zu2WWRiZoiQfieJvpuTSfV5WPG8e3q+e0TGvQjk8u1rDFhp/nupNzQ68Z5v+IXwYRdy42dFw+OqEU2UTb1XG+tpuvQG0bnzsiPqR8jTVW97csjF4T/S50PMRt8/9NKeY2Lf8GNOczFu0/vxFAAAEEEEAAgawFaiZon9LzVD9ztoCOcPdZPvqohomv9Le+BGrystlcz6/WK7RES7Evpno+i6C94w47mO6zHP9SG++p1OzLGtar5zXZ2YZu6KbuT6tF1xnG702r3uxDXN2eeLJh8rR4L2eSL6jt993PNDOvlsGux1u9TtESH6as4bkvu+sso17MUl+Yo9fn/87/Iv3Z55/Z4fXdcz3xhW4hlKQOxYJ2PxeU+7nArEXtO/LWWxqdbFEI10kMXU+q5d6778rN2K5bZx17fMMIB4X0gYMG+dmd48O1oyG1e7oh1fPON69d42aH16KJ0DQhmpZSTs09PjU5XhSEz3OzrO/pZluPLye5a2Oj+8BrfTxon+aGYf/HDcfWooA02E3KpwClRRN1aRb4G90Ec9ESD9rq4VdPvxbNTn3tNUMbXdM75Oqr7R7XW3ucG3q+oRs6Xm6JD6HWHADXuqHma665Ru5l8cnStDJt0I5fFtD1gC7+vtzRxuW3pRshEp3oiQ/HjreZyqf5vKp8/nG+2mqranVumdagvdSSS9od7lIIBdVo0b3Nd9p5l9y/E/GRHcX+PYt/trSdQtd+n+FuA3edux2clvze92jEiP5N0OR38TaXoSZS1DwWB3c7yPRvmpa47fQI2s39jPmd5QcCCCCAAAIIIJCxQM0E7aeffsa6uvscR0FK14DqnsAK2Q89/Eju1lCaWfwRF4403FpLsS+mei6LoK3t6L69ui3YXHPNbWPd/X91K61oP+PXd6tsPDDo7+23287dOqzOfnK9Tbqm+80JE7TaX5et3lfN8qsl/kW62JDLc9yw3Gvc8FwtrVu1Ms08PPc8c9t9LjDp/r/q0YoWfWne1w2x18zgpb4wR+XzfxcKIPFrcHVi4Xx3GzMNmY+WJHUoFrR1K64dXPj49ttv/eYWXXRRF9b28NeYasi8zHWiQks8QOtvTZK1x15766Ed7WZiHnDFlT6IHnzQQXbC8Q3XzEf31db1sjqGtK+aqE5D96NJpUo5Nff4jPcsy0zH9AZuQrjJk3+1u++5t8kt6OJBW/Xq0LGTK9twLb5Geei2THO6oeDjXhqXGyLsK+5+xIO2ejHlqR5zLQroO+24gz+JoRM9j7nbpclTweuOUbflJhfzhQv80ER2ul2YQqIW2WlCs0UXXcQmTHzLdA/s+JI2aMdPFGnCrlPcPaRXWH45U0/3rSNvy72v3kPX7++3T3s/GV68zaL3T/N5LXScR9vR72kN2tqGJibTnRR0e6+3337Hrh0+PPdZzZ8kr9i/Z/HPlrapRbf329BddvD777/54zl+28H8kzqXXtbXLncnarSozXWbue223cYmTfrAvzZq1/jJv7jt9Ajazf2M+UrxAwEEEEAAAQQQyFigZoK2XNQLd4L7gh2F2HwrXWs68Mor/JfE6LliX0z1/LQGbQWwlVZaseikUgoaQ13vUHTLsGif4kO8o3Xx36qH7ue8QWwm6PgX6WJBW7cFU/CKbqEU3+Z8881n27tb9sR7ODu5odWnuSHWpb4wx7cRf1wsgFzsbvF1pesx1iIf3a9X9zvXkqQOxYK2Xq/Zszsf0NV0z+Zii04g6LZFmkAuWuLXd0br9Ds+m3O8dzgqs6Qbdq8huNFSzqk5x6eGd2sUQzwERe+n3zph8ra7zVZ0kiQetPW8wsfB7vXR/eW1Llp0/Cks69ZuWuJBW39PmDjRjwKQT6FFwf/4Y49xvZjdCj3dZJ2u/d3XHVMff/xJk+c0e/wmG2/kT/joybRBW6NBdCutaCKv/DfQZIZDXC+6Trxp0Yk4Xcsfb7PmfF6LHefR+09r0NaJnWi29Gib0W+d/NAM7NGICq0v9u9Z/LOlE0VyiEZKRNuLfh/Y9QA7ecpkgNE6lddnIJppPlof/63Pw003/Cc3aiJuOz2CtvalOZ+xeB14jAACCCCAAAIIZCVQU0FbKBqiqvsDv/b667lAqS/Q6vnt44be6trn+FLsi6nKTGvQ1pfLZ9z9o3VrI33hjhb1LG688cb+XsD515JHZTQx1MhRo+ytt97KDbfW9tZy9dBs2fkzEce/SBcL2tq2ho7rfrm6/jdadP9f3XJr7dat3aznx9tTTz1lv/z6q1UiaOsLuyaW0hdiLRpZMHTIVX54cpI6lAra2p5CXG93b+gXXT2j3m2t13ByBfrjXDDMv2Wante9tHV7oviiCb4UZLXEJ+qKymy80YZ2jRtCHS2lgkVUJu3xqddpyPNpbgK5Rx59zNQzrEUnCrbcYgt3W7nzbPsdd7JJH3zg1+cHba1UkL7DeT/r7gOvcou53v6tt97Kurv7tPc8tVfBWcf9xtwPjaC4+JJL3EiMcbkwr+cUqnSde3R9elS+3G+Fbc2YrX15/Y03TMeeepA1cuCZZ54pO+t4fmCLv59GNWjyuOjyCD2nz/6Jbib/A9xwcvXKamSDwnihoN2cz2ulg7au+37s8cfcyanB9ttvv/nqqk76rJ5+Wq8ms7cX+/cs/7N1vPPWpQGvv/5GjlABfPddd83Nxp97YsoDfXZ1iYa2pXuo628tOlGonmydlIv/e1bq81DMLX8/C03qWO7fgOZ8xqZUkV8IIIAAAggggEBmAlUTtNPWWMNl1RM05xxz+l7laKh42u2kLV/sy6V6j3RrrTncjL1rrL56wbBX6L10vfbr7qSBepxXXGGFxK8rtK34OgUe9YQuvMjCttyyy+aGP8fLVPvj9ydNso8/+th03awmjmtJS3OOT43UUDD6y/23qhv+rHsWp110n/T4iYZit/fK367ee4IL3T+4kxF6bx2P07rk70v80oJ4j3ba99FnUDPFz+nmGljR9VyXup981p/XtPtaqHyhEKqTQBqx8bPruW/tQnapOhXaZqEAq6Csz8iHH3xoS/x7CX8yqtBrC63TKAcdi4u4of86iRXN51Co7Ixa15zP2IzaV94XAQQQQAABBGpPoGaD9oxqqmJf3GfU/vC+CBQT0LDxvffZ191TvWE27vyh48VeV6n18Zm0pyVop9m/lvh5LRS009SpUNlCQbtQOdYhgAACCCCAAAIIZCNA0M7GMbeVlvjFPbdzPAhOYPz48e6e3w0TuuVXXpcHxC8hiM/GnV82q78VIqNJ6eLbVO/qu++9l1t1wnHHJr72O/eiZjxoiZ9XgnYzGpKXIIAAAggggAACLUyAoJ1xg7TEL+4ZV5HNVZGAJsBTr3W5RXMXFLpve7nXpX1+5dVWLxi049vRMOQnH3vUz+4eX1+Jxy3x80rQrkRLs00EEEAAAQQQQGD6ChC0M/bW7M+dunTxW51rzrns+hENt9PK+G3YHAKJBDRz+Mk9exYtO8vMs1g7dwu3Pdytt3QbqUovut/y//3ZcJu1/PfSLOarr7qav1d4/B7b+eWy/Lslfl6PPvZYf+206qnh/JpDYVqX50ePtvMvvNBvRrPN6/ZnLAgggAACCCCAAAKVEyBoV86WLSOAAAIIIIAAAggggAACCAQoQNAOsNGpMgIIIIAAAggggAACCCCAQOUECNqVs2XLCCCAAAIIIIAAAggggAACAQoQtANsdKqMAAIIIIAAAggggAACCCBQOQGCduVs2TICCCCAAAIIIIAAAggggECAAgTtABudKiOAAAIIIIAAAggggAACCFROgKBdOVu2jAACCCCAAAIIIIAAAgggEKAAQTvARqfKCCCAAAIIIIAAAggggAAClRMgaFfOli0jgAACCCCAAAIIIIAAAggEKEDQDrDRqTICCCCAAAIIIIAAAggggEDlBAjalbNlywgggAACCCCAAAIIIIAAAgEKELQDbHSqjAACCCCAAAIIIIAAAgggUDkBgnblbNkyAggggAACCCCAAAIIIIBAgAIE7QAbnSojgAACCCCAAAIIIIAAAghUToCgXTlbtowAAggggAACCCCAAAIIIBCgAEE7wEanyggggAACCCCAAAIIIIAAApUTIGhXzpYtI4AAAggggAACCCCAAAIIBChA0A6w0akyAggggAACCCCAAAIIIIBA5QQI2pWzZcsIIIAAAggggAACCCCAAAIBChC0A2x0qowAAggggAACCCCAAAIIIFA5AYJ25WzZMgIIIIAAAggggAACCCCAQIACBO0AG50qI4AAAggggAACCCCAAAIIVE6AoF05W7aMAAIIIIAAAggggAACCCAQoABBO8BGp8oIIIAAAggggAACCCCAAAKVEyBoV86WLSOAAAIIIIAAAggggAACCAQoQNAOsNGpMgIIIIAAAggggAACCCCAQOUECNqVs2XLCCCAAAIIIIAAAggggAACAQoQtANsdKqMAAIIIIAAAggggAACCCBQOQGCduVs2TICCCCAAAIIIIAAAggggECAAgTtABudKiOAAAIIIIAAAggggAACCFROgKBdOVu2jAACCCCAAAIIIIAAAgggEKAAQTvARqfKCCCAAAIIIIAAAggggAAClRMgaFfOli0jgAACCCCAAAIIIIAAAggEKEDQDrDRqTICCCCAAAIIIIAAAggggEDlBAjalbNlywgggAACCCCAAAIIIIAAAgEKELQDbHSqjAACCCCAAAIIIIAAAgggUDkBgnblbNkyAggggAACCCCAAAIIIIBAgAIE7QAbnSojgAACCCCAAAIIIIAAAghUToCgXTlbtowAAggggAACCCCAAAIIIBCgAEE7wEanyggggAACCCCAAAIIIIAAApUTIGhXzpYtI4AAAggggAACCCCAAAIIBChA0A6w0akyAggggAACCCCAAAIIIIBA5QQI2pWzZcsIIIAAAggggAACCCCAAAIBChC0A2x0qowAAggggAACCCCAAAIIIFA5AYJ25WzZMgIIIIAAAggggAACCCCAQIACBO0AG50qI4AAAggggAACCCCAAAIIVE6AoF05W7aMAAIIIIAAAggggAACCCAQoABBO8BGp8oIIIAAAggggAACCCCAAAKVEyBoV86WLSOAAAI1LTB6zBjr13+Atamrsx7d6y3/bz2ndXpOZTp07OQ9rh8xvEnZWnqt6qdF9S1mE9U3somseG3LO47UhmovLVH7+D/4gQACCCCAQAkBgnYJHJ5CAAEEEGgsoECoRQFRy/IrrezDpAKInus3YID1qK/3zytoKqDoOYUVldXy9sQJfn0URGvttaqflriNHFTfyCayimwiK17b8o4jtZmOax3Daq8odOtvFgQQQAABBIoJELSLybAeAQQQQKCJQBQIo8DYpAArEKhBAYXrKFhHn4HoJEkNVpcqIYAAAghkIEDQzgCRTSCAAAK1LhAPGv1d715318vHgkCIAvosjHH/8xkIsfWpMwIIIJBcgKCd3IqSCCCAQLAC6sVTj140ZDxYCCqOQExAlwDwmYiB8BABBBBAICdA0M5R8AABBBBAoJCAevCioK3hsiwIIGBN5iTABAEEEEAAgbgAQTuuwWMEEEAAAQQQQCChAJdRJISiGAIIIBCgAEE7wEanyggggEAaAfVoa4kmg0rzWsoigAACCCCAAAIhChC0Q2x16owAAgikEIjfpirFyyiKQM0LRJdVMAN5zTc1FUQAAQRSCxC0U5PxAgQQQCAsAV2f3bZNHbMsh9Xs1DaBQP790BO8hCIIIIAAAoEIELQDaWiqiQACCCCAAAIIIIAAAgggMH0ECNrTx5l3QQABBKpWQL12bVyPNtdoV20TsuMVFNDwcT4bFQRm0wgggECVChC0q7Th2G0EEEBgeglwjfb0kuZ9qk2AoePV1mLsLwIIIDD9BAja08+ad0IAAQSqUkC3MNLSvb6+KvefnUagUgIK2urR7tG9nl7tSiGzXQQQQKBKBQjaVdpw7DYCCCCAAAIIIIAAAggggEDLFCBot8x2Ya8QQACBFiOgWcd1Dap67VgQQGCqgHqzR49u6NGeupZHCCCAAAIImBG0OQoQQAABBEoKcI12SR6eDFiAa7QDbnyqjgACCJQRIGiXAeJpBBBAIHQB9dppYWbl0I8E6p8voM/GGPd/nRvxwecjX4e/EUAAgbAFCNphtz+1RwABBBBAAAEEEEAAAQQQyFiAoJ0xKJtDAAEEak2AoeO11qLUJysB9Whr+DizjmclynYQQACB2hEgaNdOW1ITBBBAoCICBO2KsLLRGhDgGu0aaESqgAACCFRIgKBdIVg2iwACCCCAAAK1LcD8BbXdvtQOAQQQmBYBgva06PFaBBBAIAABwkQAjUwVEUAAAQQQQCBTAYJ2ppxsDAEEEKg9AYaO116bUqNsBBg6no0jW0EAAQRqUYCgXYutSp0QQACBDAX6Dxjgt9a9vj7DrbIpBKpfgKBd/W1IDRBAAIFKCRC0KyXLdhFAAAEEEEAAAQQQQAABBIIUIGgH2exUGgEEEEguoF67Nm3qrE1dXfIXURKBQAQ0hwGfjUAam2oigAACKQQI2imwKIoAAgiEKMA12iG2OnVOIsDQ8SRKlEEAAQTCFCBoh9nu1BoBBBBILMCs44mpKBiYgIK2Ph89utfTqx1Y21NdBBBAoJwAQbucEM8jgAACCCCAAAIIIIAAAgggkEKAoJ0Ci6IIIIBAiAIdOnbyvXXqtWNBAIGpAurNHj26oUd76loeIYAAAgggYEbQ5ihAAAEEECgpwDXaJXl4MmABrtEOuPGpOgIIIFBGgKBdBoinEUAAAQQQQACBQgLq0R7j/q9zM/Iz83ghIdYhgAAC4QoQtMNte2qOAAIIIIAAAggggAACCCBQAQGCdgVQ2SQCCCBQSwIMHa+l1qQuWQqoR1vDx5l1PEtVtoUAAgjUhgBBuzbakVoggAACFRPQZGht29RZ93omQ6sYMhuuSgGu0a7KZmOnEUAAgekiQNCeLsy8CQIIIIAAAgjUmoB6tLVwfXattSz1QQABBKZdgKA97YZsAQEEEKhpAcJETTcvlUMAAQQQQACBCggQtCuAyiYRQACBWhLgGu1aak3qkqUAQ8ez1GRbCCCAQG0JELRrqz2pDQIIIJC5QP8BA/w2uUY7c1o2WOUCBO0qb0B2HwEEEKigAEG7grhsGgEEEEAAAQQQQAABBBBAIDwBgnZ4bU6NEUAAgVQC6rVr42YdZ8KnVGwUDkRAcxjw2QiksakmAgggkEKAoJ0Ci6IIIIBAiAJcox1iq1PnJAIMHU+iRBkEEEAgTAGCdpjtTq0RQACBxALMOp6YioKBCSho6/PRo3s9vdqBtT3VRQABBMoJELTLCfE8AggggAACCCCAAAIIIIAAAikECNopsCiKAAIIhCjQoWMn31unXjsWBBCYKqDe7NGjG3q0p67lEQIIIIAAAmYEbY4CBBBAAIGSAlyjXZKHJwMW4BrtgBufqiOAAAJlBAjaZYB4GgEEEEAAAQQQKCSgHu0x7v+6OmblL+TDOgQQQCBkAYJ2yK1P3RFAAAEEEEAAAQQQQAABBDIXIGhnTsoGEUAAgdoSYOh4bbUntclOQD3aGj7OrOPZmbIlBBBAoFYECNq10pLUAwEEEKiQgCZDa9umzrrXMxlahYjZbJUKcI12lTYcu40AAghMBwGC9nRA5i0QQAABBBBAoPYE1KOtpY27RpsFAQQQQACBuABBO67BYwQQQACBJgKEiSYkrEAAAQQQQAABBEoKELRL8vAkAggggECtX6M97qWX7K233irb0DvtuKPNPffcZctVY4G//vrLbrr5Zvvm2++s/V572YILLlCN1Zju+8zQ8elOzhsigAACVSNA0K6apmJHEUAAgRkj0H/AAP/GtXqN9o033WQPPfJoWdzz+5xrCy24YNly1Vjgvffet959+vhd322XnW3HHXZoVjWeffY5e+W112zppZa07bbdtlnbqKYXEbSrqbXYVwQQQGD6ChC0p68374YAAggg0MIEXhw71iZMmJjbq2eee85+//13W3aZZWypJZfMrd9t111qtkf7jz/+sD4XXGDfffe9dT/8cFtmmaVz9U7z4KZbbrEHH3rY1lpjDT8Td5rXUhYBBBBAAIFaEiBo11JrUhcEEECgAgLqtWvjZh0PZcKno4873n744Qfba4/dbdtttkkt+ttvv9svv/xs888/v80000yJXq+h26XK6vmffvrJ5p133rLb075riPsss8xStmx+gXL7obr9+b8/ba4558x/qf87xKCtOQxC+WwUbHRWIoAAAggUFCBoF2RhJQIIIIBAJFDr12hH9Yx+Fwva6qm9/8EHbcUVVrBVVl7J7r3vfpvLBdrTT+3pXzr+zTftxptutk8+/dQUWGeffTbbbNNNbbdddrFZZ5012rwdc/wJ/vHhhx5iGmr96uuv2+Rff7WVVlzR2rff2/71z3/myn740Ud2/wMP2Bvj37Qff/zRFll4YVtjjdVtz913b7TN31wP/A033GjjJ7xpX3/9jf3tb3+zfy+xhO27T3vfMx9tMHrvLp062UMPP2zvT5pknTvub+uus05uvw49uJuv47vvvWcDrrjSZp55ZjvphONt0OCrbNIHH/i6qad/rz338Pusbfft398996FNnvyrKYzr/eeaay7/tqecdGLNDrln6Hh0ZPEbAQQQQCBfgKCdL8LfCCCAAAKNBEKbdbxY0L7r7rvt9jvv8gH3zz//9IFTobjPOb3tv2+/bedfeJFfp4nE5ptvPnv//Un+7+3dtcp77L5bzvSgQw716xdYYAH75ptvbI7ZZ7fJv/3mn9c14L16nmLzzDOPL3PCyaf4MnqfRRZZ2P7737ft18mTbastt7B99t7bv+ZXF9Iv7dvP3nn3Xf+3erMnuzLaRwXeejcUfPXVVvXPRe8922yz+eHxWnnwgQf6EQvRc8cefZStusoq9tZ//+vrpDIKzb/88ovvUVfg16L9PvaYo32Qv+Cii+2999/376n3Ve+83lvLmaef1ujkgV9ZIz8UtPX56NG9nl7tGmlTqoEAAghkJUDQzkqS7SCAAAII1IRAuaCtSm61xebWrl07+/vf/+6HUb/y6qt23/0P+L8PO+Rg7/DoY4/Z9a6XWcH7gikTjemJKND+4x//sK5dOrve8ZV9qL3w4kt8uO7Wtau1bdvGvv32WzvuxJP8tnqfdaYtusgi9vY779io2++w1q1a2eabbep7mx948CG7+dZbffDtXn+ErbzSSqYe7sGuB/plt1/LL7ecnXxiQy969N4K9Ort1nNzzDGHP3kQPVcoaKtcx/072BKLL+73YcjVQ+3Lr75qci12iEPHfQPxAwEEEEAAgTwBgnYeCH8igAACCDQW6NCxk++tU69dCEu5oK3rpC86/7xGQ7flol7pDz/80L784kv731//8z3Rd9x1tycbMmhg7hrsKNDGe6VVSD3i6kXecvPNXAjex7/uhJNP9kPB1aO99tqtbYXll7cV3RDz+DXS/Qdc7gP1NltvZXvvuad/nX58+tlnbnj7fbbM0kvbpu6kgIaAR++tW3htvdWWubJ6ED1XKGgfcdihtnbr1rny2u7IUbf7nve+l1ycWx9a0FZv9ujRDT3aOQQeIIAAAggg4AQI2hwGCCCAAAIlBbhGu4EnGjoe7yGO4BSQB7oe5O+//z5a1eh3oaDdw/U+r7XmmrlyQ4YOteeeH20brr++dT2gi1//gbsm+uprhtlHH3+cK6dh37vuvJNts/XWfp16vdX7faB7zQbutaWW/DAdL5v/XDR0XMPAB/Tr63vMo/LarzN7n+P/vOTCC3xPvv4ILWhzjXZ0RPAbAQQQQCBfgKCdL8LfCCCAAAJBC5Tr0S4UtM84u7fvzda1zRtvtKGbCG12+8hNZHabG+atpVDQjnqOI+xCQVvPabbx71yAf/PNCfaqu0e1Jl3TomufNZT70r597fU3xlv+teBfff21PfLoo74XXIFes5Dnh2m/oSk/8p+LgraePrJ7d1vTTcIWLQ+7+47f4O4/rp71fpddmuutDy1oq0d7jPu/ri6cWfmjY4DfCCCAAAKlBQjapX14FgEEEEAgMIG0QVuTfx1W391PBKaZxNdZe20vNnTYMHvGzSqu5bKLL8rdmis/0PoC7kd+0FZ41rrZXQ+2rtGOJhfL78GOhnFrSPvxxx5jiy+2mB/GPnzECDdR1wt+pnK9Xj3Txd5b+5D/XDxoazK1rl26+J7rL7780i53s5Grl13rjz7yyKgKuR5t3YNcs42XumVZ7kU8QAABBBBAoAYFCNo12KhUCQEEEMhSgKHjDZqlho5H11drtnBNbjbJ3Tbr+x++t5ncf7p2WzOBH3vUUbbUUks2CbRRW+UHbc3ufUqv0/xs37qtlyY5++zzz23CxIm+d1o92pogTcPVL7rkUn9bMQVbrdNEZX/88YcPuod0O8jWW3dd/zb5YTp6b/3Ofy4etLVdXeOtbX/8ySd+0jbdsqxHfb2ttuoquc0899zzNuSaa/zfmlVdHtHtz3KFauiBerQ1fJxZx2uoUakKAgggkJEAQTsjSDaDAAII1KqAJkNr26bOurtQFcKStkdbJhqmffmVA03XLmtR77NmFP/dzf59860j7eeff/Yzf2vYeX6g9S9wP/KDttZPmvSB3Xv//fbmhAl+Gxr+rQnRNtu0nb/3dfRaDS8f6q7lnvDWRH8fa63XbOf777efG/K9RlSs6HurQP5+xYP2iccfZ4OHXO2vBVdZbVu3F4tPkKb1uof28OtG2NhxL/mgr9uC9XdDy2t14RrtWm1Z6oUAAghMuwBBe9oN2QICCCCAAAJeQL3L3333vS266CKmScuyWv766y/fk7zQQgs1mpQsf/saxq4e53/MP39uqHp+maR/x4P24Cuv8C/7/Isv/GzrmgWdxfw9tOXQxl2jzYIAAggggEBcgKAd1+AxAggggEATAQ2P1UKYaEJT0yvyg7Z601kQQAABBBBAIJkAQTuZE6UQQACBYAVCu0Y72IbOqzhBOw+kwJ8MHS+AwioEEEAAAS9A0OZAQAABBBAoKdB/wAD/fCjXaJfECOhJzS7+4IMP+Rp32G9fZhAv0PYE7QIorEIAAQQQ8AIEbQ4EBBBAAAEEEEAAAQQQQAABBDIUIGhniMmmEEAAgVoUUK9dGzfrONdo12LrUqdpFdAcBnw2plWR1yOAAAK1J0DQrr02pUYIIIBApgJco50pJxurIQGGjtdQY1IVBBBAIGMBgnbGoGwOAQQQqDUBZh2vtRalPlkJKGjr89Gjez292lmhsh0EEECgRgQI2jXSkFQDAQQQQAABBBBAAAEEEECgZQgQtFtGO7AXCCCAQIsV6NCxk++tU68dCwIITBVQb/bo0Q092lPX8ggBBBBAAAEzgjZHAQIIIIBASQGu0S7Jw5MBC3CNdsCNT9URQACBMgIE7TJAPI0AAggggAACCBQSUI/2GPd/XR2z8hfyYR0CCCAQsgBBO+TWp+4IIIAAAggggAACCCCAAAKZCxC0MydlgwgggEBtCTB0vLbak9pkJ6AebQ0fZ9bx7EzZEgIIIFArAgTtWmlJ6oEAAghUSECTobVtU2fd65kMrULEbLZKBbhGu0objt1GAAEEpoMAQXs6IPMWCCCAAAIIIFB7AurR1tLGXaPNggACCCCAQFyAoB3X4DECCCCAQBMBwkQTElYggAACCCCAAAIlBQjaJXl4EgEEEECAa7Q5BhAoLMDQ8cIurEUAAQQQ4D7aHAMIIIAAAmUE+g8Y4EtwjXYZKJ4OToCgHVyTU2EEEEAgsQA92ompKIgAAggggAACCCCAAAIIIIBAeQGCdnkjSiCAAAJBC6jXro2bdZwJn4I+DKh8EQHNYcBnowgOqxFAAIGABQjaATc+VUcAAQSSCHCNdhIlyoQowNDxEFudOiOAAALJBAjayZwohQACCAQrwKzjwTY9FS8joKCtz0eP7vX0apex4mkEEEAgNAGCdmgtTn0RQAABBBBAAAEEEEAAAQQqKkDQrigvG0cAAQSqX6BDx06+t069diwIIDBVQL3Zo0c39GhPXcsjBBBAAAEEuL0XxwACCCCAQBkBrtEuA8TTwQpwjXawTU/FEUAAgbIC9GiXJaIAAggggAACCCDQVID5C5qasAYBBBBAoEGAoM2RgAACCCCAAAIIIIAAAggggECGAgTtDDHZFAIIIFCLAgwdr8VWpU5ZCKhHW8PHmXU8C022gQACCNSWAEG7ttqT2iCAAAKZC2gytLZt6qx7PZOhZY7LBqtagGu0q7r52HkEEECgogIE7YrysnEEEEAAAQQQQAABBBBAAIHQBAjaobU49UUAAQRSCjDhU0owiiOAAAIIIIBA8AIE7eAPAQAQQACB0gJco13ah2fDFWDoeLhtT80RQACBcgIE7XJCPI8AAggELtB/wAAvwDXagR8IVL+JgIK2RnwwGVoTGlYggAACwQsQtIM/BABAAAEEEEAAAQQQQAABBBDIUoCgnaUm20IAAQRqUEC9dm3crONt6upqsHZUCYFpE1CPNp+NaTPk1QgggEAtChC0a7FVqRMCCCCQoQDXaGeIyaZqSoBrtGuqOakMAgggkKkAQTtTTjaGAAII1J4As47XXptSo2wE9NkY4/6vc6M96NXOxpStIIAAArUiQNCulZakHggggAACCCCAAAIIIIAAAi1CgKDdIpqBnUAAAQRarkCHjp18b51mVmZBAIGpAurRHj26YdbxqWt5hAACCCCAgBlBm6MAAQQQQKCkANdol+ThyYAFuEY74Man6ggggEAZAYJ2GSCeRgABBBBAAAEECgkwf0EhFdYhgAACCEiAoM1xgAACCCBQUoAwUZKHJxFAAAEEEEAAgSYCBO0mJKxAAAEEEIgLMHQ8rsFjBKYK6CSUho9r/gJmHZ/qwiMEEEAAAXq0OQYQQAABBMoIaDK0tm3qrHs9k6GVoeLpwAS4RjuwBqe6CCCAQAoBerRTYFEUAQQQQAABBBCIC6hXm97suAiPEUAAAQQkQNDmOEAAAQQQKCsQDY8tW5ACCAQkQMgOqLGpKgIIIJBSgKCdEoziCCCAQGgC0fDYHm7oOPfSDq31qW8xAYVsXVbB56KYEOsRQACBsAUI2mG3P7VHAAEEEgn0HzCAa7QTSVEoFAEmQgulpaknAggg0DwBgnbz3HgVAgggEKQAQ8iDbHYqnSfAkPE8EP5EAAEEEGgiQNBuQsIKBBBAAIFCAgwhL6TCutAEGDIeWotTXwQQQKB5AgTt5rnxKgQQQCBIAYXtNu5WX5plWden6reu21b4GD3azb485TmV0xJd0x3/O79s/kzpt4wAAEAASURBVN/xstpG/O/8svl/x8tW82sjx/z6RX8Xco3qy2sbjs9KHQvartrh+hHDRc6CAAIIIIBAQQGCdkEWViKAAAIIlBJQ0IiCtgKHwkc/dx13NDGUnovCiML48iut7Df39sQJfj2vbWolGy2ykplcI+fINXLWc9HJDpXhtU2tKnUM+kbiBwIIIIAAAmUECNplgHgaAQQQQKCwgAKeFgW++GOtS/N3mrL52w7ltTLWMmjwYBs67Fo79OBudkCXLomco9c2xyqU1yaxiSx8Q/ADAQQQQACBMgIE7TJAPI0AAggggEBLEXjp5Zetx1FHW9cunX3Qbin7xX4ggAACCCCAQGMBgnZjD/5CAAEEEECgxQoQtFts07BjCCCAAAIINBIgaDfi4A8EEEAAAQRargBBu+W2DXuGAAIIIIBAXICgHdfgMQIIIIAAAi1YgKDdghuHXUMAAQQQQCAmQNCOYfAQAQQQQACBlixA0G7JrcO+IYAAAgggMFWAoD3VgkcIIIAAAgi0aAGCdotuHnYOAQQQQACBnABBO0fBAwQQQAABBFq2AEG7ZbcPe4cAAggggEAkQNCOJPiNAAIIIIBACxcgaLfwBmL3EEAAAQQQmCJA0OZQQAABBBBAoEoECNpV0lDsJgIIIIBA8AIE7eAPAQAQQAABBKpFgKBdLS3FfiKAAAIIhC5A0A79CKD+CCCAAAJVI0DQrpqmYkcRQAABBAIXIGgHfgBQfQQQQACB6hEgaFdPW7GnCCCAAAJhCxC0w25/ao8AAgggUEUCBO0qaix2FQEEEEAgaAGCdtDNT+URQAABBKpJgKBdTa3FviKAAAIIhCxA0A659ak7AggggEBVCRC0q6q52FkEEEAAgYAFCNoBNz5VRwABBBCoLgGCdnW1F3uLAAIIIBCuAEE73Lan5ggggAACVSZA0K6yBmN3EUAAAQSCFSBoB9v0VBwBBBBAoNoECNrV1mLsLwIIIIBAqAIE7VBbnnojgAACCFSdAEG76pqMHUYAAQQQCFSAoB1ow1NtBBBAAIHqEyBoV1+bsccIIIAAAmEKELTDbHdqjQACCCBQhQIE7SpsNHYZAQQQQCBIAYJ2kM1OpRFAAAEEqlGAoF2NrcY+I4AAAgiEKEDQDrHVqTMCCCCAQFUKELSrstnYaQQQQACBAAUI2gE2OlVGAAEEEKhOAYJ2dbYbe40AAgggEJ4AQTu8NqfGCCCAAAJVKkDQrtKGY7cRQAABBIITIGgH1+RUGAEEEECgWgUI2tXacuw3AggggEBoAgTt0Fqc+iKAAAIIVK0AQbtqm44dRwABBBAITICgHViDU10EEEAAgeoVIGhXb9ux5wgggAACYQkQtMNqb2qLAAIIIFDFAgTtKm48dh0BBBBAICgBgnZQzU1lEUAAAQSqWYCgXc2tx74jgAACCIQkQNAOqbWpKwIIIIBAVQsQtKu6+dh5BBBAAIGABAjaATU2VUUAAQQQqG4BgnZ1tx97jwACCCAQjgBBO5y2pqYIIIAAAlUuQNCu8gZk9xFAAAEEghEgaAfT1FQUAQQQQKDaBQja1d6C7D8CCCCAQCgCBO1QWpp6IoAAAghUvQBBu+qbkAoggAACCAQiQNAOpKGpJgIIIIBA9QsQtKu/DakBAggggEAYAgTtMNqZWiKAAAII1IAAQbsGGpEqIIAAAggEIUDQDqKZqSQCCCCAQC0IFAraWte6VataqB51QAABBBBAoGYECNo105RUBAEEEECgFgV6HHW0C9Jr2QFdulh+0L5m2DAbOuxa63fZpYTtWmx86oQAAgggULUCBO2qbTp2HAEEEECg1gWiYK16du3S2Vq5nmsFbz3WopCthaDtGfiBAAIIIIBAixEgaLeYpmBHEEAAAQQQaCoQD9saIh4NFddvLYTspmasQQABBBBAYEYLELRndAvw/ggggAACCJQRiIfteFFCdlyDxwgggAACCLQcAYJ2y2kL9gQBBBBAAIGiAvlhm5BdlIonEEAAAQQQmOECBO0Z3gTsAAIIIIAAAskEorBNyE7mRSkEEEAAAQRmlABBe0bJ874IIIBAFQuMHjPGRo92/7vfLAiEItCje721qasLpbrUEwEEEEBgGgQI2tOAx0sRQACB0AT69R/gq9xvQMPv0OpPfRFQ0CZwcxwggAACCJQTIGiXE+J5BBBAAAEvoJAdD9hHut697vX16CAQhIBGb+gzEI3i6OGOfQVuFgQQQAABBAoJELQLqbAOAQQQQKCRQDxkE7Ab0fBHYAIK2h06dvK1JmwH1vhUFwEEEEghQNBOgUVRBBBAIFQBBQsFDEJ2qEcA9Y4LxMP22xMnxJ/iMQIIIIAAAl6AoM2BgAACCCBQUiAKFbo29foRw0uW5UkEQhGIRnnQqx1Ki1NPBBBAIJ0AQTudF6URQACB4ASi3myFbGZcDq75qXAJgeVXWtk/S692CSSeQgABBAIVIGgH2vBUGwEEEEgqQJhIKkW50AQ4CRVai1NfBBBAILkAQTu5FSURQACBIAUUtBk2HmTTU+kyAtHwcUZ7lIHiaQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AgTtNFqUDUmAoB1Sa1NXBBBAIJ0AQTudF6URQACB4AQI2sE1ORVOKEDQTghFMQQQQCBAAYJ2gI1OlRFAAIE0AlkG7a+++spuHTnSxr85wb744gtbYfnlrVWrtWy3XXe1mWeeOc1uVW3ZW2691e5/4AE7uFs3a1NXl1k9nnn2WXvggQftnXfftVlmmcWWW3ZZ77rmmmvk3uODDz+04cOH+79POfnkGWKedB/++usvO7dPH/v0s8/tlJNOssUWWzRXj5bygKDdUlqC/UAAAQRangBBu+W1CXuEAAIItCiBrIL2+PHj7eDDDrfPPvusSf02bbeJXXrJJTbvPPM0ea4aV9w26nZ79LHHbI3VV7NDDj44V4X//e9/tva669lPP/9sG6y/vg0fdk3uueY+UCA9wQXRUbff0WQTOnlxVI/udvhhh/nnxrzwgu23f0f/eMIbr9uss87a5DWVXpF0H1599TXbfa+9/O4cc9SRuTpUev/SbJ+gnUaLsggggEBYAgTtsNqb2iKAAAKpBbIK2l26drWnn3nW90zut88+ttxyy9lrr71ug4cMsf/7v/+zI1wYPNoFqlpYznE9sdcMu9Y2a9fOrho8qFGVTjv9DLvzrrvspBNPsH3at2/0XHP+uOnmm61nr9P8S5f8979trz33sN9//8Nuu32UffzxJ77X+pabbrS11lzTkobc5uxH0tck3YfffvvN2u+3n33++Rc26IorLN4zn/S9Kl2OoF1pYbaPAAIIVK8AQbt62449RwABBKaLQBZBW6Fp7fXqTL8vOK+P7b7bbrl9P++CC2zI1UOtdatWpkCYvyiE//jjj/aPf/wj/6mCf6vXOH8YeqF18Rf/+eeffij7P//5z8S9vKW2WSpo633VCz3TTDPFdyH3+Pfff7effvrJFlhggdy6Ug+233Ene+u//7Xl3YmL++65O7ddWbdZfwPfe96xQwc7/bReBYN2qXqUet9yzxXbbtKgHW2/2HaSPq9y8v76669toYUWil6WyW+CdiaMbAQBBBCoSQGCdk02K5VCAAEEshPIImgr6KzXdn377rvvrOsBXfw1t9EePv7EE3bxJZfa3/72N7vt1lui1b63+5LLLrVx416yn3/5xV9zvN2229qRbih0FFKvuWaYDb76altv3XWt3SYbW/8Bl9tXLlCtt+46dvGFF9qLY8faZX372bvvvWerrrqK9T7zTPd71dx76HrhU11vsMop4Ora5i0239xO73WqLbzwwrly9T2OtLHjxtkh7rpql9rspltusfcnTfK9xIcdcoi1c0PftRzkhom/Mf5NF5R/tF9/nWyzzTab/f3vf/fP3XzjDfbvJZawaFtdOnVsNKz8sccft4GDBttrr7/u92WRRRax7bbZ2k484YSi4V8nCFZfq5X98ccfdmT3euteX+/fK/pxzHHHud7zu239tm1txLXDGgXte+++y9S7/sqrr/pQr973U3ueYnPMMYd/+RNPPGkn9expc805pz3y0IPRJv3vzbbY0ia7IH/heefZRhttaC+/8ooddkS997vF1bPX6afb2LHjbK655/a9+vHtFgraap9uBx9iv/z6q621xhrWr+9l3m79jTb279f30kusbr31Ur2PXqg2PePMs+yhRx6xb7/91v71r3/ZwQceaL9O/tWGX3e9bbThBnbh+ef792jOD4J2c9R4DQIIIBCGAEE7jHamlggggECzBbII2nrzE0862UaOGuX3Y5WVV7bNNt3UNt20nbVaa60mPdBvvvmmdejU2X744Qcf3uaff37fI6kXH9Cls/V0E3lpGXD55XZZv/4+iCp0zjfffPb999/75zSM+rPPP7fZZ5/d9xAr7Ov5Z5580uaccw770fUab7HV1vbNN9/YvPPOa9onBUaFM/WuKxhHgX5/ty/Pjx5tiy66qH366ac2jwuQus5ai8L0dcOvtbVbt7YOHTv54KpeeP2vnnU9r+Weu+60pZZc0qJtHX7ooXbM0Uf55+648y470dVJr1HY1/7opIQWhWRdyx3ti1855ceXX35pURi9duhQ29AFx/giE/2v/dD12PGQK1O9x9xzzeVPZOh1W2y2mQ0aeKXfxEMPP+zDs+r68rix8c3aGs5HJxIGu7Kbu9dE29U+6gSFrsMvtt2orDao68QVgPdqv4999PHHtvJKK9n1I4bnTk6ssPIqvjf62mtc3TbYINX7yPKww4+wx9yJHC06gTCLc9BJG5380HESr68vlPIHQTslGMURQACBgAQI2gE1NlVFAAEEmiOQVdBWr6t6F292s24r9EaLhvN2c9dvd+16QC5Mdj6gq2kWbfVSq2dawUiTix3iJlPTot7YFVdYIRe0tU5ht22bNtbXBe/+LoBrOdBt8/hjj7WJE9+yXXbf3a9TkNNs32+/845dellf99xEu+uOO3z4nvjWW7bDTjv7co8/+ogtsfji/nEUjvXHeeeeYzvvtJMP8V0PPMj3bO+955527jm9fVn9KDV0PNpWFLQ1NHodN6xewX+H7bf321FIfcZdz97NhXEF/0IhWu+jmds32LihNz0Ko1pfbImHXBmcecbpPvxfM2yYXXDRxf5lTz/xuKk3vTlBWxsot934Prw4+nnr2LmLvTlhgi27zDJ2w/XX2YILLpjb/WJBO8n76MSIrLUc605o7L///v4kxsiRt9mZZ5/t1xO0PQM/EEAAAQQqIEDQrgAqm0QAAQRqSSCroB2ZKBw+8OBD9sSTT9iYMS/44cJ6brddd/HDeNUDq+CpHuM93LXcyyyztHu2YRk2fITpFmHn9j7b9nYzUkc92sssvbQ99MD9vpBmN995t4ZQrWuWdQsxLZu4ntdPPvk091qtU6/nWy5cv/Pue+768cla5UOYemuj4K51UTheZZVV7C43yVi0aFj6ADdR10orruh7rKP1aYL2G2+M9ycB1Os89oUxjWZeV4+pTlBsu802ttpqU4e8R+8zLUF74BWX25ZbbOE3pSHb67Vp66+hv7x/P9tm662bHbTLbTcetOWp0Qs6oXHjf673AT+qm36XCtrl3udy1y6XuvZRD/tTjz/WaNTENttt72+DRtCOa/MYAQQQQCBLAYJ2lppsCwEEEKhBgSyCtq5vvt3dfmqOOWa3nqecklPShF0XXXyxXXPtcD+0+YXnn7Nv3XDmzbfcKlem0IP93WzUZ5x+Wi5or7P22nbTDf/xReO90mOeezY3qZi2qWuyzzn7LGu/995+ePPh9d3t1ddeK/QW/ppmDdvWEgXt/OvLdU/sk3ue6oOiesCjJU3Qjrax+OKL2ROPPhptItFv9YK3XmddX/YiN6ncrrs09MZHL77u+uv9SQ1NlJY/GZqGg2tYeLRs1G5Tb3KBu+569912LRq01QOv68LV054/dFzbKrfdeNCO3rvQvuu5UkG73Psce/zxpiH5O+24g13qjrH4omvT/3PjjQwdj6PwGAEEEEAgUwGCdqacbAwBBBCoPYEsgva4l16yvffZ1+OoR1g9mdGi8BsFa10XvaabDKu1m9xMvcqnnHiirbteQ5BUeQ0513XAmpFbvaBRj3ZzgnYUhnUt92GHHuKHLCs8HnXMsb6nW5OH5QftaLh3tO9RSNa+NDdo67rwPfdu74c1vzT2RT/5WLT9Ye4WYa7CfrI19doXWnSNtq7V3tJN4jbwyisaFdl2+x38EPkobMZDbv59tPOD9tNPP2Nd3MRhurb7BTfEO7rHebS/eqNCQbvcduP7oB7lR9wlAdq2hvTHJ6rT9ksF7XLvc5W7bdz5F17kLzt4/pmn/WR72qZOFLTbfAt/rT092hJhQQABBBCohABBuxKqbBMBBBCoIYEsgraGaGtosnpgFQhPPvkkf22wbrl00cWX2C0jR/rJs14cM9oHoqgHWddcayizrtHWkHFdu73Vlltat24H+fLTErSj9+i0fwc7rVcv32K3ucnaTnCTtmnp52Y833677fzjqGzaoK2J3nTLsvhEZvnbks3a667nh9BrX3qdeqov/9LLL9u+Hfb3oV/Xqe+y805+X/J/RD23mrX9RDfL+K5uCL62ebObGf0Sdw26ltPcNjt13D83mZjWlQuqmihtXddmWk51E7V17tzJT053urvO/u577vHrpzVov/7Ky27CtSPsKRfqdW22RiUsvdRSftv6MS1BO35yR/dtP/DArv5kxvARI2yom61eC0HbM/ADAQQQQKACAgTtCqCySQQQQKCWBLII2vJQ7+w5blhyNBGa7lmt8Bz9HQ+xL7z4oh14UDcfPhUgV3ATn2nSMl2/rSB25x23+57faQna0aRpmhV84w03tK/d7OPRra50AkAzk5/kbq3VwQ1Tzw/HUfsW69Ee5YbJH+9647VopnLdA/zOUbf5vwtta5gbOt/73HP985oZfX53YkE9/VrU+z/K3fZMPcuFFvVmb+N6rjVDuxZ5yVRhW4uuH7/DvXf+rOPlgrZee/Ahh9qj7rZjWjRBmsL3rG5W9F8nT/ZtMa1BW/ug24Ttt39H07X1Gj5/8w035G6tNi1BWwa6dZtuxRYt0QkPTcAnN4J2JMNvBBBAAIGsBQjaWYuyPQQQQKDGBLIK2mK5/4EHcve11hBeLbq39CEHd7N92rf3f0c/Ro8ZY73POdd0zbXK6rZXG7t7Np/nAqmCkpZpCdp+aPqpPV3v7L25sK9bh+268y7W/cgjfdDVbNWHuZm/C4VjvX+xoK1t93T34takb7oOXeF5nJvoTEuxbY287Ta7/IorcwFbtyXTZGWazVyzkJdaPvzoI+vd+xx/K6vIVV4777SjnewCv4baa4kP204StDVJ2gknnmRPuluiKVwrtJ/fp491drPEK3RnEbR1AkChd0/X/h9//ImfvE6zj+v2Y9MStFVfWVw5cKA96G5VppnnF3MnPXSv8fHj3/DzAhC0pcSCAAIIIFAJAYJ2JVTZJgIIIFBDAlkG7YhF9zJ+z830veSS//YhNFpf6PePP/5oH7re3WWXXdbfC7lQmWlZp+Hs77/3vt8XDVGf0Yt6+b9yPeqawKxYL3axfVSof3/SJD/0XNd0q3c7i0W94wra0XXaWWxzem9DPdxRj/Y57mSNJuAjaE/vVuD9EEAAgXAECNrhtDU1RQABBJolUImg3awd4UUIpBTQSYvHn3ii0asUuK8cOMiPHNhu222tf9/LGj2f5g/dfq3fgAF+IjfdP5wFAQQQQACBSICgHUnwGwEEEECgoABBuyALK6tA4MWxY22f/ToU3dNSk8wVfVHsCYJ2DIOHCCCAAAKNBAjajTj4AwEEEEAgX4CgnS/C39UioAnlhgy5usnuzjrrLLbJJpu4a/438tf+NymQcAVBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghMgaAfX5FQ4oQBBOyEUxRBAAIEABQjaATY6VUYAAQTSCBC002hRNiQBgnZIrU1dEUAAgXQCBO10XpRGAAEEghNQ0Nby9sQJwdWdCiNQSqBDx042eswYu37EcGtTV1eqKM8hgAACCAQmQNAOrMGpLgIIIJBWgKCdVozyoQhEQZuTUKG0OPVEAAEEkgsQtJNbURIBBBAIUiAaHtujvt56dK8P0oBKI5AvoJ5sBW31ZKtHmwUBBBBAAIG4AEE7rsFjBBBAAIGCAvRqF2RhZcACUW82w8YDPgioOgIIIFBCgKBdAoenEEAAAQQaBKJebXrvOCIQMOPzwFGAAAIIIFBOgKBdTojnEUAAAQS8QDxcaAg5kz9xYIQmoM+Aln4DBjBkPLTGp74IIIBASgGCdkowiiOAAAIhC0RhOzJQ2CZwRxr8rmUBhetoYWRHJMFvBBBAAIFiAgTtYjKsRwABBBAoKKBJoBS49ZsFgZAEjpwyGWB3NzEgCwIIIIAAAqUECNqldHgOAQQQQKCoAEG7KE3Fnnj55Zdt6LBrrXWrVnZAl84Vex823FSAkRtNTViDAAIIIFBcgKBd3IZnEEAAAQQQaFECL7mg3eOoo62rC9kHdOnSovaNnUEAAQQQQACBqQIE7akWPEIAAQQQQKBFCxC0W3TzsHMIIIAAAgjkBAjaOQoeIIAAAggg0LIFCNotu33YOwQQQAABBCIBgnYkwW8EEEAAAQRauABBu4U3ELuHAAIIIIDAFAGCNocCAggggAACVSJA0K6ShmI3EUAAAQSCFyBoB38IAIAAAgggUC0CBO1qaSn2EwEEEEAgdAGCduhHAPVHAAEEEKgaAYJ21TQVO4oAAgggELgAQTvwA4DqI4AAAghUjwBBu3raij1FAAEEEAhbgKAddvtTewQQQACBKhIgaFdRY7GrCCCAAAJBCxC0g25+Ko8AAgggUE0CBO1qai32FQEEEEAgZAGCdsitT90RQAABBKpKgKBdVc3FziKAAAIIBCxA0A648ak6AggggEB1CRC0q6u92FsEEEAAgXAFCNrhtj01RwABBBCoMgGCdpU1GLuLAAIIIBCsAEE72Kan4ggggAAC1SZA0K62FmN/EUAAAQRCFSBoh9ry1BsBBBBAoOoECNpV12TsMAIIIIBAoAIE7UAbnmojgAACCFSfAEG7+tqMPUYAAQQQCFOAoB1mu1NrBBBAAIEqFCBoV2GjscsIIIAAAkEKELSDbHYqjQACCCBQjQIE7WpsNfYZAQQQQCBEAYJ2iK1OnRFAAAEEqlKAoF2VzcZOI4AAAggEKEDQDrDRqTICCCCAQHUKELSrs93YawQQQACB8AQI2uG1OTVGAAEEEKhSAYJ2lTYcu40AAgggEJwAQTu4JqfCCCCAAALVKkDQrtaWY78RQAABBEITIGiH1uLUFwEEEECgagUI2lXbdOw4AggggEBgAgTtwBqc6iKAAAIIVK8AQbt62449RwABBBAIS4CgHVZ7U1sEEEAAgSoWIGhXceOx6wgggAACQQkQtINqbiqLAAIIIFDNAgTtam499h0BBBBAICQBgnZIrU1dEUAAAQSqWoCgXdXNx84jgAACCAQkQNAOqLGpKgIIIIBAdQsQtKu7/dh7BBBAAIFwBAja4bQ1NUUAAQQQqHIBgnaVNyC7jwACCCAQjABBO5impqIIIIAAAtUuQNCu9hZk/xFAAAEEQhEgaIfS0tQTAQQQQKDqBQjaVd+EVAABBBBAIBABgnYgDU01EUAAAQSqX4CgXf1tSA0QQAABBMIQIGiH0c7UEgEEEECgBgQI2jXQiFQBAQQQQCAIAYJ2EM1MJRFAAAEEakGAoF0LrUgdEEAAAQRCECBoh9DK1BEBBBBAoCYECNo10YxUAgEEEEAgAAGCdgCNTBURQAABBGpDgKBdG+1ILRBAAAEEal+AoF37bUwNEUAAAQRqRICgXSMNSTUQQAABBGpegKBd801MBRFAAAEEakWgUNDWutatWtVKFakHAggggAACNSFA0K6JZqQSCCCAAAK1KtDjqKNdkF7LDujSxfKD9jXDhtnQYddav8suJWzX6gFAvRBAAAEEqlKAoF2VzcZOI4AAAgiEIBAFa9W1a5fO1sr1XCt467EWhWwt+ltBnAUBBBBAAAEEWoYAQbtltAN7gQACCCCAQEGBeNjWEPFoqLh+ayFkF2RjJQIIIIAAAjNUgKA9Q/l5cwQQQAABBMoLxMN2vDQhO67BYwQQQAABBFqOAEG75bQFe4IAAggggEBRgfywTcguSsUTCCCAAAIIzHABgvYMbwJ2AAEEEEAAgWQCUdgmZCfzohQCCCCAAAIzSoCgPaPkeV8EEECgygVGjxlj/foPsDZ1ddaje73l/63ntE7PqUyHjp18ja8fMbxJ2Vp6reqnRfUtZhPVN7KJrJK8dtDgwfbkU0/nXNO8dlred0a9NqpfZDUjjiPtg5aoffwf/EAAAQQQQKCEAEG7BA5PIYAAAgg0FlDYGj26ITzrmeVXWtmHSQUQhZF+AwZYj/p6HwIViFRezylwqqyWtydO8OujIFprr1X9tMRt5KD6RjaRVWQTWfHalnccqc10XOsYVnupLbXobxYEEEAAAQSKCRC0i8mwHgEEEECgiUAUCKPAqNBB4GjCxIoaE4gf59FnIDpJUmNVpToIIIAAAhkJELQzgmQzCCCAQCgC/V3vXnfXy8eCQIgCGo0w00zGZyDExqfOCCCAQAoBgnYKLIoigAACoQqoF08917pOlgUBBBoEFLr5THA0IIAAAggUEiBoF1JhHQIIIIBATiC6vji6RjX3BA8QCFggus4+uowiYAqqjgACCCBQQICgXQCFVQgggAACCCCAQDkBLqMoJ8TzCCCAQLgCBO1w256aI4AAAokE4hNBJXoBhRBAAAEEEEAAgcAFCNqBHwBUHwEEECgnEL9NVbmyPI9ASAI6CRVdp83s+yG1PHVFAAEEygsQtMsbUQIBBBAIWkATobVtU8csy0EfBVS+kEB0nTa3+iqkwzoEEEAgbAGCdtjtT+0RQAABBBBAAAEEEEAAAQQyFiBo/z979x3vRJW/cfwrdrEAKhZs2AUs4C4gVtafYhd3FWyIgmu9F+vaBey6irqCrhVFbFjXta9l7YruqqtiF7FX7KAo6i/PuU7MzU3uTe6dJHPmfMaXkEwmZ855f8MfT87MScygNIcAAgikTUCzdn0yM9pcGpu2yjIeBBBAAAEEEKiUAEG7UrK0iwACCKREgHu0U1JIhhG7AJeOx05KgwgggEBqBAjaqSklA0EAAQQqI6CfMNJWX1dXmRPQKgKeCihoa0G0EfV1XPHhaQ3pNgIIIFApAYJ2pWRpFwEEEEAAAQQQQAABBBBAIEgBgnaQZWfQCCCAQOkCWnVc92dr1o4NAQQaC/A78409eIYAAggg0CBA0OaTgAACCCDQrAD3aDfLw4sBC3CPdsDFZ+gIIIBACwIE7RaAeBkBBBAIXUAzdtpYdTz0TwLjzxfQv42nMv/3zlzxwb+PfB2eI4AAAmELELTDrj+jRwABBBBAAAEEEEAAAQQQiFmAoB0zKM0hgAACaRPg0vG0VZTxxCWgGe3JkxtWHY+rTdpBAAEEEEiHAEE7HXVkFAgggEDFBAjaFaOlYc8FuEfb8wLSfQQQQKCCAgTtCuLSNAIIIIAAAgikV4D1C9JbW0aGAAIItFWAoN1WQd6PAAIIpFyAMJHyAjM8BBBAAAEEEIhdgKAdOykNIoAAAukS4NLxdNWT0cQnoC+hdPm4fmOeVcfjc6UlBBBAIA0CBO00VJExIIAAAhUU2G3IHta3T2+rr6ur4FloGgH/BLhH27+a0WMEEECgWgIE7WpJcx4EEEAAAQQQQAABBBBAAIEgBAjaQZSZQSKAAAKtF9CsXZ/MjDaXxrbekHcigAACCCCAQFgCBO2w6s1oEUAAgbIFuEe7bDLeEIgAl44HUmiGiQACCLRCgKDdCjTeggACCIQkMHbcODdc7tEOqeqMtRQBBW0tiMZiaKVocQwCCCAQlgBBO6x6M1oEEEAAAQQQQAABBBBAAIEKCxC0KwxM8wgggIDvAlp1XPdna9aODQEEGgtoRpv1Cxqb8AwBBBBAwIygzacAAQQQQKBZAe7RbpaHFwMW4B7tgIvP0BFAAIEWBAjaLQDxMgIIIBC6gGbstDFrF/ongfHnC+jfxlOZ/3tnrvjg30e+Ds8RQACBsAUI2mHXn9EjgAACCCCAAAIIIIAAAgjELEDQjhmU5hBAAIG0CXDpeNoqynjiEtCM9uTJDauOx9Um7SCAAAIIpEOAoJ2OOjIKBBBAoGICBO2K0dKw5wLco+15Aek+AgggUEEBgnYFcWkaAQQQQAABBNIrwPoF6a0tI0MAAQTaKkDQbqsg70cAAQRSLkCYSHmBGR4CCCCAAAIIxC5A0I6dlAYRQACBdAlw6Xi66slo4hPQl1C6fFy/Mc+q4/G50hICCCCQBgGCdhqqyBgQQACBCgrsNmQP69unt9XX1VXwLDSNgH8C3KPtX83oMQIIIFAtAYJ2taQ5DwIIIIAAAggggAACCCCAQBACBO0gyswgEUAAgdYLaNauT2ZGm0tjW2/IOxFAAAEEEEAgLAGCdlj1ZrQIIIBA2QLco102GW8IRIBLxwMpNMNEAAEEWiFA0G4FGm9BAAEEQhIYO26cGy73aIdUdcZaioCCthZEYzG0UrQ4BgEEEAhLgKAdVr0ZLQIIIIAAAggggAACCCCAQIUFCNoVBqZ5BBBAwHcBrTqu+7M1a8eGAAKNBTSjzfoFjU14hgACCCBgRtDmU4AAAggg0KwA92g3y8OLAQtwj3bAxWfoCCCAQAsCBO0WgHgZAQQQCF1AM3bamLUL/ZPA+PMF9G/jqcz/vTNXfPDvI1+H5wgggEDYAgTtsOvP6BFAAAEEEEAAAQQQQAABBGIWIGjHDEpzCCCAQNoEuHQ8bRVlPHEJaEZ78uSGVcfjapN2EEAAAQTSIUDQTkcdGQUCCCBQMQGCdsVoadhzAe7R9ryAdB8BBBCooABBu4K4NI0AAggggAAC6RVg/YL01paRIYAAAm0VIGi3VZD3I4AAAikXIEykvMAMDwEEEEAAAQRiFyBox05KgwgggEC6BLh0vPl6vvTyy/bMM8/ahx99ZO3atbOlllzS1uvb17p2XSH7xk8+/dQeeOAB93zwoEE2xxxzZF+r5oPrJk1yp9tkk01sySWWqOapU3kuLh1PZVkZFAIIIBCLAEE7FkYaQQABBNIrsNuQPaxvn95WX1eX3kG2YmS//PKLjb/iCnv8iSebvFtBeuB229o2W2/tXnvt9dftjDPPco8v/vsFNuecczZ5TzV27L3vfqZ+H3bIwdZtjTWqccpUn4OgneryMjgEEECgTQIE7Tbx8WYEEEAAgVAFHn7kEZsw8So3/MUXW8w23GB9mz37J3vsicdt+vTP3az1MUcdaSt27WoE7VA/JYwbAQQQQCBUAYJ2qJVn3AgggECJApq165OZ0e7Tu3eJ7wjjsJGjT7D3P/jAll5qKTtx9Kjs5eA//vijHXzoYfb9rFm2af/+tusuOxcM2ppZrsQl5M21W+6Mtsby4+zZtsD884dR1FaMUmsY8G+jFXC8BQEEEEi5AEE75QVmeAgggEBbBbhHu6ngzz//bPvX1WdmsGfb9ttuY9ttu22jgy657DJ7MvP7ymusvrodfughjYK2QvnEq662t6ZNs4UWWsjW6tHDdh48yOaZZx7XxvMvvGhXXHmlzZt5ftopJzdq98ijj3HBd9iee1qP7t1s6ltv2bgL/u7uDT/myCNs4tVX2+uvv2HzZYJxfrtqKD9oz5r1g503bpy7v3yhBRe0EZnbAxZdtJM9+9xzphn7V197zX78cbatsPzy1m+9vtY/c283228CXDr+mwWPEEAAAQQaCxC0G3vwDAEEEEAgT2BsJohp4x7t32C++uorO/QvR7gdhx58sHXv1vh+ZwXxn376yQVg3Y+de+l4+/btbcaMGTbfvPO6WW81ss5aa2V8D3TtKeQqPOv188ee5/ZFfxxQX28KxyMyx66deU/UrmbGO3ToYF988UXRdtVGbtBebdVV7fzMef73wgtuxvrwQw+15ZdfzoXuUSec6Pqvy971BcDrb7zhntcfeICts/baUXeC/1tBWzPaI+rrmNUO/tMAAAIIINBYgKDd2INnCCCAAAIItCjw5Zdf2mFHHOmOK2VhsSgQ6w2rr7aa7bbrLtZ58cXtvvvvtxtuutm1c9YZp1vHjh3dbHK5QbuUdnVMFLT15cDTTz9tjzz2mJs5PzSzONrKK63k+vHkk5PtkvHjbZFFFrExfz3DXd7+r3vvszenTs2spt6HoO2U+AMBBBBAAIHmBQjazfvwKgIIIBC8gFYd1z2omrVjaxBoS9DOnRWe9cMPdtAhh2Yuz/7RDtx/P+vVs2erg3ZL7arnUdBedtll7d1337W5557bzY7nrkD+2fTppkvUtSl8r9mju62amf3W7PZcc83l9vNHg4BmsydnbhHg3wafCAQQQACBfAGCdr4IzxFAAAEEGglwj3YjDvfku++/t7oRB7nHfx42zPpmZnpztwf+/W975tnn3EJp+Yuh6XJwXRYebYcfeZS75Ht45r7rfv3WKxq0tciZ7gtXKM+/dFxttdSujomCth5r23D99W3PoXs0PMn586nMbPdV11zrLnGPdmu2feiQIS54R/tC/5t7tEP/BDB+BBBAoLgAQbu4Da8ggAACCGQENGunjZWVHUP2D92jrXu1e2buWa7L3Lucux0/arR98OGHGbPf2z577529l1rH5P+Odn7QfnHKS3bO3/7mfmv73LPHZFf81sJnp5x2ujtNoaDdUrt6YxS0115zTXdvtvbtlQnaG2QCd+6m+8u/++47e+/99+211163//z3v26FdS3eds5ZZ1ZktfTc8/vyWP82nsr83ztzxQf/PnypGv1EAAEEqiNA0K6OM2dBAAEEEEiZQLSyuC6n/tMOO9j6mdloBVSt1n3Lrf90o911551t0z/0Lytoa6G0EZnLybUN3mkn2+z/NrWZM2e6GWbNNGtra9DWfeVvvvmm/eOft7kF2/bfdx932bravuPOOzP/32VrZ75A2PfPe2uXffLpp3b0sce5x2ecdqottuii7jF/IIAAAggggEBhAYJ2YRf2IoAAAgj8KsCl44U/CprNPi4zc60QrE2BW5d3K2xrW6ZLFxt53LFuZjp3MbRSZp51SbJWA9emS7YVvttlVhb/IXPZuFY0jyNo677sCVdOtIcffbTRvdqaUT/3vPPcWFZdZRV3+bv6rxn6Tp062V8zQbsSv//tBuvZH5rRVq1YddyzwtFdBBBAoAoCBO0qIHMKBBBAwGcBLYbWt09vft6rQBG1cNi1117nQrFCtrZ27do5r0E77uh+J1v7yg3aWiRt/OVX2AuZsK1wrdC+19ChNubcc13ojito60uBcRdcYPrtbt03rp/46tp1BdPM+SOPPuZ+1kv3hC+Q+V3u1TO/Cb7dNlubFlJjaxDgHm0+CQgggAACxQQI2sVk2I8AAggggECJAgqjH3/yiZvpXaJz59hW51YQVuhW0K3FpnF99PHHblZbvwfO1liA9Qsae/AMAQQQQOA3AYL2bxY8QgABBBAoIECYKIDCLgQQQAABBBBAoBkBgnYzOLyEAAIIIJD5LeXVVncrKl898Uo4EEAgR4BLx3MweIgAAggg0EiAoN2IgycIIIAAAvkCY8eNc7vq6+ryX+I5AkELELSDLj+DRwABBJoVIGg3y8OLCCCAAAIIIIAAAggggAACCJQnQNAuz4ujEUAAgeAENGvXJ7PqeJ/evYMbOwNGoCUBrWHAv42WlHgdAQQQCE+AoB1ezRkxAgggUJYA92iXxcXBAQlw6XhAxWaoCCCAQJkCBO0ywTgcAQQQCE2AVcdDqzjjLVVAQVv/PkbU1zGrXSoaxyGAAAKBCBC0Ayk0w0QAAQQQQAABBBBAAAEEEKiOAEG7Os6cBQEEEPBWYLche7jZOs3asSGAwG8Cms2ePLlhRvu3vTxCAAEEEEDAjKDNpwABBBBAoFkB7tFulocXAxbgHu2Ai8/QEUAAgRYECNotAPEyAggggAACCCBQSEAz2k9l/u+dWZGflccLCbEPAQQQCFeAoB1u7Rk5AggggAACCCCAAAIIIIBABQQI2hVApUkEEEAgTQJcOp6majKWOAU0o63Lx1l1PE5V2kIAAQTSIUDQTkcdGQUCCCBQMQEthta3T2+rr2MxtIoh07CXAtyj7WXZ6DQCCCBQFQGCdlWYOQkCCCCAAAIIpE1AM9rauD87bZVlPAgggEDbBQjabTekBQQQQCDVAoSJVJeXwSGAAAIIIIBABQQI2hVApUkEEEAgTQLco52majKWOAW4dDxOTdpCAAEE0iVA0E5XPRkNAgggELvA2HHjXJvcox07LQ16LkDQ9ryAdB8BBBCooABBu4K4NI0AAggggAACCCCAAAIIIBCeAEE7vJozYgQQQKAsAc3a9cmsOs6CT2WxcXAgAlrDgH8bgRSbYSKAAAJlCBC0y8DiUAQQQCBEAe7RDrHqjLkUAS4dL0WJYxBAAIEwBQjaYdadUSOAAAIlC7DqeMlUHBiYgIK2/n2MqK9jVjuw2jNcBBBAoCUBgnZLQryOAAIIIIAAAggggAACCCCAQBkCBO0ysDgUAQQQCFFgtyF7uNk6zdqxIYDAbwKazZ48uWFG+7e9PEIAAQQQQMCMoM2nAAEEEECgWQHu0W6WhxcDFuAe7YCLz9ARQACBFgQI2i0A8TICCCCAAAIIIFBIQDPaT2X+792bVfkL+bAPAQQQCFmAoB1y9Rk7AggggAACCCCAAAIIIIBA7AIE7dhJaRABBBBIlwCXjqernowmPgHNaOvycVYdj8+UlhBAAIG0CBC001JJxoEAAghUSECLofXt09vq61gMrULENOupAPdoe1o4uo0AAghUQYCgXQVkToEAAggggAAC6RPQjLa2Ppl7tNkQQAABBBDIFSBo52rwGAEEEECgiQBhogkJOxBAAAEEEEAAgWYFCNrN8vAiAggggAD3aPMZQKCwAJeOF3ZhLwIIIIAAv6PNZwABBBBAoAWBsePGuSO4R7sFKF4OToCgHVzJGTACCCBQsgAz2iVTcSACCCCAAAIIIIAAAggggAACLQsQtFs24ggEEEAgaAHN2vXJrDrOgk9BfwwYfBEBrWHAv40iOOxGAAEEAhYgaAdcfIaOAAIIlCLAPdqlKHFMiAJcOh5i1RkzAgggUJoAQbs0J45CAAEEghVg1fFgS8/AWxBQ0Na/jxH1dcxqt2DFywgggEBoAgTt0CrOeBFAAAEEEEAAAQQQQAABBCoqQNCuKC+NI4AAAv4L7DZkDzdbp1k7NgQQ+E1As9mTJzfMaP+2l0cIIIAAAgjw8158BhBAAAEEWhDgHu0WgHg5WAHu0Q629AwcAQQQaFGAGe0WiTgAAQQQQAABBBBoKqAZ7acy//fuzar8TXXYgwACCIQtQNAOu/6MHgEEEEAAAQQQQAABBBBAIGYBgnbMoDSHAAIIpE2AS8fTVlHGE5eAZrR1+TirjsclSjsIIIBAegQI2umpJSNBAAEEKiKgxdD69ult9XUshlYRYBr1VoB7tL0tHR1HAAEEKi5A0K44MSdAAAEEEEAAgbQKaFa7T+YebTYEEEAAAQRyBQjauRo8RgABBBAoKBBdHlvwRXYiEKgAITvQwjNsBBBAoAQBgnYJSByCAAIIhCwQXR47InPpOL+lHfIngbHnCihk67YK/l3kqvAYAQQQQCASIGhHEvyNAAIIIFBUYOy4cdyjXVSHF0IUYCG0EKvOmBFAAIHSBQjapVtxJAIIIBC8AJeQB/8RACAjwCXjfAwQQAABBFoSIGi3JMTrCCCAAAJOgEtl+SAg0BCyuWScTwICCCCAQEsCBO2WhHgdAQQQQCAr4AJGfZ1bZVmz230yP/ulFZcVwidPzqy+/OtzvaYtuqc793n+sfnPc49VG7nP84/Nf557rM/vjRzzxxc9L+QajZf3NnwmK/VZULuqw9UTrxQ5GwIIIIAAAgUFCNoFWdiJAAIIINCcgIKGQrdCtgKHwsd5mfu4o4Wh9FoURnTMyqut7pp749VX3H7e29RKNtpkFblGzpFr5CxzHRM5894rs5+ryCqyiazi+gy6IvEHAggggAACLQgQtFsA4mUEEEAAgcICCoHaFPj0+KnM/70zjws912Jq2uozK5dry33OexvsCtlEVpHrRRdfbBdefIntt8+fbd999sm6l/LeYs6hvDf3Mxe56m+Nv5hN5K7XtemzzYYAAggggEApAgTtUpQ4BgEEEEAAgQQIPPvcczbi4ENs2J5Dba8990xAj+gCAggggAACCBQSIGgXUmEfAggggAACCRQgaCewKHQJAQQQQACBAgIE7QIo7EIAAQQQQCCJAgTtJFaFPiGAAAIIINBUgKDd1IQ9CCCAAAIIJFKAoJ3IstApBBBAAAEEmggQtJuQsAMBBBBAAIFkChC0k1mREg70AABAAElEQVQXeoUAAggggEC+AEE7X4TnCCCAAAIIJFSAoJ3QwtAtBBBAAAEE8gQI2nkgPEUAAQQQQCCpAgTtpFaGfiGAAAIIINBYgKDd2INnCCCAAAIIJFaAoJ3Y0tAxBBBAAAEEGgkQtBtx8AQBBBBAAIHkChC0k1sbeoYAAggggECuAEE7V4PHCCCAAAIIJFiAoJ3g4tA1BBBAAAEEcgQI2jkYPEQAAQQQQCDJAgTtJFeHviGAAAIIIPCbAEH7NwseIYAAAgggkGgBgnaiy0PnEEAAAQQQyAoQtLMUPEAAAQQQQCDZAgTtZNeH3iGAAAIIIBAJELQjCf5GAAEEEEAg4QIE7YQXiO4hgAACCCDwqwBBm48CAggggAACnggQtD0pFN1EAAEEEAhegKAd/EcAAAQQQAABXwQI2r5Uin4igAACCIQuQNAO/RPA+BFAAAEEvBEgaHtTKjqKAAIIIBC4AEE78A8Aw0cAAQQQ8EeAoO1PregpAggggEDYAgTtsOvP6BFAAAEEPBIgaHtULLqKAAIIIBC0AEE76PIzeAQQQAABnwQI2j5Vi74igAACCIQsQNAOufqMHQEEEEDAKwGCtlflorMIIIAAAgELELQDLj5DRwABBBDwS4Cg7Ve96C0CCCCAQLgCBO1wa8/IEUAAAQQ8EyBoe1YwuosAAgggEKwAQTvY0jNwBBBAAAHfBAjavlWM/iKAAAIIhCpA0A618owbAQQQQMA7AYK2dyWjwwgggAACgQoQtAMtPMNGAAEEEPBPgKDtX83oMQIIIIBAmAIE7TDrnohRfzvjO9ePH3+cnYj+0AkEEEAg6QJTprxoRx97jO2+2242aKfBSe8u/UMAAQQSI9C+/fw2z9xzJaY/dCT9AgTt9Nc4cSNUwJ45syFkJ65zdAgBBBBIsMCUKVNs5OiRmZA9yAYPImgnuFR0DQEEEiqgwN1+gfkT2ju6lSYBgnaaqunBWAjZHhSJLiKAQGIFCNqJLQ0dQwABjwQI2x4Vy+OuErQ9Lp5vXf8hc4n4l19+7Vu36S8CCCCQGAGCdmJKQUcQQMBzAcK25wX0oPsEbQ+KlJYufpEJ2dyPnZZqMg4EEKiFAEG7FuqcEwEE0irQefFOaR0a40qAAEE7AUUIoQvMZodQZcaIAAKVFiBoV1qY9hFAICQBZrVDqnb1x0rQrr55kGckaAdZdgaNAAIxCxC0YwalOQQQCFqAoB10+Ss+eIJ2xYk5gQRmZFYZn/Hrz3khggACCCDQOgGCduvceBcCCCBQSGDuzM99deywcKGX2IdAmwUI2m0mpIFSBAjapShxDAIIINC8AEG7eR9eRQABBMoRIGiXo8Wx5QoQtMsV4/hWCRC0W8XGmxBAAIFGAgTtRhw8QQABBNokQNBuEx9vbkGAoN0CEC/HI0DQjseRVhBAIGwBgnbY9Wf0CCAQrwBBO15PWmssQNBu7MGzCgkQtCsES7MIIBCUAEE7qHIzWAQQqLAAQbvCwIE3T9AO/ANQreETtKslzXkQQCBtAiNHj7Tu3brb4EGDLT9o6/mkGybZiaNPTNuwGQ8CCCBQcQGCdsWJgz4BQTvo8ldv8ATt6llzJgQQSI9AFKw1okE7DbIe3XuYgnfuY72moN29e3c9ZEMAAQQQKFGAoF0iFIe1SoCg3So23lSuAEG7XDGORwABBBoEcsO2wrSeR3/rCIVuzXazIYAAAgiUJ0DQLs+Lo8sTIGiX58XRrRQgaLcSjrchgAACGYHcsJ0LQsjO1eAxAgggUJ4AQbs8L44uT4CgXZ4XR7dSgKDdSjjehgACCPwqkB+2Cdl8NBBAAIG2CRC02+bHu5sXIGg378OrMQkQtGOCpBkEEAhaIArbhOygPwYMHgEEYhIgaMcESTMFBQjaBVnYGbcAQTtuUdpDoPYCl42/zHXi2WefrX1nAurBi1NedIuiBTTkRAy1Z8+epv979eyViP7QCQQQaLsAQbvthrRQXICgXdyGV2IUIGjHiElTCNRYQAE7Ctk17gqnR6DqAgraw4YNI3BXXZ4TIhC/AEE7flNa/E2AoP2bBY8qKEDQriAuTSNQJYFnnn3G6urrsmcbPmw4YSOrwYO0C+jzr6s39Lc2ff71PxsCCPgrQND2t3Y+9Jyg7UOVUtBHgnYKisgQghbIDdkEjKA/CsEPPveKDv4tBP9xAMBzAYK25wVMePcJ2gkvUFq6R9BOSyUZR6gCmslW2CZYhPoJYNy5Arlh+/FHH899KdjH3377rc2cObPF8S+66KI255xztnhcmg+YMWOG6f+5557bOnbsmOahJn5sBO3El8jrDhK0vS6fP50naPtTK3qKQL5ANJute1PHjR2X/zLPEQhSIArbfPnUUP7bb7/dHnvisRY/C3857C/WqVOnFo9L8wEPPPCA3Xv/vbb8csvbfvvul5qhfvjhh/bDDz9Yh44dbJGFF/FiXARtL8rkbScJ2t6Wzq+OE7T9qhe9RSBXIJrNVshmxeVcGR6HLtBvg36OgFlts0svu9TuuPOO7Efi008/tZ9//tkWXHBBa9++fXb/3y/4uy25xJLZ5yE+uPyKy+2SSy+xHj162MUXXpwaglNOPcXeffdd22GHHWzA5gO8GBdB24syedtJgra3pfOr4wRtv+pFbxHIFSBM5GrwGIHfBKIvoQjaZi+8+IK99dZbWZyx48a6y6M33mhjW2+99bL7N/3Dptng/csvv9iPP/5o88wzT/b15h7o+DnmmKPRIYX2NTrg1yc//fST6di55pqr0MuN9s2aNcvmnXfeRvvKfaJx6XyFxtaaoK0+qe8tXXY/e/ZsZ9TScdF41E+1m+8avZ7/d3Peew3fy1599VU7YP8DbPfdds9/ayKfE7QTWZbUdIqgnZpSJnsgBO1k14feIdCcgII2l403J8RroQpEl49ztUfTT8C2229r06dPt/3329+G7D6k0QFfffWVvf7G6/b555/bN998Y507d7Yll1zSVll5lexx096e5oK77mFefLHF7c0337Tvvv/OFu20qK255poWtaH36zLlbt262SKLNFyurNd0y4vCY5/efex/z//PPvvsM1PY1rlWXWVV073iuZvuL3/llVfsiy+/sC+++MLdO92xQ0dbffXVbYEFFsge+tz/nnOvd12hq7sn/eNPPrYllljCuq3RzR2jfk+bNs0doxl9nWfllVa2ZZZZJttGqUFboVnB9aOPPnJW8843ry222GK2xuprNLm3W+OT6SeffOKCs8x6rNnDJk+e7M677rrr2sILLeweKyzr2I8//th05cGC7Rd0/VxllVVs4YUbjtGBDz70oPuyYJ2117EPPvjAPv3sU/fFiGqw2mqruS9MNMaHHn7ItXv+Bee747YYsIVtuOGG7kuG9fut715L6h8E7aRWJh39Imino46JHwVBO/ElooMIFBUgaBel4YXABQjaxT8AxYK2QvCNN91o991/n+meXoVhBVkF2qF7DLW11lzLNXrV1VfZFROusOWWXc5WXHFFe+rpp1x4VWAdPGiwTZ061R57/DEXFhUqt9lmG/d+zc5qdv2QQw+xdnO0s7322sud78svv7Tvv//elui8hG266aa2y867ZO8V//rrr91l73feeae99/57LpBrRniZLsvYVlttZVtvtXU2gB5+xOH23HPPWb/1+rnw/uprr9rmm21uRx5xpL322mt25cQrXV/Vj9k/zrZfMv9tuMGGtu8++7pArsGVGrQVdK+bdJ1rV5ffuy8VMl8mqD9Dhgyx+eeb31kpZF9z7TX24IMPmoL//PPPb506drKBAwfa+MvHu2POH3u+C8d6oi8hrrrqKlPf9QWDgvfSSy/txvGnP/7JFlpoIfeezbfY3F3+L6v//Oc/9vY7b7urFFQTeQ/cfqC1a9fOVGttWuBNX2boagD936FDB7vumuvca0n9g6Cd1Mqko18E7XTUMfGjIGgnvkR0EIGiAgTtojS8ELgAQbv4B6BY0L7hxhvsgr9f4IJgv379XIDVbPXDjzxsa6+1tp1+2uluZjoKowri/Tfpb8suu6z995n/2osvvuhmZrss08V+t+7v3Izs3ffc7WZPr7ziSltuueVMs84HHHiA65wCpML7Ukst5e4ffnLyky5w6/LmnQfv7I655ZZb7Py/n29zzTmX/e73v7MuS3dxM7NP/+dp06yyjv3jDn90x9aPqHf9mHuuuW2dddaxpZZeyjTjq1nciVdNtKuvudpWXnll00yuFga786473XlH1I/Ini8aW3P3aOu8o08YbY8/8bgb/xprrOGCvfwUZs/723nZLyUmXDnB3SOv++E1g9+lSxf3JcbzLzzvxqGOX3bJZaY2NCt99NFH20svv2QbbbiRrbjSivbN19+4Ly30JcjBBx1s227TEJw32GgDF7QXX3xx6969uy27zLKuvQf+/YC79/6cMee48H7RxRc5G41VVyn0XKenO15foOw5dE/3WlL/IGgntTLp6BdBOx11TPwoCNqJLxEdRKCoAEG7KA0vBC5A0C7+ASgUtDVzutuQ3dyl1ZtsvIlbNEszn+++866dfe7Z9t1339mYs8bYen3Xy8766lLm8ZeNt6WXWtrNgo8cNdKd9Lhjj3PhVjPVu+y2i5vtPemEk9xsdW7Q1uy3Zn81w6vLqs8bd55p1e+VVlrJJk6Y6GZzh+411N544w23gJdmnnUZuy7XvvjSi+3uu+92xyrEK/RHQVsrho8aOcoFe92HrRlsXaKu2W4t9qZZeG0Tr55o9913n62//vp25hlnun2lBu0nn3zStSkPzTLrMu1RJ4yyd955x+oPrLdddtnF7dt5153tvffeczPd6r8uL//8i89t4sSJNun6Se6cUdC+//777fhRx7vLvg8ecbD7AkNfCNx484328MMPu0vgL73kUveeKGj//ne/tyOOOMJ9ASGXA+sPdEFe59JVCNHGPdqRBH8j0CBA0OaTUBUBgnZVmDkJAhURIGhXhJVGUyBA0C5exEJBWzOm2w3czt3nq6Cbez+w7o9W0B621zDbe/je2aCt+7YnXDHBnUgz30OGNtzvfcP1N7jgpxcG7TzIBc3DDzvczTznBm29N/feb82cH3X0UW4G/PZ/3u5mh6M+nT3mbOvbp292ULq/+ZDDDnG/d33rP261Dot0yAbt7bbdzo468qjssXrw4pQXXYjXpdzRb4p/+NGH7l7zNXusaRdd2DDzW0rQVqhW8NWsuu4ZVxjWpsu9de+7Aq6Crr5okLVmuc85+xw3o+0O1LGZ+7sVfrVFQVuL1F173bXucn3dZx1tX335lU19a6q77Py2W29zr0dB+5CDD7GddtwpOtT5yVGXjx9z1DHZ/QTtLAUPEHACBG0+CFURIGhXhZmTIFARAYJ2RVhpNAUCBO3iRSwUtHUv9DbbbeMux9ZiWbrEObv9knmUWVC8R/ce9of+f8gG7dzLqxUEdx/SsJq1wmC0oNngXQa7y7MLBe0rLr/CLX4Wneehhx6yo4892gXtO267wwVU9VWrb5915lnu3uvo2CeeeMIO+8thLmjrfPpiIJrR3mPIHo1+A1v3f//liL+4+58Vqpdffnl3//Irr77iAm/uOEoJ2pphHzV6lLsveoP1N3C/TT1HBujRxx51QTs6/9fffG3bbb+dC+KnnHyKu8w86r/uxdbK+NqioD3u/HHufm4t9DZgiwHRoZa5lbxhy9Rg+F7D3Yx3FLTHnJm5yiBn5fiTTjnJ7rrrLndFwcjjG64w0JsJ2r8a8hcCvwoQtPkoVEWAoF0VZk6CQEUECNoVYaXRFAgQtIsXsVDQ1qXju++xu5vh3XKLLd3MtRbumjFzhl133XVu5nmjjTZyi2gVCqOtCdqDBw+2vYft7YKjZn/PGnOW6R5jrQQezZTvudeebhVuLWqme6k7derk7jU+b+x59q97/+XuuZ5w+YRGl45HQTcSeHPqm7bH0D3cUwV2rUqu8Y4+cbS98MILbmyXj7/che9CY4vaif6+6aabbMw5Y0z3R2umXSuDq/8HH3qwW3FdM8yaadY59hyW6f/rr1vfvn1tn733cZe6T5s2zSZMnOBm2NVmFLTvfyBz6fjI4117J510kq226mpuwbannnrKfSGwySabuC87tMhZFLTPPftc6927d9Q1aylo77XnXvbnvf+cPT7JD7hHO8nV8b9vBG3/a+jFCAjaXpSJTiJQUICgXZCFnQgYQbv4h6BQ0NbRN918k+nyZa2ivW6vdd2s9rvvvutW6l59tdXdYmhaRKtQGG1N0Nb9yvo5MK0grp/e0j3UWh277sC67OJkt/zjFlOonneeeW2ttdZyP8Wle56ff/55m/XDLBe+dxi4gxtssRntTz79xHbcaUc3W6+F0zSjrUvddZ+1XtN4B2w+wDTrXmhs+ZK6j/y4kce5Rcd0n7m+kNBCcFoQTquPa2GyQYMGmVYJ1yJkY84e40K3gvPinRe36Z9Nd/dRf/TxR67pKGjrsvMjjjrCXn75ZbeImy4f12y+LnvXz30devChttlmm7n3lBu0daWArhjQ/em6r3ulFVdyl5fnjy1JzwnaSapG+vpC0E5fTRM5IoJ2IstCpxAoSYCgXRITBwUoQNAuXvRiQVv3af/ztn/arbfemv0pKt2brZW6h+w2xDbeeGPTT2sVCqOtCdq6j1kLgilMKmDrt7Z1f7VmurVAmjZd0n7Pv+4xreit34vW4ma6J1orlu/4px1twIAB7re6dWyxoK17qvXTXlp1XI+1AvjPP/1sw4cPdyuq6+exNEv84AMPFhyb2s7d5DT2/LF2zz33uJCuxdbUd63iffnll7tLyjXLrJW/Na677r7L7r33XtPMus6vkLv99tvbqaed6pqNgrZmwKdMmWKXjr/UzbTruY6fe+653WJqCvVaoV1buUH70UcftYsuucj99JoWudOq8iefeLJrK6l/ELSTWpl09IugnY46Jn4UBO3El4gOIlBUgKBdlIYXAhcgaBf/AGjmWOFWv3sdBbfoaM3IauXs6Z9Pd/cbL7HEErbYootZ165dXeDTcQq877//vrVfsL1bCVv7FMg1q6tNP62lcKhNl2brHmnNInfu3LnRz3vdefudbpGv99973+aca063gJp+Aqxjx47uvdEfWrxsWuZy6y+/+tLN7Kod3cesNjUbHW2651o/h6UxaWy5mwL7G2++4WaSFbL1E2RrrL6GW+1cP6v1y8+/2O9///uCY8ttJ3qsFb7ffvtt++DDD6z9Au3dCuH6QkL3b38741tbaMGF3O+P63j1X2a6Z1vhWfeT67LzrbbeyjUXBW090etqVz/FJeN55p3HOi/e2bWvKwCiTQux6d7tVVdd1YX8aL++8NCMue6Rj1ZX12uqj35rWz7a9Dvaq6yyinuc1D8I2kmtTDr6RdBORx0TPwqCduJLRAcRKCpA0C5KwwuBCxC02/YB0ErZmjnW7Kdme+Paclcdf/jBh90MuS4B189z6fLw5jbN7s6aNatNfdL7f8n8p3PpnG3ZFIr1JYJmtKMvFgq1N+WlKe7e7dzXdEn+3877m9ulnydTSM/fvp/1vbWbo52bxc9/LYTnBO0Qqly7MRK0a2cf1JkJ2kGVm8GmTICgnbKCMpzYBAjasVHG2lB+0FZITfumFcqff+H5RsP8YdYP9sWXX7iZ7euvu959edDoAJ5kvryYK3PlwsJIIFARAYJ2RVhpNF+AoJ0vwnME/BEgaPtTK3paXQGCdnW9Sz2bLku/9LJL3eGjRo5yM9qlvtfX4yZcOcEtvpbff10K3r9/f9NPjrE1FSBoNzVhT3wCBO34LGmpGQGCdjM4vIRAwgUI2gkvEN2rmQBBu2b0zZ5Yl6TP/G6mO0b3MYew6f7o2T/NbjLUOdvNafPNN1+sl+Y3OYnHOwjaHhfPg64TtD0oUhq6SNBOQxUZQ6gCBO1QK8+4WxIgaLckxOsIJFuAoJ3s+vjeO4K27xX0pP8EbU8KRTcRKCBA0C6Awi4EMgIEbT4GCPgtQND2u35J7z1BO+kVSkn/CNopKSTDCFKAoB1k2Rl0CQIE7RKQOASBBAsQtBNcnBR0jaCdgiL6MASCtg9Voo8IFBYgaBd2YS8CBG0+Awj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgKAdZNkZdAkCBO0SkDgEgQQLELQTXJwUdI2gnYIi+jAEgrYPVaKPCBQWIGgXdmEvAgRtPgMI+C1A0Pa7fknvPUE76RVKSf8I2ikpJMMIUoCgHWTZGXQJAgTtEpA4BIEECxC0E1ycFHSNoJ2CIvowBIK2D1WijwgUFiBoF3ZhLwIEbT4DCPgtQND2u35J7z1BO+kVSkn/CNopKSTDCFKAoB1k2Rl0CQIE7RKQOASBBAsQtBNcnBR0jaCdgiL6MASCtg9Voo8IFBYgaBd2YS8CBG0+Awj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgKAdZNkZdAkCBO0SkDgEgQQLELQTXJwUdI2gnYIi+jAEgrYPVaKPCBQWIGgXdmEvAgRtPgMI+C1A0Pa7fknvPUE76RVKSf8I2ikpJMMIUoCgHWTZGXQJAgTtEpA4BIEECxC0E1ycFHSNoJ2CIvowBIK2D1WijwgUFiBoF3ZhLwIEbT4DCPgtQND2u35J7z1BO+kVSkn/CNopKSTDCFKAoB1k2Rl0CQIE7RKQOASBBAsQtBNcnBR0jaCdgiL6MASCtg9Voo8IFBYgaBd2YS8CBG0+Awj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgKAdZNkZdAkCBO0SkDgEgQQLELQTXJwUdI2gnYIi+jAEgrYPVaKPCBQWIGgXdmEvAgRtPgMI+C1A0Pa7fknvPUE76RVKSf8I2ikpJMMIUoCgHWTZGXQJAgTtEpA4BIEECxC0E1ycFHSNoJ2CIvowBIK2D1WijwgUFiBoF3ZhLwIEbT4DCPgtQND2u35J7z1BO+kVSkn/CNopKSTDCFKAoB1k2Rl0CQIE7RKQOASBBAsQtBNcnBR0jaCdgiL6MASCtg9Voo8IFBYgaBd2YS8CBG0+Awj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgKAdZNkZdAkCBO0SkDgEgQQLELQTXJwUdI2gnYIi+jAEgrYPVaKPCBQWIGgXdmEvAgRtPgMI+C1A0Pa7fknvPUE76RVKSf8I2ikpJMMIUoCgHWTZGXQJAgTtEpA4BIEECxC0E1ycFHSNoJ2CIvowBIK2D1WijwgUFiBoF3ZhLwIEbT4DCPgtQND2u35J7z1BO+kVSkn/CNopKSTDCFKAoB1k2Rl0CQIE7RKQOASBBAsQtBNcnBR0jaCdgiL6MASCtg9Voo8IFBYgaBd2YS8CBG0+Awj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgKAdZNkZdAkCBO0SkDgEgQQLELQTXJwUdI2gnYIi+jAEgrYPVaKPCBQWIGgXdmEvAgRtPgMI+C1A0Pa7fknvPUE76RVKSf8I2ikpJMMIUoCgHWTZGXQJAgTtEpA4BIEECxC0E1ycFHSNoJ2CIvowBIK2D1WijwgUFiglaH/++ed2+x232+uvv26fffaZrdB1BevRvYdtucWW1q5du8INszcWgQcfetCee+65om316dPH1uu7XtHXfX/hl19+sfPGnmeffPKJjagfYUsssUTVhkTQrho1J0KgIgIE7Yqw0uivAgRtPgpVESBoV4WZkyBQEYGWgvZrr71mRxx5hH3y6SdNzr/eeuvZiaNPtPbt22dfe/mVl+2qq66yeeed10YePzK7v9wHd911lz362KO2+uqr25Ddh5T79kQff/4F59sHH3xgW265pW2w/gbN9vVv5/3NJl0/qegxew7d0/b58z5FXy/2Qlx1KtZ+ufuLmbz08ku295/3ds1pnBpvtTaCdrWkOQ8ClREgaFfGlVYbBAjafBKqIkDQrgozJ0GgIgItBe2DDznYnnr6KTeTuMPAHWyF5VcwF9Kuvsp++uknF3xyg94jjz5iRx51pM0///x2/733t7rPUcDst14/O+vMs1rdThLfuOewPU1fYNQdWGe77rJrs12MHDos0sH69+/f5Fh92dFSWG/ypsyOuOpUqO3W7Ctm8sMPP9h+++9nn372qZ1x+hnWbY1urWm+Ve8haLeKjTchkBgBgnZiSpHKjhC0U1nW5A2KoJ28mtAjBEoVaC5oK+RsvsXmpr+PO+Y422qrrbLNjjt/nF1z7TXWo0cPu/jCi7P7Sw1wX331lf2S+U8BstAWBcyWgvZ3331nurx4gQUWKNRMo306Ttscc8zRaP/PP//c4iXwX371pS244II215xzNXpvsSfNtVksVBZqK3JYbbXV7PLLLi90SKv2lVqn5hpvqYa579XtB4sssojNOeecubuzj1syac5zxowZrqalfAZ0wubaynYo84CgnavBYwT8EyBo+1czn3pM0PapWh73laDtcfHoevACzQVtBdOtttnKFKh2Hryzu0c2Anv8icftwosutLnnntsuu+Qym3DlBLvxphtt1qxZ9u2337rg06lTJ3e4Zm4HbD7ABeLrb7jeBfRPP/3UvbbYYovZvvvsa1tvtbV7ftjhh9lrr79mCk/ff/+9a3/hhRd2r13094ts6aWXdo/vvuduu+HGG+z11153z1dbfTXbedDOtummm7rn+uPY446151943nbbdTf76KOPTO9RyP5D/z/YoYccaldMuMJuu+02++bbb2zdXuva8ccdbwsttFD2/QpkF19ysek+6XfeeccWmH8BW2vtteyA/Q6wlVdeOXvctttv6x6fcvIpdvfdd9tjjz9mM2fOtJ7r9LQRI0bYMl2WsR9//NH+uOMf3XFfffmVzf5ptvtyQDP/cppw+YRse7kPSgnacqqrr7OPP/nY+vbpa8cec2y2CYXFf9z6D3euC8Zd4O61b6lO1026zq6+5mpbZ+117Hfr/s4mXj3RfclwxfgrSqphdHJ9CXLu3851V0R8/PHHrparrrqqHTziYOvevXvJJpHvSSecZOuss07UvF2Vuarinn/dY2+99Zbbt+KKK9oWA7ZodJXAlClT7KhjjrI5281pF190sZ1x5hn2/PPPOw99iXPwQQe72xyyjeY8IGjnYPAQAQ8FCNoeFs2jLhO0PSqWz10laPtcPfoeukBzQVs2J596st15552OSeFy/X7rW79+/ax7t+6NZoEVSK+97lp3Ofns2bPd8bpPW9vhhx3ugrTC+EUXX+T2KXDN+HaGvf/B++752WedbX379rUD6w+0l156yX6a/ZMLo1psTWFe28QrJ7rQqv6cctopDTPZmfBrmQlqBVvNlp504km2ycabuOPrRtTZM888k51FnW+++VyA14srrLCCTZs2zRTiv/76a3d879697dyzz3WP9SXDaaef5oKpdnTo0MG+/eZb16eOHTvahX+/0JZdZll37Pobru/60rlzZ7dol2ZW1R9t+mLg0ksudSF9wJYD3D5dIaD21d+55prLFlt0Mbvh+hvca/l/REFbbe8xZI/8l02X8+vLAy2YpvHqywEZbPqHTU0hc78D9nM1GTVylPuyo5Q6jb98vF162aWub2pP/+vLgusnXe++UGmphuqkvmw59PBD7cUXX3R9lvPMGTOdn+p55hlnutBciknk+7dz/2a//93vnd3Z55xtN918k2tb7ckz+twN2mmQHTTioKzLAXUHuMeLL7a4W2tAX5jM/K6hPrrs/q9n/NW1k/8HQTtfhOcI+CVA0ParXr71lqDtW8U87S9B29PC0W0EMgItBW2Fl7PGnGW33X6bCzMRmmZhdX/xLjvv4kJMtL+5S5I1A6l2/vTHP5nCkDbNOv/7wX+7hcGOP/b4qBmLAmb+peO6L3yzAZu52W4tjKX/FTQVDCdeNdEF4jtvb/hiIAraiy++uF1y8SXWqWMn04z50/952p3ntFNOs4033tgtNqbzKbDd96/73N+aCde9wWr7zL+e6Vb2ViAfOWqke3//TfqbZrC1RUFQ59GsuGbHFXzrD6p3IVWLwmmmNdpaukw6Ok5/Rw65+3IfP/rwo9kvPGSgkKxLtC+9+FI79LBD7d333nWrw6tfuVtzdYqCto4fPGiwDdx+oOnKAy16V2oN9aXL2HFj3czxX0//q/Xq1cs0wz1q9Ci3yN2aPda0iy5s+NJF52nOJPKNgvYrr75iw4YP09tc/dVHbZqJ15c52nSFwCqrrOLqoKCtrWfPnvaXw/5iyyyzjPtS6O8X/t3t/8ct/7DOi3d2j3P/IGjnavAYAf8ECNr+1cynHhO0faqWx30laHtcPLoevEBLQTsC0s966RLqJ554wp7733MuNOk1/cRXbohrLsDp+C+++MItBKbFrbQ9/fTTdu9997rZTV3aHG1RwMwP2tEq1Jrp3mvPvbKz3QpxUcjSzKtmYKOgraB4xF+OcE1rBW+1rS8Kbrv1NhektQL4joN2dK9H79Wl01oJWzPJf9yh4ZJvHTB16lT7173/MoXqW2+51b0nCoKDBw+2g+oPcvv0xwEHHuCsdtpxJzvk4EOy+5sLldmDfn0QOWiWfI3V18h/2RQ+o59Y05cQOucLL77gZsv1vMvSXWzCFRNc4M19c3N1ioK2ZvH/+Y9/upnt3PeWUkOtVK9V4/VFTH1dffbtb7/9tl058Urr1q2bC/DRPdvNmUS+UdCOQryuLFD/ojZ0Of52221nup9eM9oK4PrCIwraZ5x2hm244YauL/q8bLn1lm79gVNPOTV7FUS2o5kHBO1cDR4j4J8AQdu/mvnUY4K2T9XyuK8EbY+LR9eDF2guaGtW966777L55p3PBZcIS5c+azZQoVWLg915x53uHl693lyA06W+Co7RJb5Re/pb9wNfcH7LQVsz4rqku7nt5JNOdvdhR0F76B5D3X3geo/u6z7n3HOsa9eudvXEq10z+o3mgX8c6B5Pum6SuyT8xJNOdPd0u51F/tDMucJoFAR1CXLuCuBRG1pETovJRVtzoTI6Jvo7CtqlLoYWzcRH78+fTY/2N1enKGivteZa7hL56D36u9QaDtxhoLtMO38Rvdy2ch83ZxL5RkH7hBNPcPdmb77Z5jZ61OjcZuz4kcfb/Q/cn71CIjdo62qF3AXToj7qSgr91Fr+RtDOF+E5An4JELT9qpdvvSVo+1YxT/tL0Pa0cHQbgYxAc0FbM6P77revc4ouxY3QdG/1ToN2ck91CbAuBdZWLMDpsmstrKb7fQcOHGh9e/e1dnO2c4Hp/vvvLzloR31SwD/rrLNsoQUXcufVH7pPV5d6675oXT7dlqAd3U++3HLL2ajjR2XPkftA95lrNjU/CEbHVDtoy1aXqz/77LNRF0z912rlWnQtdytWJx1TLGiXU8NDDjvEJk+e7H4Dff/99s+eWlcPaDG2tdda2zbYYIPsbHQ5QVsz4lqIT1cb3HLTLa7mOoH7bGW+MNHVFwcecKBbBC83aD/80MONVo0naGfLwgMEUilA0E5lWRMzKIJ2YkqR7o4QtNNdX0aXboHmgrYuxd1yqy3dAmIbbrCh1dfXu0uydemwZrRvv+N2t8jX3Xfdnb28OApwut9ZM766r1dbFHgUhO+47Q43E6xLm3fZdRd77/33bKUVV3KXOEeXQUczuVqdWj8fpvdp02z4pptt6las1mriWrFcC4rpcvZTTz3Vhg4dalttuZU7vi1BO+qvznn6qafbRhtt5IK8Lil/5JFHbP/993dfDuj11gbtIbsPsdwQqrbyt8hBM/C6pzx/k++iiy7qdkdfDmifFms7/C+Hm1b73nabbe3oo45u9NZiddJBxYJ2ZFJKDaMwrBn/cWPH2YpdV3QLxJ3x1zPcrQLLLrusXXv1tdnL3qOgXcgk31cLrO2z3z5uPFo9fvvttnePb77lZnfFhJ5oJfw11lgj+7nTPoK2FNgQCEeAoB1OrWsxUoJ2LdQDPCdBO8CiM+TUCDQXtDXISZMm2XnjzssuhKZQp99E1uyxttzLsvVcP6P1p53+5F7Xb2Qv0H4BG3PmGFtyySVNK0zrsnOt1q3ZYC1KphlhBXdtOubmG292j3XJ+kknn+Qea+ZSgU0/L6VNi16dN/Y891irWet+a60grm2z/9vMThh9gnvclqCtLxl0GfJDDz3k2urSpYtbgG369Onuue751r3f2vKDoNuZ+aPYjPapp53qvqTQ2JdYYgnTaudHHN5wD3n03ujvKGhHz/P/ji5L1wrj+x+wv1vVW6Fa4fo///2PHXTwQa4W0eX00fuL1Wn55ZcvGrT1022l1lBOml1XXfTliWbWNZut+uu5aqSV0aOtOZN8X31Bo0XVHvj3A+7tunpBn8do9Xj9xNvokaPdZyv6ckAHErQjbf5GIAwBgnYYda7VKAnatZIP7LwE7cAKznBTJdBS0NZgtSr4JZde4n5LWpfnatPl2bvvtns2bLqdv/6hGVFdHvzll1+6PRMnTLSVVlrJ/Z7y6BNGZ/drpecxY8a4+371k10///SzC0N6k34b+vQzTncLsCmc6fet77nrnl/PYKbf49Y94h9++KHbp58S06JlB+x/QPZy5LYEbTWqQHfmWWe6PkQhToFfi3tpEbhoyw+C0f5iQXvqW1NNP0+lS7wVELXyeaHZarVTStA+5KBDbOheQ12QXa/vejbmrDFRF9yK8ZrpXXDBBU11ULCPtmJ1Kjajrfc99fRTVmoNtSjZySefbM88+4yrp96vL1MOO/Qw9zNxeh5tzZkU8tXnUKuaa2G66IsafeGi32vXZePRlREE7UiYvxEIT4CgHV7NqzlignY1tQM+F0E74OIzdO8FSgna0SD128PvvPOOW8lawbc1m4Lle++950KsLh+OVoxuTVt6jxYymzFjhpsxbWtbxfqgPr817S1rv0D7RkG12PFp319uDXV1wLS3prlL3LVSeNxb9FvsWmE9zo3F0OLUpC0Eqi9A0K6+eUhnJGiHVO0ajpWgXUN8To1AGwXKCdptPBVvR8ArAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKELSriM2pvBIgaHtVLjqLQBMBgnYTEnbEKEDQjhGTpooLELSL2/AKAkkXIGgnvUL0r1YCBO1ayXNeBOIRIGjH40grhQUI2oVd2BuzAEE7ZlCaQ6CKAgTtKmJzKq8ECNpelYvOItBEgKDdhIQdMQoQtGPEpKniAgTt4ja8gkDSBQjaSa8Q/auVAEG7VvKcF4F4BAja8TjSSmEBgnZhF/bGLEDQjhmU5hCoogBBu4rYnMorAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKELSriM2pvBIgaHtVLjqLQBMBgnYTEnbEKEDQjhGTpooLELSL2/AKAkkXIGgnvUL0r1YCBO1ayXNeBOIRIGjH40grhQUI2oVd2BuzAEE7ZlCaQ6CKAgTtKmJzKq8ECNpelYvOItBEgKDdhIQdMQoQtGPEpKniAgTt4ja8gkDSBQjaSa8Q/auVAEG7VvKcF4F4BAja8TjSSmEBgnZhF/bGLEDQjhmU5hCoogBBu4rYnMorAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKELSriM2pvBIgaHtVLjqLQBMBgnYTEnbEKEDQjhGTpooLELSL2/AKAkkXIGgnvUL0r1YCBO1ayXNeBOIRIGjH40grhQUI2oVd2BuzAEE7ZlCaQ6CKAgTtKmJzKq8ECNpelYvOItBEgKDdhIQdMQoQtGPEpKniAgTt4ja8gkDSBQjaSa8Q/auVAEG7VvKcF4F4BAja8TjSSmEBgnZhF/bGLEDQjhmU5hCoogBBu4rYnMorAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKELSriM2pvBIgaHtVLjqLQBMBgnYTEnbEKEDQjhGTpooLELSL2/AKAkkXIGgnvUL0r1YCBO1ayXNeBOIRIGjH40grhQUI2oVd2BuzAEE7ZlCaQ6CKAgTtKmJzKq8ECNpelYvOItBEgKDdhIQdMQoQtGPEpKniAgTt4ja8gkDSBQjaSa8Q/auVAEG7VvKcF4F4BAja8TjSSmEBgnZhF/bGLEDQjhmU5hCoogBBu4rYnMorAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKELSriM2pvBIgaHtVLjqLQBMBgnYTEnbEKEDQjhGTpooLELSL2/AKAkkXIGgnvUL0r1YCBO1ayXNeBOIRIGjH40grhQUI2oVd2BuzAEE7ZlCaQ6CKAgTtKmJzKq8ECNpelYvOItBEgKDdhIQdMQoQtGPEpKniAgTt4ja8gkDSBQjaSa8Q/auVAEG7VvKcF4F4BAja8TjSSmEBgnZhF/bGLEDQjhmU5hCoogBBu4rYnMorAYK2V+Wiswg0ESBoNyFhR4wCBO0YMWmquABBu7gNryCQdAGCdtIrRP9qJUDQrpU850UgHgGCdjyOtFJYgKBd2IW9MQsQtGMGpTkEqihA0K4iNqfySoCg7VW56CwCTQQI2k1I2BGjAEE7RkyaKi5A0C5uwysIJF2AoJ30CtG/WgkQtGslz3kRiEeAoB2PI60UFiBoF3Zhb8wCBO2YQWkOgSoKKGhre/zRx6t4Vk6FQPIF6urr7Jlnn7FxY8dZr569kt9heogAAo0ECNqNOHgSswBBO2ZQmissQNAu7MJeBHwQIGj7UCX6WAuBKGjzJVQt9DknAm0XIGi33ZAWigsQtIvb8EqMAgTtGDFpCoEqC0SXxw4fNtz0PxsCCJibyVbQ1ky2ZrTZEEDAPwGCtn8186nHBG2fquVxXwnaHhePriOQEWBWm48BAo0FotlsLhtv7MIzBHwSIGj7VC3/+krQ9q9mXvaYoO1l2eg0AlmBaFab2bssCQ8CFoj+PYiAy8YD/iAwdO8FCNrelzDRAyBoJ7o86ekcQTs9tWQk4QpEM3gK28OGDWPxp3A/CkGPPDdkM5sd9EeBwadAgKCdgiImeAgE7QQXJ01dI2inqZqMJWSBKGzLQIG7Z8+eIXMw9sAEFLKjjZAdSfA3Av4KELT9rZ0PPSdo+1ClFPSRoJ2CIjIEBH4VePbZZ02BQz9rxIZAaAIsChhaxRlvmgUI2mmubu3HRtCufQ2C6AFBO4gyM8jABBS4tRG4q1f4KVOm2JSXplj3bt2te/fu1TsxZ+IKDj4DCKRQgKCdwqImaEgE7QQVI81dIWinubqMDQEEqiWgoD1y9EgbtNMgGzxocLVOy3kQQACBVAoQtFNZ1sQMiqCdmFKkuyME7XTXl9EhgEB1BAja1XHmLAggEIYAQTuMOtdqlATtWskHdl6CdmAFZ7gIIFARAYJ2RVhpFAEEAhUgaAda+CoNm6BdJejQT0PQDv0TwPgRQCAOAYJ2HIq0gQACCDQIELT5JFRSgKBdSV3azgoQtLMUPEAAAQRaLUDQbjUdb0QAAQSaCBC0m5CwI0YBgnaMmDRVXICgXdyGVxBAAIFSBQjapUpxHAIIINCyAEG7ZSOOaL0AQbv1dryzDAGCdhlYHIoAAggUESBoF4FhNwIIINAKAYJ2K9B4S8kCBO2SqTiwLQIE7bbo8V4EEECgQYCgzScBAQQQiE+AoB2fJS01FSBoNzVhTwUECNoVQKVJBBAIToCgHVzJGTACCFRQgKBdQVyaNoI2H4KqCBC0q8LMSRBAIOUCBO2UF5jhIYBAVQUI2lXlDu5kBO3gSl6bARO0a+POWRFAIF0CBO101ZPRIIBAbQUI2rX1T/vZCdppr3BCxkfQTkgh6AYCCHgtQND2unx0HgEEEiZA0E5YQVLWHYJ2ygqa1OEQtJNaGfqFAAI+CRC0faoWfUUAgaQLELSTXiG/+0fQ9rt+3vSeoO1NqegoAggkWICgneDi0DUEEPBOgKDtXcm86jBB26ty+dtZgra/taPnCCCQHAGCdnJqQU8QQMB/AYK2/zVM8ggI2kmuTor6RtBOUTEZCgII1EyAoF0zek6MAAIpFCBop7CoCRoSQTtBxUhzVwjaaa4uY0MAgWoJELSrJc15EEAgBAGCdghVrt0YCdq1sw/qzATtoMrNYBFAoEICBO0KwdIsAggEKUDQDrLsVRs0Qbtq1GGfiKAddv0ZPQIIxCNA0I7HkVYQQAABCRC0+RxUUoCgXUld2s4KELSzFDxAAAEEWi1A0G41HW9EAAEEmggQtJuQsCNGAYJ2jJg0VVyAoF3chlcQQACBUgUI2qVKcRwCCCDQsgBBu2Ujjmi9AEG79Xa8swwBgnYZWByKAAIIFBEgaBeBYTcCCCDQCgGCdivQeEvJAgTtkqk4sC0CBO226PFeBBBAoEGAoM0nAQEEEIhPgKAdnyUtNRUgaDc1YU8FBAjaFUClSQQQCE6AoB1cyRkwAghUUICgXUFcmjaCNh+CqggQtKvCzEkQQCDlAgTtlBeY4SGAQFUFCNpV5Q7uZATt4EpemwETtGvjzlkRQCBdAgTtdNWT0SCAQG0FCNq19U/72Qnaaa9wQsZH0E5IIegGAgh4LUDQ9rp8dB4BBBImQNBOWEFS1h2CdsoKmtThELSTWhn6hQACPgkQtH2qFn1FAIGkCxC0k14hv/tH0Pa7ft70nqDtTanoKAIIJFiAoJ3g4tA1BBDwToCg7V3JvOowQdurcvnbWYK2v7Wj5wggkBwBgnZyakFPEEDAfwGCtv81TPIICNpJrk6K+kbQTlExGQoCCNRMgKBdM3pOjAACKRQgaKewqAkaEkE7QcVIc1cI2mmuLmNDAIFqCRC0qyXNeRBAIAQBgnYIVa7dGAnatbMP6swE7aDKzWARQKBCAgTtCsHSLAIIBClA0A6y7FUbNEG7atRhn4igHXb9GT0CCMQjQNCOx5FWEEAAAQkQtPkcVFKAoF1JXdrOChC0sxQ8QAABBFotQNBuNR1vRAABBJoIELSbkLAjRgGCdoyYNFVcgKBd3IZXEEAAgVIFCNqlSnEcAggg0LIAQbtlI45ovQBBu/V2vLMMAYJ2GVgcigACCBQRIGgXgWE3Aggg0AoBgnYr0HhLyQIE7ZKpOLAtAgTttujxXgQQQKBBgKDNJwEBBBCIT4CgHZ8lLTUVIGg3NWFPBQQI2hVApUkEEAhCYNL1k9w4Bw8abPlBW88n3TDJThx9YhAWDBIBBBCIU4CgHacmbeULELTzRXheEQGCdkVYaRQBBFIuEAVrDXPQToOsR/ceNnL0yEaP9ZqCdvfu3fWQDQEEEECgRAGCdolQHNYqAYJ2q9h4U7kCBO1yxTgeAQQQaBDQjPb1N1zvnihMK3xHf2unArhmu9kQQAABBMoTIGiX58XR5QkQtMvz4uhWChC0WwnH2xBAAIGMQG7YzgUhZOdq8BgBBBAoT4CgXZ4XR5cnQNAuz4ujWylA0G4lHG9DAAEEfhXID9uEbD4aCCCAQNsECNpt8+PdzQsQtJv34dWYBAjaMUHSDAIIBC0QhW1CdtAfAwaPAAIxCRC0Y4KkmYICBO2CLOyMW4CgHbco7SFQe4Fnnn3Gnn32WevZs6f16tnL8p9fNv4y18nhw4a7v3Of5x+b/zz3WL0593n+sfnPc4+t9XuL2UR9LmQT9bnYeydeNdF++OEHa81723LeWr03CfVUH6J6qD5sCCCQDgGCdjrqmNRRELSTWpmU9YugnbKCMpygBRQ6FPIUvOrq61zIHjd2nAvD0Wt6Xa/pGL2mIN5vg37O7fFHH0/1ezU+bRqvxq3xR1Zy0f9y0v+RTWTFe5P3OYrqlVtL1VfP2RBAwG8Bgrbf9Ut67wnaSa9QSvpH0E5JIRlG8AJRWM4NjAocmu3T7LY2PdZWzvNyjs1v26f3tsYmGm8o701iPdWnXzL/6bMefSkSfUmi+rAhgICfAgRtP+vmS68J2r5UyvN+ErQ9LyDdR+BXAQUOzc4qaLMhEKKArkTQvwMFbTYEEPBbgKDtd/2S3nuCdtIrlJL+EbRTUkiGEayAZvGGDRvG5bLBfgIYeCGB6FaJQq+xDwEEki9A0E5+jXzuIUHb5+p51HeCtkfFoqsI5AlE9xdH96jmvcxTBIIUiO6zj26jCBKBQSPguQBB2/MCJrz7BO2EFygt3SNop6WSjCNUgdx7VEM1YNwI5AroCyj9u9DGrRS5MjxGwB8BgrY/tfKxpwRtH6vmYZ8J2h4WjS4jgAACCCCAAAIpFiBop7i4CRgaQTsBRQihCwTtEKrMGNMqkPszVWkdI+NCoDUCmtUeP3486xe0Bo/3IJAAAYJ2AoqQ4i4QtFNc3CQNjaCdpGrQFwTKE9BCaPppKS6PLc+No9MvEN2nzU99pb/WjDCdAgTtdNY1KaMiaCelEinvB0E75QVmeAgggECAAtE92tFvnAdIwJAR8FqAoO11+RLfeYJ24kuUjg4StNNRR0YRpoAuj9WmVcfZEEAAAQQQSIsAQTstlUzmOAjayaxL6npF0E5dSRlQQALcox1QsRlqWQJcOl4WFwcjkDgBgnbiSpKqDhG0U1XO5A6GoJ3c2tAzBFoSUJjQxj3aLUnxemgCBO3QKs540yZA0E5bRZM1HoJ2suqR2t4QtFNbWgaGAAIIIIAAAgh4KUDQ9rJs3nSaoO1NqfzuKEHb7/rR+7AFNGunxZ64RzvszwGjLyygNQz4t1HYhr0IJF2AoJ30CvndP4K23/XzpvcEbW9KRUcRaCLAPdpNSNiBgBPg0nE+CAj4LUDQ9rt+Se89QTvpFUpJ/wjaKSkkwwhSgJ8wCrLsDLoEAQVt/fsYNmwYs9oleHEIAkkTIGgnrSLp6g9BO131TOxoCNqJLQ0dQwABBBBAAAEEghQgaAdZ9qoNmqBdNeqwT0TQDrv+jN5vgbr6OnePNquO+11Heh+/gO7P1ow2/zbit6VFBKohQNCuhnK45yBoh1v7qo6coF1Vbk6GQKwC3KMdKyeNpUiAe7RTVEyGEqQAQTvIsldt0ATtqlGHfSKCdtj1Z/QIIIBAGgU0m61ZbVblT2N1GVMIAgTtEKpcuzEStGtnH9SZCdpBlZvBIoAAAggggAACiRcgaCe+J2iaQQAAQABJREFURF53kKDtdfn86TxB259a0VME8gW4dDxfhOcINAhoNnv8+PGsOs4HAgFPBQjanhbOk24TtD0plO/dJGj7XkH6H7IAi6GFXH3G3pwA92g3p8NrCCRfgKCd/Br53EOCts/V86jvBG2PikVXEUAAAQRKEuA35kti4iAEEitA0E5saVLRMYJ2KsqY/EEQtJNfI3qIQDEBXR6rrVfPXsUOYT8CCCCAAALeCRC0vSuZVx0maHtVLn87S9D2t3b0HAHu0eYzgEBhAS4dL+zCXgR8ESBo+1IpP/tJ0Pazbt71mqDtXcnoMAJZAYUJbcOHDc/u4wECCJgRtPkUIOC3AEHb7/olvfcE7aRXKCX9I2inpJAMAwEEEEAAAQQQSIkAQTslhUzoMAjaCS1M2rpF0E5bRRlPSAKatevZsyf3aIdUdMZasoDWMGD9gpK5OBCBRAkQtBNVjtR1hqCdupImc0AE7WTWhV4hUIoA92iXosQxIQpw6XiIVWfMaRIgaKepmskbC0E7eTVJZY8I2qksK4MKRICfMAqk0AyzbAEFbf37GDZsGLPaZevxBgRqL0DQrn0N0twDgnaaq5ugsRG0E1QMuoIAAggggAACCCBgBG0+BJUUIGhXUpe2swIE7SwFDxDwTqCuvs7do82q496Vjg5XWED3Z2tGm38bFYameQQqJEDQrhAszToBgjYfhKoIELSrwsxJEKiIAPdoV4SVRlMgwD3aKSgiQwhagKAddPkrPniCdsWJOYEECNp8DhBAAAEE0iag2WzNarMqf9oqy3hCESBoh1Lp2oyToF0b9+DOStAOruQMGAEEEEAAAQQQSLQAQTvR5fG+cwRt70voxwAI2n7UiV4iUEiAS8cLqbAPAXOz2ePHj2fVcT4MCHgqQND2tHCedJug7UmhfO8mQdv3CtL/kAVYDC3k6jP25gS4R7s5HV5DIPkCBO3k18jnHhK0fa6eR30naHtULLqKAAIIIFCSAL8xXxITByGQWAGCdmJLk4qOEbRTUcbkD4Kgnfwa0UMEiglosSdtvXr2KnYI+xFAAAEEEPBOgKDtXcm86jBB26ty+dtZgra/taPnCHCPNp8BBAoLcOl4YRf2IuCLAEHbl0r52U+Ctp91867XBG3vSkaHEcgKKExoGz5seHYfDxBAwIygzacAAb8FCNp+1y/pvSdoJ71CKekfQTslhWQYCCCAAAIIIIBASgQI2ikpZEKHQdBOaGHS1i2CdtoqynhCEtCsXc+ePblHO6SiM9aSBbSGAesXlMzFgQgkSoCgnahypK4zBO3UlTSZAyJoJ7Mu9AqBUgS4R7sUJY4JUYBLx0OsOmNOkwBBO03VTN5YCNrJq0kqe0TQTmVZGVQgAvyEUSCFZphlCyho69/HsGHDmNUuW483IFB7AYJ27WuQ5h4QtNNc3QSNjaCdoGLQFQQQQAABBBBAAAEjaPMhqKQAQbuSurSdFSBoZyl4gIB3AnX1de4ebVYd9650dLjCAro/WzPa/NuoMDTNI1AhAYJ2hWBp1gkQtPkgVEWAoF0VZk6CQEUEuEe7Iqw0mgIB7tFOQREZQtACBO2gy1/xwRO0K07MCSRA0OZzgAACCCCQNgHNZmtWm1X501ZZxhOKAEE7lErXZpwE7dq4B3dWgnZwJWfACCCAAAIIIIBAogUI2okuj/edI2h7X0I/BkDQ9qNO9BKBQgLlXjr+0MMP2TfffGMrdl3RunXrVqjJsva9/vrr9uprr1rHjh1t/X7rl/Xe5g5+4sknbPr06bbyyivb6qut7g69/Y7b3d99+/S1xRZbrLm3l/zajz/+aPf86x53/IYbbmiLLLxI0fd+++239p///sc+/PBD+/rrr63zEp1tuWWXcytazzHHHEXfxwu1EdBs9vjx41l1vDb8nBWBNgsQtNtMSAPNCBC0m8HhpfgECNrxWdISAtUWKHcxtPPGneeC4gbrb2Bbb7V1m7t7/wP3233332fLL7e87bfvfm1uL2rgkssusalTp1r/Tfrb5ptt7nYfc9wx9ssvv7jFrVZeaeXo0Db9/f3339sJJ53g2qg7oM66dOlSsL0PPvjArpx4pX319VdNXl9ttdVs50E723zzzZd97ZlnnrFXXn3FtbfxRhtn95f7IK52yj1vNY6/6+677IsvvnCXdq+x+hqxn5J7tGMnpUEEqipA0K4qd3AnI2gHV/LaDJigXRt3zopALQQI2o3VSw3a4y8fb6+/8bp16NDB+vTuY50X72zvvf+e6QqBn3/+2f7Q/w+22f9tlm38jjvvsEcfe9TNxg/dY2h2f7kP4mqn3PNW4/ix5481fYGx5RZb2kYbbhT7KfmN+dhJaRCBqgoQtKvKHdzJCNrBlbw2AyZo18adsyIQh4Auj9XWq2evkpprTdD+6quvbL7557N555m3yTnyZ7Q146xL09u3b29zzjlnk+Nzd8yYOcPNAs/ZrulxrZnRbq693PN+9913pku9NQNdStCePXu2m/XW3zv9aSfr1es3a83KPvzIw7bccsvZ/vvunz1NqQF55syZ9kvmv/YLtM++N/dBqe388MMP7m3zzDNP7tsLPlaNtOVf7q79+fvyG1BtF1poofzdRZ8312YpQVvvl5E+T2wIIBCWAEE7rHpXe7QE7WqLB3o+gnaghWfYqRAo9x7tUoP2rB9m2Z133mnPv/C8C6PC6rJ0F9t2223dZeIRXm7QXn/99e3Wf95qM2bMMAW+rit0tT/u8EdbeOGFo8Pdpd//uvdf9uKUF+2zzz5z4X35FZa3LTbfwpZaaqnscaUGbQWxUtpTw7qfXPdjf/DhB64fGs/2221vF1x4gTtvsUvHdY6TTz3ZBb78S+51ebjOry8VDtz/QLtiwhWu/VmzZpnC71xzzWXzzz+/a19BXPeyq73HHn/MzXjrSwxtMtIl8uv2Wtc9L6UdHfjsc8/a4088bh9+8KF739JdlrYN+m1ga621lnuuP66+5mp7+5233azxl19+6d6j/Wv2WNO223Y7+/eD/7ann37avvv+O1tpxZVspx13yvZZxyno/vO2f9rUt6a6L1EUtFdZeRXbdpttG10uf+rpp+pw223X3UyXvOvefX2RofUAtt56a1u006KmLyv+etZf3XEzZ8y0n37+yX1W5p13XltwwQVtRN0I99pHH33krhbQVQT6POmefF2iv+WALVv8Asc1kPmDS8cjCf5GwE8BgrafdfOl1wRtXyrleT8J2p4XkO4HLaAwoW34sOElOZQatKNLpdu1a+eC9ceffOwCl0LjIQcdkp3VjIK2AuUvPzfMlM4z7zymWWNtnTt3tn3+vI+bsVXAvPmWm92CYnpNs5Tff/e9C1t6rHu8F1u0YZGzUoJ2Oe299dZbdvmEy02Ln0Xnjr4QiGaDiwVtHX/DTTe48KjH+kJAC7Qp+GkxtNxZ4Isvvdjee+89+/mnn9249JpstB004iAXNh986MHsAmxLL720zfp+lk3/fLo7Zq+he9mqq65qpbSjMHvjzTe64K6rDTQzrrGoZrvusqt179bdtRlZar+2ueee2/RFgDbV55NPPrEFFljA1Vf7VlllFRu25zA9dHW8dPyl7hJvPVfI1qy2Nt2XP2yvYS4o63l0D/0iiyxi+gJBX7ZEtvqC4cADDnRfrJx48ok63IVu1VD90hcVCy+0sB1+2OFuPGeceYZrQ+FcIXva29Ncn/VlzjZbbePe39IfBO2WhHgdgWQLELSTXR/fe0fQ9r2CnvSfoO1JoegmAjEIlBK0FY7uuOsOe+mll1zgUrDUfcin//V0F7JyL5+Ogra61vv3ve3/Nv0/F9peevklu27Sde59W225lW24wYZuVvXCiy50wXSPIXvYaquu5oLctddda2+8+YabYVVA1BaFw+YWQ9MsbbntKVju+Mcdbdlll3XhUcH//Q/ed+dsLmj/9NNPbrZeq44rHEabZmE1Nv2fG7ibu+Rb93WrHa2eHq3Ufs2119gLL77gLkuXb7QVa0f10CJuqpXuD5eTNi1Mp/b1xcVxxxzn9kWWCsD777e/Ldh+QTfzLnNtu++6u3Xv3t3NsOt8+mJg1PGj3N/RlwIK2PrCRF+EfDb9M+euLyo0I75e3/VcO7lBe8c/7ehmx6dNm+ZqKbNBOw2ynuv0dMfqj2KXjmvBudPPON0dd+jBh9riiy/uPju6cqDbGt3c+aIvDbKN8QABBFInQNBOXUkTNSCCdqLKkd7OELTTW1tGln4Bzdr17NmzIvdoK1B9/NHH7pJiSeont7R41aZ/2NQFau2LgraCzzFHHdPoXtrxV2QWEMtcrt2jew93ObHuZdY9zQp8CpnR9vHHH9tz/3vO7T/qiKPc7igcNhe0S20vN5Tqcud+6/WLTm26x/2GG29wz5sL2tEb9LNeU16aYq+++qq9Ne2t7Iyt7pHXJdfRViwgR68rpMoyWsX8jTfesP89/z9bYYUVbN8/7xsdZsXaefe9d+2Cv1/gwr3qEd0Pr+CtS8G1aXZYM8KRpb4I2WHgDu41LdSmtvVFgeqmLwm0Anh0WXf0Xl3CrkvA1S99MRJtL7/ysr3zzju2ztrr2OBBg93uKGjnzzpffMnFzkru8o+2YkFbr2tGW5e5q//6EmD55Zd3l6DnruwetdPc36pvqesXNNcOryGAQPUFCNrVNw/pjATtkKpdw7EStGuIz6kRaKNAJe7R1uztLf+4xf77zH8L9i53he0oaC/TZRl3aXDuG6Iwp0t/DzvkMLv+huuz9wfnHpf7WLOwmo2NwmFzQbvU9nTv8Zizx7jTHHboYdnL07VDgVf3X2srFrQ1c67ANvdcc9s2W/922bLuN777nrvd/dZa0O24Y4/L3rNcLCDrPPrCQq/LOX/rukJXN3Mc7S/WjmbEb7r5puiwgn/r6gDdh13IUvd133b7be7Scd0KoE2Xe+uqBW2Rk2aWoy8D3At5f+gKgej9UdDW1Qq5P9cV1UmLyOXO1jcXtPUlhL4A+ejjj7Jn1CXvumKi1BXKuXQ8S8cDBLwUIGh7WTZvOk3Q9qZUfneUoO13/eh92ALl/oRRKZeOv/zyy3blVVe6WdIBmw9w98hKWaFS9/MWCtqaUT326GMbLaKlNtSWQpfCV3QZsoL34J0aZkHzq6d7ljU7XigcRkFO96Prd7RLbU+XLY8+cbS7J1gzuprZjTYt9qZL17U1F7R1ibo2LdaVu2ib7q0+a8xZ7jXdY677lrUVC8haWEzBXn3q06ePrbryqjZHuzncjP7zzz/vFpDTJdrRVqyd6LJ5BfyhQ4fa/PM1LLim96ltzVB36tTJXcZfyLLUoB3dq7/2WmubFoKLtugcusx8ySWXdLvz6xMd25qgrfdqFXndD/7mG2+63ySPLnXXve5LLtFwzugchf5W0Na/j2HDhjGrXQiIfQgkXICgnfACed49grbnBfSl+wRtXypFPxFou0AUtDW72H/jhvt6c1vV6tePPPqIu9dXYUahRpsCpWaFXUDM/I70wO0Huv3RjLaebLzRxi6EaxEs3ZurRbQ0a7vFgC3ca9p30SUXufcN2W2IdevWzbWnS8AVyAcMGOCCpg4oFA7zg1w57SkoK5xqpXGtiq3FuTRTq/vI1Y62YkFbK2OfdPJJbjEu3SO81VZbuUuaNRuuLx80u6zFyI4/7vjsJdxRQNa94FptPLp/O+qznuuLCc3e69L2s8852xnLfET9iOzxxdqRa/TlgWZ4tWK5vuzQ5ew33XST9e/f34VLnaeQZalBO6qvFks7YP8D3Lh17msnXetm+HVeWWrLr4/bmfmjpaCtz40+I9Gm2w0m3TDJLaame7SjxeSi2fXcNQKi9/A3AgikT4Cgnb6aJmlEBO0kVSPFfSFop7i4DC31AnX1de4e7XJXHS8GM3SPoTbP3PO4cKZjNEOrlcb1M0u6P1bhUuFNi1rpnuQoiGkWWiFcIVuLbUWraEcLcC2y8CJuFW7NHk+ZMsWdXjOuWgU8WsU6d7a5UDjMD3IKwKW2p8XZrrnmmuxK4Et0XsK0krrCqS4B11YsaOu1xx57zC0QpzFq0+Jg3377rRuznm+y8Sam2f9oy733WwYK1PUH1rvxatVtnVMLi2kGXzO1MpWttg4dOtiRfznSPS7Wjl6MLs3XYwVh3W+tKw60aQZ658E7u8eFLEsN2qqNVkDXT7Fp0+z1F59/Yfr5NwVg/aRZa2e0dem7vqTQZ0dGWm194HYDncOYc8a4hfJ09cOKK67ozj916lTTDL6+/NECaS1tstOMdqn/Nlpqj9cRQKC6AgTt6nqHdjaCdmgVr9F4Cdo1gue0CMQg0Np7tIudWkFbP12lWWat8hzdR9x1ha62y867uN9kfufdd9yK0gowUdDWpdzrrruuW5lbv52s4KhLrHcZvEv20nOdU7O3/7j1H25BMV1GrU0hVCuT5y5aVSgc5gdtvbfU9nSsFhu76667svccK+jqPmbN8mtrLmjrdf3297333WuffvppNmBrNlchO/dydB2rRcl0n7veo1CtLytGHjdSL7kvLSZdPykbrPUlxJ577mlPTn7S/vvf/7qfSTv5pIb7xptrR23p97j1vxYy06b7mLXQnGaIFWC1FbIsNWjr/bp3+8abbnQ/sRV9KaEvKnbccUfTvfnRVqg+eq3YjLa+6NDvc+un1/QFhhY90wro2t5//323evqbU990PzumsayQWZBNY9N956Vs3KNdihLHIJBcAYJ2cmuThp4RtNNQRQ/GQND2oEh0EYEaCChka4ZUIVGzrKVsCkwKogrP+r/YpuM++fQTd8l1qW0Xa0v7y2lPs7MKpJpFbc2m2Vy10aljp0b3pJfTlvo7ffp090WBZm2jUFxOG7nHKgzrt7HjaCu33dzHCtn6PKhemkGvxiYnBXJZ62qJcjbNZmtWu5xV+ctpn2MRQKCyAgTtyvqG3jpBO/RPQJXGT9CuEjSnQQABBBBAAAEEEChJgKBdEhMHtVKAoN1KON5WngBBuzwvjkYgSQLlXjqepL7TFwQqKaDZ7PHjx7PqeCWRaRuBCgoQtCuIS9NG0OZDUBUBgnZVmDkJAhURKHcxtIp0gkYRSKAA92gnsCh0CYEyBAjaZWBxaNkCBO2yyXhDawQI2q1R4z0IIIAAAkkWKPc35pM8FvqGQIgCBO0Qq169MRO0q2cd9JkI2kGXn8F7LqDLY7Xlrtjt+ZDoPgIIIIAAAplFK+eyjh0WRgKBiggQtCvCSqP5AgTtfBGeI+CPAPdo+1MrelpdAS4dr643Z0MgbgGCdtyitJcrQNDO1eBxxQQI2hWjpWEEKi6gMKFNv2nNhgACvwkQtH+z4BECPgoQtH2smj99Jmj7Uyuve0rQ9rp8dB4BBBBAAAEEEEidAEE7dSVN1IAI2okqR3o7Q9BOb20ZWfoFNGvXs2dP7tFOf6kZYSsEtIYB6xe0Ao63IJAAAYJ2AoqQ4i4QtFNc3CQNjaCdpGrQFwTKE+Ae7fK8ODocAS4dD6fWjDSdAgTtdNY1KaMiaCelEinvB0E75QVmeKkW4CeMUl1eBtcGAf3b0Iw2V3y0AZG3IlBDAYJ2DfEDODVBO4AiJ2GIBO0kVIE+IIAAAggggAACCEQCBO1Igr8rIUDQroQqbTYRIGg3IWEHAt4I1NXXuRk7Vh33pmR0tEoCms3WrDb/NqoEzmkQiFmAoB0zKM01EiBoN+LgSaUECNqVkqVdBCovwD3alTfmDH4KcI+2n3Wj1whEAgTtSIK/KyFA0K6EKm02ESBoNyFhBwIIIICA5wKsX+B5Ael+8AIE7eA/AhUFIGhXlJfGIwGCdiTB3wgggAACCCCAAAJJECBoJ6EK6e0DQTu9tU3UyAjaiSoHnUGgLAEuHS+Li4MDEtA92uPHj7dhw4bxW9oB1Z2hpkeAoJ2eWiZxJATtJFYlhX0iaKewqAwpGAEWQwum1Ay0TAHu0S4TjMMRSJgAQTthBUlZdwjaKStoUodD0E5qZegXAggggAACCCAQpgBBO8y6V2vUBO1qSQd+HoJ24B8Ahu+1gC6P1darZy+vx0HnEUAAAQQQyBUgaOdq8DhuAYJ23KK0V1CAoF2QhZ0IeCHAPdpelIlO1kCAS8drgM4pEYhRgKAdIyZNNREgaDchYUclBAjalVClTQSqI6AwoW34sOHVOSFnQcATAf3b0E98sRiaJwWjmwjkCRC080B4GqsAQTtWThorJkDQLibDfgQQQAABBBBAAIFaCBC0a6EezjkJ2uHUuqYjJWjXlJ+TI9AmAc3a9ezZk3u026TIm9MqoDUMWL8grdVlXGkXIGinvcK1HR9Bu7b+wZydoB1MqRno/7N3JuByVFUev+4iq7uIC7iCwRkDGDAsAUSRYVzQyQsQ1oRtJGFfRCCGQMKqbHFkDSiLJpFFHEaQRVCIJGw6QxhUVBDcRv1cQFFEmToVq9P1Xr9+1d1V995zz6/8SKq7qu495/evfJ+/rurqBAnwHe0EQ6WlWgjwHe1aMDIIBIIRQLSDoTcxMaJtIubwTSLa4TOgAgj0S0C+gyqLXNVmgQAEVhKQfxtyRZs7PlYyYQ0Cmggg2prS0lcroq0vM5UVI9oqY6NoCEAAAhCAAAQgkCwBRDvZaKNoDNGOIob0i0C008+YDtMlwK3j6WZLZ4MRkKvZclWbJ/IPxpGjIRCKAKIdiryNeRFtGzkH7xLRDh4BBUCgbwKIdt/oODBxAnxHO/GAaS95Aoh28hEHbRDRDorfzuSItp2s6RQCEICAFQI8v8BK0vSZKgFEO9Vk4+gL0Y4jh+SrQLSTj5gGEyYgt8fKwk8YJRwyrUEAAhAwSADRNhi6x5YRbY+wLU+FaFtOn961E+DWce0JUn9TBORDqAULFrhp06bxQVRTkBkXAg0SQLQbhMvQDtHmJPBCANH2gplJINAIgRkzZ+Q/X8QDnxrBy6CKCfAdbcXhUToEMgKINqdBkwQQ7SbpMnaLAKLdQsEKBCAAAQhAAAIQgEAEBBDtCEJIuAREO+FwY2oN0Y4pDWqBQG8E5Krd+PHjuTW2N2zsDQEIQAACkRNAtCMPSHl5iLbyALWUj2hrSYo6ITCSAN/RHsmEdyAgBLh1nPMAAroJINq684u9ekQ79oQSqQ/RTiRI2jBJQGRCFr6jbTJ+mu5CQP5tyE988TC0LpDYBIGICSDaEYeTQGmIdgIhamgB0daQEjVCAAIQgAAEIAABOwQQbTtZh+gU0Q5B3eCciLbB0Gk5GQI8dTyZKGmkAQLyE1/8xnwDYBkSAh4IINoeIBueAtE2HL7P1hFtn7SZCwL1EuA72vXyZLR0CPAd7XSypBObBBBtm7n76hrR9kXa+DyItvETgPZVE5DvoMoiTx5ngQAEVhKQfxtyRZun8q9kwhoENBFAtDWlpa9WRFtfZiorRrRVxkbREIAABCAAAQhAIFkCiHay0UbRGKIdRQzpF4Fop58xHaZLgFvH082WzgYjIFez5ao2T+QfjCNHQyAUAUQ7FHkb8yLaNnIO3iWiHTwCCoBA3wQQ7b7RcWDiBPiOduIB017yBBDt5CMO2iCiHRS/nckRbTtZ0ykEIAABKwSK5xc8657lyeNWQqfPpAgg2knFGV0ziHZ0kaRZEKKdZq50ZYeAXLnj9lg7edMpBCAAAQsEEG0LKYfrEdEOx97UzIi2qbhpNjECxe2xItrIdmLh0k7fBOT72fIb8/y76BshB0IgOAFEO3gESReAaCcdbzzNIdrxZEElEOiVQPHAJzkO0e6VHvunSqD4AGr+ufO5bTzVkOkreQKIdvIRB20Q0Q6K387kiLadrOk0bQIi3RuN3yjtJukOAmMQ4N/BGIDYDAElBBBtJUEpLRPRVhqctrIRbW2JUS8ERhLgVtmRTHjHHgH+HdjLnI7TJYBop5ttDJ0h2jGkYKAGRNtAyLRogoB8J3XatGn5VW25dXb8+PGtK9wiILLIFe/2dXmvl9e97Dt8bCvHFncV9NOvlWP7YSPnU6fzt/1c55ZxocQCgTQIINpp5BhrF4h2rMkkVheinVigtGOegEiMSLdIiXxHtZCP4sFQsk32Kb6/Kr/FLcuSO5bk73Psiqe4C6+ClbCRpf13ywvOBdeCc8GVYye2zsHhrAo2Bau6zsE8JP6AAASSIIBoJxFjtE0g2tFGk1ZhiHZaedINBISA/IawyI1IYLFeXOEe/loEURbZV5b218P3Hf66fd+Uj+3Epui34HrZ5Ze5y6+43O02dTe3+267t7hXOXY41+K1lWMHOY+Gs5JcWCAAAf0EEG39GcbcAaIdczoJ1YZoJxQmrUAAAsEILF++3M2aPcsNTR5yU4amBKuDiSEAAQikQADRTiHFeHtAtOPNJqnKEO2k4qQZCEAgEAFEOxB4poUABJIkgGgnGWs0TSHa0USRdiGIdtr50h0EIOCHAKLthzOzQAACNggg2jZyDtUloh2KvLF5EW1jgdMuBCDQCAFEuxGsDAoBCBglgGgbDd5T24i2J9DWp0G0rZ8B9A8BCNRBANGugyJjQAACEFhBANHmTGiSAKLdJF3GbhFAtFsoWIEABCDQNwFEu290HAgBCEBgBAFEewQS3qiRAKJdI0yGGp0Aoj06G7ZAAAIQqEoA0a5Kiv0gAAEIjE0A0R6bEXv0TwDR7p8dR/ZAANHuARa7QgACEBiFAKI9ChjehgAEINAHAUS7D2gcUpkAol0ZFTsOQgDRHoQex0IAAhBYQQDR5kyAAAQgUB8BRLs+low0kgCiPZIJ7zRAANFuACpDQgAC5ggg2uYip2EIQKBBAoh2g3AZ2iHanAReCCDaXjAzCQQgkDgBRDvxgGkPAhDwSgDR9orb3GSItrnIwzSMaIfhzqwQgEBaBBDttPKkGwhAICwBRDss/9RnR7RTTziS/hDtSIKgDAhAQDUBRFt1fBQPAQhERgDRjiyQxMpBtBMLNNZ2EO1Yk6EuCEBAEwFEW1Na1AoBCMROANGOPSHd9SHauvNTUz2irSYqCoUABCImgGhHHA6lQQAC6ggg2uoiU1Uwoq0qLr3FItp6s6NyCEAgHgKIdjxZUAkEIKCfAKKtP8OYO0C0Y04nodoQ7YTCpBUIQCAYAUQ7GHomhgAEEiSAaCcYakQtIdoRhZFyKYh2yunSGwQg4IsAou2LNPNAAAIWCCDaFlIO1yOiHY69qZkRbVNx0ywEINAQAUS7IbAMCwEImCSAaJuM3VvTiLY31LYnQrRt50/3EIBAPQQQ7Xo4MgoEIAABIYBocx40SQDRbpIuY7cIINotFKxAAAIQ6JsAot03Og6EAAQgMIIAoj0CCW/USADRrhEmQ41OANEenQ1bIAABCFQlgGhXJcV+EIAABMYmgGiPzYg9+ieAaPfPjiN7IIBo9wCLXSEAAQiMQgDRHgUMb0MAAhDogwCi3Qc0DqlMANGujIodByGAaA9Cj2MhAAEIrCCAaHMmQAACEKiPAKJdH0tGGkkA0R7JhHcaIIBoNwCVISEAAXMEEG1zkdMwBCDQIAFEu0G4DO0QbU4CLwQQbS+YmQQCEEicAKKdeMC0BwEIeCWAaHvFbW4yRNtc5GEaRrTDcGdWCEAgLQKIdlp50g0EIBCWAKIdln/qsyPaqSccSX+IdiRBUAYEIKCaAKKtOj6KhwAEIiOAaEcWSGLlINqJBRprO4h2rMlQFwQgoIkAoq0pLWqFAARiJ4Box56Q7voQbd35qake0VYTFYVCAAIRE0C0Iw6H0iAAAXUEEG11kakqGNFWFZfeYhFtvdlROQQgEA8BRDueLKgEAhDQTwDR1p9hzB0g2jGnk1BtiHZCYdIKBCAQjACiHQw9E0MAAgkSQLQTDDWilhDtiMJIuRREO+V06Q0CEPBFANH2RZp5IAABCwQQbQsph+sR0Q7H3tTMiLapuGkWAhBoiACi3RBYhoUABEwSQLRNxu6taUTbG2rbEyHatvOnewhAoB4CiHY9HBkFAhCAgBBAtDkPmiSAaDdJl7FbBBDtFgpWIAABCPRNANHuGx0HQgACEBhBANEegYQ3aiSAaNcIk6FGJ4Boj86GLRCAAASqEkC0q5JiPwhAAAJjE0C0x2bEHv0TQLT7Z8eRPRBAtHuAxa4QgAAERiGAaI8ChrchAAEI9EEA0e4DGodUJoBoV0bFjoMQQLQHocexEIAABFYQQLQ5EyAAAQjURwDRro8lI40kgGiPZMI7DRBAtBuAypAQgIA5Aoi2uchpGAIQaJAAot0gXIZ2iDYngRcCiLYXzEwCAQgkTgDRTjxg2oMABLwSQLS94jY3GaJtLvIwDSPaYbgzKwQgkBYBRDutPOkGAhAISwDRDss/9dkR7dQTjqQ/RDuSICgDAhBQTQDRVh0fxUMAApERQLQjCySxchDtxAKNtR1EO9ZkqAsCENBEYNbsWU5ke2jykJsyNEVT6dQKAQhAIDoCiHZ0kSRVEKKdVJzxNoNox5tNrJUtXLQw1tKoCwLBCCxavCifG9EOFgETQwACCRFAtBMKM8JWEO0IQ0mxJEQ7xVSb6am4NbaZ0RkVAmkQQLTTyJEuIACBsAQQ7bD8U58d0U494Uj6Q7QjCSLyMtolW0SCBQIQWElgw3Eb5i/k9nFEeyUX1iAAAQj0SwDR7pccx1UhgGhXocQ+AxNAtAdGaGIAuV1cbo1FIkzETZN9ECg+jOLfSB/wOAQCEIDAMAKI9jAgvKyVAKJdK04GG40Aoj0aGd5vJ1A86GnO7Dlu3Lhx7ZtYhwAEMgKINqcBBCAAgfoIINr1sWSkkQQQ7ZFMeKcBAoh2A1ATHBLRTjBUWqqVAKJdK04GgwAEjBNAtI2fAA23j2g3DJjhVxBAtDkTqhBAtKtQYh/LBBBty+nTOwQgUDcBRLtuoozXTgDRbqfBemMEEO3G0CY1MKKdVJw00wABRLsBqAwJAQiYJYBom43eS+OIthfMTIJocw5UIYBoV6HEPpYJINqW06d3CECgbgKIdt1EGa+dAKLdToP1xggg2o2hTWpgRDupOGmmAQKIdgNQGRICEDBLANE2G72XxhFtL5iZBNHmHKhCANGuQol9LBNAtC2nT+8QgEDdBBDtuokyXjsBRLudBuuNEUC0G0Ob1MCIdlJx0kwDBBDtBqAyJAQgYJYAom02ei+NI9peMDMJos05UIUAol2FEvtYJoBoW06f3iEAgboJINp1E2W8dgKIdjsN1hsjgGg3hjapgRHtpOKkmQYIINoNQGVICEDALAFE22z0XhpHtL1gZhJEm3OgCgFEuwol9rFMANG2nD69QwACdRNAtOsmynjtBBDtdhqsN0YA0W4MbVIDI9pJxUkzDRBAtBuAypAQgIBZAoi22ei9NI5oe8HMJIg250AVAoh2FUrsY5kAom05fXqHAATqJoBo102U8doJINrtNFhvjACi3RjapAZGtJOKk2YaIIBoNwCVISEAAbMEEG2z0XtpHNH2gplJEG3OgSoEEO0qlNjHMgFE23L69A4BCNRNANGumyjjtRNAtNtpsN4YAUS7MbRJDYxoJxUnzTRAANFuACpDQgACZgkg2maj99I4ou0FM5Mg2pwDVQgg2lUosY9lAoi25fTpHQIQqJsAol03UcZrJ4Bot9NgvTECiHZjaJMaGNFOKk6aaYAAot0AVIaEAATMEkC0zUbvpXFE2wtmJkG0OQeqEEC0q1BiH8sEEG3L6dM7BCBQNwFEu26ijNdOANFup8F6YwQQ7cbQJjUwop1UnDTTAAFEuwGoDAkBCJglgGibjd5L44i2F8xMgmhzDlQhgGhXocQ+lgkg2pbTp3cIQKBuAoh23UQZr50Aot1Og/XGCCDajaFNamBEO6k4aaYBAoh2A1AZEgIQMEsA0TYbvZfGEW0vmJkE0eYcqEIA0a5CiX0sE0C0LadP7xCAQN0EEO26iTJeOwFEu50G640RQLQbQ5vUwIh2UnHSTAMEEO0GoDIkBCBglgCibTZ6L40j2l4wMwmizTlQhQCiXYUS+1gmgGhbTp/eIQCBugkg2nUTZbx2Aoh2Ow3WGyOAaDeGNqmBEe2k4qSZBggg2g1AZUgIQMAsAUTbbPReGke0vWBmEkSbc6AKAUS7CiX2sUwA0bacPr1DAAJ1E0C06ybKeO0EEO12Gqw3RgDRbgxtUgMj2knFSTMNEEC0G4DKkBCAgFkCiLbZ6L00jmh7wcwkiDbnQBUCiHYVSuxjmQCibTl9eocABOomgGjXTZTx2gkg2u00WG+MAKLdGNqkBka0k4qTZhoggGg3AJUhIQABswQQbbPRe2kc0faCmUkQbc6BKgQQ7SqU2McyAUTbcvr0DgEI1E0A0a6bKOO1E0C022mw3hgBRLsxtEkNjGgnFSfNNEAA0W4AKkNCAAJmCSDaZqP30jii7QUzkyDanANVCCDaVSixj2UCiLbl9OkdAhComwCiXTdRxmsngGi302C9MQKIdmNokxoY0U4qTpppgACi3QBUhoQABMwSQLTNRu+lcUTbC2YmQbQ5B6oQQLSrUGIfywQQbcvp0zsEIFA3AUS7bqKM104A0W6nwXpjBBDtxtAmNTCinVScNNMAAUS7AagMCQEImCWAaJuN3kvjiLYXzEyCaHMOVCGAaFehxD6WCSDaltOndwhAoG4CiHbdRBmvnQCi3U6D9cYIINqNoVU/sMj1lMlT3Lhx49xw0V64aGHe35ShKer7pAEI1EEA0a6DImNAAAIQWEEA0eZMaJIAot0kXcZuEUC0WyhYaSMgIr1o8aL8nTmz57iFixc6EQlZf2D5A6VtIuIsELBOANG2fgbQPwQgUCcBRLtOmow1nACiPZwIrxshgGg3gjWJQdtlW2RaRKL4WxoU6Uayk4iaJmoggGjXAJEhIAABCPyDAKLNqdAkAUS7SbqM3SKAaLdQsNKBQLtst29GsttpsA4Bl38QJV+xGJo85PhKBWcEBCAAgcEIINqD8ePo7gQQ7e582FoTAUS7JpAJDzNctpHshMOmtb4JcEW7b3QcCAEIQGAEAUR7BBLeqJEAol0jTIYanQCiPTobtqwkUMg2kr2SCWsQaCeAaLfTYB0CEIDAYAQQ7cH4cXR3Aoh2dz5srYmARtG+eMHFNXXPMBCIn8D48ePdRuM3ir9Q4xUi2sZPANqHAARqJYBo14qTwYYRQLSHAeFlMwS0iHYh18XfzdBgVAjESUBEW4R7+rTpcRZIVXxHm3MAAhCAQI0EEO0aYTLUCAKI9ggkvNEEAQ2iLXLdLtgHz5yRo5gwYUITSBgTAlEROOfc+W7psmV5TSLc87PXLPER4Ip2fJlQEQQgoJcAoq03Ow2VI9oaUkqgxthFu12yRbBnzlgh2QmgpwUIVCYgol0IN7JdGZvXHRFtr7iZDAIQSJwAop14wIHbQ7QDB2Bl+phF+77773Mz/nH1Gsm2ckbSZzcCItvnzJ+f30LObeTdSPnfhmj7Z86MEIBAugQQ7XSzjaEzRDuGFAzUELNoF1ezkWwDJyItVibwlrevn++75I4llY9hx+YJINrNM2YGCEDADgFE207WITpFtENQNzhnzKI9cYuJeSJXXPYFtynfxzZ4dtJyJwJc1e5EJfx7iHb4DKgAAhBIhwCinU6WMXaCaMeYSoI1xSraxW3jItgi2iwQgMBKAnJVm+9qr+QRwxqiHUMK1AABCKRCANFOJck4+0C048wluapiF+2DsoefHfSP72knB5+GINAnAW4f7xNcg4ch2g3CZWgIQMAcAUTbXOReG0a0veK2OxmibTd7OtdLANGOLztEO75MqAgCENBLANHWm52GyhFtDSklUCOinUCItGCOAKIdX+SIdnyZUBEEIKCXAKKtNzsNlSPaGlJKoEZEO4EQacEcAUQ7vsgR7fgyoSIIQEAvAURbb3YaKke0NaSUQI2IdgIh0oI5Aoh2fJEj2vFlQkUQgIBeAoi23uw0VI5oa0gpgRoR7QRCpAVzBBDt+CJHtOPLhIogAAG9BBBtvdlpqBzR1pBSAjUi2gmESAvmCCDa8UWOaMeXCRVBAAJ6CSDaerPTUDmirSGlBGpEtBMIkRbMEUC044sc0Y4vEyqCAAT0EkC09WanoXJEW0NKCdSIaCcQIi2YI4Boxxc5oh1fJlQEAQjoJYBo681OQ+WItoaUEqgR0U4gRFowRwDRji9yRDu+TKgIAhDQSwDR1pudhsoRbQ0pJVAjop1AiLRgjgCiHV/kiHZ8mVARBCCglwCirTc7DZUj2hpSSqBGRDuBEGnBHAFEO77IEe34MqEiCEBALwFEW292GipHtDWklECNiHYCIdKCOQKIdnyRI9rxZUJFEICAXgKItt7sNFSOaGtIKYEaEe0EQqQFcwQQ7fgiR7Tjy4SKIAABvQQQbb3Zaagc0daQUgI1ItoJhEgL5ggg2vFFjmjHlwkVQQACegkg2nqz01A5oq0hpQRqRLQTCJEWzBFAtOOLHNGOLxMqggAE9BJAtPVmp6FyRFtDSgnUiGgnECItmCOAaMcXOaIdXyZUBAEI6CWAaOvNTkPliLaGlBKoEdFOIERaMEcA0Y4vckQ7vkyoCAIQ0EsA0dabnYbKEW0NKSVQI6KdQIi0YI4Aoh1f5Ih2fJlQEQQgoJcAoq03Ow2VI9oaUkqgRkQ7gRBpwRwBRDu+yBHt+DKhIghAQC8BRFtvdhoqR7Q1pJRAjYh2AiHSgjkCiHZ8kSPa8WVCRRCAgF4CiLbe7DRUjmhrSCmBGhHtBEKkBXMEEO34Ike048uEiiAAAb0EEG292WmoHNHWkFICNSLaCYRIC+YIINrxRY5ox5cJFUEAAnoJINp6s9NQOaKtIaUEakS0EwiRFswRQLTjixzRji8TKoIABPQSQLT1ZqehckRbQ0oJ1IhoJxAiLZgjgGjHFzmiHV8mVAQBCOglgGjrzU5D5Yi2hpQSqBHRTiBEWjBHANGOL3JEO75MqAgCENBLANHWm52GyhFtDSklUCOinUCItGCOAKIdX+SIdnyZUBEEIKCXAKKtNzsNlSPaGlJKoEZEO4EQacEcAUQ7vsgR7fgyoSIIQEAvAURbb3YaKke0NaSUQI2IdgIh0oI5Aoh2fJEj2vFlQkUQgIBeAoi23uw0VI5oa0gpgRoR7QRCpAVzBBDt+CJHtOPLhIogAAG9BBBtvdlpqBzR1pBSAjUi2gmESAvmCCDa8UWOaMeXCRVBAAJ6CSDaerPTUDmirSGlBGpEtBMIkRbMEUC044sc0Y4vEyqCAAT0EkC09WanoXJEW0NKCdSIaCcQIi2YI4Boxxc5oh1fJlQEAQjoJYBo681OQ+WItoaUEqgR0U4gRFowRwDRji9yRDu+TKgIAhDQSwDR1pudhsoRbQ0pJVAjop1AiLRgjgCiHV/kiHZ8mVARBCCglwCirTc7DZUj2hpSSqBGRDuBEGnBHAFEO77IEe34MqEiCEBALwFEW292GipHtDWklECNiHYCIdKCOQKIdnyRI9rxZUJFEICAXgKItt7sNFSOaGtIKYEaEe0EQqQFcwQQ7fgiR7Tjy4SKIAABvQQQbb3Zaagc0daQUgI1ItoJhEgL5ggg2vFFjmjHlwkVQQACegkg2nqz01A5oq0hpQRqRLQTCJEWzBFAtOOLHNGOLxMqggAE9BJAtPVmp6FyRFtDSgnUiGgnECItmCOAaMcXOaIdXyZUBAEI6CWAaOvNTkPliLaGlBKoEdFOIERaMEcA0Y4vckQ7vkyoCAIQ0EsA0dabnYbKEW0NKSVQI6KdQIi0YI4Aoh1f5Ih2fJlQEQQgoJcAoq03Ow2VI9oaUkqgRkQ7gRBpwRwBRDu+yBHt+DKhIghAQC8BRFtvdhoqR7Q1pJRAjYh2AiHSgjkCiHZ8kSPa8WVCRRCAgF4CiLbe7DRUjmhrSCmBGq2L9o1f/7q7++67x0xy5owZbs011+y4369+9Ss356S57hUvf7k77thPuuc973kd9+v25tx589yzzz7rdt11V/em9dbrtivbBiRQR14DljDw4Yj2wAhrHwDRrh0pA0IAAoYJINqGw/fQOqLtATJTOGddtE+aO9dd+oXLxjwVbrv1Fve6ddbpuN9FF1/sTjnt9Hzbl668wm2y8cYd9+v25lvX3yAX7c9fssBtPnFit107bjs1m/+xxx93H93pI27bbbbpuE/Tb159zbXu1m98w71zw3Fu//32a3q6ruP/+c9/dkccdXS+z1FHHuHe8PrXt/avI6/WYIFWEO1A4MeY9mOTP5bvMW7cODdl8pQx9mYzBGwRkH8XLBCoSgDRrkqK/fohgGj3Q41jeiZgXbS/dsMN7q67lra4XXXNNU4k7V3//M9u3Dve0Xr/sEMPGfWK9v8+9JDbZ7/93cte+lK38EtfdC9ZZZXWcVVXBhXtD+30Uffggw+6Y446yk2fPq3qtLXuN/fkk90ll37ebTNpkrvwgvNrHbvXwZ548kk3fuNN8sOu+fKX3TvfuWFriDryag0WaAXRDgR+jGmLq9pj7MZmCJglMGf2HIdwm42/p8YR7Z5wsXOPBBDtHoGxe38ErIv2cGqbbb6F+/Wvf+2Ozq6C7rvPPsM3j/pabvt+znOeM+p22fC73/3Orbrqqu4FL3jBiP3GEu3f/va3bvXVV3fPf/7zRxwrbwwi2nIr9Stf+cqO4/byZh2i/ctf/tKtlvW56kte0nVq4V3U3Yl7N9GWgcfK6ze/+U3+wcpovIcX9/e//90997nPHf52Y68R7cbQDjywyPYDyx8YeBwGgEBKBJY/uNzJvw1ZkO2Ukm2uF0S7ObaM7ByizVnghQCiXcY8mmhfcsml7oLsFvF3b7KJm/iezdz5F1zoVl9jDXfdNVe773z3u+7fD5yRD/St276Ry3D7/h/baSd3woknup889phbZZUXu00nTHDzTjrJvepVr2pN3km0Rd7OPOtsJ98j/9GPf5zL5yabbOyOOPxwt8H667unn37aTdr2vfkYIuLPPPOMWy0T+VUySX3FK17hvnrtNa3xh6+I9EtNdy1d1hLWLTaf6GYdd1wu9E899Wc3dY/d3c9//gs3acst3Sknz2sNcc65890XFy7M57ry8svcMcce65Y/+L/uySefcHLcC1/4wtbV/0XZFf7Xv+51bsZBB7t777vP7Z99ePHDH/3I3XTLLW7HHT7gjs/m++Of/uROPvkUd/3XvuaeeOKJfJ4Ns9vPpZaNxo9vzSsrjzz6qJs7d5679/773R/+8Ie81s0ynnNOmJ1/WHDX0qXu0MOPcMJOZFmWtdZaK/9wY/v3vc/N/tSsjnnJfn966ik3b97J7lt33uF++tOfuRe/+MXZbfAbugOy2+AnTdpKdsmX9mx3njKUZ7Q8u5tg3Te+Mb91f5/p04tdG/sb0W4MLQNDAAINEVi4aKFbtHiRG5o85KYM8dWKhjAnMyyinUyUUTaCaEcZS3pFIdrlTEcT7fmf/aw765xzc2H729/+lovcG9/wBnfLTV93y7KHqe262+75QA9lV7LkKmixv9xG/tdMgOUK6ksyARY5lOUtb36z++IVl7uXZrebyzJctGX/Tx57nFt81VX59pe97GX5sSLTL88eurbwi1e6tV/zGrfxhE3z7X/5y1/yOWRu+e9V2RXqW2++Kd82/A+pYbc998pvNZdtcjVbrg7LsvFGG7lLFyzIPxCQvnbbY8+813POOtP9yw475JI6ZZddnTD49Omnuw9/6INu6u57uO/+93/noi/1yZVdkW1Zrv/qdU44yTgiwSKvcmu+LFMmT3ZzTzrR7TVtmrvjziV53ePf9S73/R/8wP3+9793a2QfZNz4X9e3rrY/9L3vZftOz+84kOOFQyHTr8lYXJX9n7iHH/6h2//jH5fNrXmkFqlpx6z+U085uWNeIvjT9tnX3f+d7+THygcWT/7xj/m68DzjtFPdv+64Y/66yFbqe+avf3XPZCwkr79m67Ic+4lPuL333itfb+oPRLspsowLAQg0SUCeYyC3jstVbRYIdCOAaHejw7ZBCSDagxLk+EoEEO0yprFEW/bee8893M4775xfkV59tdU6ilshY7L/zkND7uCDZuZXVm+6+eb8iquI6iePPtpNm7a37DJCtOXqrwit3BZ94fnnuUlbbZXL58GHHubuXLLEfWD77d38c87Oj5U/erl1/HPnnec+feZZucCK7MuVWLlSLPOJuM6edbzbberUfOyzsw8Xzs0+ZJCrwld/ebGbNn2ffN+dPvJhd/qpp7bml5Vut44Xoi3SekJ2VXnr7Hvca6yxpns2+59czZYr3JdcdKHbYIMNcmHfcuttcvk/LRPjj2Z3BMiy3/4HuFtvu8299S1vcRddcIFbZ53Xusd/+lO3R/ahgdwt8PEDDnDyXXpZut063umDkQULLnHzsn5Eyk8/9RT3/uzqt4x96qmnuZtvvTWX/nuW3pULe3u2u2ecZs44MH/S/LHHz3I33Hhj/uC10T7kyIur4Q9EuwaIDAEBCHgngGh7R652QkRbbXQqCke0VcSkv0hEu5zhWKItV5bv/Obtpe9ZdxK3Qsbkp76WfOub+dXXYqa9s1uLv3XHnSVZHn5Fu3gy9tprr+2m7rJzcWh+tfe6r/6ne/WrX53XUWzoRbT3yW6Fvu32b7oJ736322rLLYoh3C23fiO/oitXqeVqtSzygcAuU3dz92W3aoskyxVreYL3dV+5Nr91vHVwtlJFtLfbdlt33uf+o/2wfF1E//vf/37riv8XLr8iv+I+88AD8w8p5FZwuXovV57lg4dttt66NcZ/Zbec3333PW7z7Nb37d674lb6XkW7kPjt3/9+99lzz2mNLQ9O++CHP5K//mrWs9yy357tsm8vad0m/+277nK7Z9Ivy73Llrbez9+o+Q9Eu2agDAcBCHghgGh7wZzEJIh2EjFG2wSiHW00aRWGaJfzHEu05dZquW27fekm2vK0a3nqdftyafZk7pOyJ3Svt+667qYbb8g3DRftI7Knh1/7levaDxuxLpIn4i9LL6K9xaSt3S9+8YsR4xVvyBXjr13/n8XL/LvVcrW7WM447TT3kQ9/qHjZ+ruKaLdfdZYD5Xbr42d9yn356qtb47SvzMhuAz/k4IPyK9bbbve+fFO3n1orju1VtDffapKTB7HNPXFO9t3BoWKY/O9NJ26eX+kvrq4Xoj1u3DvcV9rqlqvqRY23Z1fB5Yp7Uwui3RRZxoUABJokgGg3STetsRHttPKMrRtEO7ZEEq0H0S4HW7doyxPGly65M7/1uJhJHpwmt5C/N/u96/PP+1z+9nDRLm7vftN667kzTj+tOLT09zuy26zlKrMsvYh28Z3oD/7rjm7vvfbKj5c/iidxy+3T67/97fn7ciVZrtIuXbastZ/UdG32ELjhP2PWj2jfnN0yfsDHD8zvEDjysMPcuuutm89z+hmfdj94+GFXiLZcSd/43RPyB6ddctFFbsu2K/G33X67e+CBB9xmm23W+g3zXkW7uMug/Wq+FCIPbtt+h3/Ja7p68WL3T//0ztYV7eEfuiDaOSb+gAAEIDAqAUR7VDRsGEYA0R4GhJe1EkC0a8XJYKMRQLTLZOoWbRldnlp9YHZlVp44fvc997g99to7v5J75OGHuf2zbbIMF+32q+Sf++x8977ttstFWG4pv+nmW9yRRxyePwE9Pzj7oxDt/ffdN99WvN/p7+KKrHzv+qrsCbDysDK5sizf/5YaDz3kEPe6ddbJDy2EX76L/qXsSv6+++/vfvazn7uhf/s3N2/uSaXhC9GW3yBfvPBLpZ87K76jPfyKdlHL29/2tvzBaTKgCOt2798+fwjb1F12cSfM/lQ+TyHDMv4lCy52UpNchZYPAuSp7MXD1WTndtFecOGFbquttszHkD/a2RYPrzvv/PPdGZ85M//w4KILL8hvq5cnuc875RR3zbVfyW+Tv/fuZfl3sYuaEe0WUlYgAAEIVCKAaFfCxE4ZAUSb06BJAoh2kzk+6qIAABDfSURBVHQZu0UA0W6hyFfqFm15mJlcKRYplNu8H/3JT/J55LvXi7OfvpKnZcsyXLTlCu5Bhxzqvn7TiieHy/ein8qe1l08HfykOSe4naes/HmUYz55bP6EcvlO+GuzsbfcYov8J6/ywYf9IWPIU9J//Mgj+Ra5ev1YJrfyM1svetGLcvmW9+Rny3bedWr+veyTM6menMn1km9/2+2597S8p3PPPsvt8IEPtEYXIT0ye8CbLNKfPFFdfv5MltFEW55ELttkkZ/yWmvNNbOf11pxB4A8mE34yW3q8uC1e+691+2z737508Dlqrt8QPDwD3+Y1yJPAJeHtcmD3YpFbuMWaZff5Bb2M2fMyH9+q5NoCxP5AESuossit33/3//9Kv8AQmqQnxrbfbcVD4hDtAvC/A0BCECgNwKIdm+8LO+NaFtOv/neEe3mGTNDRgDRLp8GdYu2XPWUJ3TL1V75jWmRNnmy9tlnfib/jnYx+3DRlvdFtj81+wR3Q/Y72vJzV7KIMB6TyayM2b7IT2LNOfGk/BZvEXt5avZ/zD+3fZfSulwJPuoTx+TyKj8NJsvb3vpWd2pWp3yvXK4Ifyh7CNhjjz+ePSF8q/wp38UAs0+Y4y6/8sr8N6yvv+4699rXrp1vkv6OPf647He/b3IypsjvfdlVYFlGE23ZJlfp5Snoxc9jyW+Vy8+JHTjzoPzhbBPf8x73+UsWyK7uf/7nAXdc9tTyhx76Xv6gNvnZrg2zn4r5zKfPKEm27CsfUnwmG1dkXJbjs9/73jP7bfBOoi3b5bfFjzr6E/nPkMlvassi4i53I7TzRrRzNPwBAQhAoGcCiHbPyMwegGibjd5L44i2F8xMgmg3cw4MlzH5TeZHH3k0u9L7mtYDzKrOLOIsV1pXW3W1ltRWPXas/Z5++unst6cfzq7grtPoU7LHqkMkW+pYc821KvUoV98f+fEjbr03rTfiu+JjzTXWdnnSuvCW3yIvHjY31jG+t/MwNN/EmQ8CEKiDAKJdB0UbYyDaNnIO1SWiHYq8sXkR7WYCHy7azczCqFYJINpWk6dvCOgmgGjrzs9n9Yi2T9r25kK07WUepGNEuxnsiHYzXBl1BQFEmzMBAhDQSADR1phamJoR7TDcrcyKaFtJOnCfiHYzAdx++zfdLdlvKcsDu6ZPn9bMJIxqlgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQKDEEC0B6HHsRCAQCgCiHYo8vrmRbT1ZaapYkRbU1qKa0W0FYdH6WYJINpmo6dxCKgmgGirjs9r8Yi2V9zmJkO0zUUepmFEOwx3ZoXAIAQQ7UHocSwEIBCKAKIdiry+eRFtfZlpqhjR1pSW4loRbcXhUbpZAoi22ehpHAKqCSDaquPzWjyi7RW3uckQbXORh2kY0Q7DnVkhMAgBRHsQehwLAQiEIoBohyKvb15EW19mmipGtDWlpbhWRFtxeJRulgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQKDEEC0B6HHsRCAQCgCiHYo8vrmRbT1ZaapYkRbU1qKa0W0FYdH6WYJINpmo6dxCKgmgGirjs9r8Yi2V9zmJkO0zUUepmFEOwx3ZoXAIAQQ7UHocSwEIBCKAKIdiry+eRFtfZlpqhjR1pSW4loRbcXhUbpZAoi22ehpHAKqCSDaquPzWjyi7RW3uckQbXORh2kY0Q7DnVkhMAgBRHsQehwLAQiEIoBohyKvb15EW19mmipGtDWlpbhWRFtxeJRulgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQKDEEC0B6HHsRCAQCgCiHYo8vrmRbT1ZaapYkRbU1qKa0W0FYdH6WYJINpmo6dxCKgmgGirjs9r8Yi2V9zmJkO0zUUepmFEOwx3ZoXAIAQQ7UHocSwEIBCKAKIdiry+eRFtfZlpqhjR1pSW4loRbcXhUbpZAoi22ehpHAKqCSDaquPzWjyi7RW3uckQbXORh2kY0Q7DnVkhMAgBRHsQehwLAQiEIoBohyKvb15EW19mmipGtDWlpbhWRFtxeJRulgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQKDEEC0B6HHsRCAQCgCiHYo8vrmRbT1ZaapYkRbU1qKa0W0FYdH6WYJINpmo6dxCKgmgGirjs9r8Yi2V9zmJkO0zUUepmFEOwx3ZoXAIAQQ7UHocSwEIBCKAKIdiry+eRFtfZlpqhjR1pSW4loRbcXhUbpZAoi22ehpHAKqCSDaquPzWjyi7RW3uckQbXORh2kY0Q7DnVkhMAgBRHsQehwLAQiEIoBohyKvb15EW19mmipGtDWlpbhWRFtxeJRulgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQKDEEC0B6HHsRCAQCgCiHYo8vrmRbT1ZaapYkRbU1qKa0W0FYdH6WYJINpmo6dxCKgmgGirjs9r8Yi2V9zmJkO0zUUepmFEOwx3ZoXAIAQQ7UHocSwEIBCKAKIdiry+eRFtfZlpqhjR1pSW4loRbcXhUbpZAoi22ehpHAKqCSDaquPzWjyi7RW3uckQbXORh2kY0Q7DnVkhMAgBRHsQehwLAQiEIoBohyKvb15EW19mmipGtDWlpbhWRFtxeJRulgCibTZ6GoeAagKItur4vBaPaHvFbW4yRNtc5GEaRrTDcGdWCAxCANEehB7HQgACoQgg2qHI65sX0daXmaaKEW1NaSmuFdFWHB6lmyWAaJuNnsYhoJoAoq06Pq/FI9pecZubDNE2F3mYhhHtMNyZFQL9Eli6bJmbuvsebqPxG7n5587vdxiOgwAEIOCdAKLtHbnaCRFttdGpKBzRVhGT/iJjFW0hO3GLiTngh7/3kH7QdACBmgick8n1OfPnu+nTpuf/1TQsw0AAAhBonACi3TjiZCZAtJOJMspGEO0oY0mvqJhF++IFFzv576AZM9xBM2ekB5+OINAHgeK2cbmaLVe1WSAAAQhoIYBoa0kqfJ2IdvgMUq4A0U453Yh6i1m0BVNxVRvZjuikoZRgBOSWcbl1nNvGg0XAxBCAwAAEEO0B4Bk7FNE2FrjndhFtz8CtThe7aBdXtSUfZNvqWUrfQgDJ5jyAAAS0E0C0tSfor35E2x9rizMh2hZTD9Bz7KItSNplW15vOmECt5ILCJbkCSxduizvUb6TLQtXsnMM/AEBCCglgGgrDS5A2Yh2AOiGpkS0DYUdslUNoi187r///ly477v/vpC4mBsCwQjw8LNg6JkYAhCoiQCiXRNIA8Mg2gZCDtgioh0QvqWptYh2eyYi3Qh3O5Hm1xctXpRPMjR5qPnJmGEEAZFsFghAAALaCSDa2hP0Vz+i7Y+1xZkQbYupB+hZo2gHwGR+ylmzZ7nly5e7ObPnuHHjxpnnAQAIQAACEOidAKLdOzOrRyDaVpP30zei7Yez+VkQbfOnQCUAiHYlTOwEAQhAAAJdCCDaXeCwqUQA0S7h4EXNBBDtmoEyXGcCiHZnLrxbJoBol3nwCgIQgAAEeieAaPfOzOoRiLbV5P30jWj74Wx+FkTb/ClQCQCiXQkTO0EAAhCAQBcCiHYXOGwqEUC0Szh4UTMBRLtmoAzXmQCi3ZkL75YJINplHryCAAQgAIHeCSDavTOzegSibTV5P30j2n44m58F0TZ/ClQCgGhXwsROEIAABCDQhQCi3QUOm0oEEO0SDl7UTADRrhkow3UmgGh35sK7ZQKIdpkHryAAAQhAoHcCiHbvzKwegWhbTd5P34i2H87mZ0G0zZ8ClQAg2pUwsRMEIAABCHQhgGh3gcOmEgFEu4SDFzUTQLRrBspwnQkg2p258G6ZAKJd5sErCEAAAhDonQCi3Tszq0cg2laT99M3ou2Hs/lZEG3zp0AlAIh2JUzsBAEIQAACXQgg2l3gsKlEANEu4eBFzQQQ7ZqBMlxnAoh2Zy68WyaAaJd58AoCEIAABHongGj3zszqEYi21eT99I1o++FsfhZE2/wpUAkAol0JEztBAAIQgEAXAoh2FzhsKhFAtEs4eFEzAUS7ZqAM15kAot2ZC++WCSDaZR68ggAEIACB3gkg2r0zs3oEom01eT99I9p+OJufBdE2fwpUAoBoV8LEThCAAAQg0IUAot0FDptKBBDtEg5e1EwA0a4ZKMN1JoBod+bCu2UCiHaZB68gAAEIQKB3Aoh278ysHoFoW03eT9+Ith/O5mdBtM2fApUAINqVMLETBCAAAQh0IYBod4HDphIBRLuEgxc1E0C0awbKcJ0JINqdufBumQCiXebBKwhAAAIQ6J0Aot07M6tHINpWk/fTN6Lth7P5WRBt86dAJQCIdiVM7AQBCEAAAl0IINpd4LCpRADRLuHgRc0EEO2agTJcZwKIdmcuvFsmgGiXefAKAhCAAAR6J4Bo987M6hGIttXk/fSNaPvhbH4WRNv8KVAJAKJdCRM7QQACEIBAFwKIdhc4bCoRQLRLOHhRMwFEu2agDNeZAKLdmQvvlgkg2mUevIIABCAAgd4JINq9M7N6BKJtNXk/fSPafjibnwXRNn8KVAKAaFfCxE4QgAAEINCFAKLdBQ6bSgQQ7RIOXtRMANGuGSjDdSaAaHfmwrtlAoh2mQevIAABCECgdwKIdu/MrB6BaFtN3k/fiLYfzuZnQbTNnwKVACDalTCxEwQgAAEIdCGAaHeBw6YSAUS7hIMXNRNAtGsGynCdCSDanbnwbpkAol3mwSsIQAACEOidAKLdOzOrRyDaVpP30zei7Yez+VkQbfOnQCUAiHYlTOwEAQhAAAJdCCDaXeCwqUQA0S7h4EXNBBDtmoEyXGcCiHZnLrxbJoBol3nwCgIQgAAEeieAaPfOzOoRiLbV5P30jWj74Wx+FkTb/ClQCQCiXQkTO0EAAhCAQBcCiHYXOGwqEUC0Szh4UTMBRLtmoAzXmQCi3ZkL75YJINplHryCAAQgAIHeCSDavTOzegSibTV5P30j2n44m58F0TZ/ClQCgGhXwsROEIAABCDQhQCi3QUOm0oEEO0SDl7UTADRrhkow3UmgGh35sK7ZQKIdpkHryAAAQhAoHcCiHbvzKwegWhbTd5P34i2H87mZ0G0zZ8ClQAg2pUwsRMEIAABCHQhgGh3gcOmEgFEu4SDFzUTQLRrBspwnQkg2p258G6ZAKJd5sErCEAAAhDonQCi3Tszq0cg2laT99P3/wMAAP//o4+TrAAAQABJREFU7J0J3FRV3cdPb0pule17aqWpYPWgggrumra9laa4gQoqaIAKLrkvuSuI8LigggpaLpWmbWppJmBgSiYokvVm+y65ZIrVe34Hzjz3mWdmnpm5M3PPved7Ph+euXPv2f7f/2Hu+d2z3Nf88/nn/msIEGgzgRf/+ZJ58cWX2lwK2eedwOlnnm6WLl1qzj7zbDNw4MC8m0P9IQABCEAgAwJ777O3u4foXkKAQC0Ca665hnnT+m+oFYVrEGiawGsQ2k2zI2EDBBDaDcCKOCpCO2LnYzoEIACBFhFAaLcIZATZILQjcHKGJiK0M4QfU9EI7Zi83bytCO3m2ZESAhCAAARWEUBo0xLqJYDQrpcU8ZohgNBuhhppGiaA0G4YWZQJENpRuh2jIQABCLSUAEK7pTgLnRlCu9Duzdw4hHbmLoijAgjtOPyc1kqEdlqCpIcABCAAAYQ2baBeAgjtekkRrxkCCO1mqJGmYQII7YaRRZkAoR2l2zEaAhCAQEsJILRbirPQmSG0C+3ezI1DaGfugjgqgNCOw8/NWHnLrbeYEfuOcEnLhbauKfjr7gt/IAABCEAAAgkC5feKcqGte8uIfUbwNosEMw5XEUBo0xLaSQCh3U665F0igNAuoeAgQUCdo1tvu7X0Gpak0F6ydIm7pui87isBjUMIQAACEOhFQMJaYd999nUPZpNC299X9MpIXvfVCxtfLAGENs2gnQQQ2u2kS94lAgjtEgoOyggkxbYu6T3a6hDpU8F3nNwX/kAAAhCAAATKCOh+IUGtoHuGf4Cr7/6egsgWDUI5AYR2ORG+t5IAQruVNMmrKgGEdlU0XLAEvNguh4HILifCdwhAAAIQqEQgKbaT1xnJTtLguJwAQrucCN9bSQCh3Uqa5FWVAEK7KhourCZQLrYR2TQNCEAAAhBohEC52EZkN0IvzrgI7Tj93imrEdqdIh15OQjtyBtAneZ7sY3IrhMY0SAAAQhAoBcBL7YR2b2w8KUKAYR2FTCcbgkBhHZLMJJJfwTyKLRnzZ7lzOrq6jKDuwYb/33M6DHufPL7o4sfNYsXLzY+bvn3ZFwlTn4vj+u/VyrHp61WThHSTpo8ya3RTtrfjL2eRbW0SR94rvpUuTGlFZ9k2xUDAgQg0DoC/remdTmSU38E/Lrs/uJxvbUEdD9RUJ8pLwGhnRdP5bOeCO18+i13tc6T0JbI0k1i7tw55sqZV5kjx44148aNM4euFmDXWwHeZa9/dPUN5TErsBcuXGSOGDfWDB0yxFw9c6a56qqZqdP6cny5KkdB5fpyfLm+jr5c0rbHJ56z94nn3O620M5yjxw7zrXVq22bHTRoC/eQIU+dpNz9GFLhKAh4ce0/ozAaIyGwmoDuIaNHj86F4EZo02zbSQCh3U665F0ikAehLYE9fsJ4V+enn1pmFi5aZBbZfxPGrzqn7woSuQq1vte61o609dSpWrmxpO20T8RbbEMvV/X07fyVlSvN5lZsq5PUPaNblwgQgECDBCSukwL76NX3lSGr7x0NZkd0COSGwHR73/D3PFVaM8T87LRQjUBoh+qZYtQLoV0MPwZvRR6EtiBqFHvAgDVK4jp4sFQQAi0mcODIUVZod5mRIw9ucc5kB4HiE0iKbAls/6C2+JZjIQR6CEhs616iELrYRmj3+I2j1hNAaLeeKTlWIBC60NZI9o0S2WuuUaH2nIJAfAT0f/bBefNzMfUvPu9gcYgEkrOibrL3Ez9bKMS6UicItJtAXsQ2QrvdLSHu/BHacfu/Y9aHLLT9CIQ6ReocESAAAWM+9OFNHYYF8xaAAwIQqIOAHthKbCOy64BFlCgIaCr59O7uoEe1EdpRNMXMjERoZ4Y+roJDFtryxPLly4x+bBmBiKtdYm11AuogrbRrtgeuXrNdPSZXIAABP5rNA1vaAgR6Ewj9oS1Cu7e/+NZaAgjt1vIktyoEQhba/MhWcRqnIWAJ/Pkvf4cDBCDQDwFGs/sBxOVoCYQ+qk0fMNqm2RHDEdodwUwhoQptPwox0e4sPnH1zrB4CwIQWEVAHST93w1911j8BYGsCSC0s/YA5YdKAKEdqmeoVycIILQ7QZkyXGf9xRdfCo4EQjs4l1ChgAiEPuUvIFRUJXICXmjr1ZAECECgh4DfFC3U3ccZ0e7xFUetJ4DQbj1TcqxAINQRbVV13XXXNuuus3aFWnMKAnETUAdpxYrnTZd93RcBAhCoTgChXZ0NV+ImgNCO2/+xW4/Qjr0FdMj+kIX2cjsCsaZ9dzYboXWoMVBMrgiwRjtX7qKyGRFAaGcEnmKDJ4DQDt5FVLCNBBDabYRL1j0EQhXaTB3v8RFHECgncODIUXbn8VdNt12rTYAABKoTQGhXZ8OVuAkgtOP2f+zWI7RjbwEdsj9koT179mwzedIxjGh3qC1QTH4IsEY7P76iptkSQGhny5/SwyWA0A7XN9Ss/QQQ2u1nTAmWQKhCW85hjTZNFALVCTB1vDobrkDAE0BoexJ8QqA3AYR2bx58i4sAQjsuf2dmbahCW1PHly553AwfPowR7cxaBwWHTAChHbJ3qFsoBBDaoXiCeoRGAKEdmkeoTycJILQ7STviskIW2uog8R7tiBsnplclwNTxqmi4AIFeBBDavXDwBQIlAgjtEgoOIiSA0I7Q6VmYHKrQFou5c29gRDuLRkGZwRNgM7TgXUQFAyGA0A7EEVQjOAII7eBcQoU6SACh3UHYMRcVstBmjXbMLRPb+yPA1PH+CHEdAsYgtGkFEKhMAKFdmQtn4yCA0I7Dz5lbGarQ1hrtuXPnuPXZE+0UcgIEINBDQB2kZ1c8ZwZ3De45yREEINCHAEK7DxJOQMARQGjTEGImgNCO2fsdtD1koa0OEmu0O9gYKCo3BFijnRtXUdGMCSC0M3YAxQdLAKEdrGuoWAcIILQ7AJkiwn691xK76/guO++ImyAAgTICM7q7zQsvvmTGjB5TdoWvEIBAkgBCO0mDYwj0EEBo97DgKD4CCO34fJ6JxaGOaAsGa7QzaRIUmhMCrNHOiaOoZqYEENqZ4qfwgAkgtAN2DlVrOwGEdtsRU4AIhCq0tUabqeO0UQhUJjB9Rrf7v8uIdmU+nIWAJ4DQ9iT4hEBvAgjt3jz4FhcBhHZc/s7MWoR2ZugpGAJNE2CNdtPoSBgZAYR2ZA7H3LoJILTrRkXEAhJAaBfQqSGaFKrQFiumjofYYqhTCATUQVqx4nnT1dUVQnWoAwSCJYDQDtY1VCxjAgjtjB1A8ZkSQGhnij+ewkMW2sufWmbWHLCGe8VXPB7BUgjUR4A12vVxIlbcBBDacfsf66sTQGhXZ8OV4hNAaBffx0FYGKrQZo12EM2DSgRK4MCRo8zKla+abrtWmwABCFQngNCuzoYrcRNAaMft/9itR2jH3gI6ZH/IQnv27Nlm8qRjGNHuUFugmPwQYI12fnxFTbMlgNDOlj+lh0sAoR2ub6hZ+wkgtNvPmBIsgVCFtpzDGm2aKASqE2DqeHU2XIGAJ4DQ9iT4hEBvAgjt3jz4FhcBhHZc/s7M2lCFtqaOL13yuBk+fBgj2pm1DgoOmQBCO2TvULdQCCC0Q/EE9QiNAEI7NI9Qn04SQGh3knbEZYUstNVBmjje/rOfBAhAoIcAU8d7WHAEgVoEENq16HAtZgII7Zi9j+0IbdpARwiEKrRl/Ny5NzCi3ZFWQCF5I8BmaHnzGPXNigBCOyvylBs6AYR26B6ifu0kgNBuJ13yLhEIWWizRrvkJg4g0IcAU8f7IOEEBPoQQGj3QcIJCDgCCG0aQswEENoxe7+DtocqtLVGe+7cOW59NlPHO9ggKCoXBNRBenbFc2Zw1+Bc1JdKQiArAgjtrMhTbugEENqhe4j6tZMAQruddMm7RCBkoa0OEmu0S67iAAIlAqzRLqHgAAI1CSC0a+LhYsQEENoROx/TDUKbRtARAqEKbRm/xO46vsvOO3aEA4VAIE8EZnR3mxdefMmMGT0mT9WmrhDoOAGEdseRU2BOCCC0c+IoqtkWAgjttmAl03ICIQtt1miXe4vvEOghwBrtHhYcQaAaAYR2NTKcj50AQjv2FhC3/QjtuP3fMetDFdpao83U8Y41AwrKGYHpM7qN/u8yop0zx1HdjhNAaHccOQXmhABCOyeOopptIYDQbgtWMi0ngNAuJ8J3CIRPgDXa4fuIGoZBAKEdhh+oRXgEENrh+YQadY4AQrtzrKMuKVShLacwdTzqponxNQiog7RixfOmq6urRiwuQQACCG3aAAQqE0BoV+bC2TgIILTj8HPmVoYstJc/tcysOWAN94qvzEFRAQgERoA12oE5hOoESQChHaRbqFQABBDaATiBKmRGAKGdGfq4Cg5VaLNGO652iLWNEThw5CizcuWrptuu1SZAAALVCSC0q7PhStwEENpx+z926xHasbeADtkfstCePXu2mTzpGEa0O9QWKCY/BFijnR9fUdNsCSC0s+VP6eESQGiH6xtq1n4CCO32M6YESyBUoS3nsEabJgqB6gSYOl6dDVcg4AkgtD0JPiHQmwBCuzcPvsVFAKEdl78zszZUoa2p40uXPG6GDx/GiHZmrYOCQyaA0A7ZO9QtFAII7VA8QT1CI4DQDs0j1KeTBBDanaQdcVkhC211kCaOt//sJwECEOghwNTxHhYcQaAWAYR2LTpci5kAQjtm72M7Qps20BECoQptGT937g2MaHekFVBI3giwGVrePEZ9syKA0M6KPOWGTgChHbqHqF87CSC020mXvEsEQhbarNEuuYkDCPQhwNTxPkg4AYE+BBDafZBwAgKOAEKbhhAzAYR2zN7voO2hCm2t0Z47d45bn83U8Q42CIrKBQF1kJ5d8ZwZ3DU4F/WlkhDIigBCOyvylBs6AYR26B6ifu0kgNBuJ13yLhEIWWirg8Qa7ZKrOIBAiQBrtEsoOIBATQII7Zp4uBgxAYR2xM7HdIPQphF0hECoQlvGL7G7ju+y844d4UAhEMgTgRnd3eaFF18yY0aPyVO1qSsEOk4Aod1x5BSYEwII7Zw4imq2hQBCuy1YybScQMhCmzXa5d7iOwR6CLBGu4cFRxCoRgChXY0M52MngNCOvQXEbT9CO27/d8z6UIW21mi3e+r4o4sXm+XLl/fL+jOf/rRZd911K8b7xz/+Yb5y8y3mjW94g9lvxL7mf/7nfyrGq3Xy5ltucZd32mkn8853vKNW1I5eW/bUU+aZZ54xzz77rCt3vxEjOlp+I4U9/YtfmG99+9vmYx/9qNlpx/pmQTSTppE6tTMuu463ky55F4lAKEL77nvuMQ8//HC/aCfYV1q+8Y1v7DdekSM8+OA888CPHjDvfe/7zCEHjyqyqZnahtDOFD+FZ0wAoZ2xA2IpPmahLYF77w/u69fVF55/nnnrW95SMZ46T7d+7evu2pdOON5s/KEPVYxX6+RhY8eZ//73v2bysceYzTfbrFbUitdus+X/9W9/M9ttu4356Ec+UjFOIydfffVVc8PcuWbBQz/ulWzW1TN7fe/0l1deecXMuu56V+zee33evP1tbytV4bIZM8zPHl9i1lxzTXP59MvMa1/7WnftV796xnz37rvt+TXMYaNHl+LroFqaXpEC/cIa7UAdQ7WCIxCK0D7n3HPN9XPm9svnh/f9wLz3Pe/pN16RI3RffrmZNn2G2XLwYHPLV79SGFMvvOhi85vf/tbs9fnP2WVxO2duF0I7cxdQgQwJILQzhB9T0aEKbfmg3VPHf/LII2bZsqdK7p7/0ENGYu4DG21kNnj/+0vnP/+5z1Yd0f71b35jpndfbl6/3nrmSyeeYF43YEApXb0HaYX2Weeca37961+bffbe2+y5x8frLbZqPHG5cubV7vqwbbc1H/nIFmaAtesjW2xRNU0nLrz0r3+Z8ROPdkWddvLJZsMNNygVu8D67itfvdnuwt1lRh96SOn8Tx97zMy4/Arnlyu6Z5TO66Baml6RAv2iDtKKFc+bLmsvAQIQqE4gFKH93e99z/z4xwtLFf367bebf9nfNM3CGbj55qXzk+wD19hHtIsqtP/383uZJ554wpx0wglmzJjeD35LDaCDBwjtDsKmqOAIILSDc0kxKxSy0F7+1DKz5oA13Cu+OkH/2OOON88995wVrHtZwbpH3UVqNPo1r3lNzfgvvviied3rXmfWWGONPvH6E9ovvPCCWXvttUujtOUZ1CO0VUfl8/rXv748eZ/vN33lq+a+H/7QCVkJ2jTh3//+t3nppZfMevZBRD2hFstaQlt5V0pbS2hXS+PrWW/dV65caVbaWQDrWB91MrBGu5O0KSuvBEIR2uX8thk23Pz1r381Jx5/nDn8sMPKL7vvml30/PPPmze96U0Vr5ef/M9//tNn+VKlc+Xp9P2ll/5lXv33q+6hcaXr/px+Z1Xvt771rf3e93yaSp8rVqxwv9mVbGtGaP/pT38y69n727rrrFOpuNI58dTMp7XWWqt0rtaBlk7pvlnp3l0pXS3eCO1KxKqf00y0N63/huoRuAKBFAQQ2ingkbR+AqEK7U6s0S6nVE1o33Pv98337BTxTTbe2Gy26YfNd777PbOOXbN9xqmnmF/+3/+Z7iuudFldfMH5Tgwn429nR4S/evPN5s9/+YsV2gPMhzfZxBw8cqRZf/31S8VXEtrqzNx+xzfNI48+av5oOxBrWZG+8cYfslPOPm/e/773GYm7E08+xeUhAS1RqDivs52HN9j14meedqq7pmlq37NTp5c+8aTrsGkN+BZbDDJf2Guvqh2Hu++5106H/5oZNHBzc+zRq0aQldnUadPMb3/3e/O/n/5Uv+ugNWX79m/eYZ5++hfmXy+/bN71znearbbc0nz2fz9T6pwlOe2w/XBzxzfvNJohoCnhw7bb1uzx8VWj81orfvW1s4w6MOokKWjNvDo+W9oR3QMP2N/4vDbaYAMzYfwXzbe/8x3zg/t/6GYoSOjrQYi4KIz4whfM0KFD+qRxF+2feuquuIt/+lPzowcfNE/Zdf4rV75qNrRla/r+znatfbsDU8fbTZj8i0Igj0L7cbsMZuq0S82jjy42L/7zn+aDH/iA+cSee5qjJ04o/X5eZ5fRXD1rltl6q63Mjjtsb2bYmVVaQrT1VluaKRdfbDQzadpl0909avPNNzPnnHWW2Xz1yLkeQB75xfHufvXVm240x06abJYsXeqEr0bXT7TLoIYOGdKrCTxjZ02de+555hG7t4n2JtE9TL+/p5xysrsn+ciadaT71lj78OAXv/ylXZ71A/OpT+xpTjv1VJf/DTfMMdfMnm0kjBXe/va3u2VTe9t7kg/1Cm2xOf/8C8y3v/vd0r1h0KCB5nRblmY3JYPWfU+9bJpZuvQJ9zBC09LPP+9cM2L/A1y062fPcvdnfdG95tJplxktDdM9XuJ9K8v1uMmTbR9g01K22w7f3h132+VKd9j7tR5Q/9M+VB+y9dbm5JNPcjPjNEtux112dfEk2vXwZD17/1rb5qmHFXfdcXspv04fMKLdaeKUFxIBhHZI3ihwXUIW2rPtzXjypGP63PDb5Y5qQvuub33L3HHnXU7YSdBKBEsMnn/uOWb5z39uLrz4Elelq6+8wnVcfHxNI/+3vWErvkaz/2k7BQrvfte73CiGH+UtF9qKf4Ndy/fg/Pkuvp6mK63K1vFJdor6m+0Ix8RjJ7nrEt1Ko3XJ+re+3UhHddO5E0462fz973939X3nO99hfv7zp41GhnffbVez3777uvTlf9QZOPeCC+3U5BVmt113MZt++MO2Y/La0gOD7YcNM4NtJ0UPHTQyUB5+Y8XyRVOmujprcziJYi+Qk+V6TuvYDse/befjP7a+qrM6Igoj9tnHfHz33dxDgu4rrnDn1GlRULkSz1tb8a6p4j6vD33wg46PRPvd997rOkw+P01/VzjICvNh223XJ42u1Vv3P/zxj+aMs852PtFSA+X986efdt8nfPEoNx1U+bUrILTbRZZ8i0Ygb0L7ySefNAeOOtjNrnK/51bQ/s0KaIVDDznYnHLSSe7Yi1E9cNS9QQ8SJYAV9DBWD2h139GDWP2u6vr8H/3Izo5ayyyym7IdcNBIF1fnNZPrzW9+s7tX6KSE5Zwbri/t+aGHnYfYVwlqJFtBQvEFKygV3mbvhUmRepCt+48XLnQjxpoar6Df8nPP+bK58qqrzJRLp7lzEv0v2AeneriqMPuaa8wO9oGBgretvzXah9h9N+bNX+DuzV0f+5i7H4uBbLr7O992dVN+D/34x+awI8aal+1DX4W32D1XxFRT9D2zb37jG2bgwM0dq5NPOdXc9vVVe6+Ii/joPqJ0WjOuh6oKG2+6mYv/LntP/8Mf/tCLy/ve+17zja/dZnR/23LIUBdf5csX8pn+qR9x3/fvddey+IPQzoI6ZYZCAKEdiicKXo9Qhbawt3uNdrlr+xPair+7FZ472l2tdYPWVOFaQlvxd9x+ezeKK7GpEVA/MruvHVXd4+O7K4opF9raDfv8Cy9yQnKiHZ3dYtAgJ1qvuvoa84TthGlk+MixR7i0+lNt6rgE83EnfsnFO+fss9yosvLWSLk6JbvsvFOfaYY+03/aUWBt3PLb3/3On+rzecmFF1Sc0qiOlOq5hR1ZOHzMGNfReOxnP3NrpZXJ2WeeYd7z7neXhK7O7Wo3hvmMHSmXMJ9z401uNMY/zNB1hVpTx8uF9qoUxtSaOl4pTb1111pLjcqoHUy56ELnK42qawRn222Gtl1oyz6mjnsv8wmB6gTyJrQPPnS0mb9ggRul1si0fmPuu/9+M/bIo5yR3/nWXW52lRejOnnjnBvMNkOHmsvsBmIz7EZiCmNGH2qOtyOwTz213Hx29WjxTXPnuAfXSaGtkd8v2/uDZltpJPr4E0504ncXOzPn6plXubyOsBt2arRWI+uKq1H0h3/yE3Pqaae7Ed/dd93VXHnFqnK90JaQPOuM093spze84Y1O4F9z7bXm1tu+Zg468EBz8KhVQl8j4Jp1pQ3CLrrgAleet62W0NY9SqPZGjG/7tprzGZ2I1GJ4e132tn8xc4gu8jOMNMMMAU9VJDNmpV24fnnu1ldenggQf2zxx93cbzQFgONcutB7jXW/h132MGJ8aPtg235RcvKNIKt4IX2O+xMsYvt/XDbbbZx5Yw8+BD3kPeSiy4yn/vs/7q4+sPU8RKKug6YOl4XJiI1SQCh3SQ4kjVGIFShranjS5c8boYPHxbMiLZGkyUu1YHwoZbQlmicevFFvdZFX3rZZXaK3hNuN9Wjxo112ZQLbb+TuZ6k77zjDr4o87vf/96OFCxy4lb18KGa0Nb1E+zox9/+tmpEe/DgLrcr+ia2Q1VrPfHLL79iVE+N0Gq3dU0llM2LbMdKI9MaNdZmcdokTmvHk0FT7iYcfYybLq6N1DSK7oN2eNfIwCG2g7X98OEloS1O06ZcUtpw7slly8wlUy91yaZfOrV0vt1Cu5G6a4rmiXa2gIJ46KGCuGp0O9k+XIQ2/NFIxLMrnrPTIwe3IXeyhEBxCORJaGtkesuth7jR4r2tSNxoow1LjtCO5RpRPs+ODO9rR4i9GN1oww3NvXd/z8XTRlsScwrf/fa3Sm/B2ME+yPz97/9QSpsU2pfPmF5apqN0V82c6X5/tXb64R8/5ASj6vS8HRnXlOxRIw9SNBeut9PAzznvPPcw4CcLf+zEqRfau+2yi7nKzvIqDxpJfsIuZfrTn1dNHZd4vetb33bTrb9y46pd2b1ttYS2z/dXzzzjXtOpe4uCHtSKw4QvftFNtdeMr49tuZUbzdYD5+RrKrXESAJawQvta+10/AvsQ2aNUh+4/37umv7oXn/nXd8yEtXz7avHFLzQTs400Pn9DzzIPYg42LLSlHkfENqeRH2fCO36OBGrOQII7ea4kapBAiELbXWQJtp3ik60n50I/Y1o+2nJybrUEtraFbt8MzGNet5y223ufdnnfvlsl1W50L7WjpQ+ZEdMawUJUwl/hVpCW7uR65VYyZFpTXP+nF0r7ddAl5dz5113mW/aDoVGlNWp8xu9+XL2/cLeVdNqLfpJdpSgVtBIidZV+xHlDTZ4vzn9lFXrzZUumcdFdvThLW95s8uu3UI7WW61+vu667o6qzfajeO00Z0P6pxqDb6EdzsDU8fbSZe8i0QgT0Jb06h32W3VTKdqPjjogAPMmXakuJIY1X4Rn/rMqhHURQ8tcNPBlY/yVN6654ywS4a80NZv+08ffaTXBmJJsf7QvAeNRo533f3jrjrfv+fu0rRpndAMqT0/+Sl3zb+WzAvto8aNM9pBPRluvOkmc64dhZb4LQ8aJdd6cYVKtpXHVx6nnX6G+Zqd8l0pjD/qKHPM0RON1pb7+uuBhB5M+KAHF9qUTsEL7ePsjuBaelQreLZeaF991ZW9Xtfl89DDkgvtyLoPCG1Por5PhHZ9nIjVHAGEdnPcSNUggVCFtsyYO/eGoEa0GxXaGtm89JKL3dRp7xZtnKYp5B+z77vWpl0K5UL7O3Zjl6/ffocT44eNGe2T9vrUGjz/rmgvgKu93ktr9FbYdWtPPrnMTZPTtG4FTeur9L7W7suvMIvtZjnakGz0IYe4uC7+6teI1RLaGpGZcMwxdvTgFaPp8ZtssnEpvdamqWOnBwQaKfdCu5xrUvB2Umg3UncZpfjaaE0PMZYv/7mb7q5ZB7JPfvcPKEoAWnhw4MhRbgO27hndLcyVrCBQPAJ5Etqa+txlBad2AD/5xBPNVltvVXKI//3UTCf9blcSo40KbWU+6+qr7XKonplTfpRar6x89CcPu9+5wVtt7QS3H033lbr5llvMqVbsas32Iw8vcvekakJba6G33mZbN0J+wH77me3tBpi6h33T7n+ikeVGhfb37ZTxcUd90e3XcfykSWbDjTZ01br4kiluNpYX2slZAmI62k6p9+FW+9D75FNPc1+90PbryDU76RI7I61S2NxOU9f93QvtG66b7fb98HER2p5Euk+Edjp+pK5NAKFdmw9XW0QgZKEd2hrtckEoF9Qa0db1T9qdYj/9qU+5HccVV2uA1Zn6wl6fd7vIKk650E7mOf6oI916anWyNKV88U8fM3vbtFpr5oMX2p+wa8e+YF9N5oOmqGt0XJuyacqc37hM67a1fnvMoYfYXbK39dFLn1rD/S3b8dEu5ief9CW3nloXfTm1hLbiXWw3QtP6N22ipunxWp+uaX2yXWvD99xzD5d3GqF9zMSJvUaNq+Xl12jL9ql66JGY6l4pTb11V8fw29/5rvmofQfu2MNXvZon+YDgwvPPcw8TxKNdgTXa7SJLvkUikCehLe5eqGrNtaZ1a422Rl61dnv33XYzh9vfG21W1iqhvb1dnqW10drUTKO/R9ndyCXY9SaI2XZNtcKhdq+NB+fNd5uFTZs61Y0KazduTbvW5m07WaF+rRXsCr7+5SPayVH0hQvmu9F23Qv3+MQnXblaI36XfVOFlhJVss1lnvjj4yjdt+9aNQKtUfvdPr6HE/MH7r+/OcvuB6LgN017z3vebTfLPNFuuraDWWCnrGsfkv/71a9cHC+0fT118srLux1z3X81pfze7//AHH/cZPdQQNebFdpjDz/c5aM8sgxshpYlfcrOmgBCO2sPRFJ+qEJba7Tnrt64Ja9TxzWiqRv02vaVWxrllBBT0IjEySeeUNpIrFxo6wm8Nj571L5GReFt9hUgr9hpcn53VK372sFusuaDRiC0Q7k6KNqNXJunHXTgAW499cmnne42UtNrvSR8tROtRLBGEjSirddulQeN0F5gN2PTVG0FTYd+rc1bo+LqGPUntPWgQK+VednuEK6n/u+2G5/91r5mTGug32Ff5XLG6ac58V9J6Kq8pGBNjmjrmqal67oeAmjX9s9+5jNmOzvyXi0vrU8/0b4LXH5QfKXTdELZXSlNvXXXQ4xp06e7fPXQQzvJK+3v7c6z8u9FVmi3c0R7uh3J1v/dMXYnYAIEIFCdQN6EtjYZG3PY4W4EWQ8IN7a/L0/Z32zdF7Tb9Z1WjOqBoReayXXMzYxo676hf9roTL9h+q1UudfatdrDhm3nwOpVYYfbXbu1TltBe3RIlCto5HuW3YzMv06rmtDWDuTafVs7b8sO7Tqu9dm6R/hd1SWEH7jvvoq2ucISf7SzucpSUNl624bug9pxXPnp91cbkV184YVG+34orr+Hyl7dj/RqsT//+c8uDy+0dY+beMyx9vWPq3YD1+wx3Qu1wZpCcp13o0L7JPtKTu1mrvuv7hnaq+Tss850+WbxB6GdBXXKDIUAQjsUTxS8HiELbXWQ8rxGWyPgeq+y1mRrKrVu/O+zN22NgEr4+lAutHVenaobb/qKe2epXwMssa53QG9r80wGTVf+yldvdqMQ6iSp0/HFI8e5KM8882vzne99z3U0lI9u8Bt/6ENm5512dLuXJ/NJHmtk4E47pe+X9mm/75z46/0JbcWTmL/l1tuM3uOtOqljo/dyH3rwwa4jpDiVhK7O1xLaevigEXcJWoX9R4xwryCrlpfi6NoP7Du1/SvGzrRCX69eqZamnrorX418aJRHm8ZpvaA6v5vad6zqPePyczsDa7TbSZe8i0Qgb0Jb7CWAzjn3PPebLkGo3+3t7cjzBXbjMb17WaFVQlsbkE067njzR/vKQoV3v/td5lT7cPLju/deK75kyVJzqn04u2zZU+6BqwTyZpttas49++zS+7mVvprQ1rX59lVcxx53XOk1Yu+0DzxnXXO1ucne675+++3uvrds6ZKKtil9edAos2ZK+TXfmn4+3b5//IsTJrolWpqxpWndCnp/9pX24YFe9fUfe3/d1l6bPOlYN6Ku615o61hi+4wzzzLfs7PI/P1PD1A1Gq5NQH1oVGjrQcbZXz7H+Vf3RTG+onuGz67jnwjtjiOnwIAIILQDckaRqxKq0BbzTk8db5WfywXcv+wT/D/98U92pPNNpQ3M6i1LN2OJyrVet1ZpU7B60ybjKR8JcnXSNKrbqaA1zBoJUIfKv8e6U2WnLafeuquTp5kCGqFQh7gTYUZ3t92ZmBHtTrCmjHwTCFVo10NVDwd/Yx96fsCONq9lZ0a1KiSnR0vYKmgKtX6jNVpdK2hztF/ZaeMbbfQB98quWnErXdO9SDuF62GyNiZL+5up39+n7cPON75xffeQoFKZyXMq3882Et8uu/5cISm0fXzF1YPU9dZdr668fbq8fCK08+Ip6tkOAgjtdlAlzz4EENp9kKQ+US60U2dIBhCoQIA12hWgcAoCZQTyLLTLTGnZ13KhrdHpoocf/ehBO1tq1TRxb6um2l93/Q3ua/J1aP560T8R2kX3MPbVIoDQrkWHay0jEKrQ1hrtTk8dbxVUhHarSJJPNQLsOl6NDOch0JsAQrs3D32LUWiPOuRQs+Chh/rCsGc0iv+De++peK3IJxHaRfYutvVHAKHdHyGut4RAyEJ7tt0xe/KkY8zQIUNaYmunMvnZ40vMz372MzdNe889Vr1/tFNlU04cBFijHYefsTI9AYR2X4bayGzWrFVrl/VObu2hUfSgTUN/+ctf9jFTa9I/99nPuuVNfS4W/ARCu+AOxryaBBDaNfFwsVUEQhXasi+va7Rb5RvygUA1AuogrVhh1xfaje8IEIBAdQII7epsuBI3AYR23P6P3XqEduwtoEP2hyy0lz+1zKw5YI3cjWh3yHUUEzkB1mhH3gAwvy4CCO26MBEpQgII7QidjsklAgjtEgoO2kkgVKGd5zXa7fQXeUNABJg6TjuAQH0EENr1cSJWfAQQ2vH5HIt7CCC0e1hw1EYCoQptmTx37g1muH13aN7WaLfRXWQNAUcAoU1DgEB9BBDa9XEiVnwEENrx+RyLewggtHtYcNRGAiELbdZot9HxZJ17Akwdz70LMaADBBDaHYBMEbkkgNDOpduodIsIILRbBJJsahMIVWhr6vjSJY8zol3bfVyNlIA6SM+ueM4M7hocKQHMhkB9BBDa9XEiVnwEENrx+RyLewggtHtYcNRGAiELbXWQJo63/+wnAQIQ6CHA1PEeFhxBoBYBhHYtOlyLmQBCO2bvYztCmzbQEQKhCm0Zv8SOaO+y844d4UAhEMgTgQNHjjIrV75qumd056na1BUCHSeA0O44cgrMCQGEdk4cRTXbQgCh3RasZFpOIGShzRrtcm/xHQI9BFij3cOCIwhUI4DQrkaG87ETQGjH3gLith+hHbf/O2Z9qEJba7Tnzp3jdhxn6njHmgMF5YTAdDuSrf+7Y0aPyUmNqSYEsiGA0M6GO6WGTwChHb6PqGH7CCC028eWnBMEQhba6iCxRjvhLA4hsJoAa7RpChCojwBCuz5OxIqPAEI7Pp9jcQ8BhHYPC47aSCBUoS2TmTreRseTda4JzOjuNi+8yIh2rp1I5TtCAKHdEcwUkkMCCO0cOo0qt4wAQrtlKMmoFgGEdi06XINAuARYox2ub6hZOAQQ2uH4gpqERQChHZY/qE1nCSC0O8s72tJCFdpao83U8WibJYb3Q4Bdx/sBxGUIrCaA0KYpQKAyAYR2ZS6cjYMAQjsOP2duZchCe/bs2WbypGPchmiZg6ICEAiIAGu0A3IGVQmaAEI7aPdQuQwJILQzhE/RmRNAaGfugjgqEKrQFn3WaMfRBrGycQLqIK1Y8bzp6upqPDEpIBARAYR2RM7G1IYIILQbwkXkghFAaBfMoaGaE7LQXv7UMrPmgDUY0Q618VCvTAmwRjtT/BSeEwII7Zw4imp2nABCu+PIKTAgAgjtgJxR5KqEKrRZo13kVodtaQkwdTwtQdLHQgChHYunsbNRAgjtRokRv0gEENpF8mbAtoQqtIVs7twbzPDhwxjRDrj9ULVsCCC0s+FOqfkjgNDOn8+ocWcIILQ7w5lSwiSA0A7TL4WrVchCmzXahWtuGNRCAkwdbyFMsiosAYR2YV2LYSkJILRTAiR5rgkgtHPtvvxUPlShranjS5c8zoh2fpoSNe0gAXWQnl3xnBncNbiDpVIUBPJHAKGdP59R484QQGh3hjOlhEkAoR2mXwpXq5CFtjpIE8fbf/aTAAEI9BBg6ngPC44gUIsAQrsWHa7FTAChHbP3sR2hTRvoCIFQhbaMX2JHtHfZeceOcKAQCOSJwIEjR5mVK1813TO681Rt6gqBjhNAaHccOQXmhABCOyeOopptIYDQbgtWMi0nELLQZo12ubf4DoEeAqzR7mHBEQSqEUBoVyPD+dgJILRjbwFx24/Qjtv/HbM+VKGtNdpz585xO44zdbxjzYGCckJguh3J1v/dMaPH5KTGVBMC2RBAaGfDnVLDJ4DQDt9H1LB9BBDa7WNLzgkCIQttdZBYo51wFocQWE2ANdo0BQjURwChXR8nYsVHAKEdn8+xuIcAQruHBUdtJBCq0JbJTB1vo+PJOtcEZnR3mxdeZEQ7106k8h0hgNDuCGYKySEBhHYOnUaVW0YAod0ylGRUiwBCuxYdrkEgXAKs0Q7XN9QsHAII7XB8QU3CIoDQDssf1KazBBDaneUdbWmhCm2t0WbqeLTNEsP7IcCu4/0A4jIEVhNAaNMUIFCZAEK7MhfOxkEAoR2HnzO3MmShPXv2bDN50jFuQ7TMQVEBCAREgDXaATmDqgRNAKEdtHuoXIYEENoZwqfozAkgtDN3QRwVCFVoiz5rtONog1jZOAF1kFaseN50dXU1npgUEIiIAEI7ImdjakMEENoN4SJywQggtAvm0FDNCVloL39qmVlzwBqMaIfaeKhXpgRYo50pfgrPCQGEdk4cRTU7TgCh3XHkFBgQAYR2QM4oclVCFdqs0S5yq8O2tASYOp6WIOljIYDQjsXT2NkoAYR2o8SIXyQCCO0ieTNgW0IV2kI2d+4NZvjwYYxoB9x+qFo2BBDa2XCn1PwRQGjnz2fUuDMEENqd4UwpYRJAaIfpl8LVKmShzRrtwjU3DGohAaaOtxAmWRWWAEK7sK7FsJQEENopAZI81wQQ2rl2X34qH6rQ1tTxpUseZ0Q7P02JmnaQgDpIz654zgzuGtzBUikKAvkjgNDOn8+ocWcIILQ7w5lSwiSA0A7TL4WrVchCWx2kiePtP/tJgAAEeggwdbyHBUcQqEUAoV2LDtdiJoDQjtn72I7Qpg10hECoQlvGL7Ej2rvsvGNHOFAIBPJE4MCRo8zKla+a7hndeao2dYVAxwkgtDuOnAJzQgChnRNHUc22EEBotwUrmZYTCFlos0a73Ft8h0APAdZo97DgCALVCCC0q5HhfOwEENqxt4C47Udox+3/jlkfqtDWGu25c+e4HceZOt6x5kBBOSEw3Y5k6//umNFjclJjqgmBbAggtLPhTqnhE0Boh+8jatg+Agjt9rEl5wSBkIW2Okis0U44i0MIrCbAGm2aAgTqI4DQro8TseIjgNCOz+dY3EMAod3DgqM2EghVaMtkpo630fFknWsC6iDdd/8DjGjn2otUvhMEvNC+afUMqU6USRkQyAMBhHYevEQd20UAod0usuTbi0DIQnvNNdcwy5cvc9PHe1WaLxCInMArdiO0Ffb1XgQIQKA2gVmzZxn9Y3ZUbU5cjY+AliBN7+52D2xDXIakPuCb1n9DfI7B4o4QQGh3BDOFhCy0txu+nXPQ008tw1EQgMBqAuocaSRipN15nPdo0ywgUJsAQrs2H67GS0Bvr9C9RG+vCPFegtCOt212wnKEdicoU4bbUOnFF18KkoQ6SAPsE83hw4cxqh2kh6hUFgT8KESonaMsmFAmBGoR4KFtLTpci5GAnzYugR3qayIR2jG2zM7ZjNDuHOuoSwp5RNs75u1ve7N76jp0yBB/ik8IREvgBftgbP78BaarqytaBhgOgUYI+FFt3UO0VpsAgZgJeJEtBiE/sEVox9xK2287Qrv9jCnBEsiD0Pab2bDGjiYbMwE/ZfzSqdNixoDtEGiKgL+PSGzrlZE8uG0KI4lyTsDPiJIZWpcd4tpsjxih7Unw2Q4CCO12UCXPPgTyILQ1GrF48WJzox2J0FRy3SiGDh3iOkp6MqvgO02NfG8krspIxk8el1+r9r2ZOvq8SLtqNkMt7rWueY76rMQy1LTJtj5l6qW2DT4c7DQ/sSVAIGQCXmyrjvodkOAmQCAGAgsXLnIbn3lbQxfZqidC23uLz3YQQGi3gyp59iGQB6GtSktoa6rs3Lk3mCtnznQ7yI4bN84cOnq0E8DXz5plhgwdajYfNMjZ+MSSJWbRwoXmkDFjXIfqutmzzYwZMzJN6+vo66w6KqjO6vSpjr7OGr2Xfb7OpO3LyrPxrDxXzyrkttBInY8cO9ZufHZw6f+AazT8gQAEmiKge4ke3j66+NGm0pMIAnkm4Eew/WfItiC0Q/ZO/uuG0M6/D3NhQV6EtoepTpI6SBLd2sTDj3aPtoJb3zVioaB1R4o324pXxdVNpTxu+fdOp/UbkKhcX0dfZ29PeR39906nnTR5kuP5w/t+6PiGUGfPohqrTvvT16NV5Qq0bFTIQ6fIVZQ/EMgJAX8v0SehcwSWLF310HTQwFUPxTtXcrwlqX+hoD6SP84DDYR2HryU3zoitPPru1zVPG9CO1dwC1TZ08883SxdutScfebZZuDAgQWyDFMgAAEIQKBTBPbeZ293D9G9hACBWgQQ2rXocC0tAYR2WoKkr4sAQrsuTNFHQmhH3wQAAAEIQCA1AYR2aoTRZIDQjsbVmRiK0M4Ee3yFIrTj83kzFiO0m6FGGghAAAIQSBJAaCdpcFyLAEK7Fh2upSWA0E5LkPR1EUBo14Up+kgI7eibAAAgAAEIpCaA0E6NMJoMENrRuDoTQxHamWCPr1CEdnw+b8ZihHYz1EgDAQhAAAJJAgjtJA2OaxFAaNeiw7W0BBDaaQmSvi4CCO26MEUfCaEdfRMAAAQgAIHUBBDaqRFGkwFCOxpXZ2IoQjsT7PEVitCOz+fNWIzQboYaaSAAAQhAIEkAoZ2kwXEtAgjtWnS4lpYAQjstQdLXRQChXRem6CMhtKNvAgCAAAQgkJoAQjs1wmgyQGhH4+pMDEVoZ4I9vkIR2vH5vBmLEdrNUCMNBCAAAQgkCSC0kzQ4rkUAoV2LDtfSEkBopyVI+roIILTrwhR9JIR29E0AABCAAARSE0Bop0YYTQYI7WhcnYmhCO1MsMdXKEI7Pp83YzFCuxlqpIEABCAAgSQBhHaSBse1CCC0a9HhWloCCO20BElfFwGEdl2Yoo+E0I6+CQAAAhCAQGoCCO3UCKPJAKEdjaszMRShnQn2+ApFaMfn82YsRmg3Q400EIAABCCQJIDQTtLguBYBhHYtOlxLSwChnZYg6esigNCuC1P0kRDa0TcBAEAAAhBITQChnRphNBkgtKNxdSaGIrQzwR5foQjt+HzejMUI7WaokQYCEIAABJIEENpJGhzXIoDQrkWHa2kJILTTEiR9XQQQ2nVhij4SQjv6JgAACEAAAqkJILRTI4wmA4R2NK7OxFCEdibY4ysUoR2fz5uxGKHdDDXSQAACEIBAkgBCO0mD41oEENq16HAtLQGEdlqCpK+LAEK7LkzRR0JoR98EAAABCEAgNQGEdmqE0WSA0I7G1ZkYitDOBHt8hSK04/N5MxYjtJuhRhoIQAACEEgSQGgnaXBciwBCuxYdrqUlgNBOS5D0dRFAaNeFKfpICO3omwAAIAABCKQmgNBOjTCaDBDa0bg6E0MR2plgj69QhHZ8Pm/GYoR2M9RIAwEIQAACSQII7SQNjmsRQGjXosO1tAQQ2mkJkr4uAgjtujBFHwmhHX0TAAAEIACB1AQQ2qkRRpMBQjsaV2diKEI7E+zxFYrQjs/nzViM0G6GGmkgAAEIQCBJAKGdpMFxLQII7Vp0uJaWAEI7LUHS10UAoV0XpugjIbSjbwIAgAAEIJCaAEI7NcJoMkBoR+PqTAxFaGeCPb5CEdrx+bwZixHazVAjDQQgAAEIJAkgtJM0OK5FAKFdiw7X0hJAaKclSPq6CCC068IUfSSEdvRNAAAQgAAEUhNAaKdGGE0GCO1oXJ2JoQjtTLDHVyhCOz6fN2MxQrsZaqSBAAQgAIEkAYR2kgbHtQggtGvR4VpaAgjttARJXxcBhHZdmKKPhNCOvgkAAAIQgEBqAgjt1AijyQChHY2rMzEUoZ0J9vgKRWjH5/NmLEZoN0ONNBCAAAQgkCSA0E7S4LgWAYR2LTpcS0sAoZ2WIOnrIoDQrgtT9JEQ2tE3AQBAAAIQSE0AoZ0aYTQZILSjcXUmhiK0M8EeX6EI7fh83ozFCO1mqJEGAhCAAASSBBDaSRoc1yKA0K5Fh2tpCSC00xIkfV0EENp1YYo+EkI7+iYAAAhAAAKpCSC0UyOMJgOEdjSuzsRQhHYm2OMrFKEdn8+bsRih3Qw10kAAAhCAQJIAQjtJg+NaBBDatehwLS0BhHZagqSviwBCuy5M0UdCaEffBAAAAQhAIDUBhHZqhNFkgNCOxtWZGIrQzgR7fIUitOPzeTMWI7SboUYaCEAAAhBIEkBoJ2lwXIsAQrsWHa6lJYDQTkuQ9HURQGjXhSn6SAjt6JsAACAAAQikJoDQTo0wmgwQ2tG4OhNDEdqZYI+vUIR2fD5vxmKEdjPUSAMBCEAAAkkCCO0kDY5rEUBo16LDtbQEENppCZK+LgII7bowRR8JoR19EwAABCAAgdQEENqpEUaTAUI7GldnYihCOxPs8RWK0I7P581YjNBuhhppIAABCEAgSQChnaTBcS0CCO1adLiWlgBCOy1B0tdFAKFdF6YoI91y6y1mxL4jnO3lQlvXFPx194U/EIAABCAAgQSBpUuXmiVLl5TuFeVCW/eSQQMHmYEDByZScQgBYxDatIJ2EkBot5MueZcIILRLKDhIEFDn59bbbnWdn7PPPNskhbY6TbqmoGt0kBLgOIQABCAAgRIBCWuFfffZ14ntpNAuv8+UEnEAAUsAoU0zaCcBhHY76ZJ3iQBCu4SCgzICXlx7Ia2RCR3rU8F3nMqS8RUCEIAABCDgCOh+oXuJgu4Z/gHuwM0Hlo71wJYAgXICCO1yInxvJQGEditpkldVAgjtqmi4YAl4sV0OA5FdToTvEIAABCBQiUBSbCev68EtIjtJhOMkAYR2kgbHrSaA0G41UfKrSAChXRELJxMEysU2IjsBh0MIQAACEOiXQLnYRmT3iyz6CAjt6JtAWwEgtNuKl8w9AYS2J8FnLQJebCOya1HiGgQgAAEIVCPgxTYiuxohzicJILSTNDhuNQGEdquJkl9FAnkU2o8uftQsXry4oj2cbB8Bra2T0CZ0jkBXV5crbHDX4M4VSkkQiISAv5eMGT3GWTxr9iyj/3P6/+avlX9PxlWi5PfyuP678i2P679XK6eoaefeONe88sorVTlXYuVZVGOV9IHnqs92+dPXIy/lioVC3u4jCO1VfuNvewggtNvDlVzLCORJaOum6W/CZWbwFQKFJqAO0ujRo3PXUSq0UzAulwR0D/ECabvh2zkbHlv94PajVmQPHTLEXD1zplm4cJE5YtxYc+TYsWbcuHHmqqtmmitnXmWud2J8sDnUinMJrkppfVyf1sf1aVWOgtL6cny5pF3FNcnKs/GsPFfPysf1nCv5JOa0Cxc97Npq94zu0kOkPIhuhLb7meBPmwggtNsElmx7E8iD0FZnZvyE8aWKH504Lp3kAAIFJfBj2+FfuGiRs04CwYuEgpqLWRBoGwF/L5FQmzzpWPf/apH9vzVh/Kr7y4zubld28vsQK7wl9PR/UHHLvyfjKrG+V4vr01Yqh7SVOVdi5TlW41zJJ+KrvGJMq3br29e8efPNIWNW3UdCv5cgtJ3b+NMmAgjtNoEl294EQhfavmOkWktg+xtobyv4BoFiE1CHcrodjdAnYrvYvsa69hFQx10PbbcZOoR7Sfswk3PABHQfmW4fOOhh08iRBwdcU96jHbRzClA5hHYBnJgHE0IX2n5qHyI7D62JOrabwIEjRyG22w2Z/AtHQA9sly553I1iF844DIJAgwT0wFazNP78l7+7KeWhTiNnRLtBxxK9IQII7YZwEblZAiELbT+arRvCTXPnNGsi6SBQKAIf+vCmzp4F8xYUyi6MgUC7CGgUW/cT3Ud0PyFAIHYCEtt6cBvyDCmEduyttL32I7Tby5fcVxMIWWjTOaKZQqAvAT/1L+QOUt9acwYC2RFYYkezly59nOni2bmAkgMkoIe2Id9HENoBNpoCVQmhXSBnhmxKqEKb0eyQWw11y5qAOkia7qddZAkQgEBtAuuv/wYzwK7PJkAAAr0JhNoHVC0R2r19xbfWEkBot5YnuVUhEOqPrBfaE+0OrhPZZbyK9zgdKwGmj8fqeexulIBmRqnDrvsI08YbpUf8IhPQ9HHtQj5w0BZBvjoSoV3k1pe9bQjt7H0QRQ0Q2lG4GSMLRgChXTCHYk7bCPglSE8/taxtZZAxBPJIIPR12gjtPLaq/NQZoZ0fX+W6pgjtXLuPykdKAKEdqeMxuykCTB1vChuJIiAwZeqljGhH4GdM7EsAod2XCWfaQACh3QaoZAmBNhNAaLcZMNkXigBCu1DuxJgWEgi1DygTGdFuoaPJqg8BhHYfJJxoB4FQf2RZo90Ob5NnUQggtIviSexoNwGmjrebMPnnlYCmjk+ZOs10dXW53cdDswOhHZpHilUfhHax/BmsNQjtYF1DxSBQlQBCuyoaLkCgF4FZs2cZvd5L79AmQAACPQRYo93DgqP4CCC04/N5JhYjtDPBTqEQSEUAoZ0KH4kjI8DU8cgcjrl1E5g3f4HZZJNN647fyYiMaHeSdnxlIbTj83kmFiO0M8FOoRBIRQChnQofiSMioGVI662zjhk+fLuIrMZUCNRHIA9Xqe8AAEAASURBVNQ+oGqP0K7Ph8RqjgBCuzlupGqQQKg/sqzRbtCRRI+KAEI7KndjbAoCrNFOAY+khSbA1PFCuxfj+iGA0O4HEJdbQwCh3RqO5AKBThJAaHeSNmXlmcDixYvN8uVPmgnjx+fZDOoOgZYTQGi3HCkZ5ogAQjtHzspzVRHaefYedY+VAEI7Vs9jdzMEWKPdDDXSxEAg1D6g2DN1PIYWmJ2NCO3s2EdVcqg/skwdj6oZYmyDBBDaDQIjerQEtOv4gDXXMJMnHRstAwyHQDUC993/gHll5UozuGtwtSiZnUdoZ4Y+ioIR2lG4OXsjEdrZ+4AaQKBRAgjtRokRP1YCrNGO1fPY3R8Bpo73R4jrRSaA0C6ydwOyDaEdkDOoCgTqJIDQrhMU0aInoDXa6667thk+jF3Ho28MAOhDYMrUS83AQVswot2HDCeKTgChXXQPB2IfQjsQR1ANCDRAAKHdACyiRk+ANdrRNwEAVCEQah9Q1WXqeBWncbolBBDaLcFIJv0RCPVHljXa/XmO6zETQGjH7H1sb4SA1mgvWfK4uWnunEaSERcChSegqePz5s1nRLvwnsbASgQQ2pWocK7lBBDaLUdKhhBoOwGEdtsRU0BBCLBGuyCOxIyWE2CNdsuRkmGOCCC0c+SsPFcVoZ1n71H3WAkgtGP1PHY3Q4Cp481QI00MBObNX2A22WTTIE1l6niQbilMpRDahXFl2IYgtMP2D7WDQCUCCO1KVDgHgcoEENqVuXAWAqH2AeUZhDbts50EENrtpEveJQKh/siyRrvkIg4g0IcAQrsPEk5AoCIBpo5XxMJJCBhNHZ8ydZrp6uoyY0aPCY4IQjs4lxSqQgjtQrkzXGMQ2uH6hppBoBoBhHY1MpyHQG8CbIbWmwffIOAJsEbbk+AzRgII7Ri9noHNCO0MoFMkBFISQGinBEjyqAgwdTwqd2NsAwRC7QPKBEa0G3AkURsmgNBuGBkJmiEQ6o8sU8eb8SZpYiGA0I7F09iZloDuJeuts44ZPny7tFmRHgKFIxBqH1CgEdqFa25BGYTQDsodxa1MqD+yCO3itjksS08AoZ2eITnEQYA12nH4GSsbJ8DU8caZkaI4BBDaxfFl0JYgtIN2D5WDQEUCCO2KWDgJgT4EFi9ebJYvf9JMGD++zzVOQCBmAhLa02d0m5EjR5nBXYODQ8GIdnAuKVSFENqFcme4xiC0w/UNNYNANQII7WpkOA+BvgRYo92XCWcgIAKh9gFVN4S2KBDaRQCh3S6y5NuLQKg/skwd7+UmvkCgFwGEdi8cfIFAVQLadXzAmmuYyZOOrRqHCxCIlcB99z9gXlm5khHtWBtAxHYjtCN2fidNR2h3kjZlQaA1BBDareFILsUnwBrt4vsYC5sjwBrt5riRqhgEENrF8GPwViC0g3cRFYRAHwII7T5IOAGBigS0Rnvdddc2w4ex63hFQJyMmsCUqZeagYO2YEQ76lYQp/EI7Tj93nGrEdodR06BEEhNAKGdGiEZRESANdoRORtTGyIQah9QRrBGuyFXErlBAgjtBoERvTkCof7Iska7OX+SKg4CCO04/IyV6QkwdTw9Q3IoJgFNHZ83bz4j2sV0L1b1QwCh3Q8gLreGAEK7NRzJBQKdJIDQ7iRtysozAYR2nr1H3dtJgDXa7aRL3qETQGiH7qGC1A+hXRBHYkZUBBDaUbkbY1MSYOp4SoAkLyyBefMXmE022TRI+5g6HqRbClMphHZhXBm2IQjtsP1D7SBQiQBCuxIVzkGgLwEtQ1pvnXXM8OFshtaXDmdiJxBqH1B+QWjH3jrbaz9Cu718yX01gVB/ZFmjTROFQHUCCO3qbLgCgSQBpo4naXAMgR4Cmjo+Zeo009XVZcaMHtNzIZAjhHYgjihoNRDaBXVsaGYhtEPzCPWBQP8EENr9MyIGBERg1uxZZsmSx81Nc+cABAIQSBBgjXYCBofREUBoR+fybAxGaGfDnVIhkIYAQjsNPdLGRoA12rF5HHvrJRBqH1D1Z0S7Xi8SrxkCCO1mqJGmYQKh/sgydbxhV5IgIgII7YicjampCGhEe8Caa5jJk45NlQ+JIVBEAqH2AcUaoV3EFheOTQjtcHxR6JqE+iOL0C50s8O4lAQQ2ikBkjwaAqzRjsbVGNogAaaONwiM6IUigNAulDvDNQahHa5vqBkEqhFAaFcjw3kI9CawePFis3z5k2bC+PG9L/ANApETkNCePqPbjBw5ygzuGhwcDUa0g3NJoSqE0C6UO8M1BqEdrm+oGQSqEUBoVyPDeQj0JcAa7b5MOAMBEQi1D6i6IbRFgdAuAgjtdpEl314EQv2RZep4LzfxBQK9CCC0e+HgCwSqEmDX8apouAABc9/9D5hXVq5kRJu2EB0BhHZ0Ls/GYIR2NtwpFQJpCCC009AjbUwEWKMdk7extRECrNFuhBZxi0YAoV00jwZqD0I7UMdQLQjUIIDQrgGHSxBIENAa7XXXXdsMH7Zd4iyHEICACEyZeqkZOGgLRrRpDtERQGhH5/JsDEZoZ8OdUiGQhgBCOw090sZGgDXasXkce+slEGofUPVnjXa9XiReMwQQ2s1QI03DBEL9kWWNdsOuJEFEBBDaETkbU1MRYOp4KnwkLjABTR2fN28+I9oF9jGmVSeA0K7OhistJIDQ7oF5zbXXmj/96U89J8qODjzwQLPRhhuWnU339bavfc187+67zRGHH26GDhmSLrMcp37wwXnmgR89YN773veZQw4e1XJLHnn0UXPFlVeaXXfZxRyw//4tz7/TGSK0O02c8vJKIBSh/ah7zdjyfjF+5tOftlPd1+03XpEjLFn6hFmy5HHz1re+zey26y5FNjVT21ijnSl+Cs+YAEI7YwfEUjxCu8fTn/ns58yTy5b1nCg7mnP9dWa7bbctO9v/12/cfofd2fN+s8WggWbsEUeUEvznP/8xg7fa2rzw4osuX+XvQ7U0/nrRPrsvv9xMmz7DbDl4sLnlq19pyrzHH19iZl5zjVlrrdeZSy66qFceh1nuP3zgR+Z1r3udeezRR8waa6zR63reviC08+Yx6pslgRCmjt98yy3m3h/c1y+GC88/z7z1LW/pN16RI9z1rW+ZO+68y3zogx80J514QpFNzdy2efMXmE022TTzelSqAFPHK1HhXKsIILRbRZJ8ahJAaPfg8UJ7s003tRuDdPVcWH10sB1p/cBGG/U539+Jc88/31x3/Q1m5x13NNdcPbNX9NPPONPceddd5ku2M7HfiBGla7XSlCIV6KAVQvsH991nxh55lFln7bXNz366uBedb9x+u/nyOeeaj+++u7nwgvN7XcvjF4R2Hr1GnbMgoGVI662zjhk+PNvN0H7yyCNm2bKnSgjmP/SQeeWVV9w9ZYP3v790/vOf+2z0I9oI7VJzaPtBqH1AGY7Qbrv7oy4AoR21+ztnfKg/slms0fZCe/Shh5iTv/Slhpyg0en/+Z//qZimP9H83//+17zmNa/plba/NL0it+nLs88+a17/+tfXHP1V3RXvzW9+c7+1+Nvf/mbe+MY3Vsyv3UJblavE2Vda1/7617/aqYpv7eMLH6f8s5bPy+O2+jtCu9VEya+oBEKZOl7O99jjjjfPPfec2Wfvvcyee+xRftl9//e//21eeukls95661W8Xn6y0m9cpXPl6fT95ZdfMf/+z7/dg8pK1/055ad6v+ENb6j7t9KnTX6+aGdyKa9KtrVSaOt3esWKFe7e89rXvjZZharH9TCTX5TfgAEDquaTvPDCCy+Yte1D4HrrkEzbrmNNHZ8ydZrpsgMLY0aPaVcxTeeL0G4aHQnrIIDQrgMSUdITQGj3MKxXaI+feLTRmt+xdl217SmYW267zfzqmWfMRz/yEXPk2LFmxx13cJlquvLSJ540L7zwvO0s/cvdkCU0FW69+avmfe99r/F5HTJqpJtWXk+aUYccan7+9NPm6Anje42C3/SVr5juK640m354E3PdrFmunPI/P33sMXPkF8e7m/2My6YZjaj/9re/Nfd877vmbW97m1Gn5NJpl5m777nH/PL//s+sa0eCttpqS3Pc5MlGI/0+LHvqKaM17Q/ajVT+/ve/u1EZ2X3CccfZp9Br+mjmn7Yzct5555sH588zv/vd7+207rXsFPpBZpxl4zkpciWhXa+dV151lZlz403mX//6l3n++edd50+CWeFLJ5xgPvu/nzHXXXe9udoy+Ygte+ZVV7pr+vPMr39tzj33PPOIXT/5j3/8w6y//vpmS9vpOOWUk8373/e+Ujzvp/58XkrQ5gOEdpsBk31hCMyaPcut971p7pygbKoltH/1q2fM7d+8wzz99C/Mv15+2bzrne80W225pfst8w9l77n3++Z79nd6k403dsuS7rzrW+Y5+/u3ycYfMoeNHu3uEXd8807zR7vvyPvf/z4zyu4x8v7VI+f6bde9Qg+Hv3TC8Wbm1de430IJTI2u7/OFvc2HN9mkF68//+Uv5uabbzFP//KXRiJZ68g3tlO7R4zY17zd3jt8uOKqmebpX/zC7Pnxj7s9Tx796U/NEHsP2X+//Zywvvf7PzD3fP/77gGt0ug3dy87ij9su54ZB/UK7UnHr5pWfsioUeZem6fuwwePPMix+ot9cDpn7o2Ow8qVK52tH/voR80B+40wb3rTm3x1ja/vJ/fc09XvRw8+aGSr9mP55Cc+YT6yxaBSXB1o/bh888wzv3Z5anr7oYccbM6/cNVypUnHHG3e+573uDTiefsd33T9BflhLbt0aWPrn70+//le95deBXTwC2u0OwibooIjgNAOziXFrBBCu8evXmhvu802doTh4z0X7NHb3/52s/tuu7lzB4062Px44ULzrne9y/zhD38w69kOh9ZZK+jp9o1zbnBTzw8cOco89rOfmVdffdX9U6fGP/3+9l13ug6Nz+uocePMpGOPMfWk8fU8xY66H2pH33241grJCy662AwcuLn55je+4U/3+lz08MPmgINGunNar/yy7cQpzLcbkcnGk0851dz29a+7cxql1siF6v8Wu2ZQa6c33GAD1xnZYeddnO0Sox/4wEbmkUceNc/bJ/bqcJxy0kkuvUTv6MMON4ttR0shyUlrpC+56ELz6U99yl2rJLTrtVMPBmZdd53R6I86VAoS9ApnnXG62XuvvSoKeT0sOMQ+xddItkKyfnrocL3toPvOpvdTfz53GXXgD0K7A5ApojAEQlijXQ6zmtD+zW9+Yy6aMtX885//dEJOgla/pQq777ar2W/ffd2xF6MaIdUD0nXsQ1EJYIW32QeNK+yDQ/3O6gGkBJ+uX3LhhXafigFm+c9/bi68+BIXV+dVlmYv+XIkCCdPOra0VOo39mHsVPs7q/uBgq7rAYCCHh4nxeXFtu76bdW9TlPjFXYYPtwcbB8mf+e73zVft3uWKEj0/8s+iJWoVThm4kT3wEDH3rb+1mgfNnacsy1Z1hFjxpgtPrKFOfnU05w9GkXWQ+3/+9Wv3P3hgx/4gFv37R9Y+PrqfqeHxknb9ND4OMtB9VDQHi6Xzegu3Wc8M/nIsz/9lFPMBhu839Xrhjlz7UPm+S6t4oqz7lM61trzd9h7btYh1D6guDCinXXrKHb5CO1i+zcY60L9kc1y6ngl52y91Vbmqzfd6C550aUvF5x3rvnfz3zGjRqMHnOYe6K+7xe+YM4795xSNrWmgfu8vND2iWqlqVeA+rySn0mhvf3wYWbC+PGuE6Ebv3bFHbH/AW5E+JqZV5kdd9jBjfIefewkM3/BAje9sXv6ZeaPf/yjGb7jTi7bu7/7HaOOi9JOmXqpexgx8qAD3Yj57NnXmfNsx06doIsvvMCtj/7t735nLrRP/r9v11Nr6uFPFv7YdSbTCG1vX6012pXyP8J20u774Q9d/b989llGPn74Jz8xp552uhvN333XXc2VV1zusvd+0pd6fO7r1K5PhHa7yJJv0QhoRHvAmms44RiSbdWE9pRLp5knnnzSic7DrWiUENYD2xmXX+Gqf/aZZ5j3vPvdJTGqk8dPnmRnMn3YfNNuIHan3UhMYY+P7272tiOnv/3t78zZ557rzvl4SaEtEanfbI3CaiT62lmzjUaDP7rFFmainTWlMN2Ky8cef9yNrI+yI8Ybf+hDbqRYQlIjtV12pHj8F49ycb1w1QOAgw7Y381gWmeddZ3A1xs2NAtq5512Ku0mfuXMq43Wrw/bblsz+pBDXB6NCm1tHre/HamWLXrIKvGukeTf2fvNGaed5srWveeMs852+Sc3nPP11YVD7T4sevvHs3aq+bTLpps//fnPZvthw0pvwtDDCbETf9V1ww03MHoIIQ4S8gpeaIulRrkl6CeO/6LjIKF9lZ09IP9qhsKRY49wabL8E2ofUEwQ2lm2jOKXjdAuvo+DsDDUH9kshbZGLTVymwyajn3KySe7U150bbbZZuauO24vRdONufuKK9woqEasfaglmn1eWQjtO2//htl88819NW0Ha9WIuOw/cP/9SufVsdC0xHe84x1u5FsXdrSvydJUcE0z3H333ZxIHWI7KK9PrCX0QnYPO4Xw8hnTS/lpVEAPCxTuslPwNCW9khBu9IFCI0JbI0Bbbj3EjcKffuqpRp1HH66/YY4557zz3EiNHgSoo+T9VK/PfV7t+kRot4ss+RaNQJ7WaOt3acLRx7jR4mH2DRfvfOc7Su7QjuUaUdYyo+3tCLEXo++0v8vnfnmVgPy1XQpzlt30UeHLZ51p3m1/yxVOsLOM/va3v5fSJoX2F48c12vzTz/qrLXTl02d4kZmJx5zrFsGdICd/r3rLju7PPXn+7ZOX7W7qWtEV3H1W+mFa1J8lxLYA42aP/Pr39h108+60xKdCxc97KbAn3j8ce6ct63eEe0R++xjH+SumnHmy9LIsYT2H/74JzsCvWpk/Ss33+zWovsHDorr6/s+OzvrzNNO9cmNpt3f9e1vuwcQmhmlmV3jrW80a2qUfTChB9E+6AH2zGuudV+90Nbyq1u/9nW3f8nOO/bE/d3vf29nxC1y09cvsQ+gswxMHc+SPmVnTQChnbUHIikfod3jaC/s+tsMzYuu8nh6J/ZJduq1RgZ+eN8PShl3SmhrrbJGQwYOrG/q+LKlS3ptTHacXc+szkWtsOihBa7j8MQTT5jjT/ySeWr58lJ0jSQcM3GCOcyOwigM22FHt0ZPncARq6c7+shDtxtmO35/MxfZHcC1Xq0RoV3NzkaEttZm77r7quUB37/n7l4PVtz6wk+umtIuP8qfjfrc29muT4R2u8iSb9EILHbvr37Szd4JybZKI9oaidU9pFbYxY4GH2hHiiuJ0eSo7bQpl7gpysrrSyef4kaptX55h+23L00dlzDWLCVNl/YhKdanXnyRedlO//Z1Ou+cL/ea7vx7u3TqNLvPh4IfJfbC9dOf/KTRDurJoNdc3nLb15xoTZ7XsdaaNyu0J9tlV5vbB98+aIPOy6+8qjTK7M/7T00H93uO+PpKqEuw+zDPTvm+zj501Wi5bEv6Rvc0PeDwQQ9A5E8FL7SvnT3bPPTjhT5Kxc+kjypGaPNJCW3NVhhpl7kN7hrc5tIaz54R7caZkaJ+Agjt+lkRMwUBhHYPvEaFdvkodKeE9j4j9nPrng8bM9pt9uUtGH3YYeZHD85rWmh7AatXmF1iO1iVgjoz/h3U6syo8/HQgofM/Q884KaXK41G87W2+VAruDVNUJuRTbn44lJ2v7Cb6ezxiU+679+wG8l9xK6nqyS0G7WzEaGt0Qm9w9xt1mY7j/smOlh63+2pp5/h1mw/8vAiNw3eC+16fV4ytk0HCO02gSXbQhLIyxptjcJOOOYYN+qqJUibbLJxyR9+J2wt85H4a4XQVuZHT5jQa8MvP0qt1yROn3apW/+tUXYJbj+a7iv1wI9+5DailFDX5prah8QL13KhrTXMR0+a7EbI9apLPRBWfI3uakS4lUL75ltvtZuj/cCtVf/0pz7pHjhoJPrqa2e5NdKVhHZ5fcuFdnK2gXyjqfk+PDhvnrneTh9X8ELbzwyQINe9ulLQHidZ70Ieah9QvBDalVoN51pFAKHdKpLkU5NAqD+yWU4d17q2sRXWTmmDLE2NblR0+RFt7Xh62y03u+l13inV8qqV5svnnGNusLup6ib99dtudVPQ9GT6ULtGXJvPNDuinVy/feXl3W69tTp3mlKuTsvxx012U8QftGL+uBNPNGvbEWyt0damagpat631236U+qqZM80ldt22OmzXXnO1GbL11m6n2fMuuMCtn9PmY17IVhLajdrphbbWhC+0I+/JaeyV8vcPAsRr2tSpbpdZ7carNelP2umMO9npftdefbWzrZqfqj1ccYna+Aeh3Ua4ZF0oAnnbddwLVa25PmrcWDctWyOmmq3U9bGPmT333MONQLdKaA+yv39ab6xNzfTg9HK7G7lGxnX+2KOPdm3h0ssuc7tta5OvI+wDXYlHrc3WemNt3qaduSXYFXz9y4Wrn66uUfRLL7nYiV89WNBDTZWrmUNnnn6auz9Wss1lXvbHb4ZWPqLt67DrzjuZA/bf36VaYN9bPuu6693xuCMOd/cyffFxy+tbLrQVd+q0ae5NIm95y5uNxPYWdh277hW32Sni4qHghba3V+fGH3Wk853up5pSvvinj9lNOj/vHi7oepbhvvsfMK/YhxCMaGfpBcrOggBCOwvqEZaJ0O5xuh/R7jnT++giKxD3+vznGhba2pTleCtMFbT+Wa8W0fpohWoCrlYabTym3cn1hF6jy3r1izZk0UiH1r81K7Q1yqu1ePfce6+rm4T8S3bH2r/YTpDCOXbDsP1GjHBTvnff8xNuvaBegbLN0KFuip52Yld9NKKtDdKUzr+iS+nf8553mz//+S+u3upsaW20NuFRqCSEq9mpTdTU8Sy3U2vGd9p1VzdiIsYS8hL4qkul/LUBz+FHjHXrtFUHrTfXlHIFifRZ115TWrtYzU8IbYeLPxAIlkCe1mgLogSa9vvQCLJ+T99tN97SKxg1oqpdqs+wYvR19mFiJTHa6NRxlaffYo0s6z6i9cMSgyp3ot0oc+Dmq6Zj63WSl02f4e4HSqPXeUkcK+hB6tF2yZDfmbuacNVD4In2IabuW7JDu45rfbbK9rudS8BedP75FW1zhZX9qSa0/aZw2jV8oJ2FpdeeabMyrTtXWdp5fZ+993abslWrbyWh/Wv7UEEPj/0O42InXnpFmd7VreCFth4i6EGE7mMK2gleglavkVTw0/jdl4z+sEY7I/AUGwQBhHYQbih+JRDaPT5ul9DWO7RPsZus3H3Pve51WhKKj9opyQrVBFytNEqnp+JT7QiHpmGro6JR+A/bERBt4lUuQBXfh+SodfkabcWR2D7jzLPc+1l9h0CvPTnJPihIrrdbat8leqUdsZa4VgdDHbMtBw92wnnPPfbwxblrJ9i13IqnadoK2mjui0cd1Su/SkJYcZN2ipvet/r+929gzraj+pXsVD56p7Ze06LwrTu/6XbjrZb/kiVLzal2o5tly55ytsuOzTbb1Jx79tm9Noqr5ieEtsPMHwgES0BrtNddd20zfNh2QdWx0hptX0G9HuuWW29zD1Al5PQbrxHmQw8+2L2tQfFaJbS1LlpTqrUUSEFiV68QG9zV5b77P3pv9A03znW7mEtEasrz+973XnPwQQc50ezjVROuur70iSfNNXaGlBfWeiCqfT1++MMHzDz7Zgs9TLj6yisq2ubzT35WE9ovv/yKnfU1x05J/4kTwkqjV6NtO3QbK36vdg8JdC/5lF1HXq2+lYS28hGHb9vXlMlH/7EctEGmHsBrZF7BC20di9ONN33FPGLboBfneiA+wo6Gb7vtNoqSedDbQgYO2oIR7cw9QQU6TQCh3WnikZaH0M6349U50o6vmi491wrMs7785YoCtFEr1bnTKMZ6665nR1RW7VxbKQ91jBTvPXban0aQqwV1OBRPIyES7o0GiXlNbdQIQjuCHgL8yk4b32ijD5i11171Du52lNOqPJk63iqS5BMDgRDXaNfD/SX7u6SZQe+0o836jW9VSE5rlrBV0Kus9KBRv9G1gkba/2SXCL3jHe90I8O14la6pnuLytK9Q1PQ9RChXUEzsv5kdx1/29ve6u6TrSxHdvj7kfykHckVkkLbl6e42jhurdet5R5k+PMhfIbaBxQb1miH0EKKWweEdnF9G5Rlof7IZrFGOyjH9FOZ++37n7VrdzLcfMut5qePPeZGIm69+avJSxwXjABCu2AOxZy2EQh16njbDK4j43KhnfWGXHVUOZgoj9tZUP/4x6pp4r5SmrKvfUwUkq9V89dD/dTU8Xl2w1JGtEP1EPVqJwGEdjvpkneJAEK7hCJXB35H7kqV1lTAw+2GNYTiEkBoF9e3WNZaAgjtvjwR2n2Z1HtGm9JpbXmloNkA5597TqVLQZ5jjXaQbqFSHSKA0O4Q6NiLQWjnswXMmjW7tHGXt0BT8IYOHWJ2sxuCaRMYQnEJILSL61ssaz2BvE4dbz2JVTlqI7N77J4hCnont58Cveoqf2sR0OvP9HaN8vDmN7/JbLvNNm6z0/JrIX+fN3+BfY3cpkFWkanjQbqlMJVCaBfGlWEbgtAO2z/UDgKVCCC0K1HhHAT6EtAypPXWWccMHx7WZmh9a8oZCHSeQKh9QJFAaHe+PcRUIkI7Jm9naGuoP7Ks0c6wUVB08AQQ2sG7iAoGQoCp44E4gmoER0BTx6dMte9ntzvMjxk9Jrj6IbSDc0mhKoTQLpQ7wzUGoR2ub6gZBKoRQGhXI8N5CPQmMGv2LLNkyePmJvu6JwIEINBDgDXaPSw4io8AQjs+n2diMUI7E+wUCoFUBBDaqfCRODICrNGOzOGYWzeBUPuAMoAR7brdSMQmCCC0m4BGksYJhPojy9Txxn1JingIILTj8TWWpiOgEe0Ba65hJk86Nl1GpIZAAQmE2gcUaoR2ARtcQCYhtANyRpGrEuqPLEK7yK0O29ISQGinJUj6WAiwRjsWT2NnowSYOt4oMeIXiQBCu0jeDNgWhHbAzqFqEKhCAKFdBQynIVBGYPHixWb58ifNhPHjy67wFQJxE5DQnj6j24wcOcoM7hocHAxGtINzSaEqhNAulDvDNQahHa5vqBkEqhFAaFcjw3kI9CXAGu2+TDgDAREItQ+ouiG0RYHQLgII7XaRJd9eBEL9kWXqeC838QUCvQggtHvh4AsEqhJg1/GqaLgAAXPf/Q+YV1auZESbthAdAYR2dC7PxmCEdjbcKRUCaQggtNPQI21MBFijHZO3sbURAqzRboQWcYtGAKFdNI8Gag9CO1DHUC0I1CCA0K4Bh0sQSBDQGu11113bDB+2XeIshxCAgAhMmXqpGThoC0a0aQ7REUBoR+fybAxGaGfDnVIhkIYAQjsNPdLGRoA12rF5HHvrJRBqH1D1Z412vV4kXjMEENrNUCNNwwRC/ZFljXbDriRBRAQQ2hE5G1NTEWDqeCp8JC4wAU0dnzdvPiPaBfYxplUngNCuzoYrLSSA0G4hTLKCQIcIILQ7BJpick8AoZ17F2JAmwiwRrtNYMk2FwQQ2rlwU/4ridDOvw+xID4CCO34fI7FzRNg6njz7EhZbALz5i8wm2yyaZBGMnU8SLcUplII7cK4MmxDENph+4faQaASAYR2JSqcg0BfAlqGtN4665jhw9kMrS8dzsROINQ+oPyC0I69dbbXfoR2e/mS+2oCof7IskabJgqB6gQQ2tXZcAUCSQJMHU/S4BgCPQQ0dXzK1Gmmq6vLjBk9pudCIEcI7UAcUdBqILQL6tjQzEJoh+YR6gOB/gkgtPtnRAwIiMCs2bPMkiWPm5vmzgEIBCCQIMAa7QQMDqMjgNCOzuXZGIzQzoY7pUIgDQGEdhp6pI2NAGu0Y/M49tZLINQ+oOrPiHa9XiReMwQQ2s1QI03DBEL9kWXqeMOuJEFEBBDaETkbU1MR0Ij2gDXXMJMnHZsqHxJDoIgEQu0DijVCu4gtLhybENrh+KLQNQn1RxahXehmh3EpCSC0UwIkeTQEWKMdjasxtEECTB1vEBjRC0UAoV0od4ZrDEI7XN9QMwhUI4DQrkaG8xDoTWDx4sVm+fInzYTx43tf4BsEIicgoT19RrcZOXKUGdw1ODgajGgH55JCVQihXSh3hmsMQjtc31AzCFQjgNCuRobzEOhLgDXafZlwBgIiEGofUHVDaIsCoV0EENrtIku+vQiE+iPL1PFebuILBHoRQGj3wsEXCFQlwK7jVdFwAQLmvvsfMK+sXMmINm0hOgII7ehcno3BCO1suFMqBNIQQGinoUfamAiwRjsmb2NrIwRYo90ILeIWjQBCu2geDdQehHagjqFaEKhBAKFdAw6XIJAgoDXa6667thk+bLvEWQ4hAAERmDL1UjNw0BaMaNMcoiOA0I7O5dkYjNDOhjulQiANAYR2GnqkjY0Aa7Rj8zj21ksg1D6g6s8a7Xq9SLxmCCC0m6FGmoYJhPojyxrthl1JgogIILQjcjampiLA1PFU+EhcYAKaOj5v3nxGtAvsY0yrTgChXZ0NV1pIAKHdQphkBYEOEUBodwg0xeSeAEI79y7EgDYRYI12m8CSbS4IILRz4ab8VxKhnX8fYkF8BBDa8fkci5snwNTx5tmRstgE5s1fYDbZZNMgjWTqeJBuKUylENqFcWXYhiC0w/YPtYNAJQII7UpUOAeBvgS0DGm9ddYxw4ezGVpfOpyJnUCofUD5BaEde+tsr/0I7fbyJffVBEL9kWWNNk0UAtUJILSrs+EKBJIEmDqepMExBHoIaOr4lKnTTFdXlxkzekzPhUCOENqBOKKg1UBoF9SxoZmF0A7NI9QHAv0TQGj3z4gYEBCBWbNnmSVLHjc3zZ0DEAhAIEGANdoJGBxGRwChHZ3LszEYoZ0Nd0qFQBoCCO009EgbGwHWaMfmceytl0CofUDVnxHter1IvGYIILSboUaahgmE+iPL1PGGXUmCiAggtCNyNqamIqAR7QFrrmEmTzo2VT4khkARCdx3/wPmlZUrzeCuwcGZh9AOziWFqhBCu1DuDNcYhHa4vqFmEKhGAKFdjQznIdCbAGu0e/PgGwQ8AaaOexJ8xkgAoR2j1zOwGaGdAXSKhEBKAgjtlABJHg2BxYsXm+XLnzQTxo+PxmYMhUA9BCS0p8/oNiNHjmJEux5gxCkUAYR2odwZrjEI7XB9Q80gUI0AQrsaGc5DoC8B1mj3ZcIZCIhAqH1A1Y2p46JAaBcBhHa7yJJvLwKh/siyRruXm/gCgV4EENq9cPAFAlUJsOt4VTRciJyARrTnzZtvBg7aghHtyNtCjOYjtGP0egY2I7QzgE6REEhJAKGdEiDJoyHAGu1oXI2hDRJgjXaDwIheKAII7UK5M1xjENrh+oaaQaAaAYR2NTKch0BvAlqjve66a5vhw7brfYFvEICAmTL1Uka0aQdREkBoR+n2zhuN0O48c0qEQFoCEtp6HUu33ciGAAEI1CagNdqLFz9qhg4ZUjsiVyEQGYFQ+4ByA2u0I2uMHTYXod1h4LEWF/KP7HbDV41APP3Usljdg90Q6EPAT/dDaPdBwwkI9CHAfh99kHACAo7AgXa38ZUrXw32gS1Cm4baTgII7XbSJe8SgZCFtjax0b+J9rUsEyfwapaS0ziImoA6RxLbGs2W2CZAAAK1Ceih7dH2HsIrvmpz4mo8BPLwwBahHU97zMJShHYW1CMsM2ShLXf4Ue2b5s5h2l+E7ROTexPQO0+nd68S2Ewb782GbxCoRUDrtJcseZz7SC1IXIuKwLMrnnMj2qEajdAO1TPFqBdCuxh+DN6K0IW2H9UWSMR28M2JCraRgBfZKoLR7DaCJutCEvBTyLVOW/cSAgRiJOBHso8cO9aMHHlw0AgQ2kG7J/eVQ2jn3oX5MCB0oS2KSbGtThLTyPPRtqhlawgsXLjIjWL73BDZngSfEGiMgF71pc77dbNnu83RlNpvkCYB0t/3RuKW59VM2nrqVF6O/07a8Pwp38gvzbSFNGlVpu4jvu+kzTTHjB7j/infUANCO1TPFKNeCO1i+DF4K/IgtAVRr2iR4NaoBAECMRLIQ8coRr9gcz4J+PdrP7FkiTNg80GDnACSCF+0cKE5ZMwYtz/IuHHjzIwZM8yVM2ea62fNMkOGDjWHjh7tBFOr0/pytC+JyvXl+HJVRwWV6+so0aY6k3aVT5KsPBvPynP1rHxcz7nV/gytXD+Krf5UV1eXa0sh/0Foh+yd/NcNoZ1/H+bCgrwIbQ9TNwiJbX0SOkdgydJVndFBA1d19DpXctwl+c6QRDYBAhBoHQH/8NbvdSDhrf9v+r+me8xsK15HW0GtDQf1kFfxy7+3Om21cny5qqOCyvV19HXOS9pJkyc5plOnTK3KtVX2ejaelc+3GqtW+zOkctVuxCNPG2gitOU1QrsIILTbRZZ8exHIm9DuVXm+dIzA6WeebpYuXWrOPvNsM3DgwI6VS0EQgAAEIFAcAnvvs7e7h+heQoBALQII7Vp0uJaWAEI7LUHS10UAoV0XpugjIbSjbwIAgAAEIJCaAEI7NcJoMkBoR+PqTAxFaGeCPb5CEdrx+bwZixHazVAjDQQgAAEIJAkgtJM0OK5FAKFdiw7X0hJAaKclSPq6CCC068IUfSSEdvRNAAAQgAAEUhNAaKdGGE0GCO1oXJ2JoQjtTLDHVyhCOz6fN2MxQrsZaqSBAAQgAIEkAYR2kgbHtQggtGvR4VpaAgjttARJXxcBhHZdmKKPhNCOvgkAAAIQgEBqAgjt1AijyQChHY2rMzEUoZ0J9vgKRWjH5/NmLEZoN0ONNBCAAAQgkCSA0E7S4LgWAYR2LTpcS0sAoZ2WIOnrIoDQrgtT9JEQ2tE3AQBAAAIQSE0AoZ0aYTQZILSjcXUmhiK0M8EeX6EI7fh83ozFCO1mqJEGAhCAAASSBBDaSRoc1yKA0K5Fh2tpCSC00xIkfV0EENp1YYo+EkI7+iYAAAhAAAKpCSC0UyOMJgOEdjSuzsRQhHYm2OMrFKEdn8+bsRih3Qw10kAAAhCAQJIAQjtJg+NaBBDatehwLS0BhHZagqSviwBCuy5M0UdCaEffBAAAAQhAIDUBhHZqhNFkgNCOxtWZGIrQzgR7fIUitOPzeTMWI7SboUYaCEAAAhBIEkBoJ2lwXIsAQrsWHa6lJYDQTkuQ9HURQGjXhSn6SAjt6JsAACAAAQikJoDQTo0wmgwQ2tG4OhNDEdqZYI+vUIR2fD5vxmKEdjPUSAMBCEAAAkkCCO0kDY5rEUBo16LDtbQEENppCZK+LgII7bowRR8JoR19EwAABCAAgdQEENqpEUaTAUI7GldnYihCOxPs8RWK0I7P581YjNBuhhppIAABCEAgSQChnaTBcS0CCO1adLiWlgBCOy1B0tdFAKFdF6boIyG0o28CAIAABCCQmgBCOzXCaDJAaEfj6kwMRWhngj2+QhHa8fm8GYsR2s1QIw0EIAABCCQJILSTNDiuRQChXYsO19ISQGinJUj6ugggtOvCFH0khHb0TQAAEIAABFITQGinRhhNBgjtaFydiaEI7Uywx1coQjs+nzdjMUK7GWqkgQAEIACBJAGEdpIGx7UIILRr0eFaWgII7bQESV8XAYR2XZiij4TQjr4JAAACEIBAagII7dQIo8kAoR2NqzMxFKGdCfb4CkVox+fzZixGaDdDjTQQgAAEIJAkgNBO0uC4FgGEdi06XEtLAKGdliDp6yKA0K4LU/SRENrRNwEAQAACEEhNAKGdGmE0GSC0o3F1JoYitDPBHl+hCO34fN6MxQjtZqiRBgIQgAAEkgQQ2kkaHNcigNCuRYdraQkgtNMSJH1dBBDadWGKPhJCO/omAAAIQAACqQkgtFMjjCYDhHY0rs7EUIR2JtjjKxShHZ/Pm7EYod0MNdJAAAIQgECSAEI7SYPjWgQQ2rXocC0tAYR2WoKkr4sAQrsuTNFHQmhH3wQAAAEIQCA1AYR2aoTRZIDQjsbVmRiK0M4Ee3yFIrTj83kzFiO0m6FGGghAAAIQSBJAaCdpcFyLAEK7Fh2upSWA0E5LkPR1EUBo14Up+kgI7eibAAAgAAEIpCaA0E6NMJoMENrRuDoTQxHamWCPr1CEdnw+b8ZihHYz1EgDAQhAAAJJAgjtJA2OaxFAaNeiw7W0BBDaaQmSvi4CCO26MEUfCaEdfRMAAAQgAIHUBBDaqRFGkwFCOxpXZ2IoQjsT7PEVitCOz+fNWIzQboYaaSAAAQhAIEkAoZ2kwXEtAgjtWnS4lpYAQjstQdLXRQChXRem6CMhtKNvAgCAAAQgkJoAQjs1wmgyQGhH4+pMDEVoZ4I9vkIR2vH5vBmLEdrNUCMNBCAAAQgkCSC0kzQ4rkUAoV2LDtfSEkBopyVI+roIILTrwhR9JIR29E0AABCAAARSE0Bop0YYTQYI7WhcnYmhCO1MsMdXKEI7Pp83YzFCuxlqpIEABCAAgSQBhHaSBse1CCC0a9HhWloCCO20BElfFwGEdl2Yoo+E0I6+CQAAAhCAQGoCCO3UCKPJAKEdjaszMRShnQn2+ApFaMfn82YsRmg3Q400EIAABCCQJIDQTtLguBYBhHYtOlxLSwChnZYg6esigNCuC1OUkW659RYzYt8RzvZyob106VKzZOmS0vUoAWE0BCAAAQg0RACh3RCuqCMjtKN2f9uNR2i3HTEFiABCm3ZQiYBE9q233WoGDhxozj7zbJMU2oqv7wq6pjgECEAAAhCAQH8EENr9EeK6J4DQ9iT4bAcBhHY7qJJnHwII7T5IOLGagBfXXkhrFHvfffZ1AlxRdOxHvIEGAQhAAAIQ6I8AQrs/Qlz3BBDangSf7SCA0G4HVfLsQwCh3QcJJxIEvNhOnHKHiOxyInyHAAQgAIH+CCC0+yPEdU8Aoe1J8NkOAgjtdlAlzz4EENp9kHCijEC52EZklwHiKwQgAAEI1EUAoV0XJiJZAghtmkE7CSC020mXvEsEENolFBzUIODFNiK7BiQuQQACEIBATQII7Zp4uJgggNBOwOCw5QQQ2i1HSoaVCORRaD+6+NGSKYO7Bhv/XccKjXxvJK7Pu5lyipD2Syd/ya3LbsT+RuKKkeI345Oipi1nITsJEIAABPJKAKGdV891vt4I7c4zj6lEhHZM3s7Q1jwJbYkOCbG5c+eYK2deZY4cO9aMGzfOHDp6jBNn18+eZbrs9Y92dTmijy1ebBYuXGSOGDfWDB0yxFw9c6a56qqZqdP6cny5KkdB5fpyfLm+jr5c0rbHJ56z94nn3O620M5yjxw7zrXVMbZ96x8BAhCAQN4JILTz7sHO1R+h3TnWMZaE0I7R6xnYnAehLYE9fsJ4R+fpp5aZ6TO6zWteY8wQK54lbBcuWmQW2X/++4zubhd3wvhVaZLfy+OWf0/GVSbJ7+Vx/fdK5fi0vk4+bvl30o7v479yVkkfeK76FLvyuOXf85xWbUVtfaJt+132Ic5BIw92n4hueZ8AAQjkkQBCO49ey6bOCO1suMdSKkI7Fk9nbGcehLYQaRR7wIA1nLjKGBnFQyATAgeOHGVndHSZkVZwEyAAAQjkkQBCO49ey6bOCO1suMdSKkI7Fk9nbGfoQnuWnQ4+edKxZsCaa2RMiuIhEAYB/Z99cN58t4wijBpRCwhAAAL1EUBo18eJWOw6ThtoLwGEdnv5kvtqAiELbT9lfKKdIqzpswQIQMAYjWxrivyCeQvAAQEIQCBXBBDauXJXppVlRDtT/IUvHKFdeBeHYWDIQnux3WRsztwbnMjWWmwCBCBg3LptCe2Rbir5qp324QIBCEAgDwQQ2nnwUhh1/H/2zgTeqrJa4EtFFHDAeSi1wSmF9KKCAoaQU6mVQ06IKFhYXRDBedY0Z0UgzYGrQM71HCor82k+UYOS6wCKqDlXaioOiArq2+vDfbzn3rvPOffcc/Ze3/7++/2As8dvrf/a9nv/8w0H0bZRh7xGgWjntbLG8rIs2vyPrLGXhXDMEPh48RJZsOBdM/EQCAQgAIFKCCDalVDiGiXA/w/Ie1BPAoh2Peny7AIBq6Ktw8abmppk4ID+DBsvVIsPEFhKQFcj1/92WYGcNwICEPCJAKLtU7WyjRXRzpZ/3ltHtPNeYSP5WRZt/Ukv5mcbeVEIwxSBjTfb3MXDPG1TZSEYCECgDAFEuwwgThcIINoFFHyoAwFEuw5QeWRbAlZFWyPt0aOb9OjerW3QHIFA4AT098HfX0iPduCvAelDwDsCiLZ3JcssYEQ7M/RBNIxoB1Hm7JNEtLOvARFAoBoCr7/xVjW3cQ8EIACBzAgg2pmh965hRNu7knkVMKLtVbn8DdaqaPPTXv6+U0RefwL6E1+LowXRJkdztdkgAAEI+EIA0falUtnHiWhnX4M8R4Bo57m6hnKzLNq6GNr4cWOFn/Yy9MIQigkCzNE2UQaCgAAEOkgA0e4gsIAvR7QDLn4KqSPaKUCmCXErFy+M5npa3JijbbEqxGSBgP6O9oIF70lDQ4OFcIgBAhCAQEUEEO2KMHFRRADR5jWoJwFEu550eXaBgNUebQ1w/tPzZPmuXejRLlSLDxD4ggBztL9gwScIQMAPAoi2H3WyECWibaEK+Y0B0c5vbU1lZlW0maNt6jUhGGMEGDpurCCEAwEIVEQA0a4IExdFBBBtXoN6EkC060mXZxcIWBVtDXD69KkycOAAerQL1eIDBJYSQLR5EyAAAR8JINo+Vi2bmBHtbLiH0iqiHUqlM87TsmgzRzvjl4PmTRNg6Ljp8hAcBCDQDgFEux0oHGqXAKLdLhYO1ogAol0jkDymNAGroq1Dx+fOeYIe7dLl42ygBHQxtLcXvCt9GvoESoC0IQABHwkg2j5WLZuYEe1suIfSKqIdSqUzztOyaDeObpQxjdGf6F82CEDgCwIMHf+CBZ8gAAF/CCDa/tQq60gR7awrkO/2Ee1819dMdlZFWwHNiXq0hwweZIYVgUDACoGhww6VxYuXyORJk62ERBwQgAAEyhJAtMsi4oLPCSDavAr1JIBo15Muzy4QsCzazNEulIkPEGhDgDnabZBwAAIQME4A0TZeIEPhIdqGipHDUBDtHBbVYkpWRVvnaE+fPs2tOM7QcYtvDjFlSWBi1JOt/+2OHDEyyzBoGwIQgECHCCDaHcIV9MWIdtDlr3vyiHbdEdOAErAs2szR5h2FQPsEmKPdPheOQgACtgkg2rbrYyk6RNtSNfIXC6Kdv5qazMiqaCssho6bfGUIygCBSZMny/sL6dE2UApCgAAEOkAA0e4ArMAvRbQDfwHqnD6iXWfAPH4pAUSbNwECfhJgjrafdSNqCIRMANEOufodyx3R7hgvru4YAUS7Y7y4ukoCVkVb52gzdLzKonJb7gmw6njuS0yCEMglAUQ7l2WtS1KIdl2w8tDPCSDavAqpELAs2k1NTTJ+3Fi3IFoqMGgEAp4QYI62J4UiTAhAoIgAol2Eg50SBBDtEnA41WkCiHanEfKASghYFW2NnTnalVSQa0IkMHPWLFmw4D1paGgIMX1yhgAEPCWAaHtauAzCRrQzgB5Qk4h2QMXOMlXLoj3/6XmyfNcu9Ghn+YLQtlkCzNE2WxoCgwAEEggg2glgONyGAKLdBgkHakgA0a4hTB6VTMCqaDNHO7lmnIEAQ8d5ByAAAR8JINo+Vi2bmBHtbLiH0iqiHUqlM87TqmgrlunTp8rAgQPo0c74HaF5ewQQbXs1ISIIQKA8AUS7PCOuWEoA0eZNqCcBRLuedHl2gYBl0WaOdqFMfIBAGwIMHW+DhAMQgIBxAoi28QIZCg/RNlSMHIaCaOewqBZTsiraOnR87pwn6NG2+NIQU+YEdDG0txe8K30a+mQeCwFAAAIQqJQAol0pKa5DtHkH6kkA0a4nXZ5dIGBZtPkd7UKZ+ACBIgIMHS/CwQ4EIOAJAUTbk0IZCBPRNlCEHIeAaOe4uJZSsyraymhO1KM9ZPAgS7iIBQImCAwddqgsXrxEJk+abCIegoAABCBQCQFEuxJKXKMEEG3eg3oSQLTrSZdnFwhYFm3maBfKxAcItCHAHO02SDgAAQgYJ4BoGy+QofAQbUPFyGEoiHYOi2oxJauirXO0p0+f5lYcHzO60SI6YoJAZgQmRj3Z+t/uyBEjM4uBhiEAAQh0lACi3VFi4V6PaIdb+zQyR7TToEwb7v9ZX7hwkTkS/I62uZIQkCECzNE2VAxCgQAEKiaAaFeMKvgLEe3gX4G6AkC064qXh8cErPZoa3wMHY+rxL8QKCYwafJkeT/6gowe7WIu7EEAArYJINq262MpOkTbUjXyFwuinb+amswI0TZZFoKCQFkCzNEui4gLIAABYwQQbWMFMRwOom24ODkIDdHOQRF9SMGqaNdr6Pjs5maZP39+2dLsteeeUY96j3ave+edd+SGm26WVVdZRQ48YH9Zdtll272u1MGbbr7Znd5pp51k3XXWKXVpqufmPf20vPjii/L222+7dg884IBU269lY6+/8Ybce++97pEH7L+/LLPMMrV8fNln/enPf5YFCxbI1ltvLZtvtlnZ6ztyAauOd4QW10IAAlYIINpWKmE/DkTbfo18jhDR9rl6HsVuWbSbmppk/LixbkG0WiFVwf3L/y6Vr1LPPP/cX8iaa6zR7iV/vvtuueU3v3XnTjjuWNlk443bva7UwSNGHSmfffaZjD96rGzxjW+UurTdc7dG7f/3zTel/w7by1bf/Ga713Tk4JIlS2Tq9Ony0MN/K7ptylVXFu37tDP/mWfk/AsvciFfdcXlstxyy6Ua/pk/P1teevllOeCHP5Rdd9m5pm0zR7umOHkYBCCQEgFEOyXQOWgG0c5BEQ2ngGgbLk6eQrMq2sq4HnO0//HIIzJv3tOFEj748MPy8ccfy9e++lXZaMMNC8f3/sH3E3u0VZ4mTv6lrLzSSnLC8cfJCl27Fu6r9ENnRfvMs8+Rl156SX64776y+267Vtps4nXK5Yorr3LnB+ywg3zzm72la5TXN3v3TrzH+ok8i/bMWbOi3vL3pKGhwXoZiA8CEIBAgQCiXUDBhzIEEO0ygDjdKQKIdqfwcXOlBCyL9vyn58nyXbvUtEe7NZejjzlW3n333UhY94mEdbfWpxP3tTe63FDkhQsXygorrCBdunRp85xyov3+++9Lt27dEnthKxFtjVGfs/LKK7dpv/WB62+4Ue7961/lK1/ZSE496aTWp2u2/1H0pYbGtWLEpdT23nvvyUrRFxnlGC/68EN3TXvPq5Vof/LJJ7Jo0SIXT6mYFy9eLB988IGsuuqq7rJ69mhrA8zRLlUNzkEAAhYJINoWq2IzJkTbZl3yEhWinZdKGs/DqmjXa45263Ikifbdf7lH/hQNEd90k03kG5tvJnf98U/SPZqzffopJ8s/n39eJl9+hXvUheed62S45fX9ox7hG2+6KRKhNyLR7iqbbbqpDB82THr27Flovj3RVgG97fY75JHZs+U/r73mZHSTTTaWffbeWzbcYANRkTv+pJPdM1SgVQBVMFdYcUVZJZovfsapp7hzL7/yiuj84LlPPiUqrDoHvHfvXrLfPvu0K/1605/v/ks0HP430mvLLeToo45yz9G/LpkwQV559V/yvT33kJ0GDSocb/3h8l9dKc8+95zsvuuu8loU++xHH5W+224jBx14oLv0b3+bKfdE86V1NIBuOnpgl52/LX23287t618qs7ffcYfMmfuky19z2uIbm8veP/hBm2H8mt/fZs6KYnvV3b/Bl7/svpBp2bvfWrSVx3XTprnrf37G6UUjFrQ3/5lnn5U+0XzqQ4Ye7K554YUX5bY7bpfz6qlrAABAAElEQVRnn31OPvzoI1lv3XVl2222ke9/b6+iLwB0CP+0aNj9/GeedTXSOh96yNAolzsZOu5I8hcEIACBpQQQbd6ESgkg2pWS4rpqCCDa1VDjng4TsCramsj06VNl4MABmfRo/+73v5fb7/ydE1MVWpXgtddaS8495+xIqNrO/Y2v12Hkn3z6qbtee7O1h1O39ddbT44/9phCr2hr0dbnT502XR548EF3vfZC673atn4+MRqivvpqq8mYo8e58yrdeo/OO9Y/PaNeVI1Njx134kny1ltvuXjXXXcdeSYSQO35VbE9MFoUrL1NFz8757zz3eJdO397iFu8a9lllyt8YbDjgAHSp08f96XD8ssv3+YRF158iehCajrcXIfi6/atgQNl+KHDonnfD0vTdVNdbHHPs4qrLiL3k1E/lj6fD3++esoUJ8+6CN3GX/uavBR9YaBxffUrX3H5a56a343RQnT/e999rg2NRY/pHHPddolijxc+a12nxdE1Y8eNdzI86kdHFCRf41WuyvTHI0dKv3595eXoC4ELopy0BhqnxqRfWrg2WnDUhfHOu+BC96WKntPr9AuDuCde68ccbYeNvyAAAQgIos1LUCkBRLtSUlxXDQFEuxpq3NNhApZFux5ztFsDSurRjsVZr1d5GxT15uqQ4O7RcO7WAqcC2PL6QTvu6Ho9Vbqao57dq66ZIp9G8r3/fvvJbrvu4kJoLdraG3zu+Rc4QRvT+DPp3auXk7xfXXW1PPnUU64nVaU03pKGjquYHnP8Ce6ys8860/XC6rO1p7wh6q0dMninxFXSP4gE8fxIGuNe4ritlv9edP55slok/K23WLSVxSEHH+Ti7969R/RFxXIyeuxY+eijj2WvPfaQPb77HXfrnb/7vdz1pz+5LxEmXLx0wbITTz7FCeuwqEdZe881nknRXHgdVaDyr184vPjiS3LWOee4Z+jz9MsD3XREwe/vust91p79DaIRAO3VSZ/36OOPy4D+O8iIww5z1z/+xBy5bNIk96XKpVEsWuOLL53guPfutaX8KJLv7t27y2PRfZN+ebm756yoR/xL668vd/7ud3JHlIsKv8q7zmnXqQj/c/vthYXl6iHaGgRDx10p+AsCEPCIAKLtUbEyDhXRzrgAOW8e0c55ga2kZ1W0dej43DlPZN6jrXKnctlynnV7AheLtvZ+XnLhBUXzoi+97DI3HHqbqEf4p0eOcqVvLdrxSuarr766DB70rcLr8eq//uV6eVVuNY54SxJtPX/ciSfKm28u7dHu06fBrYq+aTR8XQUyaVMR1jh1+LSutr7lFlu4nGf94x+uJ3fjr3/dDffWReJ07njrLRbthq22ksaf/bRw+vnnX5Czzz3XfYHwvegn01S8ddP2YjHWnngdLdB03XXy4EMPu17hbaJebhXszaNh+y3FPh7irnVRzvFPq2nP8bhjj3Nz0g+KfpJMxby9Omnv+pRrr3ND7fV+7XnWYf733Htf9OXAljJ2zBj3pcjoo8a64eK6MJyOCog3XbFeRfqwqKd+x6jHPq6t9sr/7CdHxpc5/sdHc921t70eoq2Lob294N1oNECfQpt8gAAEIGCdAKJtvUJ24kO07dQij5Eg2nmsqsGcLIt24+hGGdMY/Yn+rddWrkdbBVOHbbfc2hO4WLTbW0xMe1tvvvVWN1f6nJ+f5R7VWrSviX7K7OFoHnOpTXt+VTB1KyXauhq5ymTLnmkd0v2DaG7xbtEc6va2uGdWhfcXZ/+8MPQ5bmf//fZNvFefF4v2nt/9bjSn+vuFJmZEQ+Gvnbp0XnThYKsP2lOvc591aLYOn29+7LGiK1R2D456yXXYeTy8fPtoeLf2NLfctPf/79EXA3FvdXt10gXqxo4/xsn0aSefLBtttKHEPenDhx0i34pGI+jcej1WahsS/f750CgmHT2gowjie1vec+rpZ8i//v3vuog2P+/VkjSfIQABXwgg2r5UKvs4Ee3sa5DnCBDtPFfXUG5WRVsRzYl6tIcMTl6AqxYYay3a2vN96UUXuqHGcXy6cJoOId86+r3r0dGwcN1ai/Zdf/yj/Pa2252MHzFyRHxr0b+6IJoOzdYtFuCkn/fSxdIWRPOHn3pqnjz+xBNuGLS77/TT5Mtf+pJ7Rsu/JkdDolVwY0mNz8XtVCva8ZB4jfuo0aMjLl/0hmtvr/Yoq9zrMHvdNG6dK63D5fXPI7Ob3f7Qgw5yw95jTtrzf0H0W+fxXGh9lkrvggULoiH6S78UaE+0tY2LLrlUnpo3T/aJvhDYLlqMTaVan6N10y8ytHc8Hu6uw/033XQTvc1tccx6nfb8x18wtBZ/nbs9/rjj69ajPXTYoRGXJTJ50uQ4NP6FAAQgYJ4Aom2+RGYCRLTNlCKXgSDauSyrvaQsi7aFOdod7dHWCn93991lz2j+sK44rrKn8311sa799tlbvhOd0621aLeUwsaf/sTNp1ap0yHlzY8+JvtG9+pQ6niLBfg70U+S7Rf9NFm86Yrd2juui7LpHO144bK453Xk4YeJroreetM53DqUW3uNTzrxBDf/WK+J24nltfV98X4snK17tDXvxmgYtsqzrkiuvd36ZYTme220QNqee3zXxaO92edfeJG89vrrovOfdfE43eKe/vgLgOf++U/5RbRom24q3ztGi+Xpdv//PSA33nyz+3zKSSe6BdRaMr3qissLX1Lce99f5fobb3RD6rfbdlu5IRo6rmx1sbp4i/PZfLPN3HB//SJAh4xrLXWu++677+ZYxdyU9zHjx7nfY9eF3m6P5mjrMHPd6jF0XJ/LHG2lwAYBCPhEANH2qVrZxopoZ8s/760j2nmvsJH8rIq2ztGePn2aW3Hcp6Hj2jOqgtwt+skt7fXUYci6aQ/sSdEQ9Hi+cWvR1l5UHfo8u7nZXb/WmmvKx5Gcas+obq2HJl8XDcfWFcp1jrKuRq6Lp+nPUqmwnnTqaW4hNf1ZLxVF/akwXRFce5XPjHq09WeqWm86zPy8aDE2XZ1cN41zuejZ2iuuslytaOuz4qHz+lmFddXoZ7t0SLVu/fpuJz8+4gj3WReD0x5wXXhM52jrYmjaG6+SHs+J1kXlrrz6GvnHI4+4e+KecB0Srpv+XNiPohEByiVJtHWo97EnnOh6sZWd/jxXaxnWeydcNlH0d7/1i4H1o4XPXolWQdf211l7bTn9tFPdlxlv/Pe/bhG7uE7KXHvV9T6NoV6rjk+MerL1v92RI4qHzzsI/AUBCEDAKAFE22hhDIaFaBssSo5CQrRzVEzLqVgWbR/naGsPeP8dtndzsnXBLxVvXQFbV6RWCYu31qKtx1XKfn39DfJIJNuxOKqsHxANX94hembLTRdJu+HGm+Tp+fOd2LdcjEtX5tYVvXV4tD5HBXuTjTeWwTsNcnOhWz6n5Wf9jes7o580++cLLxQEPz7fGdHWZ9wT9e7+5Z57nNTqvs4Z13j2jX4jPB4Or7H+9n9uc0PGVWB109/H3nabPm6EgDsQ/aVfZOhvfuuc9vgnt/Q3t3fYvp/oUPp4OHmSaOtzzv7FufJ8lGe8nR8NQ9eh4C03/XLi5ltuFf1dcm1TxVl/Z/zw4cPdYmrxtfolxTVTmtx1eky/KNAvBv7057vdb663lvj4vs78yxztztDjXghAICsCiHZW5P1rF9H2r2Y+RYxo+1Qtj2O1KtqKNI2h47UqXbwYWjzUXIcPv/af16Ke7NUKC5hV2pZKnfb4rrjCirLGGqtXelub6/Q5KuRrRr3j8e9Xt7ko5QP6+97KRr90UHFN2rSXuUv0BUHPnj2TLnHH4xEDOs+7Xpv+LvYb0ciEdaORAPoFQdKmvdraC6+5xbKfdG1nj0+aPFneX0iPdmc5cj8EIJAuAUQ7Xd4+t4Zo+1w9+7Ej2vZrlIsIEe3alLG1aNfmqTwFAskEmKOdzIYzEICATQKIts26WIwK0bZYlfzEhGjnp5amM7Eq2jpHO42h47UqDqJdK5I8pxICrDpeCSWugQAErBFAtK1VxG48iLbd2uQhMkQ7D1X0IAfLot0UrZ49ftxYtyCadZSPPzFHHn/8cTdMe/fd2v+taus5EJ8/BJij7U+tiBQCEPiCAKL9BQs+lSaAaJfmw9nOEUC0O8ePuyskYFW0NXyf5mhXiJvLIFATAjNnzYpWN39PGqLV2dkgAAEI+EIA0falUtnHiWhnX4M8R4Bo57m6hnKzLNrzn54ny3ft4kWPtqGSEkogBJijHUihSRMCOSKAaOeomHVOBdGuM+DAH49oB/4CpJW+VdH2bY52WvWiHQgoAYaO8x5AAAI+EkC0faxaNjEj2tlwD6VVRDuUSmecp1XRVizTp0+VgQMH0KOd8TtC8/YIINr2akJEEIBAeQKIdnlGXLGUAKLNm1BPAoh2Peny7AIBy6LNHO1CmfgAgTYEGDreBgkHIAAB4wQQbeMFMhQeom2oGDkMBdHOYVEtpmRVtHXo+Nw5T9CjbfGlIabMCehiaG8veFf6NPTJPBYCgAAEIFApAUS7UlJch2jzDtSTAKJdT7o8u0DAsmj79DvaBaA5+/DOO+/IDTfdLKuusooceMD+suyyy5bN8NnnnpPf/+EPsvVWW8lOgwaVvZ4LOk6AoeMdZ8YdEIBA9gQQ7exr4EsEiLYvlfIzTkTbz7p5F7VV0VaQc6Ie7SGDEbV6v1Qff/yxTLn2OtfMvvvsLWuvtVahyT/ffbfc8pvfuv0TjjtWNtl4Y/e51D2XTZok+rviyy+/vPxy4mWy3HLLFZ7Hh9oQGDrsUFm8eIlMnjS5Ng/kKRCAAARSIIBopwA5J00g2jkppNE0EG2jhclbWJZFmzna6bxtiz78UBrHHOUaO/Wkk+QrX9mo0PBLL78sEyf/UlZeaSU54fjjZIWuXd25Uvc89PDDcsONN0XDmhtkxOGHFZ7Fh9oSYI52bXnyNAhAoP4EEO36M85LC4h2XippMw9E22ZdcheVVdHWOdrTp09zK46PGd2YO+6dTeiTTz6RRYsWyUqRAFeyffbZZ7LMMsu0e2kpadYb2ru3mntaNq5D0lddddWWh9p8Xrx4sSxeskS6d+vW5lzoByZGPdn63+7IESNDR0H+EICARwQQbY+KlXGoiHbGBch584h2zgtsJT3Los0c7bZvyQsvvCi33XG7PPvsc/LhRx/JeuuuK9tus418/3t7FUT67r/cI3+Khnxvuskm8q0dB8rtd9wp2jOtQ8IH9N9Bdtt1V/fgeU8/LVddM0U+/fRTee+999yxHj16SJcuXWSbqDd66MEHyT+ff14mX36FO3fheefKM88+W/aeuP2vbrSRjG78WSGJhQsXyvU33ijznp4vsWhvucU35OADD5RuLWS6+dFH5f8eeECenj/fDY/+SvSc/jtsL4N32qnwrNA/MEc79DeA/CHgJwFE28+6ZRE1op0F9XDaRLTDqXWmmVoVbYXC0PHiV+PlSJYvuPgS+eCDD9yiZCrFsSDvsvO35cD993c3/O73v5fb7/yddO/eXT6JeoQ/jXqztVd6SfRZtwN++EPZdZedZe6TT0USfbk7pnOuddN51drzvV0k7zrse/4zz8j5F17kzl11xeVOksvdE7e/8de/LidGw81105gvvORSeemll9y+9marbOum140bO1ZWWKGr/Ps//5HTzzxLtMf+a1/9qnSNhqqr3Ov+6J/91C2w5m4K/K9JkyfL+wvp0Q78NSB9CHhHANH2rmSZBYxoZ4Y+iIYR7SDKnH2SiHb2Nag0gosvnSBPPvWU9O61pfxo5Egn0o89/rhM+uVSWT7rjNPlS+uvL7Ho6nO/PXiw7LXnHk7Mp/36evnHI4+4nu1zzzm70GypYeCtRTte2KzUPXH7LUX7rj/+UX572+1uuPjxxx4j66y9trz2+uty7vkXuC8Lhh50YLTw3WD5299mytVNTe66iy8430m/9pA/989/yg7b90O0C1UTYY52Cxh8hAAEvCCAaHtRJhNBItomypDbIBDt3JbWVmJWRVvnaDN0/It3RYd3jz5qrBsuPmCHHWTdddcpnPzL/94r7777rhx26DDZceDAgmjrT3FNuPiiaGRAD3ftU/PmyUVRr7JuEy+9pHC8lDTXSrTjlch1OLt+URBvjz72uJPo7fv1dV8e/PfNN+X4E09yp1XU9dpNN93U9W7rkHa2pQRYdZw3AQIQ8JEAou1j1bKJGdHOhnsorSLaoVQ64zwti3ZT1LM5ftxYtyBaxpgyb/71N96QE08+pWQcQ6I5zDqvOu5R3mijDeW0k08u3NPyGRece66sscbq7lwaon3M8SfI22+/XYil9Yf111tPfn7mGe7wrL//XX59w42ic7rjbbXVVpPhw4YVSXp8LsR/maMdYtXJGQL+E0C0/a9hWhkg2mmRDrMdRDvMuqeetVXRVhDM0f7idXBzlKN5zB999LHsv99+US/vJoWT8argK6+8sqy5xhoF0W45dFsvzlK0L5kwwc0J79d3O9ll553bxK691Rt8+cvuuOaqK6q/8uqrMn/+M264+6v/+pdofpdedGFh0bfCQwL8MHPWLFmw4D1piBatY4MABCDgCwFE25dKZR8nop19DfIcAaKd5+oays2yaM9/ep4s37ULPdqfvy8XRguh6Urhm2+2mfz0yFFu6LcOGde52w1bby27776brLjCCp0S7bFjxhT1GlcydLz1PXGPekvRj4/pMPZTTjrRzRPXxdmuvPqaaMGz5WXvH/zAfUnwh7vukj/c9UfZaqutZNSPjnCZt/yC4Pxzf+GuM/SfUGahMEc7M/Q0DAEIVEkA0a4SXIC3IdoBFj3FlBHtFGGH3JRV0WaOdtu3UqV3wmUT5aNohXDtAV4/WvjslVdecT/PpYuLnX7aqbJCtEp3LLUtRVef1lJYWw4d13M6LF3Pq6jrb3N/f6+9pH/0U2BJol3qnvba1xXGL7joYvnPa6/pra73+o2oPf2JMl3p/OQTT3DH5sx9UiZMnOhWSdf53DqkXGP417//LauvvrpcEIl20u+BuwcH8hdDxwMpNGlCIGcEEO2cFbSO6SDadYTLowXR5iVIhYBV0dbkp0+fKgMHDqBHu8WboD3aN99yq7wcCbYOGdcFz3ptuYUcPny4rLLKKu7K9kRXT5QS7dnNzXLb7Xc4odVrDzrgANn520NKinbSPUnt6xztpuumup/rWrx4sTbjVkkfcdhh8pWvbOT29S+do/3AjAcL13WPfmN78803l+9Fq6dvsMEGhetC/sBiaCFXn9wh4C8BRNvf2qUdOaKdNvGw2kO0w6p3ZtlaFm3maCe/FjqHWXuE1113Xfdb08lX2jujkv3vqId6jWg+ebwientR6nXaA6692vHPirV3XajHGDoeauXJGwL+EkC0/a1d2pEj2mkTD6s9RDusemeWrVXR1qHjc+c8QY92Zm8GDVsmoIuhvb3gXenT0MdymMQGAQhAoIgAol2Eg50SBBDtEnA41WkCiHanEfKASghYFm1+R7uSCnJNiASYox1i1ckZAv4TQLT9r2FaGSDaaZEOsx1EO8y6p561VdFWEHOiHu0hgwelzoQGIWCdwKTJk+X9hYtk5IiR1kMlPghAAAIFAoh2AQUfyhBAtMsA4nSnCCDancLHzZUSsCzazNGutIpcFyIB5miHWHVyhoDfBBBtv+uXZvSIdpq0w2sL0Q6v5plkbFW0dY729OnT3IrjY0Y3ZsKGRiFglcDESZNF/9ulR9tqhYgLAhBojwCi3R4VjrVHANFujwrHakUA0a4VSZ5TkoBl0WaOdsnScTJgAszRDrj4pA4Bjwkg2h4XL+XQEe2UgQfWHKIdWMGzSteqaCsPho5n9VbQrnUCuur4ggXvSUNDg/VQiQ8CEIBAgQCiXUDBhzIEEO0ygDjdKQKIdqfwcXOlBBDtSklxHQRsEWCOtq16EA0EIFCeAKJdnhFXLCWAaPMm1JMAol1Pujy7QMCqaOscbYaOF8rEBwgUERg67FBZvHiJTI7marNBAAIQ8IUAou1LpbKPE9HOvgZ5jgDRznN1DeVmWbSbmppk/LixbkE0Q8gIBQKZE2COduYlIAAIQKAKAoh2FdACvQXRDrTwKaWNaKcEOvRmrIq21oU52qG/neRfigBDx0vR4RwEIGCRAKJtsSo2Y0K0bdYlL1Eh2nmppPE8rIq2Dh2fO+cJGThwAD3axt8hwsuGAKKdDXdahQAEqieAaFfPLrQ7Ee3QKp5uvoh2uryDbc2yaDNHO9jXksTLEGDoeBlAnIYABEwSQLRNlsVkUIi2ybLkJihEOzeltJ2IVdFWatOnT6VH2/brQ3QZEWAxtIzA0ywEINApAoh2p/AFdTOiHVS5U08W0U4deZgNWhZt5miH+U6SdWUEGDpeGSeuggAE7BBAtO3UwnokiLb1CvkdH6Ltd/28id6qaOsc7enTp7n52WNGN3rDk0AhkAaBmbNmydsL3pU+DX3SaI42IAABCNSEAKJdE4xBPATRDqLMmSWJaGeGPqyGLYs2c7TDehfJtnICzNGunBVXQgACdggg2nZqYT0SRNt6hfyOD9H2u37eRG9VtBXgnGjV8SGDB3nDkkAhkBaBSZMny/sLF8nIESPTapJ2IAABCHSaAKLdaYTBPADRDqbUmSSKaGeCPbxGLYs2c7TDex/JuHICzNGunBVXQgACNggg2jbq4EMUiLYPVfI3RkTb39p5FblV0dY52gwd9+pVItgUCUycNFn0v116tFOETlMQgECnCSDanUYYzAMQ7WBKnUmiiHYm2MNrFNEOr+Zk7D8B5mj7X0MygECIBBDtEKteXc6IdnXcuKsyAoh2ZZy4qpMErIq2psXQ8U4Wl9tzS0BXHV+w4D1paGjIbY4kBgEI5I8Aop2/mtYrI0S7XmR5rhJAtHkPUiFgWbTnPz1Plu/axf3EVyowaAQCHhFgjrZHxSJUCEDAEUC0eREqJYBoV0qK66ohgGhXQ417OkzAqmgzR7vDpeSGgAgMHXaoLF68RCZHc7XZIAABCPhCANH2pVLZx4loZ1+DPEeAaOe5uoZysyzaTU1NMn7cWHq0Db0vhGKDAHO0bdSBKCAAgY4RQLQ7xivkqxHtkKtf/9wR7fozpoWIgFXR1uIwR5tXFALJBBg6nsyGMxCAgE0CiLbNuliMCtG2WJX8xIRo56eWpjOxKto6dHzunCdk4MAB9GibfoMILisCiHZW5GkXAhColgCiXS258O5DtMOreZoZI9pp0g64Lcuize9oB/xiknpJAgwdL4mHkxCAgFECiLbRwhgMC9E2WJQchYRo56iYllOxKtrKbPr0qfRoW355iC0zAiyGlhl6GoYABDpBANHuBLzAbkW0Ayt4yuki2ikDD7U5y6LNHO1Q30ryroQAQ8crocQ1EICAJQKItqVq2I4F0bZdH9+jQ7R9r6An8VsVbZ2jPX36NDc/e8zoRk9oEiYE0iEwc9YseXvBu9KnoU86DdIKBCAAgRoQQLRrADGQRyDagRQ6ozQR7YzAh9asZdFmjnZobyP5VkqAOdqVkuI6CEDAEgFE21I1bMeCaNuuj+/RIdq+V9CT+K2KtuKbE606PmTwIE9IEiYE0iMwafJkeWDGQzJ50uT0GqUlCEAAAp0kgGh3EmBAtyPaARU7g1QR7Qygh9ikZdHW/5GdP38eP+8V4otJzmUJMEe7LCIugAAEjBFAtI0VxHA4iLbh4uQgNEQ7B0X0IQXLoq1Dx3Wu9rNPz/MBJTFCIBUCOj97YtSTPWzYoczRToU4jUAAArUigGjXimT+n4No57/GWWaIaGdJP6C2LYv2lKYp0tzcLOPHjaVXO6B3klRLE9Cf9lLZ1mHjLIZWmhVnIQABWwQQbVv1sBwNom25Ov7Hhmj7X0MvMrAs2jHAtdda3YlFv75940P8C4FgCXy8eIncd9/90tDQECwDEocABPwkgGj7Wbcsoka0s6AeTpuIdji1zjRTH0R7+vSpcsWVV8r1n//cV6bAaBwCGRHQ4eKLFy+OhowPzygCmoUABCDQOQKIduf4hXQ3oh1StdPPFdFOn3mQLfog2jqEXP88OWeOdI0WSNNhs7rRwx3kKxtU0vqux+/5xZdc6r5wYsh4UK8AyUIgVwQQ7VyVs67JINp1xRv8wxHt4F+BdAD4INpKQudq61BZ/cmvHx85SsY0NsqRRx4ph48Y4cT7uilTpG+/frJFr14OnEr5rJkz5bCRI52oXNvUJJMmTXKiktW9cYxxzBqjbhqzypTGGMccxxjHzL1tWcVsYlYx15iV5XehIzH/ZNQo14ut/w18Fv0f87Ldfzb8BQEIeEgA0fawaBmFjGhnBD6QZhHtQAqddZq+iHbMSWVDe7dHRIKtwhEvmBbv60rlummvn65Y3hTJqwr6yBEj21yb9b3xbyBrzHGMccxxPq1jjPfTvnfc+HGO51/v/avjayHmmEUSK5/ehTiHUjE78PwFAQhAwGMCiLbHxUs5dEQ7ZeCBNYdoB1bwrNL1TbSz4hR6u6edcZrMnTtXzjrjLNlyyy1Dx0H+EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVx4ioIQAACEEgmgGgns+FMMQFEu5gHe7UlgGjXlidPSyCAaCeA4XARAUS7CAc7EIAABCBQBQFEuwpogd6CaAda+JTSRrRTAh16M4h26G9AZfkj2pVxsnTV7ObZLpw+DX3cvy33W37Wkx3Z78i1rZ/t073tcWudT9J+KPdaqGfrGLQmbHYJINp2a2MtMkTbWkXyFQ+ina96ms0G0TZbGlOBIdqmypEYjEqHSt6Upinuj36+8le/kqamJrniyl/JyBEj5chRo2TUkUc6ub7qV1dKQ0ODbNevr3vm32fOkubmZvnxkaPcc/J2r+anm+Ybs4nzjdnErGI2MSvutfce/SR6l6+48kpXy8mTJrva8pdtAoi27fpYig7RtlSN/MWCaOevpiYzQrRNlsVcUIi2uZK0CSiW68ciUe7RvZsMHXaobB8J5ejGRpk5a5bMiv707dtX+kV/Wu9PmrxUUvRa3Vrut7629X7La63f215+ccxJbOJ8udfmezQxEuwxoxvdF0aHDBuu5RSk22Ew+ReibbIsJoNCtE2WJTdBIdq5KaXtRBBt2/WxEh2ibaUSyXFMnz7N9VpfH/2rMs0GgdAI6JdL+sWIinY8fD80BtbzRbStV8hOfIi2nVrkMRJEO49VNZgTom2wKAZDQrQNFuXzkLQnW3v0tBebDQKhE1DR7tWrtyxcuCh0FCbzR7RNlsVkUIi2ybLkJihEOzeltJ0Iom27PlaiQ7StVKI4Dp2T3RhJtvZga082GwQgIK5XW3u3dd69/mGzQwDRtlML65Eg2tYr5Hd8iLbf9fMmekTbm1JlGiiinSn+ko0fPW5sYS52yQs5CYFACOi87YnRugMMIbdXcETbXk2sRoRoW61MPuJCtPNRR/NZINrmS2QiQETbRBnaDaJnz1Wk6/Jd2j3HQQiETOD1N94KOX2TuSPaJstiMihE22RZchMUop2bUtpOBNG2XR8r0SHaVipRHIcOGx84oL+bo118hj0IhE1A52rPmPGgDPt8JfKwadjJHtG2UwvrkSDa1ivkd3yItt/18yZ6RNubUmUaKKKdKf7ExvsP7M/87EQ6nAiZAMPHbVYf0bZZF4tRIdoWq5KfmBDt/NTSdCaItunymAkO0TZTiqJAmqPfzO7Zc2V+zquICjsQWLog2r333e9+X5uf+rLzRiDadmphPRJE23qF/I4P0fa7ft5Ej2h7U6pMA0W0M8VfsvG111q95HlOQiBUAm8veFcWL14Savom80a0TZbFZFCItsmy5CYoRDs3pbSdCKJtuz5WokO0rVSiOA6GjhfzYA8CMQHmaMckbP2LaNuqh+VoEG3L1fE/NkTb/xp6kQGi7UWZMg8S0c68BO0GgGi3i4WDEBDmaNt8CRBtm3WxGBWibbEq+YkJ0c5PLU1ngmibLo+Z4BBtM6VoEwhDx9sg4QAERHu0Fy5cJL169YaGIQKItqFiGA8F0TZeIM/DQ7Q9L6Av4SPavlQq2zgR7Wz5J7U+u3m2rBb9jna/vn2TLuE4BIIlwBxte6VHtO3VxGpEiLbVyuQjLkQ7H3U0nwWibb5EJgJEtE2UoU0QDB1vg4QDEHAEtEf74ksmyIgRI4RVx+28FIi2nVpYjwTRtl4hv+NDtP2unzfRI9relCrTQBHtTPEnNt44ulF2jH5Le3RjY+I1nIBAiASYo22z6oi2zbpYjArRtliV/MSEaOenlqYzQbRNl8dMcIi2mVK0CYQ52m2QcAACjgBDx+29CIi2vZpYjQjRtlqZfMSFaOejjuazQLTNl8hEgIi2iTK0CWJK0xQZMngQc7TbkOEABEQQbXtvAaJtryZWI0K0rVYmH3Eh2vmoo/ksEG3zJTIRIKJtogxtgmCOdhskHICAI8DQcZsvAqJtsy4Wo0K0LVYlPzEh2vmppelMEG3T5TETHKJtphRFgWiP9ko9ujFHu4gKOxAQ9zvaMx58iMXQjL0MiLaxghgOB9E2XJwchIZo56CIPqSAaPtQpexjRLSzr0FSBMzRTiLD8dAJMHTc3huAaNuridWIEG2rlclHXIh2PupoPgtE23yJTASIaJsoQ5sgdNXxgQP6y5joXzYIQKCYwL333S+9evUuPshepgQQ7Uzxe9U4ou1VubwLFtH2rmR+Boxo+1m3tKNGtNMmXll7zNGujBNXhUeAOdo2a45o26yLxagQbYtVyU9MiHZ+amk6E0TbdHnMBIdomylFUSDNzc3Ss+fKrDpeRIUdCIjMnDVLtEe7oaFB+jT0AYkRAoi2kUJ4EAai7UGRPA4R0fa4eD6Fjmj7VK3sYkW0s2NfrmXmaJcjxPlQCTBH217lEW17NbEaEaJttTL5iAvRzkcdzWeBaJsvkYkAEW0TZWgTBEPH2yDhAAQcAe3RnjHjQRk2bDhEDBFAtA0Vw3goiLbxAnkeHqLteQF9CR/R9qVS2caJaGfLP6l1RDuJDMdDJ8AcbZtvAKJtsy4Wo0K0LVYlPzEh2vmppelMEG3T5TETHKJtphRtAmHoeBskHICAm6O9cOEiVh039i4g2sYKYjgcRNtwcXIQGqKdgyL6kAKi7UOVso8R0c6+Bu1FMLt5tqzWcxUWQ2sPDseCJ8AcbXuvAKJtryZWI0K0rVYmH3Eh2vmoo/ksEG3zJTIRIKJtogxtgmDoeBskHICAI6BztC++ZIKMGDGCVccNvROItqFiGA8F0TZeIM/DQ7Q9L6Av4SPavlQq2zgR7Wz5J7XeOLpRdhzYX0Y3NiZdwnEIBEmAOdo2y45o26yLxagQbYtVyU9MiHZ+amk6E0TbdHnMBIdomylFm0CYo90GCQcg4AgwdNzei4Bo26uJ1YgQbauVyUdciHY+6mg+C0TbfIlMBIhomyhDmyCmNE2RIYMHMUe7DRkOQEAE0bb3FiDa9mpiNSJE22pl8hEXop2POprPAtE2XyITASLaJsrQJgjmaLdBwgEIOAIMHbf5IiDaNutiMSpE22JV8hMTop2fWprOBNE2XR4zwSHaZkpRFIj2aK/UoxtztIuosAMBERXtGQ8+xGJoxl4GRNtYQQyHg2gbLk4OQkO0c1BEH1JAtH2oUvYxItrZ1yApAuZoJ5HheOgEGDpu7w1AtO3VxGpEiLbVyuQjLkQ7H3U0nwWibb5EJgJEtE2UoU0Quur4wAH9ZUz0LxsEIFBM4N777pdevXoXH2QvUwKIdqb4vWoc0faqXN4Fi2h7VzI/A0a0/axb2lEj2mkTr6w95mhXxomrwiPAHG2bNUe0bdbFYlSItsWq5CcmRDs/tTSdCaJtujxmgkO0zZSiKJDm5mbp2XNlVh0vosIOBERmzpol2qPd0NAgfRr6gMQIAUTbSCE8CAPR9qBIHoeIaHtcPJ9CR7R9qlZ2sSLa2bEv1zJztMsR4nyoBJijba/yiLa9mliNCNG2Wpl8xIVo56OO5rNAtM2XyESAiLaJMrQJgqHjbZBwAAKOgPZoz5jxoAwbNhwihggg2oaKYTwURNt4gTwPD9H2vIC+hI9o+1KpbONEtLPln9Q6op1EhuOhE2COts03ANG2WReLUSHaFquSn5gQ7fzU0nQmiLbp8pgJDtE2U4o2gTB0vA0SDkDAzdFeuHARq44bexcQbWMFMRwOom24ODkIDdHOQRF9SAHR9qFK2ceIaGdfg/YimN08W1bruQqLobUHh2PBE2COtr1XANG2VxOrESHaViuTj7gQ7XzU0XwWiLb5EpkIENE2UYY2QTB0vA0SDkDAEWDouM0XAdG2WReLUSHaFquSn5gQ7fzU0nQmiLbp8pgJDtE2U4qiQBpHN8qOA/vL6MbGouPsQCB0Aoi2zTcA0bZZF4tRIdoWq5KfmBDt/NTSdCaItunymAkO0TZTijaBMEe7DRIOQMARYOi4vRcB0bZXE6sRIdpWK5OPuBDtfNTRfBaItvkSmQgQ0TZRhjZBTGmaIkMGD2KOdhsyHICAyL333c9iaMZeBETbWEEMh4NoGy5ODkJDtHNQRB9SQLR9qFL2MSLa2degvQiYo90eFY5BQISh4zbfAkTbZl0sRoVoW6xKfmJCtPNTS9OZINqmy2MmOETbTCmKAtEe7ZV6dGOOdhEVdiCwVLRnPPiQjBgxQvo09AGJEQKItpFCeBAGou1BkTwOEdH2uHg+hY5o+1St7GJFtLNjX65l5miXI8T5UAkwR9te5RFtezWxGhGibbUy+YgL0c5HHc1ngWibL5GJABFtE2VoE4SuOj5wQH8ZE/3LBgEIfEFg5qxZMmPGgzJs2PAvDvIpcwKIduYl8CYARNubUnkZKKLtZdn8CxrR9q9mWUSMaGdBvXybWczRnt3cLPPnzy8b3F577ik9evQoe12eL5gz90mZM+cJWXPNtWTnbw/Jc6rmcmOOtrmSuIAQbZt1sRgVom2xKvmJCdHOTy1NZ4Jomy6PmeAQ7WxLcfMtN0uvLXvJlltuWRRIcyS9PXuunOqq4zfdfLP85X/vLYqjvZ3zz/2FrLnGGu2dCubY737/e7n9zt/Jxl//upx4/HHe533rb34r/33zTem/w/ay1Te/aTof7dHWVccbGhrazNGeO3dum/+WTCeTo+AQ7RwVs86pINp1Bhz44xHtwF+AtNJHtNMi7Xc7iHZ29VMpUP66nXXGWW0EIe052v945BGZN+/pApAHH35YPv74Y/naV78qG224YeH43j/4fvA92nkT7TPPPkdeeukl+eG++8ruu+1aqLXVD+3N0eZ/y7KtFqKdLX+fWke0faqWf7Ei2v7VzMuIEW0vy5Z60Nqjesutt7QreqkHE2CDMX9NvaVsZzF0vDX+o485Vt59991IvvaJ5Gu31qfd/ieffCKLFi2SlVZaqd3zrQ9+9tlnsswyyxQdbu9Y0QWf73z00cfyyaefSPdu3do7XTimz9O4V1lllTZtFS6q4MPChQtFn9VebtWI9kfRlxb6vBVXWKGC1stf8v7770u3iMVyyy1X/uLoilKcKxFtvV/bXHnllStqr14XaY/2xZdMKFp1PJbs/X+4vxyw/wH1aprnliCAaJeAw6kiAoh2EQ52akwA0a4xUB7XPgFEu30uHC0mEIse/w9qMZc09+IaaJuxbOtiaDsO7J/pz3uVEu0XXnhRbrvjdnn22efkw48+kvXWXVe23WYb+f739irI7d1/uUf+dPfdsukmm0jvXlvKnb/7vbz73nvR/sZyRPTTTM88+6zcfsed8p/XXpMNN9xADh06NPp3ac/5P59/XiZffoUsu+yycsJxx8qVV10tL0Y9rip72rv+w/32lc023bSoTK+/8YbcdNPN8uw//ykqyTqPfJNoaPcBB+wva6+1VuHay391pTz73HOy+667ymtR27MffVT6bruNHHTgge75f7nnf+Xue+6Rt99+293Ts2dP2SfqxR/Qv3/hGR0R7b/9babcc++98tLLL7v7Nf5ddv629N1uO7d/0SWXyr/+/W/ZccAA0dEC8fb8Cy/IpF9e7naVgeag+d92+x3yyOzZjptK+yYRz3323ls23GCD+FYZd+zS4ew/PXKUPPTQw/L4nDnyYfSFiDKLeSxevFiOP+lkd48KtH5pos9bYcUV3ZcUZ5x6ijv38iuvyJ/+/GeZ++RT8l5Uv3XXWUd69+4l++2zj3Tp0qXQZlofWs/RRrLTIp/cTvy/YToFRv83jA0CpQgg2qXocK6zBBDtzhLk/ooIINoVYeKiiED8/6i2nicMnPQI6DDyeItlO+2h43H78b9Jov1yJIwXXHyJfPDBB06EVWhVwHRTgTxw//3d51hGtcf1008/le7duzsB1pNrrbmmLHjnHSdqH374oRNIPX/R+efLCit0lfnPPCPnX3iRe44e17a0JzVuR4Vw/Lij3bB2vUhl8JIJl7mebN3X8/oFgG6rrrqqjBt7lHz5S19y+xdGsc97+mnp2rWrGxqvB781cKAMP3SY3PXHP8pvb7vdXafSr3KqAq/b2DFj3BcG+jnOrdwc7Yei4fdN1011+WlMumlc+gXCT0b9OJpj3OC+bPjdH/7gvqw4+6wz3TX61x3RHPA7o7ng66y9tvzi7J+7Z0ydNl0eePBBd43yUC4qyPpZ54rrtbodMepId/3qq68ub731VhEPnV9/6sknRZxXkDFHj3PXq3SrxGut9E/PiNm555ztjh134knuGSr66667jjzzzLOyKKpZy1q7h6T0l/ZoL1y4SHr16l343y5tmv/9SqkA7TQT/+9X/L9d7VzCIQgUCCDaBRR8qAMBRLsOUHlkWwKIdlsmHEkmEMt28hWcSYuAji7YJOoFXq3nKqkuhtY6vyTRvvjSCfLkU0856fzRyJFOoB97/PFC7+tZZ5wuX1p//YKM6nOPHT9ONt9ss4I86rHddt1F9o16Yl955VU565xz9FDhupairTI77JChTpS1J/qaKU3yxn//K1v17l34+TPt5XzsiSecrB467BDZZOONXY+5iqn2mDdstZU0/uynro1YtFUoDzn4oCiPXlEOPZzga8/tA9FPRw3eaafCauJXXHmV6Pz1Af13kBGHHeaeUYloqwCPHjtWdMj7XnvsIXt89zvuXu3Zv+tPf3JyPOHii+TFF18q5N9yobmzzz1Xnn/+BflONGx/v2j4vuZ+7vkXuBEDYxp/5uJW0f5V1Nuv9dARBSrvusWivdpqq0UxD5dvbL65+/JCc1eh/lE0omD77fu5a/WvpKHj2qt/zPEnuOv0SwAduaBxaK96w9Zby5DBO7kvDQoPSumDztH+9fXXu2kvKTVJM2UIINllAHG6QADRLqDgQx0IINp1gMoj2xJAtNsy4UhpAnGvROmrOFsPAjfferMo/3gIv9U52tozPfqosa5XdsAOO7gezpiHrliuc6MPi3qGd4x6iGMZ1aHG5/x86XBSXXBLpU63n595hqy/3nru83EnnihvvvlW4d6Wov2znxzpen7dhdFfca+zzp2+7JKLnTiOGXu0fBD1Ph8cDf/+9pDB8aVyTxTTjdFq6trrrtfq/PBYtFvKd+GG6IP2mr/40suyYMHSoeMqsTNn/d0NgT/+2GPcpXFupXq0VZJVlrXN70U/idaly9K51Crev7/rLvcc7TXWnuI4/2FDD5adBg1yMegXHSrFJ594guu5/3M0DP+WaHVw7aUePOhbhZBf/de/5G8zZ4lK9UXnn+eOx6LdutdZRwko250jRjpUPt6SRFvPx7FpnH36NLgvMTaNhqCXmysfP7vW/7YcOv5MlIuuMaGb/rejK/izpU+A0QTpM/e5RUTb5+rZjx3Rtl+jXESIaOeijCQRAIF4NEEs2ZrylKYpslKPbubmaOsw6hNPXjp3N6k0Q6Le4KFRT3F7MvrKq6/K6WculW7tzdUhz7qdEM0V1l7q4VFv9Ld23LEwdFwldfLEy4oWEGsp65dceIHoImNxTDrEOh4+rc/Vuc+nnn6GfpS4tzgW7T2/+92iOdF6zb333Sc33/obWbJkie4WbTrXvCOiPSMa4n3t1GlFz2i9oz3Q2hN90y23iM4N3zr6aa3RUW/1zEicr5oyxcnzhectlfVrmprk4Wi+d6ktZhqLtvZ8t/y5rvgZ+iXJiMMPKzyqlGgr7ynXXidau3jTYfc/iObj77Zr+iuUtxTtPg19JJ4frLHRqxpXiH8hYJcAom23NnmIDNHOQxU9yAHR9qBIhBg8gfYkO4ZicY52y+HQ+++3n2y66SZxuK73VcVY5VnnAddCtPXhR40eLd+MFt+Kt7iXWntUJ0641M3/1l52Fe64Nz2+9v7/+z+Z9uvrnahPumyCG+acJNq6gNpR48a7PAZHvcpbbrmFu157i2f9veM92vFQbx2irjl07/7FaunaU62stJdYe9vjHvwVIoHVnK6dOtX1Un978GA5+KClPc9xT76OEDhi5Ig4xaJ/dUE0bS8W7fFHj5UtvvGNwjXViLberIul6Zz6p56aJ49HQ/S1l1+3M08/rTD33R1I6a/WP++FbKcEnmYgUAMCiHYNIPKIRAKIdiIaTtSSAKJdS5o8CwK1J6BDxVW0W/Zkx61oj/aQwYNMztGORVXnXOuq1iqKOmRc527rvN3dd9/NiW2tRLtXJLw6N1oXNdMe9V9Gq5Fr76oeP/qooxyySy+7TObMfVI22mhD+fERR7iVsXVuts5f1sXbVNRVdnWL42/dox3LrgrwpRdd6L4w0C8WTjntdNeuLqZ2xmmnOkFuLzf38BZ/aa94Y/QFgC40piuc64riukq3tnNttEDannt8V/pHPcvanoq3DhXXYeua09VRb7bK7THRgm86v1q3OD793PjTnzjWep8OKW9+9DHZd5+93fB2PV+taMfzwfUZuilTlXP9AkDnaC+//PLuuM7b1vnbI6Necc0h7e3e++53i6G1bDeWbXq1W1LhMwTsEUC07dUkTxEh2nmqpuFcEG3DxSE0CHxOQGW7vfmNVudoa9gqfBMum+h6kFUc148WPnslWvVb52/rsO3TIxlVMWtPRjs6dFzbUxHVVbp1IS6dj6xyqe2OaWyULbdY2lurPxV22cRJbjVsvUd7iuPVwrXn+6gxo0XnU+uWJNofRz3iugq3irHmoauOa8+tth2vdr7GGqvLBdG86/Zycw9v9Zf+xNnNt97qjuoXEqtGv+2tw9l169d3O/elgNuJ/po2/ddy/wMPuLZfe/119wWGCr/2UOum0q9fHMxubnb7unL7x1Gs70Q9zbrFw+71c0dF+7poiLuuZq65rh7N9dYF4g6J5otr3iedeppb3Vx70vXLFf0CQ1dt17i0R1vrkubWeuh4mm3TFgQg0HkCiHbnGfKEZAKIdjIbztSQAKJdQ5g8CgIpE2iOZKpnz5VN9mgrChWtm2+51f2sloqvCpr2MB8+fLj7DWa9pj0ZrUa0dV70VddMKfyutcqu/oSY/jRWy01X75766+luFXOVUhXBDTb4sgw/5JDC73Pr9Umiref0t6K1NzkWa11gbGwk6X/96/0y46GH3JcJg8ocngAAQABJREFUV11xebu56f3tbTrU/S/R73L/98033Wmd3zx4p0FuxfVYovXE40/MkcsmTSo8ovU8aj2hef36+hvkkej90KHuuulQ/QOiYfw77LC929e/Oira+gXGDTfeJE/Pn+++yFC2ugidbspVV0l/at4816bGrKu6aw46vzztTUV7xoMPyYho5XSdo80GAQj4RQDR9qtevkWLaPtWMU/jRbQ9LRxhQ+BzAlnP0a6kEIuilb7fiIZzrxv1aqpA1mprOUxaxVY37eXVnmztrS616Vzt1/7zH1lnnXXdT3aVura9c/rFgbalPfTai6tfItRi09+z1t/QrsUzNUbtGV9xhRVFv3hIY9M2VcjXjHrS498ET6Pd9tpoPUe7vWs4BgEI2CSAaNusS16iQrTzUknjeSDaxgtEeBAoQaBxdKMMHNC/8DvRJS7N5anWot2y5zeXCZNUxQRmzpolM6LfOh82bHjF93AhBCBghwCibacWeYwE0c5jVQ3mhGgbLAohQaBCAhbmaFcYal0uQ7TrgjUXD2WOdi7KSBIBE0C0Ay5+Cqkj2ilApgkRRJu3AAJ+E/Bh6Hi9COtCZnff/Rf3eP1Nbl0QjQ0CSkB7tHXV8YZoHjlztHknIOAfAUTbv5r5FDGi7VO1PI4V0fa4eIQOgYhAyKLNCwCBUgSYo12KDucgYJsAom27Pr5Hh2j7XkFP4ke0PSkUYUKgHQKhDx1vBwmHIOAIaI/2xZdMYNVx3gcIeEoA0fa0cJ6EjWh7Uijfw0S0fa8g8YdMQBdD23Fgfxkd/VY0GwQg8AUB5mh/wYJPEPCRAKLtY9X8iRnR9qdWXkeKaHtdPoKHAEPHeQcg0A4B7dFeuHCR9OrVu52zHIIABKwTQLStV8jv+BBtv+vnTfSItjelIlAItCEwu3m2rNZzFenXt2+bcxyAQOgEmKMd+htA/j4TQLR9rp792BFt+zXKRYSIdi7KSBKBEmCOdqCFJ+2yBBg6XhYRF0DANAFE23R5vA8O0fa+hH4kgGj7USeihEB7BKY0TZGVenRjjnZ7cDgWNAFEO+jyk3wOCCDaOSii4RQQbcPFyVNoiHaeqkkuIRLg571CrDo5V0KAoeOVUOIaCNgkgGjbrEteokK081JJ43kg2sYLRHgQKEFAe7SHDB7EHO0SjDgVLoF777ufxdDCLT+Ze04A0fa8gMbDR7SNFygv4SHaeakkeYRIgDnaIVadnCshwNDxSihxDQTsEkC07dYmD5Eh2nmoogc5INoeFIkQIZBAoLm5WXr2XJke7QQ+HA6XgIr2jAcfkhEjRkifhj7hgiBzCHhKANH2tHCehI1oe1Io38NEtH2vIPGHToA52qG/AeSfRIA52klkOA4B+wQQbfs18jlCRNvn6nkUO6LtUbEIFQKtCDSObpSBA/rLmOhfNghA4AsCM2fNkhkzHpRhw4Z/cZBPEICANwQQbW9K5WWgiLaXZfMvaETbv5oRMQRiAszRjknwLwSKCTBHu5gHexDwjQCi7VvF/IoX0farXt5Gi2h7WzoCh4AjwNBxXgQItCWgPdq66nhDQwNztNvi4QgEzBNAtM2XyOsAEW2vy+dP8Ii2P7UiUgi0RwDRbo8KxyAgwhxt3gII+EsA0fa3dj5Ejmj7UKUcxIho56CIpBAsAYaOB1t6Ei9DQHu0L75kAquOl+HEaQhYJYBoW61MPuJCtPNRR/NZINrmS0SAEEgkoIuh7Tiwv4xuZDG0REicCJIAc7SDLDtJ54gAop2jYhpMBdE2WJQ8hoRo57Gq5BQSAYaOh1Rtcq2UgPZoL1y4SHr16l3pLVwHAQgYIoBoGypGDkNBtHNYVIspIdoWq0JMEKiMwOzm2bJaz1WkX9++ld3AVRAIiABztAMqNqnmjgCinbuSmkoI0TZVjvwGg2jnt7Zkln8CzNHOf43JsDoCDB2vjht3QcAKAUTbSiXyGQeinc+6mssK0TZXEgKCQMUEpjRNkZV6dGOOdsXEuDAUAoh2KJUmz7wSQLTzWlkbeSHaNuqQ+ygQ7dyXmARzToA52jkvMOlVTYCh41Wj40YIZE4A0c68BLkOANHOdXntJIdo26kFkUCgowS0R3vI4EHM0e4oOK4PgsC9993PYmhBVJok80gA0c5jVe3khGjbqUWuI0G0c11ekss5AeZo57zApFc1AYaOV42OGyFgggCibaIMuQ0C0c5taW0lhmjbqgfRQKAjBJqbm6Vnz5Xp0e4INK4NgoCK9owHH5IRI0ZIn4Y+QeRMkhDIEwFEO0/VtJcLom2vJrmMCNHOZVlJKiACzNEOqNik2iECzNHuEC4uhoApAoi2qXLkLhhEO3cltZkQom2zLkQFgUoINI5ulIED+suY6F82CEDgCwIzZ82SGTMelGHDhn9xkE8QgIA3BBBtb0rlZaCItpdl8y9oRNu/mhExBGICzNGOSfAvBIoJMEe7mAd7EPCNAKLtW8X8ihfR9qte3kaLaHtbOgKHgCPA0HFeBAi0JaA92rrqeENDA3O02+LhCATME0C0zZfI6wARba/L50/wiLY/tSJSCLRHANFujwrHICDCHG3eAgj4SwDR9rd2PkSOaPtQpRzEiGjnoIikECwBho4HW3oSL0NAe7QvvmQCq46X4cRpCFglgGhbrUw+4kK081FH81kg2uZLRIAQSCSgi6HtOLC/jG5kMbRESJwIkgBztIMsO0nniACinaNiGkwF0TZYlDyGhGjnsarkFBIBho6HVG1yrZSA9mgvXLhIevXqXektXAcBCBgigGgbKkYOQ0G0c1hUiykh2harQkwQqIzA7ObZslrPVaRf376V3cBVEAiIAHO0Ayo2qeaOAKKdu5KaSgjRNlWO/AaDaOe3tmSWfwLM0c5/jcmwOgIMHa+OG3dBwAoBRNtKJfIZB6Kdz7qaywrRNlcSAoJAxQSmNE2RlXp0Y452xcS4MBQCiHYolSbPvBJAtPNaWRt5Ido26pD7KBDt3JeYBHNOgDnaOS8w6VVNgKHjVaPjRghkTgDRzrwEuQ4A0c51ee0kh2jbqQWRQKCjBLRHe8jgQczR7ig4rg+CwL333c9iaEFUmiTzSADRzmNV7eSEaNupRa4jQbRzXV6SyzkB5mjnvMCkVzUBho5XjY4bIWCCAKJtogy5DQLRzm1pbSWGaNuqB9FAoCMEmpubpWfPlenR7gg0rg2CgP6818WXTJARI0ZIn4Y+QeRMkhDIEwFEO0/VtJcLom2vJrmMCNHOZVlJKiACzNEOqNik2iECzNHuEC4uhoApAoi2qXLkLhhEO3cltZkQom2zLkQFgUoI6O9oN45ulDGN0Z/oXzYIQEBEe7N16PiwYYfSm80LAQFPCSDanhbOk7ARbU8K5XuYiLbvFST+kAnoYmj65/rp0xg+HvKLQO5FBFS0h0aSPXLESPen6CQ7EICAFwQQbS/K5G2QiLa3pfMrcETbr3oRLQTaI9Cz5yrSdfku7Z3iGASCJKArjn+8eDE92kFWn6TzQADRzkMV7eaAaNutTa4iQ7RzVU6SCZQAQ8gDLTxpFxGIh4xPjoaNL168pOgcOxCAgF8EEG2/6uVbtIi2bxXzNF5E29PCETYEWhCIh5D/ZNQoGT/uaDdHtV/fvi2u4CME8ktABVvfd37SK781JrPwCCDa4dU8zYwR7TRpB9wWoh1w8Uk9VwT0p74aGhpkzpwn5MdHjnLioXO3Y/mIF0zTuasqJvG87o0329xxePbpee64nldp4d5GN89XWSkb3ZRVzEaPK6uYa8w55hpz5t5phfcqZhWziVnV4h18dHazfPDBIrdmgc7NZoMABPwmgGj7XT/r0SPa1iuUk/gQ7ZwUkjQg0IKArkSu0q3Cob3dKuHx7wm33tdrddPhtjoEvampiXs//+3lmJWy0a0l15hVS67Tfz3dMR92yLAC90rvba9GodzbmXdQa6Sbvu/8XrZDwV8QyAUBRDsXZTSbBKJttjT5CgzRzlc9yQYCEMiGwNy5c+W0M06T/X+4vxyw/wHZBEGrEIAABHJCANHOSSGNpoFoGy1M3sJCtPNWUfKBAASyIIBoZ0GdNiEAgbwSQLTzWlkbeSHaNuqQ+ygQ7dyXmAQhAIEUCCDaKUCmCQhAIBgCiHYwpc4kUUQ7E+zhNYpoh1dzMoYABGpPANGuPVOeCAEIhEsA0Q639mlkjminQZk2BNHmJYAABCDQeQKIducZ8gQIQAACMQFEOybBv/UggGjXgyrPbEMA0W6DhAMQgAAEOkwA0e4wMm6AAAQgkEgA0U5Ew4kaEEC0awCRR5QngGiXZ8QVEIAABMoRQLTLEeI8BCAAgcoJINqVs+LKjhNAtDvOjDuqIIBoVwGNWyAAAQi0IoBotwLCLgQgAIFOEEC0OwGPW8sSQLTLIuKCWhBAtGtBkWdAAAKhE0C0Q38DyB8CEKglAUS7ljR5VmsCiHZrIuzXhQCiXResPBQCEAiMAKIdWMFJFwIQqCsBRLuueIN/OKId/CuQDgBEOx3OtAIBCOSbAKKd7/qSHQQgkC4BRDtd3qG1hmiHVvGM8kW0MwJPsxCAQK4IINq5KifJQAACGRNAtDMuQM6bR7RzXmAr6SHaVipBHBCAgM8EEG2fq0fsEICANQKItrWK5CseRDtf9TSbDaJttjQEBgEIeEQA0faoWIQKAQiYJ4Bomy+R1wEi2l6Xz5/gEW1/akWkEICAXQKItt3aEBkEIOAfAUTbv5r5FDGi7VO1PI4V0fa4eIQOAQiYIYBomykFgUAAAjkggGjnoIiGU0C0DRcnT6Eh2nmqJrlAAAJZEUC0syJPuxCAQB4JINp5rKqdnBBtO7XIdSSIdq7LS3IQgEBKBBDtlEDTDAQgEAQBRDuIMmeWJKKdGfqwGka0w6o32UIAAvUhgGjXhytPhQAEwiSAaIdZ97SyRrTTIh14O4h24C8A6UMAAjUhgGjXBCMPgQAEIOAIINq8CPUkgGjXky7PLhBAtAso+AABCECgagKIdtXouBECEIBAGwKIdhskHKghAUS7hjB5VDIBRDuZDWcgAAEIVEoA0a6UFNdBAAIQKE+gZ89VpOvyXcpfyBUQqIIAol0FNG6pjsDrb7xV3Y3cBQEIQAACjgCizYsAAQhAoHYEEO3aseRJbQkg2m2ZcKROBOjVrhNYHgsBCARDANEOptQkCgEI1JkAw8brDJjHC6LNS5AqgbcXvCuLFy9JtU0agwAEIJAXAoh2XipJHhCAQNYE6M3OugL5bx/Rzn+NzWWIbJsrCQFBAAKeEEC0PSkUYUIAAqYJINmmy5Ob4BDt3JTSr0Q+XrxYFi5cRO+2X2UjWghAIGMCiHbGBaB5CEDAawI9enSTHt27eZ0DwftDANH2p1a5jFSFmw0CEIAABCoj8Oijj8n4Y4+VQ4YOlcMPG17ZTVwFAQhAAALR6uLLQwECqRJAtFPFTWMQgAAEIACB6gk0P/qojBl7tIyIJPvwww6r/kHcCQEIQAACEIBAXQkg2nXFy8MhAAEIQAACtSOAaNeOJU+CAAQgAAEI1JMAol1PujwbAhCAAAQgUEMCiHYNYfIoCEAAAhCAQB0JINp1hMujIQABCEAAArUkgGjXkibPggAEIAABCNSPAKJdP7Y8GQIQgAAEIFBTAoh2TXHyMAhAAAIQgEDdCCDadUPLgyEAAQhAAAK1JYBo15YnT4MABCAAAQjUiwCiXS+yPBcCEIAABCBQYwKIdo2B8jgIQAACEIBAnQgg2nUCy2MhAAEIQAACtSaAaNeaKM+DAAQgAAEI1IcAol0frjwVAhCAAAQgUHMCiHbNkfJACEAAAhCAQF0IINp1wcpDIQABCEAAArUngGjXnilPhAAEIAABCNSDAKJdD6o8EwIQgAAEIFAHAoh2HaDySAhAAAIQgEAdCCDadYDKIyEAAQhAAAL1IIBo14Mqz4QABCAAAQjUngCiXXumPBECEIAABCBQFwKIdl2w8lAIQAACEIBAzQkg2jVHygMhAAEIQAAC9SGAaNeHK0+FAAQgAAEI1JoAol1rojwPAhCAAAQgUCcCiHadwPJYCEAAAhCAQI0JINo1BsrjIAABCEAAAvUigGjXiyzPhQAEIAABCNSWAKJdW548DQIQgAAEIFA3Aoh23dDyYAhAAAIQgEBNCSDaNcXJwyAAAQhAAAL1I4Bo148tT4YABCAAAQjUkgCiXUuaPAsCEIAABCBQRwKIdh3h8mgIQAACEIBADQkg2jWEyaMgAAEIQAAC9SSAaNeTLs+GAAQgAAEI1I4Aol07ljwJAhCAAAQgUFcCiHZd8fJwCEAAAhCAQM0IINo1Q8mDIAABCEAAAvUlgGjXly9PhwAEIAABCNSKAKJdK5I8BwIQgAAEIFBnAoh2nQHzeAhAAAIQgECNCCDaNQLJYyAAAQhAAAL1JoBo15swz4cABCAAAQjUhgCiXRuOPAUCEIAABCBQdwKIdt0R0wAEIAABCECgJgQQ7Zpg5CEQgAAEIACB+hNAtOvPmBYgAAEIQAACtSCAaNeCIs+AAAQgAAEIpEAA0U4BMk1AAAIQgAAEakAA0a4BRB4BAQhAAAIQSIMAop0GZdqAAAQgAAEIdJ4Aot15hjwBAhCAAAQgkAoBRDsVzDQCAQhAAAIQ6DQBRLvTCHkABCAAAQhAIB0CiHY6nGkFAhCAAAQg0FkCiHZnCXI/BCAAAQhAICUCiHZKoGkGAhCAAAQg0EkCiHYnAXI7BCAAAQhAIC0CiHZapGkHAhCAAAQg0DkCiHbn+HE3BCAAAQhAIDUCiHZqqGkIAhCAAAQg0CkCiHan8HEzBCAAAQhAID0CiHZ6rGkJAhCAAAQg0BkCiHZn6HEvBCAAAQhAIEUCiHaKsGkKAhCAAAQg0AkCiHYn4HErBCAAAQhAIE0CiHaatGkLAhCAAAQgUD0BRLt6dtwJAQhAAAIQSJUAop0qbhqDAAQgAAEIVE0A0a4aHTdCAAIQgAAE0iWAaKfLm9YgAAEIQAAC1RJAtKslx30QgAAEIACBlAkg2ikDpzkIQAACEIBAlQQQ7SrBcRsEIAABCEAgbQKIdtrEaQ8CEIAABCBQHQFEuzpu3AUBCEAAAhBInQCinTpyGoQABCAAAQhURQDRrgobN0EAAhCAAATSJ4Bop8+cFiEAAQhAAALVEEC0q6HGPRCAAAQgAIEMCCDaGUCnSQhAAAIQgEAVBBDtKqBxCwQgAAEIQCALAoh2FtRpEwIQgAAEINBxAoh2x5lxBwQgAAEIQCATAoh2JthpFAIQgAAEINBhAoh2h5FxAwQgAAEIQCAbAoh2NtxpFQIQgAAEINBRAoh2R4lxPQQgAAEIQCAjAoh2RuBpFgIQgAAEINBBAoh2B4FxOQQgAAEIQCArAoh2VuRpFwIQgAAEINAxAoh2x3hxNQQgAAEIQCAzAoh2ZuhpGAIQgAAEINAhAoh2h3BxMQQgAAEIQCA7Aoh2duxpGQIQgAAEINARAoh2R2hxLQQgAAEIQCBDAoh2hvBpGgIQgAAEINABAoh2B2BxKQQgAAEIQCBLAoh2lvRpGwIQgAAEIFA5AUS7clZcCQEIQAACEMiUAKKdKX4ahwAEIAABCFRMANGuGBUXQgACEIAABLIlgGhny5/WIQABCEAAApUSQLQrJcV1EIAABCAAgYwJINoZF4DmIQABCEAAAhUSQLQrBMVlEIAABCAAgawJINpZV4D2IQABCEAAApURQLQr48RVEIAABCAAgcwJINqZl4AAIAABCEAAAhURQLQrwsRFEIAABCAAgWwIXHvddbL11ltLQ/SnPdHWY3qODQIQgAAEIAABOwQQbTu1IBIIQAACEIBAEYFYrPXgxAmXunNjxh4tIw4bLocfdpjoZ70m3i+6mR0IQAACEIAABDIjgGhnhp6GIQABCEAAAuUJaI9203VT3YUq1PpZ/21+9DEn2dqbHUt4+adxBQQgAAEIQAACaRBAtNOgTBsQgAAEIACBThBoKdstH4Nkt6TBZwhAAAIQgIAdAoi2nVoQCQQgAAEIQCCRQGvZRrITUXECAhCAAAQgkDkBRDvzEhAABCAAAQhAoDICsWwj2ZXx4ioIQAACEIBAVgQQ7azI0y4EIACBHBCYOWtWDrLwK4VHo8XPdBVytnQJ9OvbN90GaQ0CEIAABLwmgGh7XT6ChwAEIJA+AZXrmTNnycTJk9NvnBYhkCEBle0xoxsF6c6wCDQNAQhAwBMCiLYnhSJMCEAAAhYITJw0uUiwVTi270dPn4XaEEP9CPwt+mJJt3gEh77310+fVr8GeTIEIAABCHhPANH2voQkAAEIQCAdAi0l+6ioV290Y2M6DdMKBIwQUNHW/w70X2TbSFEIAwIQgIBRAoi20cIQFgQgAAFLBGLJRi4sVYVYsiIwdNihyHZW8GkXAhCAgCcEEG1PCkWYEIAABLIioL13Kha6Pfv0vKzCoF0ImCIQy/aYaGSHzttmgwAEIAABCLQkgGi3pMFnCEAAAhBoQyDuzWa4eBs0HAiYQPzfBaId8EtA6hCAAARKEEC0S8DhFAQgAAEIiOvN1l5tXfxJh46zQQACSwlsvNnm7gMjPXgjIAABCECgNQFEuzUR9iEAAQhAoIiAygRzs4uQsAMBRyAePs6XULwQEIAABCDQmgCi3ZoI+xCAAAQgUEQA0S7CwQ4ECgTi4eOIdgEJHyAAAQhA4HMCiDavAgQgAAEIlCSAaJfEw8mACSDaARef1CEAAQiUIYBolwHEaQhAAAKhE0C0Q38DyD+JAKKdRIbjEIAABCCAaPMOQAACEIBASQKIdkk8nAyYAKIdcPFJHQIQgEAZAoh2GUCchgAEIBA6AUQ79DeA/JMIINpJZDgOAQhAAAKINu8ABCAAAQiUJIBol8TDyYAJINoBF5/UIQABCJQhgGiXAcRpCEAAAqETQLRDfwPIP4kAop1EhuMQgAAEIIBo8w5AAAIQgEBJAoh2STycDJgAoh1w8UkdAhCAQBkCiHYZQJyGAAQgEDoBRDv0N4D8kwgg2klkOA4BCEAAAog27wAEIAABCJQkgGiXxMPJgAkg2gEXn9QhAAEIlCGAaJcBxGkIQAACoRNAtEN/A8g/iQCinUSG4xCAAAQggGjzDkAAAhCAQEkCiHZJPJwMmACiHXDxSR0CEIBAGQKIdhlAnIYABCAQOgFEO/Q3gPyTCCDaSWQ4DgEIQAACiDbvAAQgAAEIlCSAaJfEw8mACSDaARef1CEAAQiUIYBolwHEaQhAAAKhE0C0Q38DyD+JAKKdRIbjEIAABCCAaPMOQAACEIBASQKIdkk8nAyYAKIdcPFJHQIQgEAZAoh2GUCchgAEIBA6AUQ79DeA/JMIINpJZDgOAQhAAAKINu8ABCAAAQiUJIBol8TDyYAJINoBF5/UIQABCJQhgGiXAcRpCEAAAqETQLRDfwPIP4kAop1EhuMQgAAEIIBo8w5AAAIQgEBJAoh2STycDJgAoh1w8UkdAhCAQBkCiHYZQJyGAAQgEDoBRDv0N4D8kwgg2klkOA4BCEAAAog27wAEIAABCJQkgGiXxMPJgAkg2gEXn9QhAAEIlCGAaJcBxGkIQAACoRNAtEN/A8g/iQCinUSG4xCAAAQggGjzDkAAAhCAQEkCiHZJPJwMmACiHXDxSR0CEIBAGQKIdhlAnIYABCAQOgFEO/Q3gPyTCCDaSWQ4DgEIQAACiDbvAAQgAAEIlCSAaJfEw8mACSDaARef1CEAAQiUIYBolwHEaQhAAAKhE0C0Q38DyD+JAKKdRIbjEIAABCCAaPMOQAACEIBASQKIdkk8nAyYAKIdcPFJHQIQgEAZAoh2GUCchgAEIBA6AUQ79DeA/JMIINpJZDgOAQhAAAKINu8ABCAAAQiUJIBol8TDyYAJINoBF5/UIQABCJQhgGiXAcRpCEAAAqETQLRDfwPIP4kAop1EhuMQgAAEIIBo8w5AAAIQgEBJAoh2STycDJgAoh1w8UkdAhCAQBkCiHYZQJyGAAQgEDoBRDv0N4D8kwgg2klkOA4BCEAAAog27wAEIAABCJQkgGiXxMPJgAkg2gEXn9QhAAEIlCGAaJcBxGkIQAACoRNAtEN/A8g/iQCinUSG4xCAAAQggGjzDkAAAhCAQEkCiHZJPJwMmACiHXDxSR0CEIBAGQKIdhlAnIYABCAQOgFEO/Q3gPyTCCDaSWQ4DgEIQAACiDbvAAQgAAEIlCSAaJfEw8mACSDaARef1CEAAQiUIYBolwHEaQhAAAKhE0C0Q38DyD+JAKKdRIbjEIAABCCAaPMOQAACEIBASQKIdkk8nAyYAKIdcPFJHQIQgEAZAoh2GUCchgAEIBA6AUQ79DeA/JMIINpJZDgOAQhAAAKINu8ABCAAAQiUJIBol8TDyYAJINoBF5/UIQABCJQhgGiXAcRpCEAAAqETQLRDfwPIP4kAop1EhuMQgAAEIIBo8w5AAAIQgEBJAoh2STycDJgAoh1w8UkdAhCAQBkCiHYZQJyGAAQgEDoBRDv0N4D8kwgg2klkOA4BCEAAAog27wAEIAABCJQkUE/Rvvqaa+S1116Tfv36yS4771wyjnqffOnll2XatGmumZNOPFGWXXZZeWT2bLn8iivk20OGyMEHHVQ2hDifXXbZRfr17Vv2+koveOONN+Sss8+RNddYQ045+SRZbrnlKr2V6+pIANGuI1weDQEIQMBzAoi25wUkfAhAAAL1JlBP0d7r+z+Qp+bNkxGHHyYnnXBCvVMp+fxZf/+7HHzIMHfNvLlzpEuXLnLEj38sf73//2SFFVaQx2Y/4o6Vekicz8lRLodHOXVk+/DDD+WY4453txx37DGy4QYbFG6/ZsoUOe+CC93+TTdcL9tus03hHB/aEvif226Xe++7T3r32lJGRTWs14Zo14ssz4UABCDgPwFE2/8akgEEIACBuhIIWbT/57bb5OdRT/KuUQ/1+eedW5ZzZ0T7vfffl4ZttnVt3Pab30jv3r0K7emXEUf8eJSsvtpqcvNNN0r3bt0K5/jQlsA5554r1143VQYPGiRXX3Vl2wtqdATRrhFIHgMBCEAghwQQ7RwWlZQgAAEI1JKABdH+9NNP3VDuzua1aNGH8u6778jaa68tyyyzTNHj2uvR1gs+++yzNtfGN3700UfR896VtdZayx0qJdqffPKJvP766+5a7S1vvZUSbb22VBx6/s0335RVV121bK+7XqtbtUwXLFjgYlktkv5S28cffyyLFi1yMZW6Lj73QXStxrRSjx7xoZL/loof0S6JjpMQgAAEIJACAUQ7Bcg0AQEIQMBnAmmL9g4Dd3S4Jk+8TG6//Q65969/lQ8WLpS+220nJ510omy04YbyzjvvyHf23MsJ33nnnCODBn2rgPi6qCfzymjut85nvvP225wkP/jQQ3LOL86VZ597zslct24rytCDD5bxRx8tyy+/vLu3PdG+9trr5Kpo2PY3e/WSK391RaGNV159VU459VT5+z8eEZVtFfezzzpTLp1wmRsK33LouM79PuXU0+QfjzwiKp86v1rnfJ9+6imyzjrryN9mzpSjxx/j4lJZ1q1nz54urt2invQzTj9NHn3sMfnJzxrduQf+el9BplVOfxHl9cCDM+TVV/8lK664YjRcupccGQ2XbskkzmO7bbeVAw/Y38U598kn5SsbbST77P0DOWLkSPfspL9U8qdOnSZXNzW5OfV6neY8/uixsu8++xTdpmxOPe20Apuvf+1rLocpU5pkTtTmUaMboxgOKNxz+x13yrTp0+XJp55yx3ptuaUcfthw2eO73y1c0zjmKDdfftSPfqTfOMjNt94qL7z4omz1zW/KT0aNKuSqQ/3nPvmUvP/+e5Hkfyhdu3YtiP4t0UiADb785cIza/GBHu1aUOQZEIAABPJJANHOZ13JCgIQgEDNCKQt2pts/g0n0Outt578+9//dj2c70eirZuK0v/85lbR3tQDDx7q5PXgAw+Us848w53Xv3SetUrzgfvvL2f//Cx3zUFDD3HP/NKX1pc1IgF/4ok5bl+F9Jjx49y97Yn25F/+UiZMnCTb9OkjN994g7tOFyY74KCDRQVaN+1Ffj8a9h33kC9ZskRi0dZe6m/vsqu89dZbsvLKK8s3Nt/cSbMKd8PWW4vK30MPPSyjfvpT9yydp62bCqIuxrbHd77jhqy3F9t7770nI474kTQ/+qi7R3uCY07aY37RBefLnnvs4c7FeayyyiqyZPFiWRL1rqs8L44+6xbH63ba+euKX/1KLr50gjuzxRZbyPtR23H+TVdfLd/61tIvR3RhO63Ly6+84q7VLww0To1H+Wh+LdvSofnHn3iSi6VH9+7uGs1Bv4yYOOFS2W3XXd1zDjl0uPtCor13Qln9etpU6dPQIEOHHSqPPf64aA30jzLU87r9f3v3ASVFkcdx/E80o6diFrOC2VMX1ENF7wxIEBQMRDPqghjJZnKGFRQDyXCCCcUczjMhKOZ8RswRVCQYr3611josG2aX3p2enm+/t87uTHd116cG3/t1hb73nrv9TRr/R0T/IWhHBEkxCCCAQAIFCNoJbFSqhAACCEQpkKmgrd7e4UOH2H5Nmvjg3KlLV9/rO2LYMDu6dStTL+3AIUNM4fm/jz3mq6xgu2/jJj5khQCoRbEmXet6uDfc0NRLru3Gm26ySy+/YoVjSwqzIaCmBu3xBQU2dnyBD3BjR4+yZgcf7Idtjxg1yu50PfDaQphUD7p6ud9++227Z9YsU0/62++8Y0e1bOX3e/yxR22LzTf3v5c1dLyka7vhhsk2aOhQfx1y0jxy9SYPHTrMHnEeCtXPz33Wh81QD52oU4cO1j3/bB9m+7me9gcefNAvvPbYIw/76yjpP1pNfcbM26yjO7ZL58IF49TLrGPVIz7MtYO2se6mxHh3c0KLx40fO8YObNrUFi5caCNHjbbb7rjD7xNsFIT3cj3s6nk++8wz7awzu/mgrfB69aRJtv7669u8Oc/4Y0LQ1h9DBg20Vi1b2hcu1J98yqm+Z7v9scfaoIFX+n31H4aOF1HwCwIIIIBAhgQI2hmC57QIIIBAtghkKmhr+HA/95itsKlX+rnnn7cunTragP79fa9ps0MLHwn2wH332vbbbWcPPvSQnd29h62z9to279k5RcPCf1qyxN50Q5MXLPjYhfXffE+5wrK2d958w4fRksJsCKipQfvkU0+1J558yve2XjV+XLg8++yzz+0gNyRcPcUhTOpDBcp3XLh+7/0P3DDzwh7ry664wgdM9cQ2cY8201bRoH36Gd38sHr1+qZehxZO01xxbffMusv3ood6qKdY4VW98NrmPPus6QaGtvnz5ha9798o9h8Na3/DDcv+8qsv/Scajn/P7Hv9kP6bb5zu31NZKlM96WNGjSwqQXPT/3HQwf5GSbB55ZVXrW27dt4+3/Xo161bOIR/yZKlNsH1oGt79OGHfC90CNqNGjWye9x0gLCNGTvOCiZMsJ123NH3WIf3CdpBglcEEEAAgUwJELQzJc95EUAAgSwRyFTQnuTmRB/SrFmR0gUXXWSaz3tMmzZFK4C3PLqND9AhvPXrP8DP323VsoWNGjHCH6tw3qPnuaYh3yVtFQ3aBxx4kJ+nPNANSz/ODU9P3Y5ofpSfBx6u54svvrCz8rvbK6++mrpb0e/Tp07xPfZ6o6JBu6zraLz/Ab6XfZhbKb2t8wpBe5dddrZZf/Ys65wa/n3IP/+lX/2oAI0OKGnTCICBg4cUDTVP3Ufzvm+56Ub/VrgmzVdPnYetDw8/srm72fB+0U2ImW5l9T79+qcWtdLv6hU/8ogjLATt4o+BC2VoVIBGB4SNoB0keEUAAQQQyJQAQTtT8pwXAQQQyBKBTAXtqZNvsAP2379IqaSgfZXrzRztejW1n9//zxCsIeJHHH64PzaE8f33288F43Zu+PYafih3mHNc0aAdQl9qmNeJFOQVNLUadgjaIfDpmdhndjvDzw/X/Oye553ve7pXJWif5BYwe/Kpp611q5Y2cnjhM7Z1HQqzCrXa7nCLhu2++25FQTu1Z16fpxO0tfDcvk328/XSfPimTf/hh53Puvseu/e++yw1aIfnjh/ihtNPuqawV1rn0cJl/zyssD2CzQsvvmjtjz/Bz9++3g0VX6feOtrVb2GFdblpnncwP6tbNzvPLcAWNoJ2kOAVAQQQQCBuAgTtuLUI14MAAgjETCDOQTvMd9aCVxq+fGz74/z84Ofc3GQ9a1rDtnfdY0//mhq+L+rd2+648y4vPfeZp30ATnfo+Ci3KJiGNqv8aa5Hes899jANTR89erRNmVY4hDqEyRAQO3fsYBe7Vcq1aQGwi3oXDonXgl/N3YJn2lJ7tMP8cv+B+09J13b1NdfYCDf3Wddx3bWT/BBuzYce5OZLa664Fkeb/9w8H4pDj3ZlgnY4txYzk5XmTstVYf6jBQv8sG0NUdfCY2HRNC1+1tcZ6yaA9hk3frw9/t8nfHWCjRZi2+Pve/uV2E9zNw0UoLUCvEYg9HYLpGnOtnrjdd7gWNGgrbaZeeu/fRnBMspXFkOLUpOyEEAAgWQJELST1Z7UBgEEEIhcIM5BW5VVT6l6TPWoKt9z6uZJXz1xQpFDWIVcK5VrYbXXXnvNvv7ma6tZo6YPyJqvPNU9tmrJ0iV+xXId+Nbrr/me1pICqnqBtep4GIq+zdZb++djL3UraitsKoSGMBkWB9ONgKYHuOHcbvVxrYqtsKo5z1ocrbcbEq9HjWnTMG6VrxW4tU/3/Hy/2FgIu9onXJvO37nrSfa/d9/V235ht6+++toP71Y4vdjNY+/kAr62kuqh99Pp0dZK4XvnNfaPMZOxVh3X/GyF6fA4srAgnVYY79ili73++hsq3nuoh19z5vUccT2OLNjo88l/Lmin39UO9d2CdVpATlvLFkfZ6JGF87wrGrR1o+HCXr18OVqpXG1/952Fi7H5NyP6D0E7IkiKQQABBBIoQNBOYKNSJQQQQCBKgbgH7WHDR9gktyp22LQCtlbCDpseNaUF0t5wz3DWphWxNXd5qQt9Q4YNt0WLFvlHdykIKpRrC2G2tICqnvTzL7jQ3nKriWvTCt+DrrzCrnPPitYzr0OY1Iraffv3s9n33ucXSdO+WuTt6Fatrfs55/igq2dRn+mGRGt76OGHTT3mIWwO6NfPr/JdUtDW/rr2i3r19o++UojVpjB8tltcrM3Rrf3f+k9p9UgnaOv4p59+xs694AL/mDL9vckmm9j1rhf9pptutttdD73sZKZNQ82Hjxjpw/iXbhE0PdLskosHmObPa6G2YON3dv+Z6kYBTJ4yxa+Yrvf0LPAOJ55gF55/vg/zeq+iQVvu/dxzyh986GF/g0Dt84Lr3Y96I2hHLUp5CCCAQHIECNrJaUtqggACCFSJQFUG7Sq54FIKVQ+weny3225bH+ZK2a1Cb6vMH1wv7rbbbFPm8GQNC//wgw+tQYMty1zZu0InT9lZQVc92xvVr+97wlM+iuxXzZvWiAGdS734WsG8vC3MtdZ+Wgm9pKAdytAz0/UMbVmmU3Y4LpOvBO1M6nNuBBBAIN4CBO14tw9XhwACCGRcIClBO+OQOXIBeoza63+OHghVXvzjYhvunjO+fPlyu+ySi4uGyofPs/WVoJ2tLcd1I4AAAlUvQNCuemPOgAACCGS1AEE7q5uv2i9+wsSJNmrM2BLPqzns/3WP4dK86SRsBO0ktCJ1QAABBKpGgKBdNa6UigACCCRGgKCdmKaslor8160u/uhjj610rrXdgmhHNW9uepZ3UjaCdlJaknoggAAC0QsQtKM3pUQEEEAgUQIE7UQ1J5WJUICgHSEmRSGAAAIJEyBoJ6xBqQ4CCCAQtQBBO2pRykuKAEE7KS1JPRBAAIHoBQja0ZtSIgIIIJAoAYJ2opqTykQoQNCOEJOiEEAAgYQJELQT1qBUBwEEEIhagKAdtSjlJUWAoJ2UlqQeCCCAQPQCBO3oTSkRAQQQSJQAQTtRzUllIhQgaEeISVEIIIBAwgQI2glrUKqDAAIIRC1A0I5alPKSIkDQTkpLUg8EEEAgegGCdvSmlIgAAggkSoCgnajmpDIRChC0I8SkKAQQQCBhAgTthDUo1UEAAQSiFiBoRy1KeUkRIGgnpSWpBwIIIBC9AEE7elNKRAABBBIlQNBOVHNSmQgFCNoRYlIUAgggkDABgnbCGpTqIIAAAlELELSjFqW8pAgQtJPSktQDAQQQiF6AoB29KSUigAACiRIgaCeqOalMhAIE7QgxKQoBBBBImABBO2ENSnUQQACBqAUI2lGLUl5SBAjaSWlJ6oEAAghEL0DQjt6UEhFAAIFECRC0E9WcVCZCAYJ2hJgUhQACCCRMgKCdsAalOggggEDUAgTtqEUpLykCBO2ktCT1QAABBKIXIGhHb0qJCCCAQKIECNqJak4qE6EAQTtCTIpCAAEEEiZA0E5Yg1IdBBBAIGoBgnbUopSXFAGCdlJaknoggAAC0QsQtKM3pUQEEEAgUQIE7UQ1J5WJUICgHSEmRSGAAAIJEyBoJ6xBqQ4CCCAQtQBBO2pRykuKAEE7KS1JPRBAAIHoBQja0ZtSIgIIIJAoAYJ2opqTykQoQNCOEJOiEEAAgYQJELQT1qBUBwEEEIhagKAdtSjlJUWAoJ2UlqQeCCCAQPQCBO3oTSkRAQQQSJQAQTtRzUllIhQgaEeISVEIIIBAwgQI2glrUKqDAAIIRC1A0I5alPKSIkDQTkpLUg8EEEAgegGCdvSmlIgAAggkSoCgnajmpDIRChC0I8SkKAQQQCBhAgTthDUo1UEAAQSiFiBoRy1KeUkRIGgnpSWpBwIIIBC9AEE7elNKRAABBBIlQNBOVHNSmQgFCNoRYlIUAgggkDABgnbCGpTqIIAAAlELELSjFqW8pAgQtJPSktQDAQQQiF6AoB29KSUigAACiRIgaCeqOalMhAIE7QgxKQoBBBBImABBO2ENSnUQQACBqAUI2lGLUl5SBAjaSWlJ6oEAAghEL0DQjt6UEhFAAIFECRC0E9WcVCZCAYJ2hJgUhQACCCRMgKCdsAalOggggEDUAgTtqEUpLykCBO2ktCT1QAABBKIXIGhHb0qJCCCAQKIECNqJak4qE6EAQTtCTIpCAAEEEiZA0E5Yg1IdBBBAIGoBgnbUopSXFAGCdlJaknoggAAC0QsQtKM3pUQEEEAgUQIE7UQ1J5WJUICgHSEmRSGAAAIJEyBoJ6xBqQ4CCCAQtQBBO2pRykuKAEE7KS1JPRBAAIHoBQja0ZtSIgIIIJAoAYJ2opqTykQoQNCOEJOiEEAAgYQJELQT1qBUBwEEEIhagKAdtSjlJUWAoJ2UlqQeCCCAQPQCBO3oTSkRAQQQSJQAQTtRzUllIhQgaEeISVEIIIBAwgQI2glrUKqDAAIIRC1A0I5alPKSIkDQTkpLUg8EEEAgegGCdvSmlIgAAggkSoCgnajmpDIRChC0I8SkKAQQQCBhAgTthDUo1UEAAQSiFiBoRy1KeUkRIGgnpSWpBwIIIBC9AEE7elNKRAABBBIlQNBOVHNSmQgFOnTqbHPnzbObpk+zxnl5EZZMUQgggAAC2S5A0M72FuT6EUAAgSoWUNDW9u7bb1XxmSgegewSIGhnV3txtQgggEB1ChC0q1ObcyGAAAJZKBCGx/bIz7ce3fOzsAZcMgLRC6gnW0FbGzehovelRAQQQCDbBQja2d6CXD8CCCBQxQIE7SoGpvisFAj/Ls5xN5+6u5tQbAgggAACCKQKELRTNfgdAQQQQKBEgTB8nF7tEnl4M8cEUnuzmZ+dY41PdRFAAIE0BQjaaUKxGwIIIJDLAqH3TgaE7Vz+JlD31JBNbzbfBwQQQACB0gQI2qXJ8D4CCCCAwAoCqWFbKyxrvjYrLa9AxB8JFtD3X9u4gsJXQnaCG5uqIYAAAhEIELQjQKQIBBBAIFcE1JunwKFXNgRyVYCQnastT70RQACB9AUI2ulbsScCCCCAwJ8CIXDrT0I3X4ukC2jkRpPGhc/JZuGzpLc29UMAAQSiESBoR+NIKQgggAACCFS5wIsvvWQ9ep5rJ3ftYid17Vrl5+MECCCAAAIIIFA5AYJ25dw4CgEEEEAAgWoXIGhXOzknRAABBBBAoFICBO1KsXEQAggggAAC1S9A0K5+c86IAAIIIIBAZQQI2pVR4xgEEEAAAQQyIEDQzgA6p0QAAQQQQKASAgTtSqBxCAIIIIAAApkQIGhnQp1zIoAAAgggUHEBgnbFzTgCAQQQQACBjAgQtDPCzkkRQAABBBCosABBu8JkHIAAAggggEBmBAjamXHnrAgggAACCFRUgKBdUTH2RwABBBBAIEMCBO0MwXNaBBBAAAEEKihA0K4gGLsjgAACCCCQKQGCdqbkOS8CCCCAAAIVEyBoV8yLvRFAAAEEEMiYAEE7Y/ScGAEEEEAAgQoJELQrxMXOCCCAAAIIZE6AoJ05e86MAAIIIIBARQQI2hXRYl8EEEAAAQQyKEDQziA+p0YAAQQQQKACAgTtCmCxKwIIIIAAApkUIGhnUp9zI4AAAgggkL4AQTt9K/ZEAAEEEEAgowIE7Yzyc3IEEEAAAQTSFiBop03FjggggAACCGRWgKCdWX/OjgACCCCAQLoCBO10pdgPAQQQQACBDAsQtDPcAJweAQQQQACBNAUI2mlCsRsCCCCAAAKZFiBoZ7oFOD8CCCCAAALpCRC003NiLwQQQAABBDIuQNDOeBNwAQgggAACCKQlQNBOi4mdEEAAAQQQyLwAQTvzbcAVIIAAAgggkI4AQTsdJfZBAAEEEEAgBgIE7Rg0ApeAAAIIIIBAGgIE7TSQ2AUBBBBAAIE4CBC049AKXAMCCCCAAALlCxC0yzdiDwQQQAABBGIhQNCORTNwEQgggAACCJQrQNAul4gdEEAAAQQQiIcAQTse7cBVIIAAAgggUJ4AQbs8IT5HAAEEEEAgJgIE7Zg0BJeBAAIIIIBAOQIE7XKA+BgBBBBAAIG4CBC049ISXAcCCCCAAAJlCxC0y/bhUwQQQAABBGIjQNCOTVNwIQgggAACCJQpQNAuk4cPEUAAAQQQiI8AQTs+bcGVIIAAAgggUJYAQbssHT5DAAEEEEAgRgIE7Rg1BpeCAAIIIIBAGQIE7TJw+AgBBBBAAIE4CRC049QaXAsCCCCAAAKlCxC0S7fhEwQQQAABBGIlQNCOVXNwMQgggAACCJQqQNAulYYPEEAAAQQQiJcAQTte7cHVIIAAAgggUJoAQbs0Gd5HAAEEEEAgZgIE7Zg1CJeDAAIIIIBAKQIE7VJgeBsBBBBAAIG4CRC049YiXA8CCCCAAAIlCxC0S3bhXQQQQAABBGInQNCOXZNwQQgggAACCJQoQNAukYU3EUAAAQQQiJ8AQTt+bcIVIYAAAgggUJIAQbskFd5DAAEEEEAghgIE7Rg2CpeEAAIIIIBACQIE7RJQeAsBBBBAAIE4ChC049gqXBMCCCCAAAIrCxC0VzbhHQQQQAABBGIpQNCOZbNwUQgggAACCKwkQNBeiYQ3EEAAAQQQiKcAQTue7cJVIYAAAgggUFyAoF1chL8RQAABBBCIkcDkKVNszz33tL3cT0lBW+/pMzYEEEAAAQQQiI8AQTs+bcGVIIAAAgggsIJACNZ6c9yY0f6zHj3PtZO7drGTunY1/a59wt8rHMwfCCCAAAIIIJAxAYJ2xug5MQIIIIAAAuULqEf7hilT/Y4K1Ppdry++9LIP2erNDiG8/NLYAwEEEEAAAQSqQ4CgXR3KnAMBBBBAAIFVEEgN26nFELJTNfgdAQQQQACB+AgQtOPTFlwJAggggAACpQoUD9uE7FKp+AABBBBAAIGMCxC0M94EXAACCCCAAALpCYSwTchOz4u9EEAAAQQQyJQAQTtT8pwXAQQQSIDA3HnzfC0a5+X519S/U3/XhxX5uyL7Fi87m44tya14fYr/rcXPfv75Z6vMsaGsbDo2Du2pawhmMmRDAAEEEECgPAGCdnlCfI4AAgggsIJACB3jxhfYuIICH0Bumj7Nwt898vOtR/d869Cpsw/X+kwhZfudGvpy3n37Lf++Ptf7STtW9dOm+ob6yUz1DTbBKtgEK46N3/dIbZb6PfeNy38QQAABBBAoR4CgXQ4QHyOAAAII/CUQAmIIhAqITRrnWXcXRhQm57mfPBeeFTCL/z3ehXJt2ldb6t/F9y3+d+q+cT+2pPqFay7NJtSXY+P5PdL3XjeP9L3Wd16bbpKwIYAAAgggUJoAQbs0Gd5HAAEEEFhJIATt0BO70g68gUDCBcLoA/4NJLyhqR4CCCCwigIE7VUE5HAEEEAgFwRCj14u1JU6IlCegEYgqHebDQEEEEAAgdIECNqlyfA+AggggIAXUKhQL16YbwwLAggULu6nfxdh3j0mCCCAAAIIpAoQtFM1+B0BBBBAoEQBBYowF7vEHXgTgRwTYBpFjjU41UUAAQQqKEDQriAYuyOAAAIIIIAAAggggAACCCBQlgBBuywdPkMAAQQQKBo2rlWX2RBA4C8BTavQxnztv0z4DQEEEECgUICgzTcBAQQQQKBMgdTnQZe5Ix8ikGMCDB/PsQanuggggEAFBAjaFcBiVwQQQCAXBei1y8VWp87pCOjfRuqz49M5hn0QQAABBHJDgKCdG+1MLRFAAAEEEEAAAQQQQAABBKpJgKBdTdCcBgEEEMhWAYaOZ2vLcd1VLaAe7blz5xnrF1S1NOUjgAAC2SdA0M6+NuOKEUAAgWoVIGhXKzcnyyIB5mhnUWNxqQgggEA1CxC0qxmc0yGAAAIIIIBAMgRYvyAZ7UgtEEAAgaoQIGhXhSplIoAAAgkSIEwkqDGpCgIIIIAAAghUiwBBu1qYOQkCCCCQvQIMHc/etuPKq1ZAN6E0fFxztHmWdtVaUzoCCCCQbQIE7WxrMa4XAQQQqGaBDp06W5PGedY9P7+az8zpEIi3AHO0490+XB0CCCCQSQGCdib1OTcCCCCAAAIIIIAAAggggEDiBAjaiWtSKoQAAghEK6Beu8auR5uhsdG6UhoCCCCAAAIIJFeAoJ3ctqVmCCCAQCQCzNGOhJFCEijA0PEENipVQgABBCISIGhHBEkxCCCAQFIFxhcU+KoxRzupLUy9KiugoK0F0VgMrbKCHIcAAggkV4Cgndy2pWYIIIAAAggggAACCCCAAAIZECBoZwCdUyKAAALZJKBVxzU/W712bAggsKKAerRZv2BFE/5CAAEEEDAjaPMtQAABBBAoU4A52mXy8GEOCzBHO4cbn6ojgAAC5QgQtMsB4mMEEEAg1wXUY6eNXrtc/yZQ/+IC+rcxz/3kuREf/PsorsPfCCCAQG4LELRzu/2pPQIIIIAAAggggAACCCCAQMQCBO2IQSkOAQQQSJoAQ8eT1qLUJyoB9WjPnVu46nhUZVIOAggggEAyBAjayWhHaoEAAghUmQBBu8poKTjLBZijneUNyOUjgAACVShA0K5CXIpGAAEEEEAAgeQKsH5BctuWmiGAAAKrKkDQXlVBjkcAAQQSLkCYSHgDUz0EEEAAAQQQiFyAoB05KQUigAACyRJg6Hiy2pPaRCegm1AaPq5nzLPqeHSulIQAAggkQYCgnYRWpA4IIIBAFQp06NTZmjTOs+75+VV4FopGIPsEmKOdfW3GFSOAAALVJUDQri5pzoMAAggggAACCCCAAAIIIJATAgTtnGhmKokAAghUXkC9do1djzZDYytvyJEIIIAAAgggkFsCBO3cam9qiwACCFRYgDnaFSbjgBwRYOh4jjQ01UQAAQQqIUDQrgQahyCAAAK5JDC+oMBXlznaudTq1DUdAQVtLYjGYmjpaLEPAgggkFsCBO3cam9qiwACCCCAAAIIIIAAAgggUMUCBO0qBom1iz4AADsJSURBVKZ4BBBAINsFtOq45mer144NAQRWFFCPNusXrGjCXwgggAACZgRtvgUIIIAAAmUKMEe7TB4+zGEB5mjncONTdQQQQKAcAYJ2OUB8jAACCOS6gHrstNFrl+vfBOpfXED/Nua5nzw34oN/H8V1+BsBBBDIbQGCdm63P7VHAAEEEEAAAQQQQAABBBCIWICgHTEoxSGAAAJJE2DoeNJalPpEJaAe7blzC1cdj6pMykEAAQQQSIYAQTsZ7UgtEEAAgSoTIGhXGS0FZ7kAc7SzvAG5fAQQQKAKBQjaVYhL0QgggAACCCCQXAHWL0hu21IzBBBAYFUFCNqrKsjxCCCAQMIFCBMJb2CqhwACCCCAAAKRCxC0IyelQAQQQCBZAgwdT1Z7UpvoBHQTSsPH9Yx5Vh2PzpWSEEAAgSQIELST0IrUAQEEEKhCgQ6dOluTxnnWPT+/Cs9C0QhknwBztLOvzbhiBBBAoLoECNrVJc15EEAAAQQQQAABBBBAAAEEckKAoJ0TzUwlEUAAgcoLqNeusevRZmhs5Q05EgEEEEAAAQRyS4CgnVvtTW0RQACBCgswR7vCZByQIwIMHc+RhqaaCCCAQCUECNqVQOMQBBBAIJcExhcU+OoyRzuXWp26piOgoK0F0VgMLR0t9kEAAQRyS4CgnVvtTW0RQAABBBBAAAEEEEAAAQSqWICgXcXAFI8AAghku4BWHdf8bPXasSGAwF8C6s2eO7ewR/uvd/kNAQQQQAABM4I23wIEEEAAgTIFqnuO9rznnrP333/f6tWrZ82PPHKla3vsP/+xr776yjbbbDM7sGnTlT4v7Y1w3M4772y777ab/fHHH3brjBn23cJFdly7drbBBuuXdqh//4UXX7R33nmnwucts9CIPvz555/tjjvv9KUdfthh9re//S2ikimmLAHmaJelw2cIIIBAbgsQtHO7/ak9AgggUK6Aeu20Vdeq4/994gmbduNNVqtWLRs/ZoyttlrdomtUOD7nvPPtp59+stYtW1irli2LPivvl+EjR9lbb79tLZo3tzZHt7YPPvjQrhw82B/WpnUra3HUUWUW8e9bb7WHH33M9tx9d/dM8bPL3LekD595Zo69/OqrtvVWDezII44oaZdKv7d06VLLP6enP/7ifv1sK3eObN4+/PAju//BB61Ondp26sknx7Yq+rcxz/3kuREf1fXvI7YYXBgCCCCAwAoCBO0VOPgDAQQQQCDTAl98+aX1G3Cxv4zzz+1pOzdqVHRJn372mV186WX+714XXmA77rBD0Wfl/VI8aP/yyy82eNgwW7Toe+t+1lm2zTZbl1nEqgbtW2fOtIcefsT2cL3pUQ/DT1rQfunll238VRNstbp1bULB+DLbhQ8RQAABBBCIowBBO46twjUhgAACMRKo7qHjqvr5F/VyAXiR67Vu6XqtWxRpPP7f/9r0m262ui6AjRs9yvV41in67Pfff/fHrLvuur43vOiDP38pHrTD5+olr1GjRviz6FXv6xpUXs2aNa28oK1edh2z9tprF5WR+ku6QXvx4sW2xhprlFiH1PKWLFnir1v7ViZo//bbb/640q439Vzp/L7cDV9X/VdfbbV0dvf7luSug9MN2j/++KP3Lq2ctC5kFXZSj7aGj7Pq+CogcigCCCCQUAGCdkIblmohgAACUQlkImhfe/319qxbZKrhTjvZheefV1SVSddd5x6n9Jzv5VZvt7avv/nGpk2/0f737rumXmqF4j332MNOPP64FeYqlxS0z7vwIl9Gt9NPK+odVxk33XyLvfDSS36IukL9UUceYQrAxYeOK1g+/Mij9tAjj9jChQt9Weutt561dUPTD9h/f//32PHj7aMFH9uyZUtt+fKf/c2BNddc03/Wt3cv23CDDXzovPOuWTb/hRdMPfoKqzvssL21bdPGGmy5pd83/Oe119+wO+660xa4MnV+DRPveOKJNnDwEL9LeUPHNSz7zll32bvvvmfLli+3TTfZxPbZe29r3aqlD+53zbrbnnjqKf9+qr2Ced/+A+yXX3+1dm3b2n77NfHne/bZufbIY4/Zgo8/9n9v1aCB/eufh1revvuGS7YJV19j7773njV3Q+Z1zU88+aR99fXXts3WW/t5+Lvvtqvf99777rNH//O4ac65bh4oQGuuvrbjjj3WGjfO8+/fNWuWyUFW+nznRg3ddICjvaXfuZr+wxztaoLmNAgggEAWChC0s7DRuGQEEEAg6QJPPf20TZ46zfdcF4wdU9S7e0Gv3j7QKsge5eZaL3FhTOFPPZvq2d1yiy3sgw8/9IF7u223tT69LirqrS4paJ96Rjcf/MIQdYXJiS4UvuiGLmtTyK7pwp4CqYYxq9c2dY72ffffb7ffeZfft4ELmMvc9ShAauvZo4fttusuNmzESH9NKls/Co+hJ/6ySy62+htuaFOnTbcnXZ21rbPOOqbeau2r31WHjTfayH/2tluMbcy48T6Ihn1V93Bteq+soP2xC8PD3Fx1la8bEmuttZa303EKx8e3b29vvPmmjRw9xl/nyGFDfY++Ptf8dhnq+ocPGexvYjwzZ47dMGWqNww92bJS2Weecbr9fa+9dKg/Tsevv/769t133/kbCdpPmywuOO9c23677Uwh/8GHHzaNTvjVBXptagNtHU88wd+8CDdhdO3buzZe8Mkn/juh0C4rze2vrq261y+ornpxHgQQQACBVRcgaK+6ISUggAACiRbIRJhQL3Xvvv28q3p9FZq/+fZb69Wnr39PgUrB7LPPPzf1BH/66ad2yYABfuG0T/T7ZZf7/YYOHlTUy5lO0FaQVTDWdrTr4T300EN9aHziiSdNQ7+1pQbtB9yCXU8+9bQ1O/hg++ehh/jPJ14zyZ6fP9+Fwv3s5K5d/Xv6T2lDx9XTO3joMB9ge7hF1nbbdVcfhK+edK0PveptVmjVFuqw2aab2kldu9i222zjerYX2JTp0+2jjxb4fcoK2grQCtK6AXDaKaeYetZffuUVPx9aB19+6SW2ycYb27kXXOh78085qavtv99+vtyZt91uDzz0kD9nvz69/Y2A7j17+l76lm4huaOaF64Qf/c9s+2+Bx7wNwnGjBzhjw3XrT9O6lL4uLiFblj+mLHj7Eu3gnzTAw6wru79sJU1dLxPv/7+ZkanDifawQcd5G+2jC+4yo9IUBvo5gQbAggggAACmRYgaGe6BTg/AgggEHOBTAwdF8lFffrYt99+Z+2OaWtHHH64zZnzrF03ebLvvR2f0sutnl8F7c+/+NL1ZP/sNW/+9799ANTQZw0/1xbCXlh1XO8V79G+3wXE2+6404c19eam9o4q+OsGQGrQVhnqUdbQ8EWLCoeOK8hqeLsWatOCbWErLWg/6MLrDBdi1dvb7KADw+6mhd80fF6P6hoxdIjv5c3vcY7vVT/x+OPt0EOaFe0bbPRGaUFbvcTd3crk6kk+wIXnTTbZuOh4DYn/4YcfrGvnTtb0H/9wvdRT7Gm3Svq+++xjGlavTTcvdBMjtEdYtV093K1atLDatQt7kjU8frYbAq5t8MArbaP69Yvst3TD4C8d0N9/pv+oB/uee++1LTbf3NS7H7aygna4NvVo7+16zOXcsOFOK0wTCOVU9StDx6tamPIRQACB7BUgaGdv23HlCCCAQLUIdOjU2Zq4ubHd8/Or5XzhJCFQhVW6p7ih5BpevesuO9u555zjd9O86KsmXu2HZofjUl81JLlRw4b+rXSCdhiW3DhvXzv91FNTi7Ib3SJs/3GLsaUGbT2b+9aZtxUNc049IN2gfd0NN9gcN8+5rE09w2GYvPYbdOUVRcPJ9bfCfs/zC0N9aUFbQ9rVG1zWdojrme/ghmiHoKse77GjRtr3339vGravLZw7DO8vqzz1xKtHPtgf9q9/+meWh2NCGZqnrtEHYQvnL2nVcdVVQ+3D8P5wjG4enOiuPQxhD+9X5StBuyp1KRsBBBDIbgGCdna3H1ePAAIIJFZAz52+3vWsau71+DGjrf/Fl/jFr0KPqir+7xkz/GJkmufc4qjmvidai5lNuu56P7S5okH7ntmz7a677/G9o5qHrN7asA245FI/VD0Eba0yrmd6a3GvZm4I8y7uBoDmJqsXet5z6fdoh3neGrJ96iknh9Ot8KoF0XQePStb9evSqaMd2LRp0T7PPf+8aai5ttKCtnr+w1Dv9m5hsR133KHoeJWtumrYtUKvFiPr6eqmOekapv+5G6I/xYXbzTfbzA8v14FhyLt6/c/p3t0NQ19jpfLUm62e5xC0U0cTaOfKBG0dp4Xp5KDRA/qZ/8KL/u8OJ5xghzQ7WLuwIYAAAgggkFEBgnZG+Tk5AgggEH8B9dpptefGeXnVerEaNq7h49rUgz167Fj/e/++fUwLX2kLAe5QF65OdCFLmxboun7yFP+7hj1r+LO2sG9q2Cs+dFyhTfOYtWkOsIZRK4A+99zzNsmthK4tBO13/vc/Gzp8hP989IjhPqQqzOqGgHqPNRz60osHFIX1MHRc86o17zyE+FCOys4/60zba889fajWkPIXX3rZjmnbpmhFdM3lVsDVSuNndevmQ7F69XVjQeVoKy1o67NgoOH0Z3U7w4dgDRlXnXXeI444vKhHWCuFaxV0zb/WMPYXXnzR/35061Yqyvfih+B/xGGHuVW/W7vh47X9dUx2C6Tpxofmd6ue4byp9iqjvKCthdJGOds13c0WbbpWmWtet+aTa666tjAqoPi8eP9hFf9HaxhU97+NKq4SxSOAAAIIRCBA0I4AkSIQQACBJAtkao62TMO8aIVWzQ9eY/XVbZzr3VbPsbZZrvf5btcLrUC2S6NG9oMbVqxVx/VsaL8a92p13ZziY/xiZSWFveJBW72ko8aMLQqtenSUemwVZnUOfR6Ctnp9e5x7nn9Pq4Jr1XEFdV2bzq1tgw3Wt2GDB/vfU+dRaz62rvGS/v18z7t6oxVktal3/md3Hg3X1pbae60h1QrACvQKsOphVghWwNW1aSsraCuMawEy9VTrmM3c8Z+4Vbs1f1t1uMTdGNBwbW1zXc+8bi7ocWVL3SrlOkbXq3qG7aGHHylaJE491+s6Ly1Qpy11+H1J9tqntKCtmyy9+vb1NxzkpOHgPc/p4R85Fm42aFi75mhrSP0rr77q6x/mmKvs6tgYOl4dypwDAQQQyE4BgnZ2thtXjQACCFSbQCZWHQ+V01xcPdM5bGG+dvhbC29NnT7NDdV+3ocyva/HVO3XuIkbSj3J9yyHR4GVFPaKB20dv3TZMrv22uvstTfe8IFWAfufhxzig61W0w5BW/u+/sabpnndIVhr4bKePbrb44//15565hkfYCdNnKBd/eJs026cXjTMWUFRQ+K1KThrDvh8F7Y1JF2bhnHr2dHhedX+TfcfLbQ28/bbi57brYDczc2FvuyKK/0uZQVt7aDHbN06Y6Z97AK2hozrxoDmvZ/UpUvRM6u1nwLsuW7ed3jMVvF51NpH2yNuIbWH3XPEtSq8Nj2Oq9nBB9kx7hngYTG5kuy1b2lBW59pGP+j/3m8yFajA/T4Nvnc7has000NLU6nTe/vs/ffXS/6Uf7v6vqPgrb+ffTonk+vdnWhcx4EEEAgSwQI2lnSUFwmAggggEDpAgrHX7pVx+vX39APhy59z/Q/0ercX7shypu64cnq/S1tU1jVUGb1CmuedehtL23/st5XWeoRXn211X1veFn7fvHll773WeG+MttSF6S/dkPcN9lkk6JnVVemnHCMno8ts1U1COWl86pwX9uNOFCvOxsCCCCAAAJxEiBox6k1uBYEEEAghgJadVxzUNVrx4YAAn8JqDdbQ+z5t/GXCb8hgAACCBQKELT5JiCAAAIIlCmQyTnaZV4YHyKQYQHmaGe4ATg9AgggEGMBgnaMG4dLQwABBBBAAIH4CqhHe577yXMjPlh5PL7txJUhgAACmRAgaGdCnXMigAACCCCAAAIIIIAAAggkVoCgndimpWIIIIBANAIMHY/GkVKSJ6AebQ0fZ9Xx5LUtNUIAAQRWVYCgvaqCHI8AAggkXECLoTVpnGfd81kMLeFNTfUqKMAc7QqCsTsCCCCQQwIE7RxqbKqKAAIIIIAAAtEJqEdbG/OzozOlJAQQQCApAgTtpLQk9UAAAQSqSIAwUUWwFIsAAggggAACiRUgaCe2aakYAgggEI0Ac7SjcaSU5AkwdDx5bUqNEEAAgagECNpRSVIOAgggkFCB8QUFvmbM0U5oA1OtSgsQtCtNx4EIIIBA4gUI2olvYiqIAAIIIIAAAggggAACCCBQnQIE7erU5lwIIIBAFgqo166xW3WcBZ+ysPG45CoX0BoG/NuocmZOgAACCGSdAEE765qMC0YAAQSqV4A52tXrzdmyR4Ch49nTVlwpAgggUN0CBO3qFud8CCCAQJYJsOp4ljUYl1ttAgra+vfRo3s+vdrVps6JEEAAgewQIGhnRztxlQgggAACCCCAAAIIIIAAAlkiQNDOkobiMhFAAIFMCXTo1Nn31qnXjg0BBP4SUG/23LmFPdp/vctvCCCAAAIImBG0+RYggAACCJQpwBztMnn4MIcFmKOdw41P1RFAAIFyBAja5QDxMQIIIIAAAgggUJKAerTnuZ+8PFblL8mH9xBAAIFcFiBo53LrU3cEEEAAAQQQQAABBBBAAIHIBQjakZNSIAIIIJAsAYaOJ6s9qU10AurR1vBxVh2PzpSSEEAAgaQIELST0pLUAwEEEKgiAS2G1qRxnnXPZzG0KiKm2CwVYI52ljYcl40AAghUgwBBuxqQOQUCCCCAAAIIJE9APdraGrs52mwIIIAAAgikChC0UzX4HQEEEEBgJQHCxEokvIEAAggggAACCJQpQNAuk4cPEUAAAQSYo813AIGSBRg6XrIL7yKAAAII8BxtvgMIIIAAAuUIjC8o8HswR7scKD7OOQGCds41ORVGAAEE0hagRzttKnZEAAEEEEAAAQQQQAABBBBAoHwBgnb5RuyBAAII5LSAeu0au1XHWfApp78GVL4UAa1hwL+NUnB4GwEEEMhhAYJ2Djc+VUcAAQTSEWCOdjpK7JOLAgwdz8VWp84IIIBAegIE7fSc2AsBBBDIWQFWHc/Zpqfi5QgoaOvfR4/u+fRql2PFxwgggECuCRC0c63FqS8CCCCAAAIIIIAAAggggECVChC0q5SXwhFAAIHsF+jQqbPvrVOvHRsCCPwloN7suXMLe7T/epffEEAAAQQQ4PFefAcQQAABBMoRYI52OUB8nLMCzNHO2aan4ggggEC5AvRol0vEDggggAACCCCAwMoC6tGe537y8liVf2Ud3kEAAQRyW4CgndvtT+0RQAABBBBAAAEEEEAAAQQiFiBoRwxKcQgggEDSBBg6nrQWpT5RCahHW8PHWXU8KlHKQQABBJIjQNBOTltSEwQQQKBKBLQYWpPGedY9n8XQqgSYQrNWgDnaWdt0XDgCCCBQ5QIE7Son5gQIIIAAAgggkEQB9Whra+zmaLMhgAACCCCQKkDQTtXgdwQQQACBlQQIEyuR8AYCCCCAAAIIIFCmAEG7TB4+RAABBBBgjjbfAQRKFmDoeMkuvIsAAgggwHO0+Q4ggAACCJQjML6gwO/BHO1yoPg45wQI2jnX5FQYAQQQSFuAHu20qdgRAQQQQAABBBBAAAEEEEAAgfIFCNrlG7EHAgggkNMC6rVr7FYdZ8GnnP4aUPlSBLSGAf82SsHhbQQQQCCHBQjaOdz4VB0BBBBIR4A52ukosU8uCjB0PBdbnTojgAAC6QkQtNNzYi8EEEAgZwVYdTxnm56KlyOgfxsK2z2659OrXY4VHyOAAAK5JkDQzrUWp74IIIAAAggggAACCCCAAAJVKkDQrlJeCkcAAQSyX0C9dh06dbYe+fm+5y77a0QNEFh1AXqzV92QEhBAAIEkCxC0k9y61A0BBBCIQIB5qBEgUkTiBMINqHPcsHEefZe45qVCCCCAwCoLELRXmZACEEAAAQQQQCAXBRS2tbHqeC62PnVGAAEEyhYgaJftw6cIIIAAAn8KhB48hpDzlchlgTBk/Kbp03KZgbojgAACCJQjQNAuB4iPEUAAAQQKBcIQ8jBUVoGDnjy+HbkiEL7v4d+Bgjbf/1xpfeqJAAIIVFyAoF1xM45AAAEEclYghA29aoE0BQ0FjhA+Qm+3PtM+IYzoWdza3n37Lf8+x7pHQv25uFywko221OeWB+ewb3AOrhzbsOg7WNwq2ASrqL6DaqPxBQXMyxYEGwIIIIBAqQIE7VJp+AABBBBAoCwBBZkmjfN84AgBMATCqgo5IUwlMeATtKcV3YQJ36PwvQphOXyv0rEK+4ZjVyVo6zpq1DDLczeW6MUu6/8KfIYAAgggEAQI2kGCVwQQQAABBBBAAAEEEEAAAQQiECBoR4BIEQgggAACCCCAAAIIIIAAAggEAYJ2kOAVAQQQQAABBBBAAAEEEEAAgQgECNoRIFIEAggggAACCCCAAAIIIIAAAkGAoB0keEUAAQQQQAABBBBAAAEEEEAgAgGCdgSIFIEAAggggAACCCCAAAIIIIBAECBoBwleEUAAAQQQQAABBBBAAAEEEIhAgKAdASJFIIAAAggggAACCCCAAAIIIBAECNpBglcEEEAAAQQQQAABBBBAAAEEIhAgaEeASBEIIIAAAggggAACCCCAAAIIBAGCdpDgFQEEEEAAAQQQQAABBBBAAIEIBAjaESBSBAIIIIAAAggggAACCCCAAAJBgKAdJHhFAAEEEEAAAQQQQAABBBBAIAIBgnYEiBSBAAIIIIAAAggggAACCCCAQBAgaAcJXhFAAAEEEEAAAQQQQAABBBCIQICgHQEiRSCAAAIIIIAAAggggAACCCAQBAjaQYJXBBBAAAEEEEAAAQQQQAABBCIQIGhHgEgRCCCAAAIIIIAAAggggAACCAQBgnaQ4BUBBBBAAAEEEEAAAQQQQACBCAQI2hEgUgQCCCCAAAIIIIAAAggggAACQYCgHSR4RQABBBBAAAEEEEAAAQQQQCACAYJ2BIgUgQACCCCAAAIIIIAAAggggEAQIGgHCV4RQAABBBBAAAEEEEAAAQQQiECAoB0BIkUggAACCCCAAAIIIIAAAgggEAQI2kGCVwQQQAABBBBAAAEEEEAAAQQiECBoR4BIEQgggAACCCCAAAIIIIAAAggEAYJ2kOAVAQQQQAABBBBAAAEEEEAAgQgECNoRIFIEAggggAACCCCAAAIIIIAAAkGAoB0keEUAAQQQQAABBBBAAAEEEEAgAgGCdgSIFIEAAggggAACCCCAAAIIIIBAECBoBwleEUAAAQQQQAABBBBAAAEEEIhAgKAdASJFIIAAAggggAACCCCAAAIIIBAECNpBglcEEEAAAQQQQAABBBBAAAEEIhAgaEeASBEIIIAAAggggAACCCCAAAIIBAGCdpDgFQEEEEAAAQQQQAABBBBAAIEIBAjaESBSBAIIIIAAAggggAACCCCAAAJBgKAdJHhFAAEEEEAAAQQQQAABBBBAIAIBgnYEiBSBAAIIIIAAAggggAACCCCAQBAgaAcJXhFAAAEEEEAAAQQQQAABBBCIQICgHQEiRSCAAAIIIIAAAggggAACCCAQBAjaQYJXBBBAAAEEEEAAAQQQQAABBCIQIGhHgEgRCCCAAAIIIIAAAggggAACCAQBgnaQ4BUBBBBAAAEEEEAAAQQQQACBCAQI2hEgUgQCCCCAAAIIIIAAAggggAACQYCgHSR4RQABBBBAAAEEEEAAAQQQQCACAYJ2BIgUgQACCCCAAAIIIIAAAggggEAQIGgHCV4RQAABBBBAAAEEEEAAAQRWEHjyqafsiOZH2R9//LHC+3H7o03r1nbTjdNjc1kE7dg0BReCAAIIIIAAAggggAACCMRH4IEHH7K2xx4bnwsq50o23XRTe+fNN6xWrVrl7Fn1HxO0q96YMyCAAAIIIIAAAggggAACWSewVr11Y9+TXRz1h4ULrXZtgnZxF/5GAAEEEEAAAQQQQAABBBCIgcCa69SLwVVU7BLauR74qZNvqNhBVbA3PdpVgEqRCCCAAAIIIIAAAggggEC2C2Rj0D7owAPt/ntnZ5yeoJ3xJuACEEAAAQQQQAABBBBAAIH4CRC0K98mBO3K23EkAggggAACCCCAAAIIIJBYAYJ25ZuWoF15O45EAAEEEEAAAQQQQAABBBIrQNCufNMStCtvx5EIIIAAAggggAACCCCAQGIFCNqVb1qCduXtOBIBBBBAAAEEEEAAAQQQSKwAQbvyTUvQrrwdRyKAAAIIIIAAAgggkFUCf/zxh/3+++/+2ci/u99ruKuvUaOG1axR02rUrOF/z6oKVePFysvBFZ5RLw5Pdvopb5O7flK3mjVrpv4Zy98J2pVvFoJ25e04EgEEEEAAAQQQQACBrBFQ0Fu2bJl98smn9s2339hPP/1kCntrrbWWbbzRRrbxxhvbGmuskTX1qc4Lld23335rS5cutRCXFa//9re/eb/ywvbyn3+2b77+xt3k+M0fX8u519+wvtVdrW51VqPC54oqaDdp3NjfaJDj/BdesN9++63C15LuATzeK10p9kMAAQQQQAABBBBAAIFKCfhwvXy5ffHFFzb32bn23PznbcGCBS40fmdLXGis6Xpj11hzDduofn3bbtttbZ999rX9mjSx9dZb1+rWrZtWb22lLiyLDvrNjQBY/ONiGzZ8uH300UdFQVs3KQ49pJm1b9fOVl99dX/ToqRqaQTBgo8/tkGDh7igvsT1iputU28dO6/nubb99tuVdEhs3osqaC/+fpEfSSGLBttsaz/88EOV1ZGgXWW0FIwAAggggAACCCCAAAIKNT+7ntQ5zz5r1153nc2f/4J97gK3ehMVwItv6s1Wr/YB++9v5/TobjvusIPVrl271ABZ/Pik/i3Dp595xs7O724fuqAdtlq1atnuu+1mM2fc6kcE6O+SNnm//Mor1rpNW1u0aJG333DDDW3Gv2+xvH33LemQ2LwXVdBe8mNhsNZ3cvMtG9j3BO3YtDEXggACCCCAAAIIIIAAAmkKKNBomPPtd9xhQ4cNty+//NJ+/uWXUkO2ilUPrX5WX20122DDDWzwwIF26KGH2jprr53mWZO5m3pfBw4ebNOmTV8hIMpqbWczYthQO659e6tTp06JAARtM4J2iV8N3kQAAQQQQAABBBBAAIFsEVBv9Y8//mh33zPb+vbv73tRf/31V1OPq3qoFZw1dHm1uqv53tXlbmi5wuRiN2f7FxfGtSk0brXVVta3d29r2eKoModGZ4tLZa6zcE7xi9a7Tx83t3i+GyHwix9OH0YEyOnApk3txmlTfehW+C6+EbRXDNqbuR5tho4X/5bwNwIIIIAAAggggAACCMRaQMHuzrtmWS8Xkr/55hv79c+Fp+qts47t64Yqa17x7rvtbvU3qu/nzWr+9gtugapHHnvMvb5oCt7aFMz33Wcfu3hAf8vLy7M13DzkXNoUpmU5ZepUu+zyK2yhG/atBdDqrbuuX33c/+3muG+yySY2+frrTAt+aV578Y2gvWLQ3mKrrf3Nn+JOUf3NHO2oJCkHAQQQQAABBBBAAAEEvICGh3/44Yd23vkX2FNPP+17qNWLrdWxTzzheLdwV3vbYfvtXSCs44eJK0wWDjNfZq+8+opNnTbN7r//AVv0/fe+t3sdF86PadvG9Wz3sc0336zwHG7OslYv16YeXPXqhp7cZcuW29JlS/2w9TruvKu7ed9rrL6GP5+Ce1mrc4dgq7KXL//Zflryk782zR3XcPbV/vwpXoaO0zD50Btfy51X53Yns99cT74WfVu6ZKm72j/8CuEqR4uXlTan2lfM/Uc3KL50NyEuv/JKu+nmW7zHmmuuaUe3bu1XIH/o4Yf99dVzowNO6trVel14kV9ELhwfXgnafwVtmWh0RfFN38H7H3jATujQsfhHFf6boF1hMg5AAAEEEEAAAQQQQACBsgQ0ZHzK1Gk2asxoNy/7K7/req4HtnPnTpZ/1tk+LBcPqqE8BaBPP/vMzr/gQlOIVEDUvn9bbz2bOmWyHXTQQb4n94knn7R73LB0Bdc6derabrvtas2bN7d33nnH7po1y1566WX/6DD17m6+2WZunvch1qJFC19OCOThnKmvCluff/653XHnnfbMnGftM3ctek+PH2vUqJEdecThdsABB/ie9dRyfnHXPXHi1fahu8GgTfu3bNnCttxiCx/eHn7kEVfuFz4ob+au559u3rluHtSrV6/oBoE/sNh/lrme/WfdQnLnnne+ve3qpm1T13t98403+sXRhgwbVlTPv++1lw0bOtT2/vtexUox78hiaGWvMq521iiMTl26rORX0TcI2hUVY38EEEAAAQQQQAABBBAoU+C111+3gYMGuaD8iO/lVVA++OCD/MJmDXfaqcShzaFA9QwrbD8/f74df8KJfqi0wrZ6fs8+80zr36+v772+7vrr7VI3lFpbbfdZE/c4sF132cVm3nabLVy40C+6puCkc+tY9R5vsfnmNqB/Pz+fWb3kqZt6ope6Xuw73MJtw0eOKizD9ZqHnk+FavXKr+V6kw8++GDr3esi26pBA/cM6tX848k01L3tse38dasOa7oe8E4dO7qwPscH5GWuR1uP6NJnKkdD4Bu7Yd6XXDzAdtl5Z3+dJd18+N716o8bX2DjCwpc7/oSb3dIs2Y2zd10kJHmv7/++hs+SGvEQD83j/vUU0724T21PHq0V+zRVtvr+5G66W/dpOnc9aTUtyv1O0G7UmwchAACCCCAAAIIIIAAAqUJ3HnXXXbloMH27rvv+qCqoc49uuf7Rc0UWFMDYEllKIyqV7xPv/5uuPTN/vFgOm7vv//dbp85wy/4dfU1k6zfgAE+uOoz9SArFGvIt4Ks3tOmgKkfbXp/yy23dMOrL3C9yW2LFlfT+b7++ms/D3qiK1dzykMgLhySXsMNCf/Vl6/3Vbae8z1i+DDbaccdfbkK2ke1auV6n+cWHatw/7N7Xw8xU9hXkNO1hBsAGlqu519f7ML2Ju6RZsWHkWu/Tz791N9weP2NwjC9rusBHzN6lB86rsd0XXLZZXbb7XfY4sWLvWuHE06wyy+/zOq7R3ellkfQ/itoy7WzG2b/wQcf6muxwrZw0UI3KuGvx6et8GEF/iBoVwCLXRFAAAEEEEAAAQQQQKB8gQkTJ/qgrVWdFUq3cMOnBw+80lq1bFluyFbpCrN6bvQjjz7qhvF29eFZ5dSvX98evP8+Pxz7mknXFgVtHROCtcKteogbNNhSb/vQ9Nbbb/uedQ0zr1Wrtu25xx6+Z1vP6tb+CuczZs60QUOGmhZlUxDTI7MU7PfYfXc3x3t1//6855639957zy/UpjnW6lkeP3aMbbTRRn5udmrQ1s2Emu5nLVeOetq1erpuHqi3X8PRVT/to+B/qQvaLd2wdt0sCJsMlrt9Zs++17q5nnz1tquOWhju5hunewv1wt97333Wq09fX6aO1bmGDB5k+++3n69bKI+gvWLQ5jna4ZvBKwIIIIAAAggggAACCGSFwFA3b1g92gqs6kVWr+/4cWOtsVs1PN1NwfC999+3/f/R1Ja4IdMKreu5odEzbrnF9tprT0sN2gqs+tHc57ZHH22HH3aYNdiqgT/Vh27OtOZ6z5h5m++p1jUp0B7Xvp31cSuiq+f3/Q8+cI/O6muaR60Vvdd0n3dx88nV26yh7rXdQms/uCHcTz/zjF173fV+gTeVo3nnA90iZe3bHevPnxq01ZusBdRUjhYua+CGmStoz507z0aMHGkLPv7Y+2iIeceOHaxPr14+sAcfla8e61NPP8MedSuxq7deveuXX3qJGxp+qgvRhY9F0xz4Dp06ucd+veB7yzUkvnv+2XZmt262vvMKG0GboB2+C7wigAACCCCAAAIIIIBAFgoMGjzEBe1B/sq1GFmjhg1twlUFtteee6ZdGwXNjz/5xPZ185gXL/7JB9n13IJoN02f5h/zNSmlR1s9vRqeftqpp9gF553nFxhT8NamnmGtXj58+Ai71s3r1hBvfbbpppv60L7jjjvYPbNn20VuRXMNGddwbs0nv9r1yiuEh55yDf/+1fUg3+7mcGtuuHqlVbfD//UvGzVqpA/dqUFbPd4aPjx0yGDbfrvtfDm6FvVMX3bZ5Xb95Mm+J13hWT3rVxWMt61dr3fYFIz/8/jjdsppp9t3333n39aNhBn/vsU9Fm03Xwe9qV7tYcOH2+ix43x5CvjqhZ86+QbbZpttQnE+hLMYWuFiaPpu0aNd9NXgFwQQQAABBBBAAAEEEMgGgVGjR9tAF7Y1JFvBb9ttt7XRI0dYM7eIWLqbAuRLL79shx/Z3JejwKvFvu52q4E3bLjTCj3aCquNGjV0w7jH2j57710UQsO5FFrVa928RUu3CvqXPnSqp/36a691w78PtsFuyPgU90ixn376yV+vFl078MCmvjc+lBFeP3DlqDf9nf/9z/cwK/SOcnXTcPXUoL226xW/8IIL7FQX/rVietjUMz37Xg0HP8sW/3k+BePJN1xv2zknbWHofE930+DWGTP9zQENcW93zDF+8TQ9MztsqpuGxrdsfXTR3HKFfD1TWz37uhmgGwv0aNOjHb4zvCKAAAIIIIAAAggggEAWCkyffqPv0f7MPSZL2wYbbOAXQtNq2Ap9obe5tKr5nl+3Sveka6+zy664wgdNBe1tttnaHnLPOVZwTV0MTSt463FZEydcZeuvv/5Kxf7uepJ/dPPFz+7e3c951nO+dQNAw7BPOP54635OTz8fXL3d2sq7Pu2ja1TA1/PA1WutXunUoK06D7ryCmvbps0Kc68VeJ988inr2Lmzff/nHPbdXFifesMNtt12hUFb+7z33vt23Ikn2NtvFz7Sa7311rWzup3pH1Om3vuw/f77H+4GwWJ/s+DJp57yQ8x1E6GNG64+xj1eTYunyY6gTdAO3xleEUAAAQQQQAABBBBAIAsFnnrqaR+0586b5xf9UvBrd+wxduXll9uGbji2/i5r09Be9UCf7OYia7izercVFrVS+Di3+Njqrsd24tXXFC2GprnQrVu1tFEjRpiGlxffFIo1P7p337528y3/9tekoN23T2/r6gLvGa4HW+FXi49pC0G7cPD5iqVpCHnYFLS3dcOzBw8a6IeJpwZt1VMLwB3t5ozrkWBhC0G7gztvWCyueNBWT/dkN7R8xKjRfjV0HatzqVdbvdW69qLN1c2vtu5uEmguu+oqq43dAm03umH2WjxN3gRtgnbRd4ZfEEAAAQQQQAABBBBAIPsEvvjiSxvjFj+bNm26nx+tGmj4eO8LL7SWLVuYFuxSGCxpU2hU0Bzvnh1dMGGCH86t/RQyNfy83bHHWk0XNCdMmFgUtPVZ038cYBOvusoviFa8XAX3hW5hsS7u+cjq9VVwV/gc4uaRH3NMWzvv/AvsftdTHoa6H3zQge6Z21uUeI1/6GFdf6ZtBV6thN6mzdG+Z7t40B4ycKAL2q39/PFwTekEbT0WrW//AX4RtKWuZ19bCP+hnNJeFbS1r0x0E2GgC/urueHjMmCONnO0S/ve8D4CCCCAAAIIIIAAAgjEXGD5z8v96to9zz3Pzx/W5apHVnOQtUr3oYc0838XD48KiQrEM9y85HEFBbZgwQIfEDXPeJ999rZxo8f4+dkKjQVXTSgK2grN22y9tXus1WA74vDDVgqlCrdznn3WPSqsi5vH/K3v3VXP8M033uieh93YRrqe46snTfI9wnq/2+mn+5W762h+czFrnVtD0V3XsT+Pzq1VyvV3VEFbzyHv654hrmdo69rlFH6KXU7Rn7LTplf96EaGhrXfcftt1sA9QkwbQbswaOtmztbbbmffLVzoXariPzxHuypUKRMBBBBAAAEEEEAAgRwW+P3339zw7F/sMrc69w1uCPQS1yurgKrwp9W+tdiYeoG1YJgCuD771QXKb77+xiZPmWK3uZW9v3UrgGsot47R4l/9+/axY91iYHq+tYJSatDWPgrjLY5q7vbr557bvbn/W02gMrQAmnqt1ZutedjqidZju7QA2dYuoD/qntfd/Zxz3DDtb3xP9+abb2633Xqr+2wr3zOschR49exrrQQ+1fXU/+SGadd117777rvZ+eee64d0r2rQ3nqbrW2xG+I+3D3+a5zr0dc55bNzo0Z+rvdqq9XVpZS4aa72119/bXfOmmVasE3bBm6++oD+/a1jhw7u+urmfNBe/P0i/33S9+3a666zc913oqo2gnZVyVIuAggggAACCCCAAAI5LKBe1U/dI7DOO/98e+yx//jHWoVeVwXdLbbYwg7Ybz+3ANh2fij3e++/Z0+4edIKiwpC2hSgNf/6JNcT3bvXRX7+td4rHrQDs/Zt+o9/+Md87bDDDn6I95tvvWnX3zDZnpkzx/dYa1+tXn7GaafZWWd282V+6J613W/AxXbvfff5c6tXe393bT3P6eFXE69Vq7Ybzr7Y5s+fb2PHj7cXX3zJn1LzwXtd6FYWP+UUH95XNWhvueUW9vobb9hFvXr7Z3aHa9VNhi5uGHjqImj+AlL+o1D+rXsM2JVuuPoNk6f4eshDi8SNGD7MNnM3OHK9R/uDd/9nG2+8cZGaPOY/P7/ob/0yTM84dyMpVnUjaK+qIMcjgAACCCCAAAIIIIBAiQLqPV7w8cd+RexHH3vMvv32Wz+sWTsrbNepU9v1INfx7/3meqm1GrhCtgK5hmSvt+661r5dOzv99NP8s6jD8OmSgrY+q+VCeC13nOaAK1iqnC9cb7YWQtO8bP2tnu9DDznEBvTrZw0bNbTa7jqWL//ZPXJrtg0aMsT1Bn/oe5K138Ybb+R6vhv6gKtnbOsxWj+4Z3Krl1yhV0Pghw8d6nvcFXRXNWjrfLfOmOGf0y0rGWlI/G0zZ/hF12RS2qa66Rpuuvlmf7yuVyZ6NveVV1xuzY880l559VVr3aatLXLD87W/FmzTc7nz9t23tGJj8f6a69SL5Dq0Iv2CD973N3BKKlDfvbwm+9kbb75Z0scVeo+gXSEudkYAAQQQQAABBBBAAIGKCCjgagXxW2+dYTNvu830yC8F5RCoFfhqqEAXChUM1WOtQKn53Cccf5wP2ho6rtAZtuJBW8es73qpdfwiF4RXKNu9p03HKzxrFW4N9T7o4IN8MNcx2r786iu7y82NnnjNNa5H8+Oia/QfumvU9WnTtanH+7B//cv3eOsZ2HpPC6npWdZaaV110uO9Brv56K1bt1qhJ1phWKuyd3S99H+tOr6rTb7uelt33Xp25tn5fni6blLoeo8/rr1fTV3nTGfTs8d79eljz7ueWtlrIbSzzzrTznN1fve996zNMcf6oK2yNnTXeIsL5nn77pNO0RnbJ6qgrQps1aCBvf7qKyWGbYJ2xpqYEyOAAAIIIIAAAggggEBFBBQ6FYz1zOi3XY/wXXfNstluiPY3boi45mXrc20hYOtxWS1btLDDDvuX7eTmUevRWPosBGLtWzxoK4Qe0qyZ76lWj/Db77zj52L7EO8Cso7X3PB2boXx9u3b+15eDatO3XQtmh+t4cTTpk+3Rx551K9+rmCsTedXoN5+++3sRPfs7SNdD7EWGdMcan2mYKwQ+9zzz/s6KfirJ1l1ST2Xypsz51nrctJJfjh6jRo1bddddrFrrp7oA/BxJ5zoA7jOuY6bjz592lTf46xzp7N97240jHKLxk1zC72pPrpBcGDTpnbpJRe74P2rtXfX/uOPP7hrLAza06ZOsX323judojO2T5RBW5XQKIYz3IJ3ev65vhupW+P99rdXX3st9a1K/U6PdqXYOAgBBBBAAAEEEEAAAQQqIqDQqx7DHxcvth9d6FbPq4L3N26IdE0XNvWYrF122dkt/LWz79nV46kUYkvaigdtBdnWrVr5YPu7C7IKywpLC92q0hrivaObr52Xl+d7cLWYWmrveGr5ukYteKbF2xZ8tMDmvzDfPvzoI1u+bLmfy93ILUr29732cr3V6/te7dTwqwCtc4Zh2WusvoZttVUDPzw7tR4y+M7NpVbvsspVSF/LLQq3ww7b2+LFP9l77v1ff/vVv69r3WlHd7NhrcKbDanXWtrvun4NG//IzTNWL7u2evXq+ZsLqt97779vy5Yuc08oKxyev/tuu/nPSysvDu9HHbSro04E7epQ5hwIIIAAAggggAACCCDgBRT2wk9JJAqe4aekz/Ve8aC9poK2G6I9cvhwHxp9H7k7T+oWytRrWZuuTVtp11hWOWHIuo4va79QdjhX2Lf4ecP7eq3Ilm757ir/HC1QkdKrf1+CduXNayz58YcV/yVUviyORAABBBBAAAEEEEAAgQQLlBa0R40Y4XrD101wzXOzagTtyrc7QbvydhyJAAIIIIAAAggggEBOCRC0c6q5jaBd+fYmaFfejiMRQAABBBBAAAEEEMgpAYJ2TjU3QXsVmpugvQp4HIoAAggggAACCCCAQC4JKGhfM+la97zoy321tXDaUc2b24hhQ00LiLElS4Ae7cq3J0G78nYciQACCCCAAAIIIIBATglo0bEnnnzSZt97n6v3H1andh3bdddd7Vj3+K50nzedU2BZXlmCduUbkKBdeTuORAABBBBAAAEEEEAgxwT0GK5f3M9yX+8a7lnIddxzpmvV0k+tHLNIfnWzMWjrue6z756V8cYhaGe8CbgABBBAAAEEEEAAAQQQQCB+AtkYtK+ZOME6deyYcUyCdsabgAtAAAEEEEAAAQQQQAABBOInsPe+efbmW2/F78LKuCL3+OoyPq2+jwja1WfNmRBAAAEEEEAAAQQQQACBrBL424b1bfnywqkCcb9wDRnX0PE4bATtOLQC14AAAggggAACCCCAAAIIxFDgt99+s3f+945dfMlltnjxj7G7wpo1a9mRRxxhp592qtWtWzc210fQjk1TcCEIIIAAAggggAACCCCAAAJJECBoJ6EVqQMCCCCAAAIIIIAAAggggEBsBAjasWkKLgQBBBBAAAEEEEAAAQQQQCAJAgTtJLQidUAAAQQQQAABBBBAAAEEEIiNAEE7Nk3BhSCAAAIIIIAAAggggAACCCRBgKCdhFakDggggAACCCCAAAIIIIAAArERIGjHpim4EAQQQAABBBBAAAEEEEAAgSQIELST0IrUAQEEEEAAAQQQQAABBBBAIDYCBO3YNAUXggACCCCAAAIIIIAAAgggkAQBgnYSWpE6IIAAAggggAACCCCAAAIIxEaAoB2bpuBCEEAAAQQQQAABBBBAAAEEkiBA0E5CK1IHBBBAAAEEEEAAAQQQQACB2AgQtGPTFFwIAggggAACCCCAAAIIIIBAEgQI2kloReqAAAIIIIAAAggggAACCCAQGwGCdmyaggtBAAEEEEAAAQQQQAABBBBIggBBOwmtSB0QQAABBBBAAAEEEEAAAQRiI0DQjk1TcCEIIIAAAggggAACCCCAAAJJECBoJ6EVqQMCCCCAAAIIIIAAAggggEBsBAjasWkKLgQBBBBAAAEEEEAAAQQQQCAJAgTtJLQidUAAAQQQQAABBBBAAAEEEIiNAEE7Nk3BhSCAAAIIIIAAAggggAACCCRBgKCdhFakDggggAACCCCAAAIIIIAAArERIGjHpim4EAQQQAABBBBAAAEEEEAAgSQIELST0IrUAQEEEEAAAQQQQAABBBBAIDYCBO3YNAUXggACCCCAAAIIIIAAAgggkAQBgnYSWpE6IIAAAggggAACCCCAAAIIxEaAoB2bpuBCEEAAAQQQQAABBBBAAAEEkiBA0E5CK1IHBBBAAAEEEEAAAQQQQACB2AgQtGPTFFwIAggggAACCCCAAAIIIIBAEgQI2kloReqAAAIIIIAAAggggAACCCAQGwGCdmyaggtBAAEEEEAAAQQQQAABBBBIggBBOwmtSB0QQAABBBBAAAEEEEAAAQRiI0DQjk1TcCEIIIAAAggggAACCCCAAAJJECBoJ6EVqQMCCCCAAAIIIIAAAggggEBsBAjasWkKLgQBBBBAAAEEEEAAAQQQQCAJAgTtJLQidUAAAQQQQAABBBBAAAEEEIiNAEE7Nk3BhSCAAAIIIIAAAggggAACCCRBgKCdhFakDggggAACCCCAAAIIIIAAArER+D+jY7i4mPHPswAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import asyncio\n", + "from typing import Any\n", + "\n", + "from jinja2 import DictLoader, Environment\n", + "from openai import AsyncOpenAI\n", + "from tenacity import retry, stop_after_attempt, wait_random_exponential\n", + "\n", + "\n", + "class TemporalAgent:\n", + " \"\"\"Handles temporal-based operations for extracting and processing temporal events from text.\"\"\"\n", + "\n", + " def __init__(self) -> None:\n", + " \"\"\"Initialize the TemporalAgent with a client.\"\"\"\n", + " self._client = AsyncOpenAI()\n", + " self._model = \"gpt-4.1-mini\"\n", + "\n", + " self._env = Environment(loader=DictLoader({\n", + " \"statement_extraction.jinja\": statement_extraction_prompt,\n", + " \"date_extraction.jinja\": date_extraction_prompt,\n", + " \"triplet_extraction.jinja\": triplet_extraction_prompt,\n", + " }))\n", + " self._env.filters[\"split_and_capitalize\"] = self.split_and_capitalize\n", + " @staticmethod\n", + " def split_and_capitalize(value: str) -> str:\n", + " \"\"\"Split dict key string and reformat for jinja prompt.\"\"\"\n", + " return \" \".join(value.split(\"_\")).capitalize()\n", + "\n", + " async def get_statement_embedding(self, statement: str) -> list[float]:\n", + " \"\"\"Get the embedding of a statement.\"\"\"\n", + " response = await self._client.embeddings.create(\n", + " model=\"text-embedding-3-large\",\n", + " input=statement,\n", + " dimensions=256,\n", + " )\n", + " return response.data[0].embedding\n", + "\n", + " @retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attempt(3))\n", + " async def extract_statements(\n", + " self,\n", + " chunk: Chunk,\n", + " inputs: dict[str, Any],\n", + " ) -> RawStatementList:\n", + " \"\"\"Determine initial validity date range for a statement.\n", + "\n", + " Args:\n", + " chunk (Chunk): The chunk of text to analyze.\n", + " inputs (dict[str, Any]): Additional input parameters for extraction.\n", + "\n", + " Returns:\n", + " Statement: Statement with updated temporal range.\n", + " \"\"\"\n", + " inputs[\"chunk\"] = chunk.text\n", + "\n", + " template = self._env.get_template(\"statement_extraction.jinja\")\n", + " prompt = template.render(\n", + " inputs=inputs,\n", + " definitions=LABEL_DEFINITIONS,\n", + " json_schema=RawStatementList.model_fields,\n", + " )\n", + "\n", + " response = await self._client.responses.parse(\n", + " model=self._model,\n", + " temperature=0,\n", + " input=prompt,\n", + " text_format=RawStatementList,\n", + " )\n", + "\n", + "\n", + " raw_statements = response.output_parsed\n", + " statements = RawStatementList.model_validate(raw_statements)\n", + " return statements\n", + "\n", + " @retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attempt(3))\n", + " async def extract_temporal_range(\n", + " self,\n", + " statement: RawStatement,\n", + " ref_dates: dict[str, Any],\n", + " ) -> TemporalValidityRange:\n", + " \"\"\"Determine initial validity date range for a statement.\n", + "\n", + " Args:\n", + " statement (Statement): Statement to analyze.\n", + " ref_dates (dict[str, Any]): Reference dates for the statement.\n", + "\n", + " Returns:\n", + " Statement: Statement with updated temporal range.\n", + " \"\"\"\n", + " if statement.temporal_type == TemporalType.ATEMPORAL:\n", + " return TemporalValidityRange(valid_at=None, invalid_at=None)\n", + "\n", + " template = self._env.get_template(\"date_extraction.jinja\")\n", + " inputs = ref_dates | statement.model_dump()\n", + "\n", + " prompt = template.render(\n", + " inputs=inputs,\n", + " temporal_guide={statement.temporal_type.value: LABEL_DEFINITIONS[\"temporal_labelling\"][statement.temporal_type.value]},\n", + " statement_guide={statement.statement_type.value: LABEL_DEFINITIONS[\"episode_labelling\"][statement.statement_type.value]},\n", + " json_schema=RawTemporalRange.model_fields,\n", + " )\n", + "\n", + " response = await self._client.responses.parse(\n", + " model=self._model,\n", + " temperature=0,\n", + " input=prompt,\n", + " text_format=RawTemporalRange,\n", + " )\n", + "\n", + " raw_validity = response.output_parsed\n", + " temp_validity = TemporalValidityRange.model_validate(raw_validity.model_dump()) if raw_validity else TemporalValidityRange()\n", + "\n", + " if temp_validity.valid_at is None:\n", + " temp_validity.valid_at = inputs[\"publication_date\"]\n", + " if statement.temporal_type == TemporalType.STATIC:\n", + " temp_validity.invalid_at = None\n", + "\n", + " return temp_validity\n", + "\n", + " @retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attempt(3))\n", + " async def extract_triplet(\n", + " self,\n", + " statement: RawStatement,\n", + " max_retries: int = 3,\n", + " ) -> RawExtraction:\n", + " \"\"\"Extract triplets and entities from a statement as a RawExtraction object.\"\"\"\n", + " template = self._env.get_template(\"triplet_extraction.jinja\")\n", + " prompt = template.render(\n", + " statement=statement.statement,\n", + " json_schema=RawExtraction.model_fields,\n", + " predicate_instructions=PREDICATE_DEFINITIONS,\n", + " )\n", + "\n", + " for attempt in range(max_retries):\n", + " try:\n", + " response = await self._client.responses.parse(\n", + " model=self._model,\n", + " temperature=0,\n", + " input=prompt,\n", + " text_format=RawExtraction,\n", + " )\n", + " raw_extraction = response.output_parsed\n", + " extraction = RawExtraction.model_validate(raw_extraction)\n", + " return extraction\n", + " except Exception as e:\n", + " if attempt == max_retries - 1:\n", + " raise\n", + " print(f\"Attempt {attempt + 1} failed with error: {str(e)}. Retrying...\")\n", + " await asyncio.sleep(1)\n", + "\n", + " raise Exception(\"All retry attempts failed to extract triplets\")\n", + "\n", + " async def extract_transcript_events(\n", + " self,\n", + " transcript: Transcript,\n", + " ) -> tuple[Transcript, list[TemporalEvent], list[Triplet], list[Entity]]:\n", + " \"\"\"\n", + " For each chunk in the transcript:\n", + " - Extract statements\n", + " - For each statement, extract temporal range and Extraction in parallel\n", + " - Build TemporalEvent for each statement\n", + " - Collect all events, triplets, and entities for later DB insertion\n", + " Returns the transcript, all events, all triplets, and all entities.\n", + " \"\"\"\n", + " if not transcript.chunks:\n", + " return transcript, [], [], []\n", + " doc_summary = {\n", + " \"main_entity\": transcript.company or None,\n", + " \"document_type\": \"Earnings Call Transcript\",\n", + " \"publication_date\": transcript.date,\n", + " \"quarter\": transcript.quarter,\n", + " \"document_chunk\": None,\n", + " }\n", + " all_events: list[TemporalEvent] = []\n", + " all_triplets: list[Triplet] = []\n", + " all_entities: list[Entity] = []\n", + "\n", + " async def _process_chunk(chunk: Chunk) -> tuple[Chunk, list[TemporalEvent], list[Triplet], list[Entity]]:\n", + " statements_list = await self.extract_statements(chunk, doc_summary)\n", + " events: list[TemporalEvent] = []\n", + " chunk_triplets: list[Triplet] = []\n", + " chunk_entities: list[Entity] = []\n", + "\n", + " async def _process_statement(statement: RawStatement) -> tuple[TemporalEvent, list[Triplet], list[Entity]]:\n", + " temporal_range_task = self.extract_temporal_range(statement, doc_summary)\n", + " extraction_task = self.extract_triplet(statement)\n", + " temporal_range, raw_extraction = await asyncio.gather(temporal_range_task, extraction_task)\n", + " # Create the event first to get its id\n", + " embedding = await self.get_statement_embedding(statement.statement)\n", + " event = TemporalEvent(\n", + " chunk_id=chunk.id,\n", + " statement=statement.statement,\n", + " embedding=embedding,\n", + " triplets=[],\n", + " valid_at=temporal_range.valid_at,\n", + " invalid_at=temporal_range.invalid_at,\n", + " temporal_type=statement.temporal_type,\n", + " statement_type=statement.statement_type,\n", + " )\n", + " # Map raw triplets/entities to Triplet/Entity with event_id\n", + " triplets = [Triplet.from_raw(rt, event.id) for rt in raw_extraction.triplets]\n", + " entities = [Entity.from_raw(re, event.id) for re in raw_extraction.entities]\n", + " event.triplets = [triplet.id for triplet in triplets]\n", + " return event, triplets, entities\n", + "\n", + " if statements_list.statements:\n", + " results = await asyncio.gather(*(_process_statement(stmt) for stmt in statements_list.statements))\n", + " for event, triplets, entities in results:\n", + " events.append(event)\n", + " chunk_triplets.extend(triplets)\n", + " chunk_entities.extend(entities)\n", + " return chunk, events, chunk_triplets, chunk_entities\n", + "\n", + " chunk_results = await asyncio.gather(*(_process_chunk(chunk) for chunk in transcript.chunks))\n", + " transcript.chunks = [chunk for chunk, _, _, _ in chunk_results]\n", + " for _, events, triplets, entities in chunk_results:\n", + " all_events.extend(events)\n", + " all_triplets.extend(triplets)\n", + " all_entities.extend(entities)\n", + " return transcript, all_events, all_triplets, all_entities" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "temporal_agent = TemporalAgent()\n", + "# transcripts: list[Transcript] = chunker.generate_transcripts_and_chunks(dataset)\n", + "\n", + "# Process only the first transcript\n", + "results = await temporal_agent.extract_transcript_events(transcripts[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parse and display the results in a nice format\n", + "transcript, events, triplets, entities = results\n", + "\n", + "print(\"=== TRANSCRIPT PROCESSING RESULTS ===\\n\")\n", + "\n", + "print(f\"📄 Transcript ID: {transcript.id}\")\n", + "print(f\"📊 Total Chunks: {len(transcript.chunks) if transcript.chunks is not None else 0}\")\n", + "print(f\"🎯 Total Events: {len(events)}\")\n", + "print(f\"🔗 Total Triplets: {len(triplets)}\")\n", + "print(f\"🏷️ Total Entities: {len(entities)}\")\n", + "\n", + "print(\"\\n=== SAMPLE EVENTS ===\")\n", + "for i, event in enumerate(events[:3]): # Show first 3 events\n", + " print(f\"\\n📝 Event {i+1}:\")\n", + " print(f\" Statement: {event.statement[:100]}...\")\n", + " print(f\" Type: {event.temporal_type}\")\n", + " print(f\" Valid At: {event.valid_at}\")\n", + " print(f\" Triplets: {len(event.triplets)}\")\n", + "\n", + "print(\"\\n=== SAMPLE TRIPLETS ===\")\n", + "for i, triplet in enumerate(triplets[:5]): # Show first 5 triplets\n", + " print(f\"\\n🔗 Triplet {i+1}:\")\n", + " print(f\" Subject: {triplet.subject_name} (ID: {triplet.subject_id})\")\n", + " print(f\" Predicate: {triplet.predicate}\")\n", + " print(f\" Object: {triplet.object_name} (ID: {triplet.object_id})\")\n", + " if triplet.value:\n", + " print(f\" Value: {triplet.value}\")\n", + "\n", + "print(\"\\n=== SAMPLE ENTITIES ===\")\n", + "for i, entity in enumerate(entities[:5]): # Show first 5 entities\n", + " print(f\"\\n🏷️ Entity {i+1}:\")\n", + " print(f\" Name: {entity.name}\")\n", + " print(f\" Type: {entity.type}\")\n", + " print(f\" Description: {entity.description}\")\n", + " if entity.resolved_id:\n", + " print(f\" Resolved ID: {entity.resolved_id}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.9. Entity Resolution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before diving into Temporal Invalidation, we need to first tackle entity resolution. This process is crucial to ensure that each real-world entity has a single, authoritative representation, eliminating duplicates and maintaining data consistency. For instance, `AMD` and `Advanced Micro Devices` clearly refer to the same entity, so they should be represented under a unified canonical entity.\n", + "\n", + "Here's our approach to entity resolution:\n", + "\n", + "* We use the `EntityResolution` class to batch entities by type (`Entity.type`), which helps us make context-specific comparisons—like distinguishing companies from individuals.\n", + "\n", + "* To address noisy data effectively, we leverage [RapidFuzz](https://rapidfuzz.github.io/RapidFuzz/) to cluster entities based on name similarity. This method involves a simple, case-insensitive, punctuation-free comparison using a partial match ratio, allowing tolerance for minor typos and substring matches.\n", + "\n", + "* Within each fuzzy-matched cluster, we select the medoid—the entity most representative of the cluster based on overall similarity. This prevents bias toward the most frequently occurring or earliest listed entity. The medoid then serves as the initial canonical entity, providing a semantically meaningful representation of the group.\n", + "\n", + "* Before adding a new canonical entity, we cross-check the medoid against existing canonicals, considering both fuzzy matching and acronyms. For example, `Advanced Micro Devices Inc.` may yield `AMDI`, closely matching the acronym `AMD`. This step helps prevent unnecessary creation of duplicate canonical entities.\n", + "\n", + "* If a global match isn't found, the medoid becomes a new canonical entity, with all entities in the cluster linked to it via a resolved ID.\n", + "\n", + "* Finally, we perform an additional safeguard check to resolve potential acronym duplication across all canonical entities, ensuring thorough cleanup.\n", + "\n", + "To further enhance entity resolution, you could consider advanced techniques such as:\n", + "\n", + "* Using embedding-based similarity on `Entity.description` alongside `Entity.name`, improving disambiguation beyond simple text similarity.\n", + "* Employing a large language model (LLM) to intelligently group entities under their canonical forms, enhancing accuracy through semantic understanding.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sqlite3\n", + "import string\n", + "\n", + "from rapidfuzz import fuzz\n", + "\n", + "from db_interface import (\n", + " get_all_canonical_entities,\n", + " insert_canonical_entity,\n", + " remove_entity,\n", + " update_entity_references,\n", + ")\n", + "\n", + "\n", + "class EntityResolution:\n", + " \"\"\"\n", + " Entity resolution class.\n", + " \"\"\"\n", + "\n", + " def __init__(self, conn: sqlite3.Connection):\n", + " self.conn = conn\n", + " self.global_canonicals: list[Entity] = get_all_canonical_entities(conn)\n", + " self.threshold = 80.0\n", + " self.acronym_thresh = 98.0\n", + "\n", + "\n", + " def resolve_entities_batch(\n", + " self, batch_entities: list[Entity],\n", + " ) -> None:\n", + " \"\"\"\n", + " Orchestrate the scalable entity resolution workflow for a batch of entities.\n", + " \"\"\"\n", + " type_groups = {t: [e for e in batch_entities if e.type == t] for t in set(e.type for e in batch_entities)}\n", + "\n", + " for entities in type_groups.values():\n", + " clusters = self.group_entities_by_fuzzy_match(entities)\n", + "\n", + " for group in clusters.values():\n", + " if not group:\n", + " continue\n", + " local_canon = self.set_medoid_as_canonical_entity(group)\n", + " if local_canon is None:\n", + " continue\n", + "\n", + " match = self.match_to_canonical_entity(local_canon, self.global_canonicals)\n", + " if \" \" in local_canon.name: # Multi-word entity\n", + " acronym = \"\".join(word[0] for word in local_canon.name.split())\n", + " acronym_match = next(\n", + " (c for c in self.global_canonicals if fuzz.ratio(acronym, c.name) >= self.acronym_thresh and \" \" not in c.name), None\n", + " )\n", + " if acronym_match:\n", + " match = acronym_match\n", + "\n", + " if match:\n", + " canonical_id = match.id\n", + " else:\n", + " insert_canonical_entity(\n", + " self.conn,\n", + " {\n", + " \"id\": str(local_canon.id),\n", + " \"name\": local_canon.name,\n", + " \"type\": local_canon.type,\n", + " \"description\": local_canon.description,\n", + " },\n", + " )\n", + " canonical_id = local_canon.id\n", + " self.global_canonicals.append(local_canon)\n", + "\n", + " for entity in group:\n", + " entity.resolved_id = canonical_id\n", + " self.conn.execute(\n", + " \"UPDATE entities SET resolved_id = ? WHERE id = ?\",\n", + " (str(canonical_id), str(entity.id))\n", + " )\n", + "\n", + " # Clean up any acronym duplicates after processing all entities\n", + " self.merge_acronym_canonicals()\n", + "\n", + "\n", + " def group_entities_by_fuzzy_match(\n", + " self, entities: list[Entity],\n", + " ) -> dict[str, list[Entity]]:\n", + " \"\"\"\n", + " Group entities by fuzzy name similarity using rapidfuzz\"s partial_ratio.\n", + " Returns a mapping from canonical name to list of grouped entities.\n", + " \"\"\"\n", + " def clean(name: str) -> str:\n", + " return name.lower().strip().translate(str.maketrans(\"\", \"\", string.punctuation))\n", + "\n", + " name_to_entities: dict[str, list[Entity]] = {}\n", + " cleaned_name_map: dict[str, str] = {}\n", + " for entity in entities:\n", + " name_to_entities.setdefault(entity.name, []).append(entity)\n", + " cleaned_name_map[entity.name] = clean(entity.name)\n", + " unique_names = list(name_to_entities.keys())\n", + "\n", + " clustered: dict[str, list[Entity]] = {}\n", + " used = set()\n", + " for name in unique_names:\n", + " if name in used:\n", + " continue\n", + " clustered[name] = []\n", + " for other_name in unique_names:\n", + " if other_name in used:\n", + " continue\n", + " score = fuzz.partial_ratio(cleaned_name_map[name], cleaned_name_map[other_name])\n", + " if score >= self.threshold:\n", + " clustered[name].extend(name_to_entities[other_name])\n", + " used.add(other_name)\n", + " return clustered\n", + "\n", + "\n", + " def set_medoid_as_canonical_entity(self, entities: list[Entity]) -> Entity | None:\n", + " \"\"\"\n", + " Select as canonical the entity in the group with the highest total similarity (sum of partial_ratio) to all others.\n", + " Returns the medoid entity or None if the group is empty.\n", + " \"\"\"\n", + " if not entities:\n", + " return None\n", + "\n", + " def clean(name: str) -> str:\n", + " return name.lower().strip().translate(str.maketrans(\"\", \"\", string.punctuation))\n", + "\n", + " n = len(entities)\n", + " scores = [0.0] * n\n", + " for i in range(n):\n", + " for j in range(n):\n", + " if i != j:\n", + " s1 = clean(entities[i].name)\n", + " s2 = clean(entities[j].name)\n", + " scores[i] += fuzz.partial_ratio(s1, s2)\n", + " max_idx = max(range(n), key=lambda idx: scores[idx])\n", + " return entities[max_idx]\n", + "\n", + "\n", + " def match_to_canonical_entity(self, entity: Entity, canonical_entities: list[Entity]) -> Entity | None:\n", + " \"\"\"\n", + " Fuzzy match a single entity to a list of canonical entities.\n", + " Returns the best matching canonical entity or None if no match above self.threshold.\n", + " \"\"\"\n", + " def clean(name: str) -> str:\n", + " return name.lower().strip().translate(str.maketrans(\"\", \"\", string.punctuation))\n", + "\n", + " best_score: float = 0\n", + " best_canon = None\n", + " for canon in canonical_entities:\n", + " score = fuzz.partial_ratio(clean(entity.name), clean(canon.name))\n", + " if score > best_score:\n", + " best_score = score\n", + " best_canon = canon\n", + " if best_score >= self.threshold:\n", + " return best_canon\n", + " return None\n", + "\n", + "\n", + " def merge_acronym_canonicals(self) -> None:\n", + " \"\"\"\n", + " Merge canonical entities where one is an acronym of another.\n", + " \"\"\"\n", + " multi_word = [e for e in self.global_canonicals if \" \" in e.name]\n", + " single_word = [e for e in self.global_canonicals if \" \" not in e.name]\n", + "\n", + " acronym_map = {}\n", + " for entity in multi_word:\n", + " acronym = \"\".join(word[0].upper() for word in entity.name.split())\n", + " acronym_map[entity.id] = acronym\n", + "\n", + " for entity in multi_word:\n", + " acronym = acronym_map[entity.id]\n", + " for single_entity in single_word:\n", + " score = fuzz.ratio(acronym, single_entity.name)\n", + " if score >= self.threshold:\n", + " update_entity_references(self.conn, str(entity.id), str(single_entity.id))\n", + " remove_entity(self.conn, str(entity.id))\n", + " self.global_canonicals.remove(entity)\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.10. Invalidation agent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Understanding the Invalidation Process\n", + "\n", + "To effectively invalidate temporal events, the agent performs checks in both directions:\n", + "\n", + "> 1. **Incoming vs. Existing**: Are incoming events invalidated by events already present?\n", + "> 2. **Existing vs. Incoming**: Are current events invalidated by the new incoming events?\n", + "\n", + "This bi-directional assessment results in a clear True/False decision." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Event Invalidation Prompt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The prompt has three key components:\n", + "\n", + "
    \n", + "
  1. Task Setup
    \n", + "Defines two roles—primary and secondary—for event comparison. The assessment checks if the primary event is invalidated by the secondary event.
  2. \n", + "\n", + "
  3. Guidelines
    \n", + "Provides clear criteria on interpreting temporal metadata. Importantly, invalidation must rely solely on the relationships explicitly stated between events. External information cannot influence the decision.
  4. \n", + "\n", + "
  5. Event Information
    \n", + "Both events (primary and secondary) include timestamp details (valid_at and invalid_at) along with semantic context through either Statement, Triplet, or both. This context ensures accurate and relevant comparisons.
  6. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "event_invalidation_prompt = \"\"\"\n", + "Task: Analyze the primary event against the secondary event and determine if the primary event is invalidated by the secondary event.\n", + "Only set dates if they explicitly relate to the validity of the relationship described in the text.\n", + "\n", + "IMPORTANT: Only invalidate events if they are directly invalidated by the other event given in the context. Do NOT use any external knowledge to determine validity ranges.\n", + "Only use dates that are directly stated to invalidate the relationship. The invalid_at for the invalidated event should be the valid_at of the event that caused the invalidation.\n", + "\n", + "Invalidation Guidelines:\n", + "1. Dates are given in ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ).\n", + "2. Where invalid_at is null, it means this event is still valid and considered to be ongoing.\n", + "3. Where invalid_at is defined, the event has previously been invalidated by something else and can be considered \"finished\".\n", + "4. An event can refine the invalid_at of a finished event to an earlier date only.\n", + "5. An event cannot invalidate an event that chronologically occurred after it.\n", + "6. An event cannot be invalidated by an event that chronologically occurred before it.\n", + "7. An event cannot invalidate itself.\n", + "\n", + "---\n", + "Primary Event:\n", + "{% if primary_event -%}\n", + "Statement: {{primary_event}}\n", + "{%- endif %}\n", + "{% if primary_triplet -%}\n", + "Triplet: {{primary_triplet}}\n", + "{%- endif %}\n", + "Valid_at: {{primary_event.valid_at}}\n", + "Invalid_at: {{primary_event.invalid_at}}\n", + "---\n", + "Secondary Event:\n", + "{% if secondary_event -%}\n", + "Statement: {{secondary_event}}\n", + "{%- endif %}\n", + "{% if secondary_triplet -%}\n", + "Triplet: {{secondary_triplet}}\n", + "{%- endif %}\n", + "Valid_at: {{secondary_event.valid_at}}\n", + "Invalid_at: {{secondary_event.invalid_at}}\n", + "---\n", + "\n", + "Return: \"True\" if the primary event is invalidated or its invalid_at is refined else \"False\"\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Requirements to be compared for Invalidation\n", + "We can only invalidate dynamic facts that haven't been marked invalid yet. These facts serve as our primary events, while potential candidates for invalidation are our secondary events. To streamline the invalidation process, consider these guidelines when evaluating secondary events:\n", + "\n", + "1. Must be a *FACT* type and not *Atemporal*\n", + "2. Share at least one canonical entity at the triplet level\n", + "3. Belong to the same semantic predicate group at the triplet level (defined below)\n", + "4. Temporally overlap and be currently ongoing\n", + "5. Have a statement cosine similarity above the threshold (currently set to 0.5)\n", + "6. The similarity threshold (0.5) helps us filter noise effectively by selecting only the `top_k` most relevant results. Low-level semantic similarities are acceptable since our goal is refining the data sent to the LLM for further assessment\n", + "\n", + "When invalidation occurs, we annotate the affected events with `expired_at` and `invalidated_by` to clearly indicate cause-and-effect relationships. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PREDICATE_GROUPS: list[list[str]] = [\n", + " [\"IS_A\", \"HAS_A\", \"LOCATED_IN\", \"HOLDS_ROLE\", \"PART_OF\"],\n", + " [\"PRODUCES\", \"SELLS\", \"SUPPLIES\", \"DISCONTINUED\", \"SECURED\"],\n", + " [\"LAUNCHED\", \"DEVELOPED\", \"ADOPTED_BY\", \"INVESTS_IN\", \"COLLABORATES_WITH\"],\n", + " [\"HAS_REVENUE\", \"INCREASED\", \"DECREASED\", \"RESULTED_IN\", \"TARGETS\"],\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When we put all of this together, the workflow for our `InvalidationAgent` looks like this:\n", + "\n", + "
    \n", + "
  1. \n", + " Temporal Range Detection
    \n", + "

    \n", + " We start by identifying when events happen with get_incoming_temporal_bounds(). This function checks the event's valid_at and, if it's dynamic, its invalid_at. Atemporal events aren't included here.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Temporal Event Selection
    \n", + "

    \n", + " We use select_events_temporally() to filter events by:\n", + "

    \n", + "
      \n", + "
    • Checking if they're static or dynamic.
    • \n", + "
    • Determining if their time ranges overlap with our incoming event.
    • \n", + "
    • Handling dynamic events carefully, especially \"ongoing\" ones without an invalid_at, or events with various overlaps.
    • \n", + "
    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Embedding Similarity Filtering
    \n", + "

    \n", + " Then, filter_by_embedding_similarity() compares events based on semantic similarity:\n", + "

    \n", + "
      \n", + "
    • It calculates cosine similarity between embeddings.
    • \n", + "
    • Events below a similarity threshold (_similarity_threshold = 0.5) are filtered out.
    • \n", + "
    • We keep only the top-K most similar events (_top_k = 10).
    • \n", + "
    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Combining Temporal and Semantic Filters
    \n", + "

    \n", + " With select_temporally_relevant_events_for_invalidation(), we:\n", + "

    \n", + "
      \n", + "
    • Apply temporal filters first.
    • \n", + "
    • Then apply embedding similarity filters.
    • \n", + "
    • This gives us a refined list of events most likely interacting or conflicting with the incoming one.
    • \n", + "
    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Event Invalidation Decision (LLM-based)
    \n", + "

    \n", + " The LLM-based invalidation_step() (powered by GPT-4.1-mini) determines whether the incoming event invalidates another event:\n", + "

    \n", + "
      \n", + "
    • If it does, we update:\n", + "
        \n", + "
      • invalid_at to match the secondary event's valid_at.
      • \n", + "
      • expired_at with the current timestamp.
      • \n", + "
      • invalidated_by with the ID of the secondary event.
      • \n", + "
      \n", + "
    • \n", + "
    \n", + "
  10. \n", + "\n", + "
  11. \n", + " Bidirectional Event Check
    \n", + "

    \n", + " We use bi_directional_event_invalidation() to check:\n", + "

    \n", + "
      \n", + "
    • If the incoming event invalidates existing events.
    • \n", + "
    • If existing, later events invalidate the incoming event, especially if the incoming one is dynamic and currently valid.
    • \n", + "
    \n", + "
  12. \n", + "\n", + "
  13. \n", + " Deduplication Logic
    \n", + "

    \n", + " Lastly, resolve_duplicate_invalidations() ensures clean invalidation:\n", + "

    \n", + "
      \n", + "
    • It allows only one invalidation per event.
    • \n", + "
    • Picks the earliest invalidation time to avoid conflicts.
    • \n", + "
    • This helps manage batch processing effectively.
    • \n", + "
    \n", + "
  14. \n", + "
\n", + "\n", + "The invalidation below represents this part of our pipeline:" + ] + }, + { + "attachments": { + "aa62bb3c-d497-4027-ac15-51649e4d9c4d.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAAl8CAYAAAA6VRTgAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAEKqADAAQAAAABAAAJfAAAAABBU0NJSQAAAFNjcmVlbnNob3ShUqivAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNDI4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjEwNjY8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K87WagAAAABxpRE9UAAAAAgAAAAAAAAS+AAAAKAAABL4AAAS+AAEKSiLwnc8AAEAASURBVHgB7N0HvBS1FsDhY++9t2cXUMEOAiJWsHeKIIigiEpTxIIo2FCxIyIo0rGLXVFsSBNUigiCvWNHRQWxvZxcss5dZvfOnW1zZ/55v8fuTk2+zKw3Z5PMCr8v+uVfISGAAAIIIIAAAggggAACCCCAAAIREFiBQEUEaoEsIIAAAggggAACCCCAAAIIIICAFSBQwYWAAAIIIIAAAggggAACCCCAAAKRESBQEZmqICMIIIAAAggggAACCCCAAAIIIECggmsAAQQQQAABBBBAAAEEEEAAAQQiI0CgIjJVQUYQQAABBBBAAAEEEEAAAQQQQIBABdcAAggggAACCCCAAAIIIIAAAghERoBARWSqgowggAACCCCAAAIIIIAAAggggACBCq4BBBBAAAEEEEAAAQQQQAABBBCIjACBishUBRlBAAEEEEAAAQQQQAABBBBAAAECFVwDCCCAAAIIIIAAAggggAACCCAQGQECFZGpCjKCAAIIIIAAAggggAACCCCAAAIEKrgGEEAAAQQQQAABBBBAAAEEEEAgMgIEKiJTFWQEAQQQQAABBBBAAAEEEEAAAQQIVHANIIAAAggggAACCCCAAAIIIIBAZAQIVESmKsgIAggggAACCCCAAAIIIIAAAggQqOAaQAABBBBAAAEEEEAAAQQQQACByAgQqIhMVZARBBBAAAEEEEAAAQQQQAABBBAgUME1gAACCCCAAAIIIIAAAggggAACkREgUBGZqiAjCCCAAAIIIIAAAggggAACCCBAoIJrAAEEEEAAAQQQQAABBBBAAAEEIiNAoCIyVUFGEEAAAQQQQAABBBBAAAEEEECAQAXXAAIIIIAAAggggAACCCCAAAIIREaAQEVkqoKMIIAAAggggAACCCCAAAIIIIAAgQquAQQQQAABBBBAAAEEEEAAAQQQiIwAgYrIVAUZQQABBBBAAAEEEEAAAQQQQAABAhVcAwgggAACCCCAAAIIIIAAAgggEBkBAhWRqQoyggACCCCAAAIIIIAAAggggAACBCq4BhBAAAEEEEAAAQQQQAABBBBAIDICBCoiUxVkBAEEEEAAAQQQQAABBBBAAAEECFRwDSCAAAIIIIAAAggggAACCCCAQGQECFREpirICAIIIIAAAggggAACCCCAAAIIEKjgGkAAAQQQQAABBBBAAAEEEEAAgcgIEKiITFWQEQQQQAABBBBAAAEEEEAAAQQQIFDBNYAAAggggAACCCCAAAIIIIAAApERIFARmaogIwgggAACCCCAAAIIIIAAAgggQKCCawABBBBAAAEEEEAAAQQQQAABBCIjQKAiMlVBRhBAAAEEEEAAAQQQQAABBBBAgEAF1wACCCCAAAIIIIAAAggggAACCERGgEBFZKqCjCCAAAIIIIAAAggggAACCCCAAIEKrgEEEEAAAQQQQAABBBBAAAEEEIiMAIGKyFQFGUEAAQQQQAABBBBAAAEEEEAAAQIVXAMIIIAAAggggAACCCCAAAIIIBAZAQIVkakKMoIAAggggAACCCCAAAIIIIAAAgQquAYQQAABBBBAAAEEEEAAAQQQQCAyAgQqIlMVZAQBBBBAAAEEEEAAAQQQQAABBAhUcA0ggAACCCCAAAIIIIAAAggggEBkBAhURKYqyAgCCCBQ9QS+/PIrWWutNWX99devMpl/7/33ZfvttpNVVlmlyuSZjCKAAAIIIIAAAkkSqDKBiiefelqu6dOn0nXT7fyu0qxp00rvxw7hBd599105vW271AGmTJwgK620UupzpjcNDzlEFi9eYlf373e71N5vv0ybxnZ5WLt8gRx6eCNZ9Ouv9nC33XKz1KtbN1+H5jghBUaNHi39+t9p996zVi25e9DAkEfK/27XXHutDB85SlZeeWXpdXlPad6sWf5PEuKImb5L/v77bznZ/PfgnXfmyHrrrSfDhwyR3XffLcQZ2AUBBBBAAAEEEECgkAJVJlDxyKOPyiU9Lqu0Rc8ePaTN6a0rvR87hBd4++3ZclKTJqkDzJvzjm3IpBZkeFNzzz1TgYrhQ4dI/Xr1MmwZ38Vh7fIlste++8miRYvs4e69+25p2PDAfB2a44QUGHzvvXJ93xvt3vvsvbc8eP99IY+U3930Oqldt578+eef9sDaQ2Hc82Pze5KQR8v0XTJ+/GvSrn371FFPNYGVq6+6MvWZNwgggAACCCCAAALRECBQEY16iFUuwja2MzUuYoVTQWHC2lVw2MCrCVQEpirahlENVPz7779yyGGHy+dffGEtDj/0ULlrQFnPj6LhZDhRpu8SzavmWfOuqeell0qbNqdnOAqLEUAAAQQQQAABBEolUGUCFdod/bvvvivn9Nlnn8mZ7c9OLbvj9tukWrVqqc/6ZuONNpJ111233DI+FFYgbGM7U+OisLmN1tHD2uWrFAQq8iWZv+NENVChJZw5a5YMGTpM1jPfsWee2U62/d//8lfwHI6U7btEhxE+8eQTsketPaRt2zNk7bXWyuFM7IoAAggggAACCCBQCIEqE6jwK/z7H3wgRx59TGrVmEcello1a6Y+Z3vz119/BRqOkO0YhVj3zz//yIorrhjq0Dr+OshcEKEObnbSXyE1fxWdI2xjO1vjImyec9mv0J5+eQtjF/Za9itfZQIVQa8Hv3K6ZWHz7vb3ey3EMf3O4+fnt122ZUHu91IFKoLkLVvZsq0Le2zdT6+7ir6DovRdUqzrMZs36xBAAAEEEEAAgaomkJhAxe+LF8toMyndE08+JZ98+qn88ccfspHpbVGv7v7S7oy2sttuuy5Xd3cOGCCzZ79jl5944gl2csd7Bt8rb771lvz191+y37772ok6d9h+e9FGy+j77pep06bJhx9+KLvuWkMONZNDHn3UUcsdt1OXrvLn0qV2+cUXXyRrrbmm3DVwkMyYNVPmzZsverz69erKkUceKXvvtddy+7sFi8wY8aeeflqmz5gh06fPkK8WLLDn3cfsU7t2bTn8sMPcpuVe08//448/yuOPPyEff/KJ1Km9n3Tq2DG1va4bcNdd8rZxeO+992SJcdt6q61s2XW7LbfcIrWtexOmsa37ZmtcTJo8WUaaSftc2t4Ydb+wmw3qpNeTumvjbtyLL8nChQuNya62no884gjZYIMN3CGWew3j2a17d/nt19/ssbp27SLVl/Xo0QkQJ06cVO4ce++9l7Q/6yy77LPPP5c+fa6z71c0E43eeUc/WWGFFSSIXZhr2WVEeyXpfC+TJk+x181qq60m1XbZRTqc3V4OathQKgpUaKNL9584abK8PnWqnc9Cr4fWrVrJ6a1bybBhw+1yPV+jRo3kJHPfpKcZM2fKsOEj7L3yww8/iOZB5zc4+cQTpUWLU2XVVVdN36XCzzoJ6VNPPyOTX58ic+e+K2uusYbUNROBXmLuL31/+RW9Use4w0zU6p72oN8F119/g123snkChE7iqt8Rr7z6qnz//fd2fpvDzJAGl+bOnStDhw+Xd9+dJx9+9JGsYiaR/J/pRdC40eHSrl07ey63rXv1uz4HDhpknKaZ75fZstbaa9v7veGBB8oxRx/tdku9+gUqnn/hBRkz5jH7Xbbpppva6/vwww+XnXbcMbVfRW/8yq51c9/998uMGTPliy+/lD332MPm7URTN1rP6clbNv2+Ov64Y1ObpH/PhP2e06eKDBsxXMaNe1G+/uYbe/wtNt9cjmjcWNqe0UY22WST1Dndm2zfJd58denSWWpUr2538/PQ7/9B99xjv9NXXW1Vqbv//vY+2b9OHXeq5V5zuT+XOxgLEEAAAQQQQACBhAokIlCxZMkSO0REG1Z+afXVV5dhQ+6VfffZp9zqM82ka6+aydc0nXjC8TaI8O68eeW20UaCTm53110D5aFHHim3Tj9073aBnO2ZvE2Xef+I7nPN1TLo7nvkUzOMJT3pTPqDTLDEb0JD24gyT9aYN39++m6pz21Mw/EyM5moNoC9yXt+fSrKwEF3y2+//2430T/+tbGmSYMuXS/ottyQG7vS/KMNyqH3DjbBjdpukX0N0tgut8OyD958eSfTnDNnrrQ47bRUHrXB9MB9o2Vz01jR5K2nC0ywQBuQ2thMT7vsvLPcP3qUne0/fV1Yz+NOPMk0jOfaw916881y7DFlDc1Wp7eRKa+/Xu40Ggx7YswYu8w7qZ+W59WXX7LLK7ILey3rwTUo0LxFSxuQsidL++eySy6R2/r1SzmnT6apQYou518g2kj2S2eYsf6ff/a5vPjyy3Z1+zPPlIu6X1hu05dfeUXO7dhJ9Fh+qZFpbOsQrop+Mffuq4HDtu3OFG0gpie9Py+56CK54ML/8vGOCQjqPa/J663BC70f3MSVur73FZfLaS1b6lsZYQJl191wQ2rySLvQ888WW2whjz/6iA2AehaXuz61Yf3pJ5/KS8bBL53boYNcYPLgTd5AhT6h4qADG0p/872QnnQIw0gTRKlZc/f0Vb6fvWXXe1mf8qKBN/fkHe9Oeq/pPZcerPDee+l5997PYb/nNKB3asvT5JtlAQpvnvS9DjXR79+NN9643Crvub3fJbpRpnVeDw2e6XdFa3Mf//pbWSDSe4JrzAScfk84yeX+9B6f9wgggAACCCCAQNIFYh+o0J4TZ59zjv0F2FW2NlI2Nb/C6R/BLq1jftUcPXKE/fXdLfP+Ee6WaS+MX818GXpcv6SNlQWmZ4M3PfPUk/ZXa7fM+4eyW6Z50l+VvzeNSe9cHLr83nvuLhcM0F8YW7cxDR5PcEN/NdY/1r/86ivbu8MdV3/Rvs48QtDb8PM7v9veBSq00aePqnR50YZM3f3r2KCH/hrvZvrXBszzzz1re4W4Y3j/4NdluTz1Q+uoafNT7a/beqzNNtvMNiD+t802+tEmv3rS8m6++Wby1VcLUhPn6cb6C/EjDz1YtuOyf3Px1F9nnxtb9qSDSy7qLmeaX9U11WtwoHz77bey1VZbyuqrrW6DJ1pHs2ZMt4YPPfyw9Oh5ud1Wn26ijSlN2exyuZYXmd432uDzBrY0P9uaa07zqUGM9OQNVGh3e23sa68FlzSQpr1/tHGmkxTqNt6UHqjQ4EyH885LXTu6rdbjt6aXhx7DJb1mb7juuuUCbG6991W99F7wNib1HtXr5DPTW8K73O2XKVDh1ntfXaBCH2d54imnpMqoj7Y8oH598x3yWarXle6nvZjuurO/9xDlAhVuhV6f2227rbXQngs6pMGli01w5ywT5HHJG6hwy/RV7z3t8bR0We8sXaY9hp56/LFUEE+XZUrp15rbTsu2lQmefW6+X9yjanWd1pUGBbw9GLz3XrZAhTt2Zb7n1EWvWe/3qdatXmdabpe0R8R9o0bKOuus4xZlDEboBt7vP28QI5OHznGkwd6ff/45dXwdnnfPwIHlgsi53J+pA/MGAQQQQAABBBBAwArEPlDhfaypNqxuNL+IalfuNdZYXd57/3256uprUl3V0x/95/0jXLVuuekmOerII2SxaVRdah6VOvb551OXkc6N0feG623Xa20MnnRKk1QDIv3XN+8fynoA/SW62/nnp37l1QZdd/PrtvtjXLsbjxw+LHWu8zp1Tv2qrd2pe/fqJSccf5z9Y1obZn3Nowzve+CB1Pa333pLuSEo6efX3iKNTTf9GtVryJprrmEbO2+8+aZcdPEltgGqDYAXzWMHtZGgSRu2DQ85NNXgHGW6ZXu7Qqf/wR82UKENEA1SaJdsTRtuuKENUuy4ww72s/snvZ706QM3XH+dnURVGzuDzXCdUff990hHfYSiBoVcysXz5ltulbtMN35NZ5jH4GoPFq2DPfcu652jXeF1osERo0bbbSa8+opoMOuO/v3l9jvKGrQtmjeXq67sbddns8vlWtbu/Ff0vtKeQ//peO65ct6556SGQLwwbpxcfGmP1KNJdRtvoGK+GfZz9LHH6WKbNKB1Ve9etk50gd5L3bpfZIZEvFu2gfk3PVDR4KCDU43Og8xjTy+5+GJ7v2hQbOzY5835L00FArwNyNQBfd507NwldR/qdXp9n2vttaybaq+NIUOHyo0335I6ri7PFqjQgGXTpk1Ee3ZssfkWst7669kgnPam0N4mv/zyix32pPejfp9o0u8BzYcmXTZ75oyUqy5Lvz41MHXDdX1SwYSPPv7YBoE0GKJJf82fNf2t1PHTAxV6/fc3Q4V23mknG0h45pln5PJevVNlTP++sQf1+Sf9WtMggtbpSWaYhyYdzjZixEi5rm/fVCDlfDNU4jxz7bjkLVtFgYrKfs91N9fHY2ZImqZttt7a3tPa600DFdqLxtvbK9u5068l7/efd126h/ZQuenGvva/F3otTZg40Tp//fXXNk/ae0p7UbmUy/3pjsErAggggAACCCCAQJlA7AMVGlB42Iyp13Rqs2Zytemy6006lOO4E060f/xqA2HmW2+mGhneP8K10fzUE4+ndtU5E043c1u4pF2bmzZp4j7KOeeeJ+NeKuvOf8pJJ8n1pmHikvcP5QMbHCBDBg92q1Kv3saPBiOmv/mG7RWhv+rVqVc/1XXe/eKb2nHZm5atWtuhG/ox/Rze8+scGA89cH/67qnP+se7nrOByac3tT+7g7xsxvFruqJnTzNHwWn2vf6T/gd/mECF/iqtAQA9lib9VVN7vLjx5Hbhsn+89aS/KL/y0ovlZvLXX4Vr7183FVjpe/31qbkTcvX0Nk5cbxQd166/vmvSoSjrrLOuXHn11fbz8CFDpH79enKZ6U3xoOlVoamHaZDp0wc0ZbPL5Vr2Nvp03hQNXqWnh83QpUsv65la7A1UPPDgg9Jz2TwP2oviafPUhPS5JLT3i05u63obeQMV+qu4Bio06RALDRalDyPQISEaMNHUtXMn6Wh6X1SU6h7QINXrp68JTrlGtnc/r7UuzxaoSG/weo+jjdVJZm6OzbfYvFwPKV2+n7m+FpleK5rSe1B5r0/t9TRu7HPlfv3XfbRXzxFHH5UaduGdGDg9UKE9grRnkDed3KSpzHr7bbtI5/rQQF1FKf1a8xumpse48qqrZaSZc0WTBpgG3323fa//eMuWbuf9nkn/DnIHyPQ9p+v1MaKu15t3WJXbd7gJolxteotp0kCpBkxd8p7bG4zQ9ZnWBfG48aab7ZwVehzvkC39nMv9qfuTEEAAAQQQQAABBP4TiH2gotERR4r+YqlJuy6v7eke7Bh0kkhtbGh69OGHzGPratn33j/CdWx5D9PLwSXt6n7woYe5j7ZxrL/6uXSt6bo+1EwsqEkncdRx9y55/1D2Nprden3VruC777FnqleGdueuUaOGmdRytu2t4badYQIr+itwevIOLdDhB+OXzRug23nPf92110iTZY3q9GPoZ51cb9ast+V984v5T56uz7PfmW2HVeg26b+ypv/BHyZQocd1SX/ZHD5saKpe3HL36q0nnYxQx9qnpzPMkIwJEyfZxfrL7mXm13tNuXpOe+MNM39GK3ssN6zk8SeelAvNvAiadL4P/aXfBbVcUMeb54ED7rS/2ur22exyuZa9jT7v+fScLmnPhlp77uU+lutRoeXRcmk6s11bO+9DakPPmybNmttrRhd5AxVPm1/99RdwTdqbafvty/eK0eU//bQwdU01PLCBGfJ0jy7OmLQRq+XSpF3zZ5peCBrUS086qWmbZUNydF22QMXLL46z3xPpx9DP7lf1eSa4+YGZMHfJkv+Gf41/7bXU8BWd20An2nXJW9fZggh6jWgAVFNPc322MdepJm+gQoddTJk4wS73/qOTc95kevdo0sljn3xsjHe17/v0a02/I/S7Ij29NX26NDu1hV2sAcO3pk1NDcvxli1boKKy33M65EyDUC5pgHIFM9zCm/7680/bk0eX6TAm/S50Q9y833FhAxUvmICSBuW8Sb8P9Rp3yfv9m8v96Y7HKwIIIIAAAggggECZQKwDFekNryCVfmWvK6Rli7I/yrP9EZ4eqHh90sRyE7oFDVSkN2q8efT+4et+LX7R9NLoYHpraNKx5Npo8EuTp0wxY/fPsKv0F+x3TWDBpWx/xLttdNz7teapFKPNkIGKUqEDFV06dSz3JJL0/Hjryds49m6n8ys8+dTTdlHr01rKFZeXzQ+Rq6cOg9H5KDTpkA4d2nHLrbfJADN+XZP+uq5DPw5oeJD93MpMzNjrisvtMAodTqHpuWeett349X1649EFeXK5lnWi1D322lsPb1P6L/5uub5qbx03X4W3R8XxpleQTmqqqZexa2UM/ZJOtvnMs8/aVd66uMEMR7rHPIklaNJhPtOmlDXaM+2jE3O273COXb3++uvLm1PLT17q9tPJVRsf+d/Td7IFKpy329e9aj137nq+HXLglmV6Tb+nvddn+r3iPYY+meR+03NFk87ToY17Td5AhQ4x094W6enBhx6Syy6/wi7Wp7hoHVeUvNeaDlnR74j0iXf1GOlBA5341fWG8ZYtW6Ai3cSbN7/vOe9ks95ts7333kfZvuMyrfN66Hm814k7rw5DO6xRY/fRXnN67eVyf6YOxhsEEEAAAQQQQACBlECsAxU6xnrXmrVSk0seevDBok8ByJaONHNQ1DOPNdSU7Y/wfAUq9Bd3HTLgl/ber7YdE6/r3DwQ+iQOHdahSX891D+m3aMW7cJl/+ikh+d3K/sFW+eWmDq5rDeBrs70h7p3/9tu71fuyQI6OeHOO+2Y2mT+e++nutynN77S/+DP1PhLHWzZG2++tOHkernoEIPBdw9K1Uv6ftnqyW2bKVCRT0/N89zZb9sGrXZp1wn3dL4CHVKkgQINGOi1NcL0Dtmndh07pEYbhlqHuo2mTHa5Xsv71tnf9Fj4yZ5Dz++ucbtg2T/qrb14nLs3UBG0R8UpTZvJzFmz7BG9gQrvnBzaK+Aw8wjZbGn11Vez831k2yZoj4oJEybKGZ7JKb0N0Eze6efVSR113haX9Akym266ifto1r2VGvKS3ij3Xp/eIFlq52VvvENfOplhL13M8BdN3kBF+jw6y3aVXAMVehwN9GijOz3pnDvHHHe8XazfNTo8zl2v3rJlC1Tk8j2n90gzM6zOL4jizeu553SwwUJd5v0uCdujwu97K1OgItf701sO3iOAAAIIIIAAAgiYHtO/L/ql/FT9VUjl/Q8+sGPiXZa947rdsoamQaTjvzVlms9Bu3HvtON/jXC3b7Y/wvMVqHATMLpzulednPCoY461HzUgoV2MtXuzTg55kJnI0iWd1E8n20xP3l9na9Uyv8Iumw9Bt8v2R7w7jvcX9LNMt/mLzRMtvMnbTb0QgYp7Bg20j23VSfM0aZd+ffSiliU9Zasnt22mQEU+PLUR556mod3y25jHxmpvCR1qpEMJNJ1w8smikyVqwOelF563AQFd7nph6HtN2RrOuVzLZ7U/W14ZP96eo3PHjtLZ9FJJT2qtjy91yRuo8M5RoU+r0F/sXWPVbf/xJ5/YniLuKRTeQMWYxx6Tiy4pG26j8zRMem18qpu+23/hwoV2rhjtTRE0eeeoyDSM6WJz3kfN+V2qbKBikZl7QgM92hjVpEGzgxo2dIezy2uZQJSbmyNboEKHZTwx5tHlGt1qdoh5yo6bqHGIGfZyoBn+Ys9neqK4R6YWMlCh88LoU0vS0ygzP0VvM0+FJh0Wp8PjXMp273m/Z3L9nnv26adEg0PepMPjNHCQPjxDt/GeuxiBCj1nLven7k9CAAEEEEAAAQQQ+E8g9oEK7xAM7VmgE9F555LQX9R1iIT+Ad7tgvPLPQY02x/h+QpU6K/wQ+8dXC7YoE8WONM0LKfPmGFrKn3MuTeIoAEW3V8bvC5pl3gdHuIeeXjRhd2k/VlnudVZ/4h3G+21z76pRxPqk1L0ySAuaYDohJNOTjXM0n8lztbYdsfwe01vXOy+2272qR/adV+T/tr7wH2jlwsqZasnd55MgQpdn6un96khen3pnBXa8PROPNite3d54smnbHZ0/oDjTjzJvk+fBDCbXS7X8l1mKMrNZkiKJn26g05M6uZi0WXff/+9nUfDDUfRZd5ARfpTP7RBq0+XcE+C0UBNtwu72wCN7qvJG6jQIIQGFVxvDV3X3VyX7ldyvVbbmmUzZsw0T8FpI+3MPBh+c6+UHfm/f8s99cPM1XKdeeqH66Gk57rbNPhvue32/3Yw7yobqJg7d26qvjS/OpfDllv+d795J1TVE6X3HvBen7peJ1g9p0OHVNk1ANLHzGkzfOQoXW2XT39jWmrCzWL1qNDvxdEjR5YrmwZxNXjleuN453fRvHrLlq1HRZjvuWPNJMfuKTJ1ateWe0yASIO1Lt05YIB9co4+faNL587l5hZJ/y7RJ624lGldtnvP7ZupR4Wuz+X+dMfnFQEEEEAAAQQQQKBMIPaBCu1N0cQ8/lHHmGvSifyONuPVdQjI61On2m7qrkGv3dEH3jWgTMb8m+2P8HwFKvRk2vjRYSk6WaY2GF80DSEdF+7SZWYSzzPMZJ4u6fjtDqZr+J9mMjlN2qBraH7h3WSTjWX+/PdE56dwSR/D+fCDD5Tr0p3pD3W3j76ec15HGffii3aRBkFantrcTLS3tV32ipmHYfHiJanNNf/6yFdteOqvm0H+4E/t7Hnjly/t8aCT1zmPzTffXB40jxr1TvqXrZ7c4bMFKnL17HvjTXL3sie3dGjfXgYueyqCdwJWbVTdaobTaPJu07xpU7nm6qtcNrPa5XIta3DpFPNkCB1+okl76WiwQR9x+c0338jYF15IDTNymfEGKvSRkGqoQ4pc0sanXl+LzSScX371VerxmG69N1Chy7xzd+jnmjV3l/p168m3330r41+bkJobQ4+rT6LR+RgqSnqttTaBDX0krEvaI0N7rnxmfm135XXr9LWygQr9fqht8uka6zpp6iknn2TL+/Qzz9ohIe47RI+vE07qZKDu0ZXe61PXa9KyaZDqr7/LniTiDRDpd8GggXeVbWj+LVagQk+oPZcaN25k5qDY2vRW+MQ8evWF1IS+OuzjvlEjZa8990zlzVu2bIEK3SHM99zZ5lGoLril9/4RjQ63k2rqPesmSdZjp39H+n2X6HaaMq0L8r2VLVCRy/1ZljP+RQABBBBAAAEEEHACsQ9UaEH1D1qd18E1dl3hva86q7yO3dfHW7qU7Y/wfAUqDjYBhvETJqR6P7hzu1dvY9ct01cdd3+u6b7vDRh41+t7DXwMM70t3K/ebn2mP9Tden3VXhk6Zt41Erzr9L0+UvOOO+9M9brQZdq41MedBvmDX7dPT5nypb9o6xwBrtGpjWPtWeHKla2e3DmyBSp0m1w8vfMDuPPpq/Y4aG4eiavpubFjpVOXrva995+Lu18oZ3nmT6jILuy1rOfUwFy7s9qnesJ486Hv9ek0EydOTNWpN1Ch6/Va0Cd36Pwbfkl73XzxxZepuRzSAxW6Tx8zQeSQocP8drfLNEjR6/KecqoJLgZNOmSlbbsz7YSG6ftoEE/ne+hjegW5VNlAhe7nfSylO4571cb9+V26yDWmV4RLWg6d40CT9/rUIIfOrfHjjz+6Tcu97rvPPqaH1L02oOpWFCtQoQGSl8x975c0sKVPLmp0eNlTVtw23rJlC1SE/Z573gTQdILWTN9Dmo8Tjj9OtNeXBkJcyvRdouszravo3tN9swUqdH0u96fuT0IAAQQQQAABBBAoE0hEoEKLqsMHrujVW3SohzfpoyNPMg2si83jF3XSRm/K9kd4vgIVOn76xx8X2m7D2pvCJZ1V/4Tjj5euXTq7Rcu96tCQ/iZYMGPmLFlkxtG7pF24tav0ZT0uTXUfd+v0NdMf6t5t9L1aXWC68+sv7i5pA+wiM0ln27ZnyGOPPyH3mJ4EOp+GpkIFKvTYGkg4y3SXdw0WHQ6jwxe0IZqtnnRfTRUFKnSbsJ4aADitddmjJPU4Lumvz7X3289+TB864ba5845+0rhRI/cxUJAnzLXsTqCOt/XrJ+/MmZOac0Eboa1bnWYfv3vgwYfIggUL7ObpgQpdqP461GHS5Cky5fXXbW8KnbOiqZnssGWLU20wxvXE8QtU6DF0GMoQ8+heHQ7ikk48qnMQXHVlbxvscsuDvuoQAe3tMfn1KWa4wDzRXhX6y78O59JhOMcef0LqUGECFbrzsOEjzPCZW8oFBzWwebtZppOTXt+3r32yjPbeyhSo0Ma81vclPXrIu+Yxpy7pE3wObHCAKf+Vyw15KVagQp/6cXu/O0zdDEv1otDGvwY8O7Q/S4468kiX3dRrtnsv/Xsm7PecPplHey15e1BoBrTXTOeO50kz0yspPaWfuxhDP1wecrk/3TF4RQABBBBAAAEEki5QpQMVYSpPG2E66Z92V9/ZNIy0Ue/9JS7MMSu7j98f0UuWLJEPP/xIFny9QHYxjxfUiRiDJu2Wr137vzLd73czDXh9qkI+01dfLTBzD8y3jT81844Tz+d5onKsQnvmq5y5XMuLfv1V3jI9EVZacSWpXr1aqGtGnTR57x/vkKFMgQrdR4ctaUDh62++to/1rW56NOXrutI5HzT44pIGBDIFKtw2QV/12Npg/tQMK9nG3KM77rCDDUpk29+vMa9DRfQ4n5veFRtvtLHsttuu9ikx2Y6T73WZehD8/PPPNrCrr9oDxNvLrDJ5yPf3nAZEF5jvIq3bXXetYb+PKpOfYm+by/1Z7LxyPgQQQAABBBBAIGoCiQtURKEC/P6Aj0K+yAMCuQho47tp81N9H0+ay3Fz3VfnM2hn5g5xydujwi0r5KtfoKKQ5wt67EyBiqD7V7Qd33MVCbEeAQQQQAABBBBAIJMAgYpMMgVczh/wBcTl0AUVuKHvjfLRsqewpJ/oRzOUY8bMmanFPc3whjant059LtQbncNEhyxkSm9Ony7aO0CTPjlm2pTJRe29QKBCJP0RoZnqiuUIIIAAAggggAACCKgAgYoSXAcEKkqAzinzIqBPYPEGIzIdVLvnT3ptvB3WkWmbfC2fOHGStGnXLtDh0h+lG2inHDciUEGgIsdLiN0RQAABBBBAAIHECRCoKEGVE6goATqnzItAkEBFNTPHyumtW9kJNvNy0goOEiRQoY8lPqJxY+nSubN59OZWFRwxv6sJVBCoyO8VxdEQQAABBBBAAIH4CxCoKEEdf/311+ZxpGUTEW600Yay2mqrlSAXnBKBygvok2mWLv0z444rr7ySbLrpphnXF2LFH3/8IT/84P+4T3e+9TdYP2+TdbpjBn3VR5EuWfKH3XyddddZ7qkeQY+T7+10QtPvvvvvSUNbbrlFXk/B91xeOTkYAggggAACCCCQKAECFYmqbgqLAAIIIIAAAggggAACCCCAQLQFCFREu37IHQIIIIAAAggggAACCCCAAAKJEiBQkajqprAIIIAAAggggAACCCCAAAIIRFuAQEW064fcIYAAAggggAACCCCAAAIIIJAoAQIViapuCosAAggggAACCCCAAAIIIIBAtAUIVES7fsgdAggggAACCCCAAAIIIIAAAokSIFCRqOqmsAgggAACCCCAAAIIIIAAAghEW4BARbTrh9whgAACCCCAAAIIIIAAAgggkCgBAhWJqm4KiwACCCCAAAIIIIAAAggggEC0BQhURLt+yB0CCCCAAAIIIIAAAggggAACiRIgUJGo6qawCCCAAAIIIIAAAggggAACCERbgEBFtOuH3CGAAAIIIIAAAggggAACCCCQKAECFYmqbgqLAAIIIIAAAggggAACCCCAQLQFCFREu37IHQIIIIAAAggggAACCCCAAAKJEiBQkajqprAIIIAAAggggAACCCCAAAIIRFuAQEW064fcIYAAAggggAACCCCAAAIIIJAoAQIViapuCosAAggggAACCCCAAAIIIIBAtAUIVES7fsgdAggggAACCCCAAAIIIIAAAokSIFCRqOqmsAgggAACCCCAAAIIIIAAAghEW4BARbTrh9whgAACCCCAAAIIIIAAAgggkCgBAhWJqm4KiwACCCCAAAIIIIAAAggggEC0BQhURLt+yB0CCCCAAAIIIIAAAggggAACiRIgUJGo6qawCCCAAAIIIIAAAggggAACCERbgEBFtOuH3CGAAAIIIIAAAggggAACCCCQKAECFYmqbgqLAAIIIIAAAggggAACCCCAQLQFCFREu37IHQIIIIAAAggggAACCCCAAAKJEiBQkajqprAIIIAAAggggAACCCCAAAIIRFuAQEW064fcIYAAAggggAACCCCAAAIIIJAoAQIViapuCosAAggggAACCCCAAAIIIIBAtAUIVES7fsgdAggggAACCCCAAAIIIIAAAokSIFCRqOqmsAgggAACCCCAAAIIIIAAAghEW4BARbTrh9whgAACCCCAAAIIIIAAAgggkCgBAhWJqm4KiwACCCCAAAIIIIAAAggggEC0BQhURLt+yB0CCCCAAAIIIIAAAggggAACiRIgUJGo6qawCCCAAAIIIIAAAggggAACCERbgEBFtOuH3CGAAAIIIIAAAggggAACCCCQKAECFYmqbgqLAAIIIIAAAggggAACCCCAQLQFCFREu37IHQIIIIAAAggggAACCCCAAAKJEiBQkajqprAIIIAAAggggAACCCCAAAIIRFuAQEW064fcIYAAAggggAACCCCAAAIIIJAoAQIViapuCosAAggggAACCCCAAAIIIIBAtAUIVES7fsgdAggggAACCCCAAAIIIIAAAokSIFCRqOqmsAgggAACCCCAAAIIIIAAAghEW4BARbTrh9whgAACCCCAAAIIIIAAAgggkCgBAhWJqm4KiwACCCCAAAIIIIAAAggggEC0BQhURLt+yB0CCCCAAAIIIIAAAggggAACiRIgUJGo6qawCCCAAAIIIIAAAggggAACCERbgEBFtOuH3CGAAAIIIIAAAggggAACCCCQKAECFYmqbgqLAAIIIIAAAggggAACCCCAQLQFCFREu37IHQIIIIAAAggggAACCCCAAAKJEiBQkajqprAIIIBAPAT63dHfFqRzp472lc946IXA9dBR0u8Fe4PwDwIIIIAAAlVMgEBFFaswsosAAggkVUAbYN6GaL/+/WX0yBFSp3ZtadmqtUydNo3PeCT+etB7QdMH8+fZV70v9B4hIYAAAgggUJUECFRUpdoirwgggEBCBTRIoYGJzh072mCFNr6mmf/XNg0wbYTxGQ+uh7L7QR00dTL3it4XGrhw901Cvz4oNgIIIIBAFRQgUFEFK40sI4AAAkkTcA2uLmaohzbASAggULEA903FRmyBAAIIIBBNAQIV0awXcoUAAgggYAS0J0WdOmW9JgBBAIHKC2iwwg398L6v/JHYAwEEEEAAgeIJEKgonjVnQgABBBCopMBO1arbPdxcFJXcnc0RQMAIaIBi6tRpdviUm7sCGAQQQAABBKIsQKAiyrVD3hBAAIGEC7iJATVQQUIAgfAC6RPOhj8SeyKAAAIIIFB4AQIVhTfmDAgggAACCCCAQEkFGPZRUn5OjgACCCBQSQECFZUEY3MEEEAAgeII6PwUmtwjSYtzVs6CQLwFCFjEu34pHQIIIBAXAQIVcalJyoEAAgjETMDNT8GY+phVLMUpmQD3VMnoOTECCCCAQCUFCFRUEozNEUAAAQSKI3BH/7IeFTyOtDjenCX+AgQq4l/HlBABBBCIiwCBirjUJOVAAAEEEEAAAQQQQAABBBBAIAYCBCpiUIkUAQEEEIijAHNUxLFWKRMCCCCAAAIIIFCxAIGKio3YAgEEEECgBAJ0Uy8BOqeMtQD3VKyrl8IhgAACsRIgUBGr6qQwCCCAQHwEmKMiPnVJSaIhQKAiGvVALhBAAAEEKhYgUFGxEVsggAACCCCAAAIIIIAAAggggECRBAhUFAma0yCAAAIIVE6AOSoq58XWCCCAAAIIIIBAXAQIVMSlJikHAgggEDMBuqnHrEIpTskFuKdKXgVkAAEEEEAgoACBioBQbIYAAgggUFwB5qgorjdni78AgYr41zElRAABBOIiQKAiLjVJORBAAAEEEEAAAQQQQAABBBCIgQCBihhUIkVAAAEE4ijAHBVxrFXKhAACCCCAAAIIVCxAoKJiI7ZAAAEEECiBAN3US4DOKWMtwD0V6+qlcAgggECsBAhUxKo6KQwCCCAQHwHmqIhPXVKSaAgQqIhGPZALBBBAAIGKBQhUVGzEFggggAACCCCAAAIIIIAAAgggUCQBAhVFguY0CCCAAAKVE2COisp5sTUCCCCAAAIIIBAXAQIVcalJyoEAAgjETIBu6jGrUIpTcgHuqZJXARlAAAEEEAgoQKAiIBSbIYAAAggUV4A5KorrzdniL0CgIv51TAkRQACBuAgQqIhLTVIOBBBAAAEEEEAAAQQQQAABBGIgQKAiBpVIERBAAIE4CjBHRRxrlTIhgAACCCCAAAIVCxCoqNiILRBAAAEESiBAN/USoHPKWAtwT8W6eikcAgggECsBAhWxqk4KgwACCMRHgDkq4lOXlCQaAgQqolEP5AIBBBBAoGIBAhUVG7EFAggggAACCCCAAAIIIIAAAggUSYBARZGgOQ0CCCCAQOUEmKOicl5sjQACCCCAAAIIxEWAQEVcapJyIIAAAjEToJt6zCqU4pRcgHuq5FVABhBAAAEEAgoQqAgIxWYIIIAAAsUVYI6K4npztvgLEKiIfx1TQgQQQCAuAgQq4lKTlAMBBBBAAAEEEEAAAQQQQACBGAgQqIhBJVIEBBBAII4CzFERx1qlTAgggAACCCCAQMUCBCoqNmILBBBAAIESCNBNvQTonDLWAtxTsa5eCocAAgjESoBARayqk8IggAAC8RFgjor41CUliYYAgYpo1AO5QAABBBCoWIBARcVGbIEAAggggAACCCCAAAIIIIAAAkUSIFBRJGhOgwACCCBQOQHmqKicF1sjgAACCCCAAAJxESBQEZeapBwIIIBAzAToph6zCqU4JRfgnip5FZABBBBAAIGAAgQqAkKxGQIIIIBAcQWYo6K43pwt/gIEKuJfx5QQAQQQiIsAgYq41CTlQAABBBBAAAEEEEAAAQQQQCAGAgQqYlCJFAEBBBCIowBzVMSxVikTAggggAACCCBQsQCBioqN2AIBBBBAoAQCdFMvATqnjLUA91Ssq5fCIYAAArESIFARq+qkMAgggEB8BJijIj51SUmiIUCgIhr1QC4QQAABBCoWIFBRsRFbIIAAAggggAACCCCAAAIIIIBAkQQIVBQJmtMggAACCFROgDkqKufF1ggggAACCCCAQFwECFTEpSYpBwIIIBAzAbqpx6xCKU7JBbinSl4FZAABBBBAIKAAgYqAUGyGAAIIIFBcAeaoKK43Z4u/AIGK+NcxJUQAAQTiIkCgIi41STkQQAABBBBAAAEEEEAAAQQQiIEAgYoYVCJFQAABBOIowBwVcaxVyoQAAggggAACCFQsQKCiYiO2QAABBBAogQDd1EuAziljLcA9FevqpXAIIIBArAQIVMSqOikMAgggEB8B5qiIT11SkmgIEKiIRj2QCwQQQACBigUIVFRsxBYIIIAAAggggAACCCCAAAIIIFAkAQIVRYLmNAgggAAClRNgjorKebE1AggggAACCCAQFwECFXGpScqBAAIIxEwgad3UP/jwQ/nss88qrMW1115bau+3X4XbxWWDhQsXyvPjxslmm24qBx90UFyKVZJyJO2eKgkyJ0UAAQQQyIsAgYq8MHIQBBBAAIF8CyRtjoqHH3lUxr7wQoWM/9tmG+l1ec8Kt4vLBiNGjpLxEybY4lzeo4dst922oYs2/rXXZPHixbL99ttLtV12CX2cqrojgYqqWnPkGwEEEEieAIGK5NU5JUYAAQQQiKDAs889J6+ahrRLvy76Vf5YulRWXHFF2WCD9d1i2XKLLaRr586pz3F/8/Qzz8hjTzwpK620ktzQ51pjsUHoIl98aQ/5/ocf5IhGjaTJKSeHPg47IoAAAggggEBhBQhUFNaXoyOAAAIIhBRI+hwVQ4YNk0mTp8h6660nt9zYN6Ri1d/t33//lffef1823mhj2WijDXMqEIGKnPjYGQEEEEAAgaIJEKgoGjUnQgABBBCojEDSu6lnC1S8+dZb8sUXX9p5G2rUqC5Tp70hP//ys5x4/PGyyiqrWOapU6fJ+x98IN98+62su+46smuNGlJ3//1tDw1XD7/++qu8+NLL9mPDAxvIr7/9JnPmzJHvv/9BdtpxR6lVq6asueaabnP7unjJEpk3b568884c+WXRIqlRvZrsvvvusukmm5TbTj989/33Mnv2bNH5N5Yu/VO2N8M2atWsKduY4Ssupefhs88/lw8++FB22mlH2aNWLfn4409k1ttv281POP44++qWrbTSinLsMcfItDfeMHmaLz/99JNUq7aL7LXXXqn8aA+KiRMn2f1eevll+d0M/dhxhx2shy48/LBDZa211rLr4/5P0u+puNcv5UMAAQTiJECgIk61SVkQQACBGAkkbY6K9KrLFqgYdM9g2zjfYvPNbeDhy6++srv373e7rGoCFXcOuEtmmQBBetJgxQVdu8gKK6xgVy34+mvpeUUv+/6oI46QcS+9JH/++Wdqt6232kou7n5hKlihgYCr+1xnAwKpjcwbHZ7SvdsFssvOO6cWay8I7RWjgQ1vWnnllaVVyxZyQP36drE3D/vsvbe8NX26Xd7o8MOkWZMm8ur48TJy9H122eBBA23e3TIdDnLgAQfIK2Ybb9LAw0UXdhPN/7z58+XGm2/xri73/tqrr5LNN9us3LK4fiBQEdeapVwIIIBA/AQIVMSvTikRAggggEAMBIIEKrSY2ljXXg0bbbiRnNq8mUx5/XUZbiag1HSc6W2gPQzmzn1XnjFzYGjq0P4s2W/ffe17b5BAF+j8F3X3ryMfffSxDXT8888/ckC9enJGm9Pt9mOff14efnSMrL7aanK2Oc4aa6whzzz7rMw2vSv0qRxX9rrC9uj44ssv5drrrje9KJbKhhtuKPVMT44111xDppqeD59+WvZkE50QVCcGTc+DDu+ovks125tj3332yRqo0Exp0EUnxtxrzz1tT4+333lH/v77b9OLZF07p8UiM9fHlNenlOX/hXF2Ms2dd9pJdt9tV7tMnySSlB4VtsD8gwACCCCAQBUQIFBRBSqJLCKAAAJJFGCOisxzVLgeFXpdXHHZZbLttv9LXSLaSJ9jAhPffPONHdbgVlzR+0rRnhdHNm4sp5x8kl3sDRJo4/2Si7q7zW1vCO2VoUM6rrv2GrtcgxJjHn/CNux1Ww1s/Pzzz/LxJ5+YYEkNWW21Ve12z40dK4+Mecz2xNCAxMYbbWSX//HHUrmid287oeWhBx8sLU5tXi5QsacZ6tGp43mpPOgb13tC36f3qNBlOnSjedOm+tYmfbLHiFGj7XvtDeLt5cEcFcuQeEEAAQQQQCDiAgQqIl5BZA8BBBBIqkDSu6kH6VGhQxu0F0N6+ujjj0XnsViwYIFocEDT5198Ib///rsdKnF661Z2mTdQ0eTkk+WIxo3scv3nlVdflVH33W8/D7yzv+0p8bUJflx1zTWpY2rvBw0E1Ny9ptTeb9/UkJLb+vWzvSz22mMP6Xjeualj6hvN26qrripbbbml3d6bh3M7nC06/MObKgpUpAdqfjPzbFzQ/SL566+/pIkJyBxhAjMuJT1QkfR7yl0HvCKAAAIIRF+AQEX064gcIoAAAokUYI6KintUaJBAew1402TzpJBhI0fa4Q/e5e69zungF6i48ILzTa+I6m4zmTLldRk8dKj9PKD/HbKaCS5o0mDFI488KnPnvZsKWOhynXzzgq5dba+K3lddbQMjDRs0kNatTtPVGZM3UKHzXFSvVq3cttkCFTrso99tt8qaZgiKN1148SWycOFCcfNcuHUEKsrq94P58xwJrwgggAACCERSgEBFJKuFTCGAAAIIJF0gSI8Kv0DFlVdfI/rkDA06tDqtpX28qVr2vvIq+xSOTIGK9CCBX6BC56z49LPP7NCPDdZf3w75mG4mvxy37Mkh553TQfY2T9wYZSa/1Aku9ekevc3QD2+6e/BgWWp6eej8E/ub+TByCVTocdua+TPqm3k0XPrwo4+kz/U32I/t27WTOnVqu1WS9EBFCoI3CCCAAAIIRFyAQEXEK4jsIYAAAkkVYI6KcD0qOp9/gejwh0MPPsjMAXGqvXz08Z06r4Um7bGgvSe0N0K2IIFfoOL6vjfaR57Wqrm7dDz3XDuRpz4l5PwLu9tJKpuecoo0bnS4fSKJO98xRx0lRx11pPz777/yhsnHsBEjbT5aNG8uhx5ycNY86IbZelToeh3+opOI6oSan5sAzSNjxtg5OnTdDdf1Sc2PoZ9doMJvSIquJyGAAAIIIIBANAQIVESjHsgFAggggECaQNLH04ftUaE9FqZOe8NqbrP11rLEPB70u++/t0/l+Obbb+3y9dZbT265sW/WIIFfoGLylCly79Bh9hibbLyxnWfi8y+/kB9++NEGLXr2uNQ+yUODFxqomDFzpt1Wn0yijzB1jz7V4EKPSy+xw0myBUt054oCFTrfhT5dRJ9AsnjxYns+/ecwEwQ51QRDvOleM5RlshnSokkDNWuvvbbcdvNN3k1i/T7p91SsK5fCIYAAAjETIFARswqlOAgggEBcBJijIlyPCm2sa7Di7dnvpC4FnaBSHzHa/84B8t7779sG+q033VjpQIUe8LUJE+TJp5+xc0C4E+gjSJs1OcUO53DLdJjIQw8/bB5J+qb88ssvdrE+FWSPWnvYOTL0Eaeacg1U6FNFBt19j507Q4+n81XUr1/P5KdJanJPXa5Jn3ry8COPyDtz5toeHhqouP2Wm8tWJuBfAhUJqGSKiAACCMREgEBFTCqSYiCAAAIIIOAV0Cd86MSX+mjQdddd17sq5/f6CNQffvzRPpp0nXXWEe1dob0mMqVvv/vO9nrQx5lqz4pcU3ovCx1Wouf4Y8kfZl6MrfNyjlzzyP4IIIAAAgggEF6AQEV4O/ZEAAEEECigQNLnqCggbZU/dHqgQodxkBBAAAEEEEAgPgIEKuJTl5QEAQQQiJUA3dRjVZ15LQyBinCc3FPh3NgLAQQQQKD4AgQqim/OGRFAAAEEAggkfY6KAESJ3USfYvKUmSdD01W9ey03F0ViYSooOIGKCoBYjQACCCAQGQECFZGpCjKCAAIIIIAAAggggAACCCCAAAIEKrgGEEAAAQQiKcAcFZGsFjKFAAIIIIAAAggUXIBARcGJOQECCCCAQBgBuqmHUWMfBDILcE9ltmENAggggEC0BAhURKs+yA0CCCCAwDIB5qjgUkAgvwIEKvLrydEQQAABBAonQKCicLYcGQEEEEAAAQQQQAABBBBAAAEEKilAoKKSYGyOAAIIIFAcAeaoKI4zZ0EAAQQQQAABBKImQKAiajVCfhBAAAEErADd1LkQEMivAPdUfj05GgIIIIBA4QQIVBTOliMjgAACCOQgwBwVOeCxKwI+AgQqfFBYhAACCCAQSQECFZGsFjKFAAIIIIAAAggggAACCCCAQDIFCFQks94pNQIIIBB5AeaoiHwVkUEEEEAAAQQQQKAgAgQqCsLKQRFAAAEEchWgm3quguyPQHkB7qnyHnxCAAEEEIiuAIGK6NYNOUMAAQQSLcAcFYmufgpfAAECFQVA5ZAIIIAAAgURIFBREFYOigACCCCAAAIIIIAAAggggAACYQQIVIRRYx8EEEAAgYILMEdFwYk5AQIIIIAAAgggEEkBAhWRrBYyhQACCCBAN3WuAQTyK8A9lV9PjoYAAgggUDgBAhWFs+XICCCAAAI5CDBHRQ547IqAjwCBCh8UFiGAAAIIRFKAQEUkq4VMIYAAAggRhjijAABAAElEQVQggAACCCCAAAIIIJBMAQIVyax3So0AAghEXoA5KiJfRWQQAQQQQAABBBAoiACBioKwclAEEEAAgVwF6KaeqyD7I1BegHuqvAefEEAAAQSiK0CgIrp1Q84QQACBRAswR0Wiq5/CF0CAQEUBUDkkAggggEBBBAhUFISVgyKAAAIIIIAAAggggAACCCCAQBgBAhVh1NgHAQQQQKDgAsxRUXBiToAAAggggAACCERSgEBFJKuFTCGAAAII0E2dawCB/ApwT+XXk6MhgAACCBROgEBF4Ww5MgIIIIBADgLMUZEDHrsi4CNAoMIHhUUIIIAAApEUIFARyWohUwgggAACCCCAAAIIIIAAAggkU4BARTLrnVIjgAACkRdgjorIVxEZRAABBBBAAAEECiJAoKIgrBwUAQQQQCBXAbqp5yrI/giUF+CeKu/BJwQQQACB6AoQqIhu3ZAzBBBAINECzFGR6Oqn8AUQIFBRAFQOiQACCCBQEAECFQVh5aAIIIAAAggggAACCCCAAAIIIBBGgEBFGDX2QQABBBAouABzVBScmBMkTGDqtGm2xHVq105YySkuAggggEBVEyBQUdVqjPwigAACCRGgm3pCKppiFk2Ae6po1JwIAQQQQCBHAQIVOQKyOwIIIIBAYQSYo6Iwrhw1uQItW7W2hR89ckRyESg5AggggECVECBQUSWqiUwigAACCCCAAAIIIIAAAgggkAwBAhXJqGdKiQACCFQ5AeaoqHJVRoYjLsAcFRGvILKHAAIIIJASIFCRouANAggggECUBBhPH6XaIC9xEOCeikMtUgYEEEAgGQIEKpJRz5QSAQQQqHICzFFR5aqMDEdcgDkqIl5BZA8BBBBAICVAoCJFwRsEEEAAAQQQQAABBBBAAAEEECi1AIGKUtcA50cAAQQQ8BVgjgpfFhYiEFqAOSpC07EjAggggECRBQhUFBmc0yGAAAIIBBNgPH0wJ7ZCIKgA91RQKbZDAAEEECi1AIGKUtcA50cAAQQQ8BVgjgpfFhYiEFqAOSpC07EjAggggECRBQhUFBmc0yGAAAIIIIAAAggggAACCCCAQGYBAhWZbViDAAIIIFBCAeaoKCE+p46lAHNUxLJaKRQCCCAQSwECFbGsVgqFAAIIVH0BxtNX/TqkBNES4J6KVn2QGwQQQACBzAIEKjLbsAYBBBBAoIQCzFFRQnxOHUsBnaNCe1V8MH9eLMtHoRBAAAEE4iNAoCI+dUlJEEAAAQQQQAABBBBAAAEEEKjyAgQqqnwVUgAEEEAgngJujgotXedOHeNZSEqFQJEEmJ+iSNCcBgEEEEAgLwIEKvLCyEEQQAABBPItoIGKfv37S+eOHQlU5BuX4yVOwA37GD1yhNSpXTtx5afACCCAAAJVS4BARdWqL3KLAAIIJEpA56noZAIVJAQQyE3ABf6YnyI3R/ZGAAEEECiOAIGK4jhzFgQQQACBHAS0kVWnTm1+Cc7BkF2TKaBDPuhBkcy6p9QIIIBAVRYgUFGVa4+8I4AAAgkQ0IaWdlvXxK/BCahwipg3AXfvaKBCh3yQEEAAAQQQqCoCBCqqSk2RTwQQQCDBAtqjYoUVxA4D0caXftYJNrUBpp81uV+N+YxHkq8HvTc0uQlod6pWXbqYe4UhVJaFfxBAAAEEqogAgYoqUlFkEwEEEECgTCB9UkA+t7bBGjdJIh54aLDOTUKr710Qj+8QBBBAAAEEqooAgYqqUlPkEwEEEEDACmjDa5r5f23Tm0IbYPoLsm2YLethwefiewy8+277q/3Z7dtTHyW+Ht39QQ8KvjARQAABBKqyAIGKqlx75B0BBBBAAIESCwwdNkyGDBsubducLme0aVPi3HB6BBBAAAEEEIiDAIGKONQiZUAAAQQQQKBEAgQqSgTPaRFAAAEEEIixAIGKGFcuRUMAAQQQQKDQAgQqCi3M8RFAAAEEEEieAIGK5NU5JUYAAQQQQCBvAgQq8kbJgRBAAAEEEEBgmQCBCi4FBBBAAAEEEAgtQKAiNB07IoAAAggggEAGAQIVGWBYjAACCCCAAAIVCxCoqNiILRBAAAEEEECgcgIEKirnxdYIIIAAAggg4BEgUOHB4C0CCCCAAAII5EWAQEVeGDkIAggggAACyRQgUJHMeqfUCCCAAAIIFFKAQEUhdTk2AggggAACMRcgUBHzCqZ4CCCAAAIIlECAQEUJ0DklAggggAACcREgUBGXmqQcCCCAAAIIREeAQEV06oKcIIAAAgggUOUECFRUuSojwwgggAACCERegEBF5KuIDCKAAAIIIBBdAQIV0a0bcoYAAggggEBVFSBQUVVrjnwjgAACCCAQAQECFRGoBLKAAAIIIIBAzAQIVMSsQikOAggggAACxRQgUFFMbc6FAAIIIIBAMgQIVCSjniklAggggAACBREgUFEQVg6KAAIIIIBAogUIVCS6+ik8AggggAACuQkQqMjNj70RQAABBBBAYHkBAhXLm7AEAQQQQAABBAIKEKgICMVmCCCAAAIIIBBYgEBFYCo2RAABBBBAAIF0AQIV6SJ8RgABBBBAAIFcBQhU5CrI/ggggAACCCRYgEBFgiufoiOAAAIIIFAgAQIVBYLlsAgggAACCCRBgEBFEmqZMiKAAAIIIFBcAQIVxfXmbAgggAACCMRKgEBFrKqTwiCAAAIIIBAJAQIVkagGMoEAAggggEDVFCBQUTXrjVwjgAACCCAQZQECFVGuHfKGAAIIIIBAxAUIVES8gsgeAggggAACVVCAQEUVrDSyjAACCCCAQFQECFREpSbIBwIIIIAAAvERIFARn7qkJAgggAACCBRdgEBF0ck5IQIIIIAAArEXIFAR+yqmgAgggAACCBROgEBF4Ww5MgIIIIAAAkkVIFCR1Jqn3AgggAACCORBgEBFHhA5BAIIIIAAAgiUEyBQUY6DDwgggAACCCBQGQECFZXRYlsEEEAAAQQQCCJAoCKIEtsggAACCCCAgK8AgQpfFhYigAACCCCAQA4CBCpywGNXBBBAAAEEki5AoCLpVwDlRwABBBBAIP8CBCryb8oREUAAAQQQSIwAgYrEVDUFRQABBBBAoGgCBCqKRs2JEEAAAQQQiJ8AgYr41SklQgABBBBAoNQCBCpKXQOcHwEEEEAAgSosQKCiClceWUcAAQQQQCCiAgQqIloxZAsBBBBAAIGqIECgoirUEnlEAAEEEECgagkQqKha9UVuEUAAAQQQiJQAgYpIVQeZQQABBBBAIBYCBCpiUY0UAgEEEEAAgdIIEKgojTtnRQABBBBAIM4CBCriXLuUDQEEEEAAgQILEKgoMDCHRwABBBBAIIECBCoSWOkUGQEEEEAAgXwJEKjIlyTHQQABBBBAAAEnQKDCSfCKAAIIIIAAApUWIFBRaTJ2QAABBBBAAIEKBAhUVADEagQQQAABBBDILECgIrMNaxBAAAEEEEAgnACBinBu7IUAAggggEBiBWbMnCl77bmnLb9foMK7PrFIFBwBBBBAAAEEQgsQqAhNx44IIIAAAggkTyA9MFHR5+QJUWIEEEAAAQQQyFWAQEWuguyPAAIIIIBAggRcYEKL3LbN6bbkQ4YNL/ferTujTRu7nn8QQAABBBBAAIHKCBCoqIwW2yKAAAIIIICAeIMVjkOHguiQD00awCBI4WR4RQABBBBAAIHKChCoqKwY2yOAAAIIIICAb7BCWQhScHEggAACCCCAQK4CBCpyFWR/BBBAAAEEEiqQ3rOCIEVCLwSKjQACCCCAQJ4FCFTkGZTDIYAAAgggkCQBF6wgSJGkWqesCCCAAAIIFFaAQEVhfTk6AggggEABBKZOmyZTp04rwJE5ZBiBmbNmyp57lD2uNMz+7JNfgTp1akud2rXze1COhgACCCCAQBEFCFQUEZtTIYAAAgjkJtDvjv7Sr3//3A7C3ggkRECDFZ07dSRokZD6ppgIIIBAnAQIVMSpNikLAgggEFOB9ACFNsD2N78akxBAYHmB101vI+115FLnjh1twMJ95hUBBBBAAIGoCxCoiHoNkT8EEEAg4QLeIEUX8+twJ9PoIiGAQHYBDVToveMCFgQrsnuxFgEEEEAgWgIEKqJVH+QGAQQQQMAjQJDCg8FbBEIIeO8hghUhANkFAQQQQKAkAgQqSsLOSRFAAAEEggi0bNXa/iJMT4ogWmyDgL+AN1jxwfx5/huxFAEEEEAAgQgJEKiIUGWQFQQQQACB/wS0y7oGKnQ+itEjR/y3gncIIFBpgZ2qVbf70Kui0nTsgAACCCBQAgECFSVA55QIIIAAAhULuN4UGqTgUYsVe7EFAtkEXK8KAhXZlFiHAAIIIBAVAQIVUakJ8oEAAgggUE7A/QJMV/VyLHxAILQA91RoOnZEAAEEECiyAIGKIoNzOgQQQACBYAI0qoI5sRUCQQW4p4JKsR0CCCCAQKkFCFSUugY4PwIIIICArwCNKl8WFiIQWoB7KjQdOyKAAAIIFFmAQEWRwTkdAggggEAwARpVwZzYCoGgAtxTQaXYDgEEEECg1AIEKkpdA5wfAQQQQMBXgEaVLwsLEQgtwD0Vmo4dEUAAAQSKLECgosjgnA4BBBBAIJgAjapgTmyFQFAB7qmgUmyHAAIIIFBqAQIVpa4Bzo8AAggg4CtAo8qXhYUIhBbgngpNx44IIIAAAkUWIFBRZHBOhwACCCAQTIBGVTAntkIgqAD3VFAptkMAAQQQKLUAgYpS1wDnRwABBBDwFaBR5cvCQgRCC3BPhaZjRwQQQACBIgsQqCgyOKdDAAEEEAgmQKMqmBNbIRBUgHsqqBTbIYAAAgiUWoBARalrgPMjgAACCPgK0KjyZWEhAqEFuKdC07EjAggggECRBQhUFBmc0yGAAAIIBBOgURXMia0QCCrAPRVUiu0QQAABBEotQKCi1DXA+RFAAAEEfAVoVPmysBCB0ALcU6Hp2BEBBBBAoMgCBCqKDM7pEEAAAQSCCdCoCubEVggEFeCeCirFdggggAACpRYgUFHqGuD8CCCAAAK+AjSqfFlYiEBoAe6p0HTsiAACCCBQZAECFUUG53QIIIAAAsEEaFQFc2IrBIIKcE8FlWI7BBBAAIFSCxCoKHUNcH4EEEAAAV8BGlW+LCxEILQA91RoOnZEAAEEECiyAIGKIoNzOgQQQACBYAI0qoI5sRUCQQW4p4JKsR0CCCCAQKkFCFSUugY4PwIIIICArwCNKl8WFiIQWoB7KjQdOyKAAAIIFFmAQEWRwTkdAggggEAwARpVwZzYCoGgAtxTQaXYDgEEEECg1AIEKkpdA5wfAQQQQMBXgEaVLwsLEQgtwD0Vmo4dEUAAAQSKLECgosjgnA4BBBBAIJgAjapgTmyFQFAB7qmgUmyHAAIIIFBqAQIVpa4Bzo8AAggg4CtAo8qXhYUIhBbgngpNx44IIIAAAkUWIFBRZHBOhwACCCAQTIBGVTAntkIgqAD3VFAptkMAAQQQKLUAgYpS1wDnRwABBBDwFaBR5cvCQgRCC3BPhaZjRwQQQACBIgsQqCgyOKdDAAEEEAgmQKMqmBNbIRBUgHsqqBTbIYAAAgiUWoBARalrgPMjgAACCPgK0KjyZWEhAqEFuKdC07EjAggggECRBQhUFBmc0yGAAAIIBBOgURXMia0QCCrAPRVUiu0QQAABBEotQKCi1DXA+RFAAAEEfAVoVPmysBCB0ALcU6Hp2BEBBBBAoMgCBCqKDM7pEEAAAQSCCdCoCubEVggEFeCeCirFdggggAACpRYgUFHqGuD8CCCAAAK+AjSqfFlYiEBoAe6p0HTsiAACCCBQZAECFUUG53QIIIAAAsEEaFQFc2IrBIIKcE8FlWI7BBBAAIFSCxCoKHUNcH4EEEAAAV8BGlW+LCxEILQA91RoOnZEAAEEECiyAIGKIoNzOgQQQACBYAI0qoI5sRUCQQW4p4JKsR0CCCCAQKkFCFSUugY4PwIIIICArwCNKl8WFiIQWoB7KjQdOyKAAAIIFFmAQEWRwTkdAggggEAwARpVwZzYCoGgAtxTQaXYDgEEEECg1AIEKkpdA5wfAQQQQMBXgEaVLwsLEQgtwD0Vmo4dEUAAAQSKLECgosjgnA4BBBBAIJgAjapgTmyFQFAB7qmgUmyHAAIIIFBqAQIVpa4Bzo8AAggg4CtAo8qXhYUIhBbgngpNx44IIIAAAkUWIFBRZHBOhwACCCAQTIBGVTAntkIgqAD3VFAptkMAAQQQKLUAgYpS1wDnRwABBBDwFaBR5cvCQgRCC3BPhaZjRwQQQACBIgsQqCgyOKdDAAEEEAgmQKMqmBNbIRBUgHsqqBTbIYAAAgiUWoBARalrgPMjgAACCPgK0KjyZWEhAqEFuKdC07EjAggggECRBQhUFBmc0yGAAAIIBBOgURXMia0QCCrAPRVUiu0QQAABBEotQKCi1DXA+RFAAAEEfAVoVPmysBCB0ALcU6Hp2BEBBBBAoMgCBCqKDM7pEEAAAQSCCdCoCubEVggEFeCeCirFdggggAACpRYgUFHqGuD8CCCAAAK+AjSqfFlYiEBoAe6p0HTsiAACCCBQZAECFUUG53QIIIAAAsEEaFQFc2IrBIIKcE8FlWI7BBBAAIFSCxCoKHUNcH4EEEAAAV8BGlW+LCxEILQA91RoOnZEAAEEECiyAIGKIoNzOgQQQACBYAKFaFRNnjJF5syZI++9/75susmmUqNGdalfr55ssMEGwTIVs62WLl0q9w4ZIosXL5GzzjpT1ll77byW8LPPP5eXX35FPvroI1nyxxLZYfvtpZ7xrlWzZrnzTJw4ST759BPZdNNNpdHhh5dbV+wPv/zyizz51FP2tIcfdphsttlmGbPw9ddfy71Dh8p2224rLVu0yLhdVFYU4p6KStnIBwIIIIBAvAQIVMSrPikNAgggEBuBfDaqlixZIpf0uEyefuaZ5Xy0cTxowACpWXP35dbFYcH8996T1157zRbljDZtZOWVV04V68mnnpYLLrzQfr70ooukXbu2qXW5vrnTmN5510DRYIg3rbDCCtL0lFPkyt69Unnpcv4F8syzz0rt/faT+0aN9G5e9PcfmqBK4yOPsucdNWK47F+nTsY89Lz8CnngoYfs+sceeSTy11A+76mMKKxAAAEEEEAgDwIEKvKAyCEQQAABBPIvkM9GVZ/rr5chQ4fZTO60446y7z77yE8//yzjXxtvexOsvvrqMv7ll2SjjTbKf0FKfMQxjz0uF11yic3F7JkzZY01Vk/l6M233pLmLVraz7ffeoscfVRZAz21Qcg3Tz39jJzfrZvdW3tpaC+K33//TSZNniL//POPXd692wVydvv29n1VDVQMuOsuueW2223ARa+fbL0vQlLmdbd83lN5zRgHQwABBBBAIE2AQEUaCB8RQAABBKIhkM9Glf5Crr+U16ldW0aPHJEq4Ky335aTmzS1n2+75WY55uijU+vi8iZboELLqMNglpihH7VqlR+OkUv56x7QQL777js7lOQZM4xiyy23sIfToRJntDtT3v/gAxswmfHmm7aRX1UDFf/++69Me+MN2WbrbVJlzMWt0Pvm854qdF45PgIIIIBAsgUIVCS7/ik9AgggEFmBfDWqtDG51z77yq+//SZtWreSnpddVq7MBzQ8SLQBfWqzZnL1VVem1v3xxx/y6vjx8qZpTH/8ySey5x57SP369WWvPfdMbaNv7hk8WH777Xezrp6su+668txzY2XRol+kjhkyoPMt6HF0yMnMmbNk6623kqNMr4Vttt663DF+X7xYHnrwIZnz7lz59tvvZOuttpJjjz1muWEHb789W15+5RXTuF9JOp53nujcDtpQ1vkf6tWtKweY/LmhHY+OGSOff/6FzJs3T158+WV7vg6mB4Our169mhzRuLEsXLhQho8oG2px8sknlcvXokWL5CUzv8T06dPly6++lOrVqtuhGQ0bHlgu7+kfvv32W6nXoGybE084Xm684YZymwy6+2658eZb7LJxz4+V7bfbTryBiqH3DpaHHn7E5lsDHA0aNFhuTot+d/S3PTMOOqihrRd3Ag2OjL7vfvuxebOmsvnmm5croy7TnjQTJkywNnvvvbcccvBBtt7cMTIN/VDnyaZHiCbn5+pDl3Xt0llfxC0LUkd2h2X/vGWcX311vMw110C1XUz9HNFYNtpwI3nYDCnRdEab02W99dZbtnW4l3zdU+HOzl4IIIAAAggEFyBQEdyKLRFAAAEEiiiQz0bVWe3PlldM0GHVVVeVTueda4IAx9pggBbn7dmzzbCE32XDDTeUXXbe2ZZQgwvtO5xjhipMXq7El5tAx+km4OHS/vUPkO+//94GCmabYy369Ve3SjQw8OGHH8q4l15KLdt4441tr44dd9jBLvvyy6+kTdu2NhiS2mjZm/NN4/e8c89NLb7/gQfk8l69bbCh/ZlnyoCBA1Pr9M0Jxx9nAwM6D0TLVq1l6rRp5da7D8cec7TcevPNtpeJ33wMGmw4/Yy2tueD28e9tmjeXK64vGcqIOKWu9fXp06V01qfbj8OHHCnHHbooW6VfdWg0JjHHrPvtR40aOMCFTosRyc2fcMEh7zp2quvkmZNy3q+6PJqu+4mf//9t6TXxZw5c+X4k06yuz768EOyR61a5cqo9TFk2LBy82ZU22UXuX/0qFSwwi9QMXv2O8azlWhASetN59HQYUKuPvSE7897V9TdLdOAUEV1ZDNq/tFgRI+el4sG1VzSa/XkE0+U+x980C56+cVx8r9ttnGrQ73m854KlQF2QgABBBBAIKAAgYqAUGyGAAIIIFBcgXw2qmaYuRk08KA9CFza9n//k8MPP0yOPOII26B1y/XVNZzXXGMNOxxk111r2N4Vr45/zTZGtQF+6CGH2F1coGLFFVeUo448UnYz2+qv+l98+aVdv/7664s27hcvWSwjR42Wv/76S1qf1tI09i+363UyS53UUgMlGpjYequtbeP0hXHjZKWVVpIJr75in4ahG7tGsN3R/KNPLKlXd3953myrv+Rr0h4M2pPhscefkAULvpI5c9+V5194wa7rZHphrLLKyrKzCcjoEy38GuWav0ZHHCn6xI7VVlvNTny5nen1oEEPzZOmnj16SJvTW9v36f+MN0btls09oQGA/fbdN32T5T47b12hDfRjzRAcne/hiaeeFA3kqO1L415I9fgIG6jQ4++8005y/HHH2h4uGrzSgMcpJrhx/XV9dPVyJltuuaU0adZcfvjhB3v+B+4bnZqLwlsf6YEKezDzT7Y60m10npAWp7WyPUS0x8TxpieNlv3xJ54sFygiUOFEeUUAAQQQSIIAgYok1DJlRAABBKqgQD4DFVp8DRzceecAeeHFF+Vn0/3fm1q1bCk9Lr3ENOJXkT///FP22Hsf+6t7+pMwmjY/VabPmGF7LtzUt689hAtU7L3XXvLQA2XDDrTHwEWXXGrXX2YmsjzjjDb2vevZoU8Y0adEaNIeGOPGvSjrrLO2DR7osh9//FHq1Ktvf2G/1wyVcMMtvA3jczt0kAvO76qb2+BH7br1RB+tqU/U6HPtNXa5/pNtjgq/QMXMWbPklKbN7P7pPSI6dz1fnn3uOdvz5Nmnyx7hmTrRsje5BiqGDx1iG/d6OO3JcKIpjyb11h4jmsIGKnQSVQ00uOTqQ3sqaCBAk9dE5y255dbbbNBGh5Fo4MU7bMdbH36BiiB1dPMtt8pdgwbZANgrL72Y6umjedHeIdpLRBOBCsvAPwgggAACCREgUJGQiqaYCCCAQFUTyHegwpVfewzofACTJk22c0dozwFNrlGpvS/0F3RN2ijV4IVLC3/6yfbK8DZsXaBChxVcaJ5koUmP3+zUFva997GV1153nQwdNly0N4f2EHBJH805deo0+eTTT+0v/Lpc50TQoQA333ij7QGgy7wNY+9xdV2nLl3lubFjbe8QHfbgUmUDFXffc4/0velmEzhZR6a/Mc02oN2xPv3sM9uzYNcaNUSflOKXKgpUaA8GHUKhaQ1zDB0i4XpU6BNC3pj6erlhJRqw0d4MZ591lnS/sOxJImEDFemBp9H33Se9rrzK5mXO27NsDxJvoMKuMP/YYR4mSLHD9tu7RfbVWx9+gYogdaS9KbSu0yd61RMMGz5CrulT1tODQEU5ej4ggAACCMRcgEBFzCuY4iGAAAJVVSBfgYpXXn1VLr2sp2XQJ364uSF0gfae0PkUNLBQvVo1efrJJ+zwhnM7drLb66M8VzD/80uzZky3jXgXqNBhFV06l+3nDVToMfXYmvwCFZeZuQkefPhhv1PYZZkCFe+ZSRd1SIRLl1zaQx4xE2h6e2vousoGKq659loZZibY1Eb5C2Ofc4cP/OqdJyJ9Dgk9iF8gwwUqdJiI9lrwpoMPPUw+/+ILObNdW7nkoovsqkyBCp1TROfW0OQ3R8XI4cOk7v772/X6jw6P6X7xxfbz2zNniA718QtU6DwW2hNDgzfeVFGgIkgdHXfiSTJ37lz7aFh9RKw3eR/zSqDCK8N7BBBAAIG4CxCoiHsNUz4EEECgigrkK1CxYMECaXDQwVahc8eO0rlTx3Ii53frJtog1HkBJr023jx147+nVtxx+212Dgu3w0+mR4U2VnXuCJdyCVTo8XTIxj///CNtzfCQs9q1kzXXWsvMLbFAjjiq7FGpmQIV7hd8l498BSq0d4cGDnRiyLemTU1NMqnnGWZ6g+jEoPrrf0czKak3UOLysVgfdWqGwdinrZgnpDz84ANulX29tMdl8vCjj9r306ZMtnNzuEBF7f32sxNVenfwC1Q48+Zmgs1rzESbLl1n5ue4d8hQ+9EvUDFqxPByT1KpKFBx3jnnmF4Nw+U3M9mqDhsZNuTecj1JKgpUBKmj3qZHxyjTs0N7qEyZNNE+0tWVp53pRTL+tQn2I4EKp8IrAggggEASBAhUJKGWKSMCCCBQBQXyFajQouvkkB99/LHtwn9x9wul4YEH2t4UEyZOtE/R0OEgzZo0kWuvudpKucax/pJ+vel6r70UdIjIeZ06y1LzRBB96oVOkqjJNZrD9KiY/957cvSxZfMu9O93u31kqOaljxkiMsJMvKnJe1y/hrHdyPyTKVDhbYw/+dgY2XXXXd0u5XoPuEa8PuKz7gEN7DYNDqhvJ+fUJ3HoZJrnd7vQDsNo3KiR3HlHv9Rx0t+4BrYGO7qaXiZNja029h99dIx5HOoIO/Sjhhk+8tTjZU//qGyg4pxzz7MBE83XPYMGyu677WYepfqyXHn1NTbQpPnJR6BCTf5Y8oecbZ68ovVykHk068ABA1JDU/zqw2+Z8/GrI310bdcLyoa0aG+P01q2kC222ELGjHnMTqqqQ2U0EahwirwigAACCCRBgEBFEmqZMiKAAAJVUCCfgYoJEyaaORy6yK+//WYltAHtfRTkJptsIkPvHZwaojF5yhT7lJAlS5bY7fXJHdr7QZM+leJB8wu4Bi805RKo0DzUP7ChbVzrXA21ataUD8zjTH81E2xuvdVWNjii5zjGPAVDJ3asbCNY99UAyyGHHa5vbdKy977icmnZooVvoEI3umfwYLnhxpvKdjD/rrXmmjbQoAvWXXdd2+vBDWdJbeR5oxOXHmMCMM7bs8q+1R4p2tNCy6upsoEKrc+zzGSiGjzQpL0RtK50wkt9/KmmfAUq9q9Txz4+1A0fOs48leMmM7Gn9ibxqw+/ZTZD5h+/QIVeAxdfeqkdouO2c686TEmHomgiUOFUeEUAAQQQSIIAgYok1DJlRAABBKqgQD4DFVr8efPnS6/eV5rHdc61jVpdpg3wfffdR669+mrbyNVlLulkm31vvknefXeeHZqhy7VxfoPp7bDbbv/1SsglUKHH1F4VHU1PjY8/+UQ/2gbwxeaRpfXq1bU9GDRwcfRRR4nOX1DZRrA9oPnnroEDZeTo+1K9DTRQcZp50ol3PgbXo8Lt85CZN+PuewbbCT51mQYXau6+u9zY9wbZfrvt3GYZX/WxojoRpPZ00KEtLmlw4qrevWX33XdziyodqNAdtSfCnQPuso/w1Hps0KCBnHP22fZJGbo+n4EKPV6/O/pLv/799a3oU2J6GUO/+vBbZncy//gFKnSd9poYZJ7u8tLLr9jrc+ONN5ZTmzU13jWlrRn+oYlAhWXgHwQQQACBhAgQqEhIRVNMBBBAoKoJ5DtQ4cqvv8Jr4197Rmy37ba+8yy4bfVVHx/6sRk2oo3z9MkUvdvl+l7npfju++9lB/Mr+tpmnoqoJH1U6hdffCk777yz6OSilU1Lly61QZilfyyV7bY3hubJHvlMCxcutL08vPOG5PP4xT6W9rDQXi+aJk6cJG3MvCWaCFRYBv5BAAEEEEiIAIGKhFQ0xUQAAQSqmkChAhVVzYH8xl/gexOgmjdv/nIFfeKpJ+2TSXTFeNMzZauttlxum8os4J6qjBbbIoAAAgiUUoBARSn1OTcCCCCAQEYBGlUZaVgRM4Hnxo41c6h0zViqnXbcUcY++0zG9UFXcE8FlWI7BBBAAIFSCxCoKHUNcH4EEEAAAV8BGlW+LCyMoYBODtrn+ut9S1bNzIuij651E4/6bhRwIfdUQCg2QwABBBAouQCBipJXARlAAAEEEPAToFHlp8IyBMILcE+Ft2NPBBBAAIHiChCoKK43Z0MAAQQQCChAoyogFJshEFCAeyogFJshgAACCJRcgEBFyauADCCAAAII+AnQqPJTYRkC4QW4p8LbsScCCCCAQHEFCFQU15uzIYAAAggEFKBRFRCKzRAIKMA9FRCKzRBAAAEESi5AoKLkVUAGEEAAAQT8BGhU+amwDIHwAtxT4e3YEwEEEECguAIEKorrzdkQQAABBAIK0KgKCMVmCAQU4J4KCMVmCCCAAAIlFyBQUfIqIAMIIIAAAn4CNKr8VFiGQHgB7qnwduyJAAIIIFBcAQIVxfXmbAgggAACAQVoVAWEYjMEAgpwTwWEYjMEEEAAgZILEKgoeRWQAQQQQAABPwEaVX4qLEMgvAD3VHg79kQAAQQQKK4AgYrienM2BBBAAIGAAjSqAkKxGQIBBbinAkKxGQIIIIBAyQUIVJS8CsgAAggggICfAI0qPxWWIRBegHsqvB17IoAAAggUV4BARXG9ORsCCCCAQEABGlUBodgMgYAC3FMBodgMAQQQQKDkAgQqSl4FZAABBBBAwE+ARpWfCssQCC/APRXejj0RQAABBIorQKCiuN6cDQEEEEAgoACNqoBQbIZAQAHuqYBQbIYAAgggUHIBAhUlrwIygAACCCDgJ0Cjyk+FZQiEF+CeCm/HnggggAACxRUgUFFcb86GAAIIIBBQgEZVQCg2QyCgAPdUQCg2QwABBBAouQCBipJXARlAAAEEEPAToFHlp8IyBMILcE+Ft2NPBBBAAIHiChCoKK43Z0MAAQQQCChAoyogFJshEFCAeyogFJshgAACCJRcgEBFyauADCCAAAII+AnQqPJTYRkC4QW4p8LbsScCCCCAQHEFCFQU15uzIYAAAggEFKBRFRCKzRAIKMA9FRCKzRBAAAEESi5AoKLkVUAGEEAAAQT8BGhU+amwDIHwAtxT4e3YEwEEEECguAIEKorrzdkQQAABBAIK0KgKCMVmCAQU4J4KCMVmCCCAAAIlFyBQUfIqIAMIIIAAAn4CNKr8VFiGQHgB7qnwduyJAAIIIFBcAQIVxfXmbAgggAACAQVoVAWEYjMEAgpwTwWEYjMEEEAAgZILEKgoeRWQAQQQQAABPwEaVX4qLEMgvAD3VHg79kQAAQQQKK4AgYrienM2BBBAAIGAAjSqAkKxGQIBBbinAkKxGQIIIIBAyQUIVJS8CsgAAggggICfAI0qPxWWIRBegHsqvB17IoAAAggUV4BARXG9ORsCCCCAQEABGlUBodgMgYAC3FMBodgMAQQQQKDkAgQqSl4FZAABBBBAwE+ARpWfCssQCC/APRXejj0RQAABBIorQKCiuN6cDQEEEEAgoACNqoBQbIZAQAHuqYBQbIYAAgggUHIBAhUlrwIygAACCCDgJ0Cjyk+FZQiEF+CeCm/HnggggAACxRUgUFFcb86GAAIIIBBQgEZVQCg2QyCgAPdUQCg2QwABBBAouQCBipJXARlAAAEEEPAToFHlp8IyBMILcE+Ft2NPBBBAAIHiChCoKK43Z0MAAQQQCChAoyogFJshEFCAeyogFJshgAACCJRcgEBFyauADPyfvfsAl6So9wZcimRBEYwoSZSMBF1yMqGCAVBQSQsqKuwuOWdQBBXFZfW7XgkLiBFRVPQqQclBgQUko5JBFBQEBExf/xv7OGf3zJl4Znqm3/bh7ExPh6q3pn2e+k11NQECBAiMJaBTNZaKdQTaF3BNtW9nTwIECBDorYCgorfezkaAAAECTQroVDUJZTMCTQq4ppqEshkBAgQI9F1AUNH3JlAAAgQIEBhLQKdqLBXrCLQv4Jpq386eBAgQINBbAUFFb72djQABAgSaFNCpahLKZgSaFHBNNQllMwIECBDou4Cgou9NoAAECBAgMJaATtVYKtYRaF/ANdW+nT0JECBAoLcCgoreejsbAQIECDQpoFPVJJTNCDQp4JpqEspmBAgQINB3AUFF35tAAQgQIEBgLAGdqrFUrCPQvoBrqn07exIgQIBAbwUEFb31djYCBAgQaFJAp6pJKJsRaFLANdUklM0IECBAoO8Cgoq+N4ECECBAgMBYAjpVY6lYR6B9AddU+3b2JECAAIHeCggqeuvtbAQIECDQpIBOVZNQNiPQpIBrqkkomxEgQIBA3wUEFX1vAgUgQIAAgbEEdKrGUrGOQPsCrqn27exJgAABAr0VEFT01tvZCBAgQKBJgW233yFddfXVadqUKWna1ClN7mUzAgTGEohrKa6ptSZNSmeecfpYm1hHgAABAgRKIyCoKE1TKAgBAgQI1ApMP3FGmj5jhqCiFsVrAm0KFMFfhBQRVlgIECBAgECZBQQVZW4dZSNAgEDFBYqh6jpXFf8iqH5HAsVoijjInbfd2tGx7EyAAAECBHohIKjohbJzECBAgEBbAsWoithZWNEWoZ0qLlAbUrjto+JfBtUnQIDAAAkIKgaosRSVAAECVRQohqxH3YUVVfwGqHO7ArVBn5CiXUX7ESBAgEA/BAQV/VB3TgIECBBoSaA2rIgOl8k1W+KzccUErrrq6nx+l6LaQopCwr8ECBAgMCgCgopBaSnlJECAQMUF4tfhGMYe/1kIEGhOYPfsiTlTsyfnWAgQIECAwCAJCCoGqbWUlQABAgTyoCJCC0t5BK6bNSsvzOqrrVaeQlW4JGuv9dxTPQQUFf4SqDoBAgQGXEBQMeANqPgECBAgQKCfAqfOnJlOmXla2nnyjmmnyZP7WRTnJkCAAAECBIZEQFAxJA2pGgQIECBAoB8Cgop+qDsnAQIECBAYbgFBxXC3r9oRIECAAIEJFRBUTCivgxMgQIAAgUoKCCoq2ewqTYAAAQIEuiMgqOiOo6MQIECAAAEC/xUQVPzXwisCBAgQIECgRQFBRYtgNidAgAABAgQaCggqGhLZgAABAgQIEKgnIKioJ2M9AQIECBAg0K6AoKJdOfsRIECAAAECSVDhS0CAAAECBAh0W0BQ0W1RxyNAgAABAhUSEFRUqLFVlQABAgQI9EhAUNEjaKchQIAAAQLDKCCoGMZWVScCBAgQINBfAUFFf/2dnQABAgQIDLSAoGKgm0/hCRAgQIBAKQUEFaVsFoUiQIAAAQKDISCoGIx2UkoCBAgQIDBIAoKKQWotZSVAgAABAiUTEFSUrEEUhwABAgQIDIGAoGIIGlEVCBAgQIBAvwQEFf2Sd14CBAgQIDC8AoKK4W1bNSNAgAABAhMuIKiYcGInIECAAAEClRMQVFSuyVWYAAECBAh0T0BQ0T1LRyJAgAABAgSeExBU+CYQIECAAAECbQsIKtqmsyMBAgQIECBQR0BQUQfGagIECBAgQKCxgKCisZEtCBAgQIAAgdYEBBWtedmaAAECBAgQqBEQVNRgeEmAAAECBAh0RUBQ0RVGByFAgAABAtUUEFRUs93VmgABAgQITKSAoGIidR2bAAECBAgMuYCgYsgbWPUIECBAgEAfBAQVfUB3SgIECBAgMCwCgophaUn1IECAAAEC5REQVJSnLZSEAAECBAgMnICgYuCaTIEJECBAgEDpBQQVpW8iBSRAgAABAuUVEFSUt22UjAABAgQIDKqAoGJQW065CRAgQIBACQQEFSVoBEUgQIAAAQJDJiCoGLIGVR0CBAgQINBLAUFFL7WdiwABAgQIVENAUFGNdlZLAgQIECAwIQKCiglhdVACBAgQIFBpAUFFpZtf5QkQIECAQGcCgorO/OxNgAABAgQIzCkgqJjTxBoCBAgQIECgSQFBRZNQNiNAgAABAgSaFhBUNE1lQwIECBAgQGB2AUHF7CLeEyBAgAABAp0KCCo6FbQ/AQIECBCosICgosKNr+oECBAgQGCCBAQVEwTrsAQIECBAoAoCgooqtLI6EiBAgACB3goIKnrr7WwECBAgQGCoBAQVQ9WcKkOAAAECBEohIKgoRTMoBAECBAgQGEwBQcVgtptSEyBAgACBMgsIKsrcOspGgAABAgRKLiCoKHkDKR4BAgQIEBhAAUHFADaaIhMgQIAAgbIICCrK0hLKQYAAAQIEhkdAUDE8bakmBAgQIECg5wKCip6TOyEBAgQIEBh6AUHF0DexChIgQIAAgYkTEFRMnK0jEyBAgACBqgoIKqra8upNgAABAgS6ICCo6AKiQxAgQIAAAQKjBAQVozi8IUCAAAECBFoREFS0omVbAgQIECBAoBkBQUUzSrYhQIAAAQIExhQQVIzJYiUBAgQIECDQgYCgogM8uxIgQIAAgaoLCCqq/g1QfwIECBAg0H0BQUX3TR2RAAECBAgMrcB1s2alaXvsmaaf8MW0+mqrpdmDitk/H1oIFSNAgAABAgQmTEBQMWG0DkyAAAECBIZPIEKKCCNiibBiVvb6lJmnpZ0n75hWy4KL+DyWCDHicwsBAgQIECBAoFUBQUWrYrYnQIAAAQIVF6gNKyKQiOCi+DdohBQV/4KoPgECBAgQ6FBAUNEhoN0JECBAgEAVBWrDitr6CylqNbwmQIAAAQIE2hEQVLSjZh8CBAgQIEAgv82juA0kOIQUvhQECBAgQIBANwQEFd1QdAwCBAgQIFBRgWJkhZCiol8A1SZAgAABAhMgIKiYAFSHJECAAIGJF7jq6qvTWpMm5SeK17F43x+PT+y6W9opm0yTf3/8a7//tddFflH4Q4AAAQIEBlBAUDGAjabIBAgQqLrAttvvkKJDduYZp+edY+95+D48dz3EtRBLcW1U/f8r1J8AAQIEBlNAUDGY7abUBAgQqJTA9BNnpOkzZqRpU6akaVOnpHgfHdN4Hb/ie8/D9+G56yGuhVgiqIhl2eWWF1rkEv4QIECAwCAJCCoGqbWUlQABAhUVKIKKCCWKDlhFKVSbQNMCEd7ECAvXTdNkNiRAgACBkggIKkrSEIpBgAABAnMKREerdt6D4vWcW1pDgMBYArXX0FifW0eAAAECBMooIKgoY6soEwECBAjkArX32yMhQKB9geL2KCOS2je0JwECBAj0TkBQ0TtrZyJAgACBFgTil+Cic3Xnbbe2sKdNCRCYXSDmqojFJJuzy3hPgAABAmUUEFSUsVWUiQABAgRGBAxdH6HwgkDbAnEdXZ39NzWbkNZCgAABAgTKLiCoKHsLKR8BAgQqKiCgqGjDqzYBAgQIECBQeQFBReW/AgAIECBQToFiqLrbPsrZPko1eALmfBm8NlNiAgQIVFVAUFHVlldvAgQIlFxAUFHyBlK8gRNwTQ1ckykwAQIEKisgqKhs06s4AQIECBAgUCWBuJ0qFo/5rVKrqysBAgQGU0BQMZjtptQECBAgQIAAAQIECBAgQGAoBQQVQ9msKkWAAIHBFzBMffDbUA3KJWCOinK1h9IQIECAQH0BQUV9G58QIECAQB8FBBV9xHfqoRRwTQ1ls6oUAQIEhlJAUDGUzapSBAgQIECAAIHRAuaoGO3hHQECBAiUV0BQUd62UTICBAgQIECAAAECBAgQIFA5AUFF5ZpchQkQIDAYAoapD0Y7KeXgCJijYnDaSkkJECBQdQFBRdW/AepPgACBkgoIKkraMIo1sAKuqYFtOgUnQIBA5QQEFZVrchUmQIAAAQIEqihgjooqtro6EyBAYDAFBBWD2W5KTYAAAQIECBAgQIAAAQIEhlJAUDGUzapSBAgQGHwBw9QHvw3VoFwC5qgoV3soDQECBAjUFxBU1LfxCQECBAj0UUBQ0Ud8px5KAdfUUDarShEgQGAoBQQVQ9msKkWAAAECBAgQGC1gjorRHt4RIECAQHkFBBXlbRslI0CAAAECBAgQIECAAAEClRMQVFSuyVWYAAECgyFgmPpgtJNSDo6AOSoGp62UlAABAlUXEFRU/Rug/gQIECipgKCipA2jWAMr4Joa2KZTcAIECFROQFBRuSZXYQIECBAgQKCKAuaoqGKrqzMBAgQGU0BQMZjtptQECBAgQIAAAQIECBAgQGAoBQQVQ9msKkWAAIHBFzBMffDbUA3KJWCOinK1h9IQIECAQH0BQUV9G58QIECAQB8FdKr6iO/UQykg/BvKZlUpAgQIDKWAoGIom1WlCBAgQIAAAQKjBcxRMdrDOwIECBAor4Cgorxto2QECBCotIBOVaWbX+UJECBAgACBCgsIKirc+KpOgACBMgsYpl7m1lG2QRRwO9UgtpoyEyBAoJoCgopqtrtaEyBAoPQCOlWlbyIFHDAB4d+ANZjiEiBAoMICgooKN76qEyBAgAABAtURcDtVddpaTQkQIDDoAoKKQW9B5SdAgMCQCuhUDWnDqhYBAgQIECBAoIGAoKIBkI8JECBAoD8Chqn3x91Zh1fA7VTD27ZqRoAAgWETEFQMW4uqDwECBIZEQKdqSBpSNUojIPwrTVMoCAECBAg0EBBUNADyMQECBAgQIEBgGATcTjUMragOBAgQqIaAoKIa7ayWBAgQGDgBnaqBazIFJkCAAAECBAh0RUBQ0RVGByFAgACBbgsYpt5tUceruoDbqar+DVB/AgQIDI6AoGJw2kpJCRAgUCkBnapKNbfK9kBA+NcDZKcgQIAAga4ICCq6wuggBAgQIECAAIFyC7idqtzto3QECBAg8F8BQcV/LbwiQIAAgRIJ6FSVqDEUhQABAgQIECDQQwFBRQ+xnYoAAQIEmhcwTL15K1sSaEbA7VTNKNmGAAECBMogIKgoQysoAwECBAjMIaBTNQeJFQQ6EhD+dcRnZwIECBDooYCgoofYTkWAAAECBAgQ6JeA26n6Je+8BAgQINCqgKCiVTHbEyBAgEBPBHSqesLsJAQIECBAgACB0gkIKkrXJApEgAABAiFgmLrvAYHuCridqruejkaAAAECEycgqJg4W0cmQIAAgQ4EdKo6wLMrgTEEhH9joFhFgAABAqUUEFSUslkUigABAgQIECDQXQG3U3XX09EIECBAYOIEBBUTZ+vIBAgQINCBgE5VB3h2JUCAAAECBAgMsICgYoAbT9EJECAwzAKGqQ9z66pbPwTcTtUPdeckQIAAgXYEBBXtqNmHAAECBCZcQKdqwomdoGICwr+KNbjqEiBAYIAFBBUD3HiKToAAAQIECBBoVsDtVM1K2Y4AAQIE+i0gqOh3Czg/AQIECIwpoFM1JouVBAgQIECAAIGhFxBUDH0TqyABAgQGU8Aw9dba7W9PP51+9atfpQcfeig9/vjj6aWLvTQtueQSabU3vCE973nPGznY/Q88kG677bb8/Zs32WRkfb9eXHb55emZZ55JSy+9dFp6qaX6VYxKnNftVJVoZpUkQIDAUAgIKoaiGVWCAAECwyegU9V8m866/vp0+tfPTI899tgcO73+da9Lu3z0I2mRRRbJP/vlRRelM878Rv76pK/+z6gQY46de7Biz332zYOV92y+eXrve97dgzNW9xTCv+q2vZoTIEBg0AQEFYPWYspLgAABAgRqBB7+4x/T4UcelZ599tk8dFhxheXTAgssmG644Yb0TLYullVWXintMW1a/lpQkTNU8o/bqSrZ7CpNgACBgRQQVAxksyk0AQIEhl9Ap6q5Nv7q105KV2e3fMQydbdd81s94vXT2e0UZ3z96+nKq66Ot+mgA/ZPr11mmSSoyDn8IUCAAAECBEosIKgoceMoGgECBKosYJh6c61/0CGHpj88/HBadNGXpOOOOWbUrRy/+/3v06c/c2x+oB233y5tuMEGcwQV182alW699dY01wtekFZYfvm00oorprnmmmvk5JdffkWKURuvetUr06Q3vWlkfbw49yc/SX//+z/SSiutmF637LL5Z//3s5+lp59+Jq244grp5S97WYrbUu6++560+OKLp1VXXSWbO2OxUccY69aPRx55NF1y6aX5dgsssEB621vfktcr5uGIsv7mNzelx//616y8y6WVV145veylLx11TG/GFnA71dgu1hIgQIBA+QQEFeVrEyUiQIAAgUxAp6rx1+Cf//xn+sRuU9K//vWvvDP/wa23nmOnn/z0p/nny2ZBwvLLLTcqqNgoCy4uuuSSUfuss/Za6SM77TQSeBz/xRPSzbfcktZYffW02yc/MWrb3aZOy0dufGCrLdM7Nt00/6wIHtZbd51s0s7b058eeWRkn/nmnTftt88++SSfxcpi+2KOiieffDId+9nPpQcefDDF9nvtuUc+EuQvf/lLOvqYz6T4t3Z5/vOfn/bde68Uc3FYxhcQ/o3v41MCBAgQKI+AoKI8baEkBAgQIECgJYFnnnk27Tp1ar7PFu99T9p8s80a7l9760dsvOIKK2T/LZ+uue669Pvf35Xv/9EsqFhnnbXz1+0GFbHzQgstlDZcf/30xBNP5LenxIiIxRZdNB33mWPyY8ef2qDine/YNMX57vztb9Pcc8+dzasxNQ9XYrsYqfHd752dhxcf3+Vjaf75589HdNyYja6IkRtHHn5Yvk9saxlbwO1UY7tYS4AAAQLlExBUlK9NlIgAAQIEMgGdqsZfg06Dis3f9a60xfvem58oRmfssfc+6amnnkobrLdemrzjDvn6doOKeeaZJ33x+M/nwUIc6P9+9vMsaPhefszPH3fsyFNIiqBis3e+Mz2QPTr1uuxWkbj1ZMquu6ZVV1k53z7+xG0mZ//gnLTgggumA/bbN73qla/Mn3Ly+7vuym4BWSHNO+88I9t6QYAAAQIECAy2gKBisNtP6QkQIDC0AoapN27aZoKKGMXw73//O82dzUERoxRqR1QcetBBaamllhw50f/76v+mX19zTVpm6aXTwQcekK9vN6h4wyqrpGlTp4wcO27lOPTwI/L38QSSeBJJLEVQkb/J/sStHB//2EfTG9dcs1iV//vQH/6QjvrUp1LUOZaYkyNu91hl5VWyuTPeOHKrSv6hP2MKuJ1qTBYrCRAgQKCEAoKKEjaKIhEgQICAOSqa/Q5MmbZ7ijBirDkkYv3ue+6VYrREcWtIbVBx0lf/Z1QH/9SZp6VLL788Dy8ixIilXlARj0Odsvse+bHHmqPi3dltKO/Lbkcplpggc78DD8zf7p4FGKtmQUYsswcVMS9FjJh4zWtek39e+yfCirPO+l66+dZbRgKL+HzZ17427bXHHkZV1GKN8Vr4NwaKVQQIECBQSgFBRSmbRaEIECBAgEBzAp/KJpiM2x9itETcajH/fPON7HjFFVemk049NX//yY/vko9SaDWoKB5/GvNAHPOpo0eOfcONN6YvnTgjfz9WUFFMjlns0CioWDebE+Ouu+7OJ9FceOGF04H77zfqb2wPvAAAQABJREFUaR4xYejd99yT3/qxyItfnNf52muvTeddcGF+ipjoM8IaS30Bt1PVt/EJAQIECJRLQFBRrvZQGgIECBD4j4BOVXNfhWKSydg6OupbbblFWjB7pOfVv/p1+vl55+VP3Yj5G445+uj04qyD32pQcd75F6Rvfec7eWFiks03ZbdZ3HPvvenb3/luPullfNCNoCKCjfWzuTE+feyx+dwTMelmjKxYZJFF8nPHk0DuuPPOfN6KmL8i5rH4+9//no/I+Nvf/pa2fv/706Zvf1u+rT8ECBAgQIDAYAsIKga7/ZSeAAECQytgmHpzTRu3dUTn/u6776m7Q20nvtWg4s9//nP+WNDHHnssP35Mkhm3fcSoh3iUaJy/W0HFe9/z7nRvFoJEKPH0M8/kE2ZGWBETaF5+xRXp5FNn5mV46WKLpcVf9ap07/33pRipEaHFIQcdmJYY43aRuigV/MAcFRVsdFUmQIDAgAoIKga04RSbAAECwy6gU9V8Cz+TBQc/+tGP0wW/+EUeIhR7xmiErd+/VTbZ5JuKVS2PqIgd77v//nTG18/Mb7eI90susUT66Ed2zgOFxx9/vKtBRRz/NzfdnKbPmJGHIDGx59577Zk/PeTiSy5JP/zxuSnCk2J5yUtekrb5wPvnmHyz+Ny//xUQ/v3XwisCBAgQKLeAoKLc7aN0BAgQIECgaYF4usefHnkkRXgQow5i1EM3lxjl8LznPS/Nm42q6NcSIzgeefTR/PaQhRZaKK9njKiwNBZwO1VjI1sQIECAQDkEBBXlaAelIECAAIHZBHSqZgPxlgABAgQIECBQEQFBRUUaWjUJECAwaAKGqQ9aiylv2QXcTlX2FlI+AgQIECgEBBWFhH8JECBAoFQCOlWlag6FGQIB4d8QNKIqECBAoCICgoqKNLRqEiBAgAABAtUWcDtVtdtf7QkQIDBIAoKKQWotZSVAgECFBHSqKtTYqkqAAAECBAgQqBEQVNRgeEmAAAEC5REwTL08baEkwyHgdqrhaEe1IECAQBUEBBVVaGV1JECAwAAK6FQNYKMpcqkFhH+lbh6FI0CAAIEaAUFFDYaXBAgQIECAAIFhFXA71bC2rHoRIEBg+AQEFcPXpmpEgACBoRDQqRqKZlQJAgQIECBAgEDLAoKKlsnsQIAAAQK9EDBMvRfKzlElAbdTVam11ZUAAQKDLSCoGOz2U3oCBAgMrYBO1dA2rYr1SUD41yd4pyVAgACBlgUEFS2T2YEAAQIECBAgMHgCbqcavDZTYgIECFRVQFBR1ZZXbwIECJRcQKeq5A2keAQIECBAgACBCRIQVEwQrMMSIECAQGcChql35mdvArMLuJ1qdhHvCRAgQKCsAoKKsraMchEgQKDiAjpVFf8CqH7XBYR/XSd1QAIECBCYIAFBxQTBOiwBAgQIECBAoEwCbqcqU2soCwECBAiMJyCoGE/HZwQIECDQNwGdqr7ROzEBAgQIECBAoK8Cgoq+8js5AQIECNQTMEy9noz1BNoTcDtVe272IkCAAIHeCwgqem/ujAQIECDQhIBOVRNINiHQgoDwrwUsmxIgQIBAXwUEFX3ld3ICBAgQIECAQG8E3E7VG2dnIUCAAIHOBQQVnRs6AgECBAhMgIBO1QSgOiQBAgQIECBAYAAEBBUD0EiKSIAAgSoKGKZexVZX54kUcDvVROo6NgECBAh0U0BQ0U1NxyJAgACBrgnoVHWN0oEI5ALCP18EAgQIEBgUAUHFoLSUchIgQIAAAQIEOhBwO1UHeHYlQIAAgZ4KCCp6yu1kBAgQINCsgE5Vs1K2I0CAAAECBAgMl4CgYrjaU20IECAwNAKGqQ9NU6pISQTcTlWShlAMAgQIEGgoIKhoSGQDAgQIEOiHgE5VP9Sdc5gFhH/D3LrqRoAAgeESEFQMV3uqDQECBAgQIEBgTAG3U43JYiUBAgQIlFBAUFHCRlEkAgQIEEhJp8q3gAABAgQIECBQTQFBRTXbXa0JECBQegHD1EvfRAo4YAJupxqwBlNcAgQIVFhAUFHhxld1AgQIlFlAp6rMraNsgygg/BvEVlNmAgQIVFNAUFHNdldrAgQIECBAoGICbqeqWIOrLgECBAZYQFAxwI2n6AQIEBhmAZ2qYW5ddSNAgAABAgQI1BcQVNS38QkBAgQI9FHAMPU+4jv1UAq4nWoom1WlCBAgMJQCgoqhbFaVIkCAwOAL6FQNfhuqQbkEhH/lag+lIUCAAIH6AoKK+jY+IUCAAAECBAgMjYDbqYamKVWEAAECQy8gqBj6JlZBAgQIDKaATtVgtptSEyBAgAABAgQ6FRBUdCpofwIECBCYEAHD1CeE1UErLOB2qgo3vqoTIEBgwAQEFQPWYIpLgACBqgjoVFWlpdWzVwLCv15JOw8BAgQIdCogqOhU0P4ECBAgQIAAgQEQcDvVADSSIhIgQIBALiCo8EUgQIAAgVIK6FSVslkUigABAgQIECAw4QKCigkndgICBAgQaEfAMPV21OxDoL6A26nq2/iEAAECBMolIKgoV3soDQECBAj8R0CnyleBQHcFhH/d9XQ0AgQIEJg4AUHFxNk6MgECBAgQIECgNAJupypNUygIAQIECDQQEFQ0APIxAQIECPRHQKeqP+7OSoAAAQIECBDot4Cgot8t4PwECBAgMKaAYepjslhJoG0Bt1O1TWdHAgQIEOixgKCix+BOR4AAAQLNCehUNedkKwLNCgj/mpWyHQECBAj0W0BQ0e8WcH4CBAgQIECAQA8E3E7VA2SnIECAAIGuCAgqusLoIAQIECAwEQLTT5yRpk2dMhGHdkwCBAgQIECAAIGSCggqStowikWAAIGqC0RIMX1GFlRMmSKsqPqXQf07FihupYrgb61Jkzo+ngMQIECAAIGJFBBUTKSuYxMgQIBARwJxT/3uWcdqahZWWAgQaF8ggoq49ePMM04XVLTPaE8CBAgQ6JGAoKJH0E5DgAABAu0LRAfLr8Dt+9mTQAi4jnwPCBAgQGBQBAQVg9JSykmAAIGKCkTnKn4NjqAifg22ECDQvEBx7ZjrpXkzWxIgQIBA/wUEFf1vAyUgQIAAgXEEZg8q4n0sRliMg+ajSgvUjpwoHknqlo9KfyVUngABAgMnIKgYuCZTYAIECFRPoDacmP1ee+9Hzz3Ag0dcL0UwUXvtVO//OdSYAAECBAZVQFAxqC2n3AQIEKioQHTEYymeXqBjrmNe2zH3fRh9fVT0/yZUmwABAgQGXEBQMeANqPgECBAgQKCfAqfOnJlOmXla2nnyjmmnyZP7WRTnJkCAAAECBIZEQFAxJA2pGgQIECBAoB8Cgop+qDsnAQIECBAYbgFBxXC3r9oRIECAAIEJFRBUTCivgxMgQIAAgUoKCCoq2ewqTYAAAQIEuiMgqOiOo6MQIECAAAEC/xUQVPzXwisCBAgQIECgRQFBRYtgNidAgAABAgQaCggqGhLZgAABAgQIEKgnIKioJ2M9AQIECBAg0K6AoKJdOfsRIECAAAECSVDhS0CAAAECBAh0W0BQ0W1RxyNAgAABAhUSEFRUqLFVlQABAgQI9EhAUNEjaKchQIAAAQLDKCCoGMZWVScCBAgQINBfAUFFf/2dnQABAgQIDLSAoGKgm0/hCRAgQIBAKQUEFaVsFoUiQIAAAQKDISCoGIx2UkoCBAgQIDBIAoKKQWotZSVAgAABAiUTEFSUrEEUhwABAgQIDIGAoGIIGlEVCBAgQIBAvwQEFf2Sd14CBAgQIDC8AoKK4W1bNSNAgAABAhMuIKiYcGInIECAAAEClRMQVFSuyVWYAAECBAh0T0BQ0T1LRyJAgAABAgSeExBU+CYQIECAAAECbQsIKtqmsyMBAgQIECBQR0BQUQfGagIECBAgQKCxgKCisZEtCBAgQIAAgdYEBBWtedmaAAECBAgQqBEQVNRgeEmAAAECBAh0RUBQ0RVGByFAgAABAtUUEFRUs93VmgABAgQITKSAoGIidR2bAAECBAgMuYCgYsgbWPUIECBAgEAfBAQVfUB3SgIECBAgMCwCgophaUn1IECAAAEC5REQVJSnLZSEAAECBAgMnICgYuCaTIEJECBAgEDpBQQVpW8iBSRAgAABAuUVEFSUt22UjAABAgQIDKqAoGJQW065CRAgQIBACQQEFSVoBEUgQIAAAQJDJiCoGLIGVR0CBAgQINBLAUFFL7WdiwABAgQIVENAUFGNdlZLAgQIECAwIQKCiglhdVACBAgQIFBpAUFFpZtf5QkQIECAQGcCgorO/OxNgAABAgQIzCkgqJjTxBoCBAgQIECgSQFBRZNQNiNAgAABAgSaFhBUNE1lQwIECBAgQGB2AUHF7CLeEyBAgAABAp0KCCo6FbQ/AQIECBCosICgosKNr+oECBAgQGCCBAQVEwTrsAQIECBAoAoCgooqtLI6EiBAgACB3goIKnrr7WwECBAgQGCoBAQVQ9WcKkOAAAECBEohIKgoRTMoBAECBAgQGEwBQcVgtptSEyBAgACBMgsIKsrcOspGgAABAgRKLiCoKHkDKR4BAgQIEBhAAUHFADaaIhMgQIAAgbIICCrK0hLKQYAAAQIEhkdAUDE8bakmBAgQIECg5wKCip6TOyEBAgQIEBh6AUHF0DexChIgQIAAgYkTEFRMnK0jEyBAgACBqgoIKqra8upNgAABAgS6ICCo6AKiQxAgQIAAAQKjBAQVozi8IUCAAAECBFoREFS0omVbAgQIECBAoBkBQUUzSrYhQIAAAQIExhQQVIzJYiUBAgQIECDQgYCgogM8uxIgQIAAgaoLCCqq/g1QfwIECBAg0H0BQUX3TR2RAAECBAgMtUCEEztNnpzXcaygovbzoYZQOQIECBAgQGBCBAQVE8LqoAQIECBAYDgFpu2xZ7pu1qy0+mqrpeknfDHNHlQUn+88eceRMGM4JdSKAAECBAgQmCgBQcVEyTouAQIECBAYQoEIKSKMiCXCitVXe0M6ZeZpKYKJ62ZdPyrEGMLqqxIBAgQIECDQAwFBRQ+QnYIAAQIECAyTQG1YMXu9ipEWs6/3ngABAgQIECDQrICgolkp2xEgQIAAAQIjAmOFFUKKER4vCBAgQIAAgQ4EBBUd4NmVAAECBAhUWaA2rBBSVPmboO4ECBAgQKC7AoKK7no6GgECBAgQqJRAhBWnZnNUxMSaFgIECBAgQIBANwQEFd1QdAwCBAgQ6JnA9BNnpKuuvjr/r2cndSICAySw1qRJeWmnTZ2SitcDVHxFJUCAAAECSVDhS0CAAAECpRfIg4mrrk7TZ8wofVkVkECZBCKoEFiUqUWUhQABAgSaERBUNKNkGwIECBDom0CEFNtuv8PI+XfPfiWelHW+/FI8QuIFgVECcc0UI4+KD84843TXTIHhXwIECBAovYCgovRNpIAECBCorkBtSBHBRHS2LAQINC8QIV9cR7EIK5p3syUBAgQI9FdAUNFff2cnQIAAgXEEik6WkGIcJB8RaCBQXEfTpkzJbwNpsLmPCRAgQIBA3wUEFX1vAgUgQIAAgbEEakdT3HnbrWNtYh0BAk0KLLvc8vmWrqUmwWxGgAABAn0VEFT0ld/JCRAgQKCeQPErsNEU9YSsJ9C8QMxZEZPRGlXRvJktCRAgQKB/AoKK/tk7MwECBAiMI1AEFe6rHwfJRwSaFChGKAn+mgSzGQECBAj0VUBQ0Vd+JydAgACBegKGqteTsZ5AewKuqfbc7EWAAAECvRcQVPTe3BkJECBAoAkBnaomkGxCoAUB11QLWDYlQIAAgb4KCCr6yu/kBAgQIFBPQKeqnoz1BNoTcE2152YvAgQIEOi9gKCi9+bOSIAAAQJNCOhUNYFkEwItCLimWsCyKQECBAj0VUBQ0Vd+JydAgACBegI6VfVkrCfQnoBrqj03exEgQIBA7wUEFb03d0YCBAgQaEJAp6oJJJsQaEHANdUClk0JECBAoK8Cgoq+8js5AQIECNQT0KmqJ2M9gfYEXFPtudmLAAECBHovIKjovbkzEiBAgEATAjpVTSDZhEALAq6pFrBsSoAAAQJ9FRBU9JXfyQkQIECgnoBOVT0Z6wm0J+Caas/NXgQIECDQewFBRe/NnZEAAQIEmhDQqWoCySYEWhBwTbWAZVMCBAgQ6KuAoKKv/E5OgAABAvUEdKrqyVhPoD0B11R7bvYiQIAAgd4LCCp6b+6MBAgQINCEgE5VE0g2IdCCgGuqBSybEiBAgEBfBQQVfeV3cgIECBCoJ6BTVU/GegLtCbim2nOzFwECBAj0XkBQ0XtzZyRAgACBJgR0qppAsgmBFgRcUy1g2ZQAAQIE+iogqOgrv5MTIECAQD0Bnap6MtYTaE/ANdWem70IECBAoPcCgoremzsjAQIECDQhoFPVBJJNCLQg4JpqAcumBAgQINBXAUFFX/mdnAABAgTqCehU1ZOxnkB7Aq6p9tzsRYAAAQK9FxBU9N7cGQkQIECgCQGdqiaQbEKgBQHXVAtYNiVAgACBvgoIKvrK7+QECBAgUE9Ap6qejPUE2hNwTbXnZi8CBAgQ6L2AoKL35s5IgAABAk0I6FQ1gWQTAi0IuKZawLIpAQIECPRVQFDRV34nJ0CAAIF6AjpV9WSsJ9CegGuqPTd7ESBAgEDvBQQVvTd3RgIECBBoQkCnqgkkmxBoQcA11QKWTQkQIECgrwKCir7yOzkBAgQI1BPQqaonYz2B9gRcU+252YsAAQIEei8gqOi9uTMSIECAQBMCOlVNINmEQAsCrqkWsGxKgAABAn0VEFT0ld/JCRAgQKCegE5VPRnrCbQn4Jpqz81eBAgQINB7AUFF782dkQABAgSaENCpagLJJgRaEHBNtYBlUwIECBDoq4Cgoq/8Tk6AAAEC9QR0qurJWE+gPQHXVHtu9iJAgACB3gsIKnpv7owECBAg0ISATlUTSDYh0IKAa6oFLJsSIECAQF8FBBV95XdyAgQIEKgnoFNVT8Z6Au0JuKbac7MXAQIECPReQFDRe3NnJECAAIEmBHSqmkCyCYEWBFxTLWDZlAABAgT6KiCo6Cu/kxMgQIBAPQGdqnoy1hNoT8A11Z6bvQgQIECg9wKCit6bOyMBAgQINCGgU9UEkk0ItCDgmmoBy6YECBAg0FcBQUVf+Z2cAAECBOoJ6FTVk7GeQHsCrqn23OxFgAABAr0XEFT03twZCRAgQKAJAZ2qJpBsQqAFAddUC1g2JUCAAIG+Cggq+srv5AQIECBQT0Cnqp6M9QTaE3BNtedmLwIECBDovYCgovfmzkiAAAECTQjoVDWBZBMCLQi4plrAsikBAgQI9FVAUNFXficnQIAAgXoCOlX1ZKwn0J6Aa6o9N3sRIECAQO8FBBW9N3dGAgQIEGhCQKeqCSSbEGhBwDXVApZNCRAgQKCvAoKKvvI7OQECBAjUE9CpqidjPYH2BFxT7bnZiwABAgR6LyCo6L25MxIgQIBAEwI6VU0g2YRACwKuqRawbEqAAAECfRUQVPSV38kJECBAoJ6ATlU9GesJtCfgmmrPzV4ECBAg0HsBQUXvzZ2RAAECBJoQ0KlqAskmBFoQcE21gGVTAgQIEOirgKCir/xOToAAAQL1BHSq6slYT6A9AddUe272IkCAAIHeCwgqem/ujAQIECDQhIBOVRNINiHQgoBrqgUsmxIgQIBAXwUEFX3ld3ICBAgQqCegU1VPxnoC7Qm4ptpzsxcBAgQI9F5AUNF7c2ckQIAAgSYEdKqaQLIJgRYEXFMtYNmUAAECBPoqIKjoK7+TEyBAgEA9AZ2qejLWE2hPwDXVnpu9CBAgQKD3AoKK3ps7IwECBAg0IaBT1QSSTQi0IOCaagHLpgQIECDQVwFBRV/5nZwAAQIE6gk026m6/Ior0k033ZRuv+OO9LKXviytsMLyab11102LLLJIvUNbP8EC519wQXrooYfqnmWBBRZIW26xRd3Ph/GDH/7ox+m6665L22+/XVpm6aX7UsVmr6m+FM5JCRAgQIBAjYCgogbDSwIECBAoj0CjTtXTTz+dDjjo4PTjc8+do9Ave9nL0le/8pW0yiorj/rstttvTxdffHG+bqfJk9MLXvCCUZ+38qabx2rlvP3Y9lvf/nb661//mlZdddW01qRJDYuww+SdUgRI9ZaXv/zl6bKLL6r38bjr//rEE+lb3/pWvs2mm26alnjNa8bdvlcfjleuCG023OTN6V//+lfaZKON0tf+96u9Ktao8zS6pkZt7A0BAgQIEOijgKCij/hOTYAAAQL1BRp1qo459th0yqkz8wMs+9rXpjeuuWb6y2OPpYuyDvDf/vZ0mm+++dJFF16QFl100ZGTnP39H6T9Djggf3/jrFlp/vnnG/ms1RfdPFar5+719hu/+S3pvvvvTx/7yEfS/vvt2/D0RVAx99xzp5e+dLE5tl9s0cXS2Wd9d471zay4//4H0kZvfnO+6cn/+79po402bGa3Cd9mvHI99be/pfXW3yBFmPHhD34wHXXkERNenrFO0OiaGmsf6wgQIECAQD8EBBX9UHdOAgQIEGgo0KhTtek735V++7vf5b/wn3nG6SPHu/6GG9JWH9g6f3/CF45Pm2+22chn3QwXunmskQKW9EW7QUWMaPn+WWd1tVbjBQJdPVGLB2tUrj/96U8pRuHEiJRORvK0WKxRmze6pkZt7A0BAgQIEOijgKCij/hOTYAAAQL1BcbrVP373/9Oq6/5xvTEk0+myTtsnw45+OBRB1p/o43zORI+tM026eijjkzfO/vsdO+996Vbb701nX/hhfm2n9hll7zDuPzyy6V3ZLcQFMuvr7kmxRwLd2RzXsw33/xp5ZVWTNttt11a6IUvzDdp5Vh33HlnuuzSy9LVv/51WnihhdJaa62VNtl4o/TiF7+4OF264YYb04W/+EVWlrnSJz/xifT9H/wgXX/9DWnJJZdI78rCmFe96pXp5ptvzsp0Yfrzn/+cJk16U3rnO94xsn/x4plnnkm/vOii9OvsXL+/66602hvekNZbb720+mqrFZvk/37tpJPSk08+lX22blpqySXTBZnHTTfdnF73uteljbOyFbdSxAiKs876Xr7Paaefno8GiGPF/B+xTN5xh1H1yFf+508xoqJRUPHt73wnPfjgQ2nuuV+QdvnYx7J/5x45zE9++tN0++13pOc973lpp8k7pptvuSVdeeVV6Ykn/ppmnn5Gvt27N98sLbnEkumFL1wwfTQb7RFLbf0WmH+BzPbCrO0WSpOzY8QSoxu+8+3vpJtuuTk9/PAf06sXXzy9+92bp7WzthlrieDriuw2luuum5UWftHC2fdh5axd3pGNFHlpvvmVV13VUrnWWmtSWmfttUdOFbeDXJTdjnTttddldbw5818irb766mmTTTYe+c7FxtH2p/2n3h/cZut89NAll1ySf6/XWGON9OZs+4UXXnjkuGO9GO+aGmt76wgQIECAQL8EBBX9kndeAgQIEBhXoFGn6mO7fDz9IuuYzzPPPGnqbrtmnc13553OOOgNN96YnnrqqfSSl7wkvT7rgG+7/Q7pqquvHvN80dn94vHH55/9v//5n/SFE76UIgipXWLOix9+/+y02GKLNX2siy66OH1it93S3//+99pD5RMpfusbZ+Zliw++mc23cOjhR+ShyUYbbJAuyEKLYomQYo9pu2efH54iiCiW2cOZ+GyXT3wyXXb55cUmI/8emoU4O2ZhTrGsvd76KX7d33KL96Wrr/5VfktH8dkLF1wwfT0LJVZeeaXcK9zqLef97P/S0kstNebHzQYVV//qV2m7HXbM52745Mc/nvbea8/8eBGcbLX11ukf//hH2u7DH05HHH5Ymn7ijDR9xowxzxehwRWXXpJ/VtRvww3WT9dcc216MvserLjiinn7xaiHyTvvnAc5sx9oz92npd123XXU6pkzT0uf+sxnRq2LN3G+mANl1VVXablcU7PvxO7TpubHjPrttc++KUKZ2ZflXv/6NPOUk0cCkRg9FKOIYomQ7ZSZM9Ozzz47slts/80zvz5uWNHomho5mBcECBAgQKDPAoKKPjeA0xMgQIDA2AKNOlXXZXNMROc8fmkuliWXWCK97W1vzUccvCGb+LFYvv+Dc7Jf7h9IN918S/rZz3+er44OY/ySHyMJ3vbWt+a3kbxzs83zTvNm73pX+sBWW6W777k7Hf/FE9Ljjz+etv3Qh9KRRxyejXhofKxbsl//t9p6m7wjGZ3+d79rs/TIo4+m759zTvrjH/+YBwE/+N5zoxWKoCIK9ZpXvzpts/UH0p2//W36wTk/LIqf1l1nnXwSxnN+/KP0m9/clK//9VVXjoxo2H3PvdK5P/lJWmD++fNbXVZccYV8dMUvs7AkRiT8z1e+nN7yn3kdio58HCSCnG0+8IHcMPaPORSiDL+44PwUnfpzfnhOfq6vnXxKPplmzAMSAUAs22YBwote9KL89ex/iqAibnFYKBtJMvtydDZHQzGK5YQvTU8zsk7/XHPNlSLAWSkLFd635Vb5U1yi8x1zWcw777wpQo0YLfJY1hYnn3Jqfsgt3vfePCxZYIEF8xEesbK2fnHuDdZfP62QjZqJ0Sp77bNPiqdvRL0jmHj14q9O38wmCv35eefl57/kl79IEUrFclbWPjFZayyrrrJK9p3aNB+J8u3vfjdvwwitYvv4HrZSrtqgYt/998+/T3GOCFM2y0Zq/Cqr48WXXJp/D2PEy89++pO8bLVBRWz/umWXTe99z7vTrFnX54HdP//5z/T+LbdMx37mmPh4zKXRNTXmTlYSIECAAIE+CAgq+oDulAQIECDQWKCZTlXcnvDlL38l/fz889Nj2USatcv2226bDjrwgFG3EzSaV+LGG3+T3wrxyU98PO8cx/GOPOrodMaZZ+ad1doJIMc71owvfzmdMP3EfATGheeflwcIcaxLs9tAJv/nFoVYH7dZ1AYVp51ySn5LRmwbE0ZGWBDD+X915RV5ZzXKt8X73x8fp5OyJ0dsnD1BIkZsvGGNNfNQ5MD99ksf+cjO+efxZ+sPfihdmz0S833vfU/6/Gc/m68vOvIx2eiVl1+WYhRFLCdnYcRn/rPNpRf9Mr3iFa/I18efdueoGDnAbC+O/9zn8k52rI4O9oe23S4vZ3TM11hj9RS2Ub7wjhExtUujuSCK+kUYEUFChBzFEkHMeeedn4UnL8zDqVj/aBYgrbXuevkomtrJOXf+6EfzwCBuofnG18/IR+7E9nE7TwRascyY/qWRwKXZchVBRYymWOONb8pvRaltnzhu3BJz8KGHxct8jo+4haY2qIjAKEKdYilGF8X3Kb5X9ZZmrql6+1pPgAABAgR6KSCo6KW2cxEgQIBA0wKtdKqi03fNtdemyy67PH9c6T333pufZ9f4FX3PPUbOOV64EBvFYyS/892z8kkP//KXv+T73Z+FIRGIxGiNC857bjRGfDDesXbKwohLslAiQoDiF/rYJ24pifkjYvncccelGBFQG1TcfOMNIx3iHXfaOb+Vo/ZxltHRjrk5Yik6+/GL/ge2+WC+LkZD1M7z8OesDjHipLYDW3Tka48bO9d2wE/52tfShhtukB8z/rQbVMT8D1On7DZynOLFm970ppG5MGJddPI3f8978hEdxTZHZaNXPpyNYpl9aTYQ2GG7bdNhhx46++75yJOrrro63XX33XlIEhvEaI1om8I0vk9rvmlSftvIIQceODK/RXGwiy++JL02e9LM4ou/qliV12G8p5EU7kVQMev669P7s1E3scw8+eS0/vrrjRwrRvBEeBIhVBE+1QYVxbpihzO/8Y10+JFH5W9vuuH6UeFMsU3828o1Vbuf1wQIECBAoNcCgopeizsfAQIECDQlMF6n6he//GU68OBD8uPEEz9eu8wyI8eMzl3MexDBxfLLLZd+/J/bF2KD8cKFW7KJNuOWhdpbSUYOmr1oJajY/D3vTbfedls+78Q8NRNE1h4vRm3E7Qi1QcUdt96S36oR2xVBxdvf9rb0lRkn5ruOFVTEbQu7TnluzoN43Orzsv+NtVx/3bX5sYsO85RsPoY9stsfiuWBBx5MG26ySf62GK1RfNZuUNFoMs3i+DGhZIQtMXFlLHEbyE+y21xq27XYttmgoggEiv3i34MPOTTFrRv1liKoiNE5a056bnLN2Z8cU2/fVssVtyDtNvU5/19mj9GNUKd2WW/DjdIf/vCHfCLRg7OwpDaoOOO0maMm5IzbkeI2klhumHXdyAie2uPF6/Guqdm39Z4AAQIECPRTQFDRT33nJkCAAIG6AuN1qh588MG0wcbPdaqnTZmSpk2dMuo4e+69d/rRj89NL3/5y9NlF1808tl4QcWnjzkmnXra6WnRRRdNX8sm1VzmtcvkHfsjjjwyn0eglaDikGzY/rey4ftx28K5P/rhSPgQBXnkkUfycxSF6jSoePjhh9O6G2yYH+7EL50w6okgMSok5mmIjn+xFEHF7B35fgYVMYlpzAUS5Yx5L+J2jJiz4Xvf+faoESJRh1YDgaLeYTFpnXXzuR923mly+lg26mWBbMRLfJfekc0hEksRVMTr4vG38cSRCAqKJZ4a8qHstqJo2xjxUTxVpdVyxVwl66z/3KiVA/bbd+SpJXGe2lEyxe0ltUHF108/bdRTSgQVRev4lwABAgSGRUBQMSwtqR4ECBAYMoHxgoqo6tvf8c70u9//Pu/077/vPmmjDTfMh8pfcuml+VM0Yvh+TBT56U8dPSJT26GLp3hEZ7hY4tft+JU7JnCMcCGWu++5J707Gx0RndPoQJ+fPelikUUWyT8b71i1n+27917pw9nEk/NmTyf57llnpaM/fUzaOptnIubPiHkYOg0qojCbvOWt6d777svLfmwWuMRIhrj9Jer0bPZEkMMOPWTksaLtBBXF8d/2lrek/5dNzNloKSbTjHDnkIMPGnPzTTbeOF8ft0B88MPb5k/4iKdZxKNXiyd+RKBw0AEHjNq/NlAZ67aMevW77fbb02bvfk9+rKLzH9+RY7Knepz+9efme6gNbw497PB8os14qswXPv+59Nas7hGgfPkr/y+d+c1v5seJ0ToxaieWdspVfIdjNMXBBx2YPbp243Tjb36TPn/8F/KnrsREqFdl84jEfBuCipzZHwIECBCoiICgoiINrZoECBAYNIFGQcUl2ZMRpu6+e3riySfzqkWnrvaxovEIyVNPPmmkIxkbRef9zW992whF7HPEYYfmT7D4Vvb0h0Oyzmksr3zlK7MA5CX5Ezaisx2BRbHEUxjiloTxjhW3n+y625T8aQyxX0zoONfzn58HHvE+nngRneVYuhFUXH7FFfkTUJ5++un8mC9+8YtTMcdGdLS/nc1hEOFFLPU68rUd7dlv/ah9OkWYRcc5OtD1liKoqPd5rI/bXKLt3vu+LXLLCIh+cPb38hEUxaNI41ynnnTSqPkboo03zkKDGMEQS2wTnjGaJJZ69Yv94naKGIESTyOJJ3nE01WeyOb9iKCgmNdk8802S3G7R4y0iNtvIgyLJZ6o8nQW+sRtKrHEU2E+c8yn89fxp51yXXHllekTn9w1nwsjjhHBVdGGUa+Dsts5dsrCmlgEFTmDPwQIECBQEQFBRUUaWjUJECAwaAKNgoqoT8wDcfgRR2aPHb15pIO34AILpDe+cc306aOPHvXkiqL+cZvBGWd+I++wxroIKrbLhvJHB/QL2e0HJ2VP3ohf2mOJ4f0nf+1/s8dhnpJPshkjK4qgIj6vd6z47Nlnn83Ldv6FF47MexGd3Xis59577Zl3lmO7bgQVcZyYSPSzx38+3XLLrSOd6fi1/7hsxMBKK/135Ei9jvx4QcXtd9yRjsueCBIThIZTjCqJJ5HUW5oNKvbJnlJyzg9/lFuc/d3vjIxwCf8tP7B1ujlr1wiczs1GLkQ4UiznX3BB+lL2VJWYVySW2uCnXv1iuxhVMSUbZVJMaPr8LDzaP3tk6brrrpP23HufPLiIR9N+6YtfiM3z23QOOPCgfLLNJ596Kl8XdZ+8w/Zp109+ctQtPfFhO+W64cYb0xFHHZXV9Zb8excBxTJLL50+vsvH0pZbbJGfM/4IKkYovCBAgACBCggIKirQyKpIgACBQRRoJqgo6hUd2/h1PEYPxCMuowPa7vJM9qv5HXfcmRZ+0cIpnqIRHcdOlvilPcoWZVp6qaU6Klsz5YgJN3+fjQKIc8X8FJY5BWK0xB//9Ke0TDYypng865xb/XdNPEL19izkWGjhheeY9PK/W3X2KkZS3H77HWnJJZfIbzPq7Ghj793KNTX2EawlQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE6ggYBrqgGQjwkQIECgNAKCitI0hYIQIECAQK2ATlWthtcEOhdwTXVu6AgECBAg0BsBQUVvnJ2FAAECBFoU0KlqEczmBBoIuKYaAPmYAAECBEojIKgoTVMoCAECBAjUCuhU1Wp4TaBzAddU54aOQIAAAQK9ERBU9MbZWQgQIECgRQGdqhbBbE5gHIGrrr46bbv9DmmtSZPSmWecPs6WPiJAgAABAv0XEFT0vw2UgAABAgTGEJh+4ow0fcaMNG3KlDRt6pQxtrCKAIFmBSKkiLBCUNGsmO0IECBAoJ8Cgop+6js3AQIECNQVKIKK2ODO226tu50PCBBoLFCMUIrRFBFWWAgQIECAQJkFBBVlbh1lI0CAQMUFil+Bjaqo+BdB9TsSKEI/oyk6YrQzAQIECPRQQFDRQ2ynIkCAAIHWBIoOVuwlrGjNztYEQqD2GjKawneCAAECBAZFQFAxKC2lnAQIEKioQG1HK34RjvkqDF2v6JdBtZsWiOsm5qSI/2IRUjRNZ0MCBAgQKIGAoKIEjaAIBAgQIDC+QG1YUWwprCgk/EtgtEARThRrhRSFhH8JECBAYFAEBBWD0lLKSYAAAQL5r8PFL8U4CBCoL7D7f56UMzV7ao6FAAECBAgMmoCgYtBaTHkJECBAIBeY/VdjLP0RmDVrVjpl5mlp9dVWSztN3rE/hXDWUQJGG43i8IYAAQIEBlBAUDGAjabIBAgQIECgLAKnzpyZBxU7ZyHFTpMnl6VYykGAAAECBAgMsICgYoAbT9EJECBAgEC/BQQV/W4B5ydAgAABAsMnIKgYvjZVIwIECBAg0DMBQUXPqJ2IAAECBAhURkBQUZmmVlECBAgQINB9AUFF900dkQABAgQIVF1AUFH1b4D6EyBAgACBDgQEFR3g2ZUAAQIECBAYU0BQMSaLlQQIECBAgEAzAoKKZpRsQ4AAAQIECLQiIKhoRcu2BAgQIECAwCgBQcUoDm8IECBAgACBLggIKrqA6BAECBAgQKCqAoKKqra8ehMgQIAAgYkTEFRMnK0jEyBAgACBoRcQVAx9E6sgAQIECBDouYCgoufkTkiAAAECBIZHQFAxPG2pJgQIECBAoCwCgoqytIRyECBAgACBARQQVAxgoykyAQIECBAouYCgouQNpHgECBAgQKDMAoKKMreOshEgQIAAgcEUEFQMZrspNQECBAgQKIWAoKIUzaAQBAgQIEBgqAQEFUPVnCpDgAABAgR6KyCo6K23sxEgQIAAgSoICCqq0MrqSIAAAQIEJkhAUDFBsA5LgAABAgQqLCCoqHDjqzoBAgQIEOhUQFDRqaD9CRAgQIAAgdkFBBWzi3hPgAABAgQINC0gqGiayoYECBAgQIBAkwKCiiahbEaAAAECBAjMKSComNPEGgIECBAgQKAzAUFFZ372JkCAAAEClRYQVFS6+VWeAAECBAhMiICgYkJYHZQAAQIECFRDQFBRjXZWSwIECBAg0EsBQUUvtZ2LAAECBAgMmYCgYsgaVHUIECBAgEAJBAQVJWgERSBAgAABAoMqIKgY1JZTbgIECBAgUF4BQUV520bJCBAgQIBA6QUEFaVvIgUkQIAAAQIDJyCoGLgmU2ACBAgQIFAeAUFFedpCSQgQIECAwLAICCqGpSXVgwABAgQI9EFAUNEHdKckQIAAAQJDLiCoGPIGVj0CBAgQIDCRAoKKidR1bAIECBAgUE0BQUU1212tCRAgQIBAVwQEFV1hdBACBAgQIECgRkBQUYPhJQECBAgQINCagKCiNS9bEyBAgAABAo0FBBWNjWxBgAABAgQI1BEQVNSBsZoAAQIECBBoW0BQ0TadHQkQIECAAAFBhe8AAQIECBAg0G0BQUW3RR2PAAECBAhUSEBQUaHGVlUCBAgQINAjAUFFj6CdhgABAgQIDKOAoGIYW1WdCBAgQIBAfwUEFf31d3YCBAgQIDDQAoKKgW4+hSdAgAABAqUUEFSUslkUigABAgQIDIaAoGIw2kkpCRAgQIDAIAkIKgaptZSVAAECBAiUTEBQUbIGURwCBAgQIDAEAoKKIWhEVSBAgAABAv0SEFT0S955CRAgQIDA8AoIKoa3bdWMAAECBAhMuICgYsKJnYAAAQIECFROQFBRuSZXYQIECBAg0D0BQUX3LB2JAAECBAgQeE5AUOGbQIAAAQIECLQtIKhom86OBAgQIECAQB0BQUUdGKsJECBAgACBxgKCisZGtiBAgAABAgRaExBUtOZlawIECBAgUHmB62bNSquvtlruMFZQUft55bEAECBAgAABAi0LCCpaJrMDAQIECBCorsDswUSj99WVUnMCBAgQIECgXQFBRbty9iNAgAABAhUUiNES0/bYM6/5zpN3zP89ZeZpqfZ1rJx+whdHRl3kG/lDgAABAgQIEGhSQFDRJJTNCBAgQIAAgecEasOKwiRuBYn1sQgpChX/EiBAgAABAu0ICCraUbMPAQIECBCouMBYYUWQCCkq/sVQfQIECBAg0AUBQUUXEB2CAAECBAhUUWD2sEJIUcVvgToTIECAAIHuCwgqum/qiAQIECBAoDICRVghpKhMk6soAQIECBCYcAFBxYQTOwEBAgQIdFtg+okz0lVXX52mTZ2S1po0KXnPw/fhueshroVYzjzj9G5fdo5HgAABAgR6JiCo6Bm1ExEgQIBAJwJFByzCiXg9fcaMvDMWQcW22++QBxfROfOeR5W/D1H3WO687db83whw4pqwECBAgACBQRIQVAxSaykrAQIEKipQBBPTpkzJR1FE5yuWogPmPQ/fh+euh9prIV5HcBHXiREW+f9l+EOAAAECAyIgqBiQhlJMAgQIVF0gOlxrrzUpTc3CCgsBAo0FiqBi92wUkuumsZctCBAgQKA8AoKK8rSFkhAgQIDAbALFr8Fxu4eFAIHWBSKsqB15VLxu/Uj2IECAAAECvRMQVPTO2pkIECBAoEWBZZdbPt+jmHuixd1tToDAfwSKa6mYuwIMAQIECBAos4Cgosyto2wECBCouED8Gnx19p9h6xX/Iqh+xwIxz0tcT8WTcjo+oAMQIECAAIEJFBBUTCCuQxMgQIAAAQIEyiBQewtIGcqjDAQIECBAYDwBQcV4Oj4jQIAAgb4JFI9Z9LSCvjWBEw+ZQIQVsZinYsgaVnUIECAwhAKCiiFsVFUiQIDAMAi4p34YWlEdyiTgmipTaygLAQIECIwnIKgYT8dnBAgQINA3Ab/+9o3eiYdUwCilIW1Y1SJAgMAQCggqhrBRVYkAAQIECBAgQIAAAQIECAyqgKBiUFtOuQkQIDDkAn79HfIGVr2eCxil1HNyJyRAgACBNgUEFW3C2Y0AAQIEJlbA/fQT6+vo1RNwTVWvzdWYAAECgyogqBjUllNuAgQIDLmAX3+HvIFVr+cCRin1nNwJCRAgQKBNAUFFm3B2I0CAAAECBAgQIECAAAECBLovIKjovqkjEiBAgEAXBPz62wVEhyBQI2CUUg2GlwQIECBQagFBRambR+EIECBQXQH301e37dV8YgRcUxPj6qgECBAg0H0BQUX3TR2RAAECBLog4NffLiA6BIEaAaOUajC8JECAAIFSCwgqSt08CkeAAAECBAgQIECAAAECBKolIKioVnurLQECBAZGwK+/A9NUCjogAkYpDUhDKSYBAgQIJEGFLwEBAgQIlFLA/fSlbBaFGmAB19QAN56iEyBAoGICgoqKNbjqEiBAYFAE/Po7KC2lnIMiYJTSoLSUchIgQICAoMJ3gAABAgQIECBAgAABAgQIECiNgKCiNE2hIAQIECBQK+DX31oNrwl0LmCUUueGjkCAAAECvREQVPTG2VkIECBAoEUB99O3CGZzAg0EXFMNgHxMgAABAqUREFSUpikUhAABAgRqBfz6W6vhNYHOBYxS6tzQEQgQIECgNwKCit44OwsBAgQIECBAgAABAgQIECDQhICgogkkmxAgQIBA7wX8+tt7c2ccbgGjlIa7fdWOAAECwyQgqBim1lQXAgQIDJGA++mHqDFVpRQCrqlSNINCECBAgEATAoKKJpBsQoAAAQK9F/Drb+/NnXG4BYxSGu72VTsCBAgMk4CgYphaU10IECBAgAABAgQIECBAgMCACwgqBrwBFZ8AAQLDKuDX32FtWfXql4BRSv2Sd14CBAgQaFVAUNGqmO0JECBAoCcC7qfvCbOTVEjANVWhxlZVAgQIDLiAoGLAG1DxCRAgMKwCfv0d1pZVr34JGKXUL3nnJUCAAIFWBQQVrYrZngABAgQIECBAgAABAgQIEJgwAUHFhNE6MAECBAh0IuDX30707EtgTgGjlOY0sYYAAQIEyikgqChnuygVAQIEKi/gfvrKfwUAdFnANdVlUIcjQIAAgQkTEFRMGK0DEyBAgEAnAn797UTPvgTmFDBKaU4TawgQIECgnAKCinK2i1IRIECAAAECBAgQIECAAIFKCggqKtnsKk2AAIHyC/j1t/xtpISDJWCU0mC1l9ISIECgygKCiiq3vroTIECgxALupy9x4yjaQAq4pgay2RSaAAEClRQQVFSy2VWaAAEC5Rfw62/520gJB0vAKKXBai+lJUCAQJUFBBVVbn11J0CAAAECBAgQIECAAAECJRMQVJSsQRSHAAECBJ4T8OuvbwKB7goYpdRdT0cjQIAAgYkTEFRMnK0jEyBAgEAHAu6n7wDPrgTGEHBNjYFiFQECBAiUUkBQUcpmUSgCBAgQ8Ouv7wCB7goYpdRdT0cjQIAAgYkTEFRMnK0jEyBAgAABAgQIECBAgAABAi0KCCpaBLM5AQIECPRGwK+/vXF2luoIGKVUnbZWUwIECAy6gKBi0FtQ+QkQIDCkAu6nH9KGVa2+Cbim+kbvxAQIECDQooCgokUwmxMgQIBAbwT8+tsbZ2epjoBRStVpazUlQIDAoAsIKga9BZWfAAECBAgQIECAAAECBAgMkYCgYogaU1UIECAwTAJ+/R2m1lSXMggYpVSGVlAGAgQIEGhGQFDRjJJtCBAgQKDnAu6n7zm5Ew65gGtqyBtY9QgQIDBEAoKKIWpMVSFAgMAwCfj1d5haU13KIGCUUhlaQRkIECBAoBkBQUUzSrYhQIAAAQIECBAgQIAAAQIEeiIgqOgJs5MQIECAQKsC7fz6O+v669Ojjz6aFl544fTGNdds9ZRjbv/UU0+lK6+6Kv9s9dVWS4ssssiY27W78rLLL0/PPPNMWnrppdPSSy2VH+Y3N92cHn74D+nFL35xWmP11ds99Jj7/e73v0933XVXmm/e+dK6664z5ja1K++977505513pnvvvS/NNddcaYklXpNe97rXpVe8/OW1m3k9AAJGKQ1AIykiAQIECOQCggpfBAIECBAopUA799Mf/8UT0s233JKWWmrJdOhBB3WlXg8+9FA65LDD82Ptu/deafnlluvKcYuD7LnPvunxxx9P79l88/Te97w7X/3Vr52Urv7Vr9Lrs0Bg/333KTbtyr9nf/8H6dyf/jQPXD5/3LHjHvNnPz8vnXX22elf//rXqO1e8IIXpB233y6tu87ooOO+++9Pv/nNb59Og8MAAEAASURBVPJt3/bWt+bBxqgdW3jzt6efThdddFG+x5pZ6PTSxRZrYe/B2vSGG3+THnjg/vSihV+U1lln7QkrfDvX1IQVxoEJECBAgMA4AoKKcXB8RIAAAQL9E2jn119BReP2ajaouP6GG9L0GV/OD/iiF70oC2henyKguPmWW9Of//znfP20KbulN6y66shJL7/8inTyzJn5+6+ceGKad955Rj5r9cUjjzya9jvwwHy33adOTauusnKrhxiY7U85dWa67IorslE1S6VD/lPniSh8O6OUJqIcjkmAAAECBBoJCCoaCfmcAAECBAZGQFDRuKmaDSq+fuY30i+yEQ3zzzdf+txnj8v/jaM/+eST6fCjjs7Dio033DBtv922IycVVIxQtPSiV0FFS4WyMQECBAgQ6KOAoKKP+E5NgAABAvUF2vn1t9Wg4o5s7oWY1+L+7JaFueeeJy215BJpk002SQvMP/9IwWa/9eP5z39+uvSyy9Jf/vKXbPul0qqrrpKWfe1rR7YvXvz9739PN2a3Qdx+++3pDw8/nJbJ5qBYccUV02uXWabYJP+31Vs/br3ttuyYd6Tf3/X79IpXvCK/FWXllVaa4zaLuF3j2uuuSzfffEt65NFH0iuzbd+a3Y5x8cWXNHXrx/QTZ6Trb7wxvebVr05HHHboqDKfdMop6Yorr8rnqfj00UelmGfjj3/8U7ovm8/iuswzlne94x15mV796sVHzRfSyDzqd+utt6Wnn/5bOu+CC/NjrTXpTellL31Zmn/++dKmb397vi7+xC0zYXzbbbenuFUkbstZJRt58bKXvnRkmyeeeCKd/5/jbLThBun+Bx7Mbk+5MRvtMV9abbU35POCxAiRX/36mvRQdptPzMGx9tprZ3N4zDtyjOJFM/a/vuaazOH+9PKXvSytueYa+fcr5viIeVNWytqpmIckjvmDc36YHzpGr9xz7735nCQbrLdevm61N7whv4Up3kTdbr311qzcN6XH//rXtMLyy6WVVx5dz3ynBn/aGaXU4JA+JkCAAAECEyIgqJgQVgclQIAAgU4F2rmfvpWg4ifZPA1n/+Cc9O9//3tUUWMCy8MPOTjvWMYHtUHFpDe9KevQ/nrUPs973vPSRyZPHjW3QIQUcdtEzJcx+/KhbbZJb33Lm0dWtxJURMf2R+eeO7Jv8SImDv34xz6aIkSJJep06szT8tsJim3i3xe+8IVpide8Ji9XTAo63hwV//ezn6fvfu97+e7rZZNuvnnjTdKSWZAT9X3oD3/Ig5q4FSRCms9+/vh0WxbIjLVEyLDLRz+af9SM+Q9/9ON0zo9+NNahUtyC8oXPfTb/7E+PPJKO+9zn88lTazeed5550t577TkSCNW2X0yGet2sWSObR/m33/bD6dyf/DQ9/Mc/jqyPOu215x4pjlUszdoX84ssvfRSaeEXLpSHPcUx4t+Y22PDDTbIV31kl4/XfjTqdbFdBGJHH/OZ3Lt2g2jrmDMl5jFpdmnnmmr22LYjQIAAAQLdFBBUdFPTsQgQIECgawLt/PrbbFARnddDDz8i79BH+LDeuutmIwIezoOLeMrHJhttlLbLOrCx1HZ0432MTIiOe8yhEGV86m9/ywOCg/bfP59jILYpOqvR0Y3jx6/08ct/TJoYHf0pu34yxS/msTQbVPwyuw3jjOx2jFhWz/ZdaaUVs6d33J2uyibdjGBk07e/LW39/vfnn//fz36WhQxn568XW3TRtMH666Unsls2YhREjDCIpVFQEaMVTsjmmbj77nvy7eNPBB1vWGWVtMYaq6dVsl/04ykgsVxxxZX5qI2777k3H8UR62Jy0Lnmen5afPHFUwQEzZrffscd+SiUcI3JPGNZN5tgMkYozDff/HnI8+yzz+btF2FF1GOdtdZKCy64QNYev8pHJsyfjYg56vDD0kte8pJR7Re3sWyYjaqY6/lzpQsuvDA9kx0nlmjTMLrzt78bKf+un/h4WnONNfLPW7Ev2j52nHvuudOkN74xL+MVV2VG2Xcm2v/YYz6dol1+/J/Q6ZrrZqV77rkn327jrHyxrJo5L7HEEqloyxjh8fFdPpaNKpk/C1Z+kn2fbspNjszqGedpZmlnlFIzx7UNAQIECBDotoCgotuijkeAAAECfRNoNqiIAkYnP2772Oxd7xzp6H3jm99KF/ziF/nw/EMOem4ix9qgIjqOMdqiWGJkwcGHHpa/3eK970mbb7ZZ+sc//pGm7L5HHh58YKut0js2/e+tCp857rNZZ/i3aZ2110of3XnnfL9mg4rPHf+FFLceRFAwbeqUoghprDknYqRBdPgXXfQl6bhjjsk7x7HDX7PbBvbeb//0z3/+s2FQEdtHIPDjc3+SjyKpHXEQn8Uv+Z/IOs4xyqFYGs1R0ax5HG+8yTSjblHHWGLyyaWXXip79dz8GfsdcGB6Onvc60477pDWz26jqG2/zd75zrTlFu/Ltz0lm/Tzsmzyz1gOO/jgfLRIuOyx9z4pwqpot2i/WFqxrw0q9s5GZay4wgr5MaLuR2dtEcvHsrZfO/sOFMt4c1REKBEjfxZccMF0wH77ple98pXpsccey279uSu7BWSFjiYsLc7vXwIECBAgUDYBQUXZWkR5CBAgQCAXaOfX31aCipiX4JJLL0v3ZvMqxASRsTyS/UIfv9LHHAef+fSn8nW1Hd0YsRAjF2qX6HxGJ3SVlVdKe0ybln77u9+lY449Lt8kfjWP2wuKJUY1xIiGeNRm/KoeSzNBRXSgp+6xR3rmmWfzW1Jq59B4NhtN8eijj+bH+tyxn8mDgwhKImSIeSK22nKL/LPizwnTp+e/xjcaUVFsX/wbTjHfRcx7EWFLLHGLxIH771dskhoFFc2axwHHCyriFpLvZY9ZjREdsz+29M9/+XPuFHM9TM7Citr223P33dPK2UiUWIoAIEYqfPnE6fm6+HPkpz6dj27YcP310447bJ+HOs3axwiOIqiINjrhC8ePjDqJY0cIEmHROzfdNL1/qy1jVb6MF1REGHbUpz6V1yk2jvApQqJVVl4lG63zxpEQ6rkjjf+3nVFK4x/RpwQIECBAYGIEBBUT4+qoBAgQINChQDv30zcbVMTEhbFtcRvE7EWtF1Tsno1kiCH5tcvXTj45XXnV1fkw/RhtER35L/+//8k3yR/POXoKjJFdo3MctwE0E1REkDJtz73yfWOY//Oz/cZa9th9Wlr8Va8a2fYjO03ObptYZ9Sm3/r2t/NJKscLKuJ8h2S3xsSyVTYCIUYm1C7fPet76f9+/vO8/Ccc//n8lpD4fLygohXzONZ4QUVRh/Cbp85tD6973bIpgonaoCLmdIgJN2MpgooFFlggnXjCF/N18Wf2oKIV+wgQiqAiXu+/7z4jx40X+x94UB6E1Y7WiPXjBRXxeYQVZ2XmN996y0hgEevzuTSyAKvZx8C2c03FeSwECBAgQKDXAoKKXos7HwECBAg0JdDOr7/NBhVFR3ehhRZKu0+Zkl75qlfmZTrzG99Il2fzLdQLKmKuhI/stNNI+WNuiD2zX8njqQwbZRMk7pBNlBiTH8btFbF88uO7jHriRXR6Y46BYtLL2KaZoCK2O+iQQ/Onh7x5443Tth/+UKzKlyjDP7IRFzH/QrEUHeJVsydg7D51arE6n5Nj3+zWiBjZMF5QETsccNDB6Y9/+lNa7vWvT/vts/fIMeLFxZdckk474+v5uhh5UjxlY7ygohXzOPB4QcVVWTD0v1lAFCMqjstGpkRdiiVGLES7FkunQUUcpxX7bgcV8fSWu7P5K+LWj0WyiV7jlo9rr7125Ikou33yE2mN1Vcvqjvuv+2MUhr3gD4kQIAAAQITJCComCBYhyVAgACB3gsUQUV0nD/0wW3mKMDzs0kUY+h/jHiIkQ+vziZ6jMkIY4k5GI448qh8gsXoFB6TPXYzJo+s7ejGbQI7bLddPplkjMaIiQ7Pv/AX+f61oxeKoCCOv9OOO6allloy7/THef+RBQsf/tAHR+YuaDaoiKd4XJo9BnSebILOCEBWyh51+nQWkHz7O99Ns7LHW8bklcXTRIpRHtGR32G7bdMbswkdn83mbbggK+uPszkPYmkUVJzx9TPTLy++ON82RlWskU0sGfNR3JbNk/Gtb38nr09toBMbxqSaJ516ar5PjC6JOT2KpRXz2Kc2qNjmAx9Ib3/bW4tDjfosJit9/5ZbZhNnLpLi0adfmn5iWnbZ12aToW6b3xZS237tjKiIk7Zi305QURw/bh056ojDR4VOx372c3m9InSasuuueTiTB2T77Jv+lk04OtbtSCNQXhAgQIAAgQEVEFQMaMMpNgECBIZdoJ1ff4ugop5NMcy/dkRAdA4XWuiF+dMtouNdO2nkp446Mj/UIYcdnv8boyGicxijF2LCxuLRpq9dZpn8kZjF4yzjsaQnfvkr+TwRsWMEHzGaIpa4deOAfffNw4t432xQEaMgYgLJGOUQS5TlmawM8Yt7LNt+6EPpzZtsnL9+4MEH822LW1uiXDHqIua6KOrQKKiIuTq+eMKX8tsO8oNmf+JWi6LOEYLEY1nXWmtS8XFethiJUSyx/bZZKLNJNgqkFfN4CkecZ/+DDspDiTheHCuewhEhTSzFPBXxOj6Lti2MY96Kww49JMU8Ed0IKlqxbyeouCwLoE7JgqiiLvFvBBYxceblV1yRTj51ZqzKg5e4tefe++/LXaINYtLXeORsM0s7o5SaOa5tCBAgQIBAtwUEFd0WdTwCBAgQ6IpAO/fTNxtURCc4npbxs/POyzvvUeDoAO4xbWr6ebbu4ksuzUdWzB5UxC/y519wYbo+G8EQAUFMlLniCsunXT760TwAqK34TdnEk9/7/tnZxIz3jnTuX/PqV+cjLJZc8r8jDZoNKuLYMcpg5umn55NZxmSZsSy88MLpg9mIg9rAINbHY0VPPe20fLLQeB/zGMTkmrF8/5wfNhxREdvF0y/iFo9bbr11JASIznE8cvRD22ydT+oY29UuESBc8Itf5rfAxPoIKt68ySa5QbPmEVTEEk9lOeeHP8ofORrv37jmmiNBRbz/+Xnnpwuzp7QU4U2UbZWVVson0Sxu/+hGUBHnata+naAiQq9vfOOb6dfXXDPyyNQIKuI7GUuEPD/88bn5LTv5iuxPBGzbfOD9o24tKj6r928711S9Y1lPgAABAgQmUkBQMZG6jk2AAAECbQv04tffGEL/wAMPpvkXmD//tTp+mW9meSYLCR64/4H0qqwj2Wgiw5i/4qGHHkqvePnL5wgzmjnXWNvEyIj77rs/CykWGjU/w1jbPv744/njLKOs0ZFvd4kRFk8+8WRW51eOPM61nWO1az7euWLEw+OP/7Xjso13juKzVuyLfbrxb5z3kezpLvFo0ghhYtRIq+3ZziilbpTdMQgQIECAQKsCgopWxWxPgAABAgQIECBAgAABAgQITJiAoGLCaB2YAAECBDoR8OtvJ3r2JTCnQC9GKc15VmsIECBAgEDrAoKK1s3sQYAAAQI9EHA/fQ+QnaJSAq6pSjW3yhIgQGCgBQQVA918Ck+AAIHhFfDr7/C2rZr1R8Aopf64OysBAgQItC4gqGjdzB4ECBAgQIAAAQIECBAgQIDABAkIKiYI1mEJECBAoDMBv/525mdvArMLGKU0u4j3BAgQIFBWAUFFWVtGuQgQIFBxAffTV/wLoPpdF3BNdZ3UAQkQIEBgggQEFRME67AECBAg0JmAX38787M3gdkFjFKaXcR7AgQIECirgKCirC2jXAQIECBAgAABAgQIECBAoIICgooKNroqEyBAYBAE/Po7CK2kjIMkYJTSILWWshIgQKDaAoKKare/2hMgQKC0Au6nL23TKNiACrimBrThFJsAAQIVFBBUVLDRVZkAAQKDIODX30FoJWUcJAGjlAaptZSVAAEC1RYQVFS7/dWeAIH/z959gEtSlfkDPmZRwJzADCiyygLqDBIElaAiGNFV0gCrosIgZhQBA2JYRJH9q+QgKoogCEYwpxkDo6gLwl9FVARzRh/D1qmZvtv09Nzpnu6qPqfOW88jc2/f7qrvvF8fb5/fra4mQIAAAQIECBAgQIBAUgKCiqTaoRgCBAgQ6An4629Pwr8EpiPgLKXpONoLAQIECDQvIKho3tgRCBAgQGANBLyffg3QPITAPALm1Dw4fkSAAAECSQkIKpJqh2IIECBAoCfgr789Cf8SmI6As5Sm42gvBAgQINC8gKCieWNHIECAAAECBAgQIECAAAECBEYUEFSMCOVuBAgQINCugL/+tuvtaN0XcJZS93tshAQIEOiKgKCiK500DgIECHRMwPvpO9ZQw5m5gDk18xYogAABAgRGFBBUjAjlbgQIECDQroC//rbr7WjdF3CWUvd7bIQECBDoioCgoiudNA4CBAgQIECAAAECBAgQINABAUFFB5poCAQIEOiigL/+drGrxjRLAWcpzVLfsQkQIEBgHAFBxTha7kuAAAECrQl4P31r1A5UiIA5VUijDZMAAQIdEBBUdKCJhkCAAIEuCvjrbxe7akyzFHCW0iz1HZsAAQIExhEQVIyj5b4ECBAgQIAAAQIECBAgQIBAowKCikZ57ZwAAQIE1lTAX3/XVM7jCAwXcJbScBe3EiBAgEB6AoKK9HqiIgIECBCoBLyf3tOAwHQFzKnpetobAQIECDQnIKhoztaeCRAgQGACAX/9nQDPQwkMEXCW0hAUNxEgQIBAkgKCiiTboigCBAgQIECAAAECBAgQIFCmgKCizL4bNQECBJIX8Nff5FukwMwEnKWUWcOUS4AAgYIFBBUFN9/QCRAgkLKA99On3B215ShgTuXYNTUTIECgTAFBRZl9N2oCBAgkL+Cvv8m3SIGZCThLKbOGKZcAAQIFCwgqCm6+oRMgQIAAAQIECBAgQIAAgdQEBBWpdUQ9BAgQIFAL+OuvJwKB6Qo4S2m6nvZGgAABAs0JCCqas7VnAgQIEJhAwPvpJ8DzUAJDBMypIShuIkCAAIEkBQQVSbZFUQQIECDgr7+eAwSmK+Aspel62hsBAgQINCcgqGjO1p4JECBAgAABAgQIECBAgACBMQUEFWOCuTsBAgQItCPgr7/tODtKOQLOUiqn10ZKgACB3AUEFbl3UP0ECBDoqID303e0sYY1MwFzamb0DkyAAAECYwoIKsYEc3cCBAgQaEfAX3/bcXaUcgScpVROr42UAAECuQsIKnLvoPoJECBAgAABAgQIECBAgECHBAQVHWqmoRAgQKBLAv7626VuGksKAs5SSqELaiBAgACBUQQEFaMouQ8BAgQItC7g/fStkztgxwXMqY432PAIECDQIQFBRYeaaSgECBDokoC//napm8aSgoCzlFLoghoIECBAYBQBQcUoSu5DgAABAgQIECBAgAABAgQItCIgqGiF2UEIECBAYFwBf/0dV8z9Ccwv4Cyl+X38lAABAgTSERBUpNMLlRAgQIBAn4D30/dh+JLAFATMqSkg2gUBAgQItCIgqGiF2UEIECBAYFwBf/0dV8z9Ccwv4Cyl+X38lAABAgTSERBUpNMLlRAgQIAAAQIECBAgQIAAgeIFBBXFPwUAECBAIE2BeEbFce84PixcsCAsPujANItUFYFMBJyhlEmjlEmAAAECtYCgwhOBAAECBJIUiCHFcccfX9d21RWXJ1mjogjkIhDf9hHDirPOPKMO/3KpW50ECBAgUKaAoKLMvhs1AQIEshB4RxVUHHSgsymyaJYikxaIIcXS6n/mU9JtUhwBAgQIrBAQVHgqECBAgEDyAvHsirh5C0jyrVJgYgL126cWLnAWRWJ9UQ4BAgQIzC8gqJjfx08JECBAYMYC8S/B/Z9WEK9ZYSNAYPUC/XPH26dW7+UeBAgQIJCOgKAinV6ohAABAgRWIdD/V+G4+Irfx7MrYmgxeLaF72989gmP8jziHInXoojbhg/cOBxczRVv+VjF/7m4mQABAgSSFBBUJNkWRREgQIDAqgQGLwro+xtfJJEHjxhULK6u7eKtUqv6fxG3EyBAgEDqAoKK1DukPgIECBBYSSAuxOIWz6iIX8eLBC6ovvZ9+x7vPuGE8K4TTgwHPOfZ4bnPeY5+JPB87M2NepL4DwECBAgQyFBAUJFh05RMgAABAgRSETj1tNPCKaedHvZbtE/Yd9GiVMpSBwECBAgQIJCxgKAi4+YpnQABAgQIzFpAUDHrDjg+AQIECBDonoCgons9NSICBAgQINCagKCiNWoHIkCAAAECxQgIKopptYESIECAAIHpCwgqpm9qjwQIECBAoHQBQUXpzwDjJ0CAAAECEwgIKibA81ACBAgQIEBgqICgYiiLGwkQIECAAIFRBAQVoyi5DwECBAgQIDCOgKBiHC33JUCAAAECBG4kIKi4EYdvCBAgQIAAgSkICCqmgGgXBAgQIECgVAFBRamdN24CBAgQINCcgKCiOVt7JkCAAAECnRcQVHS+xQZIgAABAgRaFxBUtE7ugAQIECBAoDsCgoru9NJICBAgQIBAKgKCilQ6oQ4CBAgQIJChgKAiw6YpmQABAgQIJC4gqEi8QcojQIAAAQIpCwgqUu6O2ggQIECAQJ4Cgoo8+6ZqAgQIECCQhICgIok2KIIAAQIECHRKQFDRqXYaDAECBAgQaFdAUNGut6MRIECAAIESBAQVJXTZGAkQIECAQEMCgoqGYO2WAAECBAgULCCoKLj5hk6AAAECBCYVEFRMKujxBAgQIECAwKCAoGJQxPcECBAgQIDAyAKCipGp3JEAAQIECBAYUUBQMSKUuxEgQIAAAQIrCwgqVjZxCwECBAgQIDCZgKBiMj+PJkCAAAECRQsIKopuv8ETIECAAIFGBAQVjbDaKQECBAgQKENAUFFGn42SAAECBAi0KSCoaFPbsQgQIECAQMcEBBUda6jhECBAgACBBAQEFQk0QQkECBAgQCBXAUFFrp1TNwECBAgQSFdAUJFub1RGgAABAgSSFxBUJN8iBRIgQIAAgewEBBXZtUzBBAgQIEAgHQFBRTq9UAkBAgQIEOiKgKCiK500DgIECBAgMAMBQcUM0B2SAAECBAh0XEBQ0fEGGx4BAgQIEGhSQFDRpK59EyBAgACBMgUEFWX23agJECBAgMBUBAQVU2G0EwIECBAgQKBPQFDRh+FLAgQIECBAYDwBQcV4Xu5NgAABAgQIrF5AULF6I/cgQIAAAQIEViEgqFgFjJsJECBAgACBNRYQVKwxnQcSIECAAAECggrPAQIECBAgQGDaAoKKaYvaHwECBAgQKEhAUFFQsw2VAAECBAi0JCCoaAnaYQgQIECAQBcFBBVd7KoxESBAgACB2QoIKmbr7+gECBAgQCBrAUFF1u1TPAECBAgQSFJAUJFkWxRFgAABAgTyEBBU5NEnVRIgQIAAgZwEBBU5dUutBAgQIEAgMQFBRWINUQ4BAgQIEOiAgKCiA000BAIECBAgMCsBQcWs5B2XAAECBAh0V0BQ0d3eGhkBAgQIEGhcQFDROLEDECBAgACB4gQEFcW13IAJECBAgMD0BAQV07O0JwIECBAgQGC5gKDCM4EAAQIECBBYYwFBxRrTeSABAgQIECCwCgFBxSpg3EyAAAECBAisXkBQsXoj9yBAgAABAgTGExBUjOfl3gQIECBAgECfgKCiD8OXBAgQIECAwFQEBBVTYbQTAgQIECBQpoCgosy+GzUBAgQIEGhSQFDRpK59EyBAgACBjgsIKjreYMMjQIAAAQIzEBBUzADdIQkQIECAQFcEBBVd6aRxECBAgACBdAQEFen0QiUECBAgQCA7AUFFdi1TMAECBAgQSF5AUJF8ixRIgAABAgTSFRBUpNsblREgQIAAgVwFBBW5dk7dBAgQIEAgAYHFLzwkXLpsWdhv0T5h30WLEqhICQQIECBAgEDuAoKK3DuofgIExhaIi6pl1f9sBAhMJnDpsm/VIUXci6BiMkuPJkCAAAECBP5PQFDxfxa+IkCgAIHeX38LGKohEmhVQFDRKreDESBAgACBTgsIKjrdXoMjQKBfoD+kiIsqGwEC0xE45bTTnVExHUp7IUCAAAECBCoBQYWnAQECRQjEt3vEoGLzzTYLx73t2CLGbJAE2hBwMc02lB2DAAECBAiUJSCoKKvfRkugWAGLqWJbb+ANC5hbDQPbPQECBAgQKFBAUFFg0w2ZQIkCFlMldt2Y2xAwt9pQdgwCBAgQIFCWgKCirH4bLYFiBSymim29gTcsYG41DGz3BAgQIECgQAFBRYFNN2QCJQpYTJXYdWNuQ8DcakPZMQgQIECAQFkCgoqy+m20BIoVsJgqtvUG3rCAudUwsN0TIECAAIECBQQVBTbdkAmUKGAxVWLXjbkNAXOrDWXHIECAAAECZQkIKsrqt9ESKFbAYqrY1ht4wwLmVsPAdk+AAAECBAoUEFQU2HRDJlCigMVUiV035jYEzK02lB2DAAECBAiUJSCoKKvfRkugWAGLqWJbb+ANC5hbDQPbPQECBAgQKFBAUFFg0w2ZQIkCFlMldt2Y2xAwt9pQdgwCBAgQIFCWgKCirH4bLYFiBSymim29gTcsYG41DGz3BAgQIECgQAFBRYFNN2QCJQpYTJXYdWNuQ8DcakPZMQgQIECAQFkCgoqy+m20BIoVsJgqtvUG3rCAudUwsN0TIECAAIECBQQVBTbdkAmUKGAxVWLXjbkNAXOrDWXHIECAAAECZQkIKsrqt9ESKFbAYqrY1ht4wwLmVsPAdk+AAAECBAoUEFQU2HRDJlCigMVUiV035jYEzK02lB2DAAECBAiUJSCoKKvfRkugWAGLqWJbb+ANC5hbDQPbPQECBAgQKFBAUFFg0w2ZQIkCFlMldt2Y2xAwt9pQdgwCBAgQIFCWgKCirH4bLYFiBSymim29gTcsYG41DGz3BAgQIECgQAFBRYFNN2QCJQpYTJXYdWNuQ8DcakPZMQgQIECAQFkCgoqy+m20BIoVsJgqtvUG3rCAudUwsN0TIECAAIECBQQVBTbdkAmUKGAxVWLXjbkNAXOrDWXHIECAAAECZQkIKsrqt9ESKFbAYqrY1ht4wwLmVsPAdk+AAAECBAoUEFQU2HRDJlCigMVUiV035jYEzK02lB2DAAECBAiUJSCoKKvfRkugWAGLqWJbb+ANC5hbDQPbPQECBAgQKFBAUFFg0w2ZQIkCFlMldt2Y2xAwt9pQdgwCBAgQIFCWgKCirH4bLYFiBSymim29gTcsYG41DGz3BAgQIECgQAFBRYFNN2QCJQpYTJXYdWNuQ8DcakPZMQgQIECAQFkCgoqy+m20BIoVsJgqtvUG3rCAudUwsN0TIECAAIECBQQVBTbdkAmUKGAxVWLXjbkNAXOrDWXHIECAAAECZQkIKsrqt9ESKFbAYqrY1ht4wwLmVsPAdk+AAAECBAoUEFQU2HRDJlCigMVUiV035jYEzK02lB2DAAECBAiUJSCoKKvfRkugWAGLqWJbb+ANC5hbDQPbPQECBAgQKFBAUFFg0w2ZQIkCFlMldt2Y2xAwt9pQdgwCBAgQIFCWgKCirH4bLYFiBSymim29gTcsYG41DGz3BAgQIECgQAFBRYFNN2QCJQpYTJXYdWNuQ8DcakPZMQgQIECAQFkCgoqy+m20BIoVsJgqtvUG3rCAudUwsN0TIECAAIECBQQVBTbdkAmUKGAxVWLXjbkNAXOrDWXHIECAAAECZQkIKsrqt9ESKFbAYqrY1ht4wwLmVsPAdk+AAAECBAoUEFQU2HRDJlCKwKXLloXNN9usHq7FVCldN862BcyttsUdjwABAgQIdF9AUNH9HhshgSIFBhdPg9/HEGPxCw8J+y3aJ+y7aFGRRgZNYBoCg3NrGvu0DwIECBAgQKBsAUFF2f03egKdFegtnuIAYxgRt1NOO73+erPqLIsYUsRNUFEz+A+BNRbozTVzaY0JPZAAAQIECBAYEBBUDID4lgCB7gj0FlD9I4pvBYlnU8TNwqpfxtcE1kygN8/MpzXz8ygCBAgQIEBgZQFBxcombiFAoEMCvUXU4JAsqgZFfE9gzQR6c8ycWjM/jyJAgAABAgRWFhBUrGziFgIEOibQW0j1hmVB1ZPwL4HJBXrzy7ya3NIeCBAgQIAAgeUCggrPBAIEihCwmCqizQY5AwFzawboDkmAAAECBDouIKjoeIMNb7YCS5YuDUuWLJ1tEY4+J7DsW8vCZv++/ONK5270xUwEFi5cUB934YLl/86kCAedioCgYiqMdkKAAAECBAj0CQgq+jB8SWBaAse94/hw3PHHT2t39kOg0wIxrFh80IFBaJFnmwUVefZN1QQIECBAIGUBQUXK3VFbdgKDAUVceG254i/H2Q1GwQQaFPjqijON4llHvW3xgQfWgUXve//mISCoyKNPqiRAgAABAjkJCCpy6pZakxboDykOrv46vKAKKfyFOOmWKS4BgRhUxLnTCyyEFQk0ZcwSBBVjgrk7AQIECBAgsFoBQcVqidyBwOoF4iJrj732ru8YQ4qDqr8M2wgQGF2gP+gTVozulsI9BRUpdEENBAgQIECgWwKCim7102hmJBBDihhWCClm1ACH7YRAf1hx1RWXd2JMJQxCUFFCl42RAAECBAi0KyCoaNfb0Too0DubIr7N46wzz+jgCA2JQHsCGz5w4/pgzqpoz3zSIwkqJhX0eAIECBAgQGBQQFAxKOJ7AmMK9M6miCGFa1KMiefuBAYEemdVCCoGYBL+VlCRcHOURoAAAQIEMhUQVGTaOGWnIyCoSKcXKumGQO+sCm//yKOfgoo8+qRKAgQIECCQk4CgIqduqTVJAYuqJNuiqIwFzKm8mieoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpAYuqpNujuAwFzKm8miaoyKtfqiVAgAABAjkICCpy6JIakxawqEq6PYrLUMCcyqtpgoq8+qVaAgQIECCQg4CgIocuqTFpgTYXVd+89NLwve99b7Ued7jDHcIuj3/8Ku/3t7/9LZx8yinhL3+5ITz72f8Z1ll77VXed74ffPGLXwo/uvpH4a53vWvYaccd57urnzUosOxb3wrnnnte3YNtttm6wSO1s+s251Q7I+r2UXpBxeabbRaOe9ux3R6s0REgQIAAAQKtCAgqWmF2kC4LtLmoetOb3xJOPPnk1XI+aOONw0fO//Aq73fBRy4ML3rJS+qfH/qyl4X9999vlfed7wcHH/KicNFHPxoWPPzh4b3vOXO+u67yZ1d8//vh85//fP3zfRctCje/+c1Xed82fvD+s88Of/jDH8Kmm24aFi5Y0MYhRzrGfHXtsNPOVWB0dVh33XXDki9/KdziFrcYaZ+p3qnNOZWqQW51bbv9o+qSY1ix+Wb/nlv56iWQlMBm1TyKW5xPNgIECJQqIKgotfPGPTWBNhdV73r3u8N73//+udp/+5vfhj//5S/hZje7Wbjb3e46d/tGG24YTj7xxLnvB7/4+je+Ef7jWXvUN7/92LfOe/bF4GP7v59GUHHueR8OL3vFK+rdXrZsWVhrrVv3H6L1r7d/9GPCT3760/Ds/fcPL3/ZS1s//qoOOF9dey/aN3z5K18JG26wQfj4Ry9a1S6yub3NOZUNSuKFXlrN3cUvPCTxKpVHIC8BZynl1S/VEiAwXQFBxXQ97a1AgVkuquICPy7073KXu4SvfPELY+l//8orww3VWz823fQhYz2u/86Cin6NZr+eL6i44YYbwtKlXwubb7H5Gr+Np9nqx9v7LOfUeJW6d79ADCuWVf+zESAwmcCly74V4nyKm7BiMkuPJkAgXwFBRb69U3kiArNcVM0XVHzs4x8PV1zx/XCf+9wnbL3VI8KFF14UrvvF9eHFhxwS/vSnP4XTz1j+Vo2nPvUp4V73vGeteeJJJ1U/+3PYeuutwnr3WC+c9+Hzwre/fVm4+93vHraq9hGvQ3HTm950Tn6+oGLJ0qVhyZKl4duXfTvc7373C4/YcsvwyG23nXtrx4fOPTdcc81PwuWXXx4u/vSn630e8Jzn1D/feOMHhsfuvPPccYZ98ctf/jJ8rnrLSFyg/+GPfwxbLlwYttvukeE+9753fferf/zjcF4V4sRt4cIF9fHrb6r//OY3v5kb/yabPChssskm4ZxzPlT/+PQzzqj3F18cbr3VVvVti/bZO9z+9rcP85ne8pa3rO8bz1a5+JJLwpVVEHTrW68VHvxvm4Q999xzaIDw42uuqd/28o1vfjPccMNfw6YPeXDYfrvtwoMe9KB6X/HMjnHquuc91w9Pe+pT68f2/vPtyy4LX6nOtlhWvfBde521wxabbx62rfpwz/XX792l/re/9/etnjOXVD357ne/FzbaaKOw/fbbhXvf6143un+T38xyTjU5LvsmQIDAqAL9ZynFa794G8iocu5HgEBXBAQVXemkccxMYJaLqvmCil6IsMH971+/NSSeQRG3S7/x9XD99deHnR+3/GKb7znj9HqRH3+25dbbhBgA7LzTTiFeoPG6666LN89t//H0p4fXv+61c9/3jjF4jYpj3/b28N/vfOfc/XpfxPAhvtUkvlVlj732DjHMGLbt+oRdwrHHHDPsR/Vt1/zkJ+FZe+4Vrr322hvd5zZrrRVOP+3U+gXdv/71r7Bv9faNL37py+F2t7td+PhFF9ZnnsQHvOCgxeETn/xkWPu2tw0XVNfyiPuJ9axq+9QnPh7ud9/7ht54h5nGC5K+813vCm+txh6P3b/Fi41ecN654c53vvPczUu/9rXw3AOeV4ciczdWX8TrS7zuNUfWgUP0GaeuwT6cdtrp4ag3vnGletZZZ51w0gnvDg/dYou5Q/d6/5QnP6kOf2JI0tui03uqAOfBD/633k2N/jvLOdXowOycAAECYwj0LlS736J9QryGk40AAQIlCQgqSuq2sTYiMMtF1ShBRRx0vEDlVo/YMqy/3vrhsFe9sr4Gw3xBRXzMHe94x/CkJ+5WnwnwoeoTJXoL18MOPTQsql40xa23cO9fIL+vuobGq484sv75Do9+dPXX+23CZZd9J3zkoovCX//617D/fvuGQ1/+8upsjfOrgOBn4bvf+586NIgPOOgFL6gW6jev/4q/4w471PsY/E98m8NjH79LXU880+NJu+1WBRHrhniB0P+pzs6Ii/CPfuSCcI973CP84he/CLvs9sTw61//ujpT4ZHV4vyE8OHzLwgvqS4gGrdj3vKW8MTddg0//enPwvkXnF/fduLJp9QX03zYQx9anQGyTX3bHs96Vh129MYbbxxm+rhdnhD++c9/1tf82L06s+HqH18djjn2beH3v/992OOZzwyvOfKIen/xAqJP3f3p1VkUN9R1PvmJT6wuhLlOuLC6MOl3vvPd+j7xYqjrrrPuWHX19+GcD30ovOKVr6r3dbe73S089clPrj3ixU/jdU3itUDOq+4Tr2sRt15QEb+OvX/G7rvXZ57E+8czVuJZN5+55OL448a3Wc6pxgfnAAQIEBhRQFAxIpS7ESDQSQFBRSfbalBtCsxyUTVqUPHhakHa/9fw//+DH8x7RkVchMdrXsSPOY3bP/7xj/DIRz26PsMivoXjzNNPq2/vLdz7F8h77r1P+OqSJeFR1VsYTqz+at/bjnnrseGd1cVAY7jwxc99tndzfY2NOI64jXIxzXgmQjybIm7nfvCDc9fY+O1vfxvidRz+WL2t5eijXh92f9rT6vt87nOfD/tXbymJ239Wn25y9gc+WAcRT37SE8Nb3vSm+vb+/8x3LYjeeOP9B03jbTGQiW+ZeN4Bzw23utWt4k3hNa99XTjzrLOqt3U8JJx7zgfr295dBSZvOeat9ad0XFC9vab3Noz4cbGP22V5CLPXHnuEIw5/dX3/+J9R6urvQzyb5AvVx8euv/564dOf+lR9Fkvczw9/9KOw486PjV+G/k986QUVt771rcNXq08OiWdRxO3kKrg5+s1vrr+OfYv9a3qb5Zxqemz2T4AAgVEFBBWjSrkfAQJdFBBUdLGrxtSqwCwXVaMEFQ98wAPCRdUZBv3b6oKKR2+/fTjh3e/qf0g4ulrUn3zKqeG2t7lN+ObXv1YvfHsL994C+e9//3vY/GEPC3HBHd/msG51dkNv+0t19kDvrRpf+Oxn6jMJ4s/G/dSP+Mkn/1WFHjFMGbxuwrU/v7Y+djyb4eg3HNU7dDjqDW8Ip55+xtz38XHxLR+9xfjcD6ovRgkEhpnGffz85z8PH/jgOSGeMRGDk7j9tHoLRTwbJV4745JPfbK+bf9nP7u6vsYXwo6PeUx45//77/q23n/iW27Wqt7CEj+5pf96IKPU1d+HLR728PrMiec997nhxS+68acxPKU6WyJee6Q/TOoFFf23xZquvOqqKjx5Ql3eKdUnyTzykdv2Sm3s31nOqcYGZccECBAYU0BQMSaYuxMg0CkBQUWn2mkwsxCY5aJqlKCit3jtt1ldUNF7e0b/Y87+wAfCq159eH1TvM5FvCbDYFDxu9/9Ljx0wcL6PvHikjevrkUxbDvpxBNCrCtu4wYVrz/qqHBadSHQm9zkJmGt6q//w7aHPeyh4ZTqwqC9rf+sinhbfLtHfNvHsG2cQKD/8fFtJ/FjQuOFOodt/UHFE6q3o1x+xRXhmc94Rnjda18z7O4r3TZOXf19ePMbjw5Pqd720b+96CUvqd8qEy8iGq+dEbdeUHHg858fXnjw4rm7/+xn11Zn0zyq/j5e1yJe7LPpbZZzqumx2T8BAgRGFRBUjCrlfgQIdFFAUNHFrhpTqwKzXFQ1FVTEtwt8tvrkihgG9LZ9V7yVIH4ixMWf/ER982BQEW/cYaedw4+uvjrsWV3X4cgjlgcb8fa//e1v4a/V/2LA0b+NG1TEa1HEhXY8o+Jzn74kxOsv9LZf/epX4U53ulPv2/rfGBw8ftfd6uszxI9xjdetiNs73v628LjHLn8LRH3Div+MEwj0P6531kY8/onVRTXvv8H9a78jX/Oa+noc/UHF4dU1PN5bXcsjfrrHR6q3fvRvh7z4xfXHxu5cXXg0XiOkt41b106PfVz4wQ9/OHdtjt5+4nVCttxq6/q6E3vvuUc4/NXL317SCyridUIOXnxQ7+5BUDFH4QsCBAi0KiCoaJXbwQgQSExAUJFYQ5STn0AXg4rYhcUHHhj23ONZ4VbVWQsXVRfCjBfIjNeqiJ8K8ebqkyTiNiyoeMWhrwznVB89Gq91EMOAbbfZpv441Dcc/cb6Y0jjfvfZe/k1JuI+4kU1X1pdXDNu8a/78a/88239C+ddHv/48PKXvrR6G8ndw9e+/vXwnOceELbYYvMqIDli7m0h8ZM1LvnMZ+Y++ePI6poR8RM/4kU3L7rggrDeeve40eEe9ZgdQvxUkWFvyxg23t6De58k0v+2kPgRqbtWZ0/Ei1fGTx65uPr0kHjdjwsrzxe+6MX1Q59/wAHhgOqaFvGTQqLzKw9bHhwcfthhYe+99uztPoxb16sPPyK87+yz60Dn8MNeFXbdddf67SgnnXRyOOt976v3e/xxb5/7GFhBxRy1LwgQIJCEgKAiiTYoggCBGQkIKmYE77DdEehiUBFDhviJFPGshVtWH5cZF9pxi58G8b6z3hPix3PGbdjCPV6nIV7s8sfXXFPfJwYCf/7zn+uQI95wRPUX/L2qv+T3tni/R++wY+/b5WchVBeRjJ+0saotfgxo/DSNuMWzPtZdd90Q3+4Qt3j9ifOrsxTimRvvqS5iGYOJuMWPO40fexo/AeSx1TUX4r8Pr66nET+eNX5cam+LoUkMT+IW9x3HvKS6uGTcho23/kH1n/dXocBhVTgQt/iJI3e60x3rT/CIZ1LEwKK3feJjH60/QSPu61MXL/8Ujegca4hnO8Qthh0f/MDZIX7cam8bt654PZB99t2vPqsi7iNe3DOe1dL76NT4UbHHHvNf9cehxp8LKqKCjQABAukICCrS6YVKCBBoX0BQ0b65I3ZMoItBRbxOwQ1/vSGcetrpdcAQF+wbP/CB1ZkUR9dvV+i1cFUL93jWw6GvelX4xje/WQce8f7x4prxY0nj9SEGtxg8nHnWe8P1119f/+jIKqjYs/rUi/m2U089rf40jV4gEhf72227bXhD9Ykf8e0X8YKWT3na7vXiPy7K49kDve3jn/hEOHDxwfW3h1TXY3hBNd7e9v0rrwxvqj7lIn5iRvyo0XgGxNe++pX6x6sab/xhvO9bq/DkpFNOCfGionF7wEYbhZOr63GcXN0WL7IZA58YVMSgJ56dcnR1ZsqFH/1Y+OUvf1nfP35k6GOqTy456vWvqy9aWt+44j9rUlcMYw6tPqJ0ydKl9aehxF3Ft7/EwCaeidIf0Agq+rV9TYAAgdkLCCpm3wMVECAwOwFBxezsHbkjArMMKqZNOLhYjZ9cEc8GiB+fOXjth1GOHRfsl19+RRVS3Kmxj7W87rrrqoX+r8KGG24w95Ggo9TW1H3iWRFXXnlVWPd269ZnTvRf52NVx4xhy1+qEGPDDTa4UXiwqvuPe3sMReKnd6xdnWXS+yjUcffR5v27NKfadHMsAgS6JSCo6FY/jYYAgfEEBBXjebk3gZUEurSoGgwqVhqsGwi0INClOdUCl0MQINBRAUFFRxtrWAQIjCQgqBiJyZ0IrFqgS4sqQcWq++wn7Ql0aU61p+ZIBAh0TUBQ0bWOGg8BAuMICCrG0XJfAkMEurSoihfBjB/n+axnPvNGF7wcMmw3EWhMoEtzqjEkOyZAoPMCgorOt9gACRCYR0BQMQ+OHxEYRcCiahQl9yEwuoA5NbqVexIg0F0BQUV3e2tkBAisXkBQsXoj9yAwr4BF1bw8fkhgbAFzamwyDyBAoIMCgooONtWQCBAYWUBQMTKVOxIYLmBRNdzFrQTWVMCcWlM5jyNAoEsCgoouddNYCBAYV0BQMa6Y+xMYELCoGgDxLYEJBcypCQE9nACBTggIKjrRRoMgQGANBQQVawjnYQR6AhZVPQn/EpiOgDk1HUd7IUAgbwFBRd79Uz0BApMJCCom8/NoAsGiypOAwHQFzKnpetobAQJ5Cggq8uybqgkQmI6AoGI6jvZSsIBFVcHNN/RGBMypRljtlACBzAQEFZk1TLkECExVQFAxVU47K1HAoqrErhtzkwLmVJO69k2AQC4CgopcOqVOAgSaEBBUNKFqn0UJWFQV1W6DbUHAnGoB2SEIEEheQFCRfIsUSIBAgwKCigZx7boMAYuqMvpslO0JmFPtWTsSAQLpCggq0u2NyggQaF5AUNG8sSN0XMCiquMNNrzWBcyp1skdkACBBAUEFQk2RUkECLQmIKhojdqBuipgUdXVzhrXrATMqVnJOy4BAikJCCpS6oZaCBBoW0BQ0ba443VOwKKqcy01oBkLmFMzboDDEyCQhICgIok2KIIAgRkJCCpmBO+w3RGwqOpOL40kDQFzKo0+qIIAgdkKCCpm6+/oBAjMVkBQMVt/R++AgEVVB5poCEkJmFNJtUMxBAjMSEBQMSN4hyVAIAkBQUUSbVBEzgIWVTl3T+0pCphTKXZFTQQItC0gqGhb3PEIEEhJQFCRUjfUkqWARVWWbVN0wgLmVMLNURoBAq0JCCpao3YgAgQSFBBUJNgUJeUlYFGVV79Um76AOZV+j1RIgEDzAoKK5o0dgQCBdAUEFen2RmWZCFhUZdIoZWYjYE5l0yqFEiDQoICgokFcuyZAIHkBQUXyLVJg6gIWVal3SH25CZhTuXVMvQQINCEgqGhC1T4JEMhFQFCRS6fUmayARVWyrVFYpgLmVKaNUzYBAlMVEFRMldPOCBDITEBQkVkPa10hAAAJ5klEQVTDlJuegEVVej1RUd4C5lTe/VM9AQLTERBUTMfRXggQyFNAUJFn31SdkIBFVULNUEonBMypTrTRIAgQmFBAUDEhoIcTIJC1gKAi6/YpPgUBi6oUuqCGLgmYU13qprEQILCmAoKKNZXzOAIEuiAgqOhCF41hpgIWVTPld/AOCphTHWyqIREgMLaAoGJsMg8gQKBDAoKKDjXTUGYjYFE1G3dH7a6AOdXd3hoZAQKjCwgqRrdyTwIEuicgqOheT42oZQGLqpbBHa7zAuZU51tsgAQIjCAgqBgByV0IEOisgKCis601sLYELKraknacUgTMqVI6bZwECMwnIKiYT8fPCBDouoCgousdNr7GBSyqGid2gMIEzKnCGm64BAgMFRBUDGVxIwEChQgIKgpptGE2J2BR1ZytPZcpYE6V2XejJkDgxgKCiht7+I4AgbIEBBVl9dtoGxCwqGoA1S6LFjCnim6/wRMgsEJAUOGpQIBAyQKCipK7b+xTEbComgqjnRCYEzCn5ih8QYBAwQKCioKbb+gECARBhScBgQkFLKomBPRwAgMC5tQAiG8JEChSQFBRZNsNmgCBFQKCCk8FAhMKWFRNCOjhBAYEzKkBEN8SIFCkgKCiyLYbNAECKwQEFZ4KBCYUsKiaENDDCQwImFMDIL4lQKBIAUFFkW03aAIEVggIKjwVCEwoYFE1IaCHExgQMKcGQHxLgECRAoKKIttu0AQIrBAQVHgqEJhQwKJqQkAPJzAgYE4NgPiWAIEiBQQVRbbdoAkQWCEgqPBUIDChgEXVhIAeTmBAwJwaAPEtAQJFCggqimy7QRMgsEJAUOGpQGBCAYuqCQE9nMCAgDk1AOJbAgSKFBBUFNl2gyZAYIWAoMJTgcCEAhZVEwJ6OIEBAXNqAMS3BAgUKSCoKLLtBk2AwAoBQYWnAoEJBSyqJgT0cAIDAubUAIhvCRAoUkBQUWTbDZoAgRUCggpPBQITClhUTQjo4QQGBMypARDfEiBQpICgosi2GzQBAisEBBWeCgQmFLComhDQwwkMCJhTAyC+JUCgSAFBRZFtN2gCBFYICCo8FQhMKGBRNSGghxMYEDCnBkB8S4BAkQKCiiLbbtAECKwQEFR4KhCYUMCiakJADycwIGBODYD4lgCBIgUEFUW23aAJEFghIKjwVCAwocAee+0dlixdGhYfeGBYfNCBE+7NwwmULRDnUpxTCxcsCGedeUbZGEZPgEDRAoKKottv8ASKFxBUFP8UADCpwHHvOD4cd/zxgopJIT2eQCXQC/4OrkK/g6rwz0aAAIFSBQQVpXbeuAkQiAKCCs8DAlMQ6J2qHv8CHP8SbCNAYHyB3tkU8ZFXXXH5+DvwCAIECHRIQFDRoWYaCgECYwsIKsYm8wACKwv0zqqIPxFWrOzjFgKjCPTOpvC2j1G03IcAga4LCCq63mHjI0BgPgFBxXw6fkZgDIHeIis+RFgxBpy7Fi8Qg754NkX8n5Ci+KcDAAIEVggIKjwVCBAoWUBQUXL3jX3qAv1hRVxwubjm1IntsEMCS5YsDydiQBE3IUWHmmsoBAhMLCComJjQDggQyFhAUJFx85SepkD/20DSrFBVBNITcPHM9HqiIgIEZisgqJitv6MTIDBbAUHFbP0dvcMC8a/EMbSwpSNw6bJldTGbb7ZZOkUVXsmWCxf4dI/CnwOGT4DAcAFBxXAXtxIgUIaAoKKMPhslgeIFvOAr/ikAgAABAlkJ+L2VVbsUS4DAlAUEFVMGtTsCBNIU8IIvzb6oigABAgSGC/i9NdzFrQQIlCEgqCijz0ZJoHgBL/iKfwoAIECAQFYCfm9l1S7FEiAwZQFBxZRB7Y4AgTQFvOBLsy+qIkCAAIHhAn5vDXdxKwECZQgIKsros1ESKF7AC77inwIACBAgkJWA31tZtUuxBAhMWUBQMWVQuyNAIE0BL/jS7IuqCBAgQGC4gN9bw13cSoBAGQKCijL6bJQEihfwgq/4pwAAAgQIZCXg91ZW7VIsAQJTFhBUTBnU7ggQSFPAC740+6IqAgQIEBgu4PfWcBe3EiBQhoCgoow+GyWB4gW84Cv+KQCAAAECWQn4vZVVuxRLgMCUBQQVUwa1OwIE0hTwgi/NvqiKAAECBIYL+L013MWtBAiUISCoKKPPRkmgeAEv+Ip/CgAgQIBAVgJ+b2XVLsUSIDBlAUHFlEHtjgCBNAW84EuzL6oiQIAAgeECfm8Nd3ErAQJlCAgqyuizURIoXsALvuKfAgAIECCQlYDfW1m1S7EECExZQFAxZVC7I0AgTQEv+NLsi6oIECBAYLiA31vDXdxKgEAZAoKKMvpslASKF/CCr/inAAACBAhkJeD3VlbtUiwBAlMWEFRMGdTuCBBIU8ALvjT7oioCBAgQGC7g99ZwF7cSIFCGgKCijD4bJYHiBbzgK/4pAIAAAQJZCfi9lVW7FEuAwJQFBBVTBrU7AgTSFPCCL82+qIoAAQIEhgv4vTXcxa0ECJQhIKgoo89GSaB4AS/4in8KACBAgEBWAn5vZdUuxRIgMGUBQcWUQe2OAIE0BbzgS7MvqiJAgACB4QJ+bw13cSsBAmUICCrK6LNREihewAu+4p8CAAgQIJCVgN9bWbVLsQQITFlAUDFlULsjQCBNAS/40uyLqggQIEBguIDfW8Nd3EqAQBkCgooy+myUBIoX8IKv+KcAAAIECGQl4PdWVu1SLAECUxYQVEwZ1O4IEEhTwAu+NPuiKgIECBAYLuD31nAXtxIgUIaAoKKMPhslgeIFvOAr/ikAgAABAlkJ+L2VVbsUS4DAlAUEFVMGtTsCBNIU8IIvzb6oigABAgSGC/i9NdzFrQQIlCEgqCijz0ZJoHgBL/iKfwoAIECAQFYCfm9l1S7FEiAwZQFBxZRB7Y4AgTQFvOBLsy+qIkCAAIHhAn5vDXdxKwECZQgIKsros1ESKF7AC77inwIACBAgkJWA31tZtUuxBAhMWUBQMWVQuyNAIE0BL/jS7IuqCBAgQGC4gN9bw13cSoBAGQKCijL6bJQEihfwgq/4pwAAAgQIZCXg91ZW7VIsAQJTFhBUTBnU7ggQSFPAC740+6IqAgQIEBgu4PfWcBe3EiBQhoCgoow+GyWB4gW84Cv+KQCAAAECWQn4vZVVuxRLgMCUBQQVUwa1OwIE0hTwgi/NvqiKAAECBIYL+L013MWtBAiUISCoKKPPRkmgeAEv+Ip/CgAgQIBAVgJ+b2XVLsUSIDBlAUHFlEHtjgCBNAW84EuzL6oiQIAAgeECfm8Nd3ErAQJlCAgqyuizURIoXsALvuKfAgAIECCQlYDfW1m1S7EECExZQFAxZVC7I0AgTQEv+NLsi6oIECBAYLiA31vDXdxKgEAZAv8LAAD//yt2P80AAEAASURBVOzdB5wURdrA4VLvznwGzBnDKUZMYBZzljNnBcwKmHPALIqJYBYliAnFrJgzCCbMmE5BMWc9BfU+v3oLauyd3dmZ6elQ1fXv+527M9Oh6nm3qO53qqun++WnH/9ULAgggEDBBW4YNEhdP2iw6tZlP9W1S5eC15bqIYAAAgj4LkC/5XsEKT8CCDQiMB2Jikb42BYBBHwR4ITPl0hRTgQQQAABEaDf4u8AAQRCFiBREXL0qTsCAQlwwhdQsKkqAgggUAAB+q0CBJEqIIBAbAESFbHp2BABBHwS4ITPp2hRVgQQQAAB+i3+BhBAIGQBEhUhR5+6I1BwATnJs/NRtHTC1/PIo/Tn+6lV27cvuATVQwABBBBwXeCVceP07R6DVb/LLjVFbanfivZrrteH8iGAAAKNCJCoaESPbRFAwFkBe4InSQg56bOv7WSakqSQk0L7ubMVoWAIIIAAAkEIlPdLlfot248FgUIlEUAgWAESFcGGnoojUHyB6Enfqu1XKT3145Vxr5KkKH74qSECCCDgnQD9lncho8AIIJCSAImKlGDZLQIIuCFgT/rKS8NIinIRXiOAAAIIuCBAv+VCFCgDAgjkLUCiIu8IcHwEEEhdoPykjyRF6uQcAAEEEECgAQH6rQbw2BQBBAohQKKiEGGkEgggUE3AnvSRpKgmxecIIIAAAi4I0G+5EAXKgAACeQmQqMhLnuMGJTBm7FjVsUMHU2f5XRaXX7tctkbsDjnscPOUj6LWz4e/rWj85HcWBBBwU8D+e+Jm6cIplTwFRJ5OxZK/gD13yL8klACBMARIVIQRZ2qZk8DSyy5njtyze3fVs0d31a//ANVvwADl+uthQ4eYRMpe++yr5GSV13jICVqSfw+yL1ns35Z5wX8QQCA3AemfZJE+igUBBCoLSH8o53QkLiob8QkCSQiQqEhCkX0gME1ALurlAqw8EWEvxuREUNaxHRyv8Qj170HaiZzkSduQxbQbTvym/UvCDwSyE7D9VvkRuQgrF+F16ALSVqILCYuoBr8jkLwAiYrkTdljwAJ2xIQQvP/O+IAlqDoCtQtEL5RoN7W7sSYCjQpE257s6widLOyhRwCyIIBAywLSZsaM0f+Xn9MSF/bLqJa34F0EEIgrQKIirhzbIVBBQDouvomqgMPbCFQQkCRfx44daDsVfHgbgaQFpK+yt2CRoEhal/2FIBD9copkRQgRp45ZC5CoyFqc4xVSwJ7s2WHshawklUIgAwESFhkgcwgEtID0W5KsIEnBnwMC8QVsssLe8ht/T2yJAALlAiQqykV4jUCdAtFvpRi2XiceqyNQJmAnoOXbqTIYXiKQoAD9VoKY7Cp4AdtvcQ4Y/J8CAAkLkKhIGJTdhSsgJ37c8hFu/Kl5MgLy7dR00ynuk0+Gk70g0KKAHU0hfRYjAVsk4k0EahZgVEXNVKyIQF0CJCrq4mJlBBBAAAEEEEDAbwGbqGDkkt9xpPRuCNgRSiT+3IgHpSiOAImK4sSSmuQkwJC/nOA5bGEF5NspOfHjm97ChpiK5SxAv5VzADh84QRoU4ULKRVyQIBEhQNBoAh+C9A5+R0/Su+eAG3KvZhQomIJ0MaKFU9qk78AbSr/GFCC4gmQqCheTKkRAggg4LWAjKaQhTlfvA4jhXdYgIsqh4ND0bwUoE15GTYK7bgAiQrHA0TxEEAAAQQQQACBJAW4qEpSk30hoBRtir8CBJIXIFGRvCl7DEyAzimwgFPd1AVkoj9ZmKMidWoOEKgA/VaggafaqQnQplKjZccBC5CoCDj4VD0ZATqnZBzZCwJWgDZlJfiJQDoCtLF0XNlruAK0qXBjT83TEyBRkZ4te0YAAQQQiCHAHBUx0NgEgToEuKiqA4tVEahBgDZVAxKrIFCnAImKOsFYHQEEEEAAAQQQ8FmAiyqfo0fZXRSgTbkYFcrkuwCJCt8jSPlzF6Bzyj0EFKBgAsxRUbCAUh3nBOi3nAsJBfJcgDbleQApvpMCJCqcDAuF8kmAzsmnaFFWHwRoUz5EiTL6LEAb8zl6lN1FAdqUi1GhTL4LkKjwPYKUHwEEECiYAHNUFCygVMc5AS6qnAsJBfJcgDbleQApvpMCJCqcDAuFQgABBBBAAAEE0hHgoiodV/YargBtKtzYU/P0BEhUpGfLngMRoHMKJNBUMzMB5qjIjJoDBSpAvxVo4Kl2agK0qdRo2XHAAiQqAg4+VU9GgM4pGUf2goAVoE1ZCX4ikI4AbSwdV/YargBtKtzYU/P0BEhUpGfLnhFAAAEEYggwR0UMNDZBoA4BLqrqwGJVBGoQoE3VgMQqCNQpQKKiTjBWRwABBBBAAAEEfBbgosrn6FF2FwVoUy5GhTL5LkCiwvcIUv7cBeiccg8BBSiYAHNUFCygVMc5Afot50JCgTwXoE15HkCK76QAiQonw0KhfBKgc/IpWpTVBwHalA9Roow+C9DGfI4eZXdRgDblYlQok+8CJCp8jyDlRwABBAomwBwVBQso1XFOgIsq50JCgTwXoE15HkCK76QAiQonw0KhEEAAAQQQQACBdAS4qErHlb2GK0CbCjf21Dw9ARIV6dmy50AE6JwCCTTVzEyAOSoyo+ZAgQrQbwUaeKqdmgBtKjVadhywAImKgINP1ZMRoHNKxpG9IGAFaFNWgp8IpCNAG0vHlb2GK0CbCjf21Dw9ARIV6dmyZwQQQACBGALMUREDjU0QqEOAi6o6sFgVgRoEaFM1ILEKAnUKkKioE4zVEUAAAQQQQAABnwW4qPI5epTdRQHalItRoUy+C5Co8D2ClD93ATqn3ENAAQomwBwVBQso1XFOgH7LuZBQIM8FaFOeB5DiOylAosLJsFAonwTonHyKFmX1QYA25UOUKKPPArQxn6NH2V0UoE25GBXK5LsAiQrfI0j5EUAAgYIJMEdFwQJKdZwT4KLKuZBQIM8FaFOeB5DiOylAosLJsFAoBBBAAAEEEEAgHQEuqtJxZa/hCtCmwo09NU9PgERFerbsORABOqdAAk01MxNgjorMqDlQoAL0W4EGnmqnJkCbSo2WHQcsQKIi4OBT9WQE6JyScWQvCFgB2pSV4CcC6QjQxtJxZa/hCtCmwo09NU9PgERFerbsGQEEEEAghgBzVMRAYxME6hDgoqoOLFZFoAYB2lQNSKyCQJ0CJCrqBGN1BBBAAAEEEEDAZwEuqnyOHmV3UYA25WJUKJPvAiQqfI8g5c9dgM4p9xBQgIIJMEdFwQJKdZwToN9yLiQUyHMB2pTnAaT4TgqQqHAyLBTKJwE6J5+iRVl9EKBN+RAlyuizAG3M5+hRdhcFaFMuRoUy+S5AosL3CFJ+BBBAoGACzFFRsIBSHecEuKhyLiQUyHMB2pTnAaT4TgqQqHAyLBQKAQQQQAABBBBIR4CLqnRc2Wu4ArSpcGNPzdMTIFGRni17DkSAzimQQFPNzASYoyIzag4UqAD9VqCBp9qpCdCmUqNlxwELkKgIOPhUPRkBOqdkHNkLAlaANmUl+IlAOgK0sXRc2Wu4ArSpcGNPzdMTIFGRni17RgABBBCIIcAcFTHQ2ASBOgS4qKoDi1URqEGANlUDEqsgUKcAiYo6wVgdAQQQQAABBBDwWYCLKp+jR9ldFKBNuRgVyuS7AIkK3yNI+XMXoHPKPQQUoGACzFFRsIBSHecE6LecCwkF8lyANuV5ACm+kwIkKpwMC4XySYDOyadoUVYfBGhTPkSJMvosQBvzOXqU3UUB2pSLUaFMvguQqPA9gpQfAQQQKJgAc1QULKBUxzkBLqqcCwkF8lyANuV5ACm+kwIkKpwMC4VCAAEEEEAAAQTSEeCiKh1X9hquAG0q3NhT8/QESFSkZ8ueAxGgcwok0FQzMwHmqMiMmgMFKkC/FWjgqXZqArSp1GjZccACJCoCDj5VT0aAzikZR/aCgBWgTVkJfiKQjgBtLB1X9hquAG0q3NhT8/QESFSkZ8ueEUAAAQRiCDBHRQw0NkGgDgEuqurAYlUEahCgTdWAxCoI1ClAoqJOMFZHAAEEEEAAAQR8FuCiyufoUXYXBWhTLkaFMvkuQKLC9whS/twFsuqc3v/gAzVx4sSq9Z1tttlUhzXXrLje77//rh559FE1ZcpvaostNlezzDxzxXVb++CNN99SX375hZpzzjnVaquu2tqquX32ww8/qI8mTFDffPONKUPHDh3UrLPOmlt5aj3wfz78UI0aNVq1b99erbjC8rVupuJuV/MBMlqROSoyguYwwQpk1W/VCvzyK6+ot956q+rqc801l9pm662rrhfaCj/++KO65957TbU323RTNf/884dGkHt9XWtTuYNQAAQSECBRkQAiuwhbIKvOafjtd6iRDz9cFXuxRRdVvU47teJ6Y8aMVdcMHGg+32WnndSWOlkRZ7n62uvU2BdeUP9aZhl1wnHHxtmF+mTSJPXGG2+YbeXkaoYZZoi1n/KN/vzzT3X7HSOaeZ3Z63S1yMILl6+ey+unnn5a/frrr6pt27Zq2X/9q0kZTj71NPXFl1+qWWaZRV16UR/1t7/9rfR53O1KO/Dgl6zalAcUFBGBVARca2MXXNhHXTutX2qtwu2WW07de/ddra0S5Gcf/Oc/aoutpiZwbhwyWK3VsWMhHW659Vb1008/qZVXXlnJFw8uLa61KZdsKAsCcQVIVMSVYzsEMhZ44MEH1ZP64tYuP//0s5ry229q+umnV3PNNad9Wy204ILqyJ49S6/Lf3nv/fdVb31SKMvBBx7Q6uiL8m2jr5NIVMiogYGDBpndXtG/v5pxxn9EDxH798efeFINu/lms72M+Fhx+eXVTDPNqLbeais1xxxzxN5vkhuecNLJ6ms90mPLzTdXu+y8U5NdX3zpZeqtt982sTz7zDOafBZ3uyY7cfwFc1Q4HiCK572AaxdVV119tbrplltKrt9/9736RSdyJXk9//zzld5fZuml1cBrry295pepAqEkKjptvIn5guPA/fdXJxx/nFPhd61NOYVDYRCIKUCiIiYcmyGQt8D1+gL/OX2hLxfel/S5sK7iTPr0U/WbvvWjbdsl6touurLLiYq+Ounx2utvqLnnnlv1PvecxEZqROvf6O+tJRx+0wmod959Ty299FJq5plmanKouNs12QkvEEAgaAHXL6qOP/FENeLOu9S8886rRj/7TNCxqqXyJCpqUUp3HdfbVLq1Z+8IpCNAoiIdV/YakEBenVNriYoXX3pJffLJJDX/fPOpdu2WU2PGvqB++PEHtUPnznpuiinq0cceNxFab7111Txt2pjfRz70kJo8eYpafvl2qs3cbdSo0aPUhx9+ZC72ZR8yD8V0001XimxriYrx77yj3tUX2h9+9KFaYIEF1HLLLqvnWlihlDB4btQo9dVXX+syfqJeefVVs8+tt9zSfL7IIgurNVZf3bz3v//9T8ncHG/q+TA+/uRjtdSSS+ryLa/aLrFEk7KUCjXtl/MvuNBst/6666ou++1b+viVcePUhAkT9bwac6hOG25Yer/SLzKfx+v61pR3333X3IqxpL5NQ44v5YguUTsxH6frJMdZWN9msvLKK6l555nHrC4jKJ599jnz+2OPP26+MTR1atfOvLfZppuYOTRs/OaZp41aT9ch7nbRMlaLiV3318mT1fjx4/UtOW+qH/UQ23bL6dituKKaT18wZLUwR0VW0hwnVIG8+q1avaslKr7++mslt8GN1X3bTz//bG512HDDDdTiiy1WOsR3332nBg8Zal7vvtuu6r333ldPP/O0mnnmWdSm+t/alVdaSX3xxRfqwQdHmv5C+r7Ouo+cVd9yZ5cHR45U77zzrlp88cXVVltuoW659Tbz77vcXrjuOmvr97ZUs88+u1299PNj3bc988wzSube+O9/f1Grtl9Fl3Et0x+UVtK/RPcv+7vvvvvVF199qY456ij1j39MHWF4z733qRdffNHMtzTvvPOoddZeW/1blzN6q2S9iQrpYx597DFt8p4ebTizmQtp7733VrPrOa7Kl5deflk9+eRTepTfW/o2xWXVltpBzhGG3367WbVrl/2ajFSME5vv9XxS4vXxx5+o1VZbTW28USf1z3/+0+xfbhG9Xd/6KsvgIUNMvFfV8zetu8465j3p42XkZN6L620qbx+Oj0AcARIVcdTYBoGIQF6dU2uJCptEWFAnCeTWEBlBIcuAfn3V999/r049vZd5fdwxR5skgrw46tjjlEzIJQmJDz/6SMlJXnTZcP311b777F16yx6jfI6Ku+6+R917//2l9ewvknyQW02kPBdedLEeMfCu/ajJz44d1lQHHXCA+r//+z91ad9+5haIJivoFzvt8G9zG0f5+/b1yIceVsPvuEO1aTO3OvmEE0onMYMGD1HPPPecPulcTJ1+yil29RZ/SpKi34DLWzz+HrvtpjbdZOPSdtZOTjTlpFYSC3aZacYZ1fHHHmuOKcmCPhdfYj9q9vPcs89SC+hJ0Mpt425nD1BLTGRd+ds4+7zzzU+7rfyUmMnfisQ6iyWvNpVF3TgGAi4IuN7GWktUSBJgz733UZ999lkTSpkYevCgG3RSoL15P3rxLnMgySTSdvn73/+u5La6K668Sk38+GP7tun/Bt1wfWmS6SOOOlrd/8ADpp+U0Yv2tjS7wYorrqCGDh7c5AL/BZ1UOOjgQ8wFtV1Pfkqi//RTT1X77L1X6W27f0lYS+LhXZ04kOWVl140o+kOPexw9cRTT5XWt7/IRfoNA68z/zbLe9G6Vpuj4sqrrlKXXNZXSbIlusynk+z33DlCzTMtsS6fSTJC5kyKrisJlJ122EHdrOeLkOXxRx9RMjeWLHFic8hBByk5n5GRhHaReZtuHnajSVaIuU1e28+jPx95aKT58iL6Xh6/u96m8jDhmAg0KkCiolFBtkcgJ4FaEhVSNDn5kW/F5RuQPXbfzVxEt5aokG3kG6K11+poTpTk9hJ74b3bLruozTfbVFZpdjEt7z2pT6iGDrtJflWrrrKKWkE/seKjjyaoMXrSTbnw32LzzdSuO++sRo9+Xn3z7TdqwsSPzTdOsv72226ryzq9GYUgJ5qSLDlHXzTLIseVi+QxL4xVDz/yqJlcUibGlIv6lhZ5osld99xtRo5I/WVUx9/1hJRf6W/hZCKuGfWJlox2kKejyCiGlhabLJB1Zb3FFlvUjK6QW0rkhLP7YYeq9rqOsthEhfwudhust576WX/LJ5ONyggFGbVywfnn6aePfKtGPz9aVtMTfT5iJtOUe67tkz026tTJjKiwx7ZJoLjbyXFqjYkpkx5VM1xPQirJlYMPOlB/8zizOUl/XY+ukJEiYi4n+Gkv9mLAtcnS0q43+0cgKwHXL6oqJSom639Pt9x6GzNPgfy7/u/tt9ff5v9TP/HiPvW2Hgkm//4+cO89akE9V1P04l1GCuy66y66H/i7GjJ0qBnNJtaSIJA5gl4Z96p6aNpk1ZLQ33KLLUwobCJBXsyo/12U/m+VlVY2yfhXX3vNrLPpxhurq668wvwuCfiddtlVj06cbEZmyBNK2uh//0fcdZcZvSEr9bngArXDvzub9aP7l0mT11l7LbXwQgurU085Wd11993qlNNON+v1OPxw1bFjB/Xcc6PUlXo+D1n6XXZpKWEfrWtriQpZb6tttjVfBEjZZELtCRMnKJkXSb6o2GuPPdSZZ0z9IkNGXUhCSL40kCRN5+22NU8TkcS3zHVlF5uoiBsb2Y/0g523306N03GQxIyMptx5xx1Vb91vTpr0qbpb9+eyXDvwetOHyxcfG6y/nnlvrz33bDKiw7yZw39cb1M5kHBIBBoWIFHRMCE7QCAfgVoTFTJyQEYQ2OWzzz9vdUSFXNjLnBfymFNZ5CTleD3xo4ywkBnXjz36KPN++cW0vCmjBeTb/1X0kNqePbqb9eQ/cq/x/XoyUHm03EUX9C6939pkmnLLh9zCIcsh+qLZ3g4y9oUX1fL6VpSWhtuWdqx/kXKIkVzkV1okSbH7rrs2+/iPP/5Q3Y840iRXyp+MYm8rkUTOAd26mW1tokK+abr04ovMhb58YEd2yO9Sb6m/XVqba6Il27jb1RMT+eZwxF13m2TJiXqiMpmYVR7xKkmjdsu1S2yyU1sXfiKAQD4Crl9UVUpUSPJXLp5lGTF8eOlWChkNJhMt/vzf/6rz9bxEu+iEePTi/bBDDlFHH3Wk2c7uW17cPWKESajLv/kd1l7HXKwfsH83deLxx5t1o4mEq664XI+k+yuxfeTRx6j79OhBSWCM0yMgJIkrk4JedMmlZtvHHnm4dCuKXHh32mRTMwpkI33b4bXXTE02RPd/lx4FKCM07CJlksTEh/px1V307RV22Xrb7czICxl5ePxxU5+4Fa1ra4kK2cfrOtkutx4eesjBpuzy3plnna2/ZBhmbocZcftweUtdrOshSRFJzD/x2KNNnpjVWScR5JZMWWyiIm5spG+/5aZhZl/ynwMPOtgkK2SUhuw7ujCZZlSD3xEovgCJiuLHmBqmLJDXCV8tiQp5FKd8Cx5dqiUqypMMsu1tevjnQ3oEgHzT3r/vZWa4afnFtJyI9TjySD0Hxm9muKYMw7XLb3o0xbffTk0Y9Ol9vpn3Qj5rLVEhQ01l5Mfn+h5iWeRRncsstZSec6Odkrk1yieZNCtN+4/cF3zFVVNPsOSpGiuttKL5Jk1OKsfpb8Hklpj9u3Y15ZTbQ8oXOek7r/cF5m0ZDRF9PKicCMtoCZl3ovd555p1bKKi3O5TPTT5tF5nmHXkSSwrRU5Cs0hU1BsTsT7rnHNMDKXQYiOjOlZacSU9qmSNVucFMZVM6D92mO+woUMS2iO7QQCBqEBe/Va0DK39bpMJ5ZNp2kSA/Jtsbzew+/ns88/0KLXJZpTA+frf5ujF+w3XXafWn/YNvNz6ICMIZC6KV1952W6utt9hR/XWW2+ZEXznnnO2ed8mEsxtH6Oea9IXPPHkk+pAfYuHLHcMv02toh+Z2U0nD55+5llz+8nwW/96iomsYx/BKqM7Xhw7xox2tPuXWx3u1yNByheZ70jmsfhAJ+6lbrLIyBEZ/SAjDW05o3Wtlqj4XH9Zcdvw283tl5LgkWWSngdC5oKQOT4kwSKLJIQk+SAj28r/LZbbKM857zyznk1UxI3NSToptL9ODtll2E03qV5nnmVevvnaq6VkirxBosIq8ROBMARIVIQRZ2qZokBeJ3y1JCrsrQPR6ldLVNjbM6LbPK0nuRo89EbzliQqJAlRnqj4r76A76nv55VFvlmaPjLxpnlz2n+OPKJnaa6D1hIVsro8nu4u/Q3/WH3Pr9yyYRd5mscResSGJGJaWs49v7f6j/4Wqr0+cezR/fDSKrXOUSGJjsv1vcuymEemNr2Vt7S/y/v3MxfvNlGx3Tbb6EnOti99LqM5jj/pJPNayiuTt9kli0RFnJhIskImLntr/NulhIWUeWmdJDpaJ6KSeoSsdWjpZ15tqqWy8B4CRRRwvY1VSlScc+65apCeIFO+5a+UrF5jjdXV9ToxUeni3SYqZLLGl/XthHZpLVEhIx1kxEN0+WjCBLXp5lNvEbla3/qxib4FZJvttjcJgB31PEoX9v5r9KBsd+ttt5lbOaTsL7/4gpnXwiYq5PbCm24cGt29GYl4sp7TQkZWtLTESVRIkmPfLl2bzUFl9x9NVFgPuUWk76WX2FXMz3v1pJ9HHXOM+d0mKuLGZujgQfpW07VK+79T9/nH6bmlZHlt3Cul+ULkNYkKUWBBIBwBEhXhxJqaFkwgrUSFfIt+gf6mRE6m7HJp377qDT3MU+YpOG/aN03liQpZVybd+uLLL9XGnTqpvfbcw25ubqH4Q4+4KD+xrJaokH3JxbY85UO+7ZGhpnJ7giQwNt14Iz3nxu6lY0R/Ofq4480tC+vq2dG7de1S+qjWRIV8y3TM8VNPlA49+KDSbSeyIymPzN0gE0zaxSYqZJ4Nuc/WLnknKqQc9cREbvOZMHGiufVjLj2Lutzy8bKe8f2RaU+JOfzQQ8xkc7Z+af1kjoq0ZNkvAlMFfE1UyFwUR+vJiWVExVOPP2bmTLAx/UZPYizzQdglyUSF7NNekNv92xEE8nqUfpqITEZ5mh4FKJNMShJkjB6BEZ3Tp+v++6tnnn1OPznjr9ETrSUqtuv8bzN6Qi7izz7rTPOoVhlpuL1+XyYAjZOoOFf37Tfo0RDidK0eWbLkUkuavv6MM89UkiCIJirO0KMabtSjG2bSj8ge/dyzTSYM3f/AA/VTV54xFNYlidjIDklUGFb+gwACWoBEBX8GCHgqkFaiQjg6b7ed2qjThurves6FF/TQzyE3DjNzVchTLbp16WLEWkpU3DBosHpWP3pU5mqQC/wV9KM8ZYKtW28bbm65kAv56NMyZFLN6264weyv16mn6Akr/5pLwz6pQobcnnn6aaU5KS7r109Pavlms3kwzE6m/Udu+5BHqslJ4kEH7K9vXdC3fujfa01UyG7siAcZtdF1v/3UEkssbibjlJEWf+hbWfbcY3c9V0Y7c8RGEhUy6Wj3ww+bVvKpP1qytSvYctW6XT0x6X1hHzNJ2sr6Vpnuhx1mhibLJKhSv191ckgmQpURNywIIOC3gK+Jik8//UxtsNFGBl++6T/huOP0xJkLKPukjdVWW1Wd0auXuS0k6USFTLApIwIlcS6Pme6lL+4lgb7wwgvppMnjpkxye6HMXSHLvvrpHt30PEZz6KTF3ffco84+9zwzSeQ+e+2leuk+TZbWEhWrd+hoEu6yn9NPm7p+dP9yS4aMRpCkeaW6moNE/nN4j55m0tBoskSS09tt39l8ASD97aP6KRoyn1L0WJIs2XuvPc0kpSNG3GmSMXJroSw2UZFEbGR/rSUqNtLzfMiTRTbTc4VcecXlsrozi+ttyhkoCoJAHQIkKurAYlUEWhLIq3NKK1EhSQZ5TJhMqvk3/f8p0x4ZJpNXnqAn7pL5HWRp6WJaJty8oM9F5oJe1pGRB1OmTDFJDnktM4pvvFEn+dUs8hSOE08+xb403+zspRMA8vQLeaTqufqpH3L8WWedVS2tZ2f/Vu9fTlJk2VuP2JD1WlpkeKs8WjT6uDMZIWIfsVbL40nfevtt1f/yK0r7kDLIaApZJOlxoj5BluSFLHESFQN1gmaUTtTIImWTyUsv0xNxytKSrflA/6fe7eqJyajRo/X+B5lDyRwcCy+0kPp40idmQlL5ezj15JOa3Rduy5XkT+aoSFKTfSHQXCCvfqt5SVp+p9KtH7K2vXVDfpd/O2X0gkz6K4vMW3H3XXeab/8rXbzb7eu59UNGcEj/IRfn0hfaWxHl38XLLrlYbbXllub4ktiV5MPDj0ydBFLKJ/2F7Yvk6RaDrh9YGgnSWqJCbq2QWyxkWW7ZZdUvv/xiRlIssfjiSm47kcXO4VGprmalyH9u0aM97FO/5MkoMoLyDZ34l5EUkrCwy0MPPqCWbNtWJ+xPMreg2PftT3laihxTFpuokN+trfweJzayXWuJCrklRD6XRfYvt4HKyBUXFtfblAtGlAGBegVIVNQrxvoIlAnk1TmllaiQeRZ+/+N38xhQuRVATgYWXWQRPZJiP7WoPgm0S6WLabndYdCQIUqe2mFPzuSEcHc98Zc8Xq18eUA/DeSxJ55UdlIvSVRsPO0bM3kEmgyjnTDhrxMoeVzo5ptt1mQuiPJ9yms5iXrwwZHqQ31CZ/dt16slUSHrvvnW2+qOO0eoifoxqjbJIRYywiL6JJU4iQpJxMgz6uWWGtm3JCr66hNeWSrZymdxtqsnJjIfyT365FgSHHaRk8Hddtm5yS0w9rM0fubVptKoC/tEwEUB19tYa4kK8bxBJ1TlKRVyC4QskkjYcP311Xn6iR/29o9KF+/2YrqeRIXMISGj6GRyZJukkAt9mbfHPmrUFET/R5IZvfUjSO974EH11Vdfmbdn04luGZUgk3zOqW+rs0triQo5jiQrnnzqabu6eWyq7OOQQw9T8vhQGfnwvL4to1JdSxtO+0X69Ev0RKLXXX99ae4Lmctq4LXXqIH6PZlkU26tlESFJCOkLldfc41+SsgTuj98S82jE9h77LarmWC5m779Q5ZookJeNxIb2b61RMW7772nJyW90NxCI3WR+r8w7ZHfsm2ei+ttKk8bjo1AXAESFXHl2A6BggmUX2zL6AGZI0K+Wa/2KNCWKOQE55NPJulvu2Zv8ljOltat9p5cNH+jnxoij4GT+4AlWZHl8qu+fUVmSl9g/vnNKJEsj53ksWqNiawn3vItpcRe/gbkm8OsFuaoyEqa44QqUJSLqi/05L9ff/2NWnrppZo8HSKpuJYnEuTJGx999KGaSY8WlFtAqi0yAlBGQshIiui8RtW2i34uT/iQyaHlNkRJFCSxyEjH9957X/1zjn+aLyLkC4lqiyTU7Xpy60sXPeeGLOWJCruftGNjj+PKz6K0KVc8KQcCIkCigr8DBBAwAuWJClgQQAABBIopwEVVbXEtT1TUtlVx1vpa3545fvw7zSp0t36Uqr0FQ+bnkHk6Ql9oU6H/BVD/NARIVKShyj6DEihK50SiIqg/W6cryxwVToeHwhVAoCj9VtqhCD1R8eDIkarHEUdWZJbHVo98YOo8GhVXCuQD2lQggaaamQqQqMiUm4MVUaAonZNMgvnzzz+bCSqjE14WMWbUyW2BorQpt5UpXcgCtLHaon++nmviaf0YzhVXXEH10b+HtjzzzLPqvN69W6z2snqCT3n898orrdTi56G9SZsKLeLUNwsBEhVZKHMMBBBAAIGaBZijomYqVkQglgAXVbHY2AiBigK0qYo0fIBAbAESFbHp2BABBBBAAAEEEPBPgIsq/2JGid0WoE25HR9K56cAiQo/40apHRKgc3IoGBSlEALMUVGIMFIJhwXotxwODkXzUoA25WXYKLTjAiQqHA8QxXNfgM7J/RhRQr8EaFN+xYvS+idAG/MvZpTYbQHalNvxoXR+CpCo8DNulBoBBBAorABzVBQ2tFTMEQEuqhwJBMUojABtqjChpCIOCZCocCgYFAUBBBBAAAEEEEhbgIuqtIXZf2gCtKnQIk59sxAgUZGFMscotACdU6HDS+VyEGCOihzQOWRQAvRbQYWbymYgQJvKAJlDBCdAoiK4kFPhpAXonJIWZX+hC9CmQv8LoP5pC9DG0hZm/6EJ0KZCizj1zUKAREUWyhwDAQQQQKBmAeaoqJmKFRGIJcBFVSw2NkKgogBtqiINHyAQW4BERWw6NkQAAQQQQAABBPwT4KLKv5hRYrcFaFNux4fS+SlAosLPuFFqhwTonBwKBkUphABzVBQijFTCYQH6LYeDQ9G8FKBNeRk2Cu24AIkKxwNE8dwXoHNyP0aU0C8B2pRf8aK0/gnQxvyLGSV2W4A25XZ8KJ2fAiQq/IwbpUYAAQQKK8AcFYUNLRVzRICLKkcCQTEKI0CbKkwoqYhDAiQqHAoGRUEAAQQQQAABBNIW4KIqbWH2H5oAbSq0iFPfLARIVGShzDEKLUDnVOjwUrkcBJijIgd0DhmUAP1WUOGmshkI0KYyQOYQwQmQqAgu5FQ4aQE6p6RF2V/oArSp0P8CqH/aArSxtIXZf2gCtKnQIk59sxAgUZGFMsdAAAEEEKhZgDkqaqZiRQRiCXBRFYuNjRCoKECbqkjDBwjEFiBREZuODRFAAAEEEEAAAf8EuKjyL2aU2G0B2pTb8aF0fgqQqPAzbpTaIQE6J4eCQVEKIcAcFYUII5VwWIB+y+HgUDQvBWhTXoaNQjsuQKLC8QBRPPcF6JzcjxEl9EuANuVXvCitfwK0Mf9iRondFqBNuR0fSuenAIkKP+NGqRFAAIHCCjBHRWFDS8UcEeCiypFAUIzCCNCmChNKKuKQAIkKh4JBURBAAAEEEEAAgbQFuKhKW5j9hyZAmwot4tQ3CwESFVkoc4xCC9A5FTq8VC4HAeaoyAGdQwYlQL8VVLipbAYCtKkMkDlEcAIkKoILORVOWoDOKWlR9he6AG0q9L8A6p+2AG0sbWH2H5oAbSq0iFPfLARIVGShzDEQQAABBGoWYI6KmqlYEYFYAlxUxWJjIwQqCtCmKtLwAQKxBUhUxKZjQwQQQAABBBBAwD8BLqr8ixkldluANuV2fCidnwIkKvyMG6V2SIDOyaFgUJRCCDBHRSHCSCUcFqDfcjg4FM1LAdqUl2Gj0I4LkKhwPEAUz30BOif3Y0QJ/RKgTfkVL0rrnwBtzL+YUWK3BWhTbseH0vkpQKLCz7hRagQQQKCwAsxRUdjQUjFHBLiociQQFKMwArSpwoSSijgkQKLCoWBQFAQQQAABBBBAIG0BLqrSFmb/oQnQpkKLOPXNQoBERRbKHKPQAnROhQ4vlctBgDkqckDnkEEJ0G8FFW4qm4EAbSoDZA4RnACJiuBCToWTFqBzSlqU/YUuQJsK/S+A+qctQBtLW5j9hyZAmwot4tQ3CwESFVkocwwEEEAAgZoFmKOiZipWRCCWABdVsdjYCIGKArSpijR8gEBsARIVsenYEAEEEEAAAQQQ8E+Aiyr/YkaJ3RagTbkdH0rnpwCJCj/jRqkdEqBzcigYFKUQAsxRUYgwUgmHBei3HA4ORfNSgDblZdgotOMCJCocDxDFc1+Azsn9GFFCvwRoU37Fi9L6J0Ab8y9mlNhtAdqU2/GhdH4KkKjwM26UGgEEECisAHNUFDa0VMwRAS6qHAkExSiMAG2qMKGkIg4JkKhwKBgUBQEEEEAAAQQQSFuAi6q0hdl/aAK0qdAiTn2zECBRkYUyxyi0AJ1TocNL5XIQYI6KHNA5ZFAC9FtBhZvKZiBAm8oAmUMEJ0CiIriQU+GkBeickhZlf6EL0KZC/wug/mkL0MbSFmb/oQnQpkKLOPXNQoBERRbKHAMBBBBAoGYB5qiomYoVEYglwEVVLDY2QqCiAG2qIg0fIBBbgERFbDo2RAABBBBAAAEE/BPgosq/mFFitwVoU27Hh9L5KUCiws+4UWqHBOicHAoGRSmEAHNUFCKMVMJhAfoth4ND0bwUoE15GTYK7bgAiQrHA0Tx3Begc3I/RpTQLwHalF/xorT+CdDG/IsZJXZbgDbldnwonZ8CJCr8jBulRgABBAorwBwVhQ0tFXNEgIsqRwJBMQojQJsqTCipiEMCJCocCgZFQQABBBBAAAEE0hbgoiptYfYfkoAk1+WWxY4dOqhhQ4eEVHXqikCqAiQqUuVl5yEI2A6qZ/fuqmeP7iFUmToikJqAnZ9C2pKc9LEggEDyAv36D1D9BgxQ9FvJ27LH8ASk35JzQRIV4cWeGqcrQKIiXV/2HoiAfDt1hL6w6qGTFSwIIBBfwH7TK99KkaiI78iWCLQmYBPsss7774xvbVU+QwCBKgL0W1WA+BiBmAIkKmLCsRkCCCCAQDoC9pupdPbOXhFAQAQYVcHfAQKNC9h2xGiKxi3ZAwLlAiQqykV4jUADAvYeRW4BaQCRTYMUkJM9WWg7QYafSucgEB1VwS0gOQSAQ3ovYJMUUhFGAXofTirgoACJCgeDQpH8FLAnfdGsOt8M+xlLSp29AENnszfniAjYfkskpO8y/+849Sc6CCDQskA0QSFrkKRo2Yl3EWhUgERFo4Jsj0BEQE76ZJGTPTu5ku3AeD11sik8ps69wN/D1L8He3+8nPh15AIp8q8JvyKQjYD0W9L+bP+VzVE5CgL+C8i5HhM/+x9HauCuAIkKd2NDyTwX4EKUxISc+JOYqS0x43lzp/gIeC9AwsL7EFKBjARk8nRZmEA9I3AOE6wAiYpgQ0/FEQhL4IZBg9T1gwarbl32U127dAmr8tQWAQQQQMA7Afot70JGgRFAIEEBEhUJYrIrBBBwV4ATPndjQ8kQQAABBJoL0G81N+EdBBAIR4BERTixpqYIBC3ACV/Q4afyCCCAgHcC9FvehYwCI4BAggIkKhLEZFcIIOCuACd87saGkiGAAAIINBeg32puwjsIIBCOAImKcGJNTREIWoATvqDDT+URQAAB7wTot7wLGQVGAIEEBUhUJIjJrhBAwF0BTvjcjQ0lQwABBBBoLkC/1dyEdxBAIBwBEhXhxJqaIhC0ACd8QYefyiOAAALeCdBveRcyCowAAgkKkKhIEJNdIYCAuwKc8LkbG0qGAAIIINBcgH6ruQnvIIBAOAIkKsKJNTVFIGgBTviCDj+VRwABBLwToN/yLmQUGAEEEhQgUZEgJrtCAAF3BTjhczc2lAwBBBBAoLkA/VZzE95BAIFwBEhUhBNraopA0AKc8AUdfiqPAAIIeCdAv+VdyCgwAggkKECiIkFMdoUAAu4KcMLnbmwoGQIIIIBAcwH6reYmvIMAAuEIkKgIJ9bUFIGgBTjhCzr8VB4BBBDwToB+y7uQUWAEEEhQgERFgpjsCgEE3BXghM/d2FAyBBBAAIHmAvRbzU14BwEEwhEgURFOrKkpAkELcMIXdPipPAIIIOCdAP2WdyGjwAggkKAAiYoEMdkVAgi4K8AJn7uxoWQIIIAAAs0F6Leam/AOAgiEI0CiIpxYU1MEghbghC/o8FN5BBBAwDsB+i3vQkaBEUAgQQESFQlisisEEHBXgBM+d2NDyRBAAAEEmgvQbzU34R0EEAhHgERFOLGmpggELcAJX9Dhp/IIIICAdwL0W96FjAIjgECCAiQqEsRkVwgg4K4AJ3zuxoaSIYAAAgg0F6Dfam7COwggEI4AiYpwYk1NEQhagBO+oMNP5RFAAAHvBOi3vAsZBUYAgQQFSFQkiMmuEEDAXQFO+NyNDSVDAAEEEGguQL/V3IR3EEAgHAESFeHEmpoiELQAJ3xBh5/KI4AAAt4J0G95FzIKjAACCQqQqEgQk10hgIC7ApzwuRsbSoYAAggg0FyAfqu5Ce8ggEA4AiQqwok1NUUgaAFO+IIOP5VHAAEEvBOg3/IuZBQYAQQSFCBRkSAmu0IAAXcFOOFzNzaUDAEEEECguQD9VnMT3kEAgXAESFSEE2tqikDQApzwBR1+Ko8AAgh4J0C/5V3IKDACCCQoQKIiQUx2hQAC7gpwwudubCgZAggggEBzAfqt5ia8gwAC4QiQqAgn1tQUgaAFOOELOvxUHgEEEPBOgH7Lu5BRYAQQSFCAREWCmOwKAQTcFeCEz93YUDIEEEAAgeYC9FvNTXgHAQTCESBREU6sqSkCQQtwwhd0+Kk8Aggg4J0A/ZZ3IaPACCCQoACJigQx2RUCCLgrwAmfu7GhZAgggAACzQXot5qb8A4CCIQjQKIinFhTUwSCFuCEL+jwU3kEEEDAOwH6Le9CRoERQCBBARIVCWKyKwQQcFeAEz53Y0PJEEAAAQSaC9BvNTfhHQQQCEeAREU4saamCAQtwAlf0OGn8ggggIB3AvRb3oWMAiOAQIICJCoSxGRXCCDgrgAnfO7GhpIhgAACCDQXoN9qbsI7CCAQjgCJinBiTU0RCFqAE76gw0/lEUAAAe8E6Le8CxkFRgCBBAVIVCSIya4QQMBdAU743I0NJUMAAQQQaC5Av9XchHcQQCAcARIV4cSamiIQtAAnfEGHn8ojgAAC3gnQb3kXMgqMAAIJCpCoSBCTXSGAgLsCnPC5GxtKhgACCCDQXIB+q7kJ7yCAQDgCJCrCiTU1RSBoAU74gg4/lUcAAQS8E6Df8i5kFBgBBBIUIFGRICa7QgABdwU44XM3NpQMAQQQQKC5AP1WcxPeQQCBcARIVIQTa2qKQHACr4wbp1Zt397Uu6UTvujnweFQYQQQQAAB5wSi/RL9lnPhoUAIIJChAImKDLE5FAIIZCdQfoJX7XV2JeNICCCAAAIINBeo1k+Vf958D7yDAAIIFEeAREVxYklNEEAgIiDfSvU88ijzTrcu+5mf1w8arKK/y5v9Lru0NOrCrMR/EEAAAQQQyEGAfisHdA6JAALOCpCocDY0FAwBBBoViJ702X3JrSDyviwkKawKPxFAAAEEXBCg33IhCpQBAQRcECBR4UIUKAMCCKQm0NJJnxyMJEVq5OwYAQQQQKABAfqtBvDYFAEECiNAoqIwoaQiCCBQSaD8pI8kRSUp3kcAAQQQcEGAfsuFKFAGBBDIU4BERZ76HBsBBDITsCd9JCkyI+dACCCAAAINCNBvNYDHpggg4L0AiQrvQ0gFXBXo13+AGjN2rKvFo1wIOCHQs0d31bFDByfKQiEQQECpvfbZ1zDYtmn7Ml5P/bcKj6nnNiH+PUjsZRk2dIj5yX8QQCBdARIV6fqy9wAFpCPrN2BqZxZg9akyArEEJFnByV8sOjZCoGEBewEmF5+2D5P2KO1SEheSdOc1HqH/PUhbiPZV0i7kNQsCCKQjQKIiHVf2GqiAPaGT6kvntVbHDqoDnVigfw1UuxYBuSiyI4+iJ4C1bMs6CCDQuIBNTPTs3l1JoiLaHmXvvJ46MtJekOIRrkc09vJ7eeKi8dbIHhBAICpAoiKqwe8INCBgkxRyMmOHRDawOzZFIBgBOeGzCQuSFcGEnYo6JNBfjwKUpLq9GHeoaBQFAScFbKLiCJ3c66GTfCwIIJC8AImK5E3ZY4AC0SQFw9cD/AOgyokI2HZkv9lNZKfsBAEEWhSw3wZLYp0FAQTqF5BkhU3uRX+vf09sgQACLQmQqGhJhfcQqFNg6WWXM1vYe3jr3JzVEUBgmoBtS++/Mx4TBBBIScB+Gyy7p99KCZndBiNAvxVMqKloxgIkKjIG53DFE7AnfAxZL15sqVH2AuX3y2dfAo6IQBgC0neN1f9n2HoY8aaW6QlIvzXddIrbp9IjZs+BCpCoCDTwVDs5ATtcnW+lkjNlT+EK2EQFib9w/waoOQIIIIAAAgggQKKCvwEEGhRgyF+DgGyOQJkAbaoMhJcIJCwgCXZZmFMpYVh2F6yAjFAaM2asmUw9WAQqjkDCAiQqEgZld+EJcFEVXsypcboCtKl0fdk7ArQx/gYQSFaANpWsJ3tDQARIVPB3gECDAnRODQKyOQJlArSpMhBeIpCwgHz7K4t9YkHCu2d3CAQnwCil4EJOhTMQIFGRATKHKLYAF1XFji+1y16ANpW9OUdEAAEEEEAAAQRcEiBR4VI0KIuXAlxUeRk2Cu2wAG3K4eBQtEII8O1vIcJIJRwSYJSSQ8GgKIURIFFRmFBSkbwEuKjKS57jFlWANlXUyFIvVwRoY65EgnIURYA2VZRIUg+XBEhUuBQNyuKlAJ2Tl2Gj0A4L0KYcDg5FK4QA3/4WIoxUwiEBRik5FAyKUhgBEhWFCSUVyUuAi6q85DluUQVoU0WNLPVCAAEEEEAAAQRqEyBRUZsTayFQUYCLqoo0fIBALAHaVCw2NkKgZgG+/a2ZihURqEmAUUo1MbESAnUJkKioi4uVEWguwEVVcxPeQaARAdpUI3psi0B1AdpYdSPWQKAeAdpUPVqsi0BtAiQqanNiLQQqCtA5VaThAwRiCdCmYrGxEQI1C/Dtb81UrIhATQKMUqqJiZUQqEuAREVdXKyMQHMBLqqam/AOAo0I0KYa0WNbBBBAAAEEEEDAfwESFf7HkBrkLMBFVc4B4PCFE6BNFS6kVMgxAb79dSwgFMd7AUYpeR9CKuCgAIkKB4NCkfwS4KLKr3hRWvcFaFPux4gS+i1AG/M7fpTePQHalHsxoUT+C5Co8D+G1CBnATqnnAPA4QsnQJsqXEipkGMCfPvrWEAojvcCjFLyPoRUwEEBEhUOBoUi+SXARZVf8aK07gvQptyPESVEAAEEEEAAAQTSFCBRkaYu+w5CgIuqIMJMJTMUoE1liM2hghTg298gw06lUxRglFKKuOw6WAESFcGGnoonJcBFVVKS7AeBqQK0Kf4SEEhXgDaWri97D0+ANhVezKlx+gIkKtI35ggFF6BzKniAqV7mArSpzMk5YGACfPsbWMCpbuoCjFJKnZgDBChAoiLAoFPlZAW4qErWk70hQJvibwABBBBAAAEEEAhbgERF2PGn9gkIcFGVACK7QCAiQJuKYPArAikI8O1vCqjsMmgBRikFHX4qn5IAiYqUYNltOAJcVIUTa2qajQBtKhtnjhKuAG0s3NhT83QEaFPpuLLXsAVIVIQdf2qfgACdUwKI7AKBiABtKoLBrwikIMC3vymgssugBRilFHT4qXxKAiQqUoJlt+EIcFEVTqypaTYCtKlsnDkKAggggAACCCDgqgCJClcjQ7m8EeCiyptQUVBPBGhTngSKYnorwLe/3oaOgjsqwCglRwNDsbwWIFHhdfgovAsCXFS5EAXKUCQB2lSRokldXBSgjbkYFcrkswBtyufoUXZXBUhUuBoZyuWNAJ2TN6GioJ4I0KY8CRTF9FaAb3+9DR0Fd1SAUUqOBoZieS1AosLr8FF4FwS4qHIhCpShSAK0qSJFk7oggAACCCCAAAL1C5CoqN+MLRBoIsBFVRMOXiDQsABtqmFCdoBAqwJ8+9sqDx8iULcAo5TqJmMDBKoKkKioSsQKCLQuwEVV6z58ikC9ArSpesVYH4H6BGhj9XmxNgLVBGhT1YT4HIH6BUhU1G/GFgg0EaBzasLBCwQaFqBNNUzIDhBoVYBvf1vl4UME6hZglFLdZGyAQFUBEhVViVgBgdYFuKhq3YdPEahXgDZVrxjrI4AAAggggAACxRIgUVGseFKbHAS4qMoBnUMWWoA2VejwUjkHBPj214EgUIRCCTBKqVDhpDKOCJCocCQQFMNfAS6q/I0dJXdTgDblZlwoVXEEaGPFiSU1cUOANuVGHChFsQRIVBQrntQmBwE6pxzQOWShBWhThQ4vlXNAgG9/HQgCRSiUAKOUChVOKuOIAIkKRwJBMfwV4KLK39hRcjcFaFNuxoVSIYAAAggggAACWQmQqMhKmuMUVoCLqsKGlorlJECbygmewwYjwLe/wYSaimYkwCiljKA5TFACJCqCCjeVTUOAi6o0VNlnyAK0qZCjT92zEKCNZaHMMUISoE2FFG3qmpUAiYqspDlOYQXonAobWiqWkwBtKid4DhuMAN/+BhNqKpqRAKOUMoLmMEEJkKgIKtxUNg0BLqrSUGWfIQvQpkKOPnVHAAEEEEAAAQSUIlHBXwECDQpwUdUgIJsjUCZAmyoD4SUCCQvw7W/CoOwueAFGKQX/JwBACgIkKlJAZZdhCXBRFVa8qW36ArSp9I05QtgCtLGw40/tkxegTSVvyh4RIFHB3wACDQrQOTUIyOYIlAnQpspAeIlAwgJ8+5swKLsLXoBRSsH/CQCQggCJihRQ2WVYAlxUhRVvapu+AG0qfWOOgAACCCCAAAIIuCxAosLl6FA2LwS4qPIiTBTSIwHalEfBoqheCvDtr5dho9AOCzBKyeHgUDRvBUhUeBs6Cu6KABdVrkSCchRFgDZVlEhSD1cFaGOuRoZy+SpAm/I1cpTbZQESFS5Hh7J5IUDn5EWYKKRHArQpj4JFUb0U4NtfL8NGoR0WYJSSw8GhaN4KkKjwNnQU3BUBLqpciQTlKIoAbaookaQeCCCAAAIIIIBAPAESFfHc2AqBkkCeF1WPPvaY+vzzz0tlKf9llllmUTvusEP524m8Hvfqq2rEiDvV5pttptZbb91E9lmUndwxYoT69ddf1corr6xWXmmlVKolcR94ww1qicUXV3vtuWcqx8hrp3m2qbzqzHERyFLAtW9/3//gAzVx4sSqBLPNNpvqsOaaVdcLbYVffvlFPT9mjKn2qu3bq7nmmis0gtzryyil3ENAAQooQKKigEGlStkK5HlRtW+XrmrU6NEVKzz//POr555+quLn1T645dZb1U8//WQuuDt26NBk9U0330J9NGGC+uc//6nGjHpO/f3vfzef//Tzz+qWW24xv2+xxRZqsUUXbbJdCC/WWnc99fXXX6sehx+ujugaRDPWAABAAElEQVTZI3aVn3rqafXue++qeeaZV+3w785N9nPqaaerW267zbx35+23q5VWWrHJ5z6/yLNN+exG2RGoVcC1Njb89jvUyIcfrlp86U96nXZq1fVCW+Eznbg+9fReptrHHXO0Wm7ZZUMjyL2+rrWp3EEoAAIJCJCoSACRXYQtkGfnZBMVkiSYd955mgVinjbzqBG3D2/2fq1vdNp4E/XJpEnqwP33Vyccf1yTzeyxl15qKTXygftLn02a9KnacOONzeuB11yjNtxwg9JnofySVKLihBNPUnfceadOFK2kRgxvGscrrrxSXXJZX/W3v/1NPfX4Y0qSUkVZ8mxTRTGkHgi0JuDat78PPPigevLpp0tF/vmnn9WU335T008/vR4dMGfp/YUWXFAd2bNn6TW/TBUgUZH/X4Jro5TyF6EECDQuQKKicUP2ELhAnhdVNlkg36bLt+pJL60lKiZPnqzGjn1Brbraqmp2PRzXLiQqlMoiUfHnn3+qsS+8oBZdZFG10EILWv5C/MyzTRUCkEog4LnA9YMGqedGjVZzzDGHuqTPhZ7XJv3ik6hI35gjIIBA9gIkKrI354gFE8jzoqqeRMW1112n/vvfX9S6665j5jV47PHH1ZtvvqWWWWYZ1anThqVbNGQExe16GK4sg4cMUXIrh9zzuu4665j3uuy3r5pzzjnVgyNHqnfeeVctssjCaueddjL3xz7//Bj1888/qUFDhpp1t9t2G7X4Your2WabVR2gR2XI0q//APV///d/5pjtV1nFvCf/+eqrr9Swm242r3ffbVe1wAILlD6L/vLdd9/pck3dv6z31ttvq5dffkWtphMmG2+0kVl1ypQp6smnnlIvvvii+vCjj5QcZ9111zX1iO5Lfn/n3XfVs888q+QbxiXaLqHWW2dd1aHDmmqmmWYqX1W99vrrarS+1WbcuFfVbLPPplZbdVW1/vrrq0UWXrjJui0lKuqp92V9+5n9SYzeHj9ezTfffGrXnXc2722iR6tIYuq1115Xjz/xhHnvyCOafsMot+s8/sSTupzj1MSPJ6oVll/B+GygyyrfUNrF7uNvf5tBdde3qTz77HMm+TF5ymS1ztprq/W0mYzYyHrJs01lXVeOh0AeAq5/+1stUfHjjz+q1994w/RBv+qkudzqIP8uzjfvvCXOn3Xf9ehjj5vXG26wvpr06WfqjTdeVzPOOJNq334V1XaJJZT0Jy+8+JKZ62mxxRZVa621lpppxhlL+3jxpZfUJ59MUvPrf4NXX3019bTuKz74z3/M58u3W06tsfrqauaZZy6tb3/5+ptv9LHeUDL3xuTJU9TSSy2plv3Xsqpt2yXsKuZndP/t9P7G6OT/Dz/+oHbo3Ll0O+WYMWPVe++/r7748kt9q+Xsavl27dTaupzRf8trTVSUm0z8+GP1/vsfqKWXXkqtoudUkkXKPkoniT7+5BP1xx+/m754o06dmtjKeiMfesjUbfnl2xkfmbdqwoSJamHdH8oowHnnaT7KU+bSeOnll3W/PV52oZbRx11/vfV0DF5UX375lVp00UXU6qutZj6z/xn/zjvq3Xff0335h6YsEusVV1hBzTDDDHYVJ366NkrJCRQKgUCDAiQqGgRkcwTyvKiqJ1FhL5533OHfZiSEJCTsMtuss6obdVJixRVXMBfs9iTWfh79+chDI80J3hFHHa3uf+ABM7HZTTcONQmIfgMGRFct/T6vPnkc/ewz5vWy+qL5f//7nzrtlFPUfvvuU1pHkiadd9zRvL5j+G2lk6bSCtN+kZPELbba2rzaUs+BISdLsnTtsp865aSTlCQpDjrkUP1t3CjzfvQ/5cfsr8vbVydOypcN1l9PDbz2WjXddNOVPho0aLA6t3dvJSMZosvss8+urrvm6iYnV9Y6OkdFPfW2f1PR49jfzznrTLX7brupm/U8IKf1OsO8/d74t0tl/VKfzHbptr+e2+I9u0np5/bbbasu1HWwyQe7D3l90AEHqCuuuqq0rvzy787bqz4XXFDad5MPU3xh6//+O1NPZlM8FLtGIEgB19tYa4kKuZC+oM9F6ttvv20Suxn/8Q91zNFHqaWWXNK8H714l2T7Kzpxaxf5N2+fvfbUfdiD6kudJLeL3Mp49FFHKtmXLFdfe920kWuLqFl1PykXzdFl8cUXU8cdc4yaOZLYln97JTEtCZToIv3JnrvvrhPqnUpv2/0vqBPzkniY9Omn5rMB/fqqf+hbOi+/4kr1qk6Qly+SrDj6yCNK/zZH69raHBXR9SQhIEkDWTbfbFO12y67qDd0P3zV1Vc3K7skBY7SCfF2yy1XKspRxx6nJGG07jprm4SRxMUukuw5/thjlfjYRZIUfS6+RCfPP7ZvmZ9Slx9++MHUfe21OqoDunUrfX7X3feoe+//69ZS+4EkiA4+8IAmyRr7WV4/XW9TeblwXAQaESBR0Yge2yKgBfLsnGyiQk665IK5fDn7zDOUXMzLYi+e5fe5557bnJTIt0mSbJBRE4susoh64rFHldy6cfc9d8tq6tqB15vJNOWkQC7eZZEnTMhw3PJEhdyGICMYftAnLgOvv8GsKxNAyrdWs8wyq5KRGLLUc8FuNij7TzRRIR8tvPBCaq0OHc0Ija223LJUrln0t1zbbrONkm97ZHTFk3piSjlRvOqKy5WMSpBRHe1XW139op/OIeXcd+999OiKd8yEZH/88Ye64Pzz1E7TEie333GHOvHkU0xJZC6InfSTVGQEiNjJ9jPPPJO6U68jJ7myWOu4iQqZf0KWkQ8/ot566y0z/8Ree+xu3uu04Ya6Tsu3mKiQcm++5VbmRFBOLNfXT2OR2N3/4Ej1th55IsvOuk69dd1ksYkK80L/R0bNrLP2WuqhRx4xIzbkfUlUlE/kaddP62eebSqtOrFfBFwScP3b30qJit/0vBWSoJWLYnmyxdodO+oEwixmJIJcAMvohrN6nW76uOhFuSQSNtCjKmaYfgYlI9Vk/gtZJEEg/06+/8F/1MuvvGLeO+yQg0uJZ5tIkA9kLqjVVm2v+7S2Jnnxnw8/NOuvqkfsdT/8MPO7fAFw7vm9lZRTLtbXXGMNM+H0qOefN6M3ZKUDunZVa+t/Z2WJ7l/+zW633LKqzdxt1B6776ZG620GD73RrLf9ttuqZZf9l+4P3tb/nj9o3jvkoAPN/uVFtK61JipkuzZt5lbL6ZEeMgJCkjknnXqq+uabb02CYWvdn0piXpI5MrpC5geRcwq72ESFvJbzjw30yAgZsSHnApKkmadNG9OP2vUvuewy9aYuvyzSV4qNjJJ4+ZVxxkvejyYqpN8eOuwmeVuJ8QorLK8++miCGqP3//vvv6stNt+sNNLQrJTzf+wXPMOGDsm5JBwegeIIkKgoTiypSU4CeV5U2URFpapf3KeP6rz9duZje/EstzQ8r5/SIaMoZBmokxHnXzj1HuBnn3qyyS0Xrc1RUZ6oMDvT/6k2R0WSiYpN9K0eV1819aJeji8nL6vo5IOcJJ50/PFq//3/+mZm1933MCeiMkrgIl1fWWcNneCQRIOMxjjmqKPM7R7ypI1F9RDgJdu2tVVSXfVtK8/o2yIkKfK4voi3Q07ltpLNttjSrBc9nrWOm6iwB25tMs1oksGOqJBvDHfZbWpC4/xzz1G7TLtdRPZ3lP7W79777jfzibw4doypQ3Qfhx1yiPkmUdaVhEeHtdcx35bJLSfn6X1lueTZprKsJ8dCAIGWBSolKmS0goymkOVUPYKubdsl9G9K39b4X3W8nnx4sh5R11UnxeW2tejF+zZbbaUf1f1vs67dt7w4XY/sk2/9ZZTfkcccq+Rb/y232Fztom9nlCWaSOihkxHR2xXtZ5LAGND3MjNSTSYFvePOu8y28m+wvRVFEuMn6GS3jAJZRT+yumeP7s32b8tiPtD/kTLJhf0XX3yhNtt0E/u2Ov2MM83og630lxA77zR1FGK0rrUmKtrrWz16dD+8tF/5RZIUchuG3Eaz8EILmc/k9pQrr77GJPov79+vNNrEJir+oUefXHrxRaVbZkY+9LAarhP3slx0QW+TUJLEUI8jjjR1Wk8nxKXPtcurr72m+g243LyMJipk9IWMYIl6yUojtK8kayRRJftnQQCB4gqQqChubKlZRgJ5XlTZRIXMkVB+wiHVX1M/b94+HtRePG+kv5G/Vt+qYBe593WrbbY1L6/XtzvIt052cT1RIcNj7YgRKXP0Ql1GiNhHpspn333/vflGSzwef/QReUudfMqp6rZpk5DOqL/9kvteZW6GHfQJrXWTi/bV1ljTJDQOPfhgM7TYbDztPzvq4bIy10PU1Vpnnai4Wj9lRU7upC6SjIpOcioJmP0POsiU2j7ONJqosO/ZuslJpcxDIvcty604WS55tqks68mxEMhLwPVvf20yoXwyTZsIkGRx+RwI333/nb717ze1vk5SyAi+6MX7UUccof99X95wy0i4EXfdbS6s5cLbLmeec66aOHGiGRlgb0u0yQi57ePSi/qUktSyjcxZZG8dPOWkE01y+9K+fc3tE3L7ycknnmB3bX7aR7DK6I5+l11qbluw+5c+/Ew9EqR8kVEbkij47LPPTN3kcxndIAkVGcFgyxmta62JiujIEXtcSfbL6EOZ2+jbb78zIyokmf/xtNs1bOJB1reJivJEwqe6rPa2RHlCy0r6llJJOEjfJMvxxx6j5+v4l/ld/iMJmWOOP8GM3rSJCnmvx5FHmjrLI9BlhKRdftNltLf99Ol9vhk9Yz/L86fro5TytOHYCMQVIFERV47tEJgmkOdFlU1U1PLUD3vx3P2ww1R08sVP9QRjG0ybhFLmWpBbC+ySZaJC5pTYr+vUERC1zlFx45DBai099NcuD+vRDod172Feyu0Y0+n/tbS8+srL5tsh+ZZr8OAh6uZbb1V2GK+sL6NOzj/3XCWTgcq9s6vrkReyXKhPinbUt31El6P1fbj33HufuR3jnjtHmI+sdS2JitbqXe+IirPPOccMFZaRH0/p4c3R5aMJE9Smm0+9DejqK68wt79EExXvvv1Wk/t9TzzpZHX7iBHmm7U0nigTLVv573m2qfKy8BqBIgq43sYqJSpu0f9WP6InyJTb+GQOh5aWZZZZWs+ncESTREX04t0mKmaZZRbVXycM7NJaokJGXciIh+gik1uefOpp5i072qLXmWeZR3rLvA3dunSJrq4n4nzG/PssZZdEhVx820TFv/Sk1iccd2yT9WVCy0FDh5oL+SYfTHvRaKIiaiK7lNEovS/sU0pKtHTMlhIV2+lbLGWkol1kVMbxerSLLEfokSMr6xEkMtFm/8uvMO/JPEtyy010OeW009XneuSITVTICJmeeh4sWeQLh+m1WUuLnMuInQuL623KBSPKgEC9AiQq6hVjfQTKBPLsnOIkKqIXz1KVrBMV9iJ+9113VeecfVZJ83w9F4Kd2yJuokImklxn/Q3MPvvrobgyZ4VdvtcjKuQ+Wnvbhrz/jb7PWe75XV/PvyG3rIzRt0Rce91AM8O6fONz/733mM1l3gdJZHTacAM9ceY1dpdm4s611lnXzPGx7957qdNPm3rSausYtbbv1VPvehMV9+lJx448+hhTvhHDh5v7jm1hZYK0iy651Jzgj9GjLWSekmiiwt4+YtcnUWEl+IlA8QRc//a3UqJCnoBxzcCB5t/xC8471wz/t9GRpx1F52qqNMogTqJCjtFbHy86isOO7pDPLr7wAvM0rKE3DlNPPv20npdpFjMCQ+aPsosdbREdPdFaouLMs88x8w3JBJb76P5FRpfIcoZOhnz19dcNj6goT1TIiMQBevJOWWRy5ZX17R/T6Qk+X9BzQtgnebWUqJD5M+wtprJtS4kKiY3cWiNL9DYceS19q8zrIYtNVMjvkgSSZNDGnTrpubH2kLfMIqM+/tAjLqITmNrP8vzp+iilPG04NgJxBUhUxJVjOwSmCbiQqFh8scXUqaec3GJMNtKdvCz2Qjl68Szvt5ao2GiTTc0w08022URdqSehjC6V5qiI7k/uIe4SuRdVtj/0sMP1N2KPmRPMa6++ytxuIZObyUmZJBpkiZuokG1tmSXR0Pu888yIAJlk7fAePdVv+huj00871Uwa+dxzo1QXPfeETBZ2y03DzKSTsv01+vaXCy+62MzhMe7ll+QtddrpvcyoCznpPP3UU9R2222nJPFxnU5qDLv5ZrNO9DaUlqzj1NsmCxbUk5g9cN+9TW7laCnJIBN8rr3e1Ft35BYWmQF/BT3xpviee/75Jtby7ZPsS5aW9mE+0P+xx65ltI7dJqmfebappOrAfhBAIL5ApURF9CK4g761cWc9OfDcc89lkst9+/U3j9nce6+9TEIh6USFPCVDRg4soCdUlqdjDLvpJjOpp0xIeaH+91UWmUhSkg+ybLJRJ7X55purWXXSQibGvPnW28wkzjK30p7TJkduLVEhIwpkZIHsZ889pl6oR/cvj+k8Vv8bLyM0KtXVFCTyn9bWe+zxJ9RN+mlSksyXWyokMfKrvu3j4ksvM4/5lt1Ekxv21o9aEhWyrR01ISNJZELrNdZYXX2okxTyCFn7FLJoouIG/aStZ/VIS5kD49CDDzJ92WQ9Seettw1X4/S8FnLcTTfZWHbNggACBRUgUVHQwFKt7ATyvKiyIypaq639pryli2fZLppYKL/147gTTlB36nt5ZZGTIfkWXr6Nl6VSokIu/DvpxIaMUJBFtpN5JGSEgyzP6OfQH6gnbpS5H2SR2yzk5EOepiGThsnSSKJi1OjR5vGksk9Z5pxzTpNUkN/lhOdWfXIpF9/yrczW225nTsAkASEnvfKeDFGVnzIaw5ZZ7g+W21Ls7SEyB4RMxmkfVSr1k8nE7JwYLVlXqvcCegjs559/LsVrVu879K0XJ+hbMGQRR1kkybDM0ktXTDJce911pcnmZH3rK7/LnBVX6ds+OnboIC8r7kM+I1EhCiwIFFPA9W9/KyUqJBrRkQzy76KMXpALellkxIMko+ViuNJFeZwRFXLxLv/ey+2C8mQRuYCXRR4pKo/JlKcrySL9miQf7BNEpHzSv0ifIos8OUMeKyoTQcrSWqLiGv1v+ZixL5j1ZM4l6dNkJMX8881nRhrIB3YOj0p1NRtH/tPaenLrhSQTZBG/hfRkmnLLoPQhMmeErbM81lVuEa03UTFhwkTV55JLSvuxxZJRMOIqMYwmKuSpZDJxqtRZFnGXx4/LurLspZM30Ue9mjdz/I/ro5RypOHQCMQWIFERm44NEZgqUOREhZlhXT8hQ554IScHcnL1wvOjTcUrJSrkw0f1iAn5duvt8ePNunIhLyMO7CK3KMjz4WUiTzmRk0efdj/88NITKxpJVMgxZLTEhTpx8Pbb40snNfLt0wX6Wy95xJldJDEiw2gfe+KJ0npy4rmF/hZMnnQRnYxSJu86Sc/aLicjP9uT4nnnNfNYnHDccU1uKWkpUSHHjNZbvmVbf/319TdFB6vO0x6DWl7v/+oJ084662wzqaVMaCaLJCpkVERroyGG6wlC5RYWm1iRE2UZWXFmr15qRT2xmV1a2weJCqvETwSKJ5Bnv1WLZmuJCtn+4UceVY/rf7ftRawkElbSkyHLJJr29o9KF+VxEhXyb+5GnTZUQ/StHfaCXRL3O3buXHrUqK2X9JW36Vvvxr74kpnjSN6XR5XKLRzytAuZmNMurSUq5DiSrHjt9Tfs6uaxqbKPAXq+B+mfZ9PJZ5nks1JdSxtO+6XaejJx5yA9b5M8XlQWSQ4cfugh6vvvvlfDdeJc5myKm6iQ/cnjReXx13JuICMc2+qna8mjWIfox7DKo8ejiQpZX0bQDBoyRD8+9oPSI0xlcs3d9STWHTtOTbjLei4srrcpF4woAwL1CpCoqFeM9REoE6BzKgOp46Vc/M888yz6/zOZk5QtttrabF1+wV7HLpus+pN+prsMLW27xBKlk9cmK0x7ISdfEyd+bL4xW0w/mlRGYVRa5JslSbDICaLcaxxnkW+K5GRLTq7TXOT2FKnXssv+yzwJJM1jJblv2lSSmuwLgeYCRfn2V/4t/fHHn/S3/wuWRrQ1r238d8oTCfJUkS+//EL9XY/Ok1tAqi1f63mQZCTEwnp0gh0VV22b8s/lCR8y2mGeNm1Mv1H+edKvZeSIJDRkdIiMAJFEdxqLHMeanNf7ghYTFfa40u9+8skkXf/ZS6NR7Geu/HR9lJIrTpQDgXoESFTUo8W6CLQgwEVVCyhV3pLntE+ZPKXJWs/qW0quG3i9ee8u/Qz26Df/TVbkReEFaFOFDzEVRMALgfJEhReFdriQMjJiclnfP2XKZDOKQ0YNrqvnVurWtYvDNaBoCCCQpQCJiiy1OVYhBbioqj+s9rGnLW05r76d4tmnnkx9tEFLx+Y9NwRoU27EgVIUV4Bvf2uLLYmK2pxqXeu0XmeoT/WcT5UWme9D5ovycSnKKCUf7SlzcQVIVBQ3ttQsIwEuquqH7tKtm544c+oTPqJby/2q++27T2myx+hn/B6OAG0qnFhT03wEaGO1ud+m5/t5Xc8RscQSi6v9u3atbSPWqijQf8Dl6kv9dKryZcaZZlRr6KeqyNNA7KTU5eu4/po25XqEKJ+PAiQqfIwaZXZKgM7JqXBQmAII0KYKEESq4LQA3/46HR4K56EAo5Q8DBpFdl6ARIXzIaKArgtwUeV6hCifbwK0Kd8iRnkRQAABBBBAAIFkBUhUJOvJ3gIU4KIqwKBT5VQFaFOp8rJzBBTf/vJHgECyAoxSStaTvSEgAiQq+DtAoEEBLqoaBGRzBMoEaFNlILxEIGEB2ljCoOwueAHaVPB/AgCkIECiIgVUdhmWAJ1TWPGmtukL0KbSN+YIYQvw7W/Y8af2yQswSil5U/aIAIkK/gYQaFCAi6oGAdkcgTIB2lQZCC8RQAABBBBAAIHABEhUBBZwqpu8ABdVyZuyx7AFaFNhx5/apy/At7/pG3OEsAQYpRRWvKltNgIkKrJx5igFFuCiqsDBpWq5CNCmcmHnoAEJ0MYCCjZVzUSANpUJMwcJTIBERWABp7rJC9A5JW/KHsMWoE2FHX9qn74A3/6mb8wRwhJglFJY8aa22QiQqMjGmaMUWICLqgIHl6rlIkCbyoWdgyKAAAIIIIAAAs4IkKhwJhQUxFcBLqp8jRzldlWANuVqZChXUQT49rcokaQerggwSsmVSFCOIgmQqChSNKlLLgJcVOXCzkELLECbKnBwqZoTArQxJ8JAIQokQJsqUDCpijMCJCqcCQUF8VWAzsnXyFFuVwVoU65GhnIVRYBvf4sSSerhigCjlFyJBOUokgCJiiJFk7rkIsBFVS7sHLTAArSpAgeXqiGAAAIIIIAAAjUIkKioAYlVEGhNgIuq1nT4DIH6BWhT9ZuxBQL1CPDtbz1arItAdQFGKVU3Yg0E6hUgUVGvGOsjUCbARVUZCC8RaFCANtUgIJsjUEWANlYFiI8RqFOANlUnGKsjUIMAiYoakFgFgdYE6Jxa0+EzBOoXoE3Vb8YWCNQjwLe/9WixLgLVBRilVN2INRCoV4BERb1irI9AmQAXVWUgvESgQQHaVIOAbI4AAggggAACCHguQKLC8wBS/PwFuKjKPwaUoFgCtKlixZPauCfAt7/uxYQS+S3AKCW/40fp3RQgUeFmXCiVRwJcVHkULIrqhQBtyoswUUiPBWhjHgePojspQJtyMiwUynMBEhWeB5Di5y9A55R/DChBsQRoU8WKJ7VxT4Bvf92LCSXyW4BRSn7Hj9K7KUCiws24UCqPBLio8ihYFNULAdqUF2GikAgggAACCCCAQGoCJCpSo2XHoQhwURVKpKlnVgK0qaykOU6oAnz7G2rkqXdaAoxSSkuW/YYsQKIi5OhT90QEuKhKhJGdIFASoE2VKPgFgVQEaGOpsLLTgAVoUwEHn6qnJkCiIjVadhyKAJ1TKJGmnlkJ0KaykuY4oQrw7W+okafeaQkwSiktWfYbsgCJipCjT90TEeCiKhFGdoJASYA2VaLgFwQQQAABBBBAIEgBEhVBhp1KJynARVWSmuwLAaVoU/wVIJCuAN/+puvL3sMTYJRSeDGnxukLkKhI35gjFFyAi6qCB5jqZS5Am8qcnAMGJkAbCyzgVDd1AdpU6sQcIEABEhUBBp0qJytA55SsJ3tDgDbF3wAC6Qrw7W+6vuw9PAFGKYUXc2qcvgCJivSNOULBBbioKniAqV7mArSpzMk5IAIIIIAAAggg4JQAiQqnwkFhfBTgosrHqFFmlwVoUy5Hh7IVQYBvf4sQRergkgCjlFyKBmUpigCJiqJEknrkJsBFVW70HLigArSpggaWajkjQBtzJhQUpCACtKmCBJJqOCVAosKpcFAYHwXonHyMGmV2WYA25XJ0KFsRBPj2twhRpA4uCTBKyaVoUJaiCJCoKEokqUduAlxU5UbPgQsqQJsqaGCpFgIIIIAAAgggUKMAiYoaoVgNgUoCXFRVkuF9BOIJ0KbiubEVArUK8O1vrVKsh0BtAoxSqs2JtRCoR4BERT1arItACwJcVLWAwlsINCBAm2oAj00RqEGANlYDEqsgUIcAbaoOLFZFoEYBEhU1QrEaApUE6JwqyfA+AvEEaFPx3NgKgVoF+Pa3VinWQ6A2AUYp1ebEWgjUI0Cioh4t1kWgBQEuqlpA4S0EGhCgTTWAx6YIIIAAAggggEABBEhUFCCIVCFfAS6q8vXn6MUToE0VL6bUyC0Bvv11Kx6Uxn8BRin5H0Nq4J4AiQr3YkKJPBPgosqzgFFc5wVoU86HiAJ6LkAb8zyAFN85AdqUcyGhQAUQIFFRgCBShXwF6Jzy9efoxROgTRUvptTILQG+/XUrHpTGfwFGKfkfQ2rgngCJCvdiQok8E+CiyrOAUVznBWhTzoeIAiKAAAIIIIAAAqkKkKhIlZedhyDARVUIUaaOWQrQprLU5lghCvDtb4hRp85pCjBKKU1d9h2qAImKUCNPvRMT4KIqMUp2hIARoE3xh4BAugK0sXR92Xt4ArSp8GJOjdMXIFGRvjFHKLgAnVPBA0z1MhegTWVOzgEDE+Db38ACTnVTF+g/YIB6fsxYNWzokNSPxQEQCEWAREUokaaeqQlwUZUaLTsOUEAuoOyw9PffGR+gAFVGAAEEEEAAAQQQIFHB3wACDQr06z9A9dOZ9J7du6uePbo3uDc2RyBsAZuo6NihA99Mhf2nQO1TFLDtjH4rRWR2HYyAnAd27NhBSb/FggACyQmQqEjOkj0FKmATFVJ9vgEO9I+AaicmIKMp5CJKhs9y0pcYKztCoIkA/VYTDl4g0JAA/VZDfGyMQEUBEhUVafgAgdoF7O0ffDtVuxlrIlAuYC+eGE1RLsNrBJIXkHvqe+iRgCwIINCYgCTXx+r/054ac2RrBMoFSFSUi/AagRgC9gJLNiVZEQOQTYIXiLYhRlME/+cAQIYC0vZk4dbFDNE5VCEEpO1wy0chQkklHBUgUeFoYCiWfwLRCy35RlhO+hi67l8cKXG2AvJN1Bg9U7rM8yLLEbrd8K1UtjHgaOEK2LkqRIAEYbh/B9S8foFo2+G23/r92AKBWgRIVNSixDoI1CgQTVbIJjZRYX/WuBtWQyAIAZOk0IkKu5CksBL8RCA7gei3wtIm5bVNtMvvstjRFrzGI/S/B2kj9hGkctsv/Zb5J4L/IJCKAImKVFjZacgC9kRPfrIggEB1AU70qhuxBgJZCJRPCsjrppP74oGHnNtxi28W/xpxDASUIlHBXwECKQrYZIVMssSSr8Ar48apV8a9qlZtv4r+f/t8C8PRjUAHfYsUo434Y0DALQHpt2y7lN+l/7JtldfZelx9zTXqqmuuVYccdKA6+KCDzBORiEe+f4/SWm37cKvlUhoEiidAoqJ4MaVGCCDQgsANgwap6wcNVt267Ke6dunSwhq8hQACCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCDACd8OaBzSAQQQACB2AL0W7Hp2BABBAogQKKiAEGkCgggUF2AE77qRqyBAAIIIOCOAP2WO7GgJAggkL0AiYrszTkiAgjkIMAJXw7oHBIBBBBAILYA/VZsOjZEAIECCJCoKEAQqQICCFQX4ISvuhFrIIAAAgi4I0C/5U4sKAkCCGQvQKIie3OOiAACOQhwwpcDOodEAAEEEIgtQL8Vm44NEUCgAAIkKgoQRKqAAALVBTjhq27EGggggAAC7gjQb7kTC0qCAALZC5CoyN6cIyKAQA4CnPDlgM4hEUAAAQRiC9BvxaZjQwQQKIAAiYoCBJEqIIBAdQFO+KobsQYCCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCDACd8OaBzSAQQQACB2AL0W7Hp2BABBAogQKKiAEGkCgggUF2AE77qRqyBAAIIIOCOAP2WO7GgJAggkL0AiYrszTkiAgjkIMAJXw7oHBIBBBBAILYA/VZsOjZEAIECCJCoKEAQqQICCFQX4ISvuhFrIIAAAgi4I0C/5U4sKAkCCGQvQKIie3OOiAACOQhwwpcDOodEAAEEEIgtQL8Vm44NEUCgAAIkKgoQRKqAAALVBTjhq27EGggggAAC7gjQb7kTC0qCAALZC5CoyN6cIyKAQA4CnPDlgM4hEUAAAQRiC9BvxaZjQwQQKIAAiYoCBJEqIIBAdQFO+KobsQYCCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCDACd8OaBzSAQQQACB2AL0W7Hp2BABBAogQKKiAEGkCgggUF2AE77qRqyBAAIIIOCOAP2WO7GgJAggkL0AiYrszTkiAgjkIMAJXw7oHBIBBBBAILYA/VZsOjZEAIECCJCoKEAQqQICCFQX4ISvuhFrIIAAAgi4I0C/5U4sKAkCCGQvQKIie3OOiAACOQhwwpcDOodEAAEEEIgtQL8Vm44NEUCgAAIkKgoQRKqAAALVBTjhq27EGggggAAC7gjQb7kTC0qCAALZC5CoyN6cIyKAQA4CnPDlgM4hEUAAAQRiC9BvxaZjQwQQKIAAiYoCBJEqIIBAdQFO+KobsQYCCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCDACd8OaBzSAQQQACB2AL0W7Hp2BABBAogQKKiAEGkCgggUF2AE77qRqyBAAIIIOCOAP2WO7GgJAggkL0AiYrszTkiAgjkIMAJXw7oHBIBBBBAILYA/VZsOjZEAIECCJCoKEAQqQICCFQX4ISvuhFrIIAAAgi4I0C/5U4sKAkCCGQvQKIie3OOiAACOQhwwpcDOodEAAEEEIgtQL8Vm44NEUCgAAIkKgoQRKqAAALVBTjhq27EGggggAAC7gjQb7kTC0qCAALZC5CoyN6cIyKAQA4CnPDlgM4hEUAAAQRiC9BvxaZjQwQQKIAAiYoCBJEqIIBAdQFO+KobsQYCCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCDACd8OaBzSAQQQACB2AL0W7Hp2BABBAogQKKiAEGkCgggUF2AE77qRqyBAAIIIOCOAP2WO7GgJAggkL0AiYrszTkiAgjkIMAJXw7oHBIBBBBAILYA/VZsOjZEAIECCJCoKEAQqQICCFQX4ISvuhFrIIAAAgi4I0C/5U4sKAkCCGQvQKIie3OOiAACOQhwwpcDOodEAAEEEIgtQL8Vm44NEUCgAAIkKgoQRKqAAALVBTjhq27EGggggAAC7gjQb7kTC0qCAALZC5CoyN6cIyKAQA4CnPDlgM4hEUAAAQRiC9BvxaZjQwQQKIAAiYoCBJEqIIBAdQFO+KobsQYCCCCAgDsC9FvuxIKSIIBA9gIkKrI354gIIJCRwCvjxqlV27c3R2vphC/6eUZF4jAIIIAAAgjUJNBSv1XThqyEAAIIFECAREUBgkgVEECguUD5CV611833wDsIIIAAAgjkJ1Deb+VXEo6MAAIIZC9AoiJ7c46IAAIZCNgTPDlUty77mSNeP2hwk9/tZ127dDGf8x8EEEAAAQRcEbD9mPRh9FOuRIVyIIBAVgIkKrKS5jgIIJC5gD3Jix5YbgWRWz5k4eQvKsPvCCCAAAIuCdg+jL7KpahQFgQQyEqAREVW0hwHAQRyEbAneuUH58SvXITXCCCAAAIuCdj+i/7KpahQFgQQyEqAREVW0hwHAQRyE7Ane7YAnPRZCX4igAACCLgqYPsu+ixXI0S5EEAgTQESFWnqsm8EEHBGgBM+Z0JBQRBAAAEEahCg36oBiVUQQKCwAiQqChtaKuaCQL/+A0wxOnbsoDp26KDGjB2rxowZq1x/3bNHd1NuW/6ivO52wAGq/SrtVVHq43N8pOy2HbjQVikDAggg4JoAiQrXIkJ5EEAgSwESFVlqc6wgBOQCLHoh3G+Aft29u3lPPvPh9bChQ0xiZa999jXJFV7jIYm2JP8eZF+y2L8tSeLJMVgQQAABBKYKkKjgLwEBBEIWIFERcvSpe+IC5YkIufgaq//fQV+A2REVvMaDv4cOpl1IA+yhk3jSTiRxYRN6iTdMdogAAgh4KECiwsOgUWQEEEhMgERFYpTsCAFVuuA6Qt86IRdgLAggUF3AJvhoN9WtWAMBBMIRIFERTqypKQIINBcgUdHchHcQqFtALrTs/fYMYa+bjw0QMEk+bv3gDwEBBBD4S4BExV8W/IYAAuEJkKgIL+bUOAWB8nv3UzgEu0Sg8AKS5JPJZmUel/ffGV/4+lJBBBBAoDUBEhWt6fAZAggUXYBERdEjTP0yEYhODJjJATkIAgUVIOlX0MBSLQQQqFuAREXdZGyAAAIFEiBRUaBgUhUEEEDAdwFunfI9gpQfAQSSEiBRkZQk+0EAAR8FSFT4GDXK7JRAdH4KpwpGYRBAAAEEEEDAWwESFd6GjoIjgEACAiQqEkBkF2ELLL3scgaAe+rD/jug9skJ0KaSs2RPCCDgrwCJCn9jR8kRQKBxARIVjRuyh8AF+uuJ/2ThcaSB/yFQ/cQESFQkRsmOEEDAYwESFR4Hj6IjgEDDAiQqGiZkBwgggAACCCCAAAIIJCtAoiJZT/aGAAJ+CZCo8CtelNZBAZmjQpaePbo7WDqKhAACCCCAAAI+CpCo8DFqlBkBBJISIFGRlCT7CVaAYerBhp6KpyRAm0oJlt0igIBXAiQqvAoXhUUAgYQFSFQkDMruwhNgjorwYk6N0xUgUZGuL3tHAAE/BEhU+BEnSokAAukIkKhIx5W9IoAAAggggAACCCAQW4BERWw6NkQAgQIIkKgoQBCpQr4CzFGRrz9HRwABBBBAoIgCJCqKGFXqhAACtQqQqKhVivUQqCDAMPUKMLyNQEwB2lRMODZDAIFCCZCoKFQ4qQwCCNQpQKKiTjBWR6BcgDkqykV4jUBjAiQqGvNjawQQKIYAiYpixJFaIIBAPAESFfHc2AoBBBBAAAEEEEAAgdQESFSkRsuOEUDAAwESFR4EiSK6LcAcFW7Hh9IhgAACCCDgowCJCh+jRpkRQCApARIVSUmyn2AFGKYebOipeEoCtKmUYNktAgh4JUCiwqtwUVgEEEhYgERFwqDsLjwB5qgIL+bUOF0BEhXp+rJ3BBDwQ4BEhR9xopQIIJCOAImKdFzZKwIIIIAAAggggAACsQVIVMSmY0MEECiAAImKAgSRKuQrwBwV+fpzdAQQQAABBIooQKKiiFGlTgggUKsAiYpapVgPgQoCDFOvAMPbCMQUoE3FhGMzBBAolACJikKFk8oggECdAiQq6gRjdQTKBZijolyE1wg0JkCiojE/tkYAgWIIkKgoRhypBQIIxBMgURHPja0QQAABBBBAAAEEEEhNgERFarTsGAEEPBAgUeFBkCii2wLMUeF2fCgdAggggAACPgqQqPAxapQZAQSSEiBRkZQk+wlWgGHqwYaeiqckQJtKCZbdIoCAVwIkKrwKF4VFAIGEBUhUJAzK7sITYI6K8GJOjdMVIFGRri97RwABPwRIVPgRJ0qJAALpCJCoSMeVvSKAAAIIIIAAAgggEFuAREVsOjZEAIECCJCoKEAQqUK+AsxRka8/R0cAAQQQQKCIAiQqihhV6oQAArUKkKioVYr1EKggwDD1CjC8jUBMAdpUTDg2QwCBQgmQqChUOKkMAgjUKUCiok4wVkegXIA5KspFeI1AYwIkKhrzY2sEECiGAImKYsSRWiCAQDwBEhXx3NgKAQQQQAABBBBAAIHUBEhUpEbLjhFAwAMBEhUeBIkiui3AHBVux4fSIYAAAggg4KMAiQofo0aZEUAgKQESFUlJsp9gBRimHmzoqXhKArSplGDZLQIIeCVAosKrcFFYBBBIWIBERcKg7C48AeaoCC/m1DhdARIV6fqydwQQ8EOARIUfcaKUCCCQjgCJinRc2SsCCCCAAAIIIIAAArEFSFTEpmNDBBAogACJigIEkSrkK8AcFfn6c3QEEEAAAQSKKECioohRpU4IIFCrAImKWqVYD4EKAgxTrwDD2wjEFKBNxYRjMwQQKJQAiYpChZPKIIBAnQIkKuoEY3UEygWYo6JchNcINCZAoqIxP7ZGAIFiCJCoKEYcqQUCCMQTIFERz42tEEAAAQQQQAABBBBITYBERWq07BgBBDwQIFHhQZAootsCac5R8f4HH6iJEydWBZhtttlUhzXXrLje77//rh559FE1ZcpvaostNlezzDxzxXVb++CNN99SX375hZpzzjnVaquu2tqquX32ww8/qI8mTFDffPONKUPHDh3UrLPOmlt5kjzwc6NG6RhOUW3btlVtl1giyV3XvK9vv/1WjXv1VbP+WmutFftvqeYDsiICCCAQqACJikADT7URQMAIkKjgDwGBBgXSHKY+/PY71MiHH65awsUWXVT1Ou3UiuuNGTNWXTNwoPl8l512UlvqZEWc5eprr1NjX3hB/WuZZdQJxx0bZxfqk0mT1BtvvGG23WzTTdUMM8wQaz/lG/3555/q9jtGNPM6s9fpapGFFy5f3cvXRx17nPrxxx/V9ttuqzpvv10udZBk1aV9+5pjn3/uOWq+eedNvBxptqnEC8sOEUAAgZQESFSkBMtuEUDACwESFV6EiUK6LJDmHBUPPPigevLpp0vV//mnn9WU335T008/vZprrjlL7y+04ILqyJ49S6/Lf3nv/fdV7wv7mLcPPvCAVkdflG8bfZ1EomLUqNFq4KBBZrdX9O+vZpzxH9FDxP798SeeVMNuvtlsLyM+Vlx+eTXTTDOqrbfaSs0xxxyx9+vShiQqXIoGZUEAAQTSFSBRka4ve0cAAbcFSFS4HR9Kh0ATgev1Bf5z+kJfLrwv6XNhk8+qvZj06afqN33rR9u2S1RbteLnLicq+uqkx2uvv6Hmnntu1Vt/05/USI2KGDl8EEqiIgdaDokAAgg4J0CiwrmQUCAEEMhQgERFhtgcqpgCac5RUS7WWqLixZdeUp98MknNP998ql275dSYsS+oH378Qe3QubOZ1+DRxx43u1tvvXXVPG3amN9HPvSQmjx5ilp++Xaqzdxt1KjRo9SHH35kLvZlHzIPxXTTTVcqRmuJivHvvKPeffe9/2fvTOCtmto//ihJZY5QpMzJPJRZGco8N0lm4VXJTEiGhIyZqaQMb4V/SWYvSSKUEDJFE03GSAP++1nZxz6ne+5wzj7nrLXXd7+ft3v2tPbzfH/r2vv87lrPlmnfTJMNNthAtt5qK9m2adOUYaD1FebNmx/EOFMm/VPj4NCDDzb7N9qogey6yy7mOn/++adobY4pwRSDGTNnyGabbhrEt42pyRCNJRXUPx/63HSzOW+fvfaSU04+KbV70gcfyLffTg/qaqwpLfbbL7W9rA9RHjVXqSmTP5wstWrVloMOPCB1eEV5hgf++OOPMuWTT0SnStRcZRWTQ9OAs9YTyVymffONfPbZZ/LVV19Lrdq1TM7bbrttSqfw+EyjQmtFfPPNt1Kjxspy2KGHhoeZn199/bV8FBg3urRqdVCqlsTs774Lpt5MER1lo7VKVKftt9+uzDoeeszkyR/Kt0GdFB3Bs3fAdsmSpQWf+mGC5h8IQAACnhPAqPC8A5A+BDwngFHheQcg/fwJFHM+fXlGRWgibBiYBDo1REdQ6HJ3vzvlp59+kit7Xm3WL77wAvPlVFfCL75qSOiXZf1yHV3222cfOanTialN4TUya1SMGPmMjBo9OnVc+EHNB51qovHcfMutMvXzz8NdaT+bN9tNOp9xhvz111/Bl+B+8smnn6bt15XjjjnaTONYYcc/G1548SUZ/tRTUrfuOtLj0ktNwU/dNeiRwTJ23DjZZJOG0vOKK7KdbraHPLZtuo18+eVX8kdQuLJhw4Zy9ZXLz6tMntqQxn9Hv7tETZfosvbaa0uvoJZI1Kx4+ZVXZejw4aI1NqJLrcBE6N6tq2y+2WapzWF8YY2K6DSa667pJToFKFxCrdSUuqnPDWazjji55777ZNmyZeFh5ucG668vl11ysay++uqp7WosPRywi8alRpFq+u5775njqFGRwsUHCEAAArETwKiIHSkNQgACDhHAqHBILEK1k0Aha1RkZlwZo0LP0WkPTbbeyoyS6NC+ncwP3oBRnlGh5+iX1D12by61Vl3VTC/Rc3Rp16aNtDroQPM5/PIbNSpeHzNGhjz2uNm/0w47SNPgS77+lf+doOimvm2kdfDX/LbHHy/jx78tC35YEPx1foZMnDTJHK9fuKtXryYNgmKXO+24ozFLrr+hj9mn19XrvPPuBHnp5Vdk5ZVXFi2MqV+qy1r0jSYjnhkpOnJE89dRHTWCc+bNny+//vqrGdWg19G3o0RHSETbCo0A3aZGgY4I2TgY7aGjFSqbp54bTkNRc6RDu3ayaNEieezxJ4wOe+6xu5x+6ql6mLwZGChqBuiiJsaewVs0tFimFizVWiRav+PKHj1SBkQYX2hU/Pbbb8ZsUkMkqpMaPuddcKH8/vvvJtf2bdvKjBkzpPeNNxlNNK5mu+4mCxculLfeflv0TSlRI0dHY+gIFTUplMMezZubERU67ej7OXNMvPoPRkUKBR8gAAEIxE4AoyJ2pDQIAQg4RACjwiGxCBUClTUqdOSAfvEMl+++/75co0K/2GvNi/Av/fpF95LLe5gRFk223louuuB801RZRkXfW28TnQ6xw3bbSbeuXcJLytP/N0JGB8VA9Qv4LTfdmNoeHQWQWUxTp3zoF2Rdzu58Zmo6yIR335Ntgqko0b/4pxqMfNA4lNGCBT9EtqZ/VJNCv7iXtYRGgF6n7419gikVNVKHVSXPW2+/w4yqUKPlP2efZeJW82bZn8vMtI5wCou+PUOnhugokBt79zYjT/SCagZccVVPc+3oW1rC+EKjQg8Ir7VNkyZy4fndzTlRjvp2Fo1j1LPPBkbOKFljjTXkxht6G+NGDy7rLR7RkSOZZkSva68LpuTMNNfJ3Gc28g8EIAABCMRCAKMiFow0AgEIOEoAo8JR4QjbHgK21KgITQR9FaeOPIguFRkVmSaDnjvsySflxZdellVr1pS77rzDfIkOrxGOqNC/5Hft3j2ogbHEfAHWmgfhsiQYTfHDD8sNA/3Sr0UudSnPqNC/4OvIj/Cv9rVr15YtgqkPTYIv4VpbQ0d7ZFt0lMa99z9gamoc3KqVbLfdtsGIihrybDAl5YMPPxSdEqMjGfSLuhoDZS2hEXBAyxZyQocOqUOqmufbb78jDw0caM5XU6JB/frBdJstZZdg2oSy08W0eV7ALhg5cVjwZpJjg6kt0eX6Pn1MvZCoNmF8UaPitddfl0eD0Rpqqtx5+23GgAiNBjVcbr+lr2ESmiKqp74VJbqEvM8I+OwRjPgIzY9NGzeWKy6/LHqoaB2P4cFrYHXBqEhDwwoEIACBWAlgVMSKk8YgAAHHCGBUOCYY4dpHwLYaFaGJECVVkVERTs+InvPG2LHyyJBHzSY1KtSEyDQqdOpBt/MvMMfoF+VqkcKb0ba6n9ct9QW9PKNCz/k9mCYxYsRImRDUQdApG+GiRsd5wYgNNWLKWnr3uVG+njZNdtx+e+na5dzUIbnUqIgaAdpQLnlqPYjRzz1nYtIRKuFy0AH7S/tgOki0zdNPPUX23GOP8BDz86EBA+Ttdyak1cgoy6jQ+iMXXXqZmabRLch7hyD/6264wUy/idYYCUdC6OiZlYP/l7UcdughZprL1ddcKzNnzZK99txDTjvllLRD1RC65777zbZCGRXF/J1KS44VCEAAAhYRwKiwSAxCgQAEik4Ao6LoyLlg0gjYVqMiF6NCRxjcFHy5DackqEbhX+D1LSI3XH+dkS3TqNCNPa68SubMnSv7t2ghHU/4dxSC1qdYFoy4yBwFUZFRoW3pl/jGjRqZL8v69g/9wq8GxoH7t5QO7dubWDL/ueDiS0ythb2CL/ynBV/8wyUOo0LbqkqeOsJE35ix+eabyZ9B4Ur9POaNN8zrU7WwqE6z0dEOOr1DRzNsH4z+OK9r1zBkU0fi/AsvkkV//CHR0R1lGRV6UmjSqAZHHnG4qVuho1O0TW1bl8GB6TQmMJ90dIeOuIlqrYZQdFrNw4MekTeDYpo6okVHZGh9kHB5sH9/80YZXceoCKnwEwIQgED8BDAq4mdKixCAgDsEMCrc0YpIIWDqL2hBwzXXXNN82Y0iKctECPdXNKJCjzvqiCOkZYv9pEbwKs13g2KOgx99zLyFI/pX9bKuEX6pXSU475yzOkvT4FWifwRfsIcOG26mXOjohAODUQThokU1+z/8sFnVt2noWzXCJZyyoPld0/Oq1JfnO/r1k4+CV2pGp0GE54Q/ddrH+xMnmikQnc84XbYLXu+pozziMioqm6eaCxdefLGZDnPs0UelXhuqoz3UUNAlrCEyJGD8emBg6CiHE4Kip82aNTMFMF944UV5LShSqosyDV/dms2oCKdj6Bs+jj7ySMNXDaI7brs1ZTJEuR9/7DHSIjA1dGSFFvR8Yugw2XfvvaVtm+NFdYyOptFCqq0OPNC8vnTixEky+LFHTW4aW6GMCm2bBQIQgIDvBDAqfO8B5A8BvwlgVPitP9nHQMC2GhW5jKjQL6dLgloJ4bQArZugi/6VXYsxan0HXcoyKvSVpjf1vcW8XUOP0bdELA5e6xlOd+gY1HrYP6j5EC76Fo7Levz7mlD9y37HDu0Dk6SFeaVq7+CtH3r9OnXqyOabbio/BO2HxRtPDEZs6HFlLZ9+9pn0u/sek0e4X9sOX68ZfatFuD/zZzYjQI+rSp4DHx4k48aPN803arSJrL7aavLlV1+bt39ocdEbe19vDASt4aH1IMIaEWqs6KtDw5jVoDjz9NNSZkO2+ObOmyeXX3GluZ6aPPoWj/CVr2Zj8I+2e28wZWPyRx+ZTeFUnVDrXXbe2RT+1J36WtZbgiKp+spaXXQUyCpBbLpd9dW3mOiCUWEw8A8EIACBghDAqCgIVhqFAAQcIYBR4YhQhGkvgWLOp6/MWz9yMSqOOOwwWbpsqXkNqBoM+gV/4402CuoTnCwbb7xxCn5ZRoXu1LdsDBo8OPgy/lXKKNCile2DV4w2b94sdX744bngbSCvvva6aH0FXdSo2L9lS/NZp0k8MXSofPvtdLOu/9QMjJRWBx0kRx91ZGpbWR/0tZrPP/+CTPv221Tb4XH5GhXaTmXz1EKZw596St54Y6wxXcIYdDrLySd1MmzDbTrtQkd96BtL1AjQRc0GNRr0jR9qEoRLNqNC94d1JcJjoyMxwm06HUdfkzpp8mTzalLdrmzV/NFinmpUhYu+2lSneXz62VRjcmgcOwavn22x335y2x13mMMKZVQU83cqzJefEIAABGwjgFFhmyLEAwEIFJMARkUxaXOtRBIoZo2KuAFmfvHV2hBaI2K9useSigAAQABJREFUdddNTbuoyjX1C/rMmbOCN2usbl5LWpVzM4/VEQwLghEHNYO3VNQL6mToF2pblsrmqbUq5s2fZ6bCrBOMpAjffFJWHmoQzZo924xY0CkchVx0xIZOB1JDaoP110+rV5F5XR1xMXvWbKnfoH7RNMCoyFSBdQhAwEcCGBU+qk7OEIBASACjIiTBTwh4SCDTqPAQASlDAAIQgAAErCSAUWGlLAQFAQgUiQBGRZFAc5nkEihmjYq4KWJUxE2U9iAAAQhAAALxEMCoiIcjrUAAAm4SwKhwUzeitoiAy8PUtQjmwoULTY2CaMFLi/ASiocEXP6d8lAuUoYABApEAKOiQGBpFgIQcIIARoUTMhGkzQRcrlFhM1di85cARoW/2pM5BCDwLwGMin9Z8AkCEPCPAEaFf5qTMQQgAAEIQAACEICA5QQwKiwXiPAgAIGCEsCoKCheGveBgMs1KnzQhxwhAAEIQAACLhLAqHBRNWKGAATiIoBRERdJ2vGWAMPUvZWexAtEgN+pAoGlWQhAwCkCGBVOyUWwEIBAzAQwKmIGSnP+EaBGhX+ak3FhCWBUFJYvrUMAAm4QwKhwQyeihAAECkMAo6IwXGkVAhCAAAQgAAEIQAACORPAqMgZHSdCAAIJIIBRkQARSaG0BKhRUVr+XB0CEIAABCCQRAIYFUlUlZwgAIHKEsCoqCwpjoNAFgIMU88CxpLNS5culZdfeUUWL14irVu3ktq1alUqsh9//FFefPllWb9ePWnZokWlzuGgeAjwOxUPR1qBAATcJoBR4bZ+RA8BCORHAKMiP36cDQGhRkXpO8HMWbPk448/NoEcdOCBUr169VRQ77wzQR4cMMCstznuODk4MCvC5cOPPpbZs2fJmmusKXvssXu42fwcPORRGTN2rPl8VY8e0qjRJmn7WSkcAYyKwrGlZQhAwB0CGBXuaEWkEIBA/AQwKuJnSosQgECRCbz11ngZMGiQueq9d90lNWuukorgiy+/lBtv7mvWzzrzDGm2226pfQMfHiTjxo+Xxo0byZWXX57arh+eHT1a/m/kM8b0uOmG3rL22mun7WcFAhCAAAQgUEgCGBWFpEvbEICA7QQwKmxXiPisJ0CNitJLVJ5RodHNmj1blgRTPxo3bhSs/buUZ1T8/fff8vkXX8i6ddeVunXX+fckPkEAAhCAAASKQACjogiQuQQEIGAtAYwKa6UhMFcIMEy98kp9NnWqfP75FzLtm2mywQYbyNZbbSXbNm2aNlXjvfffl5kzZ5naELvssrN8MHmyfBmMilhjjTWkaXBs40aNUhcc99ZbMm/e/OD4mTIpOE6XQw8+2LS30UYNZNdddpGFCxfKK6/+z+zbe++9AuOhrowIRkroMvnDD2X6jBmy1lpryT577WW27bjDDmaax7Rp35j9uvHoo440+8J/Zn/3XTDVZIroaA2teaF5bL/9dlKnTp3wEPPzzz//lC+/+kqmTPlEZsycIZttuqlss802JoeVVlop7VhW/iXA79S/LPgEAQj4SwCjwl/tyRwCEBDBqKAXQCBPAtSoqBxANQdGBdMpMhc1E3RKRrVq1cyuBx7qLxPefdeMflhjtdVl8kcfpZ1ycqcTZd999jHbbr7lVpn6+edp+8OV5s12k85nnCHfff+9XNnzarP54gsvMKbC6Z3PCg9b4WfY/utjxsiQxx43+/s/cL+ExoLWtbjnvvtk2bJlaedusP76ctklF8vqq69utv/1119y+5395JNPP007TleOO+ZoOfSQQ1bYzoblBDAq6AkQgAAERDAq6AUQgIDPBDAqfFaf3CFQJALRL/07BSMWmjbdRr755lt5JzAk9K0crVsdJG2PP95EExoVulKjRg1ptuuupj7E+HfelgULfjCGwY1BzQgdGTF+fLDthwXy7fQZMnHSJHP+kYcfHoyoqCYNGjSQnXbcsUyjQutP6PL+pA9k+vTppv0W+y43P7bfbjtp2LChRGMOjYoZweiL3jfeZGLeZJOGQWy7mREbb739tvz888+i23pecYVpe9o338j1N/Qxn9u1aSNbbrFFkO8EeenlV2TllVeWa67uKWpusEAAAhCAAATKIoBRURYVtkEAAr4QwKjwRWnyLBgBalRUjLbvrbeJTvvYITABunXtkjrh6f8bIaOff94YBbfcdKPZHjUqLjy/u2zTpInZrsbGdTfcYD6fedppsvvuzVPtlFejoqwRFeGJ5dWoKMuoGPXsszLimVFmGoqaJTVXWV608+Ngasftd95pmu3T+3qpt956ZspHn5tuNtvO7nymmYaiKxPefS/IaevUyAtzAP9AAAIQgAAEMghgVGQAYRUCEPCKAEaFV3KTbCEIMEy9fKpap6Fr9+6yOChmqXUmtKZDuCwJRlP88MMPZrXvjX1knXXWkdCo0OPuuO3WtPoV3S+8SH799Vc5pHVrOf64Y8NmpFhGhZoRakqsWrOmqWuRCiD48P2cOWb1jFNPNa861WKcOuUk3F67dm3ZYrPNpElgvGitjFqrrho9nc8RAvxORWDwEQIQ8JYARoW30pM4BCAQEMCooBtAIE8C1KgoH+Bvv/0m3c6/wBykUzmqZSki2f28bmZ6RGhU6FSJSy++KK3xSy/vIfMXLJCDW7eSNscdl9pXLKOi17XXBUUxZxrzZOXq1VPXj3447NBD5LBDDzWbfl+0SEaMGCkT3nvPGCzhcWrInBeMLNkomJ7CsiIBjIoVmbAFAhDwjwBGhX+akzEEIPAvAYyKf1nwCQIQKBCBHldeJXPmzpX9W7SQjid0SF1F61MsC0ZcREcX2GxUDB7yqIwZO1Ya1K9vakyEBTY1IR3pERbSDBPUnNWo0TeVzJw1y7z9Y/Rzz4kaGAfu31I6tG8fHspPCEAAAhCAQBoBjIo0HKxAAAKeEcCo8Exw0o2fADUqKmb68KBH5M3gVaKrBDUdzjmrszQNXtH5xx9/yNBhw+WD4BWhWgDzwAP2Nw3lYlRoUc3+Dz9szr/6yitMMcwwqvJqVIRx6QiHa3tdnWaYlFWjInqd4489RloExouOrHhz3Dh5Yugw2XfvvaVtm+NNnuFbTtZcc025pudVKRPjjn795KPg1aaZ9TrCePkJAQhAAAIQUAIYFfQDCEDAZwIYFT6rT+6xEGCYesUYf/zxR7mp7y0yb/58c3CtoP7E4sWLRV/hqUvHDh1k/5YtzOdcjApt97Iey9+2oY3oSIeOHdpLy8BIKM+oGBeYJwMDEyU8R3+qYVF/ww3LfOuHvpL03vvuT70yNZzKsnjJEtPGLjvvLP85e/mrT2fNni29g7d+6L46derI5ptuKj8EHHTqiC4nBiNLND6WFQnwO7UiE7ZAAAL+EcCo8E9zMoYABP4lgFHxLws+QSAnAtSoqBw2fbXooMGDzdswlvzzxV6La7YPXt3ZvHmzVCO5GBV68nPB20Nefe11+emnn0xbalTs37JluUbFH4FZ8vjjT8h7779vDAU9UY0KndpR1ogK3a/TVR4Lzpk0ebJ5Nalu07d/qOlw7DFHpxX//OLLL4ORFkPl22+n62Fm0WNbHXSQHH3UkeEmfmYQwKjIAMIqBCDgJQGMCi9lJ2kIQOAfAhgVdAUIQKCoBPQtIDNnzgreALK6eS1pUS8e48X0rR46WkNHb2yw/vrmZ7bmdUTJguDtJjWDt4XUq1cv9VrTbMezHQIQgAAEIIBRQR+AAAR8JoBR4bP65B4LAWpUxIKRRiAAAQhAAAIQiBDAqIjA4CMEIOAdAYwK7yQn4bgJMEw9bqK05zsBfqd87wHkDwEIKAGMCvoBBCDgMwGMCp/VJ/dYCFCjIhaMNAKBFAGMihQKPkAAAh4TwKjwWHxShwAEBKOCTgABCEAAAhCAAAQgAAHLCGBUWCYI4UAAAkUlgFFRVNxcLIkEqFGRRFXJCQIQgAAEIFBaAhgVpeXP1SEAgdISwKgoLX+ungACDFNPgIikYBUBfqeskoNgIACBEhHAqCgReC4LAQhYQQCjwgoZCMJlAtSocFk9YreRAEaFjaoQEwQgUGwCGBXFJs71IAABmwhgVNikBrFAAAIQgAAEIAABCEAgIIBRQTeAAAR8JoBR4bP65B4LAWpUxIKRRiAAAQhAAAIQiBDAqIjA4CMEIOAdAYwK7yQn4bgJMEw9bqK05zsBfqd87wHkDwEIKAGMCvoBBCDgMwGMCp/VJ/dYCFCjIhaMNAKBFAGMihQKPkAAAh4TwKjwWHxShwAEBKOCTgABCEAAAhCAAAQgAAHLCGBUWCYI4UAAAkUlgFFRVNxcLIkEqFGRRFXJCQIQgAAEIFBaAhgVpeXP1SEAgdISwKgoLX+ungACDFNPgIikYBUBfqeskoNgIACBEhHAqCgReC4LAQhYQQCjwgoZCMJlAtSocFk9YreRAEaFjaoQEwQgUGwCGBXFJs71IAABmwhgVNikBrFAAAIQgAAEIAABCEAgIIBRQTeAAAR8JoBR4bP65B4LAWpUxIKRRiAAAQhAAAIQiBDAqIjA4CMEIOAdAYwK7yQn4bgJMEw9bqK05zsBfqd87wHkDwEIKAGMCvoBBCDgMwGMCp/VJ/dYCFCjIhaMNAKBFAGMihQKPkAAAh4TwKjwWHxShwAEBKOCTgABCEAAAhCAAAQgAAHLCGBUWCYI4UAAAkUlgFFRVNxcLIkEqFGRRFXJCQIQgAAEIFBaAhgVpeXP1SEAgdISwKgoLX+ungACDFNPgIikYBUBfqeskoNgIACBEhHAqCgReC4LAQhYQQCjwgoZCMJlAtSocFk9YreRAEaFjaoQEwQgUGwCGBXFJs71IAABmwhgVNikBrFAAAIQgAAEIAABCEAgIIBRQTeAAAR8JoBR4bP65B4LAWpUxIKRRiAAAQhAAAIQiBDAqIjA4CMEIOAdAYwK7yQn4bgJMEw9bqK05zsBfqd87wHkDwEIKAGMCvoBBCDgMwGMCp/VJ/dYCFCjIhaMNAKBFAGMihQKPkAAAh4TwKjwWHxShwAEBKOCTgABCEAAAhCAAAQgAAHLCGBUWCYI4UAAAkUlgFFRVNxcLIkEqFGRRFXJCQIQgAAEIFBaAhgVpeXP1SEAgdISwKgoLX+ungACDFNPgIikYBUBfqeskoNgIACBEhHAqCgReC4LAQhYQQCjwgoZCMJlAtSocFk9YreRAEaFjaoQEwQgUGwCGBXFJs71IAABmwhgVNikBrFAAAIQgAAEIAABCEAgIIBRQTeAAAR8JoBR4bP65B4LAWpUxIKRRiAAAQhAAAIQiBDAqIjA4CMEIOAdAYwK7yQn4bgJMEw9bqK05zsBfqd87wHkDwEIKAGMCvoBBCDgMwGMCp/VJ/dYCFCjIhaMNAKBFIGOnU6SdyZMkC+nfpbaxgcIQAACvhHAqPBNcfKFAASiBDAqojT4DAEIQAACEIAABCAAAQsIYFRYIAIhQAACJSOAUVEy9Fw4SQSoU5EkNcmllAR0JIUuzZs1K2UYXBsCEIBAyQlgVJRcAgKAAARKSACjooTwuXQyCKhJ0e/uu6Vbly7SrWuXZCRFFhAoEYFw2sdjQwZjVpRIAy4LAQjYQQCjwg4diAICECgNAYyK0nDnqgkjoHUqugZGBQsEIJAfgdCooD5Ffhw5GwIQcJ8ARoX7GpIBBCCQOwGMitzZcSYEViCgoyuaN2/GX4JXIMMGCJRPQKd8MN2jfEbshQAE/CKAUeGX3mQLAQikE8CoSOfBGgRyJqBftPSvwbrw1+CcMXKihwTC3x01KnTKBwsEIAABCPB6UvoABCDgNwGMCr/1J/uYCeiICv3SpV+29Keua90K/QKm67qEfzVmHR4+9wf93dAlrOuy+VZby3nB7wpTqAwW/oEABCAgjKigE0AAAj4TwKjwWX1yLyiBcK59WBSQ9ZNSJo6aNfCAh5p1YRFa/RyaeAX9xaRxCEAAAo4QwKhwRCjChAAECkIAo6IgWGkUAmK+lE8Ivnw1C76U6xewcLRFOMKC9eWjT4rJ4/4HHzR/tT+rc2f0+Gf0TzH5G2PinxFG2v9XWklSvx/8NwMCEIAABNIJYFSk82ANAhDwiwBGhV96ky0EvCXAA5+30pM4BCAAAScJcN9yUjaChgAEYiKAURETSJqBAATsJsADn936EB0EIAABCKQT4L6VzoM1CEDALwIYFX7pTbYQ8JYAD3zeSk/iEIAABJwkwH3LSdkIGgIQiIkARkVMIGkGAhCwmwAPfHbrQ3QQgAAEIJBOgPtWOg/WIAABvwhgVPilN9lCwFsCPPB5Kz2JQwACEHCSAPctJ2UjaAhAICYCGBUxgaQZCEDAbgI88NmtD9FBAAIQgEA6Ae5b6TxYgwAE/CKAUeGX3mQLAW8J8MDnrfQkDgEIQMBJAty3nJSNoCEAgZgIYFTEBJJmIAABuwnwwGe3PkQHAQhAAALpBLhvpfNgDQIQ8IsARoVfepMtBLwlwAOft9KTOAQgAAEnCXDfclI2goYABGIigFERE0iagQAE7CbAA5/d+hAdBCAAAQikE+C+lc6DNQhAwC8CGBV+6U22EPCWAA983kpP4hCAAAScJMB9y0nZCBoCEIiJAEZFTCBpBgIQsJsAD3x260N0EIAABCCQToD7VjoP1iAAAb8IYFT4pTfZQsBbAjzweSs9iUMAAhBwkgD3LSdlI2gIQCAmAhgVMYGkGQhAwG4CPPDZrQ/RQQACEIBAOgHuW+k8WIMABPwigFHhl95kCwFvCfDA5630JA4BCEDASQLct5yUjaAhAIGYCGBUxASSZiAAAbsJ8MBntz5EBwEIQAAC6QS4b6XzYA0CEPCLAEaFX3qTLQS8JcADn7fSkzgEIAABJwlw33JSNoKGAARiIoBRERNImoEABOwmwAOf3foQHQQgAAEIpBPgvpXOgzUIQMAvAhgVfulNthDwlgAPfN5KT+IQgAAEnCTAfctJ2QgaAhCIiQBGRUwgaQYCELCbAA98dutDdBCAAAQgkE6A+1Y6D9YgAAG/CGBU+KU32ULAWwI88HkrPYlDAAIQcJIA9y0nZSNoCEAgJgIYFTGBpBkIQMBuAjzw2a0P0UEAAhCAQDoB7lvpPFiDAAT8IoBR4ZfeZAsBbwnwwOet9CQOAQhAwEkC3LeclI2gIQCBmAhgVMQEkmYgAAG7CfDAZ7c+RAcBCEAAAukEuG+l82ANAhDwiwBGhV96ky0EvCXAA5+30pM4BCAAAScJcN9yUjaChgAEYiKAURETSJqBAATsJsADn936EB0EIAABCKQT4L6VzoM1CEDALwIYFX7pnYhsF/62yOSxdOkyWbp0aSJyIonCExg6bKgMGz5M2rZpK+3ativ8BbkCBCAAAQhAIA8C3LfygOfxqTVq1DDZ16lTS1apsbLHJEjddQIYFa4r6FH8alD8/vtyk8KjtEk1JgI88MUEkmYgAAEIQKAoBLhvFQVzoi+ipgWGRaIlTnRyGBWJljc5yWFSJEfLUmXCA1+pyHNdCEAAAhDIhQD3rVyocU5ZBNZaaw1GV5QFhm1WE8CosFoeglMCS4IpHj/99AswIJAXAR748sLHyRCAAAQgUGQC3LeKDDzhl8OsSLjACUwPoyKBoiYtpR8Dk0LrUbBAIB8CPPDlQ49zIQABCECg2AS4bxWbeLKvp1NA6tSulewkyS5RBDAqEiVn8pJhNEXyNC1VRjzwlYo814UABCAAgVwIcN/KhRrnlEeg3nrrlLebfRCwigBGhVVyEEwmAUZTZBJhPVcCPPDlSo7zIAABCECgFAS4b5WCerKvyaiKZOubtOwwKpKmaMLywahImKAlTIcHvhLC59IQgAAEIFBlAty3qoyMEyogUCN4XenaQWFNFgi4QACjwgWVPI4Ro8Jj8WNOnQe+mIHSHAQgAAEIFJQA962C4vWycYwKL2V3NmmMCmel8yNwjAo/dC5GljzwFYMy14AABCAAgbgIcN+KiyTthAQwKkIS/HSBAEaFCyp5HCNGhcfix5w6D3wxA6U5CEAAAhAoKAHuWwXF62XjGBVeyu5s0hgVzkrnR+AYFX7oXIwseeArBmWuAQEIQAACcRHgvhUXSdoJCWBUhCT46QIBjAoXVPI4RowKj8WPOXUe+GIGSnMQgAAEIFBQAty3CorXy8YxKryU3dmkMSqclc6PwDEq/NC5GFnywFcMylwDAhCAAATiIsB9Ky6StBMSwKgISfDTBQIYFS6o5HGMGBUeix9z6jzwxQyU5iAAAQhAoKAEuG8VFK+XjWNUeCm7s0ljVDgrnR+BY1T4oXMxsuSBrxiUuQYEIAABCMRFgPtWXCRpJySAURGS4KcLBDAqXFDJ4xgxKjwWP+bUeeCLGSjNQQACEIBAQQlw3yooXi8bx6jwUnZnk8aocFY6PwLHqPBD52JkyQNfMShzDQhAAAIQiIsA9624SNJOSACjIiTBTxcIYFS4oJLHMWJUeCx+zKnzwBczUJqDAAQgAIGCEuC+VVC8XjaOUeGl7M4mjVHhrHR+BI5R4YfOxciSB75iUOYaEIAABCAQFwHuW3GRpJ2QAEZFSIKfLhDAqHBBJY9jxKjwWPyYU+eBL2agNAcBCEAAAgUlwH2roHi9bByjwkvZnU0ao8JZ6fwIHKPCD52LkSUPfMWgzDUgAAEIQCAuAty34iJJOyEBjIqQBD9dIIBR4YJKHseIUeGx+DGnzgNfzEAtaG7ipImy8047m0j0sy6sw0P7gc/9Ifp7oSxY3CXAfctd7WyNHKPCVmWIqywCGBVlUWGbNQQwKqyRwvlAeOBzXsK0BLp07WK+jD54/wOy0047yVlnn816YNbAg/7Q+eyzzO/K3XfdnTLu0n55WHGGAPctZ6RyJlCMCmekItCAAEYF3cBqAhgVVsvjVHA88Dkl1wrBDhg4QPT/55x1lpwdmBIDBgyQdyZMkG6BYdG8WTPpF3wpYx0e9Icu5ndBf4EeDn5ffvttkezWvJlgWqzwnxQnNnDfckImp4LEqHBKLu+DxajwvgvYDQCjwm59XIqOBz6X1Fox1tCoUFPisSGDVzyALRCAwAoE1Lzr2OkkM7JCzQoWtwhw33JLLxeixahwQSViDAlgVIQk+GklAYwKK2VxMige+JyUzUzn0LoTa621hkwKpjaoUcECAQhUnoCaFTo96qeffq38SRxpBQHuW1bIkKggMCoSJWfik8GoSLzEbieIUeG2fjZFzwOfTWpUPhatRaEPVoyiqDwzjoRAWQRuve32YHrUu2YaSFn72WYfAe5b9mniekQYFa4r6Ff8GBV+6e1cthgVzklmbcA88FkrTdbA9O0FAwcONKMqvpz6Wdbj2AEBCFRMYPOttjYHUa+iYla2HFGI+9aYMWPk+znfyzrrrCMHHXiQLanK+PHjZfqM6bLeeuvJ/i33N3F99PFHMnr0aNlv3/1kjz32qDDWuXPnymuvv2aOO/SQQ2X11Vev8JyqHLB06VIZ8ugQWbx4sZzY8cTY269KLLkei1GRKznOKwUBjIpSUOealSaAUVFpVBxYAYFCPPBVcEl2x0CAKR8xQKQJCAQEdArIm2+Ok06dToaHIwQKcd86r/t58u5778rWgXE1cMBAa0j07NVTXnnlFdlh+x3kvnvvM3G1bddWZs6aKXXq1JHnRz8vK6+8crnxvvf+e9LtvG7mmP8+/l9p2LBhuceXtfOrr78Kfk/eNLvUjKhevXrqsBdfelGuufYas37O2edIpxM7pfa58gGjwhWliFMJYFTQD6wmgFFhtTxOBVeIBz6nADgYrI6o2L9lC1klmPrBAgEI5E9gydJlQa2KX/JviBaKQqAQ9y2XjIru53eXCe9OkEaNGsnjjz5eIfM4jIrnX3herrv+OnOtV15+RWrXqp26ro7wOOuf1/9ed+11csD+B6T2ufIBo8IVpYhTCWBU0A+sJoBRYbU8TgVXiAc+pwA4GOyee+9pombah4PiEbKVBPQNIEsDs4I3gFgpzwpBFeK+5ZJRoVMtPpj8gTTdpqnUrv2vYbACqH82FNqo0MtMnz5d/vjjD9lyyy2zhWH1dowKq+UhuAwCGBUZQFi1iwBGhV16uBxNIR74XObhQuwYFS6oRIwuEQjrVLz15lsuhe1trIW4b5VlVLz66qvy5VdfysYbbSwHHHCAvD7mdfnwww9l7bXXlubNm8t2225nNPjtt9/k0cceNZ933313M00jKs6gRwaZ+g36Jb5li5Zm1++LfpcRI0bI559/LvPmz5MNN9xQWh3USprtlv4Gp7KmfoRxbbDBBnLUkUdFLyUffPCBjHtrnHz22WemrsXhhx0uf/39V9apH3r8mDfGyLRp06RmzZrGaGjbpm2qzsQzo56R7777Tr76Kpj6MW751I8TOpwQFHOuIZtvtrnh8tPPP8nQoUNNHHq9Bg0apGL666+/ZNy4caKjLjTX+g3qG2777L2PrLbaaqnjom0cc/Qx8ssvv8hb498y195+u+1lzz33lDXXXDN1fNwfMCriJkp7hSSAUVFIurSdNwGMirwR0sA/BArxwAfcwhOot946hb8IV4CAJwS0ToW+plRfV8piP4FC3LfKMipCk0DrVqg5Mf7t8WlwLrrwIjn2mGPNtjbt2sisWbOMEdH7+t6p42bMmCHtOrQz6z0u7yH6RV6/+Ov0jRkzZ6SOCz+cesqpcuYZZ4arEsYQrVFR1jY9YdSzo+TGm26Uv//+O3X+SiutZGL632v/M9uiNSrUQHmo/0Npx+tBWlD0kYcfkbp168q5Xc8NXoE9KdVe9IOaN9ddc50ZTdH+hPZmV787+8muu+xqPi9btkyu7nV1qpBn9NzGjRvLnbffKeuuu67ZrCMywja0BoZqrCNHwkWnudx3z30FMyswKkLS/HSBAEaFCyp5HCNGhcfix5x6IR74Yg6R5soggFFRBhQ2QSAPAnPn/ZDH2ZxaTAKFuG+VZ1Robqussop5G8j6668vL7z4gsyePVuqVasm/33iv7JRg43krrvvkif++8TyApfPBQUuq69skGisd/a70xSfHPXMKFlrzbWk1zW95KWXX5K11lpLOp/Z2YxA0NEV+mYObfPpJ5+WevXqmfPLMiXK2qYjFs75zzmiIxj0rR6tW7U2bWhtCR0tES6hUfHtt99Kx04dzfEHHnigHHH4ETJ71my574H7zGgGHalx6SWXihbKnDNnjkydOjVlOJx+2ulmREWjTRrJvvvum9WouPa6aw0rvbaaPfvvv79MnjxZ3n7nbfnzzz+lfv36hp+yihoVevymjTeV1q1by6effmqKeC77c5kccvAhctWVV+nu2BeMitiR0mABCWBUFBAuTedPAKMif4a0sJxAIR74YFtYAkz9KCxfWvePADUq3NK8EPetioyKO++4U3bbdTcDSqcwnHLaKebzlT2ulEMPPdRMbQgLSt57z72y4w47mv3nX3i+vPPOO2a0zj133WO26VSRN8a+IXVq1zFf9HXjzz//LIcdcZgxDvre3Ff22nMvc2xZpkRZ23RkxMODHjbnDBs6zJgnZiX4R2PVmHUJjQr9rOaDTufQt3SoEaPLHXfeIcOGD1vh7SflFdOMmgzhiAo1Flof3FoWLVokB7c+WHpe1dO0r/88O/pZuaHPDWb9oQcekqZNm6YZFdHRI3rQpZddKmPfHCs61UVNnEIsGBWFoEqbhSKAUVEosrQbCwGMilgw0khAoBAPfIAtLAGMisLypXX/CFCjwi3NC3HfKs+o0NeAvvDcC2mv5DziqCNkwYIFovUaupzbxRgMRx1zlNl2UlCc9eyzzjZ1KVof0lqWLFki3c/rLlr7IVz0laPvT3pfdGrIX3/+ZTZP/nCymYahowZ09IAuZZkSZW3T149q0Uz90q9f/qPL4088Lnffc7fZFDUq5s6dKyOfGSn66tFffl7+1ps5c+eYqSk62uHJYU+mmqmqUTFlyhQ586zlU1huv/V2U9MjbEyNmkMPP9RM7QhfZxo1O879z7nS8YSO4eEycuRIuanvTWb91ZdflVq1aqX2xfUBoyIukrRTDAIYFcWgzDVyJoBRkTM6TswgUIgHvoxLsFoAAkz9KABUmvSWADUq3JK+EPet8owKLeZ4/333p0Fq0zaoSTF7lrRr207O63ae2XfzLTebAplaNHPQwEGmpsWFF11o9o14ekRqOkefG/uYehJpDUZWcjEqOp3UyRgOZU2PGDt2rFx6+aXmCqFR8cUXX0i37t3MSI7IpVMf8zUqxowZI5dfcblpb/jQ4WkFNnXj0cceLWqUqHmjJk7UqIiOXtFjdaqNTiPR5eUXXzbTa8xKjP9gVMQIk6YKTgCjouCIuUA+BDAq8qHHuVEChXjgi7bP58IQwKgoDFda9ZcANSrc0b4Q963yjIrMqQhKqiyjYkJQlLX7Bd1FC1g+M+IZGTxksAx/crg02bqJDOg/wACOTvFo3669aOFIHSEwf/58U0xSC2HmYlT0vqG3jH5utHmTxuhRo00NiVDRa669xtSa0PXQqNC6GcpR62Tc0vcW0WKVKwX/u/X2W+W5554z9SPyGVGho0101Iku/znnPyZPsxL888knn8gZnc8wq9dde50csP8BaUZFOH0kPB6jIiTBTwgsJ4BRQU+wmgBGhdXyOBVcIR74nALgYLBM/XBQNEK2mgA1KqyWZ4XgCnHfisOo0AKRhxx2iCxcuFC0doW+VWPmrJlmGohOB9FFp1no6Add9O0g+rpSPa/fXf2MqaHbTz7pZDmr81n6sdJTP/Q1ovrGD110lEeHDh1kzTXWNAUw+97S19SK0H2hUdHjih7mdaubbbqZDH5ksDFXNNaTTznZHKuvDh36xFDzthM9Lzr1Y+CAgaaGhW7XJToaImoy6Fs8dJ++erVbl26y9957m+KY9z94v0ycONGcO2rkKPN2kWxt6EEYFQYV/0AgRQCjIoWCDzYSwKiwURU3YyrEA5+bJNyJGqPCHa2I1A0C1KhwQ6cwykLct+IwKjS+8E0X+mpPHVWgyxOPPSGbbLKJ+awjJrSWhY6gqF69ujRp0kT0DRxat2HDDTY000n0QDUw1Mgoqx5FWdt+X/S7aJ0KHa2gi749ZNVVV5Xff//djLJQ80SX0KgYMXKE3Nz3ZrOt3nr1zCtJP5v6mSnCqYZFuAwZPETUzNC3nOgrWKOvPj2/+/nS5vg2WY0KNSMuufQS0dh0qVmzpqnbEbattT20xocuGBUhFX5CoGICGBUVM+KIEhLAqCgh/IRduhAPfAlDZGU6TP2wUhaCcpQANSrcEq4Q9624jIpobQalqlMqHn/08TTAX0/7WnREg34510VNBS0quXvz3Y0xoa8TrapRoe38+uuv0uvaXvLuu+/KsmXLjBGioxiOO/Y4Y2LoMaFRoa8xffChB+Xxxx8XfUOHLo0bN5bbbrlN/jvsv/LMM8+YkRWhUaH7dSrLk089aUwWXa/IqNBjPvn0E7n1tlvNW0d05IguDRs2NG8aOezQw8y6/oNRkULBBwhUSACjokJEHFBKAhgVpaSfrGsX4oEvWYTszAajwk5diMpdAtSocEe7pNy35s6bKwvmLzCjLWrXrh2bAPpK0GnfTJPGjRpX+IYMfSOJGierr7661N+wvpkCElsgkYYWL15spr00qN9A1lxzzcgeOz5STNMOHYiicgQwKirHiaNKRACjokTgE3jZpDzwJVCarCkx9SMrGnZAICcC1KjICVvJTuK+VTL0ib0wRkVipU1kYhgViZQ1OUlhVCRHy1JnwgNfqRWo+vW7dO0SVHRfWR4LhuGyQAAC+ROgRkX+DIvZAvetYtL241oYFX7onJQsMSqSomRC88CoSKiwJUiLB74SQI/hkkz9iAEiTUDgHwLUqHCrK3DfcksvF6LFqHBBJWIMCWBUhCT4aSUBjAorZXEyKB743JNt4qSJsvZaa0jzZs3cC56IIWApAWpUWCpMGWFx3yoDCpvyIoBRkRc+Ti4yAYyKIgPnclUjgFFRNV4cnZ0AD3zZ2di6hxoVtipDXK4SoEaFW8px33JLLxeixahwQSViDAlgVIQk+GklAYwKK2VxMige+NyTjRoV7mlGxHYToEaF3fpkRsd9K5MI6/kSwKjIlyDnF5MARkUxaXOtKhPAqKgyMk7IQoAHvixgLN9MjQrLBSI8pwhQo8IpuYT7llt6uRAtRoULKhFjSACjIiTBTysJYFRYKYuTQfHA555s1KhwTzMitp8ANSrs1yiMkPtWSIKfcRHAqIiLJO0UgwBGRTEoc42cCWBU5IyOEzMI8MCXAcSBVWpUOCASITpFgBoVTsnFiAq35HIiWowKJ2QiyH8IYFTQFawmgFFhtTxOBYdR4ZRcJlhqVLinGRHbTYAaFXbrkxkd961MIqznSwCjIl+CnF9MAhgVxaTNtapMAKOiysg4IQsBHviygLF8MzUqLBeI8JwiQI0Kp+RiRIVbcuUc7VdffyVvvvmmOf/EjidK9erVc26rohMxKioixH6bCGBU2KQGsaxAAKNiBSRsyJEARkWO4Ep4GjUqSgifSyeWADUq3JGW+5Y7WuUT6fMvPC/XXX+daeKVl1+R2rVq59NcuediVJSLh52WEcCosEwQwkkngFGRzoO13AnwwJc7u1KdSY2KUpHnukklQI0Kt5TlvuWWXrlGi1GRKznOSzoBjIqkK+x4fhgVjgtoUfg88FkkRiVDoUZFJUFxGAQqSYAaFZUEZclh3LeqJsTvi36XESNGyOeffy7z5s+TDTfcUFod1Eqa7dZshYb+/PNPeX3M6/L+++/LnLlzZNum28rBrQ+W77//Xia8O0Fq164tnU7slHaeTtGYMGGCfPDBB7LaaqvJLjvvInvuuaestdZaqeM+/fRTeWPsG2b6xhmnnyFvv/22TPpgkixevDh1fDi145lRz8h3330nX30VTP0Yt3zqxwkdTpAaNWrI5pttLgcccECq3bg+MKIiLpK0UwwCGBXFoMw1ciaAUZEzOk7MIMADXwYQR1apUeGIUITpBAFqVDghUypI7lspFBV+0C/83c/vLjNmzljh2FNPOVXOPOPM1Pa//vpLet/QW3QkQ3RZb731pEmTJvLGG29I3bp1ZdTIUandb41/Sy67/DJZtmxZapt+2KjBRnLfvfeZ43V95MiRclPfm2Tl6itLhw4dZMijQ3RzalHz4Zqrr5Fq1arJuV3PlUmTJqX2RT/ocddds3w6SHR7vp8xKvIlyPnFJIBRUUzaXKvKBDAqqoyME7IQ4IEvCxiLN1OjwmJxCM1ZAtSocEc67luV16rXNb3kpZdfMqMbOp/ZWRo0aGBGV7z2+mvGFHj6yaelXr16psFHBj8iDzz4gPm88cYby6GHHCoLFy6UF158QRYsWGC2R40KHaFx5llnytKlS6XJ1k3koIMOkp9++skYHfPmzZPNN99cHnn4EVlppZVSRoU2ouu77bab7LrLrjLmjTEyZcoU03aPy3vI4YcdLi++9KLMmTNHpk6dKhqnLqefdroZUdFok0ay7777mm1x/oNRESdN2io0AYyKQhOm/bwIYFTkhY+TIwR44IvAcOQjNSocEYownSFAjQpnpDKBct+qvF6//fabmXJRp3ad1Bf8n3/+WQ474jDRERR9b+4re+25l2mw89md5eOPP5b69evL8KHDjaGgO3799Vc5/MjDjSERNSoGPjxQ+g/oL+uss445vlatWqad9ye+L127dTWf//v4f6Vhw4ZpRsXJJ50sZ3U+y+xf9ucyOeLII0RjOuSQQ+SqK64y2/UfalSkUPABAmkEMCrScLBiGwGMCtsUcTceHvjc044aFe5pRsR2E6BGhd36ZEbHfSuTSPnrr7zyirw/6X2ZMWOG/PXnX+bgyR9Olr///luuuvIqOeTgQ2TJkiVyYKsDzRQOHb2g/48uV1x5hRndEDUqul/Q3dSm0LoVddepGz08NdXkih5XyGGHHpZmVPR/qL9s02Sb1PE9e/UUjVFHZQzoPyC1HaMihYIPEEgjgFGRhoMV2whgVNimiLvx8MDnpnbUqHBTN6K2kwA1KuzUJVtU3LeykVlxe58b+8ioZ/+tKZF5RGhU6MiLVge3MubFRRdeJMcec2zaoTffcrOZMhI1Kk465ST58ssvTYHMmqvUTDs+XOnYsaNoLYywRoVuf2PMG6ZWRXhMGOOWW24pgwYOCjczoiJFgg8QSCeAUZHOgzXLCGBUWCaIw+HwwOeeeNSocE8zIrafADUq7NcojJD7Vkii/J/RKR7t27WXEzueKDo9Y/78+dL+hPZpIyq0pY6dOsq0adNkm222kf4P9k81rjUojjjqCPnll1/Simne3DcwL0aOkEaNGsljQx5LTRXRE3/44QczJSRsJGpUjB0z1pgb4T6MipAEPyFQOQIYFZXjxFElIoBRUSLwCbwsD3zuiUqNCvc0I2K7CVCjwm59MqPjvpVJpOx1fW1op5OWv0q09/W9pWWLlqKvH+13Vz8Z/uRwc1K0XkQ4akJ3aFHLww8/3NSnePrpp2X82+PN8dERFdGpGVpz4vjjjpdVVllFnh39rNx+++3m/G5du8mqq66aNqIiF6Ni4ICBsvVWW5sYCvEPxTQLQZU2C0UAo6JQZGk3FgIYFbFgpJGAAA987nUDalS4pxkR202AGhV265MZHfetTCJlr2sNiqOOOcqMoKhevbp5xei3334rOs1jww02lFmzZ5kT1cBQI0OLZuqrQXU6R3TRV4Y2qN/A1J2IGhX6StLLe1wu494aZw5Xk0Kvs2jRIrO+3377SZ/efcznXEZUzJ49W9q0a2NGfoTxnN/9fGlzfJtwNbafGBWxoaShIhDAqCgCZC6ROwGMitzZcWY6AR740nm4skaNCleUIk4XCFCjwgWV/o2R+9a/LCr69PW0r6XHFT1k+vTp5lA1Hc45+xzZvfnuokUsdapHaFToAT/9/JP0799f3n3vXVGjYJOGm8gZZ5wh+irSQY8MSpv6ocerWdH3lr4yduxYc65u0xEUWuNCr6PGhS65GBV63uAhg+XJp540ZouuY1QoBRbfCWBU+N4DLM8fo8JygRwKjwc+h8T6J1RqVLinGRHbT4AaFfZrFEbIfSskUfmfc+fNlQXzF8gmm2wi+paOyiw6ImOllVYyhz740INlGhVhO3qsjtbQ4zfeeGNRQ8SlhREVLqlFrBgV9AGrCWBUWC2PU8HxwOeUXCZYalS4pxkR202AGhV265MZHfetTCLxravZMGfunPQG/xa574H7ZOrUqVKvXj0Z8fSI9P0JWMOoSICIHqWAUeGR2C6milHhomp2xswDn526lBcVNSrKo8M+CFSdADUqqs6slGdw3yoc/Vtvu1WeevqprBc46sij5NJLLs2639UdGBWuKudn3BgVfuruTNYYFc5IZX2gPPBZL1GZAVKjokwsbIRATgSoUZETtpKdxH2rcOi1DsVLL7+0wgWqrVRNdt11VzmhwwlmVMUKBzi+AaPCcQE9Cx+jwjPBXUsXo8I1xeyNlwc+e7XJFhk1KrKRYTsEcidAjYrc2RX7TO5bxSae/OthVCRf4yRliFGRJDUTmAtGRQJFLVFKPPCVCHwel6VGRR7wOBUCZRCgRkUZUCzexH3LYnEcDQ2jwlHhPA0bo8JT4V1JG6PCFaXsj5MHPvs1yoyQGhWZRFiHQH4EqFGRH79in819q9jEk389jIrka5ykDDEqkqRmAnPBqEigqCVKiQe+EoHP87LUqMgTIKdDIEKAGhURGA585L7lgEiOhYhR4ZhgnoeLUeF5B7A9fYwK2xVyJz4e+NzRKoyUGhUhCX5CID4C1KiIj2WhW+K+VWjC/rWPUeGf5i5njFHhsnoexI5R4YHIRUqRB74igY7xMtSoiBEmTUEgIECNCre6Afctt/RyIVqMChdUIsaQAEZFSIKfVhLAqLBSFieD4oHPPdmoUeGeZkRsNwFqVNitT2Z03LcyibCeLwGMinwJcn4xCWBUFJM216oyAYyKKiPjhCwEeODLAsbyzdSosFwgwnOKADUqnJJLuG+5pZcL0WJUuKASMYYEMCpCEvy0kgBGhZWyOBkUD3zuyUaNCvc0I2L7CVCjwn6Nwgi5b4Uk+BkXAYyKuEjSTjEIYFQUgzLXyJkARkXO6DgxgwAPfBlAHFgtdY2KL7/6SqZPn14hqdVWW02a7bZbhcf5dsDvv/8ub7/zjkl7px13lLXXXts3BNblS40K6yQpNyDuW+XiYWcOBDAqcoDGKSUjgFFRMvRcuDIEMCoqQ4ljKkOAB77KULLrmFLXqBj+5FPywksvVQil4cYby9VXXVnhcb4d8N3338uVPa82aV984QWy9VZbJQbBoj/+kDFjxph8dtllF1lv3XWdyI0aFU7IlAqS+1YKBR9iIoBRERNImikKAYyKomDmIrkSwKjIlRznZRLggS+TiD3rPXv1lHZt2knTpk1XCKqUNSqee/55ef2NN1IxLfx1oSxeskSqVasWjA5YK7W9/oYbSvdu3VLrfFhOIMlGxYIFP8gll19uEj2va1fZfrttnZA9W42KKVOmyNDhQ+XaXtc6kYcvQXLf8kXp4uWJUVE81lwpfwIYFfkzpIUCEsCoKCBcz5rmgc9OwUNdNDr9khQ1K2yrUTFw0CAZ99Z4WXPNNeW2vjfbCdSiqDAqLBIjEkpmjQo1KdQs1CXzdzByGh9LQCD872PbNm2lXdt2JYiASyaNAEZF0hRNdj4YFcnW1/nsMCqcl9CaBHjgs0aKFQIJtdEd0S9Kpa5RkRloRUbFL7/8Ih99/LFMnfq56NQAneqwXfCX9nrrrZdqauHChfLKq/8z6/vtu4/Mmv2dfPzxR1Kz5qqy4447SONGjeTHH3+Ud997X74Ppk40bLix7L777rJqzZqpNt57/32ZOXOWrF+vnuyyy87yxtg35auvvzb7t2mytewaTEWoVatW6vjww/wFC4JrfSxae+OPPxbL5pttKlttuZU0btwoPMT8jLbfJGjvnQnvys+//CzHHHWU1KhRwxzzzjsT5Isvv5Q5c+fKGmusLts0aSJ7BHHqaJNwqapRURG/6TNmyMSJk0zzLVvsZwyj8Fo///yzvPb68qkYO++8k+h0HF0qalOPydRk4W+/iX55nz9/QcBoM9l+++2kdu3aeqh8NnWqfPbZ1IDfInn5Hx2bN9st0LhewHxVad2qlTlO/5k5a1bAe4p8/vnnsv4G6weMtgl4byGrrLJK6phif8isURE1KfgyXGw1Kr6eGkiqEdpUzIojKkcAo6JynDjKDgIYFXboQBRZCGBUZAHD5ioTiD6QR78MV7khTigIgbLMilLXqMhMtDyjQk2Am/reIj/88EPaaTWDL6UXXnC+bLbppmZ79Mu7Fpic9MEHqeNXXnll6dTxBBn93PMyd9681Hb9snzB+d1F29LlgYf6y4R335WNN9pI6tSpY748pw4OPmyySUO5+MILpdaqq6Y2f/7FF9LvrruNgZLaGHxYaaWV5IT27WX/li1Sm8P2N9xgA2M8zJo92+y7u9+dskpgVNxz730y+aOPUseHH9SsuKD7eaZN3RbNtaIaFZXhF51uoZxa7LdfeGl5PagXMeSxx836TX1ukHXr1pXKtJkZ56EHHxwYEK/K0qVLU21v1KCBXHrxRcaseGbUszJy1KjUvuiH6EibZ4JjRgbHZi7bNt3GTBNS7qVYojUqov9N5ItwKdQo/5pRfbhnlc+KvZUngFFReVYcWXoCGBWl14AIyiGAUVEOHHZVmUD41yk9UacYNN1mxZoIVW6UE2IjMOWTKeavh9pg+GBeyhoVmYllMyqWBHUrrrq6l/lirG+22KN588BAqG1GIugoAB3dcO3VPWWdddZJ+/KuRsK+waiK6tWqy6v/+5+pf6HXVINgn733CkY+fC0TJy0fQfCfs8+SXXbe2YQUGgm6oiMcdt5px2AkRmNjXnw9bZo5ZqcddpAu5/7HfNa/7Pfuc6NonDoyY7dddw1GQawhb739thm9oQedceqpssceu5vjo+1Xr15dmmy9ldRdp650aN9OxgfnPDLkUXPckYcfLltttaV88smnMjqo56HL2Z3PNO3r58oaFVXhd23v3vLtt9Nlx+23l65dztXLmOXue+6VSZMny8bBSIpeQWHTqrQZjVMb05oje+zeXL7+epoxZP766y/Ze8895dRTThY1fHSExO+LFsmLL71srr1nwE1Ht6y6ai058ID95e+//5Zzu3Yzeuq+A1ruH4yumCmDH31M/vzzTzktaGevoL1SLGGNCh3VEU730DjUqGCxi8Cw4cNMQHqv0v8eskAgDgIYFXFQpI1iEcCoKBZprpMTAYyKnLBxUjkEomZFOYexq8QE9OH86KOOlrXXWkOaN2tW4miWXz6bUaFfXnU0hS5XBgUWGzduFHwS+S2YQnDJZZfLH4sXy6knnyR777VX2pf3ww45RI495mhzbNi2rvS84gozKkK/1Ha/8CLR13we3LqVtDnuOHNs1EjoGpgROwamRLiE+9TAuPvOO0RHaWhR0Kf+b4Q5pE/v61NTUfQL+KU9rjCjQHbYbjvp1rXLCu2HsYTta0xTAmNizpw5ctCBB4Sbgy+91wTTWGbLIa1by/HHHWu2Rw2A8kZUVIXfs6NHy/+NfMaMLrnz9tuMUbNs2TI57/wLDOdjjjpSDj/sMGMo5KLJFptvLpddcnEqLx2FoqNHdPqOsguX6OiOzGKaOhpD49HCq8ro2KOPNtM9PvzoY6lXbz3ZYP31w2ZK8lNrVPDfwZKgr/JFMSmqjIwTKiCAUVEBIHZbRQCjwio5CCaTAEZFJhHW4yCgQ2ptWT6e8rEtoZQ8jsy/ILpSoyI0AnT0QeZrKn/86UdZvHiJ7BOYFKcEZkX0y/v5550nOhVAl9HPPSdPjxhpRjzcc1e/lBbXXN9bpk+fLvvuvbecfFInsz00I3Tax+239BW9brh8GHypvjP4cq3LFZdfJps2biy333mnfDzlEzP9pMdll4aHmp/hK1h1dEe/O243Uz3C9nXKwzXBSJDMRUdtaB2L7777zuSm+2fMnGkMlWic0VzLMyqqwm92cE0dvaLLhcF0GJ1u8ulnn8ktt91utmm8GndV2ozGqWaQmkLh8trrr8ujjz9hVu+/5+5UjY7yjAo9eNAjg2XsuHHmPDWNNmnYcHkdj2CERbRmiTmgiP9Ea1REzQpGVKSLsG1TO97iokYFCwTiJIBRESdN2io0AYyKQhOm/bwIYFTkhY+TIeAMgfBLU/QviK7UqPjv0KGmsKLWHdAaDmUtW2yxuagxEf1SHP3yHhoVWrTxrsAwCJfyjAqtRaEjHqKLFrfsceVVZlM42uLqa641hR332nOPYNrBKdHDg0KcY81UDo1djYrawTSV0KjYcostTG2G6AlvBW89GTRkiJnCEN0efs7FqKgKP73OFVf1lO+DER2tDjoweK1tGxn+1FPywosvmekXN1x/nQmlKm1GNbkoqCfSZOutw3Rk/Pi3pf/DD5v1e+++K1UnpCKjQqd/vPzKqzLmjTdMrGGDOuXilJNOCkYJ7RZuKurPaI0KvXBZv3dFDYiLQQACRSWAUVFU3FwsTwIYFXkC5PTCEsCoKCxfWoeADQTK+7LkQo0KfQPGgwMGmJENN93QW7RORbj8+uuvsvrqq4ersRoV2uiNwfWiozjCkQS679abb5K11lpLhgS1EV4PvjCrCaIjMHQ6SLiEoy2ioyfKMyquue560bob+mW+04kdU2/e6BWYIfPmz08b+RE1AKKmTHjt8GdV+Ok5Tz39f/LcCy+YWhLXXdOrzGknVWmzvDhzNSpU92+nzzAjZtTUmPr5VHn+hRdFR4REWYcMivUzrFGx0047pS5Z3u9f6iA+QAACiSCAUZEIGb1JAqPCG6ndTBSjwk3diBoClSUQvu0jOpIiPHfipIlO1KiI/nW92W67yfHHHhsUzlzbvL7zzn53yVSr3QwAAEAASURBVOabbyYnduxoDIVsX4pzGVGhnLTA5tFBXQate6DTOx57/HFT1LNu3XXk5j59DEp9Q4iaD7oc0LKFtApeoVknMC20MOYTQ4eJ1qo4oGVLOaFDe3NMeUZFt6D2gtbe0HZO6NDBHB9tX1/JqqMSdIRGtlzNSZF/qsJPT5v2zTdy/Q3Lc9N6Ejfe3Ne0Fk510ZWqtFlenJUxKnRUh47uCBet4aEGkI6q0Pi07oUuL7z4YjD64+kVpveE5xXrp9aoyFxCsyIsYpu5n3UIQCAZBDAqkqGjL1lgVPiitKN5YlQ4KhxhQ6AKBNSsaNe23QpnuFKjQgOPjmTQL+k6ekG/0OuiIx56Bm+i0GkV2b4U52JUaG0K/TKsRoO+WWRR8CYKXapVqyZnnXmG7LrLLmZdi02q+RC+QUTj01EV4Ss49S0X+lrRcCRIeUbFg/37m7eZaMP6etQ//vjDjKTQt17otBNdwtd0ZsvVHJTxT2X56Wma88VBkdIff/zRXOvnn382sfe9sU/q1ah6XGXbLC/ObEaFxnBpjx7GENFrKVM1jc45q7Mob51uo9NTVKOtttzSbNPaHrpPddHjSrFEa1RkXj/b72HmcaxDAALuEsCocFc7HyPHqPBRdYdyxqhwSCxChUDMBFypURGm/dLLr8j/XnvNfHHXbfoldbugGJ4W0Qynf2T7UpyLUaE1JFq22M+89jI0KfQVqMcedVTqVaNhbGpmDBs+XCa8977oF3td9FWlOoVDX7uphTnDpTyjQq+jZoW+wSJc9Au6tqGvCNU3eKy22mpmikm2XMPzMn9Whl94zuNPPCGvvvZ6uJo2IiS1MfhQmTbLizObUaHX+CB4HerIZ0aZqTC6HjUg1ER5LCjC+cGHHxpjRfeHZoYWRVXTqhRLZo2KUsTANSEAgdIRwKgoHXuuXHUCGBVVZ8YZRSSAUVFE2FwKAhYSsKlGRWXx6JfUX375VerX3zD1lojKnluZ4zKNBH2ryNy5c6RGUKixMq++nL9ggRkJ0aB+/bQRCJW5dniMvjJVRwysW7eurLHGGuHmWH4Wgl8h2qxMsjqqZt68+cas0FeTRg2hypwf9zFl1aiI+xq0BwEI2EsAo8JebYhsRQIYFSsyYYtFBDAqLBKDUCBQZAK21agocvpZL5dpVGQ9kB0QKINAWTUqyjiMTRCAQAIJYFQkUNQEp4RRkWBxk5AaRkUSVCQHCORGwLYaFbllEf9ZGBXxM/WlxfJqVPjCgDwh4DMBjAqf1Xcvd4wK9zTzKmKMCq/kJlkIpBGwrUZFWnAlXBn25JPyUVAjolGjTeT0U08tYSRc2jUC1KhwTTHihUC8BDAq4uVJa4UlgFFRWL60nicBjIo8AXI6BBwn4GKNCseRE36CCVCjIsHikhoEKkEAo6ISkDjEGgIYFdZIQSBlEcCoKIsK2yDgBwFqVPihM1kWlwA1KorLm6tBwCYCGBU2qUEsFRHAqKiIEPtLSgCjoqT4uTgESkqAGhUlxc/FE0iAGhUJFJWUIFAFAhgVVYDFoSUngFFRcgkIoDwCGBXl0WEfBJJNgBoVydaX7IpPgBoVxWfOFSFgEwGMCpvUIJaKCGBUVESI/SUlgFFRUvxcHAIlJ0CNipJLQAAJIkCNigSJSSoQyIEARkUO0DilZAQwKkqGngtXhgBGRWUocQwEkkmAGhXJ1JWsSkuAGhWl5c/VIVBKAhgVpaTPtatKAKOiqsQ4vqgEMCqKipuLQcAqAtSosEoOgkkAAWpUJEBEUoBAHgQwKvKAx6lFJ4BRUXTkXLAqBDAqqkKLYyGQLALUqEiWnmRTegLUqCi9BkQAgVISwKgoJX2uXVUCGBVVJcbxRSWAUVFU3FwMAtYRoEaFdZIQkMMEqFHhsHiEDoEYCGBUxACRJopGAKOiaKi5UC4EMCpyocY5EEgGAWpUJENHsrCLADUq7NKDaCBQTAIYFcWkzbXyJYBRkS9Bzi8oAYyKguKlcQhYTYAaFVbLQ3AOEqBGhYOiETIEYiSAUREjTJoqOAGMioIj5gL5EMCoyIce50LAbQLUqHBbP6K3jwA1KuzThIggUEwCGBXFpM218iWAUZEvQc4vKAGMioLipXEIWE+AGhXWS0SADhGgRoVDYhEqBApAAKOiAFBpsmAEMCoKhpaG4yCAUREHRdqAgJsEqFHhpm5EbTcBalTYrQ/RQaCQBDAqCkmXtuMmgFERN1Hai5UARkWsOGkMAk4RoEaFU3IRrAMEqFHhgEiECIECEsCoKCBcmo6dAEZF7EhpME4CGBVx0qQtCLhFgBoVbulFtPYToEaF/RoRIQQKSQCjopB0aTtuAhgVcROlvVgJYFTEipPGIOAcAWpUOCcZAVtMgBoVFotDaBAoAgGMiiJA5hKxEcCoiA0lDRWCAEZFIajSJgTcIECNCjd0Ikq3CFCjwi29iBYCcRLAqIiTJm0VmgBGRaEJ035eBDAq8sLHyRBwmgA1KpyWj+AtJECNCgtFISQIFJEARkURYXOpvAlgVOSNkAYKSQCjopB0aRsCdhOgRoXd+hCdewSoUeGeZkQMgTgJYFTESZO2Ck0Ao6LQhGk/LwIYFXnh42QIOE+AGhXOS0gCFhGgRoVFYhAKBEpAAKOiBNC5ZM4EMCpyRseJxSCAUVEMylwDAnYSoEaFnboQldsEqFHhtn5ED4F8CGBU5EOPc4tNAKOi2MS5XpUIYFRUCRcHQyBRBKhRkSg5ScYCAtSosEAEQoBACQlgVJQQPpeuMgGMiioj44RiEsCoKCZtrgUBuwhQo8IuPYjGfQLUqHBfQzKAQD4EMCryoce5xSaAUVFs4lyvSgQwKqqEi4MhkDgC1KhInKQkVEIC1KgoIXwuDQELCGBUWCACIVSaAEZFpVFxYCkIYFSUgjrXhIAdBKhRYYcORJEsAtSoSJaeZAOBqhDAqKgKLY4tNQGMilIrwPXLJYBRUS4edkIg0QSoUZFoeUmuBASoUVEC6FwSAhYRwKiwSAxCqZAARkWFiDiglAQwKkpJn2tDoLQEqFFRWv5cPXkEqFGRPE3JCAJVIYBRURVaHFtqAhgVpVaA65dLAKOiXDzshEDiCVCjIvESk2ARCVCjooiwuRQELCSAUWGhKISUlQBGRVY07LCBAEaFDSoQAwRKQ4AaFaXhzlWTTYAaFcnWl+wgUB4BjIry6LDPNgIYFbYpQjxpBDAq0nCwAgGvCFCjwiu5SbYIBKhRUQTIXAICFhPAqLBYHEJbgQBGxQpI2GATAYwKm9QgFggUlwA1KorLm6slnwA1KpKvMRlCoDwCGBXl0WGfbQQwKmxThHjSCGBUpOFgBQLeEaBGhXeSk3ABCVCjooBwaRoCDhDAqHBAJEJMEcCoSKHgg40EMCpsVIWYIFAcAtSoKA5nruIXAWpU+KU32UIgSgCjIkqDz7YTwKiwXSHP48Oo8LwDkL7XBKhR4bX8JF8AAtSoKABUmoSAQwQwKhwSi1AFo4JOYDUBjAqr5SE4CBSUADUqCoqXxj0kQI0KD0UnZQhECGBURGDw0XoCGBXWS+R3gBgVfutP9hCgRgV9AALxEaBGRXwsaQkCLhLAqHBRNX9jxqjwV3snMseocEImgoRAQQhQo6IgWGnUcwLUqPC8A5C+1wQwKryW37nkMSqck8yvgDEq/NKbbCEQJUCNiigNPkMgfwLUqMifIS1AwGUCGBUuq+df7BgV/mnuVMYYFU7JRbAQiJUANSpixUljEBBqVNAJIOA3AYwKv/V3LXuMCtcU8yxejArPBCddCGQQoEZFBhBWIZAHAWpU5AGPUyGQAAIYFQkQ0aMUMCo8EtvFVDEqXFSNmCEQDwFqVMTDkVYgECVAjYooDT5DwC8CGBV+6e16thgVriuY8PgxKhIuMOlBoBwC1KgoBw67IJADAWpU5ACNUyCQIAIYFQkS04NUMCo8ENnlFDEqXFaP2CGQHwFqVOTHj7MhkEmAGhWZRFiHgF8EMCr80tv1bDEqXFcw4fFjVCRcYNKDQAUEqFFRASB2Q6AKBKhRUQVYHAqBBBLAqEigqAlOCaMiweImITWMiiSoSA4QyJ3AkCGPyIUXnJ97A5wJAQikCCxZukx++umX1DofIAABvwhgVPilt+vZYlS4rmDC48eoSLjApAeBcggMGDhA9P/dunSRbl27lHMkuyAAgYoIhPUpTjvtNNl5p50rOpz9EIBAAglgVCRQ1ASnhFGRYHGTkBpGRRJUJAcI5E5AC2qeF5gUXQOzggUCEMidgBoVOvXj7rvuxqjIHSNnQsBpAhgVTsvnXfAYFd5J7lbCGBVu6UW0ECgEgTp1asnHH38kzZs1K0TztAkBLwgs/G2RjBv3luy0005e5EuSEIDAigQwKlZkwhZ7CWBU2KsNkQUEMCroBhCAwMRJE0XfAKJGxWNDBgMEAhCoAgEdSbFzYE506nRyFc7iUAhAIIkEMCqSqGpyc8KoSK62icgMoyIRMpIEBPIiMGnSJDm367kpo0KHr+vCCIu8sHJyggno70j4+xG+kpQpHwkWnNQgUEkCGBWVBMVhVhDAqLBCBoLIRgCjIhsZtkPALwJqVvwd/E+LAOroCh1loaMr9MtYOPeedXjQH/79fXjw/gdk2223k+jvjl//1SBbCEAgkwBGRSYR1m0mgFFhszrExtQP+gAEILACATUqdAnfXhAaF+FfjFlfbuTAY3nRSB/7Q/T3w/yy8A8EIACBgABGBd3AJQIYFS6p5WGsjKjwUHRShgAEnCIwdNhQGTZ8mLRt01batW3nVOwECwEIQMAnAhgVPqntfq4YFe5rmOgMMCoSLS/JQQACCSCAUZEAEUkBAhDwggBGhRcyJyZJjIrESJnMRDAqkqkrWUEAAskhgFGRHC3JBAIQSDYBjIpk65u07DAqkqZowvLBqEiYoKQDAQgkjgBGReIkJSEIQCChBDAqEipsQtPCqEiosElJC6MiKUqSBwQgkFQCGBVJVZa8IACBpBHAqEiaosnOB6Mi2fo6nx1GhfMSkgAEIJBwAhgVCReY9CAAgcQQwKhIjJReJIJR4YXM7iaJUeGudkQOAQj4QQCjwg+dyRICEHCfAEaF+xr6lAFGhU9qO5grRoWDohEyBCDgFQGMCq/kJlkIQMBhAhgVDovnYegYFR6K7lLKGBUuqUWsEICAjwQwKnxUnZwhAAEXCWBUuKiavzFjVPirvROZY1Q4IRNBQgACHhPAqPBYfFKHAAScIoBR4ZRc3geLUeF9F7AbAEaF3foQHQQgAAGMCvoABCAAATcIYFS4oRNRLieAUUFPsJoARoXV8hAcBCAAAcGooBNAAAIQcIMARoUbOhHlcgIYFfQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQgAAGMCvoABCAAAUcIYFQ4IhRhGgIYFXQEqwlgVFgtD8FBAAIQwKigD0AAAhBwhABGhSNCEaYhgFFBR7CaAEaF1fIQHAQg4CmBKVOmSNOmTU32Q4cNlWHDh0nbNm2lXdt2qW3hZ08RkTYEIAAB6whgVFgnCQGVQwCjohw47Co9AYyK0mtABBCAAASiBHr26ilqVITGRKZREa6rkXFtr2ujp/IZAhCAAARKSACjooTwuXSVCWBUVBkZJxSTAEZFMWlzLQhAAAIVE1CTQs0KXdSs0CUcURF+1p9qUoSjLnSdBQIQgAAESksAo6K0/Ll61QhgVFSNF0cXmQBGRZGBczkIQAAClSAQNSvCw9WU0O26YFKEVPgJAQhAwB4CGBX2aEEkFRPAqKiYEUeUkABGRQnhc2kIQAAC5RAoy6zQwzEpyoHGLghAAAIlJIBRUUL4XLrKBDAqqoyME4pJAKOimLS5FgQgAIGqEcg0KzApqsaPoyEAAQgUkwBGRTFpc618CWBU5EuQ8wtKAKOioHhpHAIQgEDeBEKzApMib5Q0AAEIQKCgBDAqCoqXxmMmgFERM1Cai5cARkW8PGkNAkkgMGDgAJk0aZJJZeKkiUlIiRwgEBuBnXfa2bR12mmnSfg5tsZpCAIQcJoARoXT8nkXPEaFd5K7lTBGhVt6ES0ECklADQr9PwsEIFB5AmpW3H3X3ZU/gSMhAIHEEsCoSKy0iUwMoyKRsiYnKYyK5GhJJhDIh0CXrl0kHD1xXvBZl2bNmknz4P8sEIDAvwTemTDBrPQLzInwM2bFv3z4BAGfCWBU+Ky+e7ljVLinmVcRY1R4JTfJQqBMAqFJoabEY0MGl3kMGyEAgRUJqFERGhaYFSvyYQsEfCOAUeGb4m7ni1Hhtn6Jjx6jIvESkyAEyiWASVEuHnZCoFIEOnY6yYyuOP2000X/zwIBCPhJAKPCT91dzRqjwlXlPIkbo8IToUkTAmUQ0KkealTooiMpmOZRBiQ2QaCSBDbfamtz5FtvvlXJMzgMAhBIGgGMiqQpmux8MCqSra/z2WFUOC8hCUAgZwJh8UymfOSMkBMhkCKgU0D63X23GVHBqIoUFj5AwCsCGBVeye18shgVzkuY7AQwKpKtL9lBoDwC4bQPRlOUR4l9EKgcgdCooFZF5XhxFASSSACjIomqJjcnjIrkapuIzDAqEiEjSUAgJwJ77r2nOe/LqZ/ldD4nQQAC6QSY/pHOgzUI+EYAo8I3xd3OF6PCbf0SHz1GReIlJkEIZCWAUZEVDTsgkBMBjIqcsHESBBJDAKMiMVJ6kQhGhRcyu5skRoW72hE5BPIlgFGRL0HOh0A6AYyKdB6sQcA3AhgVvinudr4YFW7rl/joMSoSLzEJQiArAYyKrGjYAYGcCGBU5ISNkyCQGAIYFYmR0otEMCq8kNndJDEq3NWOyCGQLwGMinwJcj4E0glgVKTzYA0CvhHAqPBNcbfzxahwW7/ER49RkXiJSRACWQlgVGRFww4I5EQAoyInbJwEgcQQwKhIjJReJIJR4YXM7iaJUeGudkQOgXwJYFTkS5DzIZBOAKMinQdrEPCNAEaFb4q7nS9Ghdv6JT56jIrES0yCEMhKAKMiKxp2QCAnAhgVOWHjJAgkhgBGRWKk9CIRjAovZHY3SYwKd7UjcgjkSwCjIl+CnA+BdAIYFek8WIOAbwQwKnxT3O18MSrc1i/x0WNUJF5iEoRAVgIYFVnRsAMCORHAqMgJGydBIDEEMCoSI6UXiWBUeCGzu0liVLirHZFDIF8CGBX5EuR8CKQTwKhI58EaBHwjgFHhm+Ju54tR4bZ+iY8eoyLxEpMgBLISwKjIioYdEMiJAEZFTtg4CQKJIYBRkRgpvUgEo8ILmd1NEqPCXe2IHAL5EsCoyJcg50MgnQBGRToP1iDgGwGMCt8UdztfjAq39Ut89BgViZeYBCGQlQBGRVY07IBATgQwKnLCxkkQSAwBjIrESOlFIhgVXsjsbpIYFe5qR+QQyJcARkW+BDkfAukEMCrSebAGAd8IYFT4prjb+WJUuK1f4qPHqEi8xCQIgawEMCqyomEHBHIigFGREzZOgkBiCGBUJEZKLxLBqPBCZneTxKhwVzsih0C+BDAq8iXI+RBIJ4BRkc6DNQj4RgCjwjfF3c4Xo8Jt/RIfPUZF4iUmQQhkJYBRkRUNOyCQEwGMipywcRIEEkMAoyIxUnqRCEaFFzK7myRGhbvaETkE8iWAUZEvQc6HQDoBjIp0HqxBwDcCGBW+Ke52vhgVbuuX+OgxKhIvMQlCICsBjIqsaNgBgZwIYFTkhI2TIJAYAhgViZHSi0QwKryQ2d0kMSrc1Y7IIZAvAYyKfAlyPgTSCWBUpPNgDQK+EcCo8E1xt/PFqHBbv8RHj1GReIlJEAJZCWBUZEXDDgjkRACjIidsnASBxBDAqEiMlF4kglHhhczuJolR4a52RA6BfAlgVORLkPMhkE4AoyKdB2sQ8I0ARoVvirudL0aF2/olPnqMisRLTIIQyEoAoyIrGnZAICcCGBU5YeMkCCSGAEZFYqT0IhGMCi9kdjdJjAp3tSNyCORLAKMiX4KcD4F0AhgV6TxYg4BvBDAqfFPc7XwxKtzWL/HRY1QkXmIShEBWAhgVWdGwAwI5EcCoyAkbJ0EgMQQwKhIjpReJYFR4IbO7SWJUuKsdkUMgXwIYFfkS5HwIpBPAqEjnwRoEfCOAUeGb4m7ni1Hhtn6Jjx6jIvESkyAEshLAqMiKhh0QyIkARkVO2DgJAokhgFGRGCm9SASjwguZ3U0So8Jd7YgcAvkSwKjIlyDnQyCdAEZFOg/WIOAbAYwK3xR3O1+MCrf1S3z0GBWJl5gEIZCVAEZFVjTsgEBOBDAqcsLGSf/P3nnAS018C/gogqI0K0UUsCtYQAHB3ntFwC5FRRGQYgNRKQr2Atil2AV7wd5Fqn+woKKiomDvCoKg+J8zkHXvZfeS3bt7k8x8+T3Y3WQymfOd+N7Lx+QMBJwhgKhwJpVeBIKo8CLNyQ0SUZHc3DFyCJSXAKKivAQ5HwIlCSAqSvLgFwR8I4Co8C3jyY4XUZHs/Dk/ekSF8ykmQAhkJYCoyIqGAxDIiwCiIi9snAQBZwggKpxJpReBICq8SHNyg0RUJDd3jBwC5SWAqCgvQc6HQEkCiIqSPPgFAd8IICp8y3iy40VUJDt/zo8eUeF8igkQAlkJICqyouEABPIigKjICxsnQcAZAogKZ1LpRSCICi/SnNwgERXJzR0jh0B5CSAqykuQ8yFQkgCioiQPfkHANwKICt8ynux4ERXJzp/zo0dUOJ9iAoRAVgKIiqxoOACBvAggKvLCxkkQcIYAosKZVHoRCKLCizQnN0hERXJzx8ghUF4CiIryEuR8CJQkgKgoyYNfEPCNAKLCt4wnO15ERbLz5/zoERXOp5gAIZCVAKIiKxoOQCAvAoiKvLBxEgScIYCocCaVXgSCqPAizckNElGR3NwxcgiUlwCiorwEOR8CJQkgKkry4BcEfCOAqPAt48mOF1GR7Pw5P3pEhfMpJkAIZCWAqMiKhgMQyIsAoiIvbJwEAWcIICqcSaUXgSAqvEhzcoNEVCQ3d4wcAuUlgKgoL0HOh0BJAoiKkjz4BQHfCCAqfMt4suNFVCQ7f86PHlHhfIoJEAJZCSAqsqLhAATyIoCoyAsbJ0HAGQKICmdS6UUgiAov0pzcIBEVyc0dI4dAeQkgKspLkPMhUJIAoqIkD35BwDcCiArfMp7seBEVyc6f86NHVDifYgKEQFYCiIqsaDgAgbwIICrywsZJEHCGAKLCmVR6EQiiwos0JzdIREVyc8fIIVBeAoiK8hLkfAiUJICoKMmDXxDwjQCiwreMJzteREWy8+f86BEVzqeYACGQlQCiIisaDkAgLwKIirywcRIEnCGAqHAmlV4EgqjwIs3JDRJRkdzcMXIIlJcAoqK8BDkfAiUJICpK8uAXBHwjgKjwLePJjhdRkez8OT96RIXzKSZACGQlgKjIioYDEMiLAKIiL2ycBAFnCCAqnEmlF4EgKrxIc3KDRFQkN3eMHALlJVARouLFl16Sb7/9VtZdd1056MADyzvkgp0/YcKbMueLObLBBhvI/vvtZ/t9+5135JFHHrW/d911l5Ve65tvvpGXXn7ZtjviiCOkerVqKz0nlwaLFy+WkaNGycKFi+S0004teP+5jIW24QggKsJxohUEXCWAqHA1s27GhahwM6/ORIWocCaVBAKBnAlUhKg4uUNHmThpkmy7bRN59KGHch5jsU44u1dvGf/009KieXO575677WX23f8AIy++kBo1asiUiW9K5cqVy7y8yo4OnTvbNi+/+IJsvNFGZbbPdPCjjz+W119/3R7q2KGDrLbaaqlmTzz5lPQ+5xz7u+9550nnzp1Sx/gSjsAf8+fLAw88YBsfcMABeeUo3JWWtUJU5EKLthBwjwCiwr2cuhwRosLl7DoQG6LCgSQSAgTyJICoKCkqAqmy2aabyrNPj18p1UKIikcefUzOu+ACe6333n5bqlZdI3Xdt/73Pzn2+BPs7xuuu1YOOfjg1DG+hCPw1Vdfyx57720bj7ztNtljj93DnZhnK0RFnuA4DQKOEEBUOJJIT8JAVHiS6KSGiahIauYYNwTKTwBRUVJULFq0SKZOnSZNmzUN9ZpFsUWFZvjjTz6RRebVj+2227b8CfewB0SFh0knZAhESABRESF8Lp0zAURFzsg4oSIJICoqkjbXgkC8CEQlKp559ln56KOPpUGDBqZuxQGidSymT59u61jstttust22yx7Kddr+yJGjLLTdd99NmjVtWgLgzbfcIn/9tVgaN95G9tt3X3vsz4ULZdzYcfL+hx/I99//IPU33FAOO+xQ2bllyxLnZnr1IxhX/fobyjFt2pRor7MbXnnlVZn5/vtSu/YG0vaYY+SvRX9lffVD22tcnxjRsMYaVaWJGeOJJ56YEiAPP/KIzJ07T2bNmiUvLq9zccbpp9tXP7baaks50Lym8Msvv8iddy17LaVNm6Nlo/r1U2NaunSpvGZeGZk+fYZ8YGLdeKONpanhs9dee6auoY3T+zi2fTv59bff5I033rDXbtasmext2uurLmE2fRXlrbfesq/HrL/+etK6VSs50tTmqFSpUonTdWzPv/CCTJo02dYn2WGH7W27L+fOtftqVK8unTp1LHHOJ7Nny5vmVZqppn893tLka68995BatWql2uUSy+QpU2Ty5Ckyf/4fMmY5w8MOPUQabNxAqlVbS05d/spOqvMCfWFGRYFA0g0EEkoAUZHQxHk6bESFp4lPStiIiqRkinFCoPAEohIVgSTQWQLrrr2OvPLaayWCu2zwIGnfrp3dt9c++8rcefPk4IMOkmHXX5dq9+lnn8kBBy17FeLKy4fK0UcdJfqv5x06dZLP58xJtQu+9Dq7h5zVtWvwU4IxpNeoyLRPT1CpcEG/C+Xff/9Nnb/qqqtamfD0M8/Yfek1KlSgXHv9DSXaayMt3PnEo4/IeuutJyecdLJMmTo11V/6F32gvu6aayQ9xnvuujMlW/7++29Tu+JcCa6dfu6WW2whY0aNlPXXX9/uTu9DRcioMWNEi3QGm7a//957ypQVer0zu561Qp60j11at5bRI+8Q5aGbMjq/b1/RV1rSt7p16xpZ01heePFFqVOnjkx47dXU4ddee13OOOssWbJkSWqfftmkUSN54L57ZZ111rH7c4ll2PARMmzEiBL9BT+UzaQJbwQ/C/qJqCgoTjqDQOIIICoSlzKvB4yo8Dr98Q8eURH/HDFCCBSLQNSiQuOqUqWKHHbIIWaWQm15/MknrGzQh96XXnjeziAYcvnlMmr0GPsgPW3ypNS/3o8Zc6dcOnSonYEw+c0J9l/etfCk/qu/PtiqmKi/YX25f+xY+6/7+q/+b7z6ipUFet1MUiLTvhmmbkT7444XnSVQ3fxL/xGHHWYetGvbB/HPPv9cu7JbICr0YfqgQw617bWmRFszM+OLL7+Qa667Xn7//Xc54bjjZOCAS+TRxx6Xb775Wt7/4EN57vnnbR/dzcO6/j+5m2++uZ0hkv5gni4qzj3/fHu+nrTNNtvIIQcdKNPMTITX35hgr9vQzFR57pmnLav0PrT95pttJkccfpi8/fY7Vjz8888/cszRR8vlQ4fo4Yzb2HHj5MKLLrbHdIwtW7aQN9+cKDffeqvdpwJJRZJuKmk0Vt0abLyxtDn6KDuL4/EnnpSffvrJ7k8XFR9++KG0adfeypMmTRrLYQcfIj/9/LM8+vjj8sMPP4jue+zhh+15ucQyddo0O/vjN8N85KjR9vyjjjxCGjVsKGuuuZZ0OOVku6/QfyEqCk2U/iCQLAKIimTly/fRIip8vwNiHj+iIuYJYngQKCKBOIiKO0ePsv8qr2G+995MOcq8UqHb1VdeaV4XOFzSC0qOvf8+2dG8rqCbzpyYYB6WW+28s9x95xi7T18VeeGFF41QqJZ6FeRn89DbsvUu9l/604spZpISmfZdf8MwGXHTTbb/QEbYH+avQw8/QmZ99NEKxzQOXbb0zDO6yOqrr26PDxw0WO6+9177WssjDz0YdGGFR7ZimukP5oGo0NkNzXZqLvqKi/JRTsGWLhR0hRVdaSW9j5123NHOUAjan3Z6FysrdLUSjS3bptdUMfG5ETMdOpySanbwoYfZGhqnn3qqnHfustVJ2rY/VlTuaJ8qm1ZZZRXb/tdff5Wdd9lVtK90UTHixhvl+mHD7SwTHcOaVava9pnqf+QTCzUqUuniCwQgUAEEEBUVAJlLFIwAoqJgKOmoGAQQFcWgSp8QSAaBqEVF9WrVZNqUySWW5FSpoP/y3uW00+Tcc/rYGQKtd9tdfvzxR+l6xhnSu1dPWWiKS+7YooX9V/hLLrpITjpx2coYSl2XHJ0yZaqto6CzBXTTf13XVxKuueoqO5tA92WSEpn2BSuB7LD99vLQuLF6amq77fbb5cqrr7G/0yXGt99+K+MefEh06VF9QNftq6++knnmj84y0Af4YCtr1Y/0B/NAVLz9zjtyjJmBoNuYkSNl1113CbqyMzaUn75CESxnmt5HsC844d777pNLBg6yP99/952UVAmOp3/qdbWGx6effmr567EPTX0NnSXSvm1buezSwaZeyF+yw4472euf3b2bdO/WLb0LOfOsbiu8+tHR1Ip4w9SmqLbWWqnZLnqS5it4heeqK64QnQ2RTyyIihIp4AcEIFBkAoiKIgOm+4ISQFQUFCedFZoAoqLQROkPAskhELWoaL7TTrY+QjqxoCbFqZ07yQXnnWcPXXTxJfYVDi2a+bipF/GqqWlxqpkNoP9ar7UO9LUR3S7sf5GMffC/2Qp2Z9pf+YiKQw473AqHo486Uq40r6Gkb1owsmu37nZXICr04V3lhhZ+zLSVV1ToayJnde9hu3715ZdssdD06+yy+x7y3XffSUcz8+FCUysi/eFeZ57oDJRg09dP9DUS3d59e0ZqNkNwPPhUmdKvf387GyLYl/4ZiIo//vhDmjVvYSXD4IED5Lhjj01vJkEe02dUBLNSVlttNalSuXKJ9sEPnZlyppFU+cSCqAgo8gkBCFQEAURFRVDmGoUigKgoFEn6KQoBREVRsNIpBBJBIGpRkV7IMgCWSVS8YWovdDSvF6iY0CKIN9508wqvUejMhRatWtsZGJ06dpDTzL/Ur2n+lf6bb76RA03dA93yERUX9O0nDxk5oitjTJn4pqkh8d/DdK8+feTJp8bbvgNRcdmQITL6zrvsCia3m3oNm2y6iR33gIEDbV2J8ooKrdvQatfd7DUvOO/cEqtX6CsX+uqFbiOG3WCLfaY/3AezMmwD81dYUXHYEUfa2RMqOQYPGmgLdeqMh8PNfl3JIxAV2q/W59AVPJrusIM8OPaB4FJ29ovO9lCZkS4q+pvaFw+YGhhbmLoc402NkuBVET1RZ9asu+66qT7yiQVRkcLHFwhAoAIIICoqADKXKBgBREXBUNJRMQggKopBlT4hkAwCSREVWtegecudRWtQ6GsAw81qDvqAfJ55NeR084qIbvqahc5+0C14SNfzhpiCm3fdc6/dr4Ugz+6xbAZEptc8Mu1Lr/ugsxRONbUxatasKc8+97xcdMnFqdcgAlGhsx101oOupqEP3rp98eWXcpipZ6F1JfTcF597VtZee217LF0W6IogWhwz2LI9mO9/4EGihTx16dUL+/U1y3juKe/NnClXX3OtXUlEH/ZVqmhR0Wx96DXSr13WjIodW7SU38yypiebV2wuNq/a6PbU+PHSs3cf+72leQ1HZ2toEdRg1oQeUIGhy6rqufqayatmdQ/d0kVF+hjO7dNbjj/+eFndFFh90NTYGHzZEGlnapb063uBWeJ1jbxi+frrb2T3vfay1+1vZpik19iwOwv8F8U0CwyU7iCQMAKIioQlzPPhIio8vwHiHj6iIu4ZYnwQKB6BpIgKJdDn3HNFV47QpSV1VoFuL5gHfl3FQTf9F3597eH777+3NS+223ZbmW3qKcw3ckMf6FVs6HaoWWHk+muvCV2jYv6CBXLyKR3k3ffes+fr6iFVzUOz7tdVQHSGgG6BqHjArDLS37yqopsuybnuuuvIzJnv29oUKiyCTVfl2HSTTey49t53v2D3stkXF18kJ5gH9mySYdLkyXLGmV1lwZ9/2vP0IX7RokX2u0qKfuZ1jo5mVolu2frQY+mSoCxRkT5zZKstt5Q/zXWVp64uMueLL7Qrmxed7aJS4sSTT7EzMOyB5X8pN82DMkgXFVpPo6upXREsUavFRysZ4aFSR7cDDzjAiif9nk8sel/suc8+djUZ7UP5aJ/Db1i2MonuK+SGqCgkTfqCQPIIICqSlzOfR4yo8Dn7CYgdUZGAJDFECBSJQJJExbPPPSfdepydIqGvCjz91JOp3/pFZ1V0MzMagiKM+i/855slS1u3biW9+pxjxYUuGXrDddeGFhXarxaM1If1iZMm20KR+tC9r3n4Pd7UYDjFzLDQLRAVuozptWZ5zjtGjUrVdNCxjrz9NrNM5ihbZFMfwgNRoefqkp5333uflSz6e4ARFSeecEKZD+YqTgYMGiQffPChvY4+gG/SqJF0Of00Ofqoo7Qbu+XzcB+cG3yqjNH4gxkRul8f9ocOucwKE12ZRWeI6DKxuulKKzeYlTwmTpokc+fNs+PqaZaL1dVQdEnTdFGh7RcvXiyXDBgoL5qVUoLaHrr6h8qaPr17pYqt5hvLiy+9ZMej9UN0S5cfdkcB/0JUFBAmXUEggQQQFQlMmsdDRlR4nPwkhI6oSEKWGCMEikOgIkRFcUZedq9al+IHs0rIJmbGgq4mUahNBcPsT2bLZptvlrXwZHAtXQHjE9O2Rs0aslH9+iVqLwRtCvGpMyk+/vgTadBgY/taSSH6zNaHCpvglZP11lsvW7MS+3VGg0oU3a659rqMoiI4QdvqLBgVTDpTRj+TtiEqkpYxxguBwhJAVBSWJ70VlwCiorh86b2cBBAV5QTI6RBIMAFXRUWCU+LE0FU2fPvNtyvEcuU115gZIB/YV0B0xRIXN0SFi1klJgiEJ4CoCM+KltETQFREnwNGUAYBREUZcDgEAccJICocT3BE4Q0YOEjuMcUzs236ysyggQOyHU70fkRFotPH4CFQbgKIinIjpIMKJICoqEDYXCp3AoiK3JlxBgRcIYCocCWT8YrjpptvTi3bmj4yfZVD64Xoyim1a9dOP+TMd0SFM6kkEAjkRQBRkRc2ToqIAKIiIvBcNhwBREU4TrSCgIsEEBUuZpWYoiSAqIiSPteGQPQEEBXR54ARhCeAqAjPipYREEBURACdS0IgJgQQFTFJBMNwhgCiwplUEggE8iKAqMgLGydFRABRERF4LhuOAKIiHCdaQcBFAogKF7NKTFESQFRESZ9rQyB6AoiK6HPACMITQFSEZ0XLCAggKiKAziUhEBMCiIqYJIJhOEMAUeFMKgkEAnkRQFTkhY2TIiKAqIgIPJcNRwBREY4TrSDgIgFEhYtZJaYoCSAqoqTPtSEQPQFERfQ5YAThCSAqwrOiZQQEEBURQOeSEIgJAURFTBLBMJwhgKhwJpUEAoG8CCAq8sLGSRERQFREBJ7LhiOAqAjHiVYQcJEAosLFrBJTlAQQFVHS59oQiJ4AoiL6HDCC8AQQFeFZ0TICAoiKCKBzSQjEhACiIiaJYBjOEEBUOJNKAoFAXgQQFXlh46SICCAqIgLPZcMRQFSE40QrCLhIAFHhYlaJKUoCiIoo6XNtCERPAFERfQ4YQXgCiIrwrGgZAQFERQTQuSQEYkIAURGTRDAMZwggKpxJJYFAIC8CiIq8sHFSRAQQFRGB57LhCCAqwnGiFQRcJICocDGrxBQlAURFlPS5NgSiJ4CoiD4HjCA8AURFeFa0jIAAoiIC6FwSAjEhgKiISSIYhjMEEBXOpJJAIJAXAURFXtg4KSICiIqIwHPZcAQQFeE40QoCLhJAVLiYVWKKkgCiIkr6XBsC0RNAVESfA0YQngCiIjwrWkZAAFERAXQuCYGYEEBUxCQRDMMZAogKZ1JJIBDIiwCiIi9snBQRAURFROC5bDgCiIpwnGgFARcJICpczCoxRUkAURElfa4NgegJICqizwEjCE8AURGeFS0jIICoiAA6l4RATAggKmKSCIbhDAFEhTOpJBAI5EUAUZEXNk6KiACiIiLwXDYcAURFOE60goCLBBAVLmaVmKIkgKiIkj7XhkD0BBAV0eeAEYQngKgIz4qWERBAVEQAnUtCICYEEBUxSQTDcIYAosKZVBIIBPIigKjICxsnRUQAUREReC4bjgCiIhwnWkHARQKIChezSkxREkBUREmfa0MgegKIiuhzwAjCE0BUhGdFywgIICoigM4lIRATAoiKmCSCYThDAFHhTCoJBAJ5EUBU5IWNkyIigKiICDyXDUcAURGOE60g4CIBRIWLWSWmKAkgKqKkz7UhED0BREX0OWAE4QkgKsKzomUEBBAVEUDnkhCICQFERUwSwTCcIYCocCaVBAKBvAggKvLCxkkREUBURASey4YjgKgIx4lWEHCRAKLCxawSU5QEEBVR0ufaEIieAKIi+hwwgvAEEBXhWdEyAgKIigigc0kIxIQAoiImiWAYzhBAVDiTSgKBQF4EEBV5YeOkiAggKiICz2XDEUBUhONEKwi4SABR4WJWiSlKAoiKKOlzbQhETwBREX0OGEF4AoiK8KxoGQEBREUE0LkkBGJCAFERk0QwDGcIICqcSSWBQCAvAoiKvLBxUkQEEBURgeey4QggKsJxohUEXCSAqHAxq8QUJQFERZT0uTYEoieAqIg+B4wgPAFERXhWtIyAAKIiAuhcEgIxIYCoiEkiGIYzBBAVzqSSQCCQFwFERV7YOCkiAoiKiMBz2XAEEBXhONEKAi4SQFS4mFViipIAoiJK+lwbAtETQFREnwNGEJ4AoiI8K1pGQABREQF0LgmBmBBAVMQkEQzDGQKICmdSSSAQyIsAoiIvbJwUEQFERUTguWw4AoiKcJxoBQEXCSAqXMwqMUVJAFERJX2uDYHoCSAqos8BIwhPAFERnhUtIyCAqIgAOpeEQEwIICpikgiG4QwBRIUzqSQQCORFAFGRFzZOiogAoiIi8Fw2HAFERThOtIKAiwQQFS5mlZiiJICoiJI+14ZA9AQQFdHngBGEJ4CoCM+KlhEQQFREAJ1LQiAmBBAVMUkEw3CGAKLCmVQSCATyIoCoyAsbJ0VEAFEREXguG44AoiIcJ1pBwEUCiAoXs0pMURJAVERJn2tDIHoCiIroc8AIwhNAVIRnRcsICCAqIoDOJSEQEwKIipgkgmE4QwBR4UwqCQQCeRFAVOSFjZMiIoCoiAg8lw1HAFERjhOtIOAiAUSFi1klpigJICqipM+1IRA9AURF9DlgBOEJICrCs6JlBAQQFRFA55IQiAkBREVMEsEwnCGAqHAmlQQCgbwIICrywsZJERFAVEQEnsuGI4CoCMeJVhBwkQCiwsWsElOUBBAVUdLn2hCIngCiIvocMILwBBAV4VnRMgICiIoIoHNJCMSEAKIiJolgGM4QQFQ4k0oCgUBeBBAVeWHjpIgIICoiAs9lwxFAVITjRCsIuEgAUeFiVokpSgKIiijpc20IRE8AURF9DhhBeAKIivCsaBkBAURFBNC5JARiQgBREZNEMAxnCCAqnEklgUAgLwKIirywcVJEBBAVEYHnsuEIICrCcaIVBFwkgKhwMavEFCUBREWU9Lk2BKIngKiIPgeMIDwBREV4VrSMgACiIgLoXBICMSGAqIhJIhiGMwQQFc6kkkAgkBcBREVe2DgpIgKIiojAc9lwBBAV4TjRCgIuEkBUuJhVYoqSAKIiSvpcGwLRE0BURJ8DRhCeAKIiPCtaRkAAUREBdC4JgZgQQFTEJBEMwwkCU6ZOlRNOOlmaNW0mI4aPcCImgoAABHIjgKjIjRetoyWAqIiWP1dfCQFExUoAcRgCDhMYOWqk6J8e3bpJj+7dHI6U0CBQfALDjJwYNmIEoqL4qLkCBGJLAFER29QwsAwEEBUZoLArPgQQFfHJBSOBQEUTCESFXnf2R7Mq+vJcDwJOEdDZFDqrQmdT6KwKNghAwD8CiAr/cp7kiBEVSc6eB2NHVHiQZEKEQBkEgtc/mFVRBiQOQWAlBJhNsRJAHIaAJwQQFZ4k2pEwERWOJNLVMBAVrmaWuCAQjkD6rApkRThmtIJAOoFAUug+ZlOkk+E7BPwjgKjwL+dJjhhRkeTseTB2RIUHSSZECKyEQLqsaNmiha1XoZ9sEIBAdgIqKHTTuhS6de7U2f6xP/gLAhDwkgCiwsu0JzZoREViU+fHwBEVfuSZKCGwMgLpskLbIipWRozjPhPQWhTpG5IinQbfIeAvAUSFv7lPYuSIiiRmzaMxIyo8SjahQiAEARUWM2bMkOkzpodeKi8kAABAAElEQVRoTRMI+E0AQeF3/okeAqUJICpKE+F3nAkgKuKcHcYmiApuAghAIBMBlRVs8SAw8/2ZMu7BcdK4cWNp37Z9PAbFKKRp06ZQgAAEIFCCAKKiBA5+xJwAoiLmCfJ9eIgK3+8A4ocABOJOYOy4sVZUtGvbTtq3Q1TEPV+MDwIQ8JcAosLf3CcxckRFErPm0ZgRFR4lm1AhAIFEEkBUJDJtDBoCEPCQAKLCw6QnOGRERYKT58PQERU+ZJkYIQCBJBNAVCQ5e4wdAhDwiQCiwqdsJz9WREXyc+h0BIgKp9NLcBCAgAMEEBUOJJEQIAABLwggKrxIszNBIiqcSaWbgSAq3MwrUUEAAu4QQFS4k0sigQAE3CaAqHA7v65Fh6hwLaOOxYOocCyhhAMBCDhHAFHhXEoJCAIQcJQAosLRxDoaFqLC0cS6EhaiwpVMEgcEIOAqAUSFq5klLghAwDUCiArXMup2PIgKt/Ob+OgQFYlPIQFAAAKOE0BUOJ5gwoMABJwhgKhwJpVeBIKo8CLNyQ0SUZHc3DFyCEDADwKICj/yTJQQgEDyCSAqkp9DnyJAVPiU7QTGiqhIYNIYMgQg4BUBRIVX6SZYCEAgwQQQFQlOnodDR1R4mPQkhYyoSFK2GCsEIOAjAUSFj1knZghAIIkEEBVJzJq/Y0ZU+Jv7RESOqEhEmhgkBCDgMQFEhcfJJ3QIQCBRBBAViUqX94NFVHh/C8QbAKIi3vlhdBCAAAQQFdwDEIAABJJBAFGRjDwxymUEEBXcCbEmgKiIdXoYHAQgAAFBVHATQAACEEgGAURFMvLEKJcRQFRwJ8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIAABRAX3AAQgAIGEEEBUJCRRDNMSQFRwI8SaAKIi1ulhcBCAAAQQFdwDEIAABBJCAFGRkEQxTEsAUcGNEGsCiIpYp4fBQQACEEBUcA9AAAIQSAgBREVCEsUwLQFEBTdCrAkgKmKdHgYHAQhAAFHBPQABCEAgIQQQFQlJFMO0BBAV3AixJoCoiHV6GBwEIOApgffff18aN25sox87bqyMe3CctGvbTtq3a2/3pR/3FBFhQwACEIgdAURF7FLCgMoggKgoAw6HoieAqIg+B4wAAhCAQDqB0mJiZb/Tz+U7BCAAAQhERwBRER17rpw7AURF7sw4owIJICoqEDaXggAEIBCCQCAmtKnOotAtmFERfNfP9BkW+psNAhCAAASiJYCoiJY/V8+NAKIiN160rmACiIoKBs7lIAABCIQgkC4rgub6Koi+8qEbkiKgwicEIACB+BBAVMQnF4xk5QQQFStnRIsICSAqIoTPpSEAAQiUQSCTrNDmSIoyoHEIAhCAQIQEEBURwufSORNAVOSMjBMqkgCioiJpcy0IQAACuREoLSuQFLnxozUEIACBiiSAqKhI2lyrvAQQFeUlyPlFJYCoKCpeOocABCBQbgKBrEBSlBslHUAAAhAoKgFERVHx0nmBCSAqCgyU7gpLAFFRWJ70BgFXCIwcNdKG0rRpU2nWtJno7xkzZkinTp34HQGP3n16y+LFi+Efg/tv1KhRov9ddO7U2ZX/3IkDAhAoEAFERYFA0k2FEEBUVAhmLpIvAURFvuQ4DwLuEQjkhD6A3X33XXLzrbfIGCMoWrRoIR3NvilTp/IbHt7fDx2WC4ppU6bKkiV/y/QZ0628c+9/IxARBCCQKwFERa7EaB8lAURFlPS59koJICpWiogGEPCCgD5sdeveTc7s0kX69O5lpcRUIya6d+tm41dJoVtLIy104zc89D7w8X7Qez/4b2PChDelQ+fOdnYFMyz0jmCDgN8EEBV+5z9p0SMqkpYxz8aLqPAs4YQLgSwE1lqrqpxuJMXOLVuk5ESWpuyGAASWE1BpccJJJ1vBd9JJp8AFAhDwnACiwvMbIGHhIyoSljDfhouo8C3jxAuBkgT0dQ/9V/G999qj5AF+QQACoQiorND/hhb8uVDeMDMstKYLGwQg4CcBRIWfeU9q1IiKpGbOk3EjKjxJNGFCIAuB1ru2tkfuNTUpgmn8WZqyGwIQyEIgmFmhhydOmJilFbshAAHXCSAqXM+wW/EhKtzKp3PRICqcSykBQSAnAjqjopp57SOoRZHTyTSGAARSBIYNHyHDRoyQEeaTWRUpLHyBgFcEEBVepTvxwSIqEp9CtwNAVLidX6KDwMoI1KpVQ6pUXm1lzTgOAQishIDOqmjSZFtZsGDhSlpyGAIQcJUAosLVzLoZF6LCzbw6ExWiwplUEggEciagq3zsuktr6WE+2SAAgfITUFmh/3eVGRXlZ0kPEEgiAURFErPm75gRFf7mPhGRIyoSkSYGCYGiEAjqU8z+aFZR+qdTCPhGYLMtt7IhU6fCt8wTLwSWEUBUcCckiQCiIknZ8nCsiAoPk07IEFhOgPoU3AoQKCwBXap0yZK/bZ2KwvZMbxCAQBIIICqSkCXGGBBAVAQk+IwlAURFLNPCoCBQYQQ2WH+dCrsWF4KADwS+/+FnH8IkRghAIAMBREUGKOyKLQFERWxTw8CUAKKC+wAC/hLQGRVrrVmVGhX+3gJEXmAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGgeASoUVE8tvTsJwFqVPiZd6KGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaC4BKhRUVy+9O4fAWpU+JdzIoZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoHgEqFFRPLb07CcBalT4mXeihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGguASoUVFcvvTuHwFqVPiXcyKGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaB4BKhRUTy29OwnAWpU+Jl3ooZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoLgEqFFRXL707h8BalT4l3MihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGgeASoUVE8tvTsJwFqVPiZd6KGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaC4BKhRUVy+9O4fAWpU+JdzIoZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoHgEqFFRPLb07CcBalT4mXeihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGguASoUVFcvvTuHwFqVPiXcyKGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaB4BKhRUTy29OwnAWpU+Jl3ooZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoLgEqFFRXL707h8BalT4l3MihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGgeASoUVE8tvTsJwFqVPiZd6KGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaC4BKhRUVy+9O4fAWpU+JdzIoZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoHgEqFFRPLb07CcBalT4mXeihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGguASoUVFcvvTuHwFqVPiXcyKGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaB4BKhRUTy29OwnAWpU+Jl3ooZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoLgEqFFRXL707h8BalT4l3MihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGgeASoUVE8tvTsJwFqVPiZd6KGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaC4BKhRUVy+9O4fAWpU+JdzIoZAQABREZDgMwkEEBVJyJLHY0RUeJx8QveeADUqvL8FAFBgAtSoKDBQuoNAwgggKhKWMM+Hi6jw/AaIe/iIirhniPFBoHgEqFFRPLb07CcBalT4mXeihkBAAFERkOAzCQQQFUnIksdjRFR4nHxC954ANSq8vwUAUGAC1KgoMFC6g0DCCCAqEpYwz4eLqPD8Boh7+IiKuGeI8UGguASoUVFcvvTuHwFqVPiXcyKGQEAAURGQ4DMJBBAVSciSx2NEVHicfEL3ngA1Kry/BQBQYALUqCgwULqDQMIIICoSljDPh4uo8PwGiHv4iIq4Z4jxQaB4BKKqUTHro4/k66+/llVWWUX23GMP+5ke5cKFC2XS5Ml21+abbSYbbbRR+uEyv//5558yecoU26bpDjvI2muvLUuWLJEXXnxR/vprsRxwwP6yZtWqZfbx77//yiuvvmrbbLXVVlKvbt0y20d58H/Tp8tvv/0mderUkW223jrKoXBtQ4AaFdwGEPCbAKLC7/wnLXpERdIy5tl4ERWeJZxwIZBGIKoaFS+/8orce/8DdiQDL7lY6m+4YdqoRPTh+6ZbbrX7+vTqmdMD+Dfffiv9L77Enntun96y1ZZbypQpU+W2kSPtvrZt2siBRlaUtf3999/SpetZtknHU06WXXfZpazmWY+99vrrotKlUaNGsuUWW2RtV54DQy6/Qj797DNptXNLObVTp/J0Fbtz331vphFaX0nNGjWlVaudYze+TAOiRkUmKuyDgD8EEBX+5NqFSBEVLmTR4RgQFQ4nl9AgEIJAFDUqvv7mG7nokgF2dCcef5zsteeeJUb6wNix8sJLL8tqq60mw667TlZfvUqJ42X9yCQqPpk9Wy6/8ip7WpfTTpUWzZuX1YUUSlSc37ef/PjTT3Lg/vtL22PalHnNfA+6LCpGjR4jb06aZERPQ+nft2++iCr8PGpUVDhyLgiB2BBAVMQmFQwkBAFERQhINImOAKIiOvZcGQJRE4iyRkWvc86V33//3UoDlQfp28BLL5Mvv/xStth8czn/3HPSD630eyZRoSd9ZV41WWxe/WjUqKH5VfaGqCibT0UdTaKooEZFRd0dXAcC8SSAqIhnXhhVZgKIisxc2BsTAoiKmCSCYUAgAgJR1ajQUG+9/Q6ZOm2a1KpVS6658opU9H+aVyV69OwlWifi8EMPlSMOPyx1TF/h0NkR333/vdSoUd2+EtJq551l1VVXTbXJJCrmz58vL5oZGrrtuusust6666baf//DDzLdvGry0ccfm5kba8h2TZpI8+Y7yRlndbNtSr/6oTMkJk6cJHPnzTMzL5bY2hA6I2SD9de37fX4hAlv2u8vvfyyaDybbrJJ6vWV/fbdR9Zaay17XGtnvDdzpnxsrq0xbWJeEdlmm21se9sg7S+tvfHW//4nH3w4S5YsXiybbNJI9tlnH7n2uutDv/oR5novvPiSLFiwQOqamhctW7ZIG4HYV2iU75prrin777dv6pjWHPn440/k8zmfWx76uk2Txo2lUqVKqTY69nnzvpLaG2wgO+7YTN5+5x2ZbXJZo0YNaWzaNmrYMNX2scefsN/fefdd+XLuXHuP7Lb89Zsdtt9eGjZsYI8vXLRIZs2aJTNnvi+///GHbL2Vua7JX5CLVIcV+IUaFRUIm0tBIIYEEBUxTApDykoAUZEVDQfiQABREYcsMAYIREMgqhoVGq3Wb7jrnntt4JcPuUzWX289+13rEtwwfLj9HtSY+Oeff+TGm26Wd957z+5P/0sLSPbueXaqIGcmUZFpn/Yx1zwEX3H1NbaORHqf+mqIShTd0kXFzPc/kFtuvVX0ATl90wfyXmf3MA/KW4k+tF91zbXph0t8v2zwIKlTu7Yt8DlsxI1GPHxY4rj+OK59e9l3n71T+7XOhY5Tx5u+qdjQWSkqR1ZWo0IlRZjrBbMYVCBce9WVKa4qjvqcd74t3LlL61bSqUMHOxSVCk+OH58+LPt9px13FJ0pE0ikQEw1atRQalSrvkIuTznpRNl9t93suZ1P72I/M/0VtPv1119l8JChop/pm15P7xudjRPFRo2KKKhzTQjEhwCiIj65YCQrJ4CoWDkjWkRIAFERIXwuDYEYEIiiRoWG/e1338mFF11sCXTu2EFat2plvz/8yKPy9LPPSuXKlWX49dfZz9ffeEPuvPsee1xnWWy55RbywQcfyvhnnrH7zjj9NGm+0072eyYpkWnfor/+kgv6XSh/mH+JV9Gw/Xbb2YKX02fMkI8/+cTO6NAOA1GhsqRv//7y008/S4MGG8vBBx5o24x/+hk7u0JXBhk8cIA9PmnyJDuWZ59/wUoQXbmkSeNt7D6dfaEzKoIH99WrVLGvv2y88UZ2doWKGl0NpVvXM0VnD+im4kb366ZyomWLFnYWxYy337bCQ/evTFSEvZ7OYlChodvFF15oY9Xv+iqOvpKjW/ezutqxvfraa3L3vffZfU3NWBubGOfM+UKmGMmjYuSA/feTdsccY48H19cfmtsWJl+6IsukKZMtM41ZhZXOdnlqufj434y37XW13Z67L5MY2227rWy88cby7HPPyYMPPyJrrL66dDH5r2pWchn/9NOG4ft21oYWadXrRLFRoyIK6lwTAvEggKiIRx4YRTgCiIpwnGgVEQFERUTguSwEYkAgyhoVGv45518gv/zyi+zaurV07HCKJTL0iitl9qef2tU69F/GdVNJ8L4RE98ZuaGvTgTbxQMG2toTBx1wgBzT5mi7O5OUyLTvQ/PKwNXXXmfPCWRE0O/9DzwgL778ygrHVFJMe+st2XbbJrJhvXr2uL7ScPOtt1m5cOPwYaLiIdiyFdPUGhjdzu5pH+ZLr0ISxB+IB33gP6vH2ZZBsC/oX6XKjTffYn+WPha00c9cr9ezdx9RkXP0kUfIIQcfbLt62kihhx99zMZ3/bXXSBUTp84c0Rkk2xt50KP7sldltPEjpp1KJBUMV19xuT0/XVSkr+SiYmPwkCG2zWlm1ZKdzeolwRbM7mjUaMVimiolHnnscSt9LjjvXLuErC7T+vmcOWZmy9Y5FWANrleIT2pUFIIifUAguQQQFcnNnY8jR1T4mPUExYyoSFCyGCoECkwgyhoVGsrtZsnQyabuhNYUGHrZpbLY1F7obupT6IP1UUccLoceckgq4s8+/9zWaPjGrBjylymKqZvWidDaDbvvuquccvJJdl8mKZFpn/6r/aPmtQX9V/drr75K1jT/Ih9seq3Lhi57wE6XGCoNXn3tdVM34Uv5+edf7IwKrUERvJKhD+X6cB5s2USFLieqq3XopjMIdHWTYJtv6kNoTQ19FUZnGKSvWNLr7LNTMzO0vY6ntylKqmMoS1Tkcj3tV8WLCpjNNt1U+p5/nu6SK6662s402bFZM+l6RhcrTrr37Glzoa+JpPNbbMb1888/2/OuunyorLPOOqkZJNpORUd6/Yqefc6xM1vShZOeXJao0Bk5gy69NHUvrLvuOvZ1j22bbGtmqOyUemXFDqIC/6JGRQXC5lIQiCEBREUMk8KQshJAVGRFw4E4EEBUxCELjAEC0RCIskaFRjzhzTdl9J132eC1HoIKhaC+g/4rub4yoZsWrxxz99324djuKPVXPqLivvvvl5deeVX0AffKoUNL9KjFJHv0WjabIxAVOsNAlzgNpESJE5b/CCsq0mdC2KVX/83Um4jO0NC2N91yq21wxdAhJQqB6s4BgwZbYVOWqMjlevoKxpSp0+S2O+6w9SWGXXet6PB0loXObDm9c2dbZDOdkcqeVc15mbaepnaH1osIZlRkWsklJXQOMMu4tvlvGdeyRIVeS2XFQw89LB/M+jAlLHS/CpbeRqLksqytnleIjRoVhaBIHxBILgFERXJz5+PIERU+Zj1BMSMqEpQshgqBIhCIqkaFhvLDjz/aOhH6XetM6KsdOstBHzCHX3996l/dBw6+1K7+oMUqTzrxBKlZs6aeIgMGDrJ95CMqJk2aLHeMHm376d+3b4llS9NrYgSiQutBjDAFPXU7/dRTZTvz+scqpnDjNFOPYcxdd9v9YUWFFoDUwpS6ndnldNHCk8GmAkDrLQRFKPV1k/PM+HRrd0wbU/dh/6BpiTofZYmKXK6nnWuxUBUTOrNFx6ebzrLQmR/XXXN1avZEv/4X2dVK9jZ1N044/jjbTv/SmR5/G6lRdY01UvsKLSqWLl0qX5i6GVrvY22zcoy+8qGrt7ywfHWXs848Q5o1bZq6fkV+oUZFRdLmWhCIFwFERbzywWjKJoCoKJsPRyMmgKiIOAFcHgIREoi6RoWGrg/h+jC+z1572RkVugpG4210JY+eKTI6u0Ef4PfZa085/rhlD8S6Koc+/Oqmy2Ge07uXne6f6TWPTPt0OVB90NZNC10ec/TRUr9+fdHaFfc/MFa+Nq+Y6BaIipdMzYr7TO0KfWVBX2dQWaKrcVxjlgfVh2TdglVK7A/zVzBTQAtNdjMFKNO34Fj9DTc01zhFdMlNFTdac+Jv86B//HHHppY0VamhskFfB9H4dbwa06OmFsQMs8ynbmWJCj2ey/W0fVDAU+uH6CyLN8zsl22bNJaePXroYbuNHnOnTJg40darUKHR2CytushIjrHjHpS3TVFOLXwarF6Sj6gI+tdXRwYNuKSE+NDZLfpajAqjbl272ryoIOllXoXRvGgRTy3mWdEbNSoqmjjXg0C8CCAq4pUPRlM2AURF2Xw4GjEBREXECeDyEIiQQNQ1KjT0YHp/8OCvdSraHHWkHHzQQSky+hqCvo6g20ZGJujDsD7U195gA/sv+rpfzw9eH+l/8SW6KyUOMokKPX6PWbHiFbNyRbDpTAZ9yNU6Clr3QbdAVKSvUqLH69WrJ3O++ELWMLMG9JUIPU+3k044XvbcYw/7faSZsTHRzNzQTR/2q1WrJtebGQm6qZAZfuNNti6H/taZASpjdNNXKS4491wrL/S3xq71PHSJUN2CceoMh0qVVrWvPaxMVORyPb3GGxMm2JkiuqqGbvrqyylpS4jqPi2EqrUrNBe66bj+Mu10toNuJxipsreRS7rlIyreNBJklJEhuik/3VRY6AorEydNkpGjx9h9KnC0uOncr+ZZ6aUyqX+/vrLxRhvZ4xX5FzUqKpI214JA/AggKuKXE0aUnQCiIjsbjsSAAKIiBklgCBCIiEDUNSo07PRXMAIMF/a9wC7DGfxWCaCyIliiU/drUUddKWSEedjX5URVAlxnimJmkhKZ9mkf+uA/dtw4edPUwAjEhIoQnf3Q98L+9oE7EBXaXgtMjjE1NfTVCN30wVxfMfj1l1/lwUceEV11Il1UfPX11/LgQw/JzPc/sNfSMd5gCkkGm65k8vCjj5glOOemJIReX2dY6BKo6Zs+mOsqFyoHdKtevbp07thRnn/hBSs9ViYq9JxcrqfLturshECOqChQEaSFM9M3nQ0z5q677EotKpl00zbHtm1ra1kEbfMRFSpH7rvvfsv9r+V9q6gIVlzRV3SeeGp8ioleS2dftG97TInXaYIxVMQnNSoqgjLXgEB8CSAq4psbRrYiAUTFikzYEyMCiIoYJYOhQCACAlHWqMg1XF3hQ2c26EoZpR+Yc+0rvb3OAJg7d555yF3bCoD0Y6W/64O7ig+t36D/sp++YkfptmF/q/j41vRZp3ZtKz/KOk/j1/oVulJKvlsu1wt7DZ1VMm/eVyYv1UusfBL2/Hzb6XV/MiuMqCRSeaOzK9JXFMm33/KcR42K8tDjXAgkmwCiItn58230iArfMp6weBEVCUsYw4VAAQnEoUZFAcOhKwhEToAaFZGngAFAIFICiIpI8XPxHAkgKnIERvOKJYCoqFjeXA0CcSIQhxoVceLBWCBQXgLUqCgvQc6HQLIJICqSnT/fRo+o8C3jCYsXUZGwhDFcCBSQQBxqVBQwHLqCQOQEqFEReQoYAAQiJYCoiBQ/F8+RAKIiR2A0r1gCiIqK5c3VIBA3AkmqURE3dowHApkIUKMiExX2QcAPAogKP/LsSpSIClcy6WgciApHE0tYEAhBgBoVISDRBAI5EKBGRQ6waAoBBwkgKhxMqsMhISocTq4LoSEqXMgiMUAgPwLUqMiPG2dBIBsBalRkI8N+CPhBAFHhR55diRJR4UomHY0DUeFoYgkLAiEIUKMiBCSaQCAHAtSoyAEWTSHgIAFEhYNJdTgkRIXDyXUhNESFC1kkBgjkT4AaFfmz40wIZCJAjYpMVNgHAT8IICr8yLMrUSIqXMmko3EgKhxNLGFBIAQBalSEgEQTCORAgBoVOcCiKQQcJICocDCpDoeEqHA4uS6EhqhwIYvEAIH8CFCjIj9unAWBbASoUZGNDPsh4AcBRIUfeXYlSkSFK5l0NA5EhaOJJSwIhCBAjYoQkGgCgRwIUKMiB1g0hYCDBBAVDibV4ZAQFQ4n14XQEBUuZJEYIJA/AWpU5M+OMyGQiQA1KjJRYR8E/CCAqPAjz65EiahwJZOOxoGocDSxhAWBEASoURECEk0gkAMBalTkAIumEHCQAKLCwaQ6HBKiwuHkuhAaosKFLBIDBPIjQI2K/LhxFgSyEaBGRTYy7IeAHwQQFX7k2ZUoERWuZNLROBAVjiaWsCAQggA1KkJAogkEciBAjYocYNEUAg4SQFQ4mFSHQ0JUOJxcF0JDVLiQRWKAQP4EqFGRPzvOhEAmAtSoyESFfRDwgwCiwo88uxIlosKVTDoaB6LC0cQSFgRCEKBGRQhINIFADgSoUZEDLJpCwEECiAoHk+pwSIgKh5PrQmiICheySAwQyI8ANSry48ZZEMhGgBoV2ciwHwJ+EEBU+JFnV6JEVLiSSUfjQFQ4mljCgkAIAtSoCAGJJhDIgQA1KnKARVMIOEgAUeFgUh0OCVHhcHJdCA1R4UIWiQEC+ROgRkX+7DgTApkIUKMiExX2QcAPAogKP/LsSpSIClcy6WgciApHE0tYEAhBgBoVISDRBAI5EKBGRQ6waAoBBwkgKhxMqsMhISocTq4LoSEqXMgiMUAgPwLUqMiPG2dBIBsBalRkI8N+CPhBAFHhR55diRJR4UomHY0DUeFoYgkLAiEIUKMiBCSaQCAHAtSoyAEWTSHgIAFEhYNJdTgkRIXDyXUhNESFC1kkBgjkT4AaFfmz40wIZCJAjYpMVNgHAT8IICr8yLMrUSIqXMmko3EgKhxNLGFBIAQBalSEgEQTCORAgBoVOcCiKQQcJICocDCpDoeEqHA4uS6EhqhwIYvEAIH8CFCjIj9unAWBbASoUZGNDPsh4AcBRIUfeXYlSkSFK5l0NA5EhaOJJSwIhCBAjYoQkGgCgRwIUKMiB1g0hYCDBBAVDibV4ZAQFQ4n14XQEBUuZJEYIJA/AWpU5M+OMyGQiQA1KjJRYR8E/CCAqPAjz65EiahwJZOOxoGocDSxhAWBEASoURECEk0gkAMBalTkAIumEHCQAKLCwaQ6HBKiwuHkuhAaosKFLBIDBPIjQI2K/LhxFgSyEaBGRTYy7IeAHwQQFX7k2ZUoERWuZNLROBAVjiaWsCAQggA1KkJAogkEciBAjYocYNEUAg4SQFQ4mFSHQ0JUOJxcF0JDVLiQRWKAQP4EqFGRPzvOhEAmAtSoyESFfRDwgwCiwo88uxIlosKVTDoaB6LC0cQSFgRCEKBGRQhINIFADgSoUZEDLJpCwEECiAoHk+pwSIgKh5PrQmiICheySAwQyI8ANSry48ZZEMhGgBoV2ciwHwJ+EEBU+JFnV6JEVLiSSUfjQFQ4mljCgkAIAtSoCAGJJhDIgQA1KnKARVMIOEgAUeFgUh0OCVHhcHJdCA1R4UIWiQEC+ROgRkX+7DgTApkIUKMiExX2QcAPAogKP/LsSpSIClcy6WgciApHE0tYEAhBgBoVISDRBAI5EKBGRQ6waAoBBwkgKhxMqsMhISocTq4LoSEqXMgiMUAgPwLUqMiPG2dBIBsBalRkI8N+CPhBAFHhR55diRJR4UomHY0DUeFoYgkLAiEIUKMiBCSaQCAHAtSoyAEWTSHgIAFEhYNJdTgkRIXDyXUhNESFC1kkBgjkT4AaFfmz40wIZCJAjYpMVNgHAT8IICr8yLMrUSIqXMmko3EgKhxNLGFBIAQBalSEgEQTCORAgBoVOcCiKQQcJICocDCpDoeEqHA4uS6EhqhwIYvEAIH8CFCjIj9unAWBbASoUZGNDPsh4AcBRIUfeXYlSkSFK5l0NA5EhaOJJSwIhCBAjYoQkGgCgRwIUKMiB1g0hYCDBBAVDibV4ZAQFQ4n14XQEBUuZJEYIJA/AWpU5M+OMyGQiQA1KjJRYR8E/CCAqPAjz65EiahwJZOOxoGocDSxhAWBEASoURECEk0gkAMBalTkAIumEHCQAKLCwaQ6HBKiwuHkuhAaosKFLBIDBPIjQI2K/LhxFgSyEaBGRTYy7IeAHwQQFX7k2ZUoERWuZNLROBAVjiaWsCAQggA1KkJAogkEciBAjYocYNEUAg4SQFQ4mFSHQ0JUOJxcF0JDVLiQRWKAQP4EqFGRPzvOhEAmAtSoyESFfRDwgwCiwo88uxIlosKVTDoaB6LC0cQSFgRCENAZFVUqryaVK1eWHt27hTiDJhCAQDYCWp9iyeIlssWWW2drwn4IQMBxAogKxxPsWHiICscS6lo4iArXMko8EAhPQEWF/mnZooXce/dd4U+kJQQgsAIBfe1DZcWI4SOkWdNmKxxnBwQg4D4BRIX7OXYpQkSFS9l0MBZEhYNJJSQI5EBARUXf88/N4QyaQgACmQhMeHOiDDOSQkUFGwQg4CcBRIWfeU9q1IiKpGbOk3EjKjxJNGFCoAwC+urH3XffKS1btrCzK8poyiEIQKAUAZUT+uoU//e0FBh+QsBDAogKD5Oe4JARFQlOng9D5/+x8iHLxAiBsglMnzFdui2vUTH7o1llN+YoBCCQIqCveugrH/qqBzMpUlj4AgFvCSAqvE19IgNHVCQybf4MGlHhT66JFAJlEQhqVey66y4yw4iL4F+JtX6FftctKLjJb3hwPyz772H+goWyQ7Om0rlTZ/vH/ofCXxCAgLcEEBXepj6RgSMqEpk2fwaNqPAn10QKgbAEdHaFzrK47ZZbpYURFV3O6GKLBPIbHtwP//33EMiJGTNmSNOmTcP+50U7CEDAYQKICoeT62BoiAoHk+pSSIgKl7JJLBAoDAF98FJRoQ9fOqWd3/DgfljxvwcVFWwQgAAE0gkgKtJp8D3uBBAVcc+Q5+NDVHh+AxA+BCAAAQhAAAIQgEBBCCAqCoKRTiqIAKKigkBzmfwIICry48ZZEIAABCAAAQhAAAIQSCeAqEinwfe4E0BUxD1Dno8PUeH5DUD4EIAABCAAAQhAAAIFIYCoKAhGOqkgAoiKCgLNZfIjgKjIjxtnQQACEIAABCAAAQhAIJ0AoiKdBt/jTgBREfcMeT4+RIXnNwDhQwACEIAABCAAAQgUhACioiAY6aSCCCAqKgg0l8mPAKIiP26cBQEIQAACEIAABCAAgXQCiIp0GnyPOwFERdwz5Pn4EBWe3wCEDwEIQAACEIAABCBQEAKIioJgpJMKIoCoqCDQXCY/AoiK/LhxFgQgAAEIQAACEIAABNIJICrSafA97gQQFXHPkOfjQ1R4fgMQPgQgAAEIQAACEIBAQQggKgqCkU4qiACiooJAc5n8CCAq8uPGWRCAAAQgAAEIQAACEEgngKhIp8H3uBNAVMQ9Q56PD1Hh+Q1A+BCAAAQgAAEIQAACBSGAqCgIRjqpIAKIigoCzWXyI4CoyI8bZ0EAAhCAAAQgAAEIQCCdAKIinQbf404AURH3DHk+PkSF5zcA4UMAAhCAAAQgAAEIFIQAoqIgGOmkggggKioINJfJjwCiIj9unAUBCEAAAhCAAAQgAIF0AoiKdBp8jzsBREXcM+T5+BAVnt8AhA8BCEAAAhCAAAQgUBACiIqCYKSTCiKAqKgg0FwmPwKIivy4cRYEIAABCEAAAhCAAATSCSAq0mnwPe4EEBVxz5Dn40NUeH4DED4EIAABCEAAAhCAQEEIICoKgpFOKogAoqKCQHOZ/AggKvLjxlkQgAAEIAABCEAAAhBIJ4CoSKfB97gTQFTEPUOejw9R4fkNQPgQgAAEIAABCEAAAgUhgKgoCEY6qSACiIoKAs1l8iOAqMiPG2dBAAIQgAAEIAABCEAgnQCiIp0G3+NOAFER9wx5Pr4Ffy6UBQsWek6B8CEAAQhAAAIQgAAEIFA+AoiK8vHj7IolgKioWN5cLUcCiIocgdEcAhCAAAQgAAEIQAACGQjUqlVDqlReLcMRdkEgfgQQFfHLCSMqReD7H34utYefEIAABCAAAQhAAAIQgEBYAsymCEuKdnEhgKiISyYYR1YCzKrIioYDEIAABCAAAQhAAAIQWCkBZlOsFBENYkYAURGzhDCczASQFZm5sBcCEIAABCAAAQhAAAJlEVhrraqy1ppVy2rCMQjEjgCiInYpYUDZCCArspFhPwQgAAEIQAACEIAABFYkgKRYkQl7kkEAUZGMPDHK5QQWL1liVwFZsuRvmEAAAhCAAAQgAAEIQAACGQggKDJAYVeiCCAqEpUuBptOQKUFGwQgAAEIQAACEIAABCCwjECVypVBAQEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIAABNwggKhwI49EAQEIQAACEIAABCAAAQhAAAIQcIIAosKJNBIEBCAAAQhAAAIQgAAEIAABCEDADQKICjfySBQQgAAEIAABCEAAAhCAAAQgAAEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIAABNwggKhwI49EAQEIQAACEIAABCAAAQhAAAIQcIIAosKJNBIEBCAAAQhAAAIQgAAEIAABCEDADQKICjfySBQQgAAEIAABCEAAAhCAAAQgAAEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIAABNwggKhwI49EAQEIQAACEIAABCAAAQhAAAIQcIIAosKJNBIEBCAAAQhAAAIQgAAEIAABCEDADQKICjfySBQQgAAEIAABCEAAAhCAAAQgAAEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIAABNwggKhwI49EAQEIQAACEIAABCAAAQhAAAIQcIIAosKJNBIEBCAAAQhAAAIQgAAEIAABCEDADQKICjfySBQQgAAEIAABCEAAAhCAAAQgAAEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIAABNwggKhwI49EAQEIQAACEIAABCAAAQhAAAIQcIIAosKJNBIEBCAAAQhAAAIQgAAEIAABCEDADQKICjfySBQQgAAEIAABCEAAAhCAAAQgAAEnCCAqnEgjQUAAAhCAAAQgAAEIQAACEIBAsQgsXbpUPp8zR/74Y36xLlGQfqtUqSwNGzaUNatWLUh/UXWCqIiKPNeFAAQgAAEIQAACEIAABCAAgdgTuGHYcOnXv7/8+++/sR9rMMBGjRrJ++++E/xM3CeiInEpY8AQgAAEIAABCEAAAhCAAAQgUBEEbhg2TPpe2L8iLlXwa2xUv758MPM9qVSpUsH7LnaHiIpiE6Z/CEAAAhCAAAQgAAEIQAACEEgeATOBYq2aNRM1k6I05J++/06qJvA1EERF6UzyGwIQgAAEIAABCEAAAhCAAAS8J/DnwoWy3ga1E82hfbu2MnrkyMTFgKhIXMoYMAQgAAEIQAACEIAABCAAAQgUm4AWzqxdr16xL1PU/vfYfXd5ZvxTRb1GMTpHVBSDKn1CAAIQgAAEIAABCEAAAhCAQKIJICqiSx+iIjr2XBkCEIAABCAAAQhAAAIQgAAEYkoAURFdYhAV0bHnyhCAAAQgAAEIQAACEIAABCAQUwKIiugSg6iIjj1XhgAEIAABCEAAAhCAAAQgAIGYEkBURJcYREV07LkyBCAAAQhAAAIQgAAEIAABCMSUAKIiusQgKqJjz5UhAAEIQAACEIAABCAAAQhAIKYEEBXRJQZRER17rgwBCEAAAhCAAAQgAAEIFIjAv//+K//884/9s3TpUtHfIqvIqpVWldUqVTKf5s8qqxToau53o/wsx6XK8b9Nea5iOOqfsjY9P/Un6MOckqQ8ICrKynBxjyEqisuX3iEAAQhAAAIQgAAEIACBIhFIPUybh+JFixbJJ7Nny8z3Zsq8r+bJ/PkLZI011pC6devINttsI1tttZXUqF7dPmCvuuqyh+0iDSvx3QZc33n3Xfnzzz9FAldhREP9+vVlw3r1ZLXVVitTVmgfv//+u7z/wQdWeCgUPaexyUV1k4ckbIUWFX/+8Xsq7DtGjpQePXulfhfryx677y7PjH+qWN0XrV9ERdHQ0jEEIAABCEAAAhCAAAQgUCwC+iD8999/y48//ijPPPus3Hvf/TL7009l8eLFdlaFHtd/9VcpoQ/IG5kH7CMOP1yOO7a91KlbVyqbfXqMbUUCOjPl62++kX3223+ZqFhuKsw8Ctl///1lwCUXSz3DsJKZpZJt09y89b//yYknnSx/mZyo7Vi71toyZvQoada0abbTYrW/mKLi5ltukT7nnlf0eBEVRUfMBSAAAQhAAAIQgAAEIAABCIj9F3qdQTF9xgwZMvRymTJ1qvz111+pVw0yMdKHan0FZPMtNpe+558v++y9t6y11lpWVqzsNYZM/bm6TwWPyp5hw4fLZYatfg825bT+euvJPXffJS2aN5cqVaoEh1b4XLJkiUyaPFnatG23XHaIrLvOOvLQg+PsuSucEMMdiIroksKMiujYc2UIQAACEIAABCAAAQhAIEcC+iD9m3ml4LHHHpPBlw2xMyp0BoDu1z/ZNn3I1j+VzCyKqmuuKd26dpWOHTtI3Tp1mFmRBk3rUnz//fdy+JFHyayPPrKzVtIOy+pGTnTpcrr079dPqlWrln6oxHdERQkc9kf6qx/MqFiRT/oeREU6Db5DAAIQgAAEIAABCEAAArEloCLi99//kLHjxsnAwYNtDQR9sDb+wfxZ1c6QUPGwzjpry+qrry6Lzb/q//rLr/KdefDWegn6OoL2oa98aP2KLqedJt27d7OzBMp6jSG2QIowMJU+yrf3OeeaOh/zLS8VPIEIUk6bNGokTzz+mH2dJtvrM4iKFZOTLipuuvkWOec8Xv1YkdKyPYiKbGTYDwEIQAACEIAABCAAAQjEioA+RD9qZlJcdMkl8tVXX6dqUaiU2GLzzWXfffaRli1bSIMGDaR6teqycOFCmTtvrrz99tvywosvyQzzGbwiog/Y6667jpzTu7d0OOWUxBR4LGZCVEYsWLBATuvSRZ5++hn52/BWTrVq1TLVKUR+/OknOyulcuXKcv2118rxxx9na32oyCi9ISpKExFJFxUjR42Ss3v1XrGR2aPyrVAbNSoKRZJ+IAABCEAAAhCAAAQgAAEIlCKgD82fffaZnHve+fLa66+LPgjrA7LOjNildSvp3KmztNq5pdRae227DGnw8PyPeej70zx8q6QYc+ed8vzzL9hXR/ShXB+4mzRpIpcNGiR77LF76oo6E2OpuZ5uq5gHdZ1FYB/FzfX+NsdUdvxpJIgud1q1alVbq0H70rZhlkDVB1Gd3aF/FppaG4tNf1rwU/vST+1LBUEQQzAwHbPGrcLGjs1c347NfOpm+zPjWmT60z7WTOuvdF/2hFJ/6fmTp0yRrmd1k08Na73eOqauxKGHHCI/GUnx9DPP2H06xlY77yxj779PatSokfHVGURFKbjmZ7qo0KPKu/Sm+3bdfQ/54MMPSx/K6zeiIi9snAQBCEAAAhCAAAQgAAEIQGDlBLR45m233y7X3zBMvv3uO3uCFnNs1qypDBowQFq2aGEf8rM9kOsDoD5897/oYjO74kX7wK+dqOjo1KGDDBxwiRUF+pB/xx132NoXenz11deQHXfc0ciQ1vLRxx/Liy++IO+ZJVC1ToZeax0jRrbffnvZd9997KwOnd1R1qYP/7/++qu8+NJLMnHSJPnyy7lWfKy2WiWpXbu2bL/d9mZljf3s6xWlX6tQQfHgQw/JrFkfLRcG+hrGJnLYYYfa2J599jl597337CsbKhMaNNjYFg3de6+9ZE1TlyMbm2C8uhTp0MuvkJGjR9sx6v5ttt5ahg+7QSabwphDr7jSzrjQfnSJ0TFmVsA+e+9luQd9BJ+IioDEf5+lRcV/R/77psVLW+2yq3w4a9Z/O8vxDVFRDnicCgEIQAACEIAABCAAAQhAoCwCKhku7H+RPPf88/bBXh+WN9hgA7l00EA56sgj7YN4WeerINAH/QkT3pQzu50l8+Z9ZX9rPyohhlx2meyw/XZ2hYpDDz/Czt7Q/qquWVUOOvBA2XijjeTRxx+35/3xxx+pWQ0qBGrUqC4b1tvQjqN9+3ZSxwgH3Z++6bWXGFny2muvya233WYeRD+SX375RVTA/KtT/c04VLxoX3Xq1JXjzTKqJ598slQ1IiXoS8/X2Q7KQGdl6GyK7bbdVg484AC5/4EHZO7cufK7GVtQt2ONNapKbcNo//32kzPPPEMaNWxoh5RNWMx8/33pY2pT6CoqKhp0PEcecYSMMKJi6rRpcvGAgfLOO+/Y2HVMxxx9tNx0041SRWeTmPGnb4iKdBrLvpcWFZle8VBR0Xq33Y2MQlRkL427Ilv2QAACEIAABCAAAQhAAAIQqHACOlugv6lN8ZFZiUIf+nW2QetWreSRhx60RTRLPyhnGqDKCp01cN4FfeXe++5LLb25kZEQF/a9QNq3a2dfxdhzr73l408+sV0sExE17IO7FpfULbiW9qd/gn26Ckb7tm2lX7++VhAE7fS4CgmdDXH1tddZCRI8pKa3Se9Ll0497thjZfDAAXZ1DW2nD/+ndOwkTz71VIqBvi6ir3losVAzGCs8gn70UznprJFTO3WS8847V2rVrJnxVQ1te8fIkXK5mTWhxUf1elqb4tqrr5I2Rkj89PPPMnDQYCtEtPaHHq9Xr56Mf+IJ2WyzTVfoE1Fhb4sSf6WLCp3ho8ufZtr2NLVWPll+/2U6nss+ZlTkQou2EIAABCAAAQhAAAIQgAAEciCgD9EDB19qZyHoafpwfoFZNaFP716pGQcr604fxvUBUWcknNyho5UHeo5KgZ49usvZPXrYApLpokIfyPWPbvpZ3cgIlQNaj0JrVai80IfyYIaDzkLo3bOn6at76nULFStPP/OsDL70UitA/vnnb/NgX8kKiPXWXdcKAe3r+x9+sK9caH96La3/0P2srtLL9Kfxaj/poiIYk86s0FdOqpk4KpvrLzIi4Q8zLv3X+WDbZJNNzCsyl8jBBx1k2wb79VPH/rMREX0vvFAeGDvO/lZB03ibbezqHvp6i3J7+OFH5NIhQ+TzOXPs6To+LUba7ayzjAwp+coLosIiKvFXuqhgedISaFb4waofKyBhBwQgAAEIQAACEIAABCAQNwJXXX2NfUjWB2CdJaCyYPTIO+xrGfqgHnbTh/IvvvhCmu/cys6u0PPWMA/5HTqcYsVHFfM9XVTocZUGWuNB6zUcecThsrMpJKnX1+n5jz3+hEwytSZ0xoGKEG27tnmwf+Dee+0KJPr7iy++tMupPvzII7aNjr+hWZnk1M6dpU2bo83yqOvLX4v/kokTJ8ltd9wub7wxITU2lQXDb7jB1MloZs8tLSq0L61tceghB8sRhx0udevVtTUsdFWJCW++aSWKjktjPO20U6300FdT0jdl+uprr8slptbH2+bVDt1UfPTv189IiK72FRDl9uWXX0r3s3uatq9ZmaFSZueWLeWO22+T+htumN6lve4kU9eiTdt2qVjWNYU5H3pwnLRo3rxE27j+0BkPtc2skUJtiIrwJBEV4VnREgIQgAAEIAABCEAAAhCIiMCQoZdbUaGXVzGhouBh89Crr3/kIir0oV2lQuNttzNT7/+w0ehD+YknHC99zz9f1jSzEtJFhYoGPX7A/vvLuef0ka232mrZDA6z+utv1gAAFSlJREFU385EMKthjBw1Wm43Mz50ZQztX2cjHHboofYBXutPPPnUeFPE8yL56uuvrWRRsXDDddfaQpc6U0KvoZvOWvjs88/l7J69RB/ydQaFSo/TjNA4p09vKwzSRYVKCp3VcMpJJ0lvM7Okpvmu+3Slk3nz5smxxx1vC4Bqv3qdvfbcUy67dLCdKWEvuPwvrZVx8y23yrARI+wrJNrH+uuvL8+bVT422XQTqWR+a1w6nsGXXmaLmuqMDR13vbp1ZaB5JUdrcwRxaLfMqEgnvOw7omJFJtn2ICqykWE/BCAAAQhAAAIQgAAEIBAbAldedZURFUPtw7yKCa27cLdZbnQ/s9pGLqJC5cK8r76SHZu3sCtYaIAqIjqYwpXnn3+e7TddVGjfW26xhV0VRItq6kN86U3rWVxqinGqkNBXOPSBXV/pmPTmBFnVnD9s+HC55dbb7Ksm2p9KjEsuvmjZKySlOlMZcOfdd8t1199gH/Z11oIWw7zy8stNTYi6JV79UCGyxRaby7DrrpdWrXYuIQp0HLqCx/XDhtl+dNzbb7edXG8EyU5mFZNgUwHxzrvv2tVQ3pgwwfLVfo9p00ZuGjHcypFAQGhbne3R7eyzZY55/UPHquyONZLi8qFD7WsxQVtERUD4v09ExX8sVvYNUbEyQhyHAAQgAAEIQAACEIAABCIncMutt8ogU6MiWBZUH+D1X/LPPKNL6BoVGoTOLnj9jTfkmHbtUzUq9LWObl1NLYhePe3MgXRRoQ/iRxx2mAwdOkTq1qmTkYMW6Lzzrrvlyquvlu+WL52qq3U8+vDD5rWMDeSiSwbYuhj68K4P8tuY1zk2adTIzlQo3aEpzynffvudTHvrLTtjQ2dCNG++kwwxMxma7rB9CVERvHpx55jRtnhnel9an0KLd/YwszO0kKeKimCp0eDVCxUPupLII6b2RB9T70OXTdXxaVHQMaNGyu677WZnYgT9avtfTJuevXrLs889l5IyKj4uN3ya77RTKheIioDaf5+Iiv9YrOwbomJlhDgOAQhAAAIQgAAEIAABCERO4PEnnjTLYw5IrZihMxP0dYwxo0fZJTwzzXQoPWh90F5kZhpcah76b7z55lSxybrm9YW+ZjbFiSecYI+ni4rq1atLx1NOkYsv6p91CVSVAlosc+DgQWZVko/tZXXGx60332RmPGwhfc49V6ZOnWYlSTCmYOZB8Lv0p45VN53doDMhLh00SFq3blVCVKhE2WOP3eWu0aPtKyDpfeiYnnjySTnjzK52JZNMokJfEfneiBV9rWbUmDFW0ui4VNzsteceUr16DTNb5b8ZJDokFRAzZ86UT2bPtt/1muuvt54tHtrl9NNtYVLdh6hQCiU3REVJHmX9QlSURYdjEIAABCAAAQhAAAIQgEAsCHzwwYdygSnu+Nrrr9uHYH2g1mVFh11/vX2o1pkHK9v0tY9333tPTju9S6p2g56z0047yhAzW6NlS/M6iJkdkS4qaqio6NDBigqti5FpUynwzLNGVJjlO2eZ5VN1WyYqbpYtNt98maiYlpuoCK6jomLbJk1k8KCBsusuu6wgKvY0QkFFhQqV9C2MqFhspMP06dPl1NNOt7UxgvOVrYqgTDJFBYr+UZaBTNGZHSqNBlxysa3hof0gKgKa/30iKv5jsbJviIqVEeI4BCAAAQhAAAIQgAAEIBA5gT//XChXmVcrbrvjjtQSpbok5h677y5XX3mVNGrU0D5YZ3q41sHrKx+//fabXYLz0ccel4VmCU990FbB0a5tW7nqisvtKw9aJDJdVOhD+OGmpsSVV14hpVfL0H51075Gj7lTrrjySvnhxx/tPpUajz78kGywwQa2/sMLL75oH951ZsPJJ50ou7Ruvfw1iWWFNO1J9i8zbcH+z7IZFbqMaa1aNWXbbbe1dS/Si2nqjAqd+XBnnqLi999/l5vNKzVXGH76ekiwZWMYHA8+A1GhUkNnpQy97FI56sgjbR6UN6t+BKSWfZYUFbdagVWyReF/6X8fz4x/qvAdF7lHREWRAdM9BCAAAQhAAAIQgAAEIFB+Alq48T3zykH3HmfL9BkzUq8pqEjQh+OL+l9ol8jMNLNC//X/m2+/lRE33ih333Ov/GxW/dBNH7AbNmxoal1cLEcfdZTtU2tgpIsKbaPFNHW2wMEHHbRCMU19WJ/96ae2mKa+nqIzGXTT1TqmvzXNFpy8zhS7vMMsF6oFLnV8xxx9tClqeZ2ZBVHNtk3/S/tT8aEP+sG2mjlHlxdVBoUUFboKSVtTq0O5at8qKJSnxryyTce5ZMliM85/Uk17nt3DrE7SR9auVcuOH1GRQmO/pIuKe8zytaefcWbJBkX4hagoAlS6hAAEIAABCEAAAhCAAAQgoASWLtXlMf82y2jeYlayGC4//PBD6uFaZy/s3LKlnHD8cdKkcROpaWYgVDEP9/qwrzMkPjGrctz/wFj72sh881v360N5zZo15aQTT5B+ffvapT314bu0qNB2+vrFQQceYOow9LBLe65lljDVTV9v+MqsIHL/Aw/Y5T1/N8udqhRRGXHUkUfILaYOhgqAxx57TC7sf5F89/33VnToaxo33zhC9txD60BUt2MJ+vvW1IwYampGzHjnHTOz4l/7CsmBB+wv3bt1sytsFEJUaNFLZaCvq2h/Klc09nWMXOncqZN9fWPVtNoUNti0v0xT036pPDB2nLz08ss2Rj3cokVzuzpJ0x12sK0RFWnQzNd0UaFHaq27XkpslWxZuF+IisKxpCcIQAACEIAABCAAAQhAAAIrENCH6Z/MbIjLzbKb99x3r8yfv8CKgaChCoStt9rKrKqxtZ3RMP+P+aJLh2pdCn3NQc/XTeWDygRdblRXq9iofn0rEDKJiqBvfc1CH/DbHtNGttxySysvdHWOZ83D/vhnnkm9jqKzEerVqyd33HartNp5Z3v6Rx9/LINM/YqnTVsVGfr6h7bpZWYgNG/eXGqYopUqDubOmyuPPPqYPPb443a8Os6GZsbHRRf2szM+9HchRIWu0qErlZx+xhny1Pin7bV1oPvtt6+t1bHlllssfy0liL7kp3JSAfPc889Lh06dbV+6r0aNGjJowCVy3LHHWsGCqCjJ7eUXXrAyJ73wq87uWXZX/td2q20ap5bO/W9vft8QFflx4ywIQAACEIAABCAAAQhAAAKhCegDvS4Bev2wYfLwI4/amRVBYUd9ANSHeZUF+qmbPlDrn0BSaBtdflMlRW+zHKku2Rmcl01UaF/6R9vp7A2tO6EzNr43szr+MLMogmvo8VrmtQdd6vTsHt3tDAg9T1/5UPmgy5d++ulnVgzoGHV1ja2M9Fh//fVNm0VmRZPPRWdUaHsdi47zxOOPl/PNiiQ620HjLISoaNa0qcx4+21pc0xb+fmXX+y19JWP883qJF3PPEOqmVkeqy7nly0xS834vv3mGznuhBNtX5oXlT/77buvXHPVlaZmRT2ZPHmytGnXzooM7WfdddaRhx4cJ8HyqNn6jsv+P4zoqm2EUiG3+b/9au+jbH3q7JZ6G22cYpatXdj9iIqwpGgHAQhAAAIQgAAEIAABCECgHAT0gV0lwUMPPWRfP/jgww/taxj6cK9/Sm+BaKhkREIDM0PhqCOOMAUtT5KGDRuUeGjUc0u/+qGvfah8+Mc8iOurHZmuEUgMFQ7tjjlGzjqrq2xoHnB1f7B9//0P8uhjj8ptt98hn372mZUbGkfpLehLhUj7dm2lq6ljoDMcdL++atLBvJrx5FPjrbRQuaCvj9xplmhdYdUP0/YJUzPjTDOWRYv+suerlBl2w/Wir2b0vbC/jDJFOLVP7XvTTTaRIZddZl9xKT2mbL9V0tx8iynGedVVVq5oP1qbY8yokdK6VSuZalY6OcbUwNCaG7qtY0TFg2PHGlGxU7YuY7W/GKKiqlm29qcfvk/NrCkdMKJiGRGKaZa+M/gNAQhAAAIQgAAEIAABCMSagMoCfchfsGCBzJz5vrz8ysvyzHPPy+zZs+3qFYFM0Adn/aOyoWGDBrLP3nvLPvvsLTuaVx+04GMwkyIINpOoCGZfqCzQ1UI+//zzZXUFVIho/+bkNc0rJ/rw396sHrKveX2itplxoddM33TWha46MmXqNCtYnjergOiDvpUVpi/VKzoelQ877LC9HGtmIuxrZieo8Aj6UqnQ6dTTZPzTT6dEhf6L+WgjBqotr5sRXFPbPjV+vBEV3VISYWsjKq675mqpZ2Y7HHr44fLl3Lm2H50JcaT53d8UJG2w8cZBFyv91Ifqt/73Pzmre3fDZY5trzNFzuhyupx3zjn2lZt2xx6XWlFERcXY++6zy8GutPMYNCiGqAjC6t+vr3Tq2FHq1KkT7LKfej9sYPKjr+YUYmNGRSEo0gcEIAABCEAAAhCAAAQgAIEcCKgA+OXXX+Xrr742MxU+lQ8/nCVff/O1kRh/mjoJq5slRevIFltsbv5sKRtuWM++QqEyINOWSVRo3QV9oNRXIvSVk/dMvYsPZ82SH3/8yb5ismG9unbpUJUA9TfccIWZDaWvo691aFHNOXPmyAyzesmcOV9YYVG5SmWpW6euNGnSRLbaakvZeKON7KshKi+CTR9i35w4UeYawaBmo9JqleyDrhYS1Roa6ZtyURExbdpb5lWTZbMmtHio1qdQwfL662/Y1030HOWx6aabmtoe29jVRdL7Keu7jkdnoEz/33TLRnWLjldFyE6mnsev5jWHiRMnmVkby1ZC0evoDJD11luvrG5jc6yYoqKigkRUVBRprgMBCEAAAhCAAAQgAAEIQCCNgD4w6x99OP/b/NHvKh10toM+OOu/8uusBP0ezLJIOz31NZuo6Nypo/S7oK+RAVVsfQmtx6BtddM+te9K2r8RAPq7rE3P0z861iWmn6Xms3Rf2p+OM1NfOlNCz9UtaKPxlW5rr7Gcyb/m0zS249O2ep5e2+5f3o/uD47ZzkP8lR5LMCa9jr5io30FcWo+dNPr6uyN0mMNcalImiAqIsFuL8qrH9Gx58oQgAAEIAABCEAAAhCAQIwI6IN16RoVNXVGRaeO0r9fP1tIM0bDZShFJoCoKDLgMrpHVJQBh0MQgAAEIAABCEAAAhCAgD8EEBX+5DpMpIiKMJSK0wZRURyu9AoBCEAAAhCAAAQgAAEIJIwAoiJhCSvycBEVRQZcRveIijLgcAgCEIAABCAAAQhAAAIQ8IdASlSY1UE+/vgTG3jNmsuKafbvd6F59WMNf2AQqSlyOl9qm1VXkrxRTDPJ2WPsEIAABCAAAQhAAAIQgAAEDIE/5s+XUzp0lC+//NLyWMss+3n00UfJmV262NUxgOQPAURFdLlmRkV07LkyBCAAAQhAAAIQgAAEIBAzArqqxoy33zbLmy6wI9NVKurWrSsNGjSQ1cxKFmz+EHBDVOwmz4wfn7ikISoSlzIGDAEIQAACEIAABCAAAQgUj4AuHbpseVO9hi6pmf6neNel57gRWLDgT1m/Tp24DSun8Rxy8EHy4NixOZ0Th8aIijhkgTFAAAIQgAAEIAABCEAAAhCAQKwILF26VKrVrBWrMeU6mPffe1caNWyY62mRt0dURJ4CBgABCEAAAhCAAAQgAAEIQAACcSRwwEEHyxsTJsRxaCsdUyXzqtIfv/6y0nZxbICoiGNWGBMEIAABCEAAAhCAAAQgAAEIxILAHnvtLdPeeisWYwk7CH1dafZHs2x9lbDnxKkdoiJO2WAsEIAABCAAAQhAAAIQgAAEIBArAv/884/o7ITuZ58tc+Z88f/27tiGQSiKoSgDkCXCphGDR+kYIdc6HRKN33Hn5v9VtmeY3/O6r/M87vtzXO/r+Sv3bajIVSYwAQIECBAgQIAAAQIECBDYFTBU7HbrMgIECBAgQIAAAQIECBAgkBMwVOQqE5gAAQIECBAgQIAAAQIECOwKGCp2u3UZAQIECBAgQIAAAQIECBDICRgqcpUJTIAAAQIECBAgQIAAAQIEdgUMFbvduowAAQIECBAgQIAAAQIECOQEDBW5ygQmQIAAAQIECBAgQIAAAQK7AoaK3W5dRoAAAQIECBAgQIAAAQIEcgKGilxlAhMgQIAAAQIECBAgQIAAgV0BQ8Vuty4jQIAAAQIECBAgQIAAAQI5AUNFrjKBCRAgQIAAAQIECBAgQIDAroChYrdblxEgQIAAAQIECBAgQIAAgZyAoSJXmcAECBAgQIAAAQIECBAgQGBXwFCx263LCBAgQIAAAQIECBAgQIBATsBQkatMYAIECBAgQIAAAQIECBAgsCtgqNjt1mUECBAgQIAAAQIECBAgQCAnYKjIVSYwAQIECBAgQIAAAQIECBDYFTBU7HbrMgIECBAgQIAAAQIECBAgkBMwVOQqE5gAAQIECBAgQIAAAQIECOwKGCp2u3UZAQIECBAgQIAAAQIECBDICRgqcpUJTIAAAQIECBAgQIAAAQIEdgUMFbvduowAAQIECBAgQIAAAQIECOQEDBW5ygQmQIAAAQIECBAgQIAAAQK7AoaK3W5dRoAAAQIECBAgQIAAAQIEcgKGilxlAhMgQIAAAQIECBAgQIAAgV0BQ8Vuty4jQIAAAQIECBAgQIAAAQI5AUNFrjKBCRAgQIAAAQIECBAgQIDAroChYrdblxEgQIAAAQIECBAgQIAAgZyAoSJXmcAECBAgQIAAAQIECBAgQGBXwFCx263LCBAgQIAAAQIECBAgQIBATsBQkatMYAIECBAgQIAAAQIECBAgsCtgqNjt1mUECBAgQIAAAQIECBAgQCAnYKjIVSYwAQIECBAgQIAAAQIECBDYFTBU7HbrMgIECBAgQIAAAQIECBAgkBMwVOQqE5gAAQIECBAgQIAAAQIECOwKGCp2u3UZAQIECBAgQIAAAQIECBDICRgqcpUJTIAAAQIECBAgQIAAAQIEdgUMFbvduowAAQIECBAgQIAAAQIECOQEDBW5ygQmQIAAAQIECBAgQIAAAQK7AoaK3W5dRoAAAQIECBAgQIAAAQIEcgKGilxlAhMgQIAAAQIECBAgQIAAgV0BQ8Vuty4jQIAAAQIECBAgQIAAAQI5AUNFrjKBCRAgQIAAAQIECBAgQIDAroChYrdblxEgQIAAAQIECBAgQIAAgZyAoSJXmcAECBAgQIAAAQIECBAgQGBXwFCx263LCBAgQIAAAQIECBAgQIBATsBQkatMYAIECBAgQIAAAQIECBAgsCvwBTkTfyE+Ui8xAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import asyncio\n", + "import logging\n", + "import pickle\n", + "import sqlite3\n", + "from collections import Counter, defaultdict\n", + "from collections.abc import Coroutine\n", + "from concurrent.futures import ThreadPoolExecutor\n", + "from datetime import datetime\n", + "from typing import Any\n", + "\n", + "from jinja2 import DictLoader, Environment\n", + "from openai import AsyncOpenAI\n", + "from scipy.spatial.distance import cosine\n", + "from tenacity import retry, stop_after_attempt, wait_random_exponential\n", + "\n", + "\n", + "class InvalidationAgent:\n", + " \"\"\"Handles temporal-based operations for extracting and processing temporal events from text.\"\"\"\n", + "\n", + " def __init__(self, max_workers: int = 5) -> None:\n", + " \"\"\"Initialize the TemporalAgent with a client.\"\"\"\n", + " self.max_workers = max_workers\n", + " self._executor = ThreadPoolExecutor(max_workers=max_workers)\n", + " self.logger = logging.getLogger(__name__)\n", + " self._client = AsyncOpenAI()\n", + " self._model = \"gpt-4.1-mini\"\n", + " self._similarity_threshold = 0.5\n", + " self._top_k = 10\n", + "\n", + " self._env = Environment(loader=DictLoader({\n", + " \"event_invalidation.jinja\": event_invalidation_prompt,\n", + " }))\n", + "\n", + " @staticmethod\n", + " def cosine_similarity(v1: list[float], v2: list[float]) -> float:\n", + " \"\"\"Calculate cosine similarity between two vectors.\"\"\"\n", + " return float(1 - cosine(v1, v2))\n", + "\n", + " @staticmethod\n", + " def get_incoming_temporal_bounds(\n", + " event: TemporalEvent,\n", + " ) -> dict[str, datetime] | None:\n", + " \"\"\"Get temporal bounds of all temporal events associated with a statement.\"\"\"\n", + " if (event.temporal_type == TemporalType.ATEMPORAL) or (event.valid_at is None):\n", + " return None\n", + "\n", + " temporal_bounds = {\"start\": event.valid_at, \"end\": event.valid_at}\n", + "\n", + " if event.temporal_type == TemporalType.DYNAMIC:\n", + " if event.invalid_at:\n", + " temporal_bounds[\"end\"] = event.invalid_at\n", + "\n", + " return temporal_bounds\n", + "\n", + " def select_events_temporally(\n", + " self,\n", + " triplet_events: list[tuple[Triplet, TemporalEvent]],\n", + " temp_bounds: dict[str, datetime],\n", + " dynamic: bool = False,\n", + " ) -> list[tuple[Triplet, TemporalEvent]]:\n", + " \"\"\"Select temporally relevant events (static or dynamic) based on temporal bounds.\n", + "\n", + " Groups events into before, after, and overlapping categories based on their temporal bounds.\n", + "\n", + " Args:\n", + " triplet_events: List of (Triplet, TemporalEvent) tuples to filter\n", + " temp_bounds: Dict with 'start' and 'end' datetime bounds\n", + " dynamic: If True, filter dynamic events; if False, filter static events\n", + " n_window: Number of events to include before and after bounds\n", + "\n", + " Returns:\n", + " Dict with keys '{type}_before', '{type}_after', '{type}_overlap' where type is 'dynamic' or 'static'\n", + " \"\"\"\n", + "\n", + " def _check_overlaps_dynamic(event: TemporalEvent, start: datetime, end: datetime) -> bool:\n", + " \"\"\"Check if the dynamic event overlaps with the temporal bounds of the incoming event.\"\"\"\n", + " if event.temporal_type != TemporalType.DYNAMIC:\n", + " return False\n", + "\n", + " event_start = event.valid_at or datetime.min\n", + " event_end = event.invalid_at\n", + "\n", + " # 1. Event contains the start\n", + " if (event_end is not None) and (event_start <= start <= event_end):\n", + " return True\n", + "\n", + " # 2. Ongoing event starts before the incoming start\n", + " if (event_end is None) and (event_start <= start):\n", + " return True\n", + "\n", + " # 3. Event starts within the incoming interval\n", + " if start <= event_start <= end:\n", + " return True\n", + " return False\n", + "\n", + " # Filter by temporal type\n", + " target_type = TemporalType.DYNAMIC if dynamic else TemporalType.STATIC\n", + " filtered_events = [(triplet, event) for triplet, event in triplet_events if event.temporal_type == target_type]\n", + "\n", + " # Sort by valid_at timestamp\n", + " sorted_events = sorted(filtered_events, key=lambda te: te[1].valid_at or datetime.min)\n", + "\n", + " start = temp_bounds[\"start\"]\n", + " end = temp_bounds[\"end\"]\n", + "\n", + " if dynamic:\n", + " overlap: list[tuple[Triplet, TemporalEvent]] = [\n", + " (triplet, event) for triplet, event in sorted_events if _check_overlaps_dynamic(event, start, end)\n", + " ]\n", + " else:\n", + " overlap = []\n", + " if start != end:\n", + " overlap = [(triplet, event) for triplet, event in sorted_events if event.valid_at and start <= event.valid_at <= end]\n", + "\n", + " return overlap\n", + "\n", + " def filter_by_embedding_similarity(\n", + " self,\n", + " reference_event: TemporalEvent,\n", + " candidate_pairs: list[tuple[Triplet, TemporalEvent]],\n", + " ) -> list[tuple[Triplet, TemporalEvent]]:\n", + " \"\"\"Filter triplet-event pairs by embedding similarity.\"\"\"\n", + " pairs_with_similarity = [\n", + " (triplet, event, self.cosine_similarity(reference_event.embedding, event.embedding)) for triplet, event in candidate_pairs\n", + " ]\n", + "\n", + " filtered_pairs = [\n", + " (triplet, event) for triplet, event, similarity in pairs_with_similarity if similarity >= self._similarity_threshold\n", + " ]\n", + "\n", + " sorted_pairs = sorted(filtered_pairs, key=lambda x: self.cosine_similarity(reference_event.embedding, x[1].embedding), reverse=True)\n", + "\n", + " return sorted_pairs[: self._top_k]\n", + "\n", + " def select_temporally_relevant_events_for_invalidation(\n", + " self,\n", + " incoming_event: TemporalEvent,\n", + " candidate_triplet_events: list[tuple[Triplet, TemporalEvent]],\n", + " ) -> list[tuple[Triplet, TemporalEvent]] | None:\n", + " \"\"\"Select the temporally relevant events based on temporal range of incoming event.\"\"\"\n", + " temporal_bounds = self.get_incoming_temporal_bounds(event=incoming_event)\n", + " if not temporal_bounds:\n", + " return None\n", + "\n", + " # First apply temporal filtering - find overlapping events\n", + " selected_statics = self.select_events_temporally(\n", + " triplet_events=candidate_triplet_events,\n", + " temp_bounds=temporal_bounds,\n", + " )\n", + " selected_dynamics = self.select_events_temporally(\n", + " triplet_events=candidate_triplet_events,\n", + " temp_bounds=temporal_bounds,\n", + " dynamic=True,\n", + " )\n", + "\n", + " # Then filter by semantic similarity\n", + " similar_static = self.filter_by_embedding_similarity(reference_event=incoming_event, candidate_pairs=selected_statics)\n", + "\n", + " similar_dynamics = self.filter_by_embedding_similarity(reference_event=incoming_event, candidate_pairs=selected_dynamics)\n", + "\n", + " return similar_static + similar_dynamics\n", + "\n", + "\n", + " @retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attempt(3))\n", + " async def invalidation_step(\n", + " self,\n", + " primary_event: TemporalEvent,\n", + " primary_triplet: Triplet,\n", + " secondary_event: TemporalEvent,\n", + " secondary_triplet: Triplet,\n", + " ) -> TemporalEvent:\n", + " \"\"\"Check if primary event should be invalidated by secondary event.\n", + "\n", + " Args:\n", + " primary_event: Event to potentially invalidate\n", + " primary_triplet: Triplet associated with primary event\n", + " secondary_event: Event that might cause invalidation\n", + " secondary_triplet: Triplet associated with secondary event\n", + "\n", + " Returns:\n", + " TemporalEvent: Updated primary event (may have invalid_at and invalidated_by set)\n", + " \"\"\"\n", + " template = self._env.get_template(\"event_invalidation.jinja\")\n", + "\n", + " prompt = template.render(\n", + " primary_event=primary_event.statement,\n", + " primary_triplet=f\"({primary_triplet.subject_name}, {primary_triplet.predicate}, {primary_triplet.object_name})\",\n", + " primary_valid_at=primary_event.valid_at,\n", + " primary_invalid_at=primary_event.invalid_at,\n", + " secondary_event=secondary_event.statement,\n", + " secondary_triplet=f\"({secondary_triplet.subject_name}, {secondary_triplet.predicate}, {secondary_triplet.object_name})\",\n", + " secondary_valid_at=secondary_event.valid_at,\n", + " secondary_invalid_at=secondary_event.invalid_at,\n", + " )\n", + "\n", + " response = await self._client.responses.parse(\n", + " model=self._model,\n", + " temperature=0,\n", + " input=prompt,\n", + " )\n", + "\n", + " # Parse boolean response\n", + " response_bool = str(response).strip().lower() == \"true\" if response else False\n", + "\n", + " if not response_bool:\n", + " return primary_event\n", + "\n", + " # Create updated event with invalidation info\n", + " updated_event = primary_event.model_copy(\n", + " update={\n", + " \"invalid_at\": secondary_event.valid_at,\n", + " \"expired_at\": datetime.now(),\n", + " \"invalidated_by\": secondary_event.id,\n", + " }\n", + " )\n", + " return updated_event\n", + "\n", + " async def bi_directional_event_invalidation(\n", + " self,\n", + " incoming_triplet: Triplet,\n", + " incoming_event: TemporalEvent,\n", + " existing_triplet_events: list[tuple[Triplet, TemporalEvent]],\n", + " ) -> tuple[TemporalEvent, list[TemporalEvent]]:\n", + " \"\"\"Validate and update temporal information for triplet events with full bidirectional invalidation.\n", + "\n", + " Args:\n", + " incoming_triplet: The new triplet\n", + " incoming_event: The new event associated with the triplet\n", + " existing_triplet_events: List of existing (triplet, event) pairs to validate against\n", + "\n", + " Returns:\n", + " tuple[TemporalEvent, list[TemporalEvent]]: (updated_incoming_event, list_of_changed_existing_events)\n", + " \"\"\"\n", + " changed_existing_events: list[TemporalEvent] = []\n", + " updated_incoming_event = incoming_event\n", + "\n", + " # Filter for dynamic events that can be invalidated\n", + " dynamic_events_to_check = [\n", + " (triplet, event) for triplet, event in existing_triplet_events if event.temporal_type == TemporalType.DYNAMIC\n", + " ]\n", + "\n", + " # 1. Check if incoming event invalidates existing dynamic events\n", + " if dynamic_events_to_check:\n", + " tasks = [\n", + " self.invalidation_step(\n", + " primary_event=existing_event,\n", + " primary_triplet=existing_triplet,\n", + " secondary_event=incoming_event,\n", + " secondary_triplet=incoming_triplet,\n", + " )\n", + " for existing_triplet, existing_event in dynamic_events_to_check\n", + " ]\n", + "\n", + " updated_events = await asyncio.gather(*tasks)\n", + "\n", + " for original_pair, updated_event in zip(dynamic_events_to_check, updated_events, strict=True):\n", + " original_event = original_pair[1]\n", + " if (updated_event.invalid_at != original_event.invalid_at) or (\n", + " updated_event.invalidated_by != original_event.invalidated_by\n", + " ):\n", + " changed_existing_events.append(updated_event)\n", + "\n", + " # 2. Check if existing events invalidate the incoming dynamic event\n", + " if incoming_event.temporal_type == TemporalType.DYNAMIC and incoming_event.invalid_at is None:\n", + " # Only check events that occur after the incoming event\n", + " invalidating_events = [\n", + " (triplet, event)\n", + " for triplet, event in existing_triplet_events\n", + " if (incoming_event.valid_at and event.valid_at and incoming_event.valid_at < event.valid_at)\n", + " ]\n", + "\n", + " if invalidating_events:\n", + " tasks = [\n", + " self.invalidation_step(\n", + " primary_event=incoming_event,\n", + " primary_triplet=incoming_triplet,\n", + " secondary_event=existing_event,\n", + " secondary_triplet=existing_triplet,\n", + " )\n", + " for existing_triplet, existing_event in invalidating_events\n", + " ]\n", + "\n", + " updated_events = await asyncio.gather(*tasks)\n", + "\n", + " # Find the earliest invalidation\n", + " valid_invalidations = [(e.invalid_at, e.invalidated_by) for e in updated_events if e.invalid_at is not None]\n", + "\n", + " if valid_invalidations:\n", + " earliest_invalidation = min(valid_invalidations, key=lambda x: x[0])\n", + " updated_incoming_event = incoming_event.model_copy(\n", + " update={\n", + " \"invalid_at\": earliest_invalidation[0],\n", + " \"invalidated_by\": earliest_invalidation[1],\n", + " \"expired_at\": datetime.now(),\n", + " }\n", + " )\n", + "\n", + " return updated_incoming_event, changed_existing_events\n", + "\n", + " @staticmethod\n", + " def resolve_duplicate_invalidations(changed_events: list[TemporalEvent]) -> list[TemporalEvent]:\n", + " \"\"\"Resolve duplicate invalidations by selecting the most restrictive (earliest) invalidation.\n", + "\n", + " When multiple incoming events invalidate the same existing event, we should apply\n", + " the invalidation that results in the shortest validity range (earliest invalid_at).\n", + "\n", + " Args:\n", + " changed_events: List of events that may contain duplicates with different invalidations\n", + "\n", + " Returns:\n", + " List of deduplicated events with the most restrictive invalidation applied\n", + " \"\"\"\n", + " if not changed_events:\n", + " return []\n", + "\n", + " # Count occurrences of each event ID\n", + " id_counts = Counter(str(event.id) for event in changed_events)\n", + " resolved_events = []\n", + " # Group events by ID only for those with duplicates\n", + " events_by_id = defaultdict(list)\n", + " for event in changed_events:\n", + " event_id = str(event.id)\n", + " if id_counts[event_id] == 1:\n", + " resolved_events.append(event)\n", + " else:\n", + " events_by_id[event_id].append(event)\n", + "\n", + " # Deduplicate only those with duplicates\n", + " for _id, event_versions in events_by_id.items():\n", + " invalidated_versions = [e for e in event_versions if e.invalid_at is not None]\n", + " if not invalidated_versions:\n", + " resolved_events.append(event_versions[0])\n", + " else:\n", + " most_restrictive = min(invalidated_versions, key=lambda e: (e.invalid_at if e.invalid_at is not None else datetime.max))\n", + " resolved_events.append(most_restrictive)\n", + "\n", + " return resolved_events\n", + "\n", + " async def _execute_task_pool(\n", + " self,\n", + " tasks: list[Coroutine[Any, Any, tuple[TemporalEvent, list[TemporalEvent]]]],\n", + " batch_size: int = 10\n", + " ) -> list[Any]:\n", + " \"\"\"Execute tasks in batches using a pool to control concurrency.\n", + "\n", + " Args:\n", + " tasks: List of coroutines to execute\n", + " batch_size: Number of tasks to process concurrently\n", + "\n", + " Returns:\n", + " List of results from all tasks\n", + " \"\"\"\n", + " all_results = []\n", + " for i in range(0, len(tasks), batch_size):\n", + " batch = tasks[i:i + batch_size]\n", + " batch_results = await asyncio.gather(*batch, return_exceptions=True)\n", + " all_results.extend(batch_results)\n", + "\n", + " # Small delay between batches to prevent overload\n", + " if i + batch_size < len(tasks):\n", + " await asyncio.sleep(0.1)\n", + "\n", + " return all_results\n", + "\n", + " async def process_invalidations_in_parallel(\n", + " self,\n", + " incoming_triplets: list[Triplet],\n", + " incoming_events: list[TemporalEvent],\n", + " existing_triplets: list[Triplet],\n", + " existing_events: list[TemporalEvent],\n", + " ) -> tuple[list[TemporalEvent], list[TemporalEvent]]:\n", + " \"\"\"Process invalidations for multiple triplets in parallel.\n", + "\n", + " Args:\n", + " incoming_triplets: List of new triplets to process\n", + " incoming_events: List of events associated with incoming triplets\n", + " existing_triplets: List of existing triplets from DB\n", + " existing_events: List of existing events from DB\n", + "\n", + " Returns:\n", + " tuple[list[TemporalEvent], list[TemporalEvent]]:\n", + " - List of updated incoming events (potentially invalidated)\n", + " - List of existing events that were updated (deduplicated)\n", + " \"\"\"\n", + " # Create mappings for faster lookups\n", + " event_map = {str(e.id): e for e in existing_events}\n", + " incoming_event_map = {str(t.event_id): e for t, e in zip(incoming_triplets, incoming_events, strict=False)}\n", + "\n", + " # Prepare tasks for parallel processing\n", + " tasks = []\n", + " for incoming_triplet in incoming_triplets:\n", + " incoming_event = incoming_event_map[str(incoming_triplet.event_id)]\n", + "\n", + " # Get related triplet-event pairs\n", + " related_pairs = [\n", + " (t, event_map[str(t.event_id)])\n", + " for t in existing_triplets\n", + " if (str(t.subject_id) == str(incoming_triplet.subject_id) or str(t.object_id) == str(incoming_triplet.object_id))\n", + " and str(t.event_id) in event_map\n", + " ]\n", + "\n", + " # Filter for temporal relevance\n", + " all_relevant_events = self.select_temporally_relevant_events_for_invalidation(\n", + " incoming_event=incoming_event,\n", + " candidate_triplet_events=related_pairs,\n", + " )\n", + "\n", + " if not all_relevant_events:\n", + " continue\n", + "\n", + " # Add task for parallel processing\n", + " task = self.bi_directional_event_invalidation(\n", + " incoming_triplet=incoming_triplet,\n", + " incoming_event=incoming_event,\n", + " existing_triplet_events=all_relevant_events,\n", + " )\n", + " tasks.append(task)\n", + "\n", + " # Process all invalidations in parallel with pooling\n", + " if not tasks:\n", + " return [], []\n", + "\n", + " # Use pool size based on number of workers, but cap it\n", + " pool_size = min(self.max_workers * 2, 10) # Adjust these numbers based on your needs\n", + " results = await self._execute_task_pool(tasks, batch_size=pool_size)\n", + "\n", + " # Collect all results (may contain duplicates)\n", + " updated_incoming_events = []\n", + " all_changed_existing_events = []\n", + "\n", + " for result in results:\n", + " if isinstance(result, Exception):\n", + " self.logger.error(f\"Task failed with error: {str(result)}\")\n", + " continue\n", + " updated_event, changed_events = result\n", + " updated_incoming_events.append(updated_event)\n", + " all_changed_existing_events.extend(changed_events)\n", + "\n", + " # Resolve duplicate invalidations for existing events\n", + " deduplicated_existing_events = self.resolve_duplicate_invalidations(all_changed_existing_events)\n", + "\n", + " # Resolve duplicate invalidations for incoming events (in case multiple triplets from same event)\n", + " deduplicated_incoming_events = self.resolve_duplicate_invalidations(updated_incoming_events)\n", + "\n", + " return deduplicated_incoming_events, deduplicated_existing_events\n", + "\n", + " @staticmethod\n", + " def batch_fetch_related_triplet_events(\n", + " conn: sqlite3.Connection,\n", + " incoming_triplets: list[Triplet],\n", + " ) -> tuple[list[Triplet], list[TemporalEvent]]:\n", + " \"\"\"\n", + " Batch fetch all existing triplets and their events from the DB that are related to any of the incoming triplets.\n", + " Related means:\n", + " - Share a subject or object entity\n", + " - Predicate is in the same group\n", + " - Associated event is a FACT\n", + " Returns two lists: triplets and events (with mapping via event_id).\n", + " \"\"\"\n", + " # 1. Build sets of all relevant entity IDs and predicate groups\n", + " entity_ids = set()\n", + " predicate_to_group = {}\n", + " for group in PREDICATE_GROUPS:\n", + " group_list = list(group)\n", + " for pred in group_list:\n", + " predicate_to_group[pred] = group_list\n", + " relevant_predicates = set()\n", + " for triplet in incoming_triplets:\n", + " entity_ids.add(str(triplet.subject_id))\n", + " entity_ids.add(str(triplet.object_id))\n", + " group = predicate_to_group.get(str(triplet.predicate), [])\n", + " if group:\n", + " relevant_predicates.update(group)\n", + "\n", + " # 2. Prepare SQL query\n", + " entity_placeholders = \",\".join([\"?\"] * len(entity_ids))\n", + " predicate_placeholders = \",\".join([\"?\"] * len(relevant_predicates))\n", + " query = f\"\"\"\n", + " SELECT\n", + " t.id,\n", + " t.subject_name,\n", + " t.subject_id,\n", + " t.predicate,\n", + " t.object_name,\n", + " t.object_id,\n", + " t.value,\n", + " t.event_id,\n", + " e.chunk_id,\n", + " e.statement,\n", + " e.triplets,\n", + " e.statement_type,\n", + " e.temporal_type,\n", + " e.valid_at,\n", + " e.invalid_at,\n", + " e.created_at,\n", + " e.expired_at,\n", + " e.invalidated_by,\n", + " e.embedding\n", + " FROM triplets t\n", + " JOIN events e ON t.event_id = e.id\n", + " WHERE\n", + " (t.subject_id IN ({entity_placeholders}) OR t.object_id IN ({entity_placeholders}))\n", + " AND t.predicate IN ({predicate_placeholders})\n", + " AND e.statement_type = ?\n", + " \"\"\"\n", + " params = list(entity_ids) + list(entity_ids) + list(relevant_predicates) + [StatementType.FACT]\n", + " cursor = conn.cursor()\n", + " cursor.execute(query, params)\n", + " rows = cursor.fetchall()\n", + "\n", + " triplets = []\n", + " events = []\n", + " events_by_id = {}\n", + " for row in rows:\n", + " triplet = Triplet(\n", + " id=row[0],\n", + " subject_name=row[1],\n", + " subject_id=row[2],\n", + " predicate=Predicate(row[3]),\n", + " object_name=row[4],\n", + " object_id=row[5],\n", + " value=row[6],\n", + " event_id=row[7],\n", + " )\n", + " event_id = row[7]\n", + " triplets.append(triplet)\n", + " if event_id not in events_by_id:\n", + " events_by_id[event_id] = TemporalEvent(\n", + " id=row[7],\n", + " chunk_id=row[8],\n", + " statement=row[9],\n", + " triplets=TemporalEvent.parse_triplets_json(row[10]),\n", + " statement_type=row[11],\n", + " temporal_type=row[12],\n", + " valid_at=row[13],\n", + " invalid_at=row[14],\n", + " created_at=row[15],\n", + " expired_at=row[16],\n", + " invalidated_by=row[17],\n", + " embedding=pickle.loads(row[18]) if row[18] else [0] * 1536,\n", + " )\n", + " events = list(events_by_id.values())\n", + " return triplets, events" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can create a batch processing function for invalidation for a set of Temporal Events. This is where we filter our Statements to type FACT before passing into the invalidation agent to process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "async def batch_process_invalidation(\n", + " conn: sqlite3.Connection, all_events: list[TemporalEvent], all_triplets: list[Triplet], invalidation_agent: InvalidationAgent\n", + ") -> tuple[list[TemporalEvent], list[TemporalEvent]]:\n", + " \"\"\"Process invalidation for all FACT events that are temporal.\n", + "\n", + " Args:\n", + " conn: SQLite database connection\n", + " all_events: List of all extracted events\n", + " all_triplets: List of all extracted triplets\n", + " invalidation_agent: The invalidation agent instance\n", + "\n", + " Returns:\n", + " tuple[list[TemporalEvent], list[TemporalEvent]]:\n", + " - final_events: All events (updated incoming events)\n", + " - events_to_update: Existing events that need DB updates\n", + " \"\"\"\n", + " def _get_fact_triplets(\n", + " all_events: list[TemporalEvent],\n", + " all_triplets: list[Triplet],\n", + " ) -> list[Triplet]:\n", + " \"\"\"\n", + " Return only those triplets whose associated event is of statement_type FACT.\n", + " \"\"\"\n", + " fact_event_ids = {\n", + " event.id for event in all_events if (event.statement_type == StatementType.FACT) and (event.temporal_type != TemporalType.ATEMPORAL)\n", + " }\n", + " return [triplet for triplet in all_triplets if triplet.event_id in fact_event_ids]\n", + " # Prepare a list of triplets whose associated event is a FACT and not ATEMPORAL\n", + " fact_triplets = _get_fact_triplets(all_events, all_triplets)\n", + " if not fact_triplets:\n", + " return all_events, []\n", + "\n", + " # Create event map for quick lookup\n", + " all_events_map = {event.id: event for event in all_events}\n", + "\n", + " # Build aligned lists of valid triplets and their corresponding events\n", + " fact_events: list[TemporalEvent] = []\n", + " valid_fact_triplets: list[Triplet] = []\n", + " for triplet in fact_triplets:\n", + " # Handle potential None event_id and ensure type safety\n", + " if triplet.event_id is not None:\n", + " event = all_events_map.get(triplet.event_id)\n", + " if event:\n", + " fact_events.append(event)\n", + " valid_fact_triplets.append(triplet)\n", + " else:\n", + " print(f\"Warning: Could not find event for fact_triplet with event_id {triplet.event_id}\")\n", + " else:\n", + " print(f\"Warning: Fact triplet {triplet.id} has no event_id, skipping invalidation\")\n", + "\n", + " if not valid_fact_triplets:\n", + " return all_events, []\n", + "\n", + " # Batch fetch all related existing triplets and events\n", + " existing_triplets, existing_events = invalidation_agent.batch_fetch_related_triplet_events(conn, valid_fact_triplets)\n", + "\n", + " # Process all invalidations in parallel\n", + " updated_incoming_fact_events, changed_existing_events = await invalidation_agent.process_invalidations_in_parallel(\n", + " incoming_triplets=valid_fact_triplets,\n", + " incoming_events=fact_events,\n", + " existing_triplets=existing_triplets,\n", + " existing_events=existing_events,\n", + " )\n", + "\n", + " # Create mapping for efficient updates\n", + " updated_incoming_event_map = {event.id: event for event in updated_incoming_fact_events}\n", + "\n", + " # Reconstruct final events list with updates applied\n", + " final_events = []\n", + " for original_event in all_events:\n", + " if original_event.id in updated_incoming_event_map:\n", + " final_events.append(updated_incoming_event_map[original_event.id])\n", + " else:\n", + " final_events.append(original_event)\n", + "\n", + " return final_events, changed_existing_events" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2.11. Putting it all together" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we have built out each individual component of the Temporal Knowledge Graph workflow, we can integrate them into a cohesive workflow.\n", + "\n", + "Given a chunked transcript, the Temporal Agent sequentially processes each chunk, initially extracting relevant statements. These statements are then classified and enriched through subsequent extraction phases, resulting in Temporal Events, structured Triplets, and identified Entities.\n", + "\n", + "The extracted Entities are cross-referenced with existing records in the database, ensuring accurate resolution and avoiding redundancy. Following entity resolution, the Dynamic Facts undergo validation via the Invalidation Agent to verify temporal consistency and validity.\n", + "\n", + "After successful processing and validation, the refined data is systematically stored into their respective tables within the SQLite database, maintaining an organized and temporally accurate knowledge graph.\n", + "\n", + "To help visually ground the code presented below, we can look again at the pipeline diagram: " + ] + }, + { + "attachments": { + "826322ef-4eb8-4c3b-a1a1-f4c8b0d435e8.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAhsCAYAAABgRhBsAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAADsKADAAQAAAABAAAIbAAAAABBU0NJSQAAAFNjcmVlbnNob3SuBoypAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB12lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMTU2PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjk0NDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlVzZXJDb21tZW50PlNjcmVlbnNob3Q8L2V4aWY6VXNlckNvbW1lbnQ+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgrhSUkYAAAAHGlET1QAAAACAAAAAAAABDYAAAAoAAAENgAABDYAAOA9SUXVcwAAQABJREFUeAHs3QeYFMXWxvFj+MSA1xzAa44oChh2MSHmnDAiElVA3UUFJIiKiaiIAmYlKeZrwBxAMCGYCIJgzjkrYvarU2uNvbMzszuzqbvq38/jMtvT01P1O70+805Vdy/1848//C0sCCCAAAIIIIAAAggggAACCMRcYCkCbMwrRPMQQAABBBBAAAEEEEAAAQSsAAGWAwEBBBBAAAEEEEAAAQQQQCARAgTYRJSJRiKAAAIIIIAAAggggAACCBBgOQYQQAABBBBAAAEEEEAAAQQSIUCATUSZaCQCCCCAAAIIIIAAAggggAABlmMAAQQQQAABBBBAAAEEEEAgEQIE2ESUiUYigAACCCCAAAIIIIAAAggQYDkGEEAAAQQQQAABBBBAAAEEEiFAgE1EmWgkAggggAACCCCAAAIIIIAAAZZjAAEEEEAAAQQQQAABBBBAIBECBNhElIlGIoAAAggggAACCCCAAAIIEGA5BhBAAAEEEEAAAQQQQAABBBIhQIBNRJloJAIIIIAAAggggAACCCCAAAGWYwABBBBAAAEEEEAAAQQQQCARAgTYRJSJRiKAAAIIIIAAAggggAACCBBgOQYQQAABBBBAAAEEEEAAAQQSIUCATUSZaCQCCCCAAAIIIIAAAggggAABlmMAAQQQQAABBBBAAAEEEEAgEQIE2ESUiUYigAACCCCAAAIIIIAAAggQYDkGEEAAAQQQQAABBBBAAAEEEiFAgE1EmWgkAggggAACCCCAAAIIIIAAAZZjAAEEEEAAAQQQQAABBBBAIBECBNhElIlGIoAAAggggAACCCCAAAIIEGA5BhBAAAEEEEAAAQQQQAABBBIhQIBNRJloJAIIIIAAAggggAACCCCAAAGWYwABBBBAAAEEEEAAAQQQQCARAgTYRJSJRiKAAAIIIIAAAggggAACCBBgOQYQQAABBBBAAAEEEEAAAQQSIUCATUSZaCQCCCCAAAIIIIAAAggggAABlmMAAQQQQAABBBBAAAEEEEAgEQIE2ESUiUYigAACCCCAAAIIIIAAAggQYDkGEEAAAQQQQAABBBBAAAEEEiFAgE1EmWgkAggggAACCCCAAAIIIIAAAZZjAAEEEEAAAQQQQAABBBBAIBECBNhElIlGIoAAAggggAACCCCAAAIIEGA5BhBAAAEEEEAAAQQQQAABBBIhQIBNRJloJAIIIIAAAggggAACCCCAAAGWYwABBBCIkcBPixfLe+++J02bbhOjVv3blLi379+W8ggBBBBAAAEEfBSIZYAdN268DBk+vMrejRqtK9OnTq3y9myYW2DXVnvIl19+Kcsuu6wsmDc398bm2Xy3r3SHMd3g3ffek/0PPMi2brddd5GxN95Yqy29/Y475PwLLrTv0eusM6Vb1661+n4h77xn797y4EMPW4I7brtVWjRvXi8c77z7rhx+5JGyZMkvss9ee8m111xdL+2448475byBF9j37nnmGdK9Wzf7OC7tqxcU3hQBBBBAAAEEYiEQywA7duw4GTxsWJWBGjVqJM9Me6rK27NhboGdd9s9FWAXzn8t98bm2Xy3r3SHMd1AA+y++x9gW6cBdvzYsbXaUg2w554/0L5H755npUJErb5poDs/q1cveeDBh2zv77z9Ntm+RYt6kbjxpptk6PBL7XsvvfTS8urLL8lKK65Y522JHnv65cmp3bvbNsSlfXUOwhsigAACCCCAQGwEYhlgH37kEZl0623lkObPny86dU2XrbfeWlZu2DD1/BprrCGjrhiZ+p0H1RPIN5Dmu331Wld/rybA1p99bb9zXALsm2+9ZUZg28hvv/0mrXbfrdZH+bO5ZguwcWlftnazHgEEEEAAAQT8F4hlgM3E3uaYY2Tu3Hn2qbvuuL3epvhlaptv6/INpPlun1QvAmxSK1d5u+MSYLWl33//vbz19tt2FHippZaqvPG1sEW2ABuX9tVCl9klAggggAACCCREwLsA++OPP8rLr7wis2a9KP/3f/8nLVsW2w+CDRo0qFCSp6ZNk19//dWe67nP3nvLJ598KjNnzZLFi3+SHXbYQbbackvRD5B//PGHzHvtNZkze46sa8633WnHHUVHfaPLBx9+KAsWLLCrmjRpIhtusIFth77m/Q8+kBZmSuKuu+wsa621VvRl5R7r+yxcuEheefVVefPNN2WLLbawbd9yyy1sG8ttbH5Jb/9HH38sc+bMsZsdfFDZuZr6i+53xowXZOGihfKuuTjMmmuuKbrP/ffbL+N+8w2k2bb/888/5ckpU+Tvv/+2bVIztVv888/yzDPP2HXrrLOO/TJCP7Rr3d5/731p1ryZbLftthnbZl/0T5+qavXc88+LHhe67LvPPrLMMsvYcwynPz3drnM/Nt54Y9nSmOuiX5Z88ukn9vHOLVvKKqusIlUJsPkcf3bn5se3334rz8+YIS+++JKsaKaLNmu2ney3776i5yHmmkL8119/mWPudZnxwgz57LPPzOuaS8viIll77bXl6aefkZ+X/GyPX61z+qI1ecMcYy+99JK88cab9oJBLU0/1//vf9M3rfT3X375xdZOjzH9e9lhh+1lp512kmXMFNhp08uMXe11Z+n1b96smbz++uuyyLSjceNGUlxUlHrPH374wdosWvSGfPHFF7Leeo3t32Z0G7dx+n71PNa333nH9lGdNt10U9nF/A1uZv5NX9IDbLPttpOnzTH6ztvvyJrmb3aXnVvm/NtN39+cuXPl008/tat33XVXWXaZZc3/k2bJbPP3ufjnxWZ/O1uj9OnB0T7kMsunb9G2aZtmmeNs9uzZttb6/8etttpKdLpydMkWYPNpX75/04X87UTbzGMEEEAAAQQQCEPAqwA78eZb5JLBg0U/2EeX5ZdfXq696irZbbddo6tT527qdOThw4bKGWf1tFP33EYd258ofc4+W7qcfIoNtm69fui84frrpMh8SHdL9APfuf372w/Ot5lzGKOLfri/+MIL5Pjjjouuto/1g3anLielPvRGN9AP7RPGjZONNtwwuvrf9q+8slxq2n9aSantuwbUF5571m774UcfSc9eveVV84E1fdl0k03kmquvkk1McIsu2QJpdJvo42zbDzj3PLnjrrvspquttppMunmibLH55uWCoAa1ww87VHqceZZo4HWLbn/LxAmpQOnW67/5WnU5+WQTRso8njOhVUOzhuXj2p4Q3a1tx4hLy84/7Nb9VJnyVNl51U9NedJ+2K8swOZ7/OmbP/Loo3Jmz17l+q7rNTTvveeecsmQIfqrpJ8Dq0Giszle9MuO6NJwpZXkxhuul779+tsvTvRLnNdfK5u54Lb7+uuvpX3HTjbAunXu39Z7tJJrzN+Kvq4qi9bihBPbi+4zumhIvMxciO2Io46yq3c3f3vjzPmdukQdtY8aLK//54JY+sXLlSMvt9vNeOEF6XV2Hxtc7YrID23nmFGjRP+23RLdrx5X+mVFv3POqWB7xOGHmb+XYTZsu9dGA+xN118vI664IvWFlNvmhOOPl4vM329Vluj+9LgfZs5rnTuvfB30/zs3T5hQ7mrD0T5Ez7OOrs+3b9pe/dtSywcfKjvPN9oH/dLi1ltuFr2WgFui/z+LngMbbUeu9uX7N13I345rK/8igAACCCCAQFgC3gTY226/PXXVTC2hfrDVkUf9T5cVV1hBJowfV27qsQtedgPzQ0fm3IirW6cjpnpFXh3B1dFat+j+Zjz/XOoCK9EPfHr1Xn1f3ZeGSf1w70K1jnToB/vDDj3E7Urmz18gnU3I+uabb1LrNCRrSHGL7mfcTTdKEzNa4pb09rv1LsDqh9ZDDz8iFVS0zU2bNjWjyfPsCKRur+cT33PXneVGO91+tR+FXsTpylGjZbQJQrroB/VbJk6UbbbZ2v4e/RCs/fzt99/ld/NfurGOJN579102cNoXmh+FWF108cUy8ZZJdhf/M33V0bW77r5b+g8419Zcw9aiN96wQeK+//3PbneYOQ9RR9Q1yL02Z7bdLtru6Id3fUEhx9/06U9Lt9NOSx2jmY4X2xjzIxpgdcTzpFO6lvtSRYOrvv7Hn36yo2k6wqr/pQdYHe09sUNH21+3b62Pvs4tB+y/vw2R+veQa9GZBW3bnVguYOoXD4vNuep6Dqf7O9B9ZAuw6ft3Afbjjz+RfQ84IPWFkv4drte4sQ2B7m+pw4nt5PzzzkvtIlofbbtupwbRNrmN08NoNHCqmR6P2n59ffSLldLTT5czepS63WT9N7o/56D/6kh+NOyvuuqqNjzqFzu6RPsQPcai6/Ptmzqc3bev3D/5gVR702uuX2LdfuskWX311e020f+f5Rtg8/2bLuRvJ9URHiCAAAIIIIBAcAJeBFgNfsW77Go/bGpw1dHI1nu0NsHgd/OhbbJccNHFtrA6rXfKE4+niuyCmq7QaZYDzMhpw4Yr2VuXREcqepSUSOfOneS7774THZnTqZe6TDSBWKcC6hL9wKe/H3nE4XKuGf3RD6x68akRIy6XmyeVhSj90PrSzBd0M7tEz+895OCD5Zx+fe00UJ0yecngIaIXtdJFr4yqV0h1S7T9+gG/rRnZbdVqd1nJhJnNN9vMTBleJKebUVkNGtrOG6671oZEDUA6auZGhB64717Rac9ucfvVD9yFBNiohYbm8ePG2ra7/Uc/jOu6HbbfXi67dLgNKDqFe/DQYXZKqT533oAB0rFDe31ol0Ksxk+YaEfmdQdXjR5laz3UfIlw401jZYP115cTTzjBXvVaP3jPefUV+z56PGnQ0A/2jz9a5h9tdzRcFHr87bPf/vLe++/b90s/XkaOHCkTzIwCt0QD7L333W8DiT6ndR9uRml1doEGWB1Z7m1G2nTkXZf0AHuh+Vtwx6EGVQ1jeqzolGmdveBGdHUkWkfRci39zxkgd/0T+HUasM5iUC8NfBqWzhs4MPWlT64Aq19sHGNGavU4WGWVVe004vvun2zbo39zp596qpx5Rg/bP50qvY+5ErQewyubmQevvvRiqonR+ujKbbdtKsOHDrX90y+U7rn3Xhl44UU2nOrzDz0wOTXCnx44dabEEYcfbs9H1S87Roy8Ql9i/55fnjXTPs71I7o//dKqf58+0t7M6NC/Ka1Nv/7npL6A0P/36HGpS7QP0WMsul63y6dvjz72mJT0OENfZmdAXDDwfNnRnCLxiZlOfM0116ZmSRxnrjMw6JKy/1dG/4bzDbD6PlX9my70b0ffgwUBBBBAAAEEwhTwIsDqeZbdTzvdVrDbKafI2b17lavmSWbddHNOoC46tVZHKHVxQU0f333nHaIfwnV56eWX5fgT2tnHGmpeNGFzueWWs79fe911ctnlZVc87mPep6vZty7RD3x6HuX9995TblRTt9HRqhfNOYe6aCjSD/sabnfYqch+6NdRmMkmTOqHXLfoB+9DDjvcXtRF179qXr/CCmXTJqPtH3TxRXLcsce6l5X7V0cSVzKjbBrg3TJ+/ITU9NTLL7us3Iiw228hAXaYCVN9+vWz/dER1RvNVGudDhtd0j+M6xTL6DmN/7vnHulrPuDrcughB8vIESPs40Kt9DzMk7t2s/twgdhNEd5zjz2kXbsTUs8/O32aPb956223s1+I6PM6XVyXaLuj4aKQ409HQndqWfblR7bjRb9kmPViWUCLBtjzzK113PT0a80UcD1/O7pEp0enB9hDjzjSfjmgI7ZTn3wiNeKmr9fzM48+tmx6e/oIZXT/7rHeUkhN9Hic8vjj9ksX95z+e82116aCX64A+8Rjj8rGG20Ufal9rMe+nle7ozlv2h3z+sSp5m/9CfM3r8vzzzydet9offTYe9x88aPT76PLFVeOkjFXX21XXXLRhanp/NHAqceiHpPRZQ9zT1YdFdYlW3uj20f3165tW7nwgrLbIblttP57my8w9Bxf/RJixrNl/3+K9iF6jEXX59u3QeZvcpz5e9dl7A032C+5XDt0lkfrvfa252HrKQWPPfKwfSr6/7NCAmxV/6YL+dtxbedfBBBAAAEEEAhTwIsAq+eX3fDP+XX6gT39giQ6IqQfhnW55qox9tw4fRwNagvmzU29Ti/ItNc+++omNlhFP8zqKE4fc36hLjoy26O0xD6OfuA75aSTpG+fs+366I8bzHl+wy69zK4aPnSItDnySNFppCd17WrXZXtd9APoBDOauesuu9jtXfu1v9nuF6kfUCeY8+zmm4vYvPvuu6kpmTpl1E1ljH6Q1x27/eYbYG2j/vmhr9Vw1doEwPQl+mH8P//5j8ya8Xy50K5TtrUNuujIsI4Q61Ko1Tum3/sdcKDdR1czVbvP2b3FjX6e1KWztDMjsK7eOqq+gQn6+qFel84dO8gAM5KuS7Td0XBRyPE31Zxf29WM5uuSre7Xm7Ax/LKy8B4NsAcdcqidBaB1nzf7VTuqbncU+dF8+x3slyPRABv9AkBHa92XMpGXpUZMdar6A/ffF32q3GMdOSvauew41AsK6ZXB05fXXptf6TmwerGue8w08UyLzhzQ6aVvmOndH374kf1CQbf76quvUrfUiobJaH22287s95/zr6P71lkHbY4+xq5qc+QRdoRWf4kGzgHmCxidcRFdKvvSILqtPo7uT8+p3cOcs5u+nGz+7qeZv39dpk2dIv9db72sx1h1+hadtaDhN33R6dI6zViPCZ0ZorNGov8/yzfA5vM3XcjfTnr7+R0BBBBAAAEEwhLwIsDqBYDcNNvKyhcdNc0W1KIBVkcPb54wPrXbqgTYfia8nmxCbPoSHVk800zdLDHn00269VY7rVG31WmGJ53UJf1lEh31jY60Zmu/24H242RzrqQGuFxLbQRYvVCSnr+q57GmL9EP4zq1WUNjdNGrkbbYcSe7KhqkCrXSD+jbbNfMfkjXabFDzVTZpuaKvfrFxuBLLpaj2rSRbZu3sOH+gvPPs6HZXeBpoDnHsr0511KXaLujAbaQ4+8WM53cTW3PVve7zfTcfmaari7RAOvqrtPlNcBq8Ehfdtm9lT03NRpg9dYsBxx0cPqmGX/XoDN/btkVrTNtEP1SYA8zbf0mE7bTF50erV8U6JJtBDbqGH29fllxZs+e5c7NjT7vHmcLsHqRpxtNcExfdPrunnvvY1e3LC62FwrTX6KBU88F1Sm20WWQOWbGmanoukS/BItuE30c3Z8GaQ3U6Yuel6rTwXXRiyjpReGyHWPR9fn2zU2HT3//TL+7c8SrE2Dz+Zsu5G8nU7tZhwACCCCAAALhCHgRYG80o69DzSisLqd17y4HH/zvLWTSS7mWmT7sLlTigkD6SGN1A6yei3qxmZ6YvlxuzqO72kyr1OX6a6+RvcwVWOfNe02OPPpouy7b66LnGuqomLuQU7b2252ZH9HRDQ0KR5gLOq266ir26cceezx1/mJNBVgdEdyrdWt5cupU+x46NVY/mOuITnSJfhjPFGCyBdjqWOmIqt5mSKeH6jmABx5cdhGt2ybdYm/tc/Chh9kLG+mFgXTKqn6w1iU65TJbuws5/vRc02OPb2vfI9t03ejxEg2w0Sm00QBnd2Z+RKcnRwOsBnadrq4jsfo3MGHsTbJ0jgs1uVsKuf1G/9WLG+1QVGynwK677rry9FNTUzMY3HbRcy/zDbDRUUP12dUcv2708MrRo+3fjb5PtP/R+kTPXXbt0X/1lkodO5d9SdSlcydzvnk/+3Q0cOp55nq+eXSpToC94vIRoue2py/6JYlO99a/m5dfnGUvdhbtQ/RvI7o+375FR3o1fOsMg2zLButvYKdrVyfARtvt3ifb33Qhfztun/yLAAIIIIAAAmEKeBFgo2FAP3Q/OPn+cqNSY/65Gm6nTp1Ez/1zS7YAWN0Aq1f41HNc9dw2t+iU3f0PPCh1xdYXzb079eqoGip2NEFAn9fXPfrwQ+Wuuqv3bdRRM50KrFPzdIqffuDVJVv73XvqLUx0GqcuT5spq3qPTbe4q+zq7zUVYPWLAL1ib3dzZV03NVLPK55oRrD1Yk5uiX4Yz+fDbnWsNLRoeNHzgHUK8emlPWxzdPqyhjm9yI0GLp2e3bpVKxlkLv6ji170y507nK3dhRx/epXeZmaar44O68WIHjfnHqYfLzrtWadT6xINsNEP/Toad5UJdC7c6VR5Hdl74MGH7OuiAVZXdOrSRZ597nn73JhRV4peyMkteoGkC8xFjk455WR7ER63Ptu/0WB0lrnI0umm7m7Riy9pQNPb7OiST4DVv4XtzQi8hmS9xYvexsgtOnV5N3OBNvXTJVuA1ecyTd3t2q27TJ02TZ82t+H5t/+1GWD1b0BDsfu71ffWqcx6vrFO3dVz3x9+sOwKwdmOseh6fX0+fYuei9y+XTsZaGYZuMUdL3u02sOeB+/aWFcBtpC/Hdd2/kUAAQQQQACBMAW8CLAaAvYwI2x61V5d9AOjnt+mgeCpp6bZkUb9MKzhVkcw3Ye0bAGwugFW26D3VDz91O6ymbnC6wcffGinAbupvNFpsbqt3n/2oYfLLp6ibe5uzo3Ti9q8Yz78X2fOm3UhRu9fqbfgcUu29rvnox/KO3fqaM7n7CSff/G53GemLU667Ta3mejFW04zV3p1V52tbL+pF/7zIH37n5csMVc5PjEVnjW8XG9GnjVM6RL9MJ5PgNXXFmp1/sAL5FZzPqVOu9W66FVldWTYXVHWjXbqaOJBBx4gY8eNt+flaiDXYK5LtnYXevzpvVj1Xqe6lD9ePpCrzdVh3RWK9flogNXj6Mg2R6Vus6QBe6+99rTH9TPPPJu6Sra+Lj3A3mxuJ3Shua2QLvqFiY4M6v1S33jzDXNrof+lAueoK0Yah7Lzhu3GGX7olYZ7mfsku0Wn3e5kRq+///57edRc1EnDplvyCbD6GndM6WO9Z2ur3Xez9zLWqdcugOtz2nad4q3TVqP10ef0wk96znORGXXXNt1x552pi7lp4J9mgrH70iD6t1LTI7DaFr0qbydzPvUaa6xhrvg8V666+prU9OiqnGddnb7pRdzaHHOsvQ6AHst7mlkS+rf+k/miQL/o0C92dIlebKquAmyhfzu2wfxAAAEEEEAAgSAFvAiwWjn9UN+ufYdU2Euvpn5gvc5cfVRvN+IW9yG5pqcQa/jUEKwjhumLnhOq59jp7VvcsmTJL2ZEsESeNuEj26JXwx1tRow0gLklW/vd848/8YScZm6jk2nRD/xqpqNuukRvIVPZftP3l2l7vdDOMccdn7qdy4Hmnp5Xjrzchqzoh/F8A2yhVuNMIHWjqhrq9INz9LZEetuW3uYcZF30eNCRKa2RXqnXLbnaXcjxp19M6JWpo0HVvZd+ydJ0m21StzqKBljdRq9OrFfXVo/0RW/L8rwJJTqSmR5gddvoRcHSX6u/a030nNbK7gOr244dO87egkgfpy9HmYuU/c9c9EyXfANsdMpu+n71lkMannX0Uhedtn69uUVUtD7uNIFoiHb70frqVFoNcm6pzQCrtyl686233FuV+1fPw73phutTI+jRPkT/NqLr8+2bvqHOLjizZ6/UxezKNcL8ol+g3G0uxKXnrutSVwFW36uQvx19HQsCCCCAAAIIhCngTYDV8ul0xSFm6ufLL7+SGt2wQaDpNjJk0KDUPR9dqTMFL32uuiOwetXO//53fbnokkvs+Yi6T/3QrCPDl5jb3Wy26aa6qtyigWqoGWmaakaM3T08dQMNUXub0bW+JlzpPqJLtvZHt3nk0UflnHPPEz0HzS16sRi976Te0meEuSWQutV0gNX30g+mep6nTifVxZ3jG/0wHv2QbjcyP7KdL+eeL8Rqijkvt9up/05x1X3pvUeHDB5kdxs9v9a9T/rFiSprd77Hn76PThHXCzVpLdy0WB2l03sIa0BzI5zpAVZfO8eM5N1tRk2fnzFDPv7kE3sf3aOPaiOnmFHH3Vvvab/MyRRg9bU6rXTyAw/a2zPp7ARddCpzx/btpbTk9CqFV/si80NnDzz2+BPywsyZ8rOZ6r7pppvIqd26yZZbbil6qx1d8g2w2nc9Nm8aN65c6NJzlM819wYec9XVdkRdvyjJFGD1uOprRod7mXvivvHmm7YN+kOn6+qVw6NTp3V9bQbYO267VaZMmSpjx49P9UVPZWhlpqrr8ad/e27Jdoylr8+nb27fTzz5pFx/w40y77XXUu3QL/Y0yOvF4aLnqtdlgNX2FfK34/rFvwgggAACCCAQlkBiAmw+ZdGRz4ULF8lvv/9mP0RHz7/MZz/5bJvpA98vv/xipwF/b+71uN1225X7oJpr3zoypyM2+mHb3bM21/aVPacBRUf5PjH3sdRwodNkfVlq2qomXAo5/vRY0UCqI2HR0fmqtkcDn35Z4xb35Ua2AOu20ws+vb5woaxvvijR802rs7gg7K6KHA1d0QCbz3volxWLFr1hpksvthcv0/PAsy3R93NfjKiLrv/0k0/N/wu2SE0ZzraPmlqfKRDrNGYNauqzbdOmFb6QyvXeNdk3Pdb0HFwNrHr6QPoXY7naUdvPFfK3U9ttYv8IIIAAAgggEC8BLwNsfRBnCrD10Q7eEwG92vKB5txWnV5cWYCtTS29tZW7mnOhATaf9mUKefm8via3zRRgq7P/OPWtOv3gtQgggAACCCCAQHUFCLDVFfzn9QTYGoJkN1US0KnHBx1yaMZtf/n1V3uOrz657bZNzf147864XU2s1IsAnT9wYMZd6cW83HngJ5v7G/f75xzjjBvXwMo4hTwCbA0UlF0ggAACCCCAAAIZBAiwGVAKWUWALUSN1xQq8LGZDr7HXntV+vKLL7xA2pr7qNbWcs+990mff+6lmu09dIrq/ffeU+Ec9GzbF7qeAFuoHK9DAAEEEEAAAQSSI0CAraFa6f0MH/7nVjh7mgvo7GouIsOCQG0J/GDOqx5l7v+abVlppYZy0EEH1npo1HMpJ0+enK0Z0rhRYzn00EPq5NxTveLw1ddcY9uyiTm384S2bbO2q7afuNfcqmr+/Nfs23Ts2LHa5xfHqW+1bcf+EUAAAQQQQACBXAIE2Fw6PIcAAggggAACCCCAAAIIIBAbAQJsbEpBQxBAAAEEEEAAAQQQQAABBHIJEGBz6fAcAggggAACCCCAAAIIIIBAbAQIsLEpBQ1BAAEEEEAAAQQQQAABBBDIJUCAzaXDcwgggAACCCCAAAIIIIAAArERIMDGphQ0BAEEEEAAAQQQQAABBBBAIJcAATaXDs8hgAACCCCAAAIIIIAAAgjERoAAG5tS0BAEEEAAAQQQQAABBBBAAIFcAgTYXDo8hwACCCCAAAIIIIAAAgggEBsBAmxsSkFDEEAAAQQQQAABBBBAAAEEcgkQYHPp8BwCCCCAAAIIIIAAAggggEBsBAiwsSkFDUEAAQQQQAABBBBAAAEEEMglQIDNpcNzCCCAAAIIIIAAAggggAACsREgwMamFDQEAQQQQAABBBBAAAEEEEAglwABNpcOzyGAAAIIIIAAAggggAACCMRGgAAbm1LQEAQQQAABBBBAAAEEEEAAgVwCBNhcOjyHAAIIIIAAAggggAACCCAQGwECbGxKQUMQQAABBBBAAAEEEEAAAQRyCRBgc+nwHAIIIIAAAggggAACCCCAQGwECLCxKQUNQQABBBBAAAEEEEAAAQQQyCVAgM2lw3MIIIAAAggggAACCCCAAAKxESDAxqYUNAQBBBBAAAEEEEAAAQQQQCCXAAE2lw7PIYAAAggggAACCCCAAAIIxEaAABubUtAQBBBAAAEEEEAAAQQQQACBXAIE2Fw6PIcAAggggAACCCCAAAIIIBAbAQJsbEpBQxBAAAEEEEAAAQQQQAABBHIJEGBz6fAcAggggAACCCCAAAIIIIBAbAQIsLEpBQ1BAAEEEEAAAQQQQAABBBDIJUCAzaXDcwgggAACCCCAAAIIIIAAArERIMDGphQ0BAEEEEAAAQQQQAABBBBAIJcAATaXDs8hgAACCCCAAAIIIIAAAgjERoAAG5tS0BAEEEAAAQQQQAABBBBAAIFcAgTYXDo8hwACCCCAAAIIIIAAAgggEBsBAmxsSkFDEEAAAQQQQAABBBBAAAEEcgkQYHPp8BwCCCCAAAIIIIAAAggggEBsBAiwsSkFDUEAAQQQQAABBBBAAAEEEMglQIDNpcNzCCCAAAIIIIAAAggggAACsREgwMamFDQEAQQQQAABBBBAAAEEEEAglwABNpcOzyGAAAIIIIAAAggggAACCMRGgAAbm1LQEAQQQAABBBBAAAEEEEAAgVwCBNhcOjyHAAIIIIAAAggggAACCCAQGwECbGxKQUMQQAABBBBAAAEEEEAAAQRyCRBgc+nwHAIIIIAAAggggAACCCCAQGwECLCxKQUNQQABBBBAAAEEEEAAAQQQyCVAgM2lw3MIIIAAAggggAACCCCAAAKxESDAxqYUNAQBBBCoW4FRo8fIzFmzpEdpiRQXFUm79h3sv/q7rtfno89p6ybdPDH1nL5Gn3f7yfRcpv2412V6jvcob17fVunv737PVXP3XPTYca/LVPP059zvbj+Zjiv3nG6r+3Svqdu/IN4NAQQQQKA+BAiw9aHOeyKAAAL1JKAf/HVxwXPUmDE2lGoA2GzLrWwQ0MCg26U/p697a9FCGxg07PYoKbH70ccaIjI9l2k/+l68R0XHOFq5Wml9q1pzdzxojatyXFXnPfQYjB6nalhcXGTfV49XFgQQQAAB/wQIsP7VlB4hgAACWQU0pOqiYZMFAd8EOL59qyj9QQABBCoKEGArmrAGAQQQ8E7ATbN0/3rXQTqEgBFgBJbDAAEEEPBfgADrf43pIQIIBC6QPv0zcA66H4CABllddKo8CwIIIICAXwIEWL/qSW8QQACBCgIaYPUDvbuoToUNWIGAZwJ6vOu5sUyV96ywdAcBBBAwAgRYDgMEEEAAAQQQ8EqAqfJelZPOIIAAAuUECLDlOPgFAQQQ8E+A8wL9qyk9qlxAQ6wuepVjFgQQQAABfwQIsP7Ukp4ggAACFQTc+a/uViUVNmAFAp4KRG8L5WkX6RYCCCAQpAABNsiy02kEEAhJgOmUIVWbvjqB0eYcWF1Kzb1iWRBAAAEE/BEgwPpTS3qCAAIIIIAAAggggAACCHgtQID1urx0DgEEQhdwU4h7mFEobikS+tEQVv/bte9gz3/luA+r7vQWAQT8FyDA+l9jeogAAgELaIDlFjoBHwABd51zYAMuPl1HAAGvBQiwXpeXziGAAAIIIBCmgH55owtXIQ6z/vQaAQT8FSDA+ltbeoYAAgiIfoifOXOWFBcX8UGe4wEBBBBAAAEEEi9AgE18CekAAgggkF2Ac2Cz2/CM3wJMIfa7vvQOAQTCFSDAhlt7eo4AAoEI6O1EiooYgQ2k3HTzHwG9iFNLM/OA2+hwSCCAAAJ+CRBg/aonvUEAAQQQQAABBBBAAAEEvBUgwHpbWjqGAAIIiD0HVq9CrBey4XYiHBEhCdjjnnO/Qyo5fUUAgUAECLCBFJpuIoBAmAKcAxtm3em1COfAchQggAACfgoQYP2sK71CAAEEEEAgaAFuoxN0+ek8Agh4LECA9bi4dA0BBBBQAT7IcxwggAACCCCAgC8CBFhfKkk/EEAAgQwCTCHOgMKqIASYQhxEmekkAggEKECADbDodBkBBMIS4DY6YdWb3pYJcBsdjgQEEEDATwECrJ91pVcIIIAAAggggAACCCCAgHcCBFjvSkqHEEAAgX8FdAoxt9H514NH4Qhw7nc4taanCCAQlgABNqx601sEEAhMgHNgAys43U0JcA5sioIHCCCAgFcCBFivyklnEEAAAQQQQEAF9NxvXUpLSuy//EAAAQQQ8EOAAOtHHekFAggggAACCCCAAAIIIOC9AAHW+xLTQQQQCFmAKcQhVz/svutViIuLiqRHKSOwYR8J9B4BBHwTIMD6VlH6gwACCEQE3EWc9EO8fphnQSAUAc6BDaXS9BMBBEITIMCGVnH6iwACCCCAAAIIIIAAAggkVIAAm9DC0WwEEECgKgI6Ajtz5iwpLi5iBLYqYGzjjYAe+7ow88CbktIRBBBAwAoQYDkQEEAAAY8FOAfW4+LStZwCTCHOycOTCCCAQGIFCLCJLR0NRwABBKomoCGWUaiqWbGVPwLcRsefWtITBBBAICpAgI1q8BgBBBBAAAEEEEAAAQQQQCC2AgTY2JaGhiGAAALVF2AKcfUN2UMyBbiNTjLrRqsRQACBygQIsJUJ8TwCCCCQYAENsKNGj7H3wmQacYILSdPzFuAc2LzJeAECCCCQCAECbCLKRCMRQAABBBBAIB8B/fJGF764yUeNbRFAAIH4CxBg418jWogAAggULKAf4rmNTsF8vBABBBBAAAEEYiZAgI1ZQWgOAgggUJMCnANbk5rsK0kCTCFOUrVoKwIIIFB1AQJs1a3YEgEEEEikgIZYplEmsnQ0uhoCehGnlsVFUlpSUo298FIEEEAAgbgJEGDjVhHagwACCCCAAAIIIIAAAgggkFGAAJuRhZUIIICAHwI6+qpXIdYR2B6ljET5UVV6URUBe9ybEVhmH1RFi20QQACB5AgQYJNTK1qKAAII5C3AObB5k/ECTwQ4B9aTQtINBBBAIE2AAJsGwq8IIIAAAgggkHwB/fJGF0Zgk19LeoAAAghEBQiwUQ0eI4AAAh4K8EHew6LSJQQQQAABBAIVIMAGWni6jQACYQgwhTiMOtPLigJMIa5owhoEEEDABwECrA9VpA8IIIBADoHRY8ZIkbmIE1MpcyDxlHcC3EbHu5LSIQQQQMAKEGA5EBBAAAEEEEAAAQQQQAABBBIhQIBNRJloJAIIIFCYgE4h9vE2On///XeVQJZaaqkqbZekjRYvXix//vmn/Oc//0lSs+u8rZz7XefkvCECCCBQJwIE2Dph5k0QQACB+hHw9RzYWybdKk9Nn54TdfsWLeT0U7vn3CZpT37zzTdyznnny19//SXnnztA/rveenl3YcmSJfL9Dz9Ig+WWk9VWWy3v1yflBZwDm5RK0U4EEEAgPwECbH5ebI0AAgggEAOBUAPs++9/IBcNGmQr0OusM2XrJk3yrsaUqU/Jrbffbl+r+/B10XO/dSktKfG1i/QLAQQQCFKAABtk2ek0AgiEJODjVMrff/9d/jSjkLr8+OOP0u+cAfbxgP79pHHjxvbxMksvLf/3f/9nH/v0Y+681+SPP36XFs2bSyFTpEMJsD7VnL4ggAACCPwrQID914JHCCCAgHcCvk4hjhZKA+yZvXrbVRcOPL/ctNppZprxd999b67CvJN8+umn8u6778nOO7eU9UzI1Wm4zz73nLz99js2BK+9ztqyZ+vWss7aa6d2/9nnn8sLL8y055vussvO8vLLL8t7770vjRqtKzpFedVVV01tq+flvvPuuzJ//gL58KOPZLNNN5WmTbex75XayDz47bff5NVXZ8ubb71lp/JutOEG0sLsq3GjRqnNsrVb2/bgQw/b7fbffz9ZYfnl5TXzfm+ZfW2yycayzjrryPPPz5CPP/5YNthgA9lhh+1T7z/vtfmmr2/Le++/J/p4zTXWkJ1btrT7OvigA70L+3oVYr3ydo9SRmBTBxYPEEAAAQ8ECLAeFJEuIIAAAtkENMDqRZz0Q7yvt9HJFWB1uq1Ou910k03k7XfesUwlp50q2227rVx2+Uh54803y9Etu+yy0r9PH9loow3t+rnz5smVxk+DqobHRW+8kdpezx/VbddYY3W77v7JD8jkBx+0j3VkVAPtMsssI31697JhVp/42Zx/qvXQ8Bpd9HzUU04+yY6q6vps7W5ipgyfXtrDvvSyYUPtOax33n23PPb4E7LxRhvJV19/bcO42/fyDRpIr55nySYbbyx33HWXPP7Ek+6pcv+OvmKkrLjiiuXWJf0XzoFNegVpPwIIIJBZgACb2YW1CCCAAAIJEahKgNWpxMU77SSbb76ZNNmqiXz51ZcyesxVsoIJbad17yarmYB6593/k1kvvigtmjWTktNPs713AVZ/0QsmHbDffna9BtUvvvxSdttlF+ncqaNd17tvP/n222+l60kmiLZoLk9OmWIC7UN2mxPbnWC3ue6GG+17aPg9pk0bWW311WTGjBfk6WeflRVWWEFGDB8uDRoslwqw6e1eqeFKWQOsvsG2ZsR3rz33lMU/LZYnpk6x4V2vVnz5pcPl8y++kK+++lrmzJkjU6dNsyO0Rx15pG1Xk622tGHb/sIPBBBAAAEEYixAgI1xcWgaAgggUF0BHYGdOXOWFBcXBT0Cu+vOO0uXzp3KcepU3q/NVX01JOptad595125YexYWddMwx108UV222iAPfec/naUU5+Y+tRTMum226XRuuvKJRddaLcdMmy4vGWm6G63bVPZo1UrO+q7nBkB1dFVXXRE9oyevURvg9P37N6yxeab2/X6Y9CQoSa4NpBjjzlaNlh//VSATW/3L7/+mjXA6mjr5ZddZgOw7vPjTz6R8y8oa5u2UduqSyjnwPp47rctID8QQACBwAUIsIEfAHQfAQT8Fgj9HFg3Fffkzp3tua+u2hoEb77lFnn5lVdFLwgVXfTc0GFDBttVLsCutNJKcuXlI1IXTdKgqoFVR03HXHmF3VanBV97/Q3mnNvv7O86jVin9Z7Q9nj77yfmHNzzBl5gRzqvGTM654hnrnZnm0K80447Sveup0S7Yt9P3/eULl2kZcti+1woAZYpxOUOBX5BAAEEvBEgwHpTSjqCAAIIZBbQEOvr+a/a46pMIY4GOH2NOx/UXcho+eUbyGeffS7PmIs6ZQqwa6+1lgwZdIm+1C56Pu3gocPKBVh9QoPxggULzH+vmwslvWbPSdUpwSMvG2EuGvWnlJ55lh2J1Sm9q6yyStnOzE+duqxTffVc1eXMiK0LsOntzjUCqyO3A887N7XPX3/9TXr27m3bFL3lTigBltvopA4FHiCAAAJeCRBgvSonnUEAAQTCEygkwGr41BDa9rjjZJ+997Jo7t6yGiz1AklLm9vwuBHYygKsnvt607jx9jzTQWa6roZQvcrxWb3Plp9++ik1ZfjCSwbJBx98IPua9zzevLcuH5krBl9k1us05v59+9gLPhUSYHVfLqjqdGUNqrfdcYcdNR4z6krRKca6uACrF7Y6p19fu44fCCCAAAIIJEWAAJuUStFOBBBAoAABphCXXYU4fSTzdhPsnpgyVVZeeWXZwdzCRm97o/9p6Pzjjz/sLW3OP3eAvL5wob0KcWUBVgPjgPPOtwFWL/bUbLvtRG/B8/Irr9gwe+nQIdKwYUN58aWX5IabxtqwqvvUde++954dlW26zdZy1hln2CoXGmD1xeubkdglP/9sR3/199133VU6deygD+2y4PXXZcTIsmnPuu1aa64pp5/a3T3tzb/cRsebUtIRBBBAoJwAAbYcB78ggAACfglogOU2Oh+UOwdUK6wXUrr+xhvtPVT1d72QUxdzNWEdSZ38wIN22q2ep7pw0aIqBVjdh97C5p577zWhd5H88MMPorfk0XvB7r/fvva2PbqNLrPNVYDvMlc81oCri04xLtpxJ2l3QtvUvVgLCbB6wSe9ENRT5t63Gqh1FFivvNyh/Yl2NNm+mfmhz42fMFFefPkl0WnG6eHcbZf0fzkHNukVpP0IIIBAZgECbGYX1iKAAAIIBCCgQfYbcyXitddeJ3X13up2WwOihlO9VY6btptpnzr1+Qfzn14dWKcrF7q4+8C6kVbdrwbxRo0apQJxoftO8uv0yxtdfD7/O8n1oe0IIIBAoQIE2ELleB0CCCCQAAH9EO/7bXQSUIZabWJ6gK3VN2PnCCCAAAII1LMAAbaeC8DbI4AAArUpEMI5sLXpl4R9E2AzV4kpxJldWIsAAggkXYAAm/QK0n4EEECgEgENsUyjrAQpwU/r/Wfff/8Dady4kWzdpEmCe1KzTdeLOLUsLpLSkpKa3TF7QwABBBCoVwECbL3y8+YIIIAAAggggAACCCCAAAJVFSDAVlWK7RBAAIEECujoq16FWEdge5QyEpXAEtLkAgXscW9GYJl9UCAgL0MAAQRiKkCAjWlhaBYCCCBQEwKcA1sTiuwjiQKcA5vEqtFmBBBAoHIBAmzlRmyBAAIIIIAAAgkT0C9vdGEENmGFo7kIIIBAJQIE2EqAeBoBBBBIugAf5JNeQdqPAAIIIIAAAk6AAOsk+BcBBBDwUIApxB4WlS5VSYApxFViYiMEEEAgcQIE2MSVjAYjgAAC+QmMHjNGisxFnJhKmZ8bWydbgNvoJLt+tB4BBBDIJkCAzSbDegQQQAABBBBAAAEEEEAAgVgJEGBjVQ4agwACCNSsgE4h5jY6NWvK3pIhwLnfyagTrUQAAQTyFSDA5ivG9ggggECCBDgHNkHFoqk1KsA5sDXKyc4QQACB2AgQYGNTChqCAAIIIIAAAjUloOd+61JaUlJTu2Q/CCCAAAIxECDAxqAINAEBBBCoTQGmUtamLvtGAAEEEEAAgboUIMDWpTbvhQACCNSxAFOI6xict4uNgF6FWK+83aOUEdjYFIWGIIAAAjUgQICtAUR2gQACCMRVQAOsXsRJP8RzG524Vol21YYA58DWhir7RAABBOpfgABb/zWgBQgggAACCCCAAAIIIIAAAlUQIMBWAYlNEEAAgaQK6AjszJmzpLi4iBHYpBaRdhckwLnfBbHxIgQQQCD2AgTY2JeIBiKAAAKFC3AObOF2vDLZAkwhTnb9aD0CCCCQTYAAm02G9QgggIAnAhpiOf/Vk2LSjSoLcBudKlOxIQIIIJAoAQJsospFYxFAAAEEEEAAAQQQQACBcAUIsOHWnp4jgEAAAkwhDqDIdDGjALfRycjCSgQQQCDxAgTYxJeQDiCAAALZBTTAchud7D48468A58D6W1t6hgACYQsQYMOuP71HAAEEEEDASwH98kYXzv/2srx0CgEEAhYgwAZcfLqOAAL+C+iHeG6j43+d6SECCCCAAAKhCBBgQ6k0/UQAgSAFOAc2yLLTaSPAFGIOAwQQQMBPAQKsn3WlVwgggEBKQEMs0yhTHDwIREAv4tSyuEhKS0oC6THdRAABBMIQIMCGUWd6iQACCCCAAAIIIIAAAggkXoAAm/gS0gEEEEAgu4COvupViHUEtkcpI1HZpXjGNwF73JsRWGYf+FZZ+oMAAqELEGBDPwLoPwIIeC3AObBel5fO5RDgHNgcODyFAAIIJFiAAJvg4tF0BBBAAAEEEMgsoF/e6MIIbGYf1iKAAAJJFSDAJrVytBsBBBCoogAf5KsIxWYIIIAAAgggEHsBAmzsS0QDEUAAgcIFmEJcuB2vTLYAU4iTXT9ajwACCGQTIMBmk2E9Aggg4InA6DFjpMhcxImplJ4UlG5USYDb6FSJiY0QQACBxAkQYBNXMhqMAAIIIIAAAggggAACCIQpQIANs+70GgEEAhHQKcTcRieQYtPNcgLcRqccB78ggAAC3ggQYL0pJR1BAAEEKgpwDmxFE9aEIcA5sGHUmV4igEB4AgTY8GpOjxFAAAEEEPBeQM/91qW0pMT7vtJBBBBAICQBAmxI1aavCCAQpAC30Qmy7HQaAQQQQAABLwUIsF6WlU4hgAACZQJMIeZICFVAr0KsV97uUcoIbKjHAP1GAAE/BQiwftaVXiGAAAJWwF3EST/EcxsdDoqQBDgHNqRq01cEEAhJgAAbUrXpKwIIIIAAAggggAACCCCQYAECbIKLR9MRQACBqgjo7URGmQvavLVoYVU2ZxsEEi/Aed+JLyEdQAABBLIKEGCz0vAEAggg4IeAC7CTbp7INGI/SkovKhHQ8181xHLMVwLF0wgggEACBQiwCSwaTUYAAQQQQACB7AIaXmeZ/7iFTnYjnkEAAQSSKkCATWrlaDcCCCCQp4COxLpRqTxfyuYIJEJAj3FduPJwIspFIxFAAIGCBAiwBbHxIgQQQCB5AulTiTXMcmXi5NWRFlcUcMdy+jFecUvWIIAAAggkXYAAm/QK0n4EEEAgD4FsH/SjtxxxIaBHSYkdyXLnE+pFoPT1+num57QZmfbjzkPM9Fym/fAeRRkd87VyjvolhdbA1TVXPdxzVa15XN7D2Wh7dOGLGcvADwQQQMBLAQKsl2WlUwgggEBuAf2gr4HG3R9WA0vL4iJ7zqCu1+fdc+53DTfpr4s+p++Yaz+5novux6f36HzSyXKGuQdvt65drbf2TR3rwso5ZqtrTdQjbu9hYfmBAAIIIOC1AAHW6/LSOQQQQACB+hTYvfWe0qJ5cxl1xcj6bAbvjQACCCCAgDcCBFhvSklHEEAAAQTiJkCAjVtFaA8CCCCAQNIFCLBJryDtRwABBBCIrQABNraloWEIIIAAAgkVIMAmtHA0GwEEEEAg/gIE2PjXiBYigAACCCRLgACbrHrRWgQQQACBBAkQYBNULJqKAAIIIJAIAQJsIspEIxFAAAEEkihAgE1i1WgzAggggECcBQiwca4ObUMAAQQQSLQAATbR5aPxCCCAAAIxFCDAxrAoNAkBBBBAwA8BAqwfdaQXCCCAAALxESDAxqcWtAQBBBBAwDMBAqxnBaU7CCCAAAL1LkCArfcS0AAEEEAAAV8FCLC+VpZ+IYAAAgjUlwABtr7keV8EEEAAAe8FCLDel5gOIoAAAgjUsQABto7BeTsEEEAAgXAECLDh1JqeIoAAAgjUjQABtm6ceRcEEEAAgQAFCLABFp0uI4AAAgjUqgABtlZ52TkCCCCAQMgCBNiQq0/fEUAAAQRqQ4AAWxuq7BMBBBBAAAEjQIDlMEAAAQQQQKBmBQiwNevJ3hBAAAEEEEgJEGBTFDxAAAEEEECgRgQIsDXCyE4QQAABBBCoKECArWjCGgQQQAABBKojQICtjh6vRQABBBBAIIcAATYHDk8hgAACCCBQgAABtgA0XoIAAggggEBVBAiwVVFiGwQQQAABBKouQICtuhVbIoAAAgggkJcAATYvLjZGAAEEEECgUgECbKVEbIAAAggggEBhAgTYwtx4FQIIIIAAAtkECLDZZFiPAAIIIIBANQUIsNUE5OUIIIAAAgikCRBg00D4FQEEEEAAgZoSIMDWlCT7QQABBBBAoEyAAMuRgAACCCCAQC0JEGBrCZbdIoAAAggEK0CADbb0dBwBBBBAoLYFCLC1Lcz+EUAAAQRCEyDAhlZx+osAAgggUGcCBNg6o+aNEEAAAQQCESDABlJouokAAgggUPcCBNi6N+cdEUAAAQT8FiDA+l1feocAAgggUI8CBNh6xOetEUAAAQS8FCDAellWOoUAAgggEAcBAmwcqkAbEEAAAQR8EiDA+lRN+oIAAgggECsBAmysykFjEEAAAQQ8ECDAelBEuoAAAgggEE8BAmw860KrEEAAAQSSK0CATW7taDkCCCCAQMwFCLAxLxDNQwABBBBInAABNnElo8EIIIAAAkkRIMAmpVK0EwEEEEAgKQIE2KRUinYigAACCCROgACbuJLRYAQQQACBmAsQYGNeIJqHAAIIIJBcAQJscmtHyxFAAAEE4ilAgI1nXWgVAggggIAHAgRYD4pIFxBAAAEEYiVAgI1VOWgMAggggEDSBV6dPVtaNG9uu5EeYKPPJb2ftB8BBBBAAIH6ECDA1oc674kAAggg4KVAjzPPEg2pXTp1lM6dOkk0wI4bP17Gjp+Qes5LADqFAAIIIIBALQsQYGsZmN0jgAACCIQj4EKq9lhDrAZWHY1t0bxZ6vGoK0aGA0JPEUAAAQQQqGEBAmwNg7I7BBBAAIGwBaIhNiqhQZbwGhXhMQIIIIAAAvkLEGDzN+MVCCCAAAII5BRID7GE15xcPIkAAggggECVBQiwVaZiQwQQQAABBKou4EIs4bXqZmyJAAIIIDXIeewAAEAASURBVIBAZQIE2MqEeB4BBBDwVGDmrFkyc+YsT3sXj27NnjNbmjcruyJxPFrkXyuKi4tsp4qLyv71r4f0CAEEEEAgKkCAjWrwGAEEEAhAYNToMTJqzJgAekoXQxLQANujtEQIsiFVnb4igECIAgTYEKtOnxFAIEgBHXFt175Dqu9nmA/7uhQxcpUy4UHyBGaZ4/oFM5NAj29dNMBOunli8jpCixFAAAEEqiRAgK0SExshgAACyRaIhlcNrqUlZeE12b2i9Qj8K6DHuM4u0H8Jsf+68AgBBBDwTYAA61tF6Q8CCCCQQWCzLbeyawmvGXBY5ZWAmyLfw3xJo1OKWRBAAAEE/BIgwPpVT3qDAAIIVBBwo6+MSlWgYYWnAu4Lm7cWLfS0h3QLAQQQCFeAABtu7ek5AggEIqDnvWqI1fMCucBNIEUPvJuMwgZ+ANB9BBDwWoAA63V56RwCCCAgoqNRjL5yJIQmwHEfWsXpLwIIhCJAgA2l0vQTAQSCFGD6cJBlp9NGgADLYYAAAgj4KUCA9bOu9AoBBBCwAi7AckEbDojQBAiwoVWc/iKAQCgCBNhQKk0/EUAgSAECbJBlp9NGgADLYYAAAgj4KUCA9bOu9AoBBBCwAgRYDoRQBQiwoVaefiOAgO8CBFjfK0z/EEAgaAECbNDlD7rzBNigy0/nEUDAYwECrMfFpWsIIIAAAZZjIFQBAmyolaffCCDguwAB1vcK0z8EEAhagAAbdPmD7jwBNujy03kEEPBYgADrcXHpGgIIIECA5RgIVYAAG2rl6TcCCPguQID1vcL0DwEEghYgwAZd/qA7T4ANuvx0HgEEPBYgwHpcXLqGAAIIEGA5BkIVIMCGWnn6jQACvgsQYH2vMP1DAIGgBQiwQZc/6M4TYIMuP51HAAGPBQiwHheXriGAAAIEWI6BUAUIsKFWnn4jgIDvAgRY3ytM/xBAIGgBAmzQ5Q+68wTYoMtP5xFAwGMBAqzHxaVrCCCAAAGWYyBUAQJsqJWn3wgg4LsAAdb3CtM/BBAIWoAAG3T5g+48ATbo8tN5BBDwWIAA63Fx6RoCCCBAgOUYCFWAABtq5ek3Agj4LkCA9b3C9A8BBIIWIMAGXf6gO0+ADbr8dB4BBDwWIMB6XFy6hgACCBBgOQZCFSDAhlp5+o0AAr4LEGB9rzD9QwCBoAUIsEGXP+jOE2CDLj+dRwABjwUIsB4Xl64hgAACBFiOgVAFCLChVp5+I4CA7wIEWN8rTP8QQCBoAQJs0OUPuvME2KDLT+cRQMBjAQKsx8WlawgggAABlmMgVAECbKiVp98IIOC7AAHW9wrTPwQQCFqAABt0+YPuPAE26PLTeQQQ8FiAAOtxcekaAgggQIDlGAhVgAAbauXpNwII+C5AgPW9wvQPAQSCFiDABl3+oDtPgA26/HQeAQQ8FiDAelxcuoYAAggQYDkGQhUgwIZaefqNAAK+CxBgfa8w/UMAgaAFCLBBlz/ozhNggy4/nUcAAY8FCLAeF5euIYAAAgRYjoFQBQiwoVaefiOAgO8CBFjfK0z/EEAgaAECbNDlD7rzBNigy0/nEUDAYwECrMfFpWsIIIAAAZZjIFQBAmyolaffCCDguwAB1vcK0z8EEAhagAAbdPmD7jwBNujy03kEEPBYgADrcXHpGgIIIECA5RgIVYAAG2rl6TcCCPguQID1vcL0DwEEghYgwAZd/qA7T4ANuvx0HgEEPBYgwHpcXLqGAAIIEGA5BkIVIMCGWnn6jQACvgsQYH2vMP1DAIGgBQiwQZc/6M4TYIMuP51HAAGPBQiwHheXriGAAAIEWI6BUAUIsKFWnn4jgIDvAgRY3ytM/xBAIGgBAmzQ5Q+68wTYoMtP5xFAwGMBAqzHxaVrCCCAAAGWYyBUAQJsqJWn3wgg4LsAAdb3CtM/BBAIWoAAG3T5g+48ATbo8tN5BBDwWIAA63Fx6RoCCCBAgOUYCFWAABtq5ek3Agj4LkCA9b3C9A8BBIIWIMAGXf6gO0+ADbr8dB4BBDwWIMB6XFy6hgACCBBgOQZCFSDAhlp5+o0AAr4LEGB9rzD9QwCBoAVqOsD+/fff8uFHH8kvv/wim2y8sSy77LLe+/7+++/y6WefyQbrr1+jff3xxx/lvffel9VWX00aN2okSy+9dLn9q7X+l76+3Ea1+Mtff/1l917Z+7/z7ruy8UYbyVJLLVWLrcl/1wTY/M14BQIIIJAEAQJsEqpEGxFAAIECBWoqwGqYGXH5SLn1ttvkx59+sq1p0KCB7Nm6tQwZPEhWbtiwwBbG42UaUj/6+GPbGA1jbtEAedAhh8qbb70lF194gbQ9/nj3VMH/zpk7VwZeeKG89tr81D5WXnll6XnmmdLuhLapwHrEUUfZbS4bPlyOOPyw1LZ18eCpadPklG7dbWif+uQTWd9y4AUXyiRzTBxy8MFyxeUjsm5XH08QYOtDnfdEAAEEal+AAFv7xrwDAgggUG8CNRVgXVDRjqyzzjqy+uqry1sm1Gnw23yzzeSB++9L9GjsojfekIMPPUyWWWYZWbTg32Cp/dt5t93lu+++k9O6d5eeZ51ZrVq+vnChHHnU0fLHH3/Y/TQyI69ffvll6vd+fc6Wk086yT6XhADbrfupMuWpp2SH7beXO267tVo2Nf1iAmxNi7I/BBBAIB4CBNh41IFWIIAAArUiUBMBVkdfi3bexYa48wYMkI4d2tu26qjkUUcfIz8vWWLDi4aYpC7ZAqz2Z+GiRTJ//nw54IADZKUVV6xWF9u17yBakw032MCOXBfttJMNsMMvu0zuve9+WWGF5WXmjBmy4gorSBICrIbvKVOnSqvdW0njxo2qZVPTLybA1rQo+0MAAQTiIUCAjUcdaAUCCCBQKwI1EWD1XM3tdyqy52Pe97//SdOm26TaemKHjvLCzJnSy4xMnmpGKN0ye84ceeaZZ2TB6wtlqy23lFatdpcWzZu7p81zz8rLr7wizZs3k7XXWkseevgRO/p5wP77ydZbb21Dnk5jXb7B8nLggQfIlltskXqtPtDA+cADD8qbb74pDVduKDu3bClHHnGE3Yc+ryOnV119jT6Ubl27yrPPPSuzXnxRVl9tNWltpj032Wor+5yevzl58gPy9ddfy2133GHP4zz91FPtc4cccrBstummctvtt8vnn38h+5u2udfpBq+//rpMf/ppmTN3nqyz9trSrFkzOezQQ1JtsDuJ/NAvArZt3kJ+/fVXObtXT9su9/T7H3wge++7n/3VGUcDrIbDJ5580u57V/Nlwu677+ZeatfPn79AdtxhB9ltt11T653xNttsLfvus49d7/py8MEHyRLzxcP06dNl8c8/S/o+M00h/vjjT+Suu++2+9m+RQtbU/ceekzss/feVXZ3jVSLhx5+WJ43of3/lv0/2/7dd9tNxo4bb2txRo9St2ne/xJg8ybjBQgggEAiBAiwiSgTjUQAAQQKE6iJAKvvfOgRR9rAtv5//2uC1ympETcNNT8t/skGw7VMENXlbhNy+w841wZeu8L80Av8DBsyRNoceYRdNWTYMLlp7DjZYvPN5SNzUSgdxdVFRx47d+ok115/vfz55592XcOVVpJJN98sGsR0eXLKFOlx5lny22+/2d/dj/3320+uGj3K/qqhrFmLshFhDZWTTdh1i1546oZrr7UhcKqZ/trVTIPNtFw9ZrTst+++GUdCNXT1OrtPauqve30rEyxHXXmlaJvTl08++VRa7bmnXf3wgw/Yvke30Tb+/vtvJozvbEczXYDd3YTSZ597vpxn6emniwt3/fqfI3ffc4+ZetxF+vXpk9rlUHPu7I03jZWj27SRoUMG2/Vunwea0WQNxG4qsz4Z3Wd6gNUp1Mce31Y08DfbbjuZMH6c7aOr47FHHy2DB11iw3BV3PX99EuGU00/pk1/Wn9NLXuZLximmi8v9Jh5c+HrqfX5PiDA5ivG9ggggEAyBAiwyagTrUQAAQQKEqipADtv3mvS3YSNzz//PNUOHVndf799pUuXLqmptQsWLDCB72gbtnqeeYbssssuMtOM0F5mLgClgeTByffbc2Zd8NEweU6/frLRhhvaCxvpFY510RHKpk2byuAhQ+1oa+eOHWTAOefY5042I6oaerqefLJ06dzJPn9y1242ED1w373SpEmTckFKz9ft0qmjbGVGXceNnyDPPf+8aBB/asqT8s0338iCBa+bCzh9JOeeP9BeQGnsDTfY92nSZCtZY401KgTYN8yo7yGHHS46otr2uONER2p1Ku0g01b9N3002u7M/IiOsk43027XW6+xeyrjvy5sqpG+zz777C2PP/6EvWiSvuBpE751ZLaQAFvZPqMBVsN2+46d5NXZs+0I9KSbJ8p//vMf22ZXx0wBNpe7vvga8yXCiJFX2C8tOnboYEbG95DnTW3GTZgoP/zwAwHWCvMDAQQQQCBdgACbLsLvCCCAgEcCNRVgleT777+Xhx95RB597HF58aWXUiOgm26yidxw/XX2irVjzajqYDO6qtOF+/WNjAYOG24D0MDzzpP2J7YTF3z0HNBbb7nZiutVjq+57jobcB95qGzEdJyZSjpo6FApLioyo7ATU5V5+513ZBUTon5avNiu69mrt8ydN09Gjhghh5pAGR2B7Xt2bznFhF1dNHzqVYV1ecFMK15zzTXt41znwLog6a4GPN4ErEsGD7bTlm+eMN6+Xn888uijMvKKK+2obW8TwNOXQgNs6z1ayY1mRFoXDc27mPNNv/rqK7ly5OVy8EEHFRRgK9unC7Aa4Lc104P1CwOt822TbrEX8HJ9c3XMFGArc+9kvvjQkWUN5xdfdKHbpVxuQu3VJtwyApsi4QECCCCAQESAABvB4CECCCDgm0BNBNi33n5bXjHnq6666qo2nKmR3gd2mjl/8pLBQ+Qzc4/UU8yVc/uaK+jq1F4NudmWI484XC41ATc9+Oj215mQdumIy2Vfcy7lNVdfZXdx5113yTnnnlfuKrfTTZg639zSRqcvpy/DTdjVacrRAKujvjpa7Jattmlqp87qlZPdOa35BFjXxx4lJdKjtMTtttJ/P/30U9m9dfYpxFdfc438/PMSOdzcMkev7OyCc/TCWfomLvida0akO5mR6WwjsM440xTiyvbpAqzrlI7YPv7oIxXuheveI1OArcx9x+KW9sJgE8aOlV133cW9leho/5FmSjIBNkXCAwQQQACBiAABNoLBQwQQQMA3gZoIsHqV2W6nnmbv9frcs8/YKZ/OSUPX5WbUUUdc77rjdjONdoidpqtXJD72mKPdZql/GzdubEcu04OPblCVAKujwHpFZD0/VkdaXQDVe5FqoM0UYJ+dPk3WXXfdVBuaNN22bLpxgQF2sAnJepGh9JFDvY/siy++JDvuuIOdopx6w38e6Ojpdua8XA3/vXueJd27dUtt8t7778s+++1vf890EafofWA7my8Lnnn2OXEB9jwz9VkvQHX8scfKJRdflNqnu+JxpgDrRpPdxun7dAFWz+VdzVz4Sqd26/nAo6+8otxFqtLrGP3ioDJ3DakaVs86o4ecftpprily8y2T5MKLLybApkR4gAACCCAQFSDARjV4jAACCHgmUBMBVqfp7lhUbEctNWzofUobNGhgR8/03Ei9t2knc2udc80tdh597DEp6XGGDbs6Yucu7HSOuajTxhtvZKYPnyjLL798wSOwz5rg1sm8/yqrrCIvzXzBhhw9L3ePvfa27bvogoFyQtu25UZgKwtSWnI3Arv00kvL3FdfsW3U9bq4kVAX+lyg13M89d6nG2+0kX3vvv37y/3misa7mvN+J4wbW/bitJ8uVG6w/vr2okc6NfqLL74QvY2OvrYqt9FJD5u3mvB+/gUXytrmSshTHn/c7kNv/XNEm6Nsu6oTYLWd401fjjnueHulZt3XkMGDrLt2rToB1n3Zoefx6qi8TiefM3eu9O3XX3SKOCOwaQcPvyKAAAIIWAECLAcCAggg4LFATQRY5XFhQx/rlYL/ay6CpPeB/fvvv+3VaG+ZONHeXkdH4NqbW+vo+ag67XSnHXe0YURD2sorrywPTZ5sLzyUHnx0v1UZgdWr4eoIrI5malBsZEZWnzBXJf7LjMj++NNPti29evaUNm2OTF2FuCoBVl+786672dFRDW066nj9tddkvIiTXjG5gwnueqsgDePbmotN6TTrb7/91vZ5orlCr4axTEs0WOrz66yzjj2f1V1xub+5ivBJ5mrCuqQHZ7vS/EgPsDo6etjhR9j+631qN91sU5lrbu2jYXjJkl8yXoXYhfFs+3QjsGox9ckn7P7amS8pdH8ndeks/fv2tS9Nr2M+I7A6Yt223YmiU6t1WblhQ9sH/XJCR9oJsJaFHwgggAACaQIE2DQQfkUAAQR8EqipAKsm480VfMeboKrBQxcNqNuYe7bqiJzeDsctet/Ys/v0ledmPG8Dj67XW+DoKJvbLj346DZVCbC63YMPPSQDzHmxGpZ00fufXjp8mHQ305x1JFWvTnz66aflFWB1P3pxpuvMFYj1SsK6uOCbKUhqiO1/zgCZZm734tqx4QYbWIts4dXu1PzQcHnBRRfZkO/W6VV99erFbY8/3l4JWddnel9dnx5gdZ3W+aKLL7H91y8Kjj6qjfmiYUW5ykzxru4IrAZYXTTUdj/tdDt9202BTq9jPgFW96kXttKLd8144QX53dwWaTdzD9gO7U+UE05sT4BVIBYEEEAAgQoCBNgKJKxAAAEE/BGoyQDrVHSk8XMzorrJxhvLcsst51ZX+FfvMaojk+uZ8141VNXkoiOWOs204UoN7YhuTe47n31pO7SP65jpu3qRq3wWHfX90AQ4He3Vc3R1xLG6i95+pqEZydSp0EladCTf9V9H9g88+BACbJIKSFsRQACBOhQgwNYhNm+FAAII1LVAbQTYuu4D7+evgN6Td+HrC8t18FUzNVvPpdbp0HPM+ciFLpttuVWF2y8Vui9ehwACCCAQHwECbHxqQUsQQACBGhcgwNY4KTusQYGB5uJTegXpTEt06nOm5ytbR4CtTIjnEUAAgWQKEGCTWTdajQACCFRJgABbJSY2qicBPT4XLlxU4d11erreG7Y6U6EJsBVYWYEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMgsQIDN7MJa/wUIsP7XmB4igECYAgTYMOtOrxFAIBABAmwghaabFQQIsBVIWIEAAgh4IUCA9aKMdAIBBBDILECAzezCWv8FCLD+15geIoBAmAIE2DDrTq8RQCAQAQJsIIWmmxUECLAVSFiBAAIIeCFAgPWijHQCAQQQyCxAgM3swlr/BQiw/teYHiKAQJgCBNgw606vEUAgEAECbCCFppsVBAiwFUhYgQACCHghQID1oox0AgEEEMguwAf57DY846eA++KmuKhIJt080c9O0isEEEAgUAECbKCFp9sIIBCOwKjRY2TUmDHSo6REepSWhNNxehqsQLv2HURDrIZXDbEsCCCAAAL+CBBg/aklPUEAAQQyChBgM7Kw0mMBZh14XFy6hgACwQsQYIM/BABAAIEQBNyIFKOwIVQ77D66Y/0MM9ug1Mw6YEEAAQQQ8EuAAOtXPekNAgggkFXAfbDXKZU6lZiplVmpeCKBAm6mgTad8JrAAtJkBBBAoIoCBNgqQrEZAggg4IOAC7HaFxdg3b8+9I8+hCeg57rqf24hvDoJ/kUAAQT8FCDA+llXeoUAAghkFdAP+zpaFf3Qn3VjnkAgIQIE14QUimYigAAC1RQgwFYTkJcjgAACSRYgxNZu9XqceZa0aN5cOnfqWLtvFPDemUEQcPHpOgIIBClAgA2y7HQaAQQQQKAuBHZvvacNsKOuGFkXb8d7IIAAAggg4L0AAdb7EtNBBBBAAIH6EiDA1pc874sAAggg4KsAAdbXytIvBBBAAIF6FyDA1nsJaAACCCCAgGcCBFjPCkp3EEAAAQTiI0CAjU8taAkCCCCAgB8CBFg/6kgvEEAAAQRiKECAjWFRaBICCCCAQKIFCLCJLh+NRwABBBCIswABNs7VoW0IIIAAAkkUIMAmsWq0GQEEEEAgEQIE2ESUiUYigAACCCRIgACboGLRVAQQQACBZAkQYJNVL1qLAAIIIBB/AQJs/GtECxFAAAEEEipAgE1o4Wg2AggggEBsBQiwsS0NDUMAAQQQSLoAATbpFaT9CCCAAAJxEyDAxq0itAcBBBBAwBsBAqw3paQjCCCAAAIxESDAxqQQNAMBBBBAwD8BAqx/NaVHCCCAAAL1K0CArV9/3h0BBBBAwGMBAqzHxaVrCCCAAAL1IkCArRd23hQBBBBAIAQBAmwIVaaPCCCAAAJ1KUCArUtt3gsBBBBAICgBAmxQ5aazCCCAAAJ1IECArQNk3gIBBBBAIEwBAmyYdafXCCCAAAK1J0CArT1b9owAAgggELgAATbwA4DuI4AAAgjUuAABtsZJ2SECCCCAAAJlAgRYjgQEEEAAAQRqVoAAW7Oe7A0BBBBAAIGUAAE2RcEDBBBAAAEEakSAAFsjjOwEAQQQQACBigIE2IomrEEAAQQQQKA6AgTY6ujxWgQQQAABBHIIEGBz4PAUAggggAACBQgQYAtA4yUIIIAAAghURYAAWxUltkEAAQQQQKDqAgTYqluxJQIIIIAAAnkJEGDz4mJjBBBAAAEEKhUgwFZKxAYIIIAAAggUJkCALcyNVyGAAAIIIJBNgACbTYb1CCCAAAIIVFOAAFtNQF6OAAIIIIBAmgABNg2EXxFAAAEEEKgpAQJsTUmyHwQQQAABBMoECLAcCQgggAACCNSSAAG2lmDZLQIIIIBAsAIE2GBLT8cRQAABBGpbgABb28LsHwEEEEAgNAECbGgVp78IIIAAAnUmQICtM2reCAEEEEAgEAECbCCFppsIIIAAAnUvQICte3PeEQEEEEDAbwECrN/1pXcIIIAAAvUoQICtR3zeGgEEEEDASwECrJdlpVMIIIAAAnEQIMDGoQq0AQEEEEDAJwECrE/VpC8IIIAAArESIMDGqhw0BgEEEEDAAwECrAdFpAsIIIAAAvEUIMDGsy60CgEEEEAguQIE2OTWjpYjgAACCMRcgAAb8wLRPAQQQACBxAkQYBNXMhqMAAIIIJAUAQJsUipFOxFAAAEEkiJAgE1KpWgnAggggEDsBcaNHy+vzp4jo64YadsaDbCvzp4t48ZPSD0X+87QQAQQQAABBGIoQICNYVFoEgIIIIBAMgU0wI41IbVF8+Y2qLoA27lTR+lx5lm2Uxpu9XkWBBBAAAEEEMhfgACbvxmvQAABBBBAIKtANMTqqGt06WKCbOdOnaKreIwAAggggAACeQgQYPPAYlMEEEAAAQSqIuBCbHRbwmtUg8cIIIAAAggUJkCALcyNVyGAAAIIIJBTIBpiCa85qXgSAQQQQACBKgsQYKtMxYYIIIAAAgjkJ6AhVhemDVsGfiCAAAIIIFBtAQJstQnZAQIIIJBMgVGjx8ioMWNk0s0TpbioSDbbciv7r/6e6Tnt5VuLFsrMWbOkXfsO0qOkRHqUltjHui7Tc5n2o+/Fe1R0jKOVq1U+NddjQ7ev6nFVnffQY1CPYXcsJvMvkVYjgAACCOQjQIDNR4ttEUAAgYQLaEjSRYOnPtagoY81RGjwaFlcJKUaCjI8p6/TUKKv0efd69y2uZ5z2/IeZeZJsXLHQ23WvDrvocdt9EsYPb50nR5vLAgggAACfgoQYP2sK71CAAEEMgq40TEdLWVBwCcBDdkuwOoXBCwIIIAAAn4KEGD9rCu9QgABBMoJ6Id7HZliQcBnAY5zn6tL3xBAAIEyAQIsRwICCCDguYAbmeI8Qc8LTfdSAtFp7amVPEAAAQQQ8EKAAOtFGekEAgggkF1AA2z0nNXsW/IMAn4I6PEePTfWj17RCwQQQAABFSDAchwggAACCCCAgFcCTCX2qpx0BgEEECgnQIAtx8EvCCCAgF8CbvSVK7P6VVd6U7mAjsIWm6tqc+535VZsgQACCCRJgACbpGrRVgQQQCBPAc5/zROMzb0RiN7X2JtO0REEEEAAAaYQcwwggAACCCCAgH8Co8eU3fNY72vMggACCCDgjwAjsP7Ukp4ggAACGQV0FFYXplJm5GElAggggAACCCRIgACboGLRVAQQQCBfAaYQ5yvG9r4ItGvfwX5p06OUEVhfako/EEAAARUgwHIcIIAAAh4LuIs46Yd4RmA9LjRdqyDAObAVSFiBAAIIeCFAgPWijHQCAQQQQAABBBBAAAEEEPBfgADrf43pIQIIBCygI7AzZ87idiIBHwOhdp1zv0OtPP1GAAHfBQiwvleY/iGAQNACnAMbdPmD7jxTiIMuP51HAAGPBQiwHheXriGAAAIqoCGW8185FkIT4DY6oVWc/iKAQCgCBNhQKk0/EUAAAQQQQAABBBBAAIGECxBgE15Amo8AAgjkEmAKcS4dnvNZgNvo+Fxd+oYAAiELEGBDrj59RwAB7wU0wI4aPUa4jY73paaDaQKcA5sGwq8IIICAJwIEWE8KSTcQQAABBBBAAAEEEEAAAd8FCLC+V5j+IYBA0AI6AsttdII+BOg8AggggAACXgkQYL0qJ51BAAEEygtwDmx5D34LR4ApxOHUmp4igEBYAgTYsOpNbxFAIEABDbHcRifAwgfeZb2IU8viIiktKQlcgu4jgAACfgkQYP2qJ71BAAEEEEAAAQQQQAABBLwVIMB6W1o6hgACCIi4qxDrCKxeiZgFgVAE9OrbxWYEltkHoVScfiKAQCgCBNhQKk0/EUAgSAHOgQ2y7HTaCHAOLIcBAggg4KcAAdbPutIrBBBAAAEEghbQL290YQQ26MOAziOAgIcCBFgPi0qXEEAAgagAH+SjGjxGAAEEEEAAgSQLEGCTXD3ajgACCFQiwBTiSoB42lsBphB7W1o6hgACgQsQYAM/AOg+Agj4LzB6zBgpMhdxYiql/7Wmh/8KcBudfy14hAACCPgkQID1qZr0BQEEEEAAAQQQQAABBBDwWIAA63Fx6RoCCCCgU4jt7US4jQ4HQ2AC3EYnsILTXQQQCEaAABtMqekoAgiEKMA5sCFWnT6rAOfAchwggAACfgoQYP2sK71CAAEEEEAgaAE991uX0pKSoB3oPAIIIOCbAAHWt4rSHwQQQCBNgNvopIHwKwIIIIAAAggkVoAAm9jS0XAEEECgcgGmEFduxBZ+CuhViPXK2z1KGYH1s8L0CgEEQhUgwIZaefqNAALBCHAbnWBKTUcjApwDG8HgIQIIIOCRAAHWo2LSFQQQQAABBBBAAAEEEEDAZwECrM/VpW8IIBC8gE4hnjlzlhQXF9nplMGDABCMAOd+B1NqOooAAoEJEGADKzjdRQCBsAQ4BzasetPbfwWYQvyvBY8QQAABnwQIsD5Vk74ggAACGQQ0xOrFbFgQCEmA2+iEVG36igACIQkQYEOqNn1FAAEEEEAAAQQQQAABBBIsQIBNcPFoOgIIIFCZAFOIKxPieV8FuI2Or5WlXwggELoAATb0I4D+I4CA1wIaYEeNHmPvhck0Yq9LTefSBDgHNg2EXxFAAAFPBAiwnhSSbiCAAAIIIIAAAggggAACvgsQYH2vMP1DAIGgBXQEltvoBH0I0HkEEEAAAQS8EiDAelVOOoMAAgiUF+Ac2PIe/BaOAFOIw6k1PUUAgbAECLBh1ZveIoBAgAIaYjn/NcDCB95lvYhTy+IiKS0pCVyC7iOAAAJ+CRBg/aonvUEAAQQQQAABBBBAAAEEvBUgwHpbWjqGAAIIiDCFOPNRsGTJEvn88y+k4coNZY3VV5elllqq3IZ///23/T19fbmNavGX+n7/Wuxane1ar75dbEZgmX1QZ+S8EQIIIFAnAgTYOmHmTRBAAIH6ESDAlnd/59135ZZbb5X33/8g9cQKK6wgbY44QvZsvUcqyF40aJDd5pQuXaRly+LUtnXxYO68eXKlCV9rr7WWDBl0SV28pZfvwTmwXpaVTiGAAAJCgOUgQAABBBAIQuCDDz+USwYPkT///NP2d3Uz8vr999+nfj/26KNk//32s88RYJN/SOiXN7owApv8WtIDBBBAICpAgI1q8BgBBBDwUIAP8mVFHX7ZCFn0xht2ZLNzp46yxeab2wB79z33yPMzXpAGDZaTkSNGSIPllhMCrId/CHQJAQQQQMALAQKsF2WkEwgggEBmAaYQl7noOaWnlpTK77//Lke3OVIOPOCAFNgXX34p/Qeca38/f8AA2XDDDcoF2NXXWF1enT1bll56aWmyVRNpus3WqdfqqO4rr7wqq622quzRqlVq/Weffy4vvDBTVlxxRdlv333s+mnTp8t3330vRUU7ya+//irzzFThX3/7rcI+M00h/vrrb+SZZ5+1+9l0001l26bbiPZJp0TPn79APvzoI9nMrG9q1q/XuHGqHSE/YApxyNWn7wgg4LMAAdbn6tI3BBBAwAiMHjPGhKawL2ajAbBP//72eLjogoEVQt7MmbPkjz//kK223ErWMIHVjcBqWJ2/4HUbFt3BdNghh8jhhx1qf51hRm5vHDdONtpoQznvnHPcJuJC6JprrCHDhgwue99/zqvdcYcdbCB2U5n1yeg+3WvdObCLFy+WwUOHiYbiTTbeWHr1PEuWb9BA7p/8gEx+8EG7b73YlAbaZZZZRvr07mXDrH0i4B/cRifg4tN1BBDwWoAA63V56RwCCCCAgApER1mHDxliQ2ouGRdgNRC2NiOrzZs3syOtT5lRVF3cPgoJsJXtMxpgLxx4vlx2+Uh5+513ZIP115eze/W0o7raht59+8m3334rXU86SVq0aC5PTpliAu1Dstsuu8iJ7U7QTVgQQAABBBDwToAA611J6RACCCDwr4BOIba3EzEjsD1KS/59IrBHhQbY7bZtKmeUllotHeHseXYf+eGHH6TbKSdL0U47SSEBtrJ9ugC78sory8ZmZHfuvNek0brrSt+ze4uuc8uQYcPlrbffFt2fTl/+f/buBN62se4D+FMRojSamihCJdfQvSjNKMqsyZjK1L3XFCXznBS6LhqNieZCg4QKFcqQIUpRaRKVlxKV3vVfWse555x97jn3nn3W3s/zXZ9P7jlr773W8//+1/t+9u88a3j+856XHl/NzMY1vJb0yHHvMToOBQIECGQnIMBm11IFESBA4FEB18A+YvGXv/wl7fP+zqcQX/D1r1fXpT6U1l57rbTM0ksPnEL8tre8Jb3uta8ZAD3uhBPqU4qb9fMSYJvPNhsdus0mwDavx4ztkYcflp7x9Kc3q+p/f3Hbbeljn/hkdV3t3+rf4zTi5ZZdNr39bW+t/53jzQX+4hrYApuuZAIEihAQYItosyIJECBQtkDMnu42Y2Z6qLpp0habbZo2fMMbBkD+dNdd6QMHHFj/PtJNnAY/B/b4j3403VjdNKkJoVddfXX6+Cc/lZZcYol01BGHD2zzvPPPT187/4I00jWwQ58tO3SbTYCN61wXW2yxdPc996TVV1st7brzTvWNpAZ2Uv3wz+pmUDfffHP1v5+lG268sX5vfTfl6o7L8W/JS1z7HcuM6eWeeVBy/9VOgEC+AgJsvr1VGQECBGoBj9F55EA49iPHpVtuvbWeydxh++3Sii94QT17GY/R+VF1E6exPEZnaNj8/R/+kA48+JB6BwcfeEB9nep9991XX7d65+9+N18BNm7itOceu9c3cIptxrWtMe6YaY1rXz992ukpwveRhx2aHl+dNvzwww+nPd+7T7r//vvr043jMUEWAgQIECCQm4AAm1tH1UOAAIFBAk4hfhQjHjVz+JFHpebuv095ylPq58BG8Itlqy22SK/fYP365+YmTnObLY2Z3UMPP6J+jE08ZmfZ5z43xaN1Hve4x9anJM/PDGxzF+Lbb78jHXvcR+rtbbD+eunNW25Z33F4/wMPqgPss575zLTqS15S36X4J9dcU4fZYz94dD17WxdT6H/iLsTTCr/2u9DWK5sAgcwFBNjMG6w8AgQIeIzOo8dAhMGzzzkn3X7HHQMr41mtm2+6SXrVK19Zz27GC2MNsPHee++9N33iU59OcU3qI8+KXTGt+/KXp5NO+dh8z8AefeQRsYv6sTwnnnRyPcvanAIdpxZ/+StfST+75db6xlILLLBA/ficCLkvWWWV+nMl/8c1sCV3X+0ECOQsIMDm3F21ESBAgMCIAg/885/pz9Xpt3GNaczExmm587s8WF1f+9hqOwsuuOD8bmpcn49Z4HhGbNQR181aCBAgQIBAzgICbM7dVRsBAsULxCnEV1bXd07zOJHij4XSAFz7XVrH1UuAQCkCAmwpnVYnAQJFCrgGtsi2K7oScAqxw4AAAQJ5CgiwefZVVQQIEBgQiBAbN7OxEChJwGN0Suq2WgkQKElAgC2p22olQIAAAQIECBAgQIBAHwsIsH3cPEMnQIDA3AScQjw3Ia/nKuAxOrl2Vl0ECJQuIMCWfgSonwCBrAUiwM46cXaaOWO604iz7rTihgq4BnaoiN8JECCQh4AAm0cfVUGAAAECBAgQIECAAIHsBQTY7FusQAIEShaIGViP0Sn5CFA7AQIECBDIS0CAzaufqiFAgMAcAq6BnYPDLwUJOIW4oGYrlQCBogQE2KLarVgCBEoUiBDrMToldr7smuMmTmtNm5pmTJ9eNoTqCRAgkJmAAJtZQ5VDgAABAgQIECBAgACBXAUE2Fw7qy4CBAhUAk4hdhiUKhB3355WzcA6+6DUI0DdBAjkKiDA5tpZdREgQKASEGAdBqUKuAa21M6rmwCB3AUE2Nw7rD4CBAgQIFCgQPzxJhYzsAU2X8kECGQtIMBm3V7FESBA4JFZ2HDwRd7RQIAAAQIECPS7gADb7x00fgIECIwi4BTiUXC8lLWAU4izbq/iCBAoWECALbj5SidAoAyBE2fPTlOnuplNGd1WZSPgMTqNhH8JECCQl4AAm1c/VUOAAAECBAgQIECAAIFsBQTYbFurMAIECDxy/Wv9OJFqBnbmjOlICBQj4DE6xbRaoQQIFCYgwBbWcOUSIFCWgGtgy+q3ah8VcA3soxZ+IkCAQE4CAmxO3VQLAQIECBAgUAt4jI4DgQABAnkKCLB59lVVBAgQGBDwRX6Awg8ECBAgQIBAnwsIsH3eQMMnQIDAaAJOIR5Nx2s5C8RdiOPZx679zrnLaiNAoEQBAbbErquZAIGiBDxGp6h2K/Z/Aq6BdSgQIEAgTwEBNs++qooAAQIECBAgQIAAAQLZCQiw2bVUQQQIEHhUIE4hvvLKq9K0aVPr0ykffcVPBPIWcO133v1VHQEC5QoIsOX2XuUECBQg4BrYApqsxBEFnEI8IouVBAgQ6HsBAbbvW6gAAgQIjC4QITZuZmMhUJJAXPsdy4zp00sqW60ECBDIXkCAzb7FCiRAgAABAgQIECBAgEAeAgJsHn1UBQECBEYUcArxiCxWFiDgMToFNFmJBAgUKSDAFtl2RRMgUIpABNhZJ86un4XpNOJSuq7OEHANrOOAAAECeQoIsHn2VVUECBAgQIAAAQIECBDITkCAza6lCiJAgMCjAjED6zE6j3r4qRyBOPZjceZBOT1XKQECZQgIsGX0WZUECBQq4BrYQhuvbKcQOwYIECCQqYAAm2ljlUWAAIFGIEKsWahGw7+lCMRNnNaaNtVjdEppuDoJEChGQIAtptUKJUCAAAECBAgQIECAQH8LCLD93T+jJ0CAwKgCTiEelceLGQvE3benVTOwzj7IuMlKI0CgSAEBtsi2K5oAgVIEBNhSOq3OoQIeozNUxO8ECBDIQ0CAzaOPqiBAgAABAgQGCcQfb2IxAzsIxY8ECBDIQECAzaCJSiBAgMBoAr7Ij6bjNQIECBAgQKCfBATYfuqWsRIgQGCcAk4hHieYt2cj4BTibFqpEAIECMwhIMDOweEXAgQI5Cdw4uzZaepUN7PJr7MqGk3AY3RG0/EaAQIE+ldAgO3f3hk5AQIECBAgQIAAAQIEihIQYItqt2IJEChRIB4nMquahb3t1ltKLF/NBQrEqfNXXnlVmjljeoHVK5kAAQJ5CwiwefdXdQQIEEhNgD37rDPdkdXxUIRAnD4cIdYxX0S7FUmAQGECAmxhDVcuAQJlC8SXeo8VKfsYKKV6x3opnVYnAQKlCQiwpXVcvQQIFCtgJrbY1hdTeBzjsTh1uJiWK5QAgQIFBNgCm65kAgTKFGgCbFwLG7NTsTSzsaP9Pq+vxfYHz4LN63ZG+5x9PGIcDtHL+bWa3+NhLP3o5j6aY9ypw9EJCwECBPIUEGDz7KuqCBAgMKJAEyiHXiM4+JmZTQiYOX16PZPVvLcJvvH7SK/FDkfaThMmRnptpO3EGO1jpTqQht289qNxjMA4eDuj9aN5baw977V9NMf3iAe/lQQIECCQhYAAm0UbFUGAAIHxCcQX/auq/zXPh43Asta0qWlGFVojMMXrcRpmhJ/m9wg3sT5+H+m1GMFo2xnttVz38Y53vivtXjnuvNNOczhOhlXTq059nYh+9MI+4jnHscSxayFAgACB/AUE2Px7rEICBAgQaElg3Ve9Oq02ZUqadcLxLY3AbgkQIECAQF4CAmxe/VQNAQIECPSQgADbQ80wFAIECBDIQkCAzaKNiiBAgACBXhQQYHuxK8ZEgAABAv0sIMD2c/eMnQABAgR6WkCA7en2GBwBAgQI9KGAANuHTTNkAgQIEOgPAQG2P/pklAQIECDQPwICbP/0ykgJECBAoM8EBNg+a5jhEiBAgEDPCwiwPd8iAyRAgACBfhUQYPu1c8ZNgAABAr0qIMD2ameMiwABAgT6XkCA7fsWKoAAAQIEekxAgO2xhhgOAQIECOQjIMDm00uVECBAgEBvCAiwvdEHoyBAgACBDAUE2AybqiQCBAgQaFVAgG2V384JECBAIGcBATbn7qqNAAECBNoQEGDbULdPAgQIEChCQIAtos2KJECAAIFJFBBgJxHbrggQIECgLAEBtqx+q5YAAQIEui8gwHbf2B4IECBAoFABAbbQxiubAAECBLomIMB2jdaGCRAgQKB0AQG29CNA/QQIECAw0QIC7ESL2h4BAgQIEPifgADrUCBAgAABAhMrIMBOrKetESBAgACBAQEBdoDCDwQIECBAYEIEBNgJYbQRAgQIECAwXECAHW5iDQECBAgQmB8BAXZ+9HyWAAECBAiMIiDAjoLjJQIECBAgMA8CAuw8oPkIAQIECBAYi4AAOxYl7yFAgAABAmMXEGDHbuWdBAgQIEBgXAIC7Li4vJkAAQIECMxVQICdK5E3ECBAgACBeRMQYOfNzacIECBAgEAnAQG2k4z1BAgQIEBgPgUE2PkE9HECBAgQIDBEQIAdAuJXAgQIECAwUQIC7ERJ2g4BAgQIEHhEQIB1JBAgQIAAgS4JCLBdgrVZAgQIEChWQIAttvUKJ0CAAIFuCwiw3Ra2fQIECBAoTUCALa3j6iVAgACBSRMQYCeN2o4IECBAoBABAbaQRiuTAAECBCZfQICdfHN7JECAAIG8BQTYvPurOgIECBBoUUCAbRHfrgkQIEAgSwEBNsu2KooAAQIEekFAgO2FLhgDAQIECOQkIMDm1E21ECBAgEBPCQiwPdUOgyFAgACBDAQE2AyaqAQCBAgQ6E0BAbY3+2JUBAgQINC/AgJs//bOyAkQIECgxwUE2B5vkOERIECAQN8JCLB91zIDJkCAAIF+ERBg+6VTxkmAAAEC/SIgwPZLp4yTAAECBPpOQIDtu5YZMAECBAj0uIAA2+MNMjwCBAgQ6F8BAbZ/e2fkBAgQINCbAgJsb/bFqAgQIECgTwWuve66tNqUKfXohwbYwa/1aXmGTYAAAQIEWhUQYFvlt3MCBAgQyElg5h57pgipO+6wfXrHDjukwQH2tNNPT6eefsbAaznVrRYCBAgQIDBZAgLsZEnbDwECBAhkLxDhNUJsLBFiI7DGbOxqU1Yd+HnWCcdn76BAAgQIECDQLQEBtluytkuAAAECRQoMDrGDASLICq+DRfxMgAABAgTGLyDAjt/MJwgQIECAwKgCQ0Os8DoqlxcJECBAgMCYBQTYMVN5IwECBAgQGLtAE2KF17GbeScBAgQIEJibgAA7NyGvEyBAIFOBWSfOzrSy3inruuuvS1NWfeSOxL0zqvxGMm3a1DRt6tT8ClMRAQIECAwTEGCHkVhBgACBfAWa0DprtvCab5fLrCwCbPxv5ozpZQKomgABAoUICLCFNFqZBAgQiPA6OLjuXn3Rn2rWyoGRgUAc21dedVVdSYTYs886M4OqlECAAAECIwkIsCOpWEeAAIHMBAaH1wiuM6abpcqsxcqpBJrjXIh1OBAgQCBfAQE2396qjAABAgMCy6+4Uv1zzEzFl3sLgVwFmhA7s/ojjdOJc+2yuggQKFlAgC25+2onQKAIgTi1cuttt0tmXototyIrgeYPNrfdegsPAgQIEMhMQIDNrKHKIUCAwFCBCK8RYs2+DpXxe64CZmFz7ay6CBAgkJIA6yggQIBA5gIxG+WawMybrLxhAo77YSRWECBAIAsBATaLNiqCAAECIws0pw8LsCP7WJuvgACbb29VRoBA2QICbNn9Vz0BApkLNAHWDW0yb7TyhgkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYQYEd2sTZ/AQE2/x6rkACBMgUE2DL7rmoCBAoREGALabQyhwkIsMNIrCBAgEAWAgJsFm1UBAECBEYWEGBHdrE2fwEBNv8eq5AAgTIFBNgy+65qAgQKERBgC2m0MocJCLDDSKwgQIBAFgICbBZtVAQBAgRGFhBgR3axNn8BATb/HquQAIEyBQTYMvuuagIEChEQYAtptDKHCQiww0isIECAQBYCAmwWbVQEAQIERhYYa4D973//m357553pn//8Z3recsulBRZYYOQNWjtfAg8//PCon3/sYx876uv9+uKvbr89Lbfssukxj3nMpJUgwE4atR0RIEBgUgUE2EnltjMCBAhMrsDcAmwEqo8cd3z67DnnpPvuv78e3EILLZRe/apXpaOPOjI9cbHF5hjwb3772/Sf//wnLb3UUmnhhRee47Wx/jIR2xjrvibjfXfddVf6+z/+kZ76lKekxRdffNRdvvq1r6v/UDDSm5Z97nPTd7594UgvjbquVzw7jePgQw5NZ1fH1xtzR4HiAABAAElEQVQ32iidcNxHRq1lIl8UYCdS07YIECDQOwICbO/0wkgIECAw4QJzC7BNuIgdL7nkkumpT31quu2229K//vWvtMLyy6fzv/bVOWZj15g6Ld17773p3M+endZcY415Gu9EbGOedtylD71nxsx04be/nfbaY/e02667jrqXbgTYXvHsNI6dd9k1XXzppWmN1VdPnzvns6P6TOSLAuxEatoWAQIEekdAgO2dXhgJAQIEJlxgtAAbs69T114n/e1vf0sH7r9/2n67bev9/6IKsFtsuVX6xwMP1IEjgkezdAopzetj+XcitjGW/UzWe+YlwB50wAFpiy02n2OIj33MY9Mii4x/VrtXPDuN489//nO6+JJL0ivWfUVaZpml56i5m78IsN3UtW0CBAi0JyDAtmdvzwQIEOi6wGgB9r777kurv3Rqiutfv/qlL6UXv/hFA+PZZrvt04+uvDLtvece6Z077phOPuVj9WufOvXU+jrZLTbbLC299NJptSlT0itf+Yr6tZiZjVORf3bLrfVpxi964cpp2222SU984hPTQw89NKZtxJgu+s530lVXXZ3+8/B/0tprrZVe99rXpic96UkDYzvn3HPTn/50V9poow3Tb37zm3TFFVfUY9l0k03S05/+9HTe+Rek6667Lj3rmc9Mm222aT2rPPDh6ofrrr8+XXbZZenmn92SVlpxxfSKV6xb19G8J67XPO+889PTnva0tPnmm6Vvfetb6YYbbkzLL//8tP5666Ullliifmszjm9Wr//yV79K06ZOTS9dc830jGc8PW399rc3m5vj32YG9sjDD0tvefOb53it+eWsz5yd7rnnnvSCF6yQNnzDG5rVdT9+9KMr00ILPT5tv/326ROf+GT9WqeeXHbZ5ekn11yTpkxZtTa45JJL0yqrvDi99jWvqT93689/ns6vrH7xi1+kxZ64WG292aabpsc97nED+4wf/vSnP6XvXHxxva147cUvenHaZOM3pSc/+clj6mszjji+opfNEqdex3avrXoVx+Dqq61Wv974xvuaz0YNKyy/QrrooovSr6uer1a9d73XvW7UwC/ANtL+JUCAQF4CAmxe/VQNAQIE5hAYLcDGG9+06WbpZz/7WXr2s56Vdt7p3QOzZL/73e/T/X+/v76uc5EnPCFNWX3k04V3qGZtD6hmb+P6x7dtvU0ddgYPIELk+ed9rb55z9y28X//939p6yo4x3gGLy984QvT2WedOXA97qZbbJFuvPGm9JJVVkk/veGGgbcu//zn10H0C1UYb5Y4Dfrznzt34LNfrF7bb/8D6sDUvCduLHTM0UenzauwG8ul3/1uevfOu9RBNW48FIbNslR17e/nq5AeM4mbbL55uummm5uXBv6NUHxBVfNISxNg93//+9Mmm2w8x1sWXXTRKpwulL73ve+nd+60U33q9pc+//n0ohe9MMUs5hve+KZ6tjw+u9Wbt5prT44+5pj06VNPq0P6r3/z6/TAA/9M79h+u7T/Bz5QB8eZe+xZB9DBg9hg/fXTSSfOGlj18yrcbv+OHev9D6ysfnjOs5+dPvmJj9ennc+tr8043rzllumoI4+oNxPb3WHHd6YIsYOXCK+nn/rp9IIVVqhXN5+NPw7cfscdc7z/5S9bJ33y4x9PCy644OBNDPwswA5Q+IEAAQJZCQiwWbVTMQQIEJhTYG4BNmYWd3nPe+YInhHANlh/vbRjNfO6aBVe46ZNP/zhj+oNT585swq2f08H7LdfNSO5fFrmmcvUdy3++Cc+kY474aNpnbXXSoceckgVlh5Ie+61d4qgEu/ddttt5rqN3abPSN+uZtimrLpq2nWXndMCj1sgnfyxj9Uzf4NvANQE2AiRH6jCXASz91X7iFOi4xreA6qAtuCCC6R9//faKSfNrmfrbr755rTpFlvW4TWuV11nnXXSldUs84erm1hFiI3QGYG3CbBR8IoveEF61zvfWdc++6ST6tm/Lavg+sGjj6pncu+/7/40++ST049/8pM6AG9chcxFF1t0jhnd+sP/+08TYAeva37+0Ac/OBCijzzqqHTaGWfWQe4rX/piml5dZ3vp976XXlnNFn+qso5a59aTJvzF9uNzcWOul7zkJXXwf1cVkL9bBeWd3vWutOM7dkgxG/uunXaur30+/6tfSSuvvHLttE512m+E56kvfWna+d3vrp1OOuWUuicRID/9yU+OeRxNgI3Z1ma7L3nJKmnb6g8fsZx19mfST396QzWD/Yx0xfe/l+KOzINrePUrX5m23vrt6Ze3/TKdUIXs6PuxVUjfbNNN6s8P/Y8AO1TE7wQIEMhDQIDNo4+qIECAwIgCcwuw8aE49fcb3/xm+taF305X//jHA7Nyz3/e8+pZtphta5ZO1znG63Haa1w3G+EqQsqZZ56ZzqxOh33bW96SDj/s0GYTaaRtxGfWqE5njjshH3XE4en51WxqLL/85S/TBw44MD2lusPv1T/6Yb2uCbAzquC9+8wZ9bqt3vLW+lTUbapTdw85+KB6XXPzoN1nTE8zpk9Pp1azkUdVgSdOe37/+/at3xP/+eAxH6o/e/CBB1anPG89R4D98he/UAe+eN9nzj47HXJYNbbK5cJvfiNW1cu8XAMbjyka+kiZo488Mm36v1nZOOV6i63eXJ2OfUsdYuMPAXF69AXVTbXi38HLSJ7xehP+on8XX/TtYfuL054Xr07Njj9IxLLX3u+tZ7SP/8hH0pveuFG97zdtsmlarJoZ/sEVl6cnLLJI/b4ItPGHgFWrMHzch48duBv13MbRBNioKbYb9X//0kvq079jw3/84x/Tuq96dX3sxM3DVl5ppYEa4m7YV1/5o4Ebik2fuXt1vF6Y3v7Wt6bDDj2kHtfQ/wiwQ0X8ToAAgTwEBNg8+qgKAgQIjCgwWoC9rQqH11TXSMa1jHFtZyzxHNjvVjN9Rxx1dB0o3l3NPr5v330Gtt0ppNzx61+n9+6zbx2AIowOXuJ62WM+ePTAqpG2EWN5/YYbDbxnpB8uvfg79anOTYD98Ic+NBD4dqxmEr9/2eX1bO8OO2xff3zvffZJX6uuZd1tl13SXtW1vHHKbAT1TkvM5MWMXjMDGy4Rmpugec2116Y3v/Vt9TW91/746oHNzEuAHe0a2GbDt9x6a3rjxo/OLp740RPSG17/+ublgX9H8owXmwDbzBgPfKD6IU5TPqgKfnGq+NClmQmOa3wPPPiQ+treOIV7bsvcxtEE2LhO+qDq0ToRgL/0hc/PsdkI7df/9KfpsEMOTm9/29sGaojj8+TZJw6895RqZv4jx59Qz6zHDPtIiwA7kop1BAgQ6H8BAbb/e6gCAgQIdBQYLcDGnWF33nW3+vrQKy6/bGCGLTZ2cnWaaJwSHLOVX6iuIW2WTiFl4802T3GKbtyx+FXVTZ3iZj8RKONGUGMJsINvKPX+KjDHjOvQJW7aEzdzmtcAe2R1netpp59Rj/HNW205dPPVda3L1DcyagJszFxe8p2LBt4XNxuKmd64KdVkBNhjP/yR9PHqFN1mWa+6AdIpJ5/U/Drwb6eeNAG2CY7NB2LGPe4+HaeGx0xrzHTGEs9qjUDbBNhLqkff7FQ9AieuA77owm81H0///ve/0xe++MX6VO8Vq9PN41TfWMY6jua4ix7/sDruYjY6ltju2i9fN/31r39NHz/l5PpmU51q+Fh17Wuc+h3HhABb8/kPAQIEihEQYItptUIJEChRYLQAG6eOrlk91zWCw567z6yv9YybCMVjdbbdfof6FNLmJk2NXRNSTv/0p9PLX/6yevWDDz6YXrzqlDlO/YwXYkY1ZlbjTrqzTji+2cRA0Bm8jXhxozdtXF+LGddl7vPeveuZz7hZ0wmzPpp2r64BjTvoxjKvATZOOY1TT+N01G9/65v1tZaxvQ9UN3Vabrll6zsmL7zwwgMzsOMNsLvuvHPae689Y5Mdl+Ya2HhsUdzheOgSY4vlBz/8YX3zpPhDwEePPy7tf+BBdV+amcnBnxupJ/F6p/B3+eVXpB2qmfXFF188/bg6LTdmmONOw698zWvrY6HZR9xUa81pa9V9jRs7NbP0zcxs/DHhsu99t75OOvY31nE0242Z+iOqU8ubuzF/rrph1QEHHVwH4hhXbL9TDQJsiFsIECBQpoAAW2bfVU2AQCECowXYIGhmJePnuMbxWdXdiOM5sHENa1z7+JnqOtbBj9d5y9veXt/AJ26WFHcu3n3GjPoxNHGqa5zyGnePjUfJXHb55fVMWlzTGgFp8+rxLM1pxJ22ccHXv572eu8+9TW0z6xuDrXM0svU16ZGwI4bDcUNm2KZ1wD793/8I21b3eU47lwcs34xzrgONO6EG7OqXz/vvPruwuOdgT2uOpU1bjb1+Mc/vp7NfN1rX1PdhGqXeqxD/9ME2KHr4/fw/+l119ZBdcMqzMe4ZlbX7s6sruENmz2qm2JFwI6bOsXNppqlk2en8Bd/oIgZ2AiQL6tuZLV0dWfli6rH2TxczchGv6Lve++1V3098OFHHJHOOOszdahceeWV0j/+/o/6bsCx73323qu6c/VOzTDSeMZxRHW97+lnnlV/No6jWH575531v4P/aNKpBgG2pvIfAgQIFCkgwBbZdkUTIFCKwNwCbDicXp1We3oVVO/83e9qlgh3L6oeXXP0UUcOPM6k8briBz9IRx39wXqmNNY116HGjXneU91FOB6nE8uSSy6ZTvv0p9KsE2fXj2x5YXVX27ghUiydthGvxTWrs048sb7bb/weoS7uAvye3XYdeD7pvAbY2F6cqrzPvu9LV/zwB/VdbGNdPKYmrn1tHt0y3gD7+9//obrR1P7VrOmP6lA49JTd2EezjCXA7lKd1v2d6vTuGFc8Rqc5xXbG7nukeOZs3CU6LCMwx9LJs1P4i89EIN6/ujlWhPpY1lxjjXTsh45Jse+4I3HMgu+7z3vr106cPbs6vfjcdPfdd9e/x6m/03fbLW1fPUJp8DLeccRdnWO7cVOoWOLuw1u/7a1penVzrmbpVIMA2wj5lwABAuUJCLDl9VzFBAgUJDCWANtwxLWHf6pm/Z633HID4ah5baz/xjWUD/zzgfq6yTj9dV6XCDX/V4XNuP6yucZyXrc10udiVjdOb35mdd1rzL6WuMQ1sDEDvdiii9Uzz3MziD9ORC/i2b4TuTR/OJno7bqJ00R2ybYIECDQOwICbO/0wkgIECAw4QLjCbATvnMbJNCigADbIr5dEyBAoIsCAmwXcW2aAAECbQsIsG13wP7bEhBg25K3XwIECHRXQIDtrq+tEyBAoFUBAbZVfjtvUUCAbRHfrgkQINBFAQG2i7g2TYAAgbYFBNi2O2D/bQkIsG3J2y8BAgS6KyDAdtfX1gkQINCqgADbKr+dtyggwLaIb9cECBDoooAA20VcmyZAgEDbAgJs2x2w/7YEBNi25O2XAAEC3RUQYLvra+sECBBoVUCAbZXfzlsUEGBbxLdrAgQIdFFAgO0irk0TIECgbQEBtu0O2H9bAgJsW/L2S4AAge4KCLDd9bV1AgQItCogwLbKb+ctCgiwLeLbNQECBLooIMB2EdemCRAg0LaAANt2B+y/LQEBti15+yVAgEB3BQTY7vraOgECBFoVEGBb5bfzFgUE2Bbx7ZoAAQJdFBBgu4hr0wQIEGhbQIBtuwP235aAANuWvP0SIECguwICbHd9bZ0AAQKtCgiwrfLbeYsCAmyL+HZNgACBLgoIsF3EtWkCBAi0LSDAtt0B+29LQIBtS95+CRAg0F0BAba7vrZOgACBVgUE2Fb57bxFAQG2RXy7JkCAQBcFBNgu4to0AQIE2hYQYNvugP23JSDAtiVvvwQIEOiugADbXV9bJ0CAQKsCAmyr/HbeooAA2yK+XRMgQKCLAgJsF3FtmgABAm0LCLBtd8D+2xIQYNuSt18CBAh0V0CA7a6vrRMgQKBVAQG2VX47b1FAgG0R364JECDQRQEBtou4Nk2AAIG2BQTYtjtg/20JCLBtydsvAQIEuisgwHbX19YJECDQqoAA2yq/nbcoIMC2iG/XBAgQ6KKAANtFXJsmQIBA2wICbNsdsP+2BATYtuTtlwABAt0VEGC762vrBAgQaFVAgG2V385bFBBgW8S3awIECHRRQIDtIq5NEyBAoG0BAbbtDth/WwICbFvy9kuAAIHuCgiw3fW1dQIECLQqIMC2ym/nLQoIsC3i2zUBAgS6KCDAdhHXpgkQINC2gADbdgfsvy0BAbYtefslQIBAdwUE2O762joBAgRaFRBgW+W38xYFBNgW8e2aAAECXRQQYLuIa9MECBBoW0CAbbsD9t+WgADblrz9EiBAoLsCAmx3fW2dAAECrQoIsK3y23mLAgJsi/h2TYAAgS4KCLBdxLVpAgQItC0gwLbdAftvS0CAbUvefgkQINBdAQG2u762ToAAgVYFBNhW+e28RQEBtkV8uyZAgEAXBQTYLuLaNAECBNoWEGDb7oD9tyUgwLYlb78ECBDoroAA211fWydAgECrAgJsq/x23qKAANsivl0TIECgiwICbBdxbZoAAQJtCwiwbXfA/tsSEGDbkrdfAgQIdFdAgO2ur60TIECgVQEBtlV+O29RQIBtEd+uCRAg0EUBAbaLuDZNgACBtgUE2LY7YP9tCQiwbcnbLwECBLorIMB219fWCRAg0KqAANsqv523KCDAtohv1wQIEOiigADbRVybJkCAQNsCAmzbHbD/tgQE2Lbk7ZcAAQLdFRBgu+tr6wQIEGhVQIBtld/OWxQQYFvEt2sCBAh0UUCA7SKuTRMgQKBtAQG27Q7Yf1sCAmxb8vZLgACB7goIsN31tXUCBAi0KiDAtspv5y0KCLAt4ts1AQIEuiggwHYR16YJECDQtoAA23YH7L8tAQG2LXn7JUCAQHcFBNju+to6AQIEWhfwRb71FhhACwKO+xbQ7ZIAAQKTICDATgKyXRAgQKBNgfgiH8ttt97S5jDsm8CkCTRnHkybOjWdfdaZk7ZfOyJAgACB7gsIsN03tgcCBAi0KjDrxNlp1uzZaeb06WnmjOmtjsXOCUyGwNbbbpcixEZ4jRBrIUCAAIF8BATYfHqpEgIECIwoIMCOyGJlpgJmXzNtrLIIECDwPwEB1qFAgACBAgSaGSmzsAU0u+ASm/AaBGZfCz4QlE6AQNYCAmzW7VUcAQIEHhVoQmycUhmnEju18lEbP/W/QHOmQVSye3V8z6hOmbcQIECAQH4CAmx+PVURAQIEOgo0ITbeIMB2ZPJCnwnEzGuzCK+NhH8JECCQp4AAm2dfVUWAAIGOAvFlP2arBn/p7/hmLxDoEwHBtU8aZZgECBCYTwEBdj4BfZwAAQIECHQSWPdVr06rTZmSZp1wfKe3WE+AAAECBAiMQ0CAHQeWtxIgQIAAgfEICLDj0fJeAgQIECAwdwEBdu5G3kGAAAECBOZJQICdJzYfIkCAAAECHQUE2I40XiBAgAABAvMnIMDOn59PEyBAgACBoQIC7FARvxMgQIAAgQkSEGAnCNJmCBAgQIDA/wQEWIcCAQIECBDokoAA2yVYmyVAgACBYgUE2GJbr3ACBAgQ6LaAANttYdsnQIAAgdIEBNjSOq5eAgQIEJg0AQF20qjtiAABAgQKERBgC2m0MgkQIEBg8gUE2Mk3t0cCBAgQyFtAgM27v6ojQIAAgRYFBNgW8e2aAAECBLIUEGCzbKuiCBAgQKAXBATYXuiCMRAgQIBATgICbE7dVAsBAgQI9JSAANtT7TAYAgQIEMhAQIDNoIlKIECAAIHeFBBge7MvRkWAAAEC/SsgwPZv74ycAAECBHpcQIDt8QYZHgECBAj0nYAA23ctM2ACBAgQ6BcBAbZfOmWcBAgQINAvAgJsv3TKOAkQIECg7wQE2L5rmQETIECAQI8LCLA93iDDI0CAAIH+FRBg+7d3Rk6AAAECvSkgwPZmX4yKAAECBDIQEGAzaKISCBAgQKCnBATYnmqHwRAgQIBATgICbE7dVAsBAgQI9IKAANsLXTAGAgQIEMhSQIDNsq2KIkCAAIEWBQTYFvHtmgABAgTyFhBg8+6v6ggQIEBg8gUE2Mk3t0cCBAgQKERAgC2k0cokQIAAgUkTEGAnjdqOCBAgQKA0AQG2tI6rlwABAgS6LSDAdlvY9gkQIECgWAEBttjWK5wAAQIEuiQgwHYJ1mYJECBAgIAA6xggQIAAAQITKyDATqynrREgQIAAgQEBAXaAwg8ECBAgQGBCBATYCWG0EQIECBAgMFxAgB1uYg0BAgQIEJgfAQF2fvR8lgABAgQIjCIgwI6C4yUCBAgQIDAPAgLsPKD5CAECBAgQGIuAADsWJe8hQIAAAQJjFxBgx27lnQQIECBAYFwCAuy4uLyZAAECBAjMVUCAnSuRNxAgQIAAgXkTEGDnzc2nCBAgQIBAJwEBtpOM9QQIECBAYD4FBNj5BPRxAgQIECAwRECAHQLiVwIECBAgMFECAuxESdoOAQIECBB4RECAdSQQIECAAIEuCQiwXYK1WQIECBAoVkCALbb1CidAgACBbgsIsN0Wtn0CBAgQKE1AgC2t4+olQIAAgUkTEGAnjdqOCBAgQKAQAQG2kEYrkwABAgQmX2BogL32uuvSalOmTP5A7JEAAQIECGQiIMBm0khlECBAgED7Aqedfnq69rrr06wTjq8HMzjAxmunnn5G/ZoQ236vjIAAAQIE+lNAgO3Pvhk1AQIECPSgQBNSI6BGiG0C7GpTVq3Daww51guwPdg8QyJAgACBvhAQYPuiTQZJgAABAv0iMDjExinDgxfhdbCGnwkQIECAwPgFBNjxm/kEAQIECBAYVaAJsYPfJLwO1vAzAQIECBCYNwEBdt7cfIoAAQIECIwqMDjECq+jUnmRAAECBAiMWUCAHTOVNxIgQIAAgfEJRIidUl0P65rX8bl5NwECBAgQ6CQgwHaSsZ4AAQKZClx51VVp2tSpadaJs9Os2bPT2WedWf++/Ior1f/G7yO9Fhy33XpLis9vve12aeb06WnmjOn1z7FupNdG2k7s2z6GO/aiVdOr8fQ8jo14/1iPq/nZRxyDcQw3x2Km/yerLAIECBAYJCDADsLwIwECBHIXiJAUSwTP+DmCRvwcISKCx1rTpqYZEQpGeC0+F6EkPhOvN59r3jvaa8177eMR836xao6HbvZ8fvYRx+3QYzjWxfFmIUCAAIE8BQTYPPuqKgIECIwoMDhAjvgGKwn0qUAE2Ti+mxndPi3DsAkQIEBgLgIC7FyAvEyAAIEcBOLLfXyxtxDIWcBxnnN31UaAAIFHBARYRwIBAgQyF2hmplwnmHmjlTcgEKe1x7WxcV22hQABAgTyEhBg8+qnaggQIDBMIALs4GtWh73BCgKZCcTx/pjHpDS1OuvAmQeZNVc5BAgULyDAFn8IACBAgAABAnkJOJU4r36qhgABAoMFBNjBGn4mQIBAZgLN7Ks7s2bWWOXMVSBmYadVd9U2AztXKm8gQIBAXwkIsH3VLoMlQIDA+ARc/zo+L+/OR2Dwc43zqUolBAgQICDAOgYIECBAgACB7ATijzexmIHNrrUKIkCgcAEBtvADQPkECOQv4It8/j1WIQECBAgQKEVAgC2l0+okQKBIAacQF9l2RVcCTiF2GBAgQCBPAQE2z76qigABAgMCJ1bPw/Q4kQEOPxQiIMAW0mhlEiBQnIAAW1zLFUyAAAECBAgQIECAAIH+FBBg+7NvRk2AAIExCcQpxPXjRKZOTTNnTB/TZ7yJQA4Crv3OoYtqIECAwHABAXa4iTUECBDIRsA1sNm0UiHjFHAK8TjBvJ0AAQJ9IiDA9kmjDJMAAQIECBAYu0Bc+x3LjOnOPBi7mncSIECg9wUE2N7vkRESIECAAAECBAgQIECAQCUgwDoMCBAgkLGAU4gzbq7SRhXYetvt0jTXfo9q5EUCBAj0o4AA249dM2YCBAiMUaC5iVPcwCm+zFsIlCLgGthSOq1OAgRKExBgS+u4egkQIECAAAECBAgQINCnAgJsnzbOsAkQIDAWgZiBvfLKq9K0aVPNwI4FzHuyEYhjPxZnHmTTUoUQIECgFhBgHQgECBDIWMA1sBk3V2mjCjiFeFQeLxIgQKBvBQTYvm2dgRMgQGBsAhFizUKNzcq78hHwGJ18eqkSAgQIDBYQYAdr+JkAAQIECBAgQIAAAQIEelZAgO3Z1hgYAQIE5l/AKcTzb2gL/Skw68TZrv3uz9YZNQECBEYVEGBH5fEiAQIE+lsgAmx8kfcYnf7uo9GPX8A1sOM38wkCBAj0g4AA2w9dMkYCBAgQIEBgXALxx5tYXP89LjZvJkCAQM8LCLA93yIDJECAwLwLxJd4j9GZdz+fJECAAAECBHpLQIDtrX4YDQECBCZUwDWwE8ppY30k4BTiPmqWoRIgQGAcAgLsOLC8lQABAv0oEI8TmTp1qlMp+7F5xjzPAltvu11aa9rUNGP69Hnehg8SIECAQO8JCLC91xMjIkCAAAECBAgQIECAAIERBATYEVCsIkCAQC4CzV2I40Y2cSdiC4FSBDxGp5ROq5MAgdIEBNjSOq5eAgSKEnANbFHtVuwgAdfADsLwIwECBDISEGAzaqZSCBAgQIAAgUcE4o83sXiMziMe/kuAAIFcBATYXDqpDgIECHQQ8EW+A4zVBAgQIECAQN8JCLB91zIDJkCAwNgFnEI8divvzEvAKcR59VM1BAgQaAQE2EbCvwQIEMhUwGN0Mm2sskYV8BidUXm8SIAAgb4VEGD7tnUGToAAAQIECBAgQIAAgbIEBNiy+q1aAgQKE4hTiOvHiXiMTmGdV65rvx0DBAgQyFNAgM2zr6oiQIBALeAaWAdCqQKugS218+omQCB3AQE29w6rjwABAgQIFCgQ137HMmP69AKrVzIBAgTyFRBg8+2tyggQIECAAAECBAgQIJCVgACbVTsVQ4AAgTkFnEI8p4ffyhGIuxBPc+13OQ1XKQECxQgIsMW0WqEECJQo0NzEaeaM6fWX+RIN1FymgGtgy+y7qgkQyF9AgM2/xyokQIAAAQIECBAgQIBAFgICbBZtVAQBAgRGFogZ2CuvvCpNmzbVDOzIRNZmKhDHfixxGrGFAAECBPIREGDz6aVKCBAgMEzANbDDSKwoRMApxIU0WpkECBQnIMAW13IFEyBQmkCEWLNQpXVdvR6j4xggQIBAngICbJ59VRUBAgQIECBAgAABAgSyExBgs2upgggQIPCowHhPIf7vf/9bf/gxj3nMoxuZx5+abcXHJ2J7sZ1mm4O3N9K6eO/8LOPZ5v/93/+lv/71b2mppZZKCy30+PnZrc9OoIDH6Ewgpk0RIECghwQE2B5qhqEQIEBgogUiwM46cXYa62N03rffB9Ld99yTtt92m/SKddedr+F8/otfTBd++6K07stelnbYfrv52lbz4cOOPDL9+te/Se/ecce01lrT0k9vuCF9tKpviWc8Ix195BHN2+br30u/+930mc+ek1ZaccW0z957ddzW1T/+cTrnc59P9957b/2eCNXPfe5z0ruqsS1dhdnBy9/+9rf0zwcfTE9cbLG06KKLDn5pzD9PxDbGvLNJeOMDDzyQ7q3C/0KPf3x6ylOeMuF7dA3shJPaIAECBHpCQIDtiTYYBAECBHpDQIBNaSwB9qqrr04f/+Sn6qYtsvDCaamll0p//MMf0wP//Gd6wiKLpP3e/760zNJLDzT1pFM+lq659tq02SYbpzdutNHA+vH8MBHbGM/+uv3eiy+5NH323HPTC1deOe295x4Tvrv4400srv+ecFobJECAQKsCAmyr/HZOgACB7grEl/jxPEZHgB1bgG3C5JprrJF2fve70mMf+9gUM4rHfPgj6be//W3afNNN0kYbbjjQ3Ob9AuwASep2gH10T34iQIAAgZwEBNicuqkWAgQIDBEY7zWwYw2wf//739P3vv/99Jvf3pn+85//pOc+59npta95TVqkmn1slsGnEG+wwfrp4osvSX/5y1/Ssssum9ZYY/X0zGWWad5a/xvXnV53/fXp57/4Rbrnnr+kFZZfPq266kvq04ObN471FOKxbCu2GaflXnX1j+t9PuEJi6R11l47/eEPf5jrKcSHHH5EHVTfvOWWaYP112uGl86/4IL01fPOTy964cpprz32SN/93veqfdybfvyTn6Q//PGP9WnJUdfiiz8pvfpVr6o/9/DDD6fLr7gi/fKXv0r33XdfWmLJJerXllxiifr1sWxjLPXeeNPN6bbbbkvPe95y6cmLL17XHcF7zaoXz3nOc9KtP/95fUr2ggssmNZcc430rGc+c6Cu+OHPd9+drr/+p+kX1Tae8uTF04rVKdarvuQldXiP1//973+nC77+jfgxveH1r083/+zm2nWx6pTpVVZZJT3n2c+uX7vhxpuqWn+Z7vj1HSl+fvrTnpbWXmut+rWNNnxDWnDBBdNDDz2Ubrn15+mmm25M91fH2sorrZRWefGLK7fF6/eN5T9OIR6LkvcQIECg/wQE2P7rmRETIEBgXALxOJGpU6eO6VTKsQTYCDLHHPvh6sZFf51jHBFEDj7owPoU2nihCbARhCK4/qOaoWyWhRdaKO29157pecstV6+KAHba6WekK374w+Yt9b8RiPd9794D4WcsAXas24rxf/BDx9bX/DY7jetYn/+856XbqoA12jWw537+8+mi71xcX7/5htdvUAXtVdOzn/Ws9I9//CP9tQrFj6+u64zrcpvxNttv/o33HlJZRfj/8HHH10GveS3+XWCBBdJ+++5bhf3nznUbY6236Uf84eDuqocPViExlrgGdf311ktf/+Y3U4TpWKI/+773vfU1vfF7XHd87HHH1bPM8XuzxPXN22+3bX2TrrjG9z0zZtYvrTVtavrRlY+cwhsrHve4x6WZ06enF7/ohelzX/hC+vZF32k2Mce/J55wfHrCE56QPlTNZEegjiV6EjXGdbKHVmZjvYY4buIU45hR7ddCgAABAvkICLD59FIlBAgQmG+BsQTYb37rW+nLX/1ade3iSmnrt7+9ni37RHU96O9+//v01je/Oa33utfW42gCU/yyyotflF7z6lenv9//93TRJRfXgehJT3pSOu7YD9UB5TvV7Ow5n/tcPcMWp98uueSS6bLLLq8D7ZOf/OT04WM+WL+vCYSj3cRprNs6YdasegbwaU97alrvta9Lz372s+rTrb9/+eX1+EcLsDFTGqcFx2xks0TAWn3KlPS6qv4Ir7H86vbbq1D7QDUz+fX6vS9bZ+009aVTq5nqheugfMutt6YTZ5+UFqlC22677FzNbD65Cv5fqmZHr06rVaF4+nt2m+s2xlpv048Ik2/Zaqu0RDXD+5mzzx4I8FtuvlkVWJ+bPvf5L6Q7f/e7yuQ16a1veUsdsvfe93317PDa1Y2z4uZed//57vTlr32t/iPGdttsnV75ilfUN6lqAuwTn/jEtH7l8KwqqEfQv/lnP6tnWo85+qj0xz/9qQrQ91SzudenS6obZsXs7xabbVZ7rbzSiume6o8d++1/QD0Te9ghB6eYwT21+uNGWL95yy3Sy9ZZp36v/xAgQIBAmQICbJl9VzUBAoUINHchjhvZxJ2I57aMJcDGNiLAxQxezNjF7NjFF1+cLr70u+mVVbjZrrqDcSxNYIrZvOM+/OGBR8z8vjpF98CDD6nfc8Rhh9Z37I07JV9f3VH4NdVptdOqWbNY4pTUCHcxs3fowQfVp7SOJcCOZVtxg6UZu+9Rb/td73hHWnvtR05hjf0ecfTR6fbb7xh1BjbeF7Onccrzj39yTbrxppvq2ddYHzdx2und765De/wey2jXwMbpshHa4tTZ2Obtv7o9ffLUU9NSVYg/8vDDHtnAKNsYS70xC9704wUrrJDet8976+1++StfrWdew+PwQw+p18XsaMySrviCF9Sz3zH7Gu5xs6r37LZrPc54Y1xbHQF0jdVXr8P34BnYrbbYPL1+gw3q7cUfNg465ND65+M/fGyKP1zE0uka2NjOHnvtnf71r3/VfwyZ8r/Z7ZiNj1Oex7qESxxLbuI0VjHvI0CAQH8ICLD90SejJECAwDwJdOMa2D/ddVf61KdPTbffccfAc1mbwb2suoZ0x3fsUP/aBKaXrrlm2mWndzdvqf+NABtBtplJ3WPv99aheI43Dfplxx22r2fexhJgx7Kt5apTl2MMEYhO/OgJ9Smzze6+deGF6Qtf+nLHABs3a4prWmOJazfjdN8I8b/81a/SF6rZ0zj9eLnllk0H7LdfvKVeOgXYCGtnfeYz6SfXXFsHtub98W+ckh0zls3SaRtjqTdmLZt+DH6sUcymf/HLXxmY7Y19XVbNQJ9+5llp+ec/P+33vn3r63jPOvuzzTCG/Rsz2B+qQv/gABunR8dp0s2y06671eH84AMPGDgdvFOAjc/Edb/nVjPBEWJjiXAfQfZtb3nzmK+DdQ1sTec/BAgQyE5AgM2upQoiQIDAvAuMZQb20COOTL/5zW/qgPOSVV5cX98YN+OJ02FHCrBx854ILs3y4IMPpb2q6ysj8MTjU+IxKs1NkSJcrbDC8s1bB/6NwBmzhGMJsGPZ1uLVLODMPR95xush1dieXY2xWeJa3Mt/8INRA+yMPfasQ+v7992nvtlU89k4zTWuq43rNk+ZfeLAbGWn8NlcD9rcyGjhhRdKf/zjn9Jl1U2dxhpgx1Jv2M1rgI1Z5hNPOrm+9vQtW23ZlDrw7wKPW6Ce6RwcYOOU78HPdt15t/fUM+pjDbCx8bhG+YYbb6yPqzi+4vri0U7rHhjQ/36IP97EYgb2fyD+IUCAQCYCAmwmjVQGAQIEOgmM54t8E2DfVl37uE51vebgJWYrH1f9b9fpM+rwNjiMNDOqg2dbm8AU22iCasxUxjWbcROkCHmzZ320nv387Dnn1Kcgx+mte+2xex384qZPn/jkJ9PLq1Abp6nG+8cSYMe6rf0PPKi+HjNC8zZbv72eSb37nnvSIYceVj/PdbSwdMRR1WnG1Qz0lOouvDHjHDcWitnCz55zbopraJubNDV+TYDd6A1vSJtvtmmzOh31wWPqmdvwfl11zWksn6lmOy+tZiDjjrsRBJvTZjttY6z1Nv0Y7wzs/fffn3avTumNZfcZM1L80SKWeF7unXf+rnqu7YZ1WJ3XABs3zfpA9dzcZonrZWMG/GnVNcVxDXAsv6keTXRodefnuH73YyfNHjBpPuNfAgQIEChHQIAtp9cqJUCgQIF5PYV4JKqYUYtAdchhh6ff3nln/RicCJw33XxzipATgTNC5jrVabUR6prAFOsiuMYs5wPVLFqExFgGB6k4nTjubBzbiWtIl1tu2fqxMhGK4k7FMdMZ4WUsAXas27rk0kvT2VXgjCUCaNydt7kpU4x3tAAbpxB/4lOfrk+LjYAZM5xxanWE2Kh32yoQx42NmuUr1U2vLvjGN+pgHuF2tSmrpg2rMHtudeOqi6pAHzc9WmO11WrXsI1ri+Ma4NjuQQfsX3+u0zbGWm/Tj8HuYzmFOGo4+7Pn1Ne7xs9xZ+R//+vf9Y2e4vcZVciM03vHG2AjqH7k+BNiE/Wx8YynPz29Z9dd0l1//nN9zWxYxs2/nvPs56Sf3XJLfTOr2PeBH/hA/Zm5/ccpxHMT8joBAgT6U0CA7c++GTUBAgTGLDAvj9EZaeNNgI3ZsFM+9vE6aMT7Yv2eu89MX6uefxqnm8Ypwwd8YL+BAPva6u7DCz5+wXrmNUJZPGJm2ktfWt/sqZldjO3Eds8466zq9OTf1gEuAutq1V19t69uChWPVollLAE23jeWbcX7Lvz2t6ubGH0rxXNtI3jGjOoLq2e4RrAdLcDGZ+OU6XPO/Vx9LW8Ezvh8hLAtqrv5rrnGGvGWgSWea3vGWWdWd+O9pQ7zTYiM/X7iU5+qbgJ1c/3euNYzrveN02fPO/+COhTGqchh1mkb8cGx1Ds/ATYC/Re//OV0xQ9+OHCtcswQb/P2t6XVq+Ady3gDbGzz9DPOTFf/5McpTiuPOzcffeQR9bYi3H77oovSz3/+i/pmYfFHjZWrU81j9jpubjWWxWN0xqLkPQQIEOg/AQG2/3pmxAQIEOgJgQhUDz70YB0oBgfRToOLGbWYpVyyenxLBLVOSwShu6r3Lb3UUqO+r9PnB68fy7YiSMUs5lOf+tT6TruDPz+WnyN83XXXn9LTqvAaQWtelgiy8azcJZZYcuBuzfOynbHUOy/bHfyZeAxOPDt28DWug1+fyJ/jDx5xzERojT9oWAgQIECAgADrGCBAgEDGAnEKcf04kTE+RidjCqUVJjCea78Lo1EuAQIE+lpAgO3r9hk8AQIERhcY7zWwo2/NqwT6R8A1sP3TKyMlQIDAeAQE2PFoeS8BAgQIECDQFwJx7XcsM6ZP74vxGiQBAgQIjE1AgB2bk3cRIECAAAECBAgQIECAQMsCAmzLDbB7AgQIdFPAKcTd1LXtXhaIuxBPc+13L7fI2AgQIDBPAgLsPLH5EAECBPpDoLmJ08wZ0+sv8/0xaqMkMP8CroGdf0NbIECAQC8KCLC92BVjIkCAAAECBAgQIECAAIFhAgLsMBIrCBAgkI9AzMBeeeVVadq0qWZg82mrSsYgEMd+LHEasYUAAQIE8hEQYPPppUoIECAwTMA1sMNIrChEwCnEhTRamQQIFCcgwBbXcgUTIFCaQIRYs1CldV29HqPjGCBAgECeAgJsnn1VFQECBAgQIECAAAECBLITEGCza6mCCBAg8KiAU4gftfBTWQIeo1NWv1VLgEA5AgJsOb1WKQECBQpEgJ114uzkMToFNr/wkl0DW/gBoHwCBLIVEGCzba3CCBAgQIBAuQLxx5tYXP9d7jGgcgIE8hQQYPPsq6oIECBQC8SXeI/RcTAQIECAAAECuQgIsLl0Uh0ECBAYQcA1sCOgWFWEgFOIi2izIgkQKFBAgC2w6UomQKAsgXicyNSpU51KWVbbi682buK01rSpacb06cVbACBAgEBOAgJsTt1UCwECBAgQIECAAAECBDIWEGAzbq7SCBAg0NyFOG5kE3cithAoRSDuvj2tmoF1E6dSOq5OAgRKERBgS+m0OgkQKFLANbBFtl3RlYBrYB0GBAgQyFNAgM2zr6oiQIAAAQJFC8Qfb2IxA1v0YaB4AgQyFBBgM2yqkggQIDBYwBf5wRp+JkCAAAECBPpZQIDt5+4ZOwECBOYi4BTiuQB5OVsBpxBn21qFESBQuIAAW/gBoHwCBPIX8Bid/HuswuECHqMz3MQaAgQI5CAgwObQRTUQIECAAAECBAgQIECgAAEBtoAmK5EAgXIF4hTi+nEiHqNT7kFQaOWu/S608comQCB7AQE2+xYrkACBkgVcA1ty98uu3TWwZfdf9QQI5CsgwObbW5URIECAAIFiBeLa71hmTJ9erIHCCRAgkKOAAJtjV9VEgAABAgQIECBAgACBDAUE2AybqiQCBAg0Ak4hbiT8W5pA3IV4mmu/S2u7egkQKEBAgC2gyUokQKBcgeYmTjNnTK+/zJcrofLSBFwDW1rH1UuAQCkCAmwpnVYnAQIECBAgQIAAAQIE+lxAgO3zBho+AQIERhOIGdgrr7wqTZs21QzsaFBey04gjv1Y4jRiCwECBAjkIyDA5tNLlRAgQGCYgGtgh5FYUYiAU4gLabQyCRAoTkCALa7lCiZAoDSBCLFmoUrruno9RscxQIAAgTwFBNg8+6oqAgQIECBAgAABAgQIZCcgwGbXUgURIEDgUQGnED9q4aeyBDxGp6x+q5YAgXIEBNhyeq1SAgQKFIgAO+vE2cljdApsfuEluwa28ANA+QQIZCsgwGbbWoURIECAAIFyBeKPN7G4/rvcY0DlBAjkKSDA5tlXVREgQKAWiC/xHqPjYCBAgAABAgRyERBgc+mkOggQIDCCgGtgR0CxqggBpxAX0WZFEiBQoIAAW2DTlUyAQFkCEWKdRllWz1WbUtzEaa1pU9OM6dNxECBAgEBGAgJsRs1UCgECBAgQIECAAAECBHIWEGBz7q7aCBAgUAnEXYhnzZ6dbrv1Fh4EihCIsw7iuD/7rDOLqFeRBAgQKElAgC2p22olQKBIgSbAxpd5pxIXeQgUV3ScPhwh1h9timu9ggkQKEBAgC2gyUokQIBAI+B62EbCv7kLONZz77D6CBAoVUCALbXz6iZAoDgBM7HFtby4guMYj+Dq1OHiWq9gAgQKEhBgC2q2UgkQKFtg8Jf7+JIfS3NK8Wi/z+trsf34rH084jyaY69YzW+vxlJHN/cx+BiPsVgIECBAID8BATa/nqqIAAECHQWaQNlcI9hcFzv4mZnNTO3M6vEjM2dMrx9HEp+L6wnj3/jsSK/FTkfajn0Md5wMq6ZXERijB01fR+tH81pzfMyt572yj/BsxtoE5FhnIUCAAIH8BATY/HqqIgIECMxVIIJHs8QX/hOruxTHEs/MjNeuqv43tVofrzW/N8/TjPeO9lqn7ZS4j9XWfGnaZad3p5132mlER1ZXDTyndSKOq/C0ECBAgEDeAgJs3v1VHQECBAi0KLDuq16dVpsyJc064fgWR2HXBAgQIEAgHwEBNp9eqoQAAQIEekxAgO2xhhgOAQIECPS9gADb9y1UAAECBAj0qoAA26udMS4CBAgQ6FcBAbZfO2fcBAgQINDzAgJsz7fIAAkQIECgzwQE2D5rmOESIECAQP8ICLD90ysjJUCAAIH+EBBg+6NPRkmAAAECfSggwPZh0wyZAAECBHpaQIDt6fYYHAECBAj0s4AA28/dM3YCBAgQ6EUBAbYXu2JMBAgQIJCFgACbRRsVQYAAAQI9JCDA9lAzDIUAAQIE8hIQYPPqp2oIECBAoH0BAbb9HhgBAQIECGQqIMBm2lhlESBAgEBrAgJsa/R2TIAAAQK5CwiwuXdYfQQIECAw2QIC7GSL2x8BAgQIFCMgwBbTaoUSIECAwCQJCLCTBG03BAgQIFCegABbXs9VTIAAAQLdFRBgu+tr6wQIECBQsIAAW3DzlU6AAAECXREQYLvCaqMECBAgQCAlAdZRQIAAAQIEJlZAgJ1YT1sjQIAAAQIDAgLsAIUfCBAgQIDAhAgIsBPCaCMECBAgQGC4gAA73MQaAgQIECAwPwIC7Pzo+SwBAgQIEBhFQIAdBcdLBAgQIEBgHgQE2HlA8xECBAgQIDAWAQF2LEreQ4AAAQIExi4gwI7dyjsJECBAgMC4BATYcXF5MwECBAgQmKuAADtXIm8gQIAAAQLzJiDAzpubTxEgQIAAgU4CAmwnGesJECBAgMB8Cgiw8wno4wQIECBAYIiAADsExK8ECBAgQGCiBATYiZK0HQIECBAg8IiAAOtIIECAAAECXRIQYLsEa7MECBAgUKyAAFts6xVOgAABAt0WEGC7LWz7BAgQIFCagABbWsfVS4AAAQKTJiDAThq1HREgQIBAIQICbCGNViYBAgQITL6AADv55vZIgAABAnkLCLB591d1BAgQINCigADbIr5dEyBAgECWAgJslm1VFAECBAj0goAA2wtdMAYCBAgQyElAgM2pm2ohQIAAgZ4SEGB7qh0GQ4AAAQIZCAiwGTRRCQQIECDQmwICbG/2xagIECBAoH8FBNj+7Z2REyBAgECPCwiwPd4gwyNAgACBvhMQYPuuZQZMgAABAv0iIMD2S6eMkwABAgT6RUCA7ZdOGScBAgQI9J2AANt3LTNgAgQIEOhxAQG2xxtkeAQIECDQvwICbP/2zsgJECBAoDcFBNje7ItRESBAgEAGAgJsBk1UAgECBAj0lIAA21PtMBgCBAgQyElAgM2pm2ohQIAAgV4QEGB7oQvGQIAAAQJZCgiwWbZVUQQIECDQooAA2yK+XRMgQIBA3gICbN79VR0BAgQITL6AADv55vZIgAABAoUICLCFNFqZBAgQIDBpAgLspFHbEQECBAiUJiDAltZx9RIgQIBAtwUE2G4L2z4BAgQIFClw2umnp1NPPyOtNmVKmnXC8UUaKJoAAQIECEy0gAA70aK2R4DAiALxZd5CoCSBCK+xCLAldV2tBAgQINBtAQG228K2T4BAmrnHnuna664jQaBIAQG2yLYrmgABAgS6JCDAdgnWZgkQeESgCa877rB9mlKdSmkhUIpABFfXwJbSbXUSIECAwGQJCLCTJW0/BAoV8AW+0MYruxZw/DsQCBAgQIDAxAoIsBPraWsECAwR8AV+CIhfixJw/BfVbsUSIECAwCQICLCTgGwXBEoW8AW+5O6r3fHvGCBAgAABAhMrIMBOrKetESAwRMAX+CEgfi1KwPFfVLsVS4AAAQKTICDATgKyXRAoWcAX+JK7r3bHv2OAAAECBAhMrIAAO7GetkaAwBABX+CHgPi1KAHHf1HtViwBAgQITIKAADsJyHZBoGQBX+BL7r7aHf+OAQIECBAgMLECAuzEetoaAQJDBHyBHwLi16IEHP9FtVuxBAgQIDAJAgLsJCDbBYGSBXyBL7n7anf8OwYIECBAgMDECgiwE+tpawQIDBHwBX4IiF+LEnD8F9VuxRIgQIDAJAgIsJOAbBcEShbwBb7k7qvd8e8YIECAAAECEysgwE6sp60RIDBEwBf4ISB+LUrA8V9UuxVLgAABApMgIMBOArJdEChZwBf4kruvdse/Y4AAAQIECEysgAA7sZ62RoDAEAFf4IeA+LUoAcd/Ue1WLAECBAhMgoAAOwnIdkGgZAFf4Evuvtod/44BAgQIECAwsQIC7MR62hoBAkMEfIEfAuLXogQc/0W1W7EECBAgMAkCAuwkINsFgZIFfIEvuftqd/w7BggQIECAwMQKCLAT62lrBAgMEfAFfgiIX4sScPwX1W7FEiBAgMAkCAiwk4BsFwRKFvAFvuTuq93x7xggQIAAAQITKyDATqynrREgMETAF/ghIH4tSsDxX1S7FUuAAAECkyAgwE4Csl0QKFnAF/iSu692x79jgAABAgQITKyAADuxnrZGgMAQAV/gh4D4tSgBx39R7VYsAQIECEyCgAA7Cch2QaBkAV/gS+6+2h3/jgECBAgQIDCxAgLsxHraGgECQwR8gR8C4teiBBz/RbVbsQQIECAwCQIC7CQg2wWBkgV8gS+5+2p3/DsGCBAgQIDAxAoIsBPraWsECAwR8AV+CIhfixJw/BfVbsUSIECAwCQICLCTgGwXBEoW8AW+5O6r3fHvGCBAgAABAhMrIMBOrKetESAwRMAX+CEgfi1KwPFfVLsVS4AAAQKTICDATgKyXRAoWcAX+JK7r3bHv2OAAAECBAhMrIAAO7GetkaAwBABX+CHgPi1KAHHf1HtViwBAgQITIKAADsJyHZBoGQBX+BL7r7aHf+OAQIECBAgMLECAuzEetoaAQJDBHyBHwLi16IEHP9FtVuxBAgQIDAJAgLsJCDbBYGSBXyBL7n7anf8OwYIECBAgMDECgiwE+tpawQIDBHwBX4IiF+LEnD8F9VuxRIgQIDAJAgIsJOAbBcEShbwBb7k7qvd8e8YIECAAAECEysgwE6sp60RIDBEwBf4ISB+LUrA8V9UuxVLgAABApMgIMBOArJdEChJ4NrrrkvXVf97xw471GUP/gIfr512+hlp1gnHl0Si1oIFBh//BTMonQABAgQITJiAADthlDZEgEAIzNxjzxRBdccdtq9DbPMF/h3V7/FaLBFgV5sypf7ZfwjkLNAc//5ok3OX1UaAAAECkykgwE6mtn0RKERgcIg9tZpxHbw0wXbwOj8TyFVAgM21s+oiQIAAgbYEBNi25O2XQOYCTYgdXKbwOljDzyUICLAldFmNBAgQIDCZAgLsZGrbF4HCBAaHWOG1sOYrtxYQYB0IBAgQIEBghwXBLQAAH+VJREFUYgUE2In1tDUCBIYIRIhdbcqqAzd1GvKyXwlkLSDAZt1exREgQIBACwICbAvodtkbArNOnJ2uvOqq3hiMURCYAIGZM6anaVOnTsCWbGKiBATYiZK0HQIECBAg8IiAAOtIKE4gguus2bOLq1vBZQhEgBVke6fXAmzv9MJICBAgQCAPAQE2jz6qYowCg8Pr7tVs1Yzp08f4SW8j0NsCcTbB4LMKZlbHdgRZS7sCAmy7/vZOgAABAvkJCLD59VRFHQSa8BozVGefdWaHd1lNoL8FIshuve12dRFCbPu9FGDb74ERECBAgEBeAgJsXv1UTQeB5ku98NoByOqsBBzvvdNOAbZ3emEkBAgQIJCHgACbRx9VMReBZvY1Zl7d5GYuWF7OQqA55s3CtttOAbZdf3snQIAAgfwEBNj8eqqiEQSWX3Gleu1tt94ywqtWEchPQIDtjZ4KsL3RB6MgQIAAgXwEBNh8eqmSUQQiwDp9eBQgL2Up4Lhvv60CbPs9MAICBAgQyEtAgM2rn6rpIOCLfAcYq7MWcNy3314Btv0eGAEBAgQI5CUgwObVT9V0EPBFvgOM1VkLOO7bb68A234PjIAAAQIE8hIQYPPqp2o6CPgi3wHG6qwFHPftt1eAbb8HRkCAAAECeQkIsHn1UzUdBHyR7wBjddYCjvv22yvAtt8DIyBAgACBvAQE2Lz6qZoOAr7Id4CxOmsBx3377RVg2++BERAgQIBAXgICbF79VE0HAV/kO8BYnbWA47799gqw7ffACAgQIEAgLwEBNq9+qqaDgC/yHWCszlrAcd9+ewXY9ntgBAQIECCQl4AAm1c/VdNBwBf5DjBWZy3guG+/vQJs+z0wAgIECBDIS0CAzaufqukg4It8BxirsxZw3LffXgG2/R4YAQECBAjkJSDA5tVP1XQQ8EW+A4zVWQs47ttvrwDbfg+MgAABAgTyEhBg8+qnajoI+CLfAcbqrAUc9+23V4BtvwdGQIAAAQJ5CQiwefVTNR0EfJHvAGN11gKO+/bbK8C23wMjIECAAIG8BATYvPqpmg4Cvsh3gLE6awHHffvtFWDb74ERECBAgEBeAgJsXv1UTQcBX+Q7wFidtYDjvv32CrDt98AICBAgQCAvAQE2r36qpoOAL/IdYKzOWsBx3357Bdj2e2AEBAgQIJCXgACbVz9V00HAF/kOMFZnLeC4b7+9Amz7PTACAgQIEMhLQIDNq5+q6SDgi3wHGKuzFnDct99eAbb9HhgBAQIECOQlIMDm1U/VdBDwRb4DjNVZCzju22+vANt+D4yAAAECBPISEGDz6qdqOgj4It8BxuqsBRz37bdXgG2/B0ZAgAABAnkJCLB59VM1HQR8ke8AY3XWAo779tsrwLbfAyMgQIAAgbwEBNi8+qmaDgK+yHeAsTprAcd9++0VYNvvgREQIECAQF4CAmxe/VRNBwFf5DvAWJ21gOO+/fYKsO33wAgIECBAIC8BATavfqqmg4Av8h1grM5awHHffnsF2PZ7YAQECBAgkJeAAJtXP1XTQcAX+Q4wVmct4Lhvv70CbPs9MAICBAgQyEtAgM2rn6rpIOCLfAcYq7MWcNy3314Btv0eGAEBAgQI5CUgwObVT9V0EPBFvgOM1VkLOO7bb68A234PjIAAAQIE8hIQYPPqp2o6CPgi3wHG6qwFHPftt1eAbb8HRkCAAAECeQkIsHn1UzUdBHyR7wBjddYCjvv22yvAtt8DIyBAgACBvAQE2Lz6qZoOAr7Id4CxOmsBx3377RVg2++BERAgQIBAXgICbF79VE0HAV/kO8BYnbWA47799gqw7ffACAgQIEAgLwEBNq9+qqaDgC/yHWCszlrAcd9+ewXY9ntgBAQIECCQl4AAm1c/VdNBwBf5DjBWZy3guG+/vQJs+z0wAgIECBDIS0CAzaufqukg4It8BxirsxZw3LffXgG2/R4YAQECBAjkJSDA5tVP1XQQ8EW+A4zVWQs47ttvrwDbfg+MgAABAgTyEhBg8+qnajoI+CLfAcbqrAUc9+23V4BtvwdGQIAAAQJ5CQiwefVTNR0EfJHvAGN11gKO+/bbK8C23wMjIECAAIG8BATYvPqpmg4Cvsh3gLE6awHHffvtFWDb74ERECBAgEBeAgJsXv1UTQcBX+Q7wFidtYDjvv32CrDt98AICBAgQCAvAQE2r36qpoOAL/IdYKzOWsBx3357Bdj2e2AEBAgQIJCXgACbVz9V00HAF/kOMFZnLeC4b7+9Amz7PTACAgQIEMhLQIDNq5+q6SDgi3wHGKuzFnDct99eAbb9HhgBAQIECOQlIMDm1U/VdBDwRb4DjNVZCzju22+vANt+D4yAAAECBPISEGDz6qdqOgh0+4v8f//73xT/G215zGMek+J/nZZ77703/etf/0pPf/rTO72l4/pm/3PbR8cNeGFUgfnpzagb7vKL3T7uuzz8LDYvwGbRRkUQIECAQA8JCLA91AxD6Z5At7/IH3zIoensc84ZtYAN1l8/nXTirBHf84c//CG9dv0N0sMPP5y+9pUvpxVf8IIR39dp5dHHHJM+fepp6c1bbpmOOvKITm8bcX2E5jt/97v6teWWXXbE93Rz5X333ZfuvueetMjCC6elllqqm7saddudxjG/vRl1p11+sdvHfZeHn8XmI8DGsuMO26d37LBD/bP/ECBAgAABAvMuIMDOu51P9pFAt7/Iz2+Avemmm9Mmm29ei55x2qnpZeusMy7d+Qmwt/7852mjN22cHve4x6Vbb75pXPudiDefedZn0mFHHJHWWXvtdObpp03EJudpG53GMb+9mafBTNCHun3cT9Aws97Mtdddl2busWfWNSqOwEgCq02ZkmadcPxIL1lHgACB+RIQYOeLz4f7RaDbX+Qfeuih9K9//7vmuKeaTXzN69arf/7SFz6fll9++frnBaqAuNBCC3Uk+973vp8efOjBtN7rXjfqqcYjbUCAHUllfOs6BdjYyvz0ZnyjmNh3d/u4n9jR5ru1CLGnnX5GvgWqjMAIAnHcC7EjwFhFgMB8Cwiw801oA/0gMJlf5CPATlvnZTXL188/b47Tgc8599z0pz/dlTbaaMP0y1/+Mt1ww41pk002TnHq7kknn1J/5p3v3DE9cbHF0mWXXZ5+cs01acqUVdOy1etf/vJX0i9+8Yu08sorp9e/foP0ghVWGKDvFGB/89vfpksuubTezpJLPCNNmzYtvebVr65nW391++3pvPPOTzHecz73uTo0v2fXXettvvGNG6Xln//8ge0P/eG666+vxndZuvlnt6SVVlwxveIV69ZfVOJ9l373u+n663+aFlts0fTOHXccCOO/vfPO9KUvfbne1FbVqc5R/zXXXptuuPGG9L3vX5ae/axnpU023rh+fddddk6PfexjB0zeUZ1+ef4FF9SnOu+5++71HwL+85//pC988Yvpuuuur2tYdrll09Zvf3ta9rnPrbcx+D8RQK+6+up6n8+v6lpnnbUHZrm/X+17rONoetNsOz579Y9/XPdlhaofL11zzdqieT1Oz276uvNOO6XLr7i8HsdTn/KU9KpXvSqtvNJKzVu78u9kHvddKcBGCRDoW4HTTj89nVr94cbp833bQgMn0LMCAmzPtsbAJlJgMr/IjxZgN91ii3TjjTfVYS/+Oh3LKSfNrgLVOmnV1Vavf7/8e9+trwVtQulLVlkl/e73v69DWv2G6j+LPuEJ6YzqdNspq65ar2reO/ga2Dj1dZvtt09xbefgZatqDHGdbATNnXZ5JLAOfj1+Pnn2iWn99R6ZRR762he/9KW03/4HzHHTqrh51DFHH50232zT9Mc//jFttPEmKW58dNABB6Tttt2mvrZ36223q8Pe617zmvSxU05OR33wg+nU004fuvn692uuvio9boEFBkzir/iN17U/vjotssgiadvtd6i3N3gDCy64YPp8dS3yKqu8uF4dN7c68qij0ulnnjX4bfXPu+2yS9przz3GNY6mN7Hdo6p6TzvjzGHbjbD9gfe/vw7uf//HPwZq2PhNb0znnX/BwPsXqOr75Mc+ltZd9+UD6yb6h8k87id67LZHgEB/C8T/z47T5wXY/u6j0RPoRQEBthe7YkwTLjCZX+THEmAf//jHp43f+Ma0xhqrVzOBL0uLP3nxgaDThKQmlAbGK6sZzm223jr97W/3pjPOOrMOwXG34h9eflkdlJr3NgH239XpzOus+4r0l7/8JW1azfC+eaut0p13/i595PjjqxngP6UjDju0Dqg33/yzalbzznTAQQfXM56nfvKTtf3KK6+Unva0pw3rw80335w23WLLOrzutcfudfC+8sor04ePO74exwXnfS2tUJ0y/e2LLkq7TZ+RFq5uzHT+176aLrn4knT0hz6UllhiifSNalb6yU9+crr9jjvS76oxfefii9NnPvvZ9MIXvjDtu/fe9T7XWmtadTr1QwMmUevmm25anY79/PSmyi1mpneuwvdiT3xiHbaXWnLJdPQxH0oXfP3rab3XvjadcvJJ9XZixvvAgw9JERb32WuvtNrqq6Vrr7k2HXvccSmMPn/uOekp1WzoWMfR9OazVUg+qLpxV9T3tre+Jb3qla9M3/3e99K51Uz2Aw/8Mx1+6CHV+remwQH2qU99av1FbqVq1jVOJ73iBz+oZ50vvfg7w5wnasVkHvcTNWbbIUAgD4EmwDqNOI9+qoJALwkIsL3UDWPpmsBkfpEfS4DdYrPN0jEfPHqg3sFBpwlJTSiN2dYfVWFnkUUWrt//8+o04g3f+Kb65wu/+Y30/Oc9rwpvc96FOGZ5Y7Y3TkU+uZrhjcAcy/nVDGCExddvsEGaPeuj9brx3MTp1OpOx0dV+4ovJO9/37715+M/H6zCY3xZOfjAA9O222xdrz+oCo6frQLkc5797PTHKjRHYIybNK1VncY8eOl07elgkw9Vs7Uxuzt4+ec//1nPTEdtcTpxnEr83n33rU/HvujCb9Vv3fU909NF3/lO2nP3mek9u+028PGYlf1xFYJ33OEdVSDeqF4/lnE0vWm22/zBoNnw/gccmD73hS/U1zHHzPrgGt63z3vTu9/1rvqtg3v4o+q04nl5dFKzz9H+nczjfrRxeI0AgfIEBNjyeq5iApMlIMBOlrT9tCowmV/kxxJgj61C4GabbjJgMjjoNCGpCaUbvuENw+7k+PoNN0q3VdeQfria1YwZ1ua9TaBqZggHdjDkh2WWWTp9/9JL67XjCbBxOtg3vvnNIVt79NeoKWqLJQJmPBooZnxj2aa6PvWQgw+qfx78n7EExxhrjLlZ7v/739PBhxySvnXht9ODDz7YrK7/fdYzn5m+e8nF9c9xLXL04+xq1nra1KlzvG/oL2MZR9ObZrsxYx3X/zZLXBO747vfXc9eX/mDK+YIsDE7HdcLN8tKL3pxHepjhrpb18JO5nHf1OVfAgQIhIAA6zggQKBbAgJst2Rtt6cEJvOL/FgCbBM8G6TRAmyEmwg5zRKnqK5VXTMbn2keuTM0wMZpubvs9p76VN39Bs2UNttYcMHqFObqmsxYxhNgj4zrPqvTX9dYffXqtOQtm80N/LvMMsuktddaq/49bpz0zurGRc3yzGcuky742tfSE6vTfgcv4wmOzeeaccSNnzZ+05vSoos+Id1xx6/T56ubOg0OsPFoorgW+PiPfGRgpjW2ETdeimt011xjjdoo1o1nHBtvtnmK06kP+MAH0g7bbxcfr5fTK5sjKqM4Hfq86nm+I/W1ee/KL14lxU2eBNhGxL8ECOQkIMDm1E21EOgtAQG2t/phNF0S6OcAGyRNUI2bB0XQOvzII+trVq+pbmi02KKLDpuB/etf/5peutbateanP/GJ9MpXvqL++ezq9OFbbrk1TX/PbmnJ6rrRWJoAG3f9/em119TXddYvjPCfb114YZo+c/f61ORvf+ub6RnPeEb9rg9UN3Vabrllq9OHt6k/f/fdd9c3coowH6fOXnLpd+vQuNGGG6aPHn/cHFtugmOclvyFz5078Npo4W+rt7y1/uv+4ADZPIs3xhQzpfFc2yborr7aaun06vm6T6hu/nTf/fenzTbfIt3x61+nvaubOO1a3cwplvGMo9lu/HHhtE9/qj4FOGp+xzvflX52yy0pbuS0/377CbAD3fQDAQKlCQiwpXVcvQQmT0CAnTxre2pRoN8DbNDF43Pur+4oHI+jiSXuJnz0UUfWPw+dgY2Vhxx6WH29a/wcd+V96MGH6rAav3+8ugvwa6u7AccSgW7tl728PuU3rleNmxp94mOnjHgTpwiV2263ffrpDTfUN0aKx8b88le/SnfddVc9s/r1885LSy+9VHpndRrt96vHAMX1rmedcXo95je+aeP0jwceqO5WfFTaopoZbZa4mdH279ix/jVqjDGcdOKsUcPfEVWAjzsLx42m1q+em3vLrbfWwTGuhY1ZzXgE0Hlf/UqKxwhtU403wmXUFTeYuv6nP61PO46ge+E3vp6e9KQn1fsezzji9O1mu3GDqBe/6EXpxptuqk8JjutZP3PmGfUYRgvhZmCbI8C/BAjkKCDA5thVNRHoDQEBtjf6YBRdFujnABs3fIrHxpx9zjn13X/jzrdv2mijdMThh9WzjEE3UoCN2dpjjj02ffkrX63vRhzvi9B2aHUd6tBH5JxePQ7m49X1nH/+85/jbfUM5lJLLVX/PPQ/8VieffZ9X7rihz+o77gbr7/oRS+sr32NZ9M2p9HGzPAF1R2H45TeWGL29+AqVMcs6HnVKdHN81offvjhFDO4X69uSBWnR0eAveQ7F40aYOP03z2quwpfdvkV9bbjRk7HHvPB9Ic//CHNPunkFNfI3nj9dfVscNzteN/3vb963uyNdcCMmdk4Bfq4Dx9bP66o3kD1n/GOI2ZwY7sR5uMGVRFk45FHH6rG0dQmwDa6/iVAoDQBAba0jquXwOQJCLCTZ21PLQpMZoCdqDKHhtJ4JE48Y3X5ahaxuavwWPf1q9v/n707yK2jCMIA/O7BxpFgD5sEkJDgHAhOEMJRQCEnAHEYIrIHCQm4QY6Ax8iRZefZ4/emeqqrPksojj2vu+qrXvRvO+bvq+B4LJSuXefmc0toW74T+cHlv3u9/e9abz4X+f7bt2+vQuvFxZN3v6X52H5LOP7n338uw+XFg88eW+N9H19+WdUSkp9cXNz749fve230x2Y899Em1idAYIyAADvG2S4EOgoIsB2n3rDnGS/ytwNsw7Fp+UyBGc/9mS17OQECSQQE2CSDUAaBggICbMGhaumuwIwXeQH27hx95HECM577x3XoaQIEsgoIsFknoy4C8wsIsPPPUAcrBGa8yP/+5s3V/wLmo48+PHz+2f+/UXhFqx4h8E5gxnP/rnjvECAwtYAAO/X4FE8gtYAAm3o8ittKwEV+K0nrzCTg3M80LbUSqCUgwNaap24IZBIQYDNNQy1hAi7yYbQWTizg3CcejtIIFBcQYIsPWHsEdhQQYHfEt/U4ARf5cdZ2yiPg3OeZhUoIdBMQYLtNXL8ExgkIsOOs7bSjgIv8jvi23k3Aud+N3sYE2gsIsO2PAAACYQICbBithTMJuMhnmoZaRgk496Ok7UOAwG0BAfa2iL8TILCVgAC7laR1Ugu4yKcej+KCBJz7IFjLEiDwoIAA+yCRBwgQOFFAgD0RzsvmEnCRn2teqt1GwLnfxtEqBAg8XkCAfbyZVxAgsE5AgF3n5KnJBVzkJx+g8k8ScO5PYvMiAgQ2EBBgN0C0BAEC7xUQYN/L4oPVBFzkq01UP2sEnPs1Sp4hQCBCQICNULUmAQKLgADrHLQQcJFvMWZN3hJw7m+B+CsBAsMEBNhh1DYi0E5AgG038p4Nu8j3nHv3rp377idA/wT2ExBg97O3M4HqAgJs9Qnr70rARd5B6Cjg3Hecup4J5BAQYHPMQRUEKgoIsBWnqqc7Ai7yd0h8oIGAc99gyFokkFRAgE06GGURKCAgwBYYohYeFnCRf9jIE/UEnPt6M9URgVkEBNhZJqVOAvMJCLDzzUzFJwi4yJ+A5iXTCzj3049QAwSmFRBgpx2dwgmkFxBg049IgVsIuMhvoWiN2QSc+9kmpl4CdQQE2Dqz1AmBbAICbLaJqCdEwEU+hNWiyQWc++QDUh6BwgICbOHhao3AzgIC7M4DsP0YARf5Mc52ySXg3Oeah2oIdBIQYDtNW68ExgoIsGO97baTgIv8TvC23VXAud+V3+YEWgsIsK3Hr3kCoQICbCivxbMIuMhnmYQ6Rgo49yO17UWAwE0BAfamhvcJENhSQIDdUtNaaQVc5NOORmGBAs59IK6lCRC4V0CAvZfHJwkQOENAgD0Dz0vnEXCRn2dWKt1OwLnfztJKBAg8TkCAfZyXpwkQWC8gwK638uTEAi7yEw9P6ScLOPcn03khAQJnCgiwZwJ6OQECRwUE2KM0PlFJwEW+0jT1slbAuV8r5TkCBLYWEGC3FrUeAQLXAgLstYQ/Swu4yJcer+aOCDj3R2B8mACBcAEBNpzYBgTaCgiwbUffq3EX+V7z1u3/As69k0CAwF4CAuxe8vYlUF9AgK0/Yx1eCrjIOwYdBZz7jlPXM4EcAgJsjjmogkBFAQG24lT1dEfARf4OiQ80EHDuGwxZiwSSCgiwSQejLAIFBATYAkPUwsMCLvIPG3minoBzX2+mOiIwi4AAO8uk1ElgPgEBdr6ZqfgEARf5E9C8ZHoB5376EWqAwLQCAuy0o1M4gfQCAmz6ESlwCwEX+S0UrTGbgHM/28TUS6COgABbZ5Y6IZBNQIDNNhH1hAi4yIewWjS5gHOffEDKI1BYQIAtPFytEdhZQIDdeQC2HyPgIj/G2S65BJz7XPNQDYFOAgJsp2nrlcBYAQF2rLfddhJwkd8J3ra7Cjj3u/LbnEBrAQG29fg1TyBUQIAN5bV4FgEX+SyTUMdIAed+pLa9CBC4KSDA3tTwPgECWwoIsFtqWiutgIt82tEoLFDAuQ/EtTQBAvcKCLD38vgkAQJnCAiwZ+B56TwCLvLzzEql2wk499tZWokAgccJCLCP8/I0AQLrBQTY9VaenFjARX7i4Sn9ZAHn/mQ6LyRA4EwBAfZMQC8nQOCogAB7lMYnKgm4yFeapl7WCjj3a6U8R4DA1gIC7Nai1iNA4FpAgL2W8GdpARf50uPV3BEB5/4IjA8TIBAuIMCGE9uAQFsBAbbt6Hs1vlzkl7e//vyjV+O6bSvw2+vXh6+/+fbw7OnTw6+//NzWQeMECOwjIMDu425XAh0EBNgOU9bj4eVPrw4vX706vHj+/PDiu+dECJQXWMLrEmKX8LqEWG8ECBAYKSDAjtS2F4FeAgJsr3m37vb6u7Au9K2PQYvmr79g47uvLcatSQIpBQTYlGNRFIESAgJsiTFqYo3A9aV+eVaIXSPmmRkFnPMZp6ZmAvUEBNh6M9URgSwCAmyWSahjiMDNy/3y3anlx4n9eOUQepsECyxne/mR4eW/5c0XaYLBLU+AwL0CAuy9PD5JgMAZAgLsGXheOqfAcsG/vuzP2YGqCRwX+P7yizJPL7844wszx418hgCBeAEBNt7YDgS6CgiwXSev76vvVC1B1luswHKJWd4++fjj2I2ar/7ps6eH7y5/SZk3AgQIZBAQYDNMQQ0EagoIsDXnqisCaQS++PKrq/D68scf0tSkEAIECBCIFRBgY32tTqCzgADbefp6JzBAQIAdgGwLAgQIJBMQYJMNRDkECgkIsIWGqRUCGQUE2IxTURMBAgRiBQTYWF+rE+gsIMB2nr7eCQwQEGAHINuCAAECyQQE2GQDUQ6BQgICbKFhaoVARgEBNuNU1ESAAIFYAQE21tfqBDoLCLCdp693AgMEBNgByLYgQIBAMgEBNtlAlEOgkIAAW2iYWiGQUUCAzTgVNREgQCBWQICN9bU6gc4CAmzn6eudwAABAXYAsi0IECCQTECATTYQ5RAoJCDAFhqmVghkFBBgM05FTQQIEIgVEGBjfa1OoLOAANt5+nonMEBAgB2AbAsCBAgkExBgkw1EOQQKCQiwhYapFQIZBQTYjFNREwECBGIFBNhYX6sT6CwgwHaevt4JDBAQYAcg24IAAQLJBATYZANRDoFCAgJsoWFqhUBGAQE241TURIAAgVgBATbW1+oEOgsIsJ2nr3cCAwQE2AHItiBAgEAyAQE22UCUQ6CQgABbaJhaIZBRQIDNOBU1ESBAIFZAgI31tTqBzgICbOfp653AAAEBdgCyLQgQIJBMQIBNNhDlECgkIMAWGqZWCGQUEGAzTkVNBAgQiBUQYGN9rU6gs4AA23n6eicwQECAHYBsCwIECCQTEGCTDUQ5BAoJCLCFhqkVAhkFBNiMU1ETAQIEYgUE2FhfqxPoLCDAdp6+3gkMEBBgByDbggABAskEBNhkA1EOgUICAmyhYWqFQEYBATbjVNREgACBWAEBNtbX6gQ6CwiwnaevdwIDBATYAci2IECAQDIBATbZQJRDoJCAAFtomFohkFFAgM04FTURIEAgVkCAjfW1OoHOAgJs5+nrncAAAQF2ALItCBAgkExAgE02EOUQKCQgwBYaplYIZBQQYDNORU0ECBCIFRBgY32tTqCzgADbefp6JzBAQIAdgGwLAgQIJBMQYJMNRDkECgkIsIWGqRUCGQUE2IxTURMBAgRiBQTYWF+rE+gsIMB2nr7eCQwQEGAHINuCAAECyQQE2GQDUQ6BQgICbKFhaoVARgEBNuNU1ESAAIFYAQE21tfqBDoLCLCdp693AgMEBNgByLYgQIBAMgEBNtlAlEOgkIAAW2iYWiGQUUCAzTgVNREgQCBWQICN9bU6gc4CAmzn6eudwAABAXYAsi0IECCQTECATTYQ5RAoJPAfAAAA//9B9phaAABAAElEQVTsnQWcHEXahwuHw90OPTgcgu0Gdzjc4SBIcNskEJzgh0uAJDgXgh9ux+GuAe5w5zvc3Qlw8NW/Qg2TZWZ3Zqe7q6v7qd+P7ExL1fs+b1FT/y7psb796stfDAkCEIBASgSWW3Els2ivXmbIqaekVALZQgACEIBA3gg88eSTpv+ee9H+5y0w2AOBAhAYCwFbgCjiAgRyTAABm+PgYBoEIACBlAggYFMCS7YQgIBBwFIJIACBVAkgYFPFS+YQgAAEckkAAZvLsGAUBApBAAFbiDDiBATySwABm9/YYBkEIACBtAggYNMiS74QgAACljoAAQikSgABmypeMocABCCQSwII2FyGBaMgUAgCCNhChBEnIJAvAuq4aOMmpc4CtvpcvqzGGghAAAIQaJWAb+NrCVh/rtUyuB8CECg3AQRsueOP9xBInIB2nVQnZfu+25rt+vYdQ8CeP2KEGT7igsq5xAsnQwhAAAIQCEbAt/9+1/nqXYhp/4OFhYIhUDgCCNjChRSHIBCWgH/qLiskYiVYNRq7aK9FKp995yaspZQOAQhAAAJJEvAiVXnS/idJlrwgAIFqAgjYahp8hgAEEiFQLWKrM+R9sNU0+AwBCECgeASqRWy1d7T/1TT4DAEItEIAAdsKPe6FAATqEugsYum81EXFCQhAAAKFItBZxNL+Fyq8OAOB4AQQsMFDgAEQKC4BL2LpvBQ3xngGAQhAoBYBL2Jp/2vR4RgEINAKAQRsK/S4N3oCIx991Iwc+ajp36/D+TJk6DDT3t5m2tvajD/nv+uckq7t6pyuqZVP6DKqy2/Ej84++u/V+Xg2tc75Ms4+5xwzatQPFa5dcayVTyNl+Pv8tWUrQ/4rqd6SIACBxgj4dqOxq7mqJwSefOpJ02uR0TvS9+R+7umegH73lGj/u2fFFcUhgIAtTizxpAkC6riosZfQGTJsmLnkogvd97nmmdf91Xd/rn9HhxOtfbbexgnXV1960f3V91rnZEatfEKX4ctv1A8x0rXiVM3D59OVj5TRfb3yHJtl5etcdf1UHfZxauJ/Ay6FQCkJ+P93Suk8TheWgH4D9IBZf0kQKDoBBGzRI4x/YxDwokwHvRB91Aq1flakKum8kn4Aqj/rWK3v/oei1rlG8unqPl8mZRCP6jpQ/blWHZMgVpJAJkEAAr8R6CxcB/w686aNDv9vkPgUHQH1YR6xM8mq+xO0/9GFEYObJICAbRIYl8dPQJ2YscYyFdEav0d4AIHfCFC/f2PBJwh4AtXiVcLVP7T05/kLgdgJSMCqnuuvHnQiYmOPKPZ3RQAB2xUdzhWKgKa8+mmbhXIMZyBQh4DvyNQ5zWEIlIaA2n8lfgNKE/LSOuof1vjlJqUFgeOFJoCALXR4cc4TUEe+ej2nP85fCBSVgO+wa6o8CQJlJuDbf0Zey1wLyuU77X+54l1GbxGwZYx6SX1WJ0bJryEsKQbcLgkBphKXJNC42S2B6o3Sur2YCyBQAAKMwhYgiLjQJQEEbJd4OFkUAojXokQSPyAAAQg0TsCPvrImsHFmXBk/AV/vmUYcfyzxoDYBBGxtLhwtGAFNp6EDU7Cg4k63BNiRuFtEXFBwAnTkCx5g3KtLgH5PXTScKAABBGwBgogL3RMYat+TqcTOk92z4oriEKADU5xY4knPCCBge8aNu+InQPsffwzxoD4BBGx9NpyBAAQgAAEIQCBiAgjYiIOH6S0RQMC2hI+bc04AAZvzAGFeMgT8DsT9f31xfTK5kgsE8k1AnXclNi7Ld5ywLj0CCNj02JJzvgkgYPMdH6xrjQACtjV+3B0JARrySAKFmYkSoN4nipPMIiSAgI0waJicCAHa/0QwkklOCSBgcxoYzEqWACNRyfIktzgIsPY7jjhhZXoEELDpsSXnfBNAwOY7PljXGgEEbGv8uBsCEIAABCAAgZwSQMDmNDCYlToBBGzqiCkgIAEEbED4FJ0dARry7FhTUn4IsPY7P7HAkjAEELBhuFNqeAL0e8LHAAvSI4CATY8tOeeIgDryvdvbeI1OjmKCKekToAOTPmNKyDcBBGy+44N16RGg/U+PLTmHJ4CADR8DLIAABCAAAQhAIAUCCNgUoJJlFAQQsFGECSN7SAAB20Nw3BYXgSFDh5l2OwLL60TiihvWtkZAnXcl6n1rHLk7XgII2Hhjh+WtEUDAtsaPu/NNAAGb7/hgXUIEaMgTAkk2URGg3kcVLoxNgQACNgWoZBkFAdr/KMKEkT0kgIDtIThui4sAI1FxxQtrkyHA2u9kOJJLvAQQsPHGDstbI4CAbY0fd+ebAAI23/HBOghAAAIQgAAEekgAAdtDcNwWPQEEbPQhxIEuCCBgu4DDqeIQoCEvTizxpHECrP1unBVXFpMAAraYccWr7gnQ7+meEVfESwABG2/ssLwJAkylbAIWlxaGAB2YwoQSR3pIAAHbQ3DcFj0B2v/oQ4gDXRBAwHYBh1MQgAAEYiagzrsSuxDHHEVsb4UAArYVetwbMwEEbMzRw/buCCBguyPE+UIQoCNfiDDiBAQgAIGmCCBgm8LFxQUigIAtUDBx5XcEELC/Q8KBIhKgIS9iVPGpOwLU++4Icb7oBBCwRY8w/tUjQPtfjwzHi0AAAVuEKOJDtwSGDhvmrunX0dHttVwAgaIQYO13USKJHz0lgIDtKTnui50AAjb2CGJ/VwQQsF3R4RwEIAABCEAAAtESQMBGGzoMb5EAArZFgNyeawII2FyHB+OSIqCRKG1k078fI7BJMSWf/BPgNTr5jxEWpksAAZsuX3LPLwEEbH5jg2WtE0DAts6QHCIgQEMeQZAwMXEC1PvEkZJhZAQQsJEFDHMTI0D7nxhKMsohAQRsDoOCSRCAAASSIKDOuxKv0UmCJnnESAABG2PUsDkJAgjYJCiSR14JIGDzGhnsSpQAHflEcZIZBCAAgSgIIGCjCBNGpkAAAZsCVLLMDQEEbG5CgSFpEqAhT5MueeeVAGu/8xoZ7MqKAAI2K9KUkzcC9HvyFhHsSZIAAjZJmuSVWwK8Rie3ocGwFAnQgUkRLllHQQABG0WYMDIFArT/KUAly9wQQMDmJhQYAgEIQAACEIBAkgQQsEnSJK+YCCBgY4oWtjZLAAHbLDGuj5IAUymjDBtGt0hAnXclNnFqESS3R0sAARtt6DC8RQII2BYBcnuuCSBgcx0ejEuKAA15UiTJJyYC1PuYooWtaRBAwKZBlTxjIED7H0OUsLGnBBCwPSXHfVERYCQqqnBhbEIEWPudEEiyiZYAAjba0GF4iwQQsC0C5PZcE0DA5jo8GAcBCEAAAhCAQE8JIGB7So77YieAgI09gtjfFQEEbFd0OFcYAjTkhQkljjRBgLXfTcDi0kISQMAWMqw41QAB+j0NQOKSaAkgYKMNHYY3Q0Ad+d7tbaZfR0czt3EtBKImQAcm6vBhfAIEELAJQCSLKAnQ/kcZNoxukAACtkFQXAYBCEAAAhCAQFwEELBxxQtrkyOAgE2OJTnljwACNn8xwaIUCAwZOsy02xFYXieSAlyyzC0Bdd6VqPe5DRGGpUwAAZsyYLLPLQEEbG5Dg2EJEEDAJgCRLPJPgIY8/zHCwuQJUO+TZ0qOcRFAwMYVL6xNjgDtf3IsySl/BBCw+YsJFqVAgJGoFKCSZe4J8Bqd3IcIA1MmgIBNGTDZ55YAAja3ocGwBAggYBOASBYQgAAEIAABCOSPAAI2fzHBomwIIGCz4UwpYQggYMNwp9SMCdCQZwyc4nJBgLXfuQgDRgQkgIANCJ+igxKg3xMUP4WnTAABmzJgss8HAV6jk484YEW2BOjAZMub0vJHAAGbv5hgUTYEaP+z4UwpYQggYMNwp1QIQAACqRNQ512JXYhTR00BOSWAgM1pYDArdQII2NQRU0BAAgjYgPApOjsCaXbkf/nll4YcGWussepe980335j//e9/ZrLJJqt7Tb0T1eV3VUa9+9M6nle7vL8//fST+fSzz8x0007rD3X79+NPPjGTTTqpGX/88bu9lgsgAIHwBPIgYNUWVreHtaio7c5T+13LxrSOeT5jjz12WkWUMl8EbCnDXhqnEbClCXW5HU2zIb/4kkvN3ffe2yXgxRZd1Oyx2641r/n000/NQYccan7++Wdz6MGDzB9nnrnmdfUOXnHVVebW2243yy2zjOm77Tb1Lqt5XCJOokxphumnr3lNswcfePBBc8+995m333nH/Pjjj2aTjTY0a/7lL81mk8j19fxTh+nQw48w7773ntm6z5ZmxRVWqJT34UcfuVhMNeWUYwjVRx97zJx97nlmSnv8+GOONuOMM07lnrx+SLPe59Vn7IJANYE8CNjDbFtzyWWXVZv1u89rrL66OX3okN8dL8OBDTbe2Dz77HPmpBNOMBusv17ULn/44Yfmm2+/Nfr9mHzyyYP6QvsfFD+Fp0wAAZsyYLLPB4E0XyfSqoB94403zZFHH+1A7b3Xnmb++eZrClorAlYi87AjjjR68n3uWWc2VW6ti++xQv4iK+iVJplkEjP9dNOZlaw4XGqp3rUuT/1YPf8kbAfuu5/RyPc6a61lNtxg/Yot/fca6I4fsN++Zu655qocv+32O8zlV15pJphgfHPyiSeaiSacsHIurx9Y+53XyGBXVgQQsFmR7nk5RRKwe/Trbx8o32YG7jnA7L7bbj2HksCdCNgEIJJFbgkgYHMbGgyLhYBGGf9nR0+VvvrqK3PAQYPc50EHHmBmmmkm93kcKxDHG28897nWP08/86z56acfzaK9ejU9jSxPAva4E040r7z6qll26aXNttts7YRxLX+zOlZPwKr8t95+27z55ptm8cUXNxNOMEHFpHoCVnF+/PF/mxlmmMHMMcfslev5AAEI5JdAHgTsDz/8YH60D82UPrEzXlZedTX3+eorrzBz/fqQbFw7o2OCqnbIXVCSfxCw6QQaAZsOV3LNBwEEbD7igBUpE9BIlDay6d+vI9WSJGD33HsfV8YRhx06xnRgjU5+/vkXpq1tSfOenbr62muvu5FJjVL+86Z/uXvWWGN1N7L37HPPm1etEJxzzjnM9HZq70MPPWzesaOls846qxVci5mZfxXGuqmegP3o44/NU0897QTllFNMbuaZZx6zyMILO1H5/gcfmEceGekE9z333edEs0YilWTfTDPO6D5/YKdDPWPF9cuvvOKmGM8//3xmnj//ua7IHmSnQivvAf36mYUXWtDlIREp4TfZZJOalVdayR2r9893331nnnjySfPSSy+bn3/52cw377ym1yKLmD/84Q+VW6o5jho1ytr3jBllO4jzzTufWXCB+d11jfjn81lssUXNjFaU3vSvm929t95+u1GHc5mlljJTTTWVjcGczhef58QTT2xWW3WVij2N2Kz8XrQ+Pffcs+ZrO+orvxZacMHUp5jxGp1KmPhQUgJ5ELDV6CVg25dexh266cYbXHtaff7Jp54y999/v3n+hRfNvLbNXn755dyDTX/N/fc/YP79n/+YXr0Wcev31W5pOcNf7G/H/PPPb+Tv3ffcYx/KTWjWXPMvY+R/2T/+YT744EOz9tprOSF9u23r3rffl1xiCbPuOmubqaee2hfj/n7//fdGM0+eeOIJo6UViyy8kFluueVc++Uv/O9rr5kbbrjR3bvqKiubG2680Uww/gSmb99t3SUvvfyyufHGf5pX7G/IJJNOYpbq3dvOeNlgjCUYjQrYe+3SlPvuv8+8YR88Tj/d9GYda7Py65x03b333Ws++vgTs/hii5m/br6ZufTSy8yX9vd50002MTPPPPrBsu5rhvfcc81txEzlL2qXBa226qpmoolGz8TxbG++5Rbzf//9r+tviOu0005j+my5ZWcTM/mOgM0EM4UEIoCADQSeYrMlkFVD3pWA1TRhTRf+kxVE+oFT6th9NzOfnTKsaUdKJx1/nFtj6UXpHLPP7taoKl+fNFq498C9zJxzzOEO+Wur18CqnBMHDzYSV9VJ12hk9Gkr+oYMO736VOWz1upqze7zL7xgTjltiFsPqs1F/CYkm268ke0srVG5vvrDNddeZ266+WbX4dredmAkPP3aUa3tlaivl76164ZOOHmweeutt8a4RKJ9370Hmj9MNJE77jkuYUdOJXa1+ZVP662zjll/vXXNU08/3a1/Pp+dtt/e9Fq0VyUGPi//dzXbKfvr5ps7ZqcNHeY6jccefZQ73ajNJ5x0slFHTsmz1FraIw49xEgQp5Wyqvdp2U++EGiVQEwC9qqrrzYHDjq40tbKd7UXxx97rNloww0cimOPP978ffj55s9zz23etrNIvv21jVf7uF3fvuasc86ptImT2LblkosuMgv8+mDPC8UVV1je3P/Ag5XrlPFcf/qTufTii9xDO33/6uuvzc677Goee/xxfa2kcccd1ww+6USz1pprumMSyzvZ66aYYgozhV3z+fobbziBe+P115k77rzT9N9zL/dAsJKB/dB5va+3q6s1sCfZ3wb51jkdMmiQ+03zx88480wz+NTT/Ff3V78VL730kvNJPrYtuaQ73gxvPQB/7fXXjda4+rTsMkubc88+282uWn+jjewDyuf9qcpfPYT45w3XV75n+YH2P0valJU1AQRs1sQpr9AEGhGwmkrcbn9A5557LjdqOPEkE1fEU2cBK1gLLbiAG7n85utvzO133elEsHYrHnziCa5z01nAStDtvd/+bnR1qd7tZnn7xPzjjz4211x/vfnM7rq7zVZ9nEB948237FP4j82FF1/i8tmz/2gRPduss5hJ7U675w0fbh62o7Raw7r5Zpu6kdxThwx1AnxA/35jTLv1QVXZt9kn1Fddc607JF+1OZWOqyOmzs9WW25hlrVCunM6/cyzzH/sk34J87XXWtOOFI9jR0X/ZV79v/9zHY5ddtrR3eKFp0YdVlx+eTcS8Z//PFHZSOsE29kbf/zx7FPyrv3z+UjAatRZIx5KZ551lvnejuxuvummbgr4NNNM7UafJfo7C9hGbNbIhTqlYnHk4YcZdSqHj7jA8dxsk43NMna6dVpJnXclXqOTFmHyzTuBWATs888/bzbYeBMnXrV+cmnbLowcOdKcNPgU13ZKBGlNvhewaksPOuAAM/tss9l9DI5wSyIUCz3sW9DO7jjm2OPcQ7Pt7MZ+gw46yIXJC0XtebCFfSinkdin7Iiv2qOPbDslUTrk1FPctRKe/7IPI7VkYtutt7K/V3Obq227rhFG3S97JKK9gNVNmp2jB4h/smJ4lZVXNjvuvLPb0G/nHXc022/X19mz4867uM39brzuWvfwVvd5u+oJ2C+//NKste56dvT4A3Pq4JPN0nZ2zNXXXGO0ZEW/VU88/piycb8fm/11C/dZ+xpopFfLRM63/vmHxl7ANstbmeq3sI/d9O//Xv0/c6rdcOu77743J9oHCipLI7lff/W1GXbGGebxf//bPXBYb511jX7ftTQoRELAhqBOmVkRQMBmRZpyghLIqiPfiIDV1FT9mPsksVRvBFajrYNPOsltHKTr33n3Xbd7rj4fdeQRbuprZwHrN4XSJkN72BFev/Z25MhHzV32abmmVO2+6y7Kwu0UXG8Tp2uvu9780wpITSde0464zv3nuV1noXq9qMuk6h/5P3zECDta+awbMdWUtG+/+9YK5U+dHdrpWFPVZEN10uiuOkwaTehrR4hn/HUKs6Zaj7jwIrch1Gm246LkhaemKGuqspLu16ZM6uhI6Pon7F2tgfX5SMD2tkLfp3prYDsL2EZtVnz3HLi367Rp6rGmRM/yxz/aqWcTBV8j7H3mLwSKSiAWATvcjqoeY8WQxM4B++9XCcdxx5/gZpocdsghZmv78NELWLVxEmNKJ1uRe6YdCZTAvfmmf7pj558/whx93HHu4dUlF13ojnmhqGm3F10wwh3TPxdfcok5/Mi/mWmmmcY88uADrj1dor23+eKLL363M/Cqq6/hRlkPtqJYu957AasHlHfdcbtr2yoZ2w8SjpPbB65aOqE00C6xUVt6ysknu98CHfN21ROwukYPQrW/wpR2pFe/E9qIb20ravVw9OEH7rdTdad1Dx9PPuVU95D11ptHL8vRvQ8++JDZ1rbzSl7ANst7Ursp4WMjH3EPYZVPR/8B5pZbbzVb/vWv5sgjDtchl9jEyZPgLwTSJYCATZcvueeEQFZPIhsRsDtut90Yu/J2JWC1hmbXnXcag+Ihhx3uXv/ihVdnAVu9E/AYN/76ZeqppzIapVTqSuB9/vnnRiOMWuPk0zRWkG64/vpjCD5/Tn+HnX6GecI+iV5+2WXtup8t3I99I1OI9Tob+dVVOv7YY4zK98JTIwirrrJy5ZbBp55qnnv+BTey4I935Z/Px3P0GTUqYJuxWTH5xxVXOhGrcvRQQUJ2C7s2K81XLWRV7z07/kIgbwRiEbB+xLMeP43yabTPC9jN7FrOY35dynC2nVp7op1iu9oqq5gzzxi9NOSKK680Bx18iHtYePllo3eG90JRM0G23GL0SKXKq16X+8C99zix+Ze11nbrVP9jRzcnrtqD4ES7HOLsc8+tjNZ6AauHcnffeccY5mst6qFW3L3zzrtjHNeXE6y49tOivV31BKweFspHvcZMv7Gd07133eXWtXpRufuuu5qBdkd/nyR+F1+ybYwpxM3yXn211cwZw4b6LCtiWetgzzx9WOU4AraCgg8QSJUAAjZVvGSeFwJpvkan2sdGBGxnwdSVgJ11llnMYYccXCli1KgfzMB99nFTXP0rdzoLWE1lGmqFpNZWbr7pJpV7/YdxxxnXtLe3ua9dCTxdoKfbeuqttT0vvPSi23hKx/fbZ+8xNgfRMSX9eMuf/ffdx00v07FGBKzW6vazI7DqqGharV7B0zlpZEJrausJz1NOO81o86tqYduVf/XyaVTANmOzfNH07WeefdZu5vSS/fuc0fpZrY/SlL+0EgI2LbLkGwuBWATs0fahoqa6anbKZjXabe1or5HTJARs9bRixVHrXLfos5V74Pjkvx93a1Y1Aivhp7Ws2nTOp91238Pcbte2bmf3OBh04IGVEVj9VmkE1ieN3rYttbT7DdGsG5+H3ocrQduMgL3TCtRddtvdzerRchaNtuq3SWtd9ZvhBexx9j2y5/19uONUPcKs/Qc0WqvkR2Bb4a18zrIj3prejYAVDRIEsieAgM2eOSUWmEDSAlaovFDVD/Wdd91tLrv8crcmatiQ09w61M4C9mu7+cYAO2VVqXo3YD0pf/vtd8w6dt2TNhBS8gJP07/OsGt6xh9/fHdc/2gNrKYCDxwwwMw++2zu+LAzznTT2Ta0L5tfZ+21K9f6D4cefoSb5qy1qRqB1VqpRgSs7tdUZtmj6cobb7Sh81HToa+za63Wt50Pb0M94dmVgK3lX718vIDdy/rtdzWWfZ2nEDdqszbDuvLqa8zUlnnHHrvrNvOm3ajqiL8d5UY4zrJP78WJBAEIJE8gFgGr6agaQdRU1dtuudmJNNE4yK6fn2OO2e304a3MhHZZSBICVlOFr7/marfDvXZy3//Ag+xO+DeZheyyjGuvukrFmnU32NC8YNuuTezmRIfbzfdUth6+bWjX6eqVYmfZkd5V7YivH4HtLGAfsJtE9d1hBzfD5HE79VZtsNawrrDyKm76b/UocHcjsH6KdLVY1PpcjaIqadq0pk9r06hdrcBWWRrNXfMvaxjtpH/scce7vRl0rRewrfBWPt0J2N122cVttqhrQyUeYIYiT7lZEEDAZkGZMoITyMNrdOoJpq5GYD24WezT7e/siN3H9hUMStU7DncWsDp/yaWXufWu+izh99OPPzlxqO/9rIjS9FWl7+xrEgbus6974j6dfaqtkc/+HXu4ta4jLrjQ3P/gg+7Y0kv1NqO+H2UesZuK6JU1A+zriBZeaCGXR/U/6hRIrClpc41pbUdJglobGXW3C7GE7jnn/d09Udc056mnmtqtn9KT9tVXW9VtqqR863GsJWC78q9ePsfaNWfaOMrbv96667qNtGoJ2EZslu8S9ur0LWQ35Jp1llnNCy++6KZmKzaH/LrBinxLOqnzrsQmTkmTJb9YCMQiYL+x7fvW22zrHpRpgyYtH9H6Ue16q7bophtusJvKzZiIgFXstAmedufVAzY9eJXo06iopiorSSDqt0FrTVX+rHZzP7/LrmbDXDDifDciWk/AagmKRmA1iquN6vSqMo3c/mzbc+1wrM3s9h440K3r7U7AamPA3Tv6uaUXa9lXA337zbfmXvuqoQnsA1flpVfN6YHuAvY1Qjvb6cMP2DWvSipDXPVX62b1W+IFbCu8lXc9ATvYrsE9w24EqIfBGnXWcpbdrE0hEgI2BHXKzIoAAjYr0pQTlEBWDXnSI7Da8Ekvt7/brqHUCKx+FLWD8TZ2V0g/aldLwOraq+wujQ/a98fKJiWttdQOwHpFTnW64867zL/szpKa8qXkd0KW4LrmuuvM008/497tqnN6yi4xpHcO1kt33X2Peejhh51gVh4+dSdgdZ02mrrOdtQk+pTUQdErezRq7P2tJzxrCVjlUc+/evmoQ3e5Xa+q0WAlP+W7loDV+UZsVp7qhL388ivuAYBeeaHXJ2kNmDa2SitlVe/Tsp98IdAqgVgErPxUW72v3UH+wYcfcjvc6phegaO1r9rxVymJEdiD7dTfW267ze2Wqzw1I0cPJbfq00dfK+muu+822kRKr4/Rb4qE4IorrujW3vrXmtUTsMpEo7qD7DpciUUlCeYTTzje7GqnA2tar3Yn3s8uN+lOwEp4nmg3fdIUa31W0hTmlawt++5/gBvZ/btdI7uCfT2Q2xnYvubn3vvud3tFzG/b2b/Zdbh9d9jRfPrppxUBqzx6ylv31hOw7777nl17PMj+Bj7ixHv1WmXdl2Wi/c+SNmVlTQABmzVxygtCILaRqM6iVD+0WkOp3Xn9rsKNgnzfTtuSEPTThhu9r/o6lS0BmeaGQ9XlSUzribnEnUYGYkiN2KzRDE1pk18aAUk7ZbX2O20/yB8CPSWQNwHbiB9qJzQLZGa77lWjn0mlzkJRD+m0Fl/Tb7tqZzWaqoeKelesf5DYqE0SnBpJnmTiSdwIcqP31bpO4vT1119zv4N672x3SaLb+6XR4M4C1t+fFm+ff6i/CNhQ5Ck3CwII2CwoUwYEmiTQWcA2eTuXQwACEICAJRCjgE0rcJ0FbFrlhMxXu+bfbfeKqE5aeqM9HSRor7v6avue3AWqTxf2MwK2sKHFMUsAAUs1KAWB2BpyBGwpqmXqTma19jt1RygAAj0kgID9DVwZBGz15k6/eT76k5bA3Hn7bZVR2c7ni/Y9tn5P0fjjT7oEELDp8iX3nBBQR763fXVMv46OnFjUtRl6dY124NWmHVrDQ4JATwjQgekJNe4pEgEE7G/R1JrUTz751Cy33LJmzjnm+O1EgT69/sYbRu+f7Zy0hGbVVVdxG091PlfU77T/RY0sfokAApZ6AAEIQAACEIBAIQkgYAsZVpxqgAACtgFIXBItAQRstKHD8GYIDBk6zLTbEVheJ9IMNa6NnYA670rU+9gjif09JYCA7Sk57oudAAI29ghif1cEELBd0eFcYQjQkBcmlDjSBAHqfROwuLSQBBCwhQwrTjVAgPa/AUhcEi0BBGy0ocPwZggwEtUMLa4tCgFeo1OUSOJHTwkgYHtKjvtiJ4CAjT2C2N8VAQRsV3Q4BwEIQAACEIBAtAQQsNGGDsNbJICAbREgt+eaAAI21+HBuKQI0JAnRZJ8YiLA2u+YooWtaRBAwKZBlTxjIEC/J4YoYWNPCSBge0qO+6IiENtrdKKCi7G5JUAHJrehwbCMCCBgMwJNMbkjQPufu5BgUIIEELAJwiQrCEAAAnkioM67ErsQ5ykq2JIlAQRslrQpK08EELB5iga2JE0AAZs0UfLLJQE68rkMC0ZBAAIQSJUAAjZVvGSeYwII2BwHB9NaJoCAbRkhGcRAgIY8hihhY9IEqPdJEyW/2AggYGOLGPYmRYD2PymS5JNHAgjYPEYFmxInwOtEEkdKhhEQYO13BEHCxFQJIGBTxUvmOSaAgM1xcDCtZQII2JYRkgEEIAABCEAAAnkkgIDNY1SwKQsCCNgsKFNGKAII2FDkKTdTAhqJ0kY2/ft1ZFouhUEgJAFeoxOSPmXngQACNg9RwIYQBBCwIahTZlYEELBZkaacoARoyIPip/BABKj3gcBTbG4IIGBzEwoMyZgA7X/GwCkuUwII2ExxUxgEIACB7Aio867Ea3SyY05J+SKAgM1XPLAmOwII2OxYU1L2BBCw2TOnxAAE6MgHgE6REIAABAITQMAGDgDFByOAgA2GnoIzIICAzQAyRYQnQEMePgZYkD0B6n32zCkxXwQQsPmKB9ZkR4D2PzvWlJQ9AQRs9swpMQABXqMTADpFBidAByZ4CDAgMAEEbOAAUHwwArT/wdBTcAYEELAZQKYICEAAAhCAAASyJ4CAzZ45JeaDAAI2H3HAinQIIGDT4UquOSPAa3RyFhDMyYSAOu9KbOKUCW4KySEBBGwOg4JJmRBAwGaCmUICEUDABgJPsdkSoCHPljel5YMA9T4fccCKcAQQsOHYU3JYArT/YflTeroEELDp8iX3nBBgJCongcCMTAmw9jtT3BSWQwII2BwGBZMyIYCAzQQzhQQigIANBJ5iIQABCEAAAhBIlwACNl2+5J5fAgjY/MYGy1ongIBtnSE5RECAhjyCIGFi4gRY+504UjKMjAACNrKAYW5iBOj3JIaSjHJIAAGbw6BgUvIE1JHv3d5m+nV0JJ85OUIgpwTowOQ0MJiVGQEEbGaoKShnBGj/cxYQzEmUAAI2UZxkBgEIQAACEIBAXgggYPMSCezImgACNmvilJclAQRslrQpKxiBIUOHmXY7AsvrRIKFgIIDEFDnXYl6HwA+ReaCAAI2F2HAiAAEELABoFNkZgQQsJmhpqCQBGjIQ9Kn7FAEqPehyFNuXgggYPMSCezImgDtf9bEKS9LAgjYLGlTVjACjEQFQ0/BAQnwGp2A8Ck6FwQQsLkIA0YEIICADQCdIjMjgIDNDDUFQQACEIAABCCQJQEEbJa0KStPBBCweYoGtiRNAAGbNFHyyyUBGvJchgWjUibA2u+UAZN97gkgYHMfIgxMiQD9npTAkm0uCCBgcxEGjEibAK/RSZsw+eeRAB2YPEYFm7IkgIDNkjZl5YkA7X+eooEtSRNAwCZNlPwgAAEI5ISAOu9K7EKck4BgRuYEELCZI6fAnBBAwOYkEJiRCgEEbCpYyTRvBOjI5y0i2AMBCEAgfQII2PQZU0I+CSBg8xkXrEqGAAI2GY7kknMCNOQ5DxDmpUKAep8KVjKNiAACNqJgYWqiBGj/E8VJZjkjgIDNWUAwJx0CvE4kHa7kmm8CrP3Od3ywLn0CCNj0GVNCPgkgYPMZF6xKhgACNhmO5AIBCEAAAhCAQM4IIGBzFhDMyYwAAjYz1BQUgAACNgB0isyegEaitJFN/34d2RdOiRAIRIDX6AQCT7G5IYCAzU0oMCRjAgjYjIFTXKYEELCZ4qawUARoyEORp9yQBKj3IelTdh4IIGDzEAVsCEGA9j8EdcrMigACNivSlAMBCEAgYwLqvCvxGp2MwVNcbgggYHMTCgzJmAACNmPgFJcpAQRsprgpLCQBTadkCnHICFA2BCAAgewJ0JHPnjklhiXgH9zo4eUlF10Y1hhKh0AKBBCwKUAly/wRkHgdMswK2I4ORGz+woNFKRDQum91YtR5YQQ2BcBkGQ0B3/7z/0I0IcPQFgnQ/rcIkNtzTwABm/sQYWASBNSBGWssY/pZAUuCQBkI+A7Mqy+9WAZ38RECdQl4AcsDzLqIOFEgAoy+FiiYuFKXAAK2LhpOFJWAGndGpIoaXfwSAeo49QACYxLwD3QQsWNy4VuxCHjxKq+YcVCs2OLNmAQQsGPy4FvBCfgn8TTsBQ90id3Tej8lRl5LXAlwvSYBL2L1AFP7IfAgsyYmDkZKwPdvZP4AW7+ZcRZpIDG7IQII2IYwcVGRCAy1a2HVsOtJpRp835HRZyV917mRI+1IbXub6+R0dc5f6zeI0rX+vlrnelJGdfm6v7syOpfvv1fn422rdY4y2hzjRmKVB1bqmPtOuWLMdHlFhQSB3xPwIlZnvID1f39/NUcgkH8C7rfc9ll8Qrx6EvwtMgEEbJGji29dElBHXxs7+dHY6pEr/SCoo+Onm/lOj0a1Op+rlY86RMq31jkZVSufrsrw56pt7aoMf66zrT6frsqnjNEbfeWFlR9Jrd5Jtat61WWl5yQEIFB5eKn2kQSBohBAuBYlkvjRCAEEbCOUuKYUBHxnxj+N1/fqz4JQ/b36c+dz/nutPP05/S1DGe1LL2N23Xkns13fvs7fzv7777Dqvj7UY6XjJAhAoHkCvt1p/k7u6I7Ak08+aYaPuMAs2quXbf+37e5yzveQgO+L9PB2boNAlAQQsFGGDaMhEA+B5VZcyXVghpx6SjxGYykEIAABCLRE4AkrYPvvuRftf0sUuRkCEKhFAAFbiwrHIACBxAggYBNDSUYQgAAEoiGAgI0mVBgKgegIIGCjCxkGQyAuAgjYuOKFtRCAAASSIICATYIieUAAArUIIGBrUeEYBCCQGAEEbGIoyQgCEIBANAQQsNGECkMhEB0BBGx0IcNgCMRFAAEbV7ywFgIQgEASBBCwSVAkDwhAoBYBBGwtKhyDAAQSI4CATQwlGUEAAhCIhgACNppQYSgEoiOAgI0uZBgMgbgIIGDjihfWQgACEEiCAAI2CYrkAQEI1CKAgK1FhWMQgEBiBBCwiaEkIwhAAALREEDARhMqDIVAdAQQsNGFDIMhEBcBBGxc8cJaCEAAAkkQQMAmQZE8IACBWgQQsLWocAwCEEiMAAI2MZRkBAEIQCAaAgjYaEKFoRCIjgACNrqQYTAE4iKAgI0rXlgLAQhAIAkCCNgkKJIHBCBQiwACthYVjkEAAokRQMAmhpKMIAABCERDAAEbTagwFALREUDARhcyDIZAXAQQsHHFC2shAAEIJEEAAZsERfKAAARqEUDA1qLCMQhAIDECCNjEUJIRBCAAgWgIIGCjCRWGQiA6AgjY6EKGwRCIiwACNq54YS0EIACBJAggYJOgSB4QgEAtAgjYWlQ4BgEIJEYAAZsYSjKCAAQgEA0BBGw0ocJQCERHAAEbXcgwGAJxEUDAxhUvrIUABCCQBAEEbBIUyQMCEKhFAAFbiwrHIACBxAggYBNDSUYQgAAEoiGAgI0mVBgKgegIIGCjCxkGQyAuAgjYuOKFtRCAAASSIICATYIieUAAArUIIGBrUeEYBCCQGAEEbGIoyQgCEIBANAQQsNGECkMhEB0BBGx0IcNgCMRFAAEbV7ywFgIQgEASBBCwSVAkDwhAoBYBBGwtKhyDAAQSI4CATQwlGUEAAhCIhgACNppQYSgEoiOAgI0uZBgMgbgIIGDjihfWQgACEEiCAAI2CYrkAQEI1CKAgK1FhWMQgEBiBBCwiaEkIwhAAALREEDARhMqDIVAdAQQsNGFDIMhEBcBBGxc8cJaCEAAAkkQQMAmQZE8IACBWgQQsLWocAwCEEiMAAI2MZRkBAEIQCAaAgjYaEKFoRCIjgACNrqQYTAE4iKAgI0rXlgLAQhAIAkCCNgkKJIHBCBQiwACthYVjkEAAokRQMAmhpKMIAABCERDAAEbTagwFALREUDARhcyDIZAXAQQsHHFC2shAAEIJEEAAZsERfKAAARqEUDA1qLCMQhAIDECCNjEUJIRBCAAgWgIIGCjCRWGQiA6AgjY6EKGwRCIiwACNq54YS0EIACBJAggYJOgSB4QgEAtAgjYWlQ4BgEIJEYAAZsYSjKCAAQgEA0BBGw0ocJQCERHAAEbXcgwGAJxEUDAxhUvrIUABCCQBAEEbBIUyQMCEKhFAAFbiwrHIACBxAggYBNDSUYQgAAEoiGAgI0mVBgKgegIIGCjCxkGQyAuAgjYuOKFtRCAAASSIICATYIieUAAArUIIGBrUeEYBCCQGAEEbGIoyQgCEIBANAQQsNGECkMhEB0BBGx0IcNgCMRFAAEbV7ywFgIQgEASBGoJWB1btFevJLInDwhAoMQEELAlDj6uQyANAuePGGGeePIpM+TUU1z21QLWd2h0jk5MGvTJEwIQgEA4AtXtv2/v1darzde54SMucJ9p/8PFiJIhUAQCCNgiRBEfIJAjAr6T4jstXsBu13db03/PvZyl29vP2/XtmyOrMQUCEIAABFolUN3++zZfvwWL9lrEiVflzwPMVilzPwQggIClDkAAAokTqO7E6Cl8dUK8VtPgMwQgAIFiEeiq/Ue8FivWeAOBUAQQsKHIUy4ECk7Ad2Kq3US8VtPgMwQgAIFiEqjV/iNeixlrvIJACAII2BDUKRMCJSFQ3YlBvJYk6LgJAQhAwBKobv8Rr1QJCEAgSQII2CRpkhcEIPA7AurEKLHm1WHgHwhAAAKlIaD2v5dbA8vOw6UJOo5CIAMCCNgMIFNEPgkMGTrMDBk2LJ/GYRUEmiTQ3tZm+vfrMPpLggAE6hMY+eij7v+TueaZ1110yUUXVr7r/x99978Ptc7p/j5bb2P6d3S4/+f0WcdefelF97fWuVr5lKEM72MzrMRRSfFpJB5lLkP1qrq+OXD8A4ESEEDAliDIuDgmAf9j54/S4fck+BszAXWgffKdRf+dvxCAwGgCav+V9LBHn/X/jX/wIyHQu73N9LPCtKtzukfn/X3+WomJeuf8tWUrw7Px/vvvXbHSOaVGWfk8y1iGfJb/3ncxU59G30kQKDIBBGyRo4tvvyOgxt139AfYBl4dFRIEikBA9XrkSNux/nVWASK2CFHFh6QJVIuipPMmPwiEJKDfAC9g/UOAkPZQNgTSJICATZMueeeKgBevfkpSrozDGAgkRMB3YpQdIjYhqGQTPQH9f8Fsm+jDiAPdEKCedwOI04UhgIAtTChxpCsCvlOPeO2KEueKQsDXd/nj15MVxTf8gECzBPz/DzzQaZYc18dKwE+rZiQ21ghid3cEELDdEeJ8IQj40Vc15jyFL0RIcaIbAurAaDoxnfZuQHG68AQkYKvXCRbeYRwsPQHV97HGMqbNroelz1P66lBIAAjYQoYVpzoTqN7NsPM5vkOgiAQYdSpiVPEJAhCAQPcE1P4jXLvnxBXxEkDAxhs7LG+CAAK2CVhcWhgC1PvChBJHekjAj76qM8/OrD2EyG1REtAobLvdVRshG2X4MLobAgjYbgBxuhgE6MgXI4540RwB6n1zvLi6eASYiVC8mOJRYwRo/xvjxFVxEkDAxhk3rG6SAA15k8C4vBAEqPeFCCNOQAACEGiagB7eKDEC2zQ6boiAAAI2giBhYusE6Mi3zpAc4iNAvY8vZlicPAE68skzJUcIQAACIQkgYEPSp+zMCNCRzww1BeWIAPU+R8HAlCAEmEIcBDuF5oAA7X8OgoAJqRFAwKaGlozzRICGPE/RwJasCFDvsyJNOXkmMNS+TorXieQ5QtiWBgHa/zSokmdeCCBg8xIJ7EiVAA15qnjJPKcEqPc5DQxmQQACEIAABCDQYwII2B6j48aYCNCRjyla2JoUAep9UiTJJ1YCmkLsXifCa3RiDSF295AAa797CI7boiCAgI0iTBjZKgE68q0S5P4YCVDvY4waNidJgDWwSdIkr5gI0P7HFC1sbZYAArZZYlwfJQEa8ijDhtEtEqDetwiQ2wtBQCKWV4kUIpQ40QQBrf1W6tfR0cRdXAqBOAggYOOIE1a2SICOfIsAuT1KAtT7KMOG0RCAAAQgAAEIdEEAAdsFHE4VhwAd+eLEEk8aJ0C9b5wVVxaTAFOIixlXvOqeQJ+tt3EzD/r3YwS2e1pcERsBBGxsEcPeHhGgI98jbNwUOQHqfeQBxPyWCUjAahMndeKZRtwyTjKIiADtf0TBwtSmCSBgm0bGDTESoCGPMWrY3CoB6n2rBLkfAhCAAAQgAIG8EUDA5i0i2JMKATryqWAl05wToN7nPECYlzoBjcCOHGk3cWpvYwQ2ddoUkCcCqvtKzDzIU1SwJSkCCNikSJJPrgnQkc91eDAuJQLU+5TAkm00BFgDG02oMDRhArT/CQMlu1wRQMDmKhwYkxYBGvK0yJJvnglQ7/McHWzLioBELKNQWdGmnLwQ4DU6eYkEdqRBAAGbBlXyzB0BOvK5CwkGZUCAep8BZIqAAAQgAAEIQCBTAgjYTHFTWCgCdORDkafckASo9yHpU3YeCDCFOA9RwIYQBLT7Nmu/Q5CnzCwIIGCzoEwZwQnQkQ8eAgwIQIB6HwA6ReaKgAQsr9HJVUgwJiMCtP8ZgaaYIAQQsEGwU2jWBGjIsyZOeXkgQL3PQxSwAQIQgED2BPTwRon139mzp8T0CSBg02dMCTkgQEc+B0HAhMwJUO8zR06BOSRARz6HQcEkCEAAAi0QQMC2AI9b4yFARz6eWGFpcgSo98mxJKc4CbAGNs64YXXrBGj/W2dIDvklgIDNb2ywLEECNOQJwiSraAhQ76MJFYamSECvE2lra2MqZYqMyTp/BPpsvY3p3d5m+nV05M84LIJAiwQQsC0C5PY4CNCRjyNOWJksAep9sjzJDQIQgAAEIACB8AQQsOFjgAUZEKAjnwFkisgdAep97kKCQRkT8LsQayOb/v0YicoYP8UFJMBrdALCp+jUCSBgU0dMAXkgQEc+D1HAhqwJUO+zJk55eSPAGti8RQR7siJA+58VacoJQQABG4I6ZWZOgIY8c+QUmAMC1PscBAETIAABCAQgwO7bAaBTZGYEELCZoaagkAToyIekT9mhCFDvQ5Gn3DwRoCOfp2hgCwQgAIHWCSBgW2dIDhEQoCMfQZAwMXEC1PvEkZJhZASYQhxZwDA3MQK0/4mhJKMcEkDA5jAomJQ8ARry5JmSY/4JUO/zHyMsTJ8Ar9FJnzEl5I8A7X/+YoJFyRFAwCbHkpxyTICGPMfBwbTUCFDvU0NLxhCAAAQgAAEIBCKAgA0EnmKzJUBHPlvelJYPAtT7fMQBK8IR0BRi9zoRXqMTLgiUHIQAa7+DYKfQjAggYDMCTTFhCdCRD8uf0sMQoN6H4U6p+SHAGtj8xAJLsiVA+58tb0rLlgACNlvelBaIAA15IPAUG5QA9T4ofgqHAAQgEIyA1n4r9evoCGYDBUMgLQII2LTIkm+uCNCRz1U4MCYjAtT7jEBTDAQgAAEIQAACmRFAwGaGmoJCEqAjH5I+ZYciQL0PRZ5y80KAKcR5iQR2ZE2gz9bbmHbWfmeNnfIyIoCAzQg0xYQlQEc+LH9KD0OAeh+GO6Xmh4DfxKl/vw7Xmc+PZVgCgXQJ0P6ny5fcwxJAwIblT+kZEaAhzwg0xeSKAPU+V+HAGAhAAAIQgAAEEiCAgE0AIlnknwAd+fzHCAuTJ0C9T54pOcZFQCOwI0c+atrb2xiBjSt0WNsiAdV9JU0jJkGgaAQQsEWLKP7UJEBHviYWDhacAPW+4AHGvW4JsAa2W0RcUFACtP8FDSxuOQIIWCpCKQjQkJcizDjZiQD1vhMQvpaSgEQso1ClDH2pneY1OqUOf+GdR8AWPsQ4KAJ05KkHZSRAvS9j1PEZAhCAAAQgUGwCCNhixxfvfiWQZUf+559/7pL72GOP3eX5Zk9+8cUX5scffzTTTDNNs7dGf71nnTRTgSkC1yzrffSVCQcKSSAPU4h/+eWXhtiONdZYDV1XtIs8n7L6n1Y8hwwdxtrvtOCSb3ACCNjgIcCALAhk2ZFfaZVVzVtvv13Trdlnm83ccdutNc91dfDDDz8033z7rZlqyinN5JNPXrn0vffeM6usvoaRkLv+2mvMPH/+szsnQfv2O++4z3PMPnvl+iJ9EI9FFl3MufTAvfeYGWaYoWn3muXadAGBb8iy3gd2leIhUJOABKw68iFfo3PxJZeau++9t6Z9/uBiiy5q9thtV/+1VH+PPPpo88Ybb5qdtt/e9O7dXirf03SW9j9NuuQdmgACNnQEKD8TAlk25GkI2D369Te33nabGbjnALP7brtVmD333PNm/Y02ct8vOH+4WWbppd3nl15+2ay97npmnHHGMS89/1zl+iJ9SELANss1Nn5Z1vvY2GAvBLIigIDtmjQCtms+PT2rhzdKrP/uKUHuyzMBBGyeo4NtiRHIsiPvBeyhBx9sNt54tLj0jow91thmookm9F8b/ltPaCmDe++9z4z6YZRZbdVVjZ+ChYBtDG2zXBvLNT9XZVnv8+M1lkDgNwLqxId+jY5mxPzv16UlX331lTngoEHOwEEHHmBmmmkm93kcu7RkvPHG+83wEn1CwJYo2LgKgYQIIGATAkk2+SaQZUfeC9ij/3ak2XyzzWqC+e9rr5kbbrjRTD311GajjTY0t9xyi3nmmWfNXHP9yay+2mpmuummc/dd9o9/mA8++NDcbM//33//656kLrnEEmbaaacxfbbc0q19Pf2MM921O+ywvfnoo49cvp988om57PLLnaDd49cR23XWWdvM9ac/mREjLjCf23Wz66+/nqmeXvwPe/37739g1lhjdTPfvPPWtNvbs/baa5n/+7//czYrnz/PPbe7/smnnjL333+/ef6FF82888xjll9+ObNor15j5PX6G2840f3Y44+bOeeYwyyzzNKmbcklK+LbX3zfffcbXfPKK6+YuW3+8lv5+VRrBPb2O+4wGpVeYvHFzbLLLuMvtTY9YP79n/+YBRaY3wl970ejXCedZJJKXt3Zpc6qj8kuO+9sHnjwAfPoY4+56d8rrrhiXbaVAhL8kGW9T9BssoJAYgTysAa22hkJ2D333scdOuKwQ80fZ565+rTRb8Ozzz5r3nzrbTPLH/9oFlxwAfOnOeesXPOsbd9effVVM+ecc5gp7HKSRx973GgPgCUWX8zMOuusRg8vn37mGTPeuOOZJZZYfIz877HTmD///AvT1rak+fLLL80TTzxhPv3sc7f0pN0em3TSSSvl6MMPP/xgr3nS/fZ89vnn1o45zPzzz29mnWWWynXvf/CBeeSRkWayySYzvRZZ2Ij3OOOMa3/HVnXXaCmLHiC8++67ZkL78Fa/LUsvtZSz2WfSnYD96aefzD9v+pe7fLVVV3FlfPLpp2aD9dZzol9LaB548EH7m/RfI77TTT+dWcm2tdP/+juqG6u5zTzTzOY/1nf9XoptL/sbNcEE43tz3N+33nrL/mY84ZbizDrLH+3spmXMG2++Yd588y0z77zzuN83f8NHH39snnrqafOKjcuUU0xu5rG/fYssvPAYPvprs/xL+58lbcrKmgACNmvilBeEQJYNuRewgw44wInEaocnnnhi+0M5gbn7nnvMTrvs6oSqRKSf6qNrtZbzissus0/mZ3TTgyXIOieJw3/ecL1bF1u9DvT5F14wO+/62xTj6vvOGDbUiWNv33nnnG1WXGGFyiUbbrKJE6QnHn+82XCD9SvHqz9ssPHGtnP1nBOlTzz5pDt15unDnCi86uqrzYGDDjZ+Qw6d1Ijw8cceazbacAN37YMPPWS233En87///c+d89fut8/eZueddnLX6Ngx9p7zL7jQfa/+Z7u+25qDLFflW0vAHnDgQeaqa64xO1oxf8B++1VuPe6EE8x5fx9uNrHTrY879pimuSomPbFrvXXXMTfc+M+KHeOOO64596yzzHLLLVs5luaHLOt9mn6QNwRaIaDXibS1teViKmVXAlYibMSFF/2uDd1+223N0ksv5RBccdVVdjnJ7WZmO3L7sRVOo6zIVJpg/PFd+37TzTe7PRF0bEL7W7PfPvuY2WabVV+NF4oLL7SgE3R+Ezydm2nGGe21e1dEQmFMvAAAQABJREFU7Hfff+/WDr9sHyBWJy1L2cm2r3qgqCSxfJpdY6zftknsfx/Y/RokcA875GCjB5pnnXOue9BanUfn9b7ernprYL8fNcpotoySBKce5ioNO+1UM771+6TBp5jOdqqtPdD+Bsw++2zuWs9N+0TIxs+tIPdpgfnnM/07OozuUdLv6JBhp49h95R2/4lJ7INMCdsN1lvXrLvOOu5ard09cfBg891337nv/p/lllnGbLvN1r97MOvPZ/G3z9bbmN7tbaaf9Y0EgaIRQMAWLaL4U5NAlh15LxBrGXLCccc5MecFrK7RD+qOO+zgLh92+un2Ke+bFaGlDsDXX31thp1xhnn83/929663zrpm4kkmdiKys4jTj/nzz79gnxq/bQ4+9DD3BHj4uee6vOebb1434uvta0XAqpz17A/44vapv55Mf/75Z2aDjTdxHS+t013arsUdOXKk61hIbEpszz3XXGYf26G47vobTJ8ttjAH2elzGhWVoNUo7XnnnmMm/sMfzKVWvB96+BFmwgknNFv8dXMnsjVyoBHi77773vztiMPt8b+2JGCb5SoB2xO7pppqKrO9Fd3z2lGH8+3ItwS8RlXuvvMOF5O0/8my3qftC/lDoAgE6gnYN227f+TRxzgXN7SzWuabbz7zsh1Nveqaa50I0mitRKYXYhKSm2+6qXsIevEll5iP7awbpU3sjJ7Z7GaBl19xpRs9XG2Vlc1fN9/cnfNCUW3yissv70Zi/2vF4G133Ol2XZco3XXn0Q8SJTw1A0bCbdWVV3JTnR986GH3O6T7ZY9EtBewKkCjyUvZTZjUXvZaZBErbIfa88+aNddYw43IajRWYlcjqodbgTvLryO53q5GBKxGepexI7h6wKuZO6/amUBDrdicyP527L7rLnYEdArL6Go362VRa0PHHrs73z03fVlkoYXMiiuuYEeF3zM3/PNGM2rUD2bH7bYzSy3V29k2YK+BRqJZM5ZWtfw0tfuuu+82z9nfViUvYPUgdu/99nejvvJ7+eWWMx9/9LG55vrrzWeffWa22aqPWcFyJkEAAskTQMAmz5Qcc0ggy468F4h6mqsf+up0rN1tcQPbOakWsNdcdaVZ2P6gKqkjcviRf3NPmW+9efSUKR2vt1azs4BVx0GpqzWw3r5WBOzGG25ojj/uWFeW/hk+/HxzjB25lRA9YP+qkc/jTzAaqT3skEPM1vbHfPApp5oz7AikOgYacdUUN4k8Pbn3abc9OoymAm9mR4SPOfoof9gMOvgQc/mVV7rRXo361vK90RFYn2kzXHti1/777mN22nFHV5xGCNayDx+UHrHTirN47VGW9d45xj8QyBkBzW5xrxOxI7DaiTh0qidgNaoqkaURxs023aRi5hVXXuVGHPXQb+WVVqwIWC3bUPuidM211xmNvErg6gGf0m233+HaSz0g1ciqkheKmsa7z8C93DH9I3F2yWX/cNOATznpRPcgcsDAvc0333zzu52BD7LtsEYwt7CiWOLOC1j91h13zNFmGrsspjq99/777sGkRnSVzj3v7+a11183O9t2UdOWlbxdjQjYHfr2rYxGu5vtP5rqrCnFEpoSla/99zVz7vDhZobppzdayqPkBexE9sHoaacMdhsc6viZZ5/jRPlKdjbSVn22dIL4WPu7JX9OtL9xEvBKsn/gPvu6sryA1eirbFeee+y+W2UNs6ZM32VnWS2+2GJOVLsMAvzDa3QCQKfIzAggYDNDTUEhCWTZkfcCsas1sF7ATmGfFj/2yMMVoat1OZv9dQs3jeuJxx+rIGtGaOmmnghYPz24kSnEna/pv+de5l+2A1UvaUqy7tFra3bv6OemlvlrNSI5oH9/J+x1rN2O6GoNr0aOq9e8au3p9lb0at3wyIcebErAHmvL/rsV2X4KsS+7Ga49sUsjz5ru7dO8CyzonvDfeP11mayFzbLeex/5C4E8EYhlDawf8azHbmk7OriDHSX0QkxTVPtuu427XGv5NVJbPeJ4/wMPuOnIelh44K8PFb1Q3NoKterlI9Wi+qTjj3Ni7ZDDDnczeIbaabqaiuzTVVdfY26+9VY3hVijtV7ASrgeb5dnVCeNvl586SW2Pf+0+rD7XC1EvV2NCNgT7PKSqaeeqpKfRkovuvhit15V+w9Up2qbPLfO05f1u3W1fQCgh68dVoTedfc9Vsxf5h6yem4+TwnCp+yUaS9gNTPoIvuKpHpJdsreUIn2PxR5ys2CAAI2C8qUEZxAlg15MwJWa4XuuuP2Ch+NVm66+V9TFbCr/2VNt1HI4JNOMlqjqfS9fbq8RHtv97ezOK0YZz94kXuSXVOqkWSfjtaaVTtFVk+cq0cP/HnttLlU797uq6aPaeqwNlZ6yIr3p59+xh2/5KIL3Rq19TbcyE6Dft4cfNBBlQ6aLtDmU0fZcrSJyA32nbe1RmAPsdOmtXnVX+3mWUf9+uRd92otkDqyrQjYVuySDUrzLbiQW1eFgB3Ng38hUDYC1WKxehOnf1xxhZ15cqcTTsvXWCOvmSoaOfVCrBUBWz2tWPw1O+T4E09yo5JaV6o2ur+dRqt1/1rLWr1p07DTzzBP2KUt2qRJU5i9gJ1u2mnNsVUzZjR6q82qtM5WI60+D41MStD2VMBKYPtRUdmuWTkabZZY1W/MhBNO4DYjvN+uJ64lYKu56f7OAtb7I9Gu30i/uZNGdvfZ/wC3+ZUXsFqKMtTy0PrfzatGzZWv0rh2M6t2uwY1VPJ7a/AanVARoNw0CSBg06RL3rkhEELAHjJokNthuDME7WjrR2CbFbC77bKL2btq6lctEafy/Aisdqd8+on/uPWk3g4/WrrG6qsbPV3XVCntyqt1p0o9EbC32CfyHf0HGPl22y03212Sp3V5HWQ3dZpjjtnt9OGtnA1aA3v3PfeaEX//u1looQXdNX5q7l4D+ttpWLsbL4bVWTv/7+e5qbbarGS7HXY0L7z4otFGToMOPLCmgPXrVLWL8532vbl6ZdGLL71kNthoY9cpqydgG+Hail3OUfsPAtaT4C8EsiOQp458PQGrh3pnnHW2m46q2TuT2x2GlUbYzexmmGF6O314JbdhURICVutIDx10kBOCGrUcbh8Oaqd0bXh0iH1wqHT4345yGxYta/cz6LPlFq7st95+2xx1zLGuLe1n15ZqnasXfJ0FrHb9PeW005y4O23wye53RutC97evEJIYrB4FbmYEtrOAPea4490Uaz+lWbb79+6Koa7X72Atbrq2s4D99ttvK+JdIn3tNdd0wl4PF66/8UbdUhmB/frrr42mWisN6NfPLgUa/Zum3/e3337HrGN3668W2+5C/oEABBIhgIBNBCOZ5J1ACAFbi8kfJprIPP3kE00LWL92VJsnSdhp7dFuu+5aU8Sp3K/sD+tSyyzrRlQlkvUjes5ZZ7rpt15s6rrp7Roh2fSm3VlRm4JoLVFPBKyE9NbbbOs6M1r7q81AtFOkpgzr1Qw33XCD23RDglYdCdmjacXfffudud6e+9bu4OjX5GpTjq1sXhKtymvBBRawO2Y+5zpNWjd68YUXuFGKWuJdHaz11t/A+a8Nof5kX0ukEV4JWW0A1VnANsO1FbvEWgkBO5oD/0IgKwKxTCHWVNiTTh7s1oeqLdYaV60f1W65E9k2+ohDD3VTZ2sJsWanEIu9RJ021lPbrx109SBTo6LayEhJGzida3dul9hU+dNNN63Rmk8lrdPVg1TtfFxPwGoEVuJOo7jz2w2pprJtvkZuf7EjsmrvNcK5sd0VfuWVVmxqDWxnAavN/W6/8y73O7P4oosa/QboP438aiRZ64IPPXiQudZurKR1xt2NwMo/bTR440036aP7DRIb5aW1rrLdj8Dq/CWXXubWu+qzHgD89ONPbvMsffciX59DpCz7PSH8o8xyE0DAljv+pfE+y4bcTyGuBbenAla7JR5kf4QfevgR98PsNziqJeJ8uXpyf7ZdR6p33Sk9cO89bndIfb7woovNOeedZ6dajd5gY9BBB5prr7vedVp6ImCVp0YW9rU7Mj748ENOLOqY3ruq/Px7Ykepk2ZfOXDvvfe5acy6RoJc7/PTe2x90rti97PTtdQ5UsdBQlYbXZ1gn6bPbnfYVKrnuzqsR9rRA41CSzxvsvFGVqT/wZx+5pm/E7DNcm3FLtmMgBUFEgSyJRDLa3QkJLVW//kXX3A744qSXoGjta/a8VcpCQGrJRYa8dV7S5X0epj17XISjfJWp6eeftpoEylt2iQhKtG5sH2/qdbeSrwq1ROwOqdR3Qvsa4EkzpUkmPWKM+0arB2JtTux2udWRmAllPVbphFfJW3kpJ3fNdqrV5ip7DPtK+Susw9KGxWwykcjro88OtKOQr9tprbTtzdYf3337li9DaBawIqLXt2mHZr1G6ikkd+t7Ki11tuGTFn2e0L6SdnlJICALWfcS+c1DXntkGuzJI2G6mn8Fn226lbA1s5lzKMSnBqtVIdLArJeknjWSIOfblzrOq3N1Y6VeleuXqvTTPryyy9dx0y+JZ1asStpW7rKj3rfFR3OQSCfBDTq+e5777k1nBr9TCp1Fop69Y4eKmqUUqOM9ZJE4udffNHtdbXu10ioRpInnGDCMTZfqnVtK8dk46d2J+Lpppu+sm61lfz8vRKono3fsbhawPrr9Pf9Dz5wwp5pw9VU+AyBdAggYNPhSq45I0BHfsyAXG43DNH7ZX0a9cMot/5Kwuz0oUOM1seS4idAvY8/hnjQGgHNyMjTa3Ra86a1uzsL2NZyK+7dei+s1rGOmX6xryq6xWiNrGZArbH6amOezuG3PK39ziEeTIqcAAI28gBifmME6MiPyWnFlVeprNOpPqP3sT74wP3uvX3Vx/kcJwHqfZxxw+rkCORtDWxynjWfEwK2MWbVG211vkMzeo456m9mWrsfQ94T7X/eI4R9rRBAwLZCj3ujIUBDPmaorrn2Wrte57cRWJ2dZJKJ7eZQq1R2vxzzDr7FSIB6H2PUsBkC6RDQmtQvv/zKLLjgAmYGu4EfqTYBbWZ4n33NW+c0/vjjub0Y9P72GJLWfiv16+iIwVxshEBTBBCwTeHi4lgJ0JGPNXLY3QoB6n0r9LgXAhCAAAQgAIE8EkDA5jEq2JQ4ATryiSMlwwgIUO8jCBImpkqAKcSp4iXzHBPos/U2pr2tzfTvxwhsjsOEaT0kgIDtIThui4sAHfm44oW1yRCg3ifDkVziJeA3cVInXp15EgTKQoD2vyyRLqefCNhyxr10XtOQly7kOGwJUO+pBhCAAAQgAAEIFI0AArZoEcWfmgToyNfEwsGCE6DeFzzAuNctAY3Ajhz5qGlvb2MEtltaXFAkAqr7Ssw8KFJU8cUTQMB6EvwtNAE68oUOL87VIUC9rwOGw6UhwBrY0oQaRzsRoP3vBISvhSKAgC1UOHGmHgEa8npkOF5kAtT7IkcX3xolIBHLKFSjtLiuKAR4jU5RIokftQggYGtR4VjhCNCRL1xIcagBAtT7BiBxCQQgAAEIQAACURFAwEYVLoztKQE68j0lx30xE6Dexxw9bE+CAFOIk6BIHjESGDJ0GGu/YwwcNjdEAAHbECYuip0AHfnYI4j9PSFAve8JNe4pEgEJWHXkeY1OkaKKL40QoP1vhBLXxEoAARtr5LC7KQI05E3h4uKCEKDeFySQuAEBCECgSQJ6eKPE+u8mwXF5FAQQsFGECSNbJUBHvlWC3B8jAep9jFHD5iQJqBPPa3SSJEpeEIAABMITQMCGjwEWZECAjnwGkCkidwSo97kLCQZlTIA1sBkDp7jcEKD9z00oMCQFAgjYFKCSZf4I0JDnLyZYlD4B6n36jCkh/wT0OpG2tjamUuY/VFiYIIE+W29jere3mX4dHQnmSlYQyAcBBGw+4oAVKROgI58yYLLPJQHqfS7DglEQgAAEIAABCLRAAAHbAjxujYcAHfl4YoWlyRGg3ifHkpziJOB3IdZGNtqJmASBshDgNTpliXQ5/UTAljPupfOajnzpQo7DlgD1nmpQdgKsgS17DSiv/7T/5Y19GTxHwJYhyvhIR546UEoCdGBKGXachgAEIGD08EaJ1+hQGYpIAAFbxKji0+8I0JH/HRIOlIAA9b4EQcbFbgnQke8WERdAAAIQiIoAAjaqcGFsTwnQke8pOe6LmQD1PuboYXsSBJhCnARF8oiRAO1/jFHD5kYJIGAbJcV1UROgIY86fBjfQwLU+x6C47ZCEeA1OoUKJ840SID2v0FQXBYlAQRslGHD6GYJ0JA3S4zri0CAel+EKOIDBCAAAQhAAALVBBCw1TT4XFgCdOQLG1oc64IA9b4LOJwqBQFNIXavE+E1OqWIN07+RoC137+x4FPxCCBgixdTPKpBgI58DSgcKjwB6n3hQ4yD3RBgDWw3gDhdWAK0/4UNLY5ZAghYqkEpCNCQlyLMONmJAPW+ExC+QgACECgJAa39VurX0VESj3GzTAQQsGWKdol9pSNf4uCX2HXqfYmDj+sQgAAEIACBghJAwBY0sLg1JgE68mPy4Fs5CFDvyxFnvKxPgCnE9dlwptgE+my9jWln7Xexg1xi7xCwJQ5+mVynI1+maOOrJ0C99yT4W1YCfhOn/v06XGe+rBzwu3wEaP/LF/MyeYyALVO0S+wrDXmJg19i16n3JQ4+rkMAAhCAAAQKSgABW9DA4taYBOjIj8mDb+UgQL0vR5zxsj4BjcCOHPmoaW9vYwS2PibOFJCA6r6SphGTIFA0AgjYokUUf2oSoCNfEwsHC06Ael/wAONetwRYA9stIi4oKAHa/4IGFrccAQQsFaEUBGjISxFmnOxEgHrfCQhfS0lAIpZRqFKGvtRO8xqdUoe/8M4jYAsfYhwUATry1IMyEqDelzHq+AwBCEAAAhAoNgEEbLHji3e/EqAjT1UoIwHqfRmjjs/VBJhCXE2Dz2UiwGt0yhTt8vmKgC1fzEvpMR35Uoa99E5T70tfBUoPQAJ2yNBhhtfolL4qlA4A7X/pQl4qhxGwpQp3eZ2lIS9v7MvsOfW+zNHHdwhAoMwE9PBGifXfZa4FxfUdAVvc2OJZFQE68lUw+FgaAtT70oQaR+sQUCee1+jUgcNhCEAAApESQMBGGjjMbo4AHfnmeHF1MQhQ74sRR7zoOQHWwPacHXfGTYD2P+74YX3XBBCwXfPhbEEI0JAXJJC40RQB6n1TuLi4oAT0OpG2tjamUhY0vrhVm4A2cerd3mb6dXTUvoCjEIiYAAI24uBheuME6Mg3zoori0OAel+cWOIJBCAAAQhAAAKjCSBgqQmlIKCOvNKrL71YCn9xEgJ+6qQ28LjkogsBAoHSEtAuxEPsKCztf2mrQOkcV51X0u7bJAgUkQACtohRxaffEfAdmP52Kg0N+u/wcKCABDR9TCJW4pVdKAsYYFxqmIBv//l/oWFkXBg5Ad/+89Am8kBifl0CCNi6aDhRNAJ+FJZOTNEiiz+dCfgOO6OvncnwvewE9FCHBzplrwXl8J+6Xo44l9VLBGxZI19Cv32nXq4jYktYAUriMvW8JIHGzaYJ+P83aP+bRscNkRBQHVdiplkkAcPMHhNAwPYYHTfGSMB3YGS7nsLTyMcYRWyuRUDvutQ6P5/opHsS/IXAaAJq//20ev1V8qOxtb53dc7fW+s+f05/db6rfLo65/OhjO45wmp0Xa6u42JCgkBRCSBgixpZ/KpLQJ0B38jXvYgTEIiUwAC7aQevTYg0eJidGQG/RtA/6Knesds/6PTn/LVaT6jfD333+ynUOidRqns751OGMvxSnUZZeY7NsKKM0ZuS+fopHp5j9QOTzP5noiAIBCCAgA0AnSLzQcA/1X701yfx+bCqeFYMH3GBWbTXIva/XsVzLmceIVxzFhDMyS0Btf9q+/37YfWuWCX9P9T5nP/u//+qfq9srXP18ilDGdU+PvHkk2b7HXcyu+68k9ll550rXLvi2Eg8qssQ6+7i4fP0sfLfq/Pp6lxMZchWEgTKQAABW4Yo4yMEAhJYbsWVnHgdcuopAa2gaAhAAAIQyJKABGz/Pfei/c8SOmVBoCQEELAlCTRuQiAUAQRsKPKUCwEIQCAcAQRsOPaUDIGiE0DAFj3C+AeBwAQQsIEDQPEQgAAEAhBAwAaATpEQKAkBBGxJAo2bEAhFAAEbijzlQgACEAhHAAEbjj0lQ6DoBBCwRY8w/kEgMAEEbOAAUDwEIACBAAQQsAGgUyQESkIAAVuSQOMmBEIRQMCGIk+5EIAABMIRQMCGY0/JECg6AQRs0SOMfxAITAABGzgAFA8BCEAgAAEEbADoFAmBkhBAwJYk0LgJgVAEELChyFMuBCAAgXAEELDh2FMyBIpOAAFb9AjjHwQCE0DABg4AxUMAAhAIQAABGwA6RUKgJAQQsCUJNG5CIBQBBGwo8pQLAQhAIBwBBGw49pQMgaITQMAWPcL4B4HABBCwgQNA8RCAAAQCEEDABoBOkRAoCQEEbEkCjZsQCEUAARuKPOVCAAIQCEcAARuOPSVDoOgEELBFjzD+QSAwAQRs4ABQPAQgAIEABBCwAaBTJARKQgABW5JA4yYEQhFAwIYiT7kQgAAEwhFAwIZjT8kQKDoBBGzRI4x/EAhMAAEbOAAUDwEIQCAAAQRsAOgUCYGSEEDAliTQuAmBUAQQsKHIUy4EIACBcAQQsOHYUzIEik4AAVv0COMfBAITQMAGDgDFQwACEAhAAAEbADpFQqAkBBCwJQk0bkIgFAEEbCjylAsBCEAgHAEEbDj2lAyBohNAwBY9wvgHgcAEELCBA0DxEIAABAIQQMAGgE6RECgJAQRsSQKNmxAIRQABG4o85UIAAhAIRwABG449JUOg6AQQsEWPMP5BIDABBGzgAFA8BCAAgQAEELABoFMkBEpCAAFbkkDjJgRCEUDAhiJPuRCAAATCEUDAhmNPyRAoOgEEbNEjjH8QCEwAARs4ABQPAQhAIAABBGwA6BQJgZIQQMCWJNC4CYFQBBCwochTLgQgAIFwBBCw4dhTMgSKTgABW/QI4x8EAhNAwAYOAMVDAAIQCEAAARsAOkVCoCQEELAlCTRuQiAUAQRsKPKUCwEIQCAcAQRsOPaUDIGiE0DAFj3C+AeBwAQQsIEDQPEQgAAEAhBAwAaATpEQKAkBBGxJAo2bEAhFAAEbijzlQgACEAhHAAEbjj0lQ6DoBBCwRY8w/kEgMAEEbOAAUDwEIACBAAQQsAGgUyQESkIAAVuSQOMmBEIRQMCGIk+5EIAABMIRQMCGY0/JECg6AQRs0SOMfxAITAABGzgAFA8BCEAgAAEEbADoFAmBkhBAwJYk0LgJgVAEELChyFMuBCAAgXAEELDh2FMyBIpOAAFb9AjjHwQCE0DABg4AxUMAAhAIQAABGwA6RUKgJAQQsCUJNG5CIBQBBGwo8pQLAQhAIBwBBGw49pQMgaITQMAWPcL4B4HABBCwgQNA8RCAAAQCEEDABoBOkRAoCQEEbEkCjZsQCEUAARuKPOVCAAIQCEcAARuOPSVDoOgEELBFjzD+QSAwAQRs4ABQPAQgAIEABBCwAaBTJARKQgABW5JA4yYEsiSgjsuivXq5IjsL2OpzWdpEWRCAAAQgkB0BBGx2rCkJAmUjgIAtW8TxFwIpE+i/515GHZft+25rtuvb11QLWH9uyKmnVARuyuaQPQQgAAEIBCCAgA0AnSIhUBICCNiSBBo3IZAVAd9pUXkSscNHXFARq9XCNit7KAcCEIAABLIn4H8LNBtHDy1JEIAABJIigIBNiiT5QAACFQK+41I58OsHPyrb+TjfIQABCECgWAT87wACtlhxxRsI5IEAAjYPUcAGCBSQgO+8eNcQr54EfyEAAQgUn4D/DUDAFj/WeAiBrAkgYLMmTnkQKBEB34FBvJYo6LgKAQhAwBLw7T8CluoAAQgkTQABmzRR8ouKwJChw5y97e1tpr2tzfTZehv3t3+/DjPy0UeNzuu4vuuzjl1y0YVdnlOGtfJRHiHL8OU36kdn//13n09XPlaXcfY555j77n+gIY49LcPf10is/LXN+uHvy1sZskfJ12H3hX8gAAEIBCaAgA0cAIqHQIEJIGALHFxcq03AidJfBas+Dxk2zIlSCYG55pnXCS2JVH+uf0eHE7ASbBIxr770ovur77XOqdRa+SjPkGX48hv1Q756kVrNw+fTlY+U0X298hybZeXrXHX9VB1W3fJxQszW/n+foxCAQHYEELDZsaYkCJSNAAK2bBHHXycuhcELUX32o1gSbf579Wcdq/W91n2dr611H2U0z7wrjp55GeJRy0ex8cerBbG4kCAAAQiEIICADUGdMiFQDgII2HLEGS8tAd/J199H7X/97MgqCQJFI6CR2bHGMtTvogUWfyAQGQEEbGQBw1wIREQAARtRsDC1NQKa8uqnX7aWE3dDIP8EJGSZSpz/OGEhBIpKAAFb1MjiFwTCE0DAho8BFmRAQKOumlo5wG6kxMhrBsApIjgBphIHDwEGQKDUBBCwpQ4/zkMgVQII2FTxkjkEIACBMASYKh+GO6VCAAKjCSBgqQkQgEBaBBCwaZEl31wRYDplrsKBMRCAAAQgUHACCNiCBxj3IBCQAAI2IHyKzo5A9StfsiuVkiAQlgD1Pix/SodAmQkgYMscfXyHQLoEELDp8iX3nBAYat+TqcT615wEBDMyIaB1sL3tO4+p95ngphAIQKCKAAK2CgYfIQCBRAkgYBPFSWYQgAAEIAABCEAAAghY6gAEIJAWAQRsWmTJN1cENBLV3tZm+ttdiEkQKAsB1n6XJdL4CYH8EUDA5i8mWASBohBAwBYlkvjRJQHWAnaJh5MFJUC9L2hgcQsCERBAwEYQJEyEQKQEELCRBg6zIQABCHRHQK/SUdLsAxIEIACBLAkgYLOkTVkQKBcBBGy54l1ab+nIlzb0OA4BCEAAAgEIIGADQKdICJSEAAK2JIEuu5tMpSx7DSin/9T7csYdryGQBwII2DxEARsgUEwCCNhixhWvOhHgNTqdgPC1FAQQsKUIM05CIJcEELC5DAtGQaAQBBCwhQgjTkAAAhCAAAQgAIH8EEDA5icWWAKBohFAwBYtovhTkwCv0amJhYMFJ8Da74IHGPcgkGMCCNgcBwfTIBA5AQRs5AHE/MYIMJWyMU5cVSwC1PtixRNvIBATAQRsTNHCVgjERQABG1e8sBYCEIBAwwRY+90wKi6EAAQSJoCATRgo2UEAAhUCCNgKCj5AAAIQgAAEIAABCCRBAAGbBEXygAAEahFAwNaiwrHCEWAqZeFCikMNEGDtdwOQuAQCEEiFAAI2FaxkCgEIWAIIWKpBKQioI9+7vc306+gohb84CQER4MEN9QACEAhFAAEbijzlQqD4BBCwxY8xHkIAAhCAAAQgAIFMCSBgM8VNYRAoFQEEbKnCXV5nhwwdZtrtCGx7W1t5IeB56QjwGp3ShRyHIZAbAgjY3IQCQyBQOAII2MKFFIdqEWAqZS0qHCs6Aep90SOMfxDILwEEbH5jg2UQiJ0AAjb2CGJ/QwQYiWoIExcVjACv0SlYQHEHAhERQMBGFCxMhUBkBBCwkQUMcyEAAQhAAAIQgEDeCSBg8x4h7INAvAQQsPHGDsubIMBUyiZgcWlhCPAancKEEkcgEB0BBGx0IcNgCERDAAEbTagwtBUCvEanFXrcGysBHtzEGjnshkD8BBCw8ccQDyCQVwII2LxGBrsgAAEItEiAtd8tAuR2CECgxwQQsD1Gx40QgEA3BBCw3QDidDEI8BqdYsQRLyAAAQhAIA4CCNg44oSVEIiRAAI2xqhhc9MEmErZNDJuKAAB6n0BgogLEIiUAAI20sBhNgQiIICAjSBImNg6AV4n0jpDcoiPAGu/44sZFkOgKAQQsEWJJH5AIH8EELD5iwkWQQACEIAABCAAgagJIGCjDh/GQyDXBBCwuQ4PxiVFgNeJJEWSfGIiwNrvmKKFrRAoFgEEbLHiiTcQyBMBBGyeooEtqRFgLWBqaMk4xwSo9zkODqZBoOAEELAFDzDuQSAgAQRsQPgUDQEIQCBNArxGJ0265A0BCHRFAAHbFR3OQQACrRBAwLZCj3ujIZB0R/6XX35pyPexxhqr7nXffPON+d///mcmm2yyutfUO1Fdfldl1Ls/reN5tatRf739WTMNVW6jXLgOAhCAQLMEELDNEuN6CECgUQII2EZJcV3UBJKeSnnxJZeau++9t0smiy26qNljt11rXvPpp5+agw451Pz888/m0IMHmT/OPHPN6+odvOKqq8ytt91ulltmGdN3223qXVbz+E8//WQ+/uQTd26G6aeveU2zBx948EFzz733mbffecf8+OOPZpONNjRr/uUvzWYT9PrvR40ye/Tr72w46fjjzJRTTpmZPXvuvY/56quvzP777mP+PPfciZWbdL1PzDAyggAECk8AAVv4EOMgBIIRQMAGQ0/BWRJI+jU6rQrYN9540xx59NEOwd577Wnmn2++pnC0ImAlMg874kgz9thjm3PPOrOpcmtdfI8V8hdZQa80ySSTmOmnm86stMIKZqmlete6PLfHiihgeY1ObqsbhkGg8AQQsIUPMQ5CIBgBBGww9BQcMwGNMv7Pjp4qaeTsgIMGuc+DDjzAzDTTTO7zOFYgjjfeeO5zrX+efuZZ89NPP5pFe/UyzU5ZzZOAPe6EE80rr75qll16abPtNls7YVzL37wfK6KAzTtz7IMABIpLAAFb3NjiGQRCE0DAho4A5WdCIM3X6EjAagqo0hGHHTrGdGCNTn7++RemrW1J895775nXXnvdjUxqlPKfN/3L3bPGGqubiSac0Dz73PPmVSsE55xzDjO9ndr70EMPm3fsaOmss85qFl98MTPzr8JYN9UTsB99/LF56qmnnaCccorJzTzzzGMWWXhhJyrf/+AD88gjI53gvue++5xoXmettZwNsm+mGWd0nz/48EPzjBXXL7/yitEU4/nnn8/M8+c/1xXZg+xUaOU9oF8/s/BCC7o8NMr7+OP/tut7JzUrr7SSO1brn3p8vK//fe018+yzz5o333rbzPLHP5oFF1zA/GnOOcfIqlF7n3n2OfOK9endd991DxnmtlN1F7L5+dRZwI4//vjm9jvudKdXW3UVM/HEE/tLzYMPPWQ++uhjM9dcc5kFF5jfHW/EVl349DPPWJ+eM5pGPttss5pVV13VHDjo4FSmECe99rsCgA8QgAAEuiGAgO0GEKchAIEeE0DA9hgdN8ZEIM21gF0JWE0T1nRhia7/++9/HbKO3Xcz89kpw53XW3pROsfss7s1qsrXpwknmMDsPXAvM+ccc7hD/trqNbAq58TBg813333nb3N/dY1GRiWchgw7fYxz/ovW6mrN7vMvvGBOOW2IW5urUWG/udCmG29k/rLGGv7yMf5ec+115qabb3Yjydv33db84Q9/MI8+9pg5+9zznJiXqK+X6vHRqLTW1Y648KKKDcpDNm2/7bZm6aWXclk2Yq98uPyKK8ztd971OzMkTDffdFOXb2cBO8UUU5h99j/APoD43Oy0/famd+92d7823hqw10Dz3fffm3577G56LbJIQ7bq5n9ZTldbXtVJIvb99983o0b9wBrYajB8hgAEoiaAgI06fBgPgVwTQMDmOjwYFwOBRgSsphK3L7mkmXvuucx8885nJp5k4roCVj5rZFAjl998/Y25/a47nQjWbsWDTzzBia3OAlaiau/99nejeEtZobX8csuZj+0I4TXXX28+++wzs81WfZxAfePNt8wnn3xsLrz4EpfPnv1Hb1o026yzmEknndScN3y4ediO0moN6+abbepGck8dMtQJ8AH9+xkJ6c5JZd92++3mqmuudafkqzan0nEJznHHHddsteUWZlkrpDsnL2A78/nmm6/tGuFj3OUbrr+eE/wvv/yyK0N5ShRrxLgRe/0aXY2orrD8cnaUeCEn5u+7/34nGrfus6VZ0frbWcBqE6dLLr3M3HXPPaZ3e5vZaYcdnD0amT7+xJMci1MHn+xG1huxVSO0Rx97nMuj3Y54i8eHdrRbo7wawVZKehOnpNd+OyP5BwIQgEADBBCwDUDiEghAoEcEELA9wsZNEPiNQCMCdpmlljLbb9e3clMtseRFqUTi4JNOMhNMML67/h075fXQw49wn4868ggz4wwz/G4Ksd8USlOR97AjvH7t7ciRjzoBtvhii5ndd93F5dHVJk7XXne9+ee//uXE4Zp2xHXuP8/thG0t4eqdkf/DR4ywovBZ84eJJjJTTz21+fa7b61Q/tTZoWnI666ztpENnZMXsJ35aIdl8dDI9WabblK57Yorr3Ij2X222MIK/BVNI/YOO+NMo45U9Wi1MrzAju7e98ADbuRYo+K1YqIR3pNPOdVtTnXqySc5QX61Fer/uuUWs8Tii5vddtnZ7QbdiK233HqrufLqa8x0005rjj36qIpP4nba0KHue9ICtlIIHyAAAQhkTAABmzFwioNAiQggYEsU7DK7GnoK8Y7bbTfGrry1xJIXsEsusYTZdeedxgjXIYcdbt61a2j9VFZ/rRdlfpRxjJuqvkw99VTmhGOPdUe6ErCaLnv6mWcZjRb6NI0VpBuuv35lCq0/7v8OO/0M88RTT5nll13W9LEjrRpxbXYKcWc+Z51zrnns8cd9Eb/7u7Td4XgHy7QRe/0rajTaXL3mVWtiTx0yxAl0idNaMdEosu7/9ttvzcEHHWg0vfuIvx1l1+S+ZXbecUejkdRGbT3z7HPM4//+t9GDgU3slGyfVEb/Pfdy5SctYNNc++3t5y8EIACBWgQQsLWocAwCEEiCAAI2CYrkkXsCab5OpJERWC88PahaYsmL0llnmcUcdsjB/lI3zXXgPvs4geNfueOv9QL2SSsgh1ohqY2GNq8asfSZjDvOuKbdToNV6krA6rwElXYVfs5uKvXCSy+6jad0fL999nabOelzddJaXvlTLb6aFbCd+fxDa1bt1Nq5/vQnOx162eri3OeppprKTsWe133uzt4jjjravPnmm2aLzTc3q66yciUv5a9ytEnWYfZdvLVioov/fv755qGHHzHrr7uOm5qtqdoS6Zo+rBHvRm297B//MHfcdbdZ1K6Z7bBrZ33SO3m1i7XW6lYz9Odb+Zvmg5tW7OJeCECg+AQQsMWPMR5CIBQBBGwo8pRbGAJJC1iB8UJVouZOK3ouu/xyN3112JDT3NrLzgL266+/NgMG7u2YVu8GfLddv/n22++YddZey2hNp5IXsFpLesbQIUZrQ33SmlJNaR04YICZffbZ3GE/BVdrUddZe21/aeWvpjdrmvOKyy/vRmD1ftlWBey///Mfc8ZZZzuBePTfjjSTTz65K2/EBReaGWaY3q0Plt2N2OsFph4M7DWgv90ZeTLz5Zdfus2qNJKqjZz+utlmdQWsfzigDbRWXGF5O136ArfbsjgrNWrryEcfM+ecd54Tv3pAoTW8Et9XXXONXUN8h8sraQHrMuUfCEAAAgEIIGADQKdICJSEAAK2JIEuu5tDhg5zI5DtbaNHIZPkkYaAlX2zWMH1nZ26qhE6JT/aqs+dBayO+Q2H9Fni86cff3JiVd/9brn6rN1zB+6zr/nhhx/cesxJJpnE9O/Yw02llUC83+7+q2Oapjvq+1HmkZEjzSh77YB+HW4DJOVRnfzaTh3TRlDTTjONkaD+8KOPGt6FuPMIrEZDTzp5sHnt9dfNOOOMY/5sX3nznt2pV1OGJ7LrbI849FC71nYq04i9mnp9os1LolV5zWZHXN+wI7ISjxKz++490InJeiOw4rSnfTjwg333r0SnxPq2W2/lRmPlc6O2ahqyNnHyGzZpfa9iK7v8bs9JC1heo6MIkSAAgRAEELAhqFMmBMpBAAFbjjiX3ss0p1ImLWC1odEEdiOnu+07ZCVsNNKoHYy3saJJo5tKtQSsrtVo3oP2/bGySUkjl9oBWK/IqU532FfKaCOiL774wh0+6fjj3Ajtj1akXXPddebpp5+pCC2NXEr4/8W+r7Zeuuvue+w024edYFYePv1x5pndjsH+e+e/fhOnzgJW1+l1QH8ffr55/sUX3DRqHdMrZ7T21b8ntlF79a7Y4eePcIJYwlVCVutZtbGW3smrVE/A6pxGgzXSqqSR61NOOtGJdXfA/tOIrbpWO0IrLwlzxUtTvnfcfjtz8aWXuk2vkhawadZ77zt/IQABCNQigICtRYVjEIBAEgQQsElQJI/cE4hhJKqzKJUIleCZ0Y76+V2FGwWtUb4JrPD104Ybva/6OpUtweyn71afy/KzBKdGUbWZlEZf66VG7NVoqthoZ+TqqdP18mz2eKO2aoT662++ceJZgjitxGt00iJLvhCAQHcEELDdEeI8BCDQUwII2J6S4z4IJEygs4BNOHuygwAEIAABCGRGAAGbGWoKgkDpCCBgSxfycjocw1RKBGw562aaXvManTTpkjcEINAVAQRsV3Q4BwEItEIAAdsKPe6NhkCar9FJCoJeXfPGG2+amWaa0cw/33xJZUs+JSYQw4ObEocH1yFQaAII2EKHF+cgEJQAAjYofgqHAAQgkB6BGNZ+p+c9OUMAAiEJIGBD0qdsCBSbAAK22PHFu18JpPkaHSBDAAIQgAAEIDAmAQTsmDz4BgEIJEcAAZscS3LKMQGmUuY4OJiWGgHqfWpoyRgCEOiGAAK2G0CchgAEekwAAdtjdNwYEwFeJxJTtLA1KQIxrP1OylfygQAE8kUAAZuveGANBIpEAAFbpGjiCwQgAAEIQAACEMgBAQRsDoKACRAoKAEEbEEDi1tjEuB1ImPyyOLbTz/9ZD797DMz3bTTNlzcx598YiabdFIz/vjjN3wPF9YnwNrv+mw4AwEIpEsAAZsuX3KHQJkJIGDLHP0S+c5awHSCLZEq0ak0w/TTVwr55ZdfzKGHH2Hefe89s3WfLc2KK6xQOffhRx+Zn3/+2Uw15ZRjCNVHH3vMnH3ueWZKe/z4Y44244wzTuUePvSMAPW+Z9y4CwIQaJ0AArZ1huQAAQjUJoCArc2FoxCAQAME3n7nHXPYEUeascce25x71pmVOyRsB+67n/nmm2/MOmutZTbcYP3Kuf57DXTHD9hvXzP3XHNVjt92+x3m8iuvNBNMML45+cQTzUQTTlg5x4eeEeA1Oj3jxl0QgEDrBBCwrTMkBwj8P3v3AS5HVfYB/CDSBERBKX6CDaWIEiwJxYK9F1BBRaUINpKAYAMbIEUQBJKg2CmiKMqnfnZUULEEUZAOgoWioqDYaAJ+806cy+bmlr3J3tmZM795HpK9O7Nzzvm9q0/+95yZITC2gAA7tot3MxPwD/npKeh4ATZau+baa9PVV1+dHvvYx6aVV1pppAPjBdh///vf6dxzf57WXXfd9JCHPHjkeC8IECBAoH0CAmz7aqbHBNoiIMC2pVL6uUwCllIu4rvllltS/KPi8suvSHf95660ycYbpxmbb57uda97jfie9f3vp5tu+luaOfPx6bbbbksXXnhhuu3224tjN0mbPXLT8rg/Xn99+ulPF6Z//OMf6awf/CAtt9xy5Uxr7IzPPWC99VJ1nsc8Zou0XhFKv/b1b5Sf/dYZZ6Tbi/Nts9VWac0110wPfehD06MftVmqzrnqqqumZzz9aeWx8Uc/fY7zXVaM6eKLL0r/LGZ9Y1yP2myztMYaa4ycp4svfO+7WHVjJtAMAQG2GXXQCwI5CgiwOVbVmJYQ8BidlG6++eZ0xFEfTNdcc81iPhtssEF66777pHutskr5/kGHHJJ+97ur0+OKmdP4B8idd945cvwLn//89KIXviD98oIL0rwFx4283/tizze+IT1miy1SdZ49dtstzdhiRtpzztzew0ZeP+NpT00v33HHdEERlI+dv6C86dNhhxxc7u+3z0cceVS6/Iorys9EmI5rcONa2gPf8+4Ugbirm8fodLXyxk1g+AIC7PBroAcEchUQYHOtrHERGCVw3IePT78477z00Ic8JD3vuc8prltdvpgV/Xq68qqr0szHPz69fo/dy09UwTNuorTtk56UZszYPP3iF+elM4uZ2diOOOyw4uZLK6TfXX1NuvHGG9JJnz6lnIHde+6igPqgDdZPqxd3Eq7OEwE2ZmUvufSy8vMfPv74dGsxs7vjy16WHvCAB6T73W+t8gZQYwXYfvocN4Xa753vSiussEI66ID3ptWKwPrJE05Mv7ryyrTDS1+Sttl667JdfxAgQIBAfQICbH3WWiLQNQEBtmsV7+h4u/4YnZiRnLv3m9PNxRLiXV7z6rRescQ3tj8Udwk+4aST02qrrZaO/eBR5XtV8IxlvXvNmVO+F5+PmzL9/e9/L4NuBN7YJroGtjpPBNgtt5xVHh9/jHcN7OgA22+fIwzvvc++Ka6hjaXHsSR6/Qc+MK1SzCjHzaW6vLn2u8vVN3YCwxUQYIfrr3UCOQsIsDlX19hGBLp+LWA8zubd7z1gxGOsF4cfdmi631prjcycvqJY1vv0YnlvtX3wmGPSxZdcmnrfn84AO5U+x/W2p37+tDLERn9jNjaC7Ct23KHT18F2/XtffXf9TYBA/QICbP3mWiTQFQEBtiuVNs5OC8SNkOYUM7AxqxnLamPGdfS2xYwZ5c2cxps5PfrYY9NFF19SW4CdSp9jLH/961/ThRddVNzM6fLi74vLa3433mij8vre0WPtys+u/e5KpY2TQPMEBNjm1USPCOQiIMDmUknjIDCJQDyvNWZMn/OsZ6WXbL9ded1q3KzpS1/5cnrRC16YHvzgB5VnWJoAGzdO+tD8ecW1sSuO9GK881RLiN+8114jdzWOD41eQhzv9dPnSy69NJ32xdPTWsVNm2bv+ab4WLq6uFHVge87OMV1vMcft6DzS4lLFH8QIECgRgEBtkZsTRHomIAA27GCd3W4llKmdM7PfpY++vFPlLOwa621ZlprzbXSVb/+dXmX4Wc+4+nlTZXi+zFe8BxrBvaWW29N+7zlreVjcda+//3Lmd25s/dc4iZOvdfAHnb4EeWNo+JGT/e/3/3SC1/wguKRN48cM8D20+e4idN7DjiwXD4c59lg/Q3SpZddln79m9+Uofzd++/f1a996vq1350tvIETaICAANuAIugCgUwFBNhMC2tYiwt4nMgij4ULzylmXL+SIvTFtlIxY/rsYkb2+c977sgs5VQCbJzjO9/9Xvr6N7+Z/va3v8WP6cjD318+wma888SM6eeK61VjNji26iZPY83Axv5++hzn/HbxfNkrrvhV+czaeCTQJptskrbf7sXlHY7jPF3c/OKmi1U3ZgLNEBBgm1EHvSCQo4AAm2NVjYnAJAIRNuOOxOuus065lHiSwxuxu58+33HHHen6P/2pHFcsH7YRIECAwHAEBNjhuGuVQBcEBNguVNkY07z5C9KsWTPTrJkzaRDojIDH6HSm1AZKoHECAmzjSqJDBLIREGCzKaWBTCRgKeVEOvblKuB7n2tljYtA8wUE2ObXSA8JtFVAgG1r5fR7SgJmoqbE5eBMBDxGJ5NCGgaBFgoIsC0smi4TaImAANuSQukmAQIECBAgQKAtAgJsWyqlnwTaJyDAtq9merwUApZSLgWaj7RewGN0Wl9CAyDQWgEBtrWl03ECjRcQYBtfIh0chIDH6AxC0TnaJuAXN22rmP4SyEdAgM2nlkZCoGkCAmzTKqI/BAgQGJCAa78HBOk0BAhMWUCAnTKZDxAg0KeAANsnlMPaLeAxOu2un94TIECAQLsEBNh21UtvCbRJQIBtU7X0dakFLKVcajofbLGA732Li6frBFouIMC2vIC6T6DBAgJsg4uja4MT8DiRwVk6U3sEXPvdnlrpKYHcBATY3CpqPASaIyDANqcWekKAAAECBAgQyEJAgM2ijAZBoJECAmwjy6JTgxbwOJFBizpfGwRc+92GKukjgTwFBNg862pUBJogIMA2oQr6MO0CrgWcdmINNFDA976BRdElAh0REGA7UmjDJDAEAQF2COiaJECAQB0CHqNTh7I2CBAYS0CAHUvFewQIDEJAgB2EonM0XsA/5BtfIh0kQIAAgYwEBNiMimkoBBomIMA2rCC6Mz0CllJOj6uzNlvA977Z9dE7AjkLCLA5V9fYCAxXQIAdrr/WaxLwGJ2aoDXTKAGP0WlUOXSGQKcEBNhOldtgCdQqIMDWyq0xAgQIECBAgED+AgJs/jU2QgLDEhBghyWv3VoFPEanVm6NNUTAtd8NKYRuEOiggADbwaIbMoGaBATYmqA1M1wB1wIO11/rwxHwvR+Ou1YJEEhJgPUtIEBgugQE2OmSdV4CBAgMWcC130MugOYJdFhAgO1w8Q2dwDQLCLDTDOz0zRCwlLIZddALAgQIEOiGgADbjTobJYFhCAiww1DXZu0CllLWTq7BBgi49rsBRdAFAh0VEGA7WnjDJlCDgABbA7Imhi/gcSLDr4Ee1C/gFzf1m2uRAIFFAgKsbwIBAtMlIMBOl6zzEiBAgAABAgQ6KiDAdrTwhk2gBgEBtgZkTQxfYN78BWnWrJlp1syZw++MHhCoScC13zVBa4YAgSUEBNglSLxBgMCABATYAUE6TbMFLKVsdn30bnoEfO+nx9VZCRCYXECAndzIEQQILJ2AALt0bj7VMgEzUS0rmO4ORMBjdAbC6CQECCyFgAC7FGg+QoBAXwICbF9MDiJAgAABAgQIEOhXQIDtV8pxBAhMVUCAnaqY41spYCllK8um08so4DE6ywjo4wQILLWAALvUdD5IgMAkAgLsJEB25yHgMTp51NEopibgFzdT83I0AQKDExBgB2fpTAQILC4gwC7u4ScCBAhkJRDXf7v7dlYlNRgCrRAQYFtRJp0k0EoBAbaVZdPpqQrEY3Rimztn9lQ/6ngCrRRw47JWlk2nCWQjIMBmU0oDIdA4AQG2cSXRoekQiAA7b8GCNHf2bCF2OoCds3ECsWw+QuwpJ59kBrZx1dEhAvkLCLD519gICQxLQIAdlrx2axeIR4rMKQKsjUAXBCK8nlP85zvfhWobI4HmCQiwzauJHhHIRUCAzaWSxtGXQPyjPmZjY1bKRiBHgfiOL1x4jpUGORbXmAi0SECAbVGxdJVAywQE2JYVTHeXTaBaSmxZ5bI5+nRzBSwdbm5t9IxAlwQE2C5V21gJ1CsgwNbrrbUGCMQMVdyVNf6Of+xXYTZexxY/VzO1cVzc+CmCb7w31r7q2Dgujo/zVJ8ba9/StFG1328bo9uvfq7OM9Y4qn3amLzmdVpFrWKb6HsVj8upru+Ovi23XLJ0uFTzBwECwxIQYIclr10C+QsIsPnX2AjHERgdQiIExHbl5ZeNhNsqFER4iDA61r44T9wgKoJGBMXeZ2+OtW9p2qja77eN6EcVUuOz/YxDG4t+odE0q/jOxTbZ96qqeXmwPwgQIDBkAQF2yAXQPIGMBQTYjItraASaIPDEbZ+StpgxI8075ugmdEcfCBAgQKAGAQG2BmRNEOiogADb0cIbNoG6BATYuqS1Q4AAgeYICLDNqYWeEMhNQIDNraLGQ6BhAgJswwqiOwQIEKhBQICtAVkTBDoqIMB2tPCGTaAuAQG2LmntECBAoDkCAmxzaqEnBHITEGBzq6jxEGiYgADbsILoDgECBGoQEGBrQNYEgY4KCLAdLbxhE6hLQICtS1o7BAgQaI6AANucWugJgdwEBNjcKmo8BBomIMA2rCC6Q4AAgRoEBNgakDVBoKMCAmxHC2/YBOoSEGDrktYOAQIEmiMgwDanFnpCIDcBATa3ihoPgYYJCLANK4juECBAoAYBAbYGZE0Q6KiAANvRwhs2gboEBNi6pLVDgACB5ggIsM2phZ4QyE1AgM2tosZDoNmAZgoAAEAASURBVGECAmzDCqI7BAgQqEFAgK0BWRMEOiogwHa08IZNoC4BAbYuae0QIECgOQICbHNqoScEchMQYHOrqPEQaJiAANuwgugOAQIEahAQYGtA1gSBjgoIsB0tvGETqEtAgK1LWjsECBBojoAA25xa6AmB3AQE2NwqajwEGiYgwDasILpDgACBGgQE2BqQNUGgowICbEcLb9gE6hIQYOuS1g4BAgSaIyDANqcWekIgNwEBNreKGg+BhgkIsA0riO4QIECgBgEBtgZkTRDoqIAA29HCGzaBugQE2LqktUOAAIHmCAiwzamFnhDITUCAza2ixkOgYQICbMMKojsECBCoQUCArQFZEwQ6KiDAdrTwhk2gLgEBti5p7RAgQKA5AgJsc2qhJwRyExBgc6uo8RBomIAA27CC6A4BAgRqEBBga0DWBIGOCgiwHS28YROoS0CArUtaOwQIEGiOgADbnFroCYHcBATY3CpqPAQaJiDANqwgukOAAIEaBATYGpA1QaCjAgJsRwtv2ATqEhBg65LWDgECBJojIMA2pxZ6QiA3AQE2t4oaD4GGCQiwDSuI7hAgQKAGAQG2BmRNEOiogADb0cIbNoG6BATYuqS1Q4AAgeYICLDNqYWeEMhNQIDNraLGQ6BhAgJswwqiOwQIEKhBQICtAVkTBDoqIMB2tPCGTaAuAQG2LmntECBAoDkCAmxzaqEnBHITEGBzq6jxEGiYgADbsILoDgECBGoQEGBrQNYEgY4KCLAdLbxhE6hLQICtS1o7BAgQaI6AANucWugJgdwEBNjcKmo8BBomIMA2rCC6Q4AAgRoEBNgakDVBoKMCAmxHC2/YBOoSEGDrktYOAQIEmiMgwDanFnpCIDcBATa3ihoPgYYJCLANK4juECBAoAYBAbYGZE0Q6KiAANvRwhs2gboEBNi6pLVDgACB5ggIsM2phZ4QyE1AgM2tosZDoGECAmzDCqI7BAgQqEFAgK0BWRMEOiogwHa08IZNoC4BAbYuae0QIECgOQICbHNqoScEchMQYHOrqPEQaJiAANuwgugOAQIEahAQYGtA1gSBjgoIsB0tvGETqEtAgK1LWjsECBBojoAA25xa6AmB3AQE2NwqajwEGiYgwDasILpDgACBGgQE2BqQNUGgowICbEcLb9gE6hIQYOuS1g4BAgSaIyDANqcWekIgNwEBNreKGg+BhgkIsA0riO4QIECgBgEBtgZkTRDoqIAA29HCGzaBugQE2LqktUOAAIHmCAiwzamFnhDITUCAza2ixkOgYQICbMMKojsECBCoQUCArQFZEwQ6KiDAdrTwhk2gLgEBti7ppWtn4TnnpFkzZ5Yfjtex9f7c+3r0vurnsT5X7Yu/tXG3axeslnWM1XdnovP07ovX1fc0PmtrhoAA24w66AWBHAUE2ByrakwEGiQgwDaoGP/tSvUP/nnzF6R5CxakU04+qQwAG260cfl3/DzWvvj4lZdfVgbSnV79mjR39uw0d87sFK/jnGPtG+s8ETa0saRjE62qWkV9+6159X3o93u1LG3EdzC+w9U5mve/tu72SIDtbu2NnMB0Cwiw0y3s/AQ6LiDANucLMDqERGBabrmUZhaBMgLA/CIIxDanCAVx7DnFf2Pti2Pi2GpfdWx8brx91bHaWOTKasnv3Hjfncms4nscv0iJ73CE5/g7frYNV0CAHa6/1gnkLCDA5lxdYyPQAAEBtgFF6OlCFVqrUNCzy0sCrReIALvlrJnlL2FaP5iWD0CAbXkBdZ9AgwUE2AYXR9cI5CAgwDajitUsVTN6oxcEpl8gVgbEbKxtOAIC7HDctUqgCwICbBeqbIwEhiggwA4R/79NV0uH4x/zcV2ijUDuAnE9d2xxXbZtOAIC7HDctUqgCwICbBeqbIwEhiggwA4Rv6fpCLGxmZHqQfEyWwFL5YdfWgF2+DXQAwK5CgiwuVbWuAg0RECAbUghdIMAAQI1CgiwNWJrikDHBATYjhXccAnULSDA1i2+eHuWDy/u4afuCMQsbGzuSDycmguww3HXKoEuCAiwXaiyMRIYooAAO0T8oukIsNUNnCwfHm4ttF6vQO9zjettWWshIMD6HhAgMF0CAux0yTovAQKlgADri0CAwDAEXPc9DPW72xRg77bwigCBwQoIsIP1dDYCBEYJCLCjQGr+Mf4Rv3Bh8TiR4tmYZmBrxtccgQ4LCLAdLr6hE5hmAQF2moGdnkDXBQTY4X4Dqmtg586e7VrA4ZZC6zULWEJcM/io5gTYUSB+JEBgYAIC7MAonYgAgbEEBNixVOp9b/6CBWlm8QxYM7D1umttuAI7vfo1acti5cGc4pc3tvoFBNj6zbVIoCsCAmxXKm2cBIYkIMAOCV6zBAgQGKKAADtEfE0TyFxAgM28wIZHYNgCAuxwK1DdhThmXz1OZLi10Hq9AnH3bdd+12ve25oA26vhNQECgxQQYAep6VwECCwhIMAuQVLrG66BrZVbYw0ScA3scIshwA7XX+sEchYQYHOurrERaICAANuAIugCgQ4KxC9vYnPt93CKL8AOx12rBLogIMB2ocrGSGCIAgLsEPH/27R/yA+/BnpAoGsCAmzXKm68BOoTEGDrs9YSgU4KCLDDLbslxMP11/rwBCwhHp59tCzADtdf6wRyFhBgc66usRFogIAAO/wieIzO8GugB/ULeIxO/ea9LQqwvRpeEyAwSAEBdpCazkWAwBICAuwSJN4gQIBA9gICbPYlNkACQxMQYIdGr2EC3RAQYIdb51hCXD5OxGN0hlsIrdcu4Nrv2skXa1CAXYzDDwQIDFBAgB0gplMRILCkgAC7pEmd77gGtk5tbTVJwDWww62GADtcf60TyFlAgM25usZGoAECAmwDiqALBDooENd+xzZn9uwOjn74QxZgh18DPSCQq4AAm2tljYtAQwQE2OEXwlLK4ddADwh0TUCA7VrFjZdAfQICbH3WWiLQSQEBdrhlt4R4uP5aH55A3IV4lmu/h1YAAXZo9BomkL2AAJt9iQ2QwHAFBNjh+keAjZs4zZ0zu/zH/HB7o3UC9Qm4BrY+67FaEmDHUvEeAQKDEBBgB6HoHAQIjCsgwI5LYwcBAgSyFRBgsy2tgREYuoAAO/QS6ACBvAUE2OHWN2ZgFy48J82aNdMM7HBLofWaBVz7XTP4qOYE2FEgfiRAYGACAuzAKJ2IAIGxBATYsVTqe881sPVZa6lZApYQD7ceAuxw/bVOIGcBATbn6hobgQYICLDDL0KE2LiZjY1AlwQ8Rme41RZgh+uvdQI5CwiwOVfX2Ag0QECAbUARdIEAAQI1CwiwNYNrjkCHBATYDhXbUAkMQ0CAHYb63W1aQny3hVfdEvAYneHWW4Adrr/WCeQsIMDmXF1jI9AAAQF2uEWIAOsxOsOtgdaHI+Aa2OG4V60KsJWEvwkQGLSAADtoUecjQGAxAQF2MQ4/ECBQk0D88iY213/XBD6qGQF2FIgfCRAYmIAAOzBKJyJAYCwBAXYslfrei3/Ee4xOfd5aIkBgkYAA65tAgMB0CQiw0yXrvAQIlAIC7HC/CK6BHa6/1ocnYAnx8OyjZQF2uP5aJ5CzgACbc3WNjUADBATY4RchQqxllMOvgx7UKxA3cdpy1sw0Z/bsehvWWikgwPoiECAwXQIC7HTJOi8BAqWAAOuLQIAAge4JCLDdq7kRE6hLQICtS1o7BDoqIMAOt/Ax+xp3IY4Z2LlzzEQNtxpar1Og/N4XM7BWH9SpfndbAuzdFl4RIDBYAQF2sJ7ORoDAKAEBdhRIzT+6BrZmcM01RsA1sMMthQA7XH+tE8hZQIDNubrGRqABAgJsA4qgCwQ6KBC/vInNDOxwii/ADsddqwS6ICDAdqHKxkhgiAIC7BDx/9u0f8gPvwZ6QKBrAgJs1ypuvATqExBg67PWEoFOCgiwwy27JcTD9df68AQsIR6efbQswA7XX+sEchYQYHOurrERaICAADv8IsxfsCDNLG7iZCnl8GuhB/UJeIxOfdZjtSTAjqXiPQIEBiEgwA5C0TkIEBhXQIAdl8YOAgQIZCsgwGZbWgMjMHQBAXboJdABAnkLCLDDrW8sIfYYneHWQOvDEXDt93Dcq1YF2ErC3wQIDFpAgB20qPMRILCYgAC7GEftP7gGtnZyDTZEwDWwwy2EADtcf60TyFlAgM25usZGoAECAmwDiqALBDooENd+xzZn9uwOjn74QxZgh18DPSCQq4AAm2tljYtAQwQE2OEXwlLK4ddADwh0TUCA7VrFjZdAfQICbH3WWiLQSQEBdrhlH8YS4v/85z99DXq55Zbr67jcDqp8ujr+uuoZdyGOO2/PnWMGti7z3nYE2F4NrwkQGKSAADtITeciQGAJAQF2CZJa34gAGzdxin/E1/UYnU+f8pl05ve/P+E4H7PFFmnPN75hwmNy3XnQIYek3/3u6rTHbrulLbec1cph3nTTTenW225Lq6+2Wlp11VUbOQbXwA63LALscP21TiBnAQE25+oaG4EGCAiw9RVh7t5vLhubd8zR9TU6RksC7BgoPW/lEGCP+/Dx6RfnnZe2e9EL0/Of97ye0TX7ZRWqdttl57TrLrs0u7Mt711lvcWMGWnY/5/UckrdJ0BglIAAOwrEjwQIDFZAgB2s50RniwAb/2js/QdjzMAuXHhOmjVrZm0zsP/+97/TnXfdVXb1H//4R3rH/u8sX79zv3ekBzzgAeXr5e9xj7TCCitMNJxs9wmw9ZR29LXfVaCK1gXY6a9B5d37/0fT36oWCBDogoAA24UqGyOBIQpEgI3th2edOcRedKfp0SF2GNfA9mpHgN1737eUbx343vekB/7P//TuTr/+zW/SRRddlK6+5tq0/gMfmDbb7JHpYQ996MgxF118SbryyivTQx/6kHSfNdZI5/zs3HSPIvw+7rGPSRtssEG6/Ior0gUXXphWuOcK6XGPe+xi5z+rWMZ8001/SzNnPj79/e9/T+cVM4Z/+etNaaNHPKII849Pq6+++kg78eL2228vjjk/XfXrX6e/FktkH1a0uemmm6YN1l9/5Lg/Xn99+ulPF6Z73/veacbmj07hu/zy90zPfMbTy2Ouve668hcGv//979PKq6ycNtl447T1VluVfa5O0m+A/fMNN6Rf/vKC9Kti/Pe9zxppo402Sps/+tHluf71r3+lM77z3fKUz3j60xZbxvujH/84/fnPN6QNN9wwbfbITctjJnPuHdfWW2+Vfv7zn6ff/vZ3ab311k2x3Ps+97lPeZ7K9Nxi/x/++Me0cdGnhxftrLHGvdNTtt22PCYcL7v8inTxxRelfxb9DINHbbZZccwa5f66/uhdQlyFqWhbeK2nApU573q8tUKgSwICbJeqbawEhiDwqRNOSJ884cRyVnDXYtmebfoFqqXE1cxHhKy6rn8dPbqJAuzZP/pROuGkk1N1U6P4bNzYaLedd04RomL7/Be+kL717TPS/xQztzcUge62IhzFttKKKxah8Rnpa9/4Rrrrv7O9K6+0UnrbW96SHvSgDcpjqqD46EdtliIIV8fFzgest15x7L4jIfaWW28trxW+4le/Kj9b/bH88sunPV67W3r84x5XvhVh+djimuK47nO14r/r//SnMuC+993vSuf/8pfp+I9+LMUMdO82+nrfql8TXQMb18h+4IMfTLfcckvvqdITt9km7fyaV5fvveXt7ygC+k2LXUt75513pr3evE+K8czZ801FyN489eNcjSuC6jprr13+YqBq+L73vW/a721vS2uttWaq+l7tq/6OXz4c8J53lz8eceRRI5+PekZ94xwHFvvrvF62eozOE57whNT7vwn/P1RVbfr+Pr9YCRL/vx9bLB+O/y+yESBAYFACAuygJJ2HAIFxBaoQO+4BdkybwLBnP8YLsFdffXURhg4txx3XUW6yySbpimI29Qun/28ZYmO2NkJmFWAjSO74speltYtw9elTTkk33Hhj+dmXbr9dEVgflD73+dNSzH4+42lPTS/fccdyXxW2IkRt+6QnlTOxvy5mV79dzFz+7W9/K0PpG163R3lsBM+fnXtuGbSe/tSnlEudf/Tjn6SYaYzPR38iRFdBLz4Us8lbFTdhWnfddcugeOz8+cX+i9JznvWsckY2+hNh94477kgHFAF3/f/O5Fb9Gi/ARgjd921vT2EX53/SE5+YbihmVE//8pfTX//61/SaV+2UnlyM55TPfDZ976yz0pbF8vA9XvvachwRwA//wJEpwvwxHzwq/eEPf+jLefS4nv3MZ5bn+8pXv5r+9Oc/pydsvXVxzejO5Yz5zTffkr76ta+VM8PbFL9omPn4mWmVYrY5Zs7j2P3e+a5yefhBB7y3DPkRZGIWeYeXviRtU5ynzq2aBayzTW3dLTDs//+5uydeESCQk4AAm1M1jYVAgwXiH5LxW3nb9AtUMx8x67HTK1+R4nEic2fPHsrjRMYLsDGrGuE0Qs8OL3vpCMrnT/tCuYR3p1e8Ij31KduOBNhHPPzh6e1vXbQU+fT//VI58xoB930HHlB+9ttnfCd97rTTyuXBMbMaWxUUYwnrW/ZZdIOreP97Z56ZTvnsqeUy4KOP/EA5Q7jXPvumWJY7OlTu/653l7OsryhC8dOLcFwFvQi17z/0kHS/tdaKU45ssax21Xvdq5wBjTc/9vFPpN/89rfpdbvvXi5bjveqfo1uK/bFFrOvccwqK6+c9nzTG0euFY5rmSOwPvYxj0lvesPr0yWXXpqOOvqYtFpxJ+BjjjqyDNpfLH4B8PVvfrNYYv3Y9MbXv66cve7HuRpXtP+u/fdLD3nwg+PliNV6RUg/+KADy/fij/Fu4hR3Jt67sIxZ6FjaHDPAMTu7yiqrLLaMeuRE0/iieozO6quvNjIbGP+b2GLG5tPYqlNXAjNKazOvlYe/CRAYnIAAOzhLZyJAgMDQBarZ7t7lw3U/RqcXYbwAW8149h7b+3rrrbZMr91115EAG0tnd9n5NeUh3ygCWszUblGEo9nFMtnYfnj22eVy5A0f9rC039vfVr5XBcVX7/TKtO2Tn1y+F3/09unIw99fhs13v/eAMmDNP/aYcvayOvgLXzw9feNb3xqZra2CXgTXww9bNINcHRuzr5/+zCnpxhv/Ur018vdrizveVsuiq36NF2DjOtOTi0cRjbfFUt4jDjssxUxtXF988803j4TOA993cHE98TUjgblf52pcscT32GLmNgJ6bFdedVU67PAjygC6oLCptvECbOyP/p9azIhXS6njZl0RZF+x4w61Xgfbew1s9b+L6J8lraFgI0CAQHsFBNj21k7PCRAgsJhA9Y/0KrwutnNIP/SGxd6bOJ36+c+XNyGKwPmkJz5hid6tueaa5c1/qiXEyxJge5cVR0PVMttYlhyhLJb4zi2uG41rNeNa1t6bNi047kPpvOLa1rhJUyxhroLe2ve/fzrskINH+h2ztxEm4zrbuEFUdY6YMY1AO5UAG9fSzi/ajTC5Y8/sdNXYPYubRsVdpWP7xKc+lX78k5+mF73g+eVS41h6fM973rNcPhwzuP06jzeuuKHVoe8/fEoBNvoVS50vLG7Oddnllxd/X1yG7Ljh01v33Sd217KNvgtx9b+PaFyIraUEGiFAgMC0CAiw08LqpAQIEKhfoLpRTe8zF+Mf8XU/Rqd35OMF2J//4hfpQ8d/pFwme8j7DhqZmTvhxJOKa0rXKZYPPyWtWNyoaRABNu4Y/J537l9e3xqzgrHE+pyf/Sw9+MEPSu/ef/+yuwcUM5fXFDOXca1nLLuOtq+59tp08KGHlQG3uiHSeEEvbhJ19LHHlqGzmsGMEPf24hFCMVPaOws82QzsP//5zxRLmmPba86cFDehiu3MIgxfe+11xXNXn1uOJd6rwu5DH/KQYpb5SeXY4vj4XGz9Oo83rskC7POe85y0/XYvLtuKP2JZ82nFrPVaxU2bqtnxmBGOmeH4hcHxxy2ofSnxSOeKF1WIdW1mr4rXBAgQaJeAANuueuktAQIEpiQQAbaJ18DGtZJHHvXB8vrQCDZxjWtcPxp31Y3rJQ98z3vKu94OIsAGWDx6Jx73EmEq7uwbS2RjVnSrYqlybHEDp4994pNl2Iz21177/uW1qLEvrtPdt7iGNu58PF7QixnYCJ0xi7tpcUOqNYsAFzO3/ylmZG8u2oubKr1k++3L63onC7DRZnWDpngdQfuOf99R3qQqfq7CdLyOR9bENae3F8E8rgm+rnh8z86vflU5Gxv7+3Ueb1zjBdj//dKX01e//vXy+ty4xjWuK31uEWbjJk7vOeDAcvnwo4pHIm2w/gbp0ssuK2/+1PsLg+jbdG+9S4h724rr8WOVgo0AAQIE2ikgwLazbnpNgACBvgWa+hidCJKf+OSn0iWXXZpuu23R43HiEThx7Wvc8Te2QQTYl++wQzkTGXfCjS1uehRLbmOWt3f75QUXpLiJVDwaJ4JohM5HF89djWtvI7zGNl7Qi30xq3ti8VigCI2xRWDevXgEz/wFx5XhM+5O/NKXbD/pTZzis9H+F04/PcWdkGMWO7Z4juqritnheCxP7xYz2THTGlsE87gxVe8zbvtxHm9c4wXYWBZ94sknFTOul5V97V3iHbOw3z7jjOKu0r8qH3t0r+IXAnGX6ZipXXeddXq7Pq2v4xc3cYfmOcUNzGwECBAgkI+AAJtPLY2EAAECrRSIJba/Lx73EjdGitnPQW2jZzrj0Tu3FeEyZiqrmxSN1VbMpt5UPGZnsuPG+mxcAxszySuvtHI5gzzWMVN974/XX18G6HiW6rJs0+U8Xp/i2uL4ZUCE1phltxEgQIAAgUEICLCDUHQOAgQINFQgZl/jLsSzZs4cymN0hskyOsAOsy/arl+g/N4XM7Dx3bcRIECAQD4CAmw+tTQSAgQILCEw7Gtgl+hQjW8IsDViN7Cp8a6BbWBXdYkAAQIEpiAgwE4By6EECBAg0B6BuCb173//R9qsuJlQnddetkco757GL29iMwObd52NjgCB7gkIsN2ruRETINAxAf+Q71jBDZcAAQIECGQsIMBmXFxDI0CAQJeXEKt+twUsIe52/Y2eAIF8BQTYfGtrZAQIECgF5i9YkGYWN7KxlNIXoksCHqPTpWobKwECXRIQYLtUbWMlQIAAAQIECBAgQIBAiwUE2BYXT9cJECAwmUAsIe7qY3Qms7E/bwHXfuddX6MjQKC7AgJsd2tv5AQIdEDANbAdKLIhjingGtgxWbxJgACB1gsIsK0voQEQIECAAAECowXi2u/Y5syePXqXnwkQIECgxQICbIuLp+sECBDoR8BSyn6UHEOAAAECBAi0QUCAbUOV9JEAAQJLKWAJ8VLC+VjrBeIuxHHn7blzzMC2vpgGQIAAgR4BAbYHw0sCBAjkJhABNm7iFP+I9xid3KprPBMJuAZ2Ih37CBAg0F4BAba9tdNzAgQIECBAgAABAgQIdEpAgO1UuQ2WAIGuCcQM7MKF56RZs2aage1a8Ts+Xtd+d/wLYPgECGQrIMBmW1oDI0CAQEqugfUt6KqAJcRdrbxxEyCQu4AAm3uFjY8Agc4LRIh1/WvnvwadA/AYnc6V3IAJEOiIgADbkUIbJgECBAgQIECAAAECBNouIMC2vYL6T4AAgQkELCGeAMeurAU8Rifr8hocAQIdFhBgO1x8QydAIH+BCLAeo5N/nY1wSQHXwC5p4h0CBAjkICDA5lBFYyBAgAABAgQIECBAgEAHBATYDhTZEAkQ6K5AzMB6jE5362/kBAgQIEAgNwEBNreKGg8BAgR6BFwD24PhZacELCHuVLkNlgCBDgkIsB0qtqESINBNgQixHqPTzdp3edRxE6ctZ81Mc2bP7jKDsRMgQCA7AQE2u5IaEAECBAgQIECAAAECBPIUEGDzrKtRESBAoBSo7kIcM7Bz55iJ8rXojkDcfXtWMQNr9UF3am6kBAh0Q0CA7UadjZIAgY4KuAa2o4U37OQaWF8CAgQI5CkgwOZZV6MiQIAAAQKdFohf3sRmBrbTXwODJ0AgQwEBNsOiGhIBAgR6BfxDvlfDawIECBAgQKDNAgJsm6un7wQIEJhEwBLiSYDszlbAEuJsS2tgBAh0XECA7fgXwPAJEMhfYP6CBWlmcRMnSynzr7UR3i3gMTp3W3hFgACBnAQE2JyqaSwECBAgQIAAAQIECBDIWECAzbi4hkaAAIFYQlw+TsRjdHwZOibgMTodK7jhEiDQGQEBtjOlNlACBLoo4BrYLlbdmEPANbC+BwQIEMhTQIDNs65GRYAAAQIEOi0Q137HNmf27E47GDwBAgRyExBgc6uo8RAgQGCUgMfojALxIwECBAgQINBaAQG2taXTcQIECEwuYAnx5EaOyFMg7kIcd96eO8cMbJ4VNioCBLoqIMB2tfLGTYBAJwSqmzjFP+I9RqcTJTfI/wq4BtZXgQABAnkKCLB51tWoCBAgQIAAAQIECBAgkJ2AAJtdSQ2IAAECdwvEDOzCheekWbNmmoG9m8WrDgi49rsDRTZEAgQ6KSDAdrLsBk2AQFcEXAPblUob52gBS4hHi/iZAAECeQgIsHnU0SgIECAwrkCEWNe/jstjR6YCHqOTaWENiwCBzgsIsJ3/CgAgQKALAkJsF6psjAQIECBAIH8BATb/GhshAQIdF4jHiUSAvfLyyzouYfhdEZg3f0H5nT/l5JO6MmTjJECAQGcEBNjOlNpACRDoqkD8Y3655VKaWTwT01Lirn4LujVuv7TpVr2NlgCBbgkIsN2qt9ESINBxAUuJO/4F6NDwfdc7VGxDJUCgUwICbKfKbbAECHRZoJqVimWVZmK7/E3Id+zxHY/N0uF8a2xkBAgQEGB9BwgQINARgZiRiuXE8Y/73tcx/Hi/elZs7Ot9dmzsi23unNnl58bbF8eMdZ743Hj7qja1sch8kFaj61j9PFEbvfuiZvFz9bl+alUd23ue6nNj7Rt0G/E9inYE2JC1ESBAIE8BATbPuhoVAQIEJhSIf+jPW7AozMZsbO8zM6t9c2fPLgNMNXMbN4GKcBA/j7UvGhzrPNWM71j7xjqPNgZTj8ox6hs1qOo6UT2qff3WvCltxHfPTcpCwUaAAIH8BQTY/GtshAQIEBhTIMJHtZS495mZ8f45xX/VTZ+qn+cUgTa2OHaifXFMHFt9rjq2i21s8bjHpze8bo/0+te9bsSj15HVOeV3JRyW9nsV37PYqu9y+YM/CBAgQCBbAQE229IaGAECBAgMW+CJ2z4lbTFjRpp3zNHD7or2CRAgQIBAFgICbBZlNAgCBAgQaKKAANvEqugTAQIECLRZQIBtc/X0nQABAgQaLSDANro8OkeAAAECLRQQYFtYNF0mQIAAgXYICLDtqJNeEiBAgEB7BATY9tRKTwkQIECgZQICbMsKprsECBAg0HgBAbbxJdJBAgQIEGirgADb1srpNwECBAg0VUCAbWpl9IsAAQIEWi8gwLa+hAZAgAABAg0TEGAbVhDdIUCAAIF8BATYfGppJAQIECDQDAEBthl10AsCBAgQyFBAgM2wqIZEgAABAkMVEGCHyq9xAgQIEMhZQIDNubrGRoAAAQLDEBBgh6GuTQIECBDohIAA24kyGyQBAgQI1CggwNaIrSkCBAgQ6JaAANutehstAQIECEy/gAA7/cZaIECAAIGOCgiwHS28YRMgQIDAtAkIsNNG68QECBAg0HUBAbbr3wDjJ0CAAIFBCwiwgxZ1PgIECBAg8F8BAdZXgQABAgQIDFZAgB2sp7MRIECAAIERAQF2hMILAgQIECAwEAEBdiCMTkKAAAECBJYUEGCXNPEOAQIECBBYFgEBdln0fJYAAQIECEwgIMBOgGMXAQIECBBYCgEBdinQfIQAAQIECPQjIMD2o+QYAgQIECDQv4AA27+VIwkQIECAwJQEBNgpcTmYAAECBAhMKiDATkrkAAIECBAgsHQCAuzSufkUAQIECBAYT0CAHU/G+wQIECBAYBkFBNhlBPRxAgQIECAwSkCAHQXiRwIECBAgMCgBAXZQks5DgAABAgQWCQiwvgkECBAgQGCaBATYaYJ1WgIECBDorIAA29nSGzgBAgQITLeAADvdws5PgAABAl0TEGC7VnHjJUCAAIHaBATY2qg1RIAAAQIdERBgO1JowyRAgACB+gUE2PrNtUiAAAECeQsIsHnX1+gIECBAYIgCAuwQ8TVNgAABAlkKCLBZltWgCBAgQKAJAgJsE6qgDwQIECCQk4AAm1M1jYUAAQIEGiUgwDaqHDpDgAABAhkICLAZFNEQCBAgQKCZAgJsM+uiVwQIECDQXgEBtr2103MCBAgQaLiAANvwAukeAQIECLROQIBtXcl0mAABAgTaIiDAtqVS+kmAAAECbREQYNtSKf0kQIAAgdYJCLCtK5kOEyBAgEDDBQTYhhdI9wgQIECgvQICbHtrp+cECBAg0EwBAbaZddErAgQIEMhAQIDNoIiGQIAAAQKNEhBgG1UOnSFAgACBnAQE2JyqaSwECBAg0AQBAbYJVdAHAgQIEMhSQIDNsqwGRYAAAQJDFBBgh4ivaQIECBDIW0CAzbu+RkeAAAEC9QsIsPWba5EAAQIEOiIgwHak0IZJgAABArUJCLC1UWuIAAECBLomIMB2reLGS4AAAQLTLSDATrew8xMgQIBAZwUE2M6W3sAJECBAYJoEBNhpgnVaAgQIECAgwPoOECBAgACBwQoIsIP1dDYCBAgQIDAiIMCOUHhBgAABAgQGIiDADoTRSQgQIECAwJICAuySJt4hQIAAAQLLIiDALouezxIgQIAAgQkEBNgJcOwiQIAAAQJLISDALgWajxAgQIAAgX4EBNh+lBxDgAABAgT6FxBg+7dyJAECBAgQmJKAADslLgcTIECAAIFJBQTYSYkcQIAAAQIElk5AgF06N58iQIAAAQLjCQiw48l4nwABAgQILKOAALuMgD5OgAABAgRGCQiwo0D8SIAAAQIEBiUgwA5K0nkIECBAgMAiAQHWN4EAAQIECEyTgAA7TbBOS4AAAQKdFRBgO1t6AydAgACB6RYQYKdb2PkJECBAoGsCAmzXKm68BAgQIFCbgABbG7WGCBAgQKAjAgJsRwptmAQIECBQv4AAW7+5FgkQIEAgbwEBNu/6Gh0BAgQIDFFAgB0ivqYJECBAIEsBATbLshoUAQIECDRBQIBtQhX0gQABAgRyEhBgc6qmsRAgQIBAowQE2EaVQ2cIECBAIAMBATaDIhoCAQIECDRTQIBtZl30igABAgTaKyDAtrd2ek6AAAECDRcQYBteIN0jQIAAgdYJCLCtK5kOEyBAgEBbBATYtlRKPwkQIECgLQICbFsqpZ8ECBAg0DoBAbZ1JdNhAgQIEGi4gADb8ALpHgECBAi0V0CAbW/t9JwAAQIEmikgwDazLnpFgAABAhkICLAZFNEQCBAgQKBRAgJso8qhMwQIECCQk4AAm1M1jYUAAQIEmiAgwDahCvpAgAABAlkKCLBZltWgCBAgQGCIAgLsEPE1TYAAAQJ5CwiwedfX6AgQIECgfgEBtn5zLRIgQIBARwQE2I4U2jAJECBAoDYBAbY2ag0RIECAQNcEBNiuVdx4CRAgQGC6BQTY6RZ2fgIECBDorIAA29nSGzgBAgQITJOAADtNsE5LgAABAgQEWN8BAgQIECAwWAEBdrCezkaAAAECBEYEBNgRCi8IECBAgMBABATYgTA6CQECBAgQWFJAgF3SxDsECBAgQGBZBATYZdHzWQIECBAgMIGAADsBjl0ECBAgQGApBATYpUDzEQIECBAg0I+AANuPkmMIECBAgED/AgJs/1aOJECAAAECUxIQYKfE5WACBAgQIDCpgAA7KZEDCBAgQIDA0gkIsEvn5lMECBAgQGA8AQF2PBnvEyBAgACBZRQQYJcR0McJECBAgMAoAQF2FIgfCRAgQIDAoAQE2EFJOg8BAgQIEFgkIMD6JhAgQIAAgWkSEGCnCdZpCRAgQKCzAgJsZ0tv4AQIECAw3QIC7HQLOz8BAgQIdE1AgO1axY2XAAECBKZN4FMnnJDOO/+Xad4xR5dt9AbY884/P83d+83lvi1mzJi2PjgxAQIECBDIWUCAzbm6xkaAAAECtQpEgP3kCSemCKgRYqsAu+suO5fhNTqzW/F61112qbVfGiNAgAABArkICLC5VNI4CBAgQKARAr0hNmZdezfhtVfDawIECBAgMHUBAXbqZj5BgAABAgQmFKhCbO9BwmuvhtcECBAgQGDpBATYpXPzKQIECBAgMKFAb4gVXiekspMAAQIECPQtIMD2TeVAAgQIECAwNYEIsbG55rVk8AcBAgQIEFhmAQF2mQmdgAABAu0TmDd/QZq3YEH7Oq7HBMYQmDVzZpo7Z3aKv20ECBAgkLeAAJt3fY2OAAECiwmMDq7+wb8Yjx9aKrDwnHNGej539uwyzI684QUBAgQIZCUgwGZVToMhQIDA+AI7vfo1Kf6hH6F1y1kz05ziH/o2AjkIxPc6fjlTBVkhNoeqGgMBAgTGFhBgx3bxLgECBLISqMLrXsUyS8E1q9IaTI9ABNj4rscmxPbAeEmAAIGMBATYjIppKAQIEBhLoPpHfcy8nnLySWMd4j0C2QhU3/cY0JWXX5bNuAyEAAECBBYJCLC+CQQIEMhcoJp9jfDqmtfMi214pUB1rbdZWF8IAgQI5CcgwOZXUyMiQIDAYgIbbrRxGVzNvi7G4oeMBQTYjItraAQIdF5AgO38VwAAAQI5C1TLKS0fzrnKxjaWgF/cjKXiPQIECLRfQIBtfw2NgAABAuMKVAHWUspxiezIVECAzbSwhkWAQOcFBNjOfwUAECCQs4AAm3N1jW0iAQF2Ih37CBAg0F4BAba9tdNzAgQITCogwE5K5IBMBQTYTAtrWAQIdF5AgO38VwAAAQI5CwiwOVfX2CYSEGAn0rGPAAEC7RUQYNtbOz0nQIDApAIC7KREDshUQIDNtLCGRYBA5wUE2M5/BQAQIJCzgACbc3WNbSIBAXYiHfsIECDQXgEBtr2103MCBAhMKiDATkrkgEwFBNhMC2tYBAh0XkCA7fxXAAABAjkLCLA5V9fYJhIQYCfSsY8AAQLtFRBg21s7PSdAgMCkAgLspEQOyFRAgM20sIZFgEDnBQTYzn8FABAgkLOAAJtzdY1tIgEBdiId+wgQINBeAQG2vbXTcwIECEwqIMBOSuSATAUE2EwLa1gECHReQIDt/FcAAAECOQsIsDlX19gmEhBgJ9KxjwABAu0VEGDbWzs9J0CAwKQCAuykRA7IVECAzbSwhkWAQOcFBNjOfwUAECCQs4AAm3N1jW0iAQF2Ih37CBAg0F4BAba9tdNzAgQITCogwE5K5IBMBQTYTAtrWAQIdF5AgO38VwAAAQI5CwiwOVfX2CYSEGAn0rGPAAEC7RUQYNtbOz0nQIDApAIC7KREDshUQIDNtLCGRYBA5wUE2M5/BQAQIJCzgACbc3WNbSIBAXYiHfsIECDQXgEBtr2103MCBAhMKiDATkrkgEwFBNhMC2tYBAh0XkCA7fxXAAABAjkLCLA5V9fYJhIQYCfSsY8AAQLtFRBg21s7PSdAgMCkAgLspEQOyFRAgM20sIZFgEDnBQTYzn8FABAgkLOAAJtzdY1tIgEBdiId+wgQINBeAQG2vbXTcwIECEwqIMBOSuSATAUE2EwLa1gECHReQIDt/FcAAAECOQsIsDlX19gmEhBgJ9KxjwABAu0VEGDbWzs9J0CAwKQCAuykRA7IVECAzbSwhkWAQOcFBNjOfwUAECCQs4AAm3N1jW0iAQF2Ih37CBAg0F4BAba9tdNzAgQITCogwE5K5IBMBQTYTAtrWAQIdF5AgO38VwAAAQI5CwiwOVfX2CYSEGAn0rGPAAEC7RUQYNtbOz0nQIDApAIC7KREDshUQIDNtLCGRYBA5wUE2M5/BQAQIJCzgACbc3WNbSIBAXYiHfsIECDQXgEBtr2103MCBAhMKiDATkrkgEwFBNhMC2tYBAh0XkCA7fxXAAABAjkLCLA5V9fYJhIQYCfSsY8AAQLtFRBg21s7PSdAgMCkAgLspEQOyFRAgM20sIZFgEDnBQTYzn8FABAgkLOAAJtzdY1tIgEBdiId+wgQINBeAQG2vbXTcwIECEwqIMBOSuSATAUE2EwLa1gECHReQIDt/FcAAAECOQsIsDlX19gmEhBgJ9KxjwABAu0VEGDbWzs9J0CAwKQCAuykRA7IVECAzbSwhkWAQOcFBNjOfwUAECCQs4AAm3N1jW0iAQF2Ih37CBAg0F4BAba9tdNzAgQITCogwE5K5IBMBQTYTAtrWAQIdF5AgO38VwAAAQI5CwiwOVfX2CYSEGAn0rGPAAEC7RUQYNtbOz0nQIDApAIC7KREDshUQIDNtLCGRYBA5wUE2M5/BQAQIJCzgACbc3WNbSIBAXYiHfsIECDQXgEBtr2103MCBAhMKjCdAfauu+4q27/HPe4xaT+m84D//Oc/Kf7r7ce1112X7rfWWmnllVeetOkYx3LLLVf+N+nBfR7w73//O/3hj39MG6y/fp+fcNigBQTYQYs6HwECBJohIMA2ow56QYAAgWkRmM4A+5SnPT1dc+216ZD3HZR23GGHael/Pyd98Uteki666OJ05BFHpBe/6IXpa1//etrrzfukddddN5313e+ke97znuOe5pTPfCa998CD0pazZqVPn3TiuMeNtSNCagTl2B7y4AeXf8cfEaaf+/wXpF9deWV634EHpFe8/OUj+7xYJPCPf/wj3XDjjWmV4hcMUafp2ATY6VB1TgIECAxfQIAdfg30gAABAtMm0MUA+6lPnZAOef/70yqrrJx+fPbZafXVVhvXd1kC7OVXXJGe94IXpuWXXz5dfsnFI21EsN3qCU9MN910U3rTG96Q9nnz3iP7vFgkcNLJn04HHXxw2nqrrdJJJ3xqWlgE2GlhdVICBAgMXUCAHXoJdIAAAQLTJ9DFAHvbbbelr3/jm+lhD31oevSjHzUh7nQE2GjwsssvTxdffHF69rOfnVa9170m7EMXdwqwXay6MRMgQGAwAgLsYBydhQABAo0UqDPA/vo3v0lf+cr/pbWKa0+333679M1vfjNdeOFFacMNH5ae+YxnpLXXXrs0+sQnPpn+8c9/pqc/7Wlps80eOeIWff3JT35aLCldJ718xx3L92OW8//+76vpV7/6VVpt9dXSVltumbZ78YvLWc/qg6OXEFf9uM8aa6Rddtm5Oiz96U9/Sl/72tfTOeeem1YvzrX9dtulq666aswlxBO1W53/xmIJ7Gc/97ny2tk93/jGsp3nP/95acOHPSx99tRT0/XX/yk961nPTJtsvPFiffjOd7+bzjv//HKp8WO22KJ0qGziwB/+8Oz081/8Is2YsXl6+IYPT2eccUb63dVXpy2KY5/x9KeXM8sjJxzjxUR97z380ksvTd/69hkpjt90k40Lj+3TRRdflC699LK01VZbplkzZ44cfvU116Tvfe/Msl/rrH3/NKtYcv3UpzxlpA6VyWS1/8EPfph+cd556cKLLkzfL16v/8AHphe98IVlO298w+vTSiutNNLmsr4wA7usgj5PgACBZgoIsM2si14RIEBgIAJ1Btgzzzor7fH6N5RBNa4JjbarLa5z/PxnP5se8ID10t777Ju++rWvpR1e+tJ06CEHV4ek3V/3unTW93+Qdi1C5zv32y9F0Ju795vT7bffPnJMvHjWM5+Zjps/b+S90QG26kfcQOl73zmjPO76669PL3/lTuU1u9UH46ZPMzbfvAxUvdfATtbu9848M73uDYsCa3Wu6u8PLZhfhvXRfYr9VxQhfJfdXlsG6er4+DvC6wmf/ER6xMMfXr592OGHp0988lNlgPzNb3+72PFP2Gbr9LGPfCStsMIKvacYeT1Z36sDf/TjH5djiNnqaltnnXXSmmuuWQTYS9Pec+ek2XvuWe66+OJL0qt23jnFdau928uKa4+jfnEDrMo8xjJR7Q8tlnZ/sljiPdb2i5+dk+5973uPtWup3hNgl4rNhwgQINB4AQG28SXSQQIECCy9wDACbPR2o0c8Iu3+2teWHV9w3HHlDOJLt98+vf+wQ9M3ipnZOXvtnSIw/egH3y+PiSD12Jmz0q233ppO/cwp6XGPfexIoH3d7run3XbdpZwp3P11r09xjen/fel/0yabbFJ+dnRYrMJUb4B97R57lDN+EaB323mXtMmmm5SzxZ877bTyHL0BtgrS47Ub/b7kkkuLGzhdm971nveWdz/+5Mc+Vp5nk2ImM2YhR/cpbuy09ROflP785z+Xy5pfvdOryuNPPuXT6YILLkz3v//9S4sI1VWAjQOe8uQnp512emW66sqr0jFFaL/lllvTB4qAu92LX1R+fvQfk/U9zMLvcYX1v26+OT32MY9JO7/m1WnFFVdMnz7llHT2j35cnrIKsHfccUfZ77/85S/lDbJ2eNnL0rXXXpeOOvroYob5+nTwQQeWs+WVeXx4otpHIL+u+HwE7U8XN9DadNNN09v23bdsc8stZ014w63yoCn8IcBOAcuhBAgQaJGAANuiYukqAQIEpiowrAB7+hdOS49+1KLrTyMYHXDQ+8prUr/1ja+XwWnmllulCK1f/cqX08YbbVQum921CKr3u9/90o9/+IORR+Jc9etfpzWKWbl//utf5dD32fct6YILL0xHH3VUekGxXDe20WGxClNVgL3zzjvTYx73+LLd0eFv+yKQRYDsDbBxzn7ajaW3Y93Eaaw+XXrZZekFL3pxOVv5gzO/l9Zbb704LP2xeNTOE7d9Srmc+P++/KVyuXEVYOPmUz9b+NORUDd77l7pm9/6VnplcVfjg4q7G4+3Tdb3WMK7w8tfURr/8Kwzy18kxLliWfdW2zyh/CVCFWDj7s7hG3350HELyqAbx8ay7gigz37Ws9KCeceOzMDGvolqH/tjcw3sIgd/EiBAgMDUBQTYqZv5BAECBFojMIwAe5/73Cf97Kc/KcNaQFWBafXVV0/nnfuz0u71xRLc7xZLcd/+1rekPYrgesihh6ZPnXhSekVx7ev7ilm92L5fLCd+TxHUrrvu9+XPvX8cUSxF3X67F5dvTRZg43E2z3ne88vrNX9RtN97U6WPffzj6fAPHLlYgO233akE2M8Uy6ffc8CBafNHPzp98bTP9w4lveRlO6RfXnBBOuiA96ZXvuIVIzOwcd1wLEmutg8ff3wx83lMeR3sh4swOdbWT99P/vQp6cD3vS/F9befP/Wzi51mj2KG+8zvf39kCXHV78UO6vkhZrR/UNSx+qVBP7WPjwuwPYheEiBAgMCUBATYKXE5mAABAu0SGEaArWY+K6m4YdHLdnx5ceOkuwPsF08/Pb19v/3L6zxPOfmk9MxnPyfFjYBiKe6TnvTE9Le//S3N3GrrFLOnMdNa3QjplCIIRqCdSoCNx9k8btaWZXd6lx7HG+8o+vCFoi/VDOxU2p1KgP3u976XXv/GN6X73ve+6Sdn/3BkVjWW6MYjd/7617+mj3z4Q+lpT33qSIAdfY3w8cW1r0d+8OhxA2y/fT+rCKixFHu1VVdNP/nRj0ZuChV9ecKTt0033HDDSICNpb5veNOeKYLpfm9/W1XSkb9XWGHF9MIXPH8kwPZT+/iwADtC6AUBAgQITFFAgJ0imMMJECDQJoGmBtgIlbO23qacpf3fL36hXF4by1TPKWZu4wZFZ5/9o7RLcQ3tGsWdhM8tltHGjYLimssnP/VpKYJWNVsZtZhsBjaOecaznp3i+ssIhQcWM53RxrXXXZde8MIXlUtnqwA7lXarABvXrV5w3i/SyiuvHE2V2+g+/f3vfy9D9F133VVeN7rjDjuUx33u858fuY42xhk3MaqWEE81wPbb9+hLXG8c1+XGtcVvfP3ry0D9qRNOTPMWLJrZrZYQR7B+fLHcO7ZPfPSj6clPflL5Oh4/dNlllxc3enpTuQS5moGdaoDdYsaMdNrnTi3POeg/XAM7aFHnI0CAQDMEBNhm1EEvCBAgMC0CTQ2wMdhXvWbn9NOFC8trYOO5qTGT98EjjywdIuDGDGwEvm223jqtV9zF+IxiNvCuYkY2rtWM2cN999knvfpVO/UVYKvrcOPkMZv48A03TOf+/OdlMI42qgA7lXZ7rxmN4Bazqx89/sNj3sQp2j34kEPSCSedHC/Lx8fE39dce238lXYpbqT0rne+s3y9tAF2Kn0/5th5acGHPlS2F2E+Qnjc3CmWV8e4qgAbBxxw4EHl9a7x+lGP2izdftvt5Q214udq1niqATbugrzzrrvFKcqbcYVf752lyx3L+IcAu4yAPk6AAIGGCgiwDS2MbhEgQGAQAk0OsNW1mNU442ZAcVOgaotH7bzzXe8ub74U78WdiT9wxOHpDcVS3Jj9jLsEv624hnb0bOd4Yerjn/hE+vBHPlouT47A9tRtt01PeMI25Q2mqgAb7fTbbhx7QnHd7keKZc9xd+HYzv7+WcVzbNddok/lzuKPuCPzKZ89deT4uPvwTq94+cgja+K4pQ2w8dkp9b2Ycf3yV/+vfO7rA4qbSr15773Tt4tnzsZdonsDbMzUHv6BD6TT//dLKe5GHFv0+8D3vqd8ZFD8PJ75WMvH4/j4pcH+73xX+lpxU6+4s/Lomds4Zlk3AXZZBX2eAAECzRQQYJtZF70iQIDAQASmM8AOpIOTnCSugY276q626mrlM2QnOXzS3RGcrrzqqvIuwLFkebxt0O2ObieWL8f2wP/5n9G7lvnnqfY9Amos0Y4tHm80OsD2diiuU77XKquUIb33/Sa+FmCbWBV9IkCAwLILCLDLbugMBAgQaKxA2wNsY2Fb3rGY9fxMcR1r73bnXXem4z/6sRTXyO7/9ren3XbbtXd3614LsK0rmQ4TIECgLwEBti8mBxEgQKCdAgJsO+s23b2+8cYby5tojdXO8ssvn8741jfLZb1j7W/LewJsWyqlnwQIEJiagAA7NS9HEyBAoFUCAmyrylVbZ2+99db0uc+ftkR7K620YnrqU56S1l577SX2te0NAbZtFdNfAgQI9CcgwPbn5CgCBAi0UkCAbWXZdHoAAgLsABCdggABAg0UEGAbWBRdIkCAwKAEBNhBSTpP2wQE2LZVTH8JECDQn4AA25+TowgQINBKAQG2lWXT6QEICLADQHQKAgQINFBAgG1gUXSJAAECgxIQYAcl6TxtExBg21Yx/SVAgEB/AgJsf06OIkCAQCsFBNhWlk2nByAgwA4A0SkIECDQQAEBtoFF0SUCBAgMSkCAHZSk87RNQIBtW8X0lwABAv0JCLD9OTmKAAECrRQQYFtZNp0egIAAOwBEpyBAgEADBQTYBhZFlwgQIDAoAQF2UJLO0zYBAbZtFdNfAgQI9CcgwPbn5CgCBAi0UkCAbWXZdHoAAgLsABCdggABAg0UEGAbWBRdIkCAwKAEBNhBSTpP2wQE2LZVTH8JECDQn4AA25+TowgQINBKAQG2lWXT6QEICLADQHQKAgQINFBAgG1gUXSJAAECgxIQYAcl6TxtExBg21Yx/SVAgEB/AgJsf06OIkCAQCsFBNhWlk2nByAgwA4A0SkIECDQQAEBtoFF0SUCBAgMSkCAHZSk87RNQIBtW8X0lwABAv0JCLD9OTmKAAECrRQQYFtZNp0egIAAOwBEpyBAgEADBQTYBhZFlwgQIDAoAQF2UJLO0zYBAbZtFdNfAgQI9CcgwPbn5CgCBAi0UkCAbWXZdHoAAgLsABCdggABAg0UEGAbWBRdIkCAwKAEBNhBSTpP2wQE2LZVTH8JECDQn4AA25+TowgQINBKAQG2lWXT6QEICLB4BgvQAABAAElEQVQDQHQKAgQINFBAgG1gUXSJAAECgxIQYAcl6TxtExBg21Yx/SVAgEB/AgJsf06OIkCAQCsFBNhWlk2nByAgwA4A0SkIECDQQAEBtoFF0SUCBAgMSkCAHZSk87RNQIBtW8X0lwABAv0JCLD9OTmKAAECrRQQYFtZNp0egIAAOwBEpyBAgEADBQTYBhZFlwgQIDAoAQF2UJLO0zYBAbZtFdNfAgQI9CcgwPbn5CgCBAi0UkCAbWXZdHoAAgLsABCdggABAg0UEGAbWBRdIkCAwKAEBNhBSTpP2wQE2LZVTH8JECDQn4AA25+TowgQINBKAQG2lWXT6QEICLADQHQKAgQINFBAgG1gUXSJAAECgxIQYAcl6TxtExBg21Yx/SVAgEB/AgJsf06OIkCAQCsFBNhWlk2nByAgwA4A0SkIECDQQAEBtoFF0SUCBAgMSkCAHZSk87RNQIBtW8X0lwABAv0JCLD9OTmKAAECrRQQYFtZNp0egIAAOwBEpyBAgEADBQTYBhZFlwgQIDAoAQF2UJLO0zYBAbZtFdNfAgQI9CcgwPbn5CgCBAi0UkCAbWXZdHoAAgLsABCdggABAg0UEGAbWBRdIkCAwKAEBNhBSTpP2wQE2LZVTH8JECDQn4AA25+TowgQINBKAQG2lWXT6QEICLADQHQKAgQINFBAgG1gUXSJAAECgxIQYAcl6TxtExBg21Yx/SVAgEB/AgJsf06OIkCAQCsFBNhWlk2nByAgwA4A0SkIECDQQAEBtoFF0SUCBAgMSkCAHZSk87RNQIBtW8X0lwABAv0JCLD9OTmKAAECrRQQYFtZNp0egIAAOwBEpyBAgEADBQTYBhZFlwgQIDBIAf+QH6Smc7VFwPe+LZXSTwIECExNQICdmpejCRAg0DqB+Id8bFdeflnr+q7DBJZGoFp5sNec2WnO7NlLcwqfIUCAAIGGCgiwDS2MbhEgQGBQAvPmL0jzFixIc4t/yM8t/kFvI5C7wE6vfk2KEHvKySelWTNn5j5c4yNAgECnBATYTpXbYAkQ6KpANQvrH/Rd/QZ0Z9zVL2wiuMb33UaAAAECeQkIsHnV02gIECAwpkD1j/rYKcSOSeTNDASq77nwmkExDYEAAQLjCAiw48B4mwABArkJVP+4j3HFP/AtJ86twt0dz8KF55TL5KvvtpnX7n4XjJwAgfwFBNj8a2yEBAgQGBGI6wIjyMbfNgK5CbhpU24VNR4CBAgsKSDALmniHQIECGQvEAH2HCF22uv8yRNOTFvM2Lz4b8a0t9X1BtxtuOvfAOMnQKArAgJsVyptnAQIECBQu8ATt31KGV7nHXN07W1rkAABAgQI5CggwOZYVWMiQIAAgUYICLCNKINOECBAgEBGAgJsRsU0FAIECBBoloAA26x66A0BAgQItF9AgG1/DY2AAAECBBoqIMA2tDC6RYAAAQKtFRBgW1s6HSdAgACBpgsIsE2vkP4RIECAQNsEBNi2VUx/CRAgQKA1AgJsa0qlowQIECDQEgEBtiWF0k0CBAgQaJ+AANu+mukxAQIECDRbQIBtdn30jgABAgRaLCDAtrh4uk6AAAECjRQQYBtZFp0iQIAAgRwEBNgcqmgMBAgQINAkAQG2SdXQFwIECBDISkCAzaqcBkOAAAECDRAQYBtQBF0gQIAAgTwFBNg862pUBAgQIDA8AQF2ePZaJkCAAIHMBQTYzAtseAQIECBQu4AAWzu5BgkQIECgKwICbFcqbZwECBAgUJeAAFuXtHYIECBAoHMCAmznSm7ABAgQIDDNAgLsNAM7PQECBAh0V0CA7W7tjZwAAQIEpkdAgJ0eV2clQIAAAQJJgPUlIECAAAECgxUQYAfr6WwECBAgQGBEQIAdofCCAAECBAgMRECAHQijkxAgQIAAgSUFBNglTbxDgAABAgSWRUCAXRY9nyVAgAABAhMICLAT4NhFgAABAgSWQkCAXQo0HyFAgAABAv0ICLD9KDmGAAECBAj0LyDA9m/lSAIECBAgMCUBAXZKXA4mQIAAAQKTCgiwkxI5gAABAgQILJ2AALt0bj5FgAABAgTGExBgx5PxPgECBAgQWEYBAXYZAX2cAAECBAiMEhBgR4H4kQABAgQIDEpAgB2UpPMQIECAAIFFAgKsbwIBAgQIEJgmAQF2mmCdlgABAgQ6KyDAdrb0Bk6AAAEC0y0gwE63sPMTIECAQNcEBNiuVdx4CRAgQKA2AQG2NmoNESBAgEBHBATYjhTaMAkQIECgfgEBtn5zLRIgQIBA3gICbN71NToCBAgQGKKAADtEfE0TIECAQJYCAmyWZTUoAgQIEGiCgADbhCroAwECBAjkJCDA5lRNYyFAgACBRgkIsI0qh84QIECAQAYCAmwGRTQEAgQIEGimgADbzLroFQECBAi0V0CAbW/t9JwAAQIEGi4gwDa8QLpHgAABAq0TEGBbVzIdJkCAAIG2CAiwbamUfhIgQIBAWwQE2LZUSj8JECBAoHUCAmzrSqbDBAgQINBwAQG24QXSPQIECBBor4AA297a6TkBAgQINFNAgG1mXfSKAAECBDIQEGAzKKIhECBAgECjBATYRpVDZwgQIECgzQLnnX9+Or/4b9dddimHMTrAxv4tZsxo8xD1nQABAgQIDFVAgB0qv8YJECBAICeBCKyx7bbLzmWI7Q2wc/d+c4oAO++Yo4XYnIpuLAQIECBQq4AAWyu3xggQIEAgZ4EIqBFUY4sQ+8kTThwJq7GvCrY5GxgbAQIECBCYTgEBdjp1nZsAAQIEOifQG2J7By+89mp4TYAAAQIElk5AgF06N58iQIAAAQLjCowOscLruFR2ECBAgACBKQkIsFPicjABAgQIEOhPoAqxwmt/Xo4iQIAAAQL9CAiw/Sg5hgABAhkKzJu/oBzVrFkz06yZM9NOr35N+ffcObPTwnPOSbE/Xlf74uBTTj5pZF+8H/vjuDh+rH1jnaf63Fj7cmvjIx/9aPrBD88ecW2b1ehaVT9PNI5qX+93p/rcWDUfva/6uTrPWN+ral8cG+es2iq/0P4gQIAAgawFBNisy2twBAgQWFwg/uEfWxU85y1YUAbPCAIbbrRxGbQiMMRxo/fF5668/LIyMETYnTt7dnmeeB0hYqx9Y50n2tLGko5NtKpqFfXtt+bV9yFq3M/3alnaiO9gfE/3Kn6RMideF9/b6hcy8X21ESBAgEB+AgJsfjU1IgIECIwrECE1tipsRniwEWizQITr6nvc+/1u85j0nQABAgTGFxBgx7exhwABAtkIVP/Ij79jq/7Bn80ADYRAIRAzsMstl8rZWCAECBAgkKeAAJtnXY2KAAECIwKjl3+O7PCCQKYCEWRji6XyNgIECBDIS0CAzaueRkOAAIElBKoAW12TuMQB3iCQmUB1HW4slbcRIECAQF4CAmxe9TQaAgQIECDQeYFqyXznIQAQIEAgQwEBNsOiGhIBAgR6BdyZtVfD6y4JCLJdqraxEiDQFQEBtiuVNk4CBDopUC0frh5V0kkEg+6kQO9joToJYNAECBDIVECAzbSwhkWAAIFKwCxUJeHvLgnEdbBbzprpjsRdKrqxEiDQCQEBthNlNkgCBAgQIECAAAECBAi0X0CAbX8NjYAAAQLjCsTsa3kN7MyZHikyrpIdOQq49jvHqhoTAQIEUhJgfQsIECCQsUB1Dezc2bMF2IzrbGhLCrgGdkkT7xAgQCAHAQE2hyoaAwECBAgQILCYQPzyJra4gZmNAAECBPIREGDzqaWRECBAYEwB/5Afk8WbBAgQIECAQAsFBNgWFk2XCRAg0K+AJcT9SjkuNwFLiHOrqPEQIEBgkYAA65tAgACBzAXmL1iQZhbLKC2lzLzQhreYgMfoLMbhBwIECGQjIMBmU0oDIUCAAAECBAgQIECAQN4CAmze9TU6AgQ6LhBLiD1Gp+Nfgo4O32N0Olp4wyZAIHsBATb7EhsgAQJdFnANbJer3+2xuwa22/U3egIE8hUQYPOtrZERIECAAIHOCsS137HNKZ6BbCNAgACBfAQE2HxqaSQECBAYU8BjdMZk8SYBAgQIECDQQgEBtoVF02UCBAj0K2AJcb9SjstNIO5CHHfenjvHDGxutTUeAgS6LSDAdrv+Rk+AQOYC1U2c4h/xHqOTebENbzEB18AuxuEHAgQIZCMgwGZTSgMhQIAAAQIECBAgQIBA3gICbN71NToCBDouEDOwCxeek2bNmmkGtuPfha4N37XfXau48RIg0BUBAbYrlTZOAgQ6KeAa2E6W3aALAUuIfQ0IECCQp4AAm2ddjYoAAQIjAhFiXf86wuFFRwQ8RqcjhTZMAgQ6JyDAdq7kBkyAAAECBAgQIECAAIF2Cgiw7aybXhMgQKAvAUuI+2JyUIYCHqOTYVENiQABAoWAAOtrQIAAgYwFIsDOm7+gfBamZcQZF9rQlhBwDewSJN4gQIBAFgICbBZlNAgCBAgQIECAAAECBAjkLyDA5l9jIyRAoMMCMQPrMTod/gIYOgECBAgQyExAgM2soIZDgACBXgHXwPZqeN0lAUuIu1RtYyVAoEsCAmyXqm2sBAh0UiBCrOtfO1n6Tg86buK05ayZac7s2Z12MHgCBAjkJiDA5lZR4yFAgAABAgQIECBAgECmAgJspoU1LAIECISAJcS+B10ViLtvzypmYK0+6Oo3wLgJEMhVQIDNtbLGRYAAgUJAgPU16KqAa2C7WnnjJkAgdwEBNvcKGx8BAgQIEOigQPzyJjYzsB0sviETIJC1gACbdXkNjgABAotmYcPBP+R9GwgQIECAAIG2Cwiwba+g/hMgQGACAUuIJ8CxK2sBS4izLq/BESDQYQEBtsPFN3QCBLohMH/BgjRzppvZdKPaRlkJeIxOJeFvAgQI5CUgwOZVT6MhQIAAAQIECBAgQIBAtgICbLalNTACBAgsuv61fJxIMQM7d85sJAQ6I+AxOp0ptYESINAxAQG2YwU3XAIEuiXgGthu1dto7xZwDezdFl4RIEAgJwEBNqdqGgsBAgQIECBQCsS137HNmW3lQQnhDwIECGQiIMBmUkjDIECAwHgCnoc5noz3CRAgQIAAgbYJCLBtq5j+EiBAYAoClhBPAcuhWQnEXYjj2ceu/c6qrAZDgACBJMD6EhAgQCBzAY/RybzAhjemgGtgx2TxJgECBFovIMC2voQGQIAAAQIECBAgQIAAgW4ICLDdqLNREiDQUYFYQrxw4Tlp1qyZ5XLK6Wb4z3/+M9LEcsstN/K6elHtH2tfdczov8f6zA033pjuvfrqacUVVxx9+BI/j/X5JQ6q+Y2qT9HsVCxq7marm3Ptd6vLp/MECBAYV0CAHZfGDgIECLRfoO5rYE/9/OfTGd/5bnr4hhumd7ztrYsB/v4Pf0jvfu8B5XvvO/CA9ID11lts/3g/HHTIIel3v7s67bHbbmnLLWelc372s/SRj3083fe+902HH3pIWn755cf7aDrzrLPSpz/z2bTxRhult+67z7jHjbXjjjvuSBGUY1t3nXXGOmSp3/vwRz6azv35z9OLX/iC9ILnP3+pzzPMD95yyy3pb3//e1qp+CVC1KJpmyXETauI/hAgQGAwAgLsYBydhQABAo0ViBAbN7OpYzv/l79M84/7UFphhRXS/GOOLv+u2v3+D36QTvr0KWmNNdZIH/zAEdXbk/49OsB++4zvpM+ddlpaaaUV01Ef+EBaZeWVxz3HsgTYa6+7Lr33wIPSPe5xj/Sx4z88bhtLsyOHAPvd752ZPnPqqWnTTTZJ+75576VhmNbPeIzOtPI6OQECBIYmIMAOjV7DBAgQyE8gZuXm7P3mFEtk3/aWfdNGj3jEyCA/9olPpJ8Wy5lnPv7x6fV77D7y/mQvRgfYf//73+ncc3+e1l133fSQhzx4wo8LsBPyLNPOpgfYZRqcDxMgQIBAYwUE2MaWRscIECCw7AJ1LyGOHleBc7sXvTA9/3nPGxnEW9+xX/rLX/6Sdn71q9KTnvjE8v2Y5YxrdH//+9+nlVdZOW2y8cZp6622Kmc9qw9W56uWEP/x+uvTT3+6MK266qrpGU9/WnVYuummm4rlxeemK371q3Sve61SnucPxbLlsZYQT9Rudf5//OMf6axi1jiuUX3+c59btjNz5uNHlj7/+YYb0i9/eUH61ZVXpvveZ420UbFMefNHP3qxvseHrr766vSL884v/77//e+Xnva0p6Uvnv6/fS0hjl8InHf++enyy69Id/3nrtJnxuabF+O7V9mfb37r2+nWW29NW8yYkR70oA3K9+KPyy6/PF122eXF0t77pCc/6Unl+5P1N5ZMf/VrXy+Pfc6zn50uufSS0nK1wvlRj3pU2mD99ct9F150cbrqqqvSb3/32xSv77fWWmmrLbcs9z3vuc8pZ91vv/32og9XpIsvvij981//Kvv9qM02K2ffywNr+MNjdGpA1gQBAgSGICDADgFdkwQIEKhLIALsvPkLymdh1rWM+LQvfjFFsHrkppukffZetLQ0riV9+377l8M+9OD3pXXWXjvFcuPjP/qxFDOqvdtjttgi7fnGN4y8NTrAXnDhhenYYkxr3//+6bBDDi6P++tf/5ref8QHRq5ZjTcjeD7soQ9NVxZhq/ca2Mna/eUFF6R5C44bab/3RfQr+hfX5H7ggx9METB7tydus03a+TWvHrkx06WXXVb2tXeMqxc3n1q1CKARlCe6Bvbmm29ORxz1wXTNNdf0NpE22GCD8nree62ySnktcFwTHO3usvNrRo47dv78dMGFF6VnPuPpaceXvayv/t56221pzzlzy3NsWdz0K2bLqy2uM547e3ba7JGblsu3Yxn3WFssG49wfcSRR6XLr7iiPCTqEDPycZ3sge95d/mLh7E+O+j3XAM7aFHnI0CAQDMEBNhm1EEvCBAgkI1ABKcIUCuvtFKaVwSaCD8/+clP08c/9akyxBx5+PvLsVYh6znPelYZtGJWNIJpzAQe8O53pfX/O+PXT4A9Zt68cjZwrbXWTM942tOLzz6wnNn9wdlnl231BtjJ2r3Pfe6Tfnf1NenGG28or9mNALb33EXB7kEbrF8GtH3f9vYUM7RbFTeVitnkG/58Qzr9y19OEaRf86qdylnPO++8M+315n3SLcUMaQTppz/tqeme97xn+t6ZZ6UItrFNFGCP+/DxxczteemhD3lIipnNe9xj+fS1r3+9DOTVMuy4EVRcTxvhsHKNsDy3aDdmQeNGWvH5fvrbG2AjZD+zmN1+4AMfWN6U65JLLy1nWg8/7NAyeN9ww43F7PMv0/eKm2RFoH7JdtuV49lk443SjcUs+37vfFc5E3vQAe9NMYP7yRNOLGeqd3jpS9I2W29dHusPAgQIECCwNAIC7NKo+QwBAgRaIhAzsHU+RidYIgjNLa6DjQD3rv32K69TPfGkk1OEyQh8uxd3E662P/zxj+VsZIS82D728U+k3/z2t+l1u+9e3Hjq8eV7kwXYu+66K83Za++y3d133TVttdWi5azx4YMPOyz95je/XWwGNt7vp93xbuIUs6/Rp7h51J5veuPIjarCOQLdYx/zmPSmN7y+HMfBhx5WzsYefuihKcJ1bDGz+ua3vLUM6uMF2JixDMObixneXYoZ3fX+e8fmWBJ9QmG52mqrpWM/eFQ55r332becxT6gmN1cvwicF118STr62GPTve997/JmWVcXYbyf/vYG2Je9ZPv07OIXC7FdVyzvfs8BB5avjz7yA+V544fxroGN81R9iiXeseQ5+rVKMWMcN8SyESBAgACBZREQYJdFz2cJECDQcIFhXAMbJIcc9v7069/8ply+GstY3/nu95Qzd7sWy1yfUCx3jS1maj/9mVOKmc6/lD/3/vHaXXZJW2+9VfnWZAG2ejxPhKP5xx5TzvxW5/rmt76VTvvi6YsF2H7bHS/AnvX976eTT/lM1cQSf0dQPaIIztUNpGIG9J37vWOx46pZ4PECbDWmxT406oeYDY3rT+cXy53PL5Y9V6Hz1M99Lp3x3e+lJxczw68prjfut7+9AbYKw1WTr3vjm8pfSLy3mBmvroUdL8DGZ6LNUz9/2sjy8LgrdQTZV+y4Q23XwVpCXFXP3wQIEMhLQIDNq55GQ4AAgSUEIsTWdf1r1XjcpOjr3/xm2qIILRGiYsYxtip0/au4sc/e+74lxexpzLRWoShmMCPQTiXAxrliyWxsvUuP4+dPFUtXz/7xj0cC7FTaHS/AVo8KiptI7fiyl0Yzi233XP6eaVZxDWks/41lwDFbGo8N6n1ebVwPHNcFjxdge+/mHMtu4xyjt7hxU1xv+qNifLFEt1omXf2yIJY9P2qzR5bXGsejjSbrb2+AjeXIvc92ff2b9ixnjPsNsNHXWE594UUXlTeUips9xcxz1cfRY5mOn+MmTnEt75zi2l0bAQIECOQjIMDmU0sjIUCAQGMEqmWsEZrimtC4TrOamYxO9u6PpbBxnWkEnrfv/85ypu/VO70ybfvkJ5fjmWwGNg6qQlvczOhVxWfjWtMIiAcUz3GN5clVcJpKu1WAjb59aP68tOKKK5b9+ec//5n2KpbtxrbXnDnp0Y/arHwdM67XXntdcefl55bh729/+1va561vK/f1zjxXwTZ2jBdgY188gzb6ENcIv2T77UqjWL78pa98Ob3oBS9MD37wg+KwVIXy6Oe79t8vHfi+g1Pc4Onoo44sHfrt79IG2Li+d/93vL3sS/wR18vGrPdaxXW5s/d8U/n+1cWNqKJfEeKPP26BpcQjWl4QIECAwFQFBNipijmeAAECLRIY1hLi2267vXge7N5lGI3Hu0Tw2qZ4PM5uu+5S6kXoihAY13puuskmac0i7JxX3BToP8WMbFz3GTeAesn226enPmXbkcfyVI/RGesuxN8788x0ymdPLc8dofl/HvCA8qZB8Ua0UQXYqbQbwXefYuY4boYUdzyOWdC5s/dMcYOjUz7z2fJ61zh/BMk7/n1HGTbj5zlFaIvlsrFFcI8bLcW27jrrlIEyQmmEzejXRAE27i780eKa4Dguwv9aa66Vrvr1r0vT6u7C5YmLPz5Q3K04Hp0T15pec+215czjHq99bbW7r/5ONcBGUD3q6GPKNuKGW/e/3/3Ku0f/6c9/Lq+ZjZtJxQzwButvUN60KpaUh9W79190N+qRzk3Ti7j7dsyE1736YJqG47QECBAg8F8BAdZXgQABAhkLDCvABmk81iaekVpto2+wFAEtbu4UwSm2h2+4Ydr9tbuV13RWM48vLW4m1M8MbHz+W9/+dvraN75ZzkhGQJxRPJN10+JRPhFsqwAbx/Xbbhz7neJa0lgKHbOpsVVLayNUfuH004vluz8p70Yc+9ZYY430qle+onzMTvwcW9xR+VMnnph+/ovzyutB41rQmFG9objD8Y+LOzNPFGDj83FjqC995SspQmFsKxWzwHFzpZjl7b0hUtzZ+JTPfrY8Jv6Im0jFzaSqrZ/+TjXAxjlPOPGk9LOfn5viFxa9jzWKcPvtM85IV1zxq3Rb8QuAmBHepPhFxfbbvbgM8lW/pvNv18BOp65zEyBAYHgCAuzw7LVMgACBzgvENbBxR+CVV1p55C69y4ISoSpugLTmmmuWdwke71yDbDee5xrBsvea0dHtxixuhNBqFnb0/sl+jgAdM9Px+Qjny7L1099lOX/vZyPAX/+nP5X97r0GuPeY6Xodv7yJzQzsdAk7LwECBIYjIMAOx12rBAgQqE3AP+Rro9YQAQIECBAgMM0CAuw0Azs9AQIEhikwzCXEwxy3tglYQuw7QIAAgTwFBNg862pUBAgQGBGYv2BBmjnTzWxGQLzohIDH6HSizAZJgEAHBQTYDhbdkAkQIECAAAECBAgQINBGAQG2jVXTZwIECPQpEEuIy8eJFDOwc+fM7vNTDiPQfgGP0Wl/DY2AAAECYwkIsGOpeI8AAQKZCLgGNpNCGsaUBVwDO2UyHyBAgEArBATYVpRJJwkQIECAAIGpCMS137HNmW3lwVTcHEuAAIGmCwiwTa+Q/hEgQGAZBTxGZxkBfZwAAQIECBBojIAA25hS6AgBAgQGL2AJ8eBNnbEdAnEX4lmu/W5HsfSSAAECUxAQYKeA5VACBAi0UcBjdNpYNX1eVgHXwC6roM8TIECgmQICbDProlcECBAgQIAAAQIECBAgMEpAgB0F4kcCBAjkJBBLiBcuPCfNmjWzXE6Z09iMhcBEAq79nkjHPgIECLRXQIBtb+30nAABApMKuAZ2UiIHZCpgCXGmhTUsAgQ6LyDAdv4rAIAAgdwFIsTGzWxsBLok4DE6Xar2/7d3H+BSVWfbxx8EAcECggUVAZUm2BWIYMSOBWOCBRWNLbYcEFtEmkhHVFSwIIgIGjXWCBpzxRorxvKqiBWwF0BpFprwPvciezuMB3ByEOas/d/fxXvmnDOzZ63fmnyX91lrPYu+IoBAlgQIsFkabfqKAAIIIIAAAggggAACCJRjAQJsOR48mo4AAgisToAlxKsT4vexCnCMTqwjS78QQCDrAgTYrH8C6D8CCEQtoAB73fAR1qVzCcuIox5pOpcvwB7YfBG+RwABBOIQIMDGMY70AgEEEEAAAQQQQAABBBCIXoAAG/0Q00EEEMiygGZgOUYny5+A7PZdn31dFDDL7meAniOAQJwCBNg4x5VeIYAAAkGAPbB8ELIqwBLirI48/UYAgdgFCLCxjzD9QwCBzAsoxDILlfmPQeYAVMSpVcsW1rmkJHN9p8MIIIBAzAIE2JhHl74hgAACCCCAAAIIIIAAAhEJEGAjGky6ggACCOQLsIQ4X4TvsyKg6tstfQaW1QdZGXH6iQACWREgwGZlpOknAghkUoAAm8lhp9MuwB5YPgYIIIBAnAIE2DjHlV4hgAACCCCQaQH98UYXM7CZ/hjQeQQQiFCAABvhoNIlBBBAIFeA/5DP1eAxAggggAACCJRnAQJseR492o4AAgisRoAlxKsB4tfRCrCEONqhpWMIIJBxAQJsxj8AdB8BBOIXGD5ihLVoQTGb+EeaHuYKcIxOrgaPEUAAgXgECLDxjCU9QQABBBBAAAEEEEAAAQSiFiDARj28dA4BBLIuoCXE4TgRn4Ht0rkk6xz0P0MCHKOTocGmqwggkCkBAmymhpvOIoBA1gTYA5u1Eae/iQB7YBMJviKAAAJxCRBg4xpPeoMAAggggAACLkD1bT4GCCCAQJwCBNg4x5VeIYAAAqkA/yGfUvAAAQQQQAABBMq5AAG2nA8gzUcAAQRWJcAS4lXp8LuYBVSFuCV7v2MeYvqGAAIZFSDAZnTg6TYCCGRHgGN0sjPW9PQnAfbA/mTBIwQQQCAmAQJsTKNJXxBAAAEEEEAAAQQQQACBiAUIsBEPLl1DAAEEtIR40qSXrGXLFmE5JSIIZEWAvd9ZGWn6iQACWRMgwGZtxOkvAghkSoA9sJkabjqbI8AS4hwMHiKAAAIRCRBgIxpMuoIAAgiUJqAQq2I2XAhkSUB7v3V1LinJUrfpKwIIIBC9AAE2+iGmgwgggAACCCCAAAIIIIBAHAIE2DjGkV4ggAACpQqwhLhUFn6YAQGO0cnAINNFBBDIpAABNpPDTqcRQCArAgqw1w0fYV06l7CMOCuDTj+DAHtg+SAggAACcQoQYOMcV3qFAAIIIIBA5gXY/535jwAACCAQoQABNsJBpUsIIIBAroBmYHVpFpYLgSwIKLjqonhZFkabPiKAQNYECLBZG3H6iwACmRNQgL3OK7LeMX4c/0GfudHPZoe1/1Uhls98NsefXiOAQNwCBNi4x5feIYAAAkGApZR8ELIkoM/7S/6PI3SyNOr0FQEEsiJAgM3KSNNPBBDIvIBmYpNZqcxjABClgD7fkya9xHL5KEeXTiGAAALLBQiwfBIQQACBjAiwlDgjA53BbiYrDFg6nMHBp8sIIJA5AQJs5oacDiOAQJYFkv/Q11f9x36yRzD3zEz9TmFXBXBU+Cl35nZVv5NrafdJjvAp7Xe8x3LjxHVNWiX3TIyT71f1HsnvfumYJ/dcl++h43K6lJSkn9UKFYylw1n+/+ToOwIIRC9AgI1+iOkgAggg8HOBJHgkgSX3zMxkpjYJBQqeev4H774Tvur70n6ndyntPklILu13pd1H78V7NAl/QJDd/zoeiaPCZe59VjUeye9+6ZgXw3uora1atiC0/vx/5vwEAQQQiFKAABvlsNIpBBBAAAEEEEAAAQQQQCA+AQJsfGNKjxBAAAEEEEAAAQQQQACBKAUIsFEOK51CAAEEEEAAAQQQQAABBOITIMDGN6b0CAEEEEAAAQQQQAABBBCIUoAAG+Ww0ikEEEAAAQQQQAABBBBAID4BAmx8Y0qPEEAAAQQQQAABBBBAAIEoBQiwUQ4rnUIAAQQQQAABBBBAAAEE4hMgwMY3pvQIAQQQQAABBBBAAAEEEIhSgAAb5bDSKQQQQAABBBBAAAEEEEAgPgECbHxjSo8QQAABBBBAAAEEEEAAgSgFCLBRDiudQgABBBBAAAEEEEAAAQTiEyDAxjem9AgBBBBAAAEEEEAAAQQQiFKAABvlsNIpBBBAAAEEEEAAAQQQQCA+AQJsfGNKjxBAAAEEEEAAAQQQQACBKAUIsFEOK51CAAEEEEAAAQQQQAABBOITIMDGN6b0CAEEEEAAAQQQQAABBBCIUoAAG+Ww0ikEEEAAAQQQQAABBBBAID4BAmx8Y0qPEEAAAQQQQAABBBBAAIEoBQiwUQ4rnUIAAQQQQAABBBBAAAEE4hMgwMY3pvQIAQQQQAABBBBAAAEEEIhSgAAb5bDSKQQQQAABBBBAAAEEEEAgPgECbHxjSo8QQAABBBBAAAEEEEAAgSgFCLBRDiudQgABBBBAAAEEEEAAAQTiEyDAxjem9AgBBBBAAAEEEEAAAQQQiFKAABvlsNIpBBBAAAEEEEAAAQQQQCA+AQJsfGNKjxBAAAEEEEAAAQQQQACBKAUIsFEOK51CAAEEEEAAAQQQQAABBOITIMDGN6b0CAEEEEAAAQQQQAABBBCIUoAAG+Ww0ikEEEAAAQQQQAABBBBAID4BAmx8Y0qPEEAAAQQQQAABBBBAAIEoBQiwUQ4rnUIAAQQQQAABBBBAAAEE4hMgwMY3pvQIAQQQQAABBBBAAAEEEIhSgAAb5bDSKQQQQAABBBBAAAEEEEAgPgECbHxjSo8QQAABBBBAAAEEEEAAgSgFCLBRDiudQgABBBBAAAEEEEAAAQTiEyDAxjem9AgBBBBAAAEEEEAAAQQQiFKAABvlsNIpBBBAAAEEEEAAAQQQQCA+AQJsfGNKjxBAAAEEEEAAAQQQQACBKAUIsFEOK51CAAEEEEAAAQQQQAABBOITIMDGN6b0CAEEEEAAAQQQQAABBBCIUoAAG+Ww0ikEEEAAAQQQQAABBBBAID4BAmx8Y0qPEEAAAQQQQAABBBBAAIEoBQiwUQ4rnUIAAQQQQAABBBBAAAEE4hMgwMY3pvQIAQQQQAABBBBAAAEEEIhSgAAb5bDSKQQQQAABBBBAAAEEECgPAn379bPBVwwt2qbWrl3bPp4+rWjaR4AtmqGgIQgggAACCCCAAAIIIJAlgWHXXGs9evUq+i5Xr1bNZnz5hVWoUGGdt5UAu86HgAYggAACCCCAAAIIIIBAFgWqbbRxuen2TA+w1atXX+ftJcCu8yGgAQgggAACCCCAAAIIIJBFgfIUYK8aOtTOOfusdT5MBNh1PgQ0AAEEEEAAAQQQQAABBLIoUJ4C7IB+fe38rl3X+TARYNf5ENAABBBAAAEEEEAAAQQQyKJAeQqw/fv2tQvOJ8Bm8XNKnxFAAAEEEEAAAQQQQAABI8AW/iFgBrZwM16BAAIIIIAAAggggAACCJRZgABbOCEBtnAzXoEAAggggAACCCCAAAIIlFmAAFs4IQG2cDNegQACCCCAAAIIIIAAAgiUWYAAWzghAbZwM16BAAIIIIAAAggggEBBAsuWLbOFCxf5vwW2eMkSM/++wnrrWdUqVaxy5cq2/vrrF3S/mJ+81G0WL1pkS5cutWX/7WhFt5JRhQoVwr+V9f/HH3+0Jf5vqf8Llz9/g6pVV/b0df5zAmzhQ0CALdyMVyCAAAIIIIAAAgggsFoBhdYfFiywuXPm2hdffmHvvP2OTX7rLX/8pS1evNg22mgja9Cgvu26yy5Wr14923zzza16tWppUFvtG0T4BIXWH374wSZOfNjmzpvnPVweYau5S5vWbWzrrbdaZdj/+ptv7F//+pd9++23/jeCZVbVw+tJnToVrdSaCLDfz59nC/yPI7ZsqTVquqPNmjXrV+kvVYh/FVZuigACCCCAAAIIIIDAuhdQeFrks4jPPPusPTRhgj3+xJP2xRdf2BLNvuZcmlHUDGGzZs3syPbtrX37I6zetttaxYoVc56VnYcye/XV16zjCSfY7Dlz0o5vWrOmndels516yim2ySabpD/PfzD5rSnW6aST7NPPPguzsLVq17b333k7/2lF8/2aCrDqkMJ//e13IMAWzejSEAQQQAABBBBAAAEEyoGAlrHOmDHT7r3vXrv7nnvt/fffD7OK+rmCbf613n+Xx2666aa2x+6725/PPSd83XDDDfOfGv33s2fPtsFXXGFjbh1r3333XdrfDTbYwNruu68N6NfPmjRpnP48/8GbkyfbCSd2so8/+SQEutq1atn0qR/kP61ovifAFj4ULCEu3IxXIIAAAggggAACCCBQqoBmwRS8xt42zoYMHWrzfBmsgqtCaqVKlcLMqmZdk0vP1++1pFhXFd8T22zHHa3v5X1snzZtfvb85HWxfn3l1Vet6wUX2OTJb4UZbFkp9GtGWkushw4ZYr87sv1K98ISYJmBjfV/G/QLAQQQQAABBBBAAIE1LrBgwUJ74MEHrPdlfezLr74Ks4AKrpv5UtY999zTDth/P2vYsKFVqVzFZvpexZdfftmefubfIbAtXLgwtEdFnfbfbz/r3aunNW7UKITaNd7QIruhQqrC/M2jRtuAQYNs7ty5IaRu5LPQ3/ofBLT0Wn8E6FJSYhddeIFtvPHGpS6zznqA3bbBdvaN7wP+NS72wP4aqtwTAQQQQAABBBBAAIF1JKD9m+++956ddvoZ9sHUqV5xeGEoIqQ9rWecfpq1a9fOtqpTJ8zEqolLl6oy8QJ7a8oUGzduvP3j0Udt1tdfhyBXy5cTn37aqda1a1fbxMOaru+//z7MSuqxKvImVXkX+ezt9x7yFigA+wrlqlWr2AZe9EgVjhWec2d89drcS8FR7VzgxabCP3+s2U4t2dXr9VXBMfceek1+W5L3WegGmoHWPRXEtb9XBZj0OPceuW3QYwXUGTNmWC8P/n+7555gUKfOlnbYoYe6yz/t888/DzOxLfbay0Zcd501atQw3DP/PlkOsLLQHwHyL9k22bFZ+INK/u8K+Z4AW4gWz0UAAQQQQAABBBBAoMgF5ni14aFXXWmjRo/2KrjfhcC29dZb28D+/e3www8LgbC0ELdkyY8+GzszzNrec++9YTnxer50dksPuxP+/qA13GGHEN7Gj7/d3nv/vaBQy/d2HnXUUbZh9er26D//aU88+aTNnDkrPK927Vq+/HgfO+KIw23LLbYodaZSN1EQVbh59bXX7OGHHzGFP1XvVYDd1kN3m733tsMOO9S0N1chNrm05Fl7VKdNn6abWI0aNeyYY44J95swYaI9+9xzNs8r41bboJo19+JUxxx9tDVv3myl7dB9Va35hRdesIv/com9/c474a3att03LBnu3qOH9++psNRawb5H90vtZC/UpGCcf2U9wOZ76Hv9YUXVifUHgrJcBNiy6PFaBBBAAAEEEEAAAQSKTOD1N96w87qeb/qq0KAgeMnFF3lRpnPDktfcEJjb9GT5rILk6Wf8yT76+OMQLLUftsel3ezMP/0pzDb+8dTT7Omnnw4vVXXdM884w+66+277zGcnNSOqs09VIiqZQVV4vejCC+3AA/YPITT3PTXbqmNqhg8fYffef7/v1Z3rbV6czuBpdldH0Gy//fZ2sS/Zbd26dTjiR/fWft2OJ5xoL7z4gp/cssw28hniEu/j2NtuC8uidQyOZgLVX91nC9+72rNH9zCbqnuW5qC2DBs2zG66eVQI0QqnZ3m/FVbHeXDv07dv2E+s++2+22523z1/K9WUAPvzWVh9Fps0a06Azf0fAI8RQAABBBBAAAEEEMi6wL333WeX9uhpX/neV4XSrbbaym4fd1uoKFxaaMv3muPHxgy96iq78aaRYTmvwlprnwW9dcwtYRnxccefYP967LHwMoVb/dNy3SQoqjTUjx4cFTAVILWsV4WPLuh6np3ox9JU99laPVdtU2XkQV4QaaLPvC7S0mOf8VW41FJf/V4hVLOzety0SRO7tNsldsjBB4fn6OdH/aGD/fuZZ8L7JGF3oYdiBdyK/r5qw4/+vCUeqsMe4M02s9E3j7TftGoV7pHbd83o6oihDsceZ++++264p2aubxg+3DQLO23adDvx5JPtLT9DV/3S+bl/HT/eQ/XeP9sfnOUAK5tDDj0sjG2urx4nS9Pzf17I98zAFqLFcxFAAAEEEEAAAQQQKHKB4SNG2OX9+ofwpzCoQkxDBg+y7Ro0+EUt177R530Z7bEdjw/BVMFPQe7B++8LZ8PmBlgtRdY/BdIdfIlxqxYtQkD93IOg7jHLC0Qp0ChQNm3axHr5Mtz92ra1qr6nVZWRBw4cZLd5CFRQrVSpom2/3fY+Q9rO36eeaU/t8y88b4899rjN9yXFakeTxo1tzC2j0+XMuQFW7UhCqpYd161b16ZOmxaWEn/te3p1aS9tu0MOsUED+off54Jo9njCxIn2585dQnsUotv78ucrvYqzil+piNOIEdeH43UUjHWvY4852vpdfrnV9t/nXlkPsJwDm/tp4DECCCCAAAIIIIAAAgisVGCwz2j292Co4KjZzuN8X2h3XwKsmdhfcmkmUsuH927dxveQzk9D4Z133G4777ST5QZYBdcqVSrbwQcdFJYYN/CQrJnQ+fPm26t+FM2NI0eGPa0KfGrLEb4Hd4Dvxa2xSQ175tlnrLvPFL/js50V/T4tPPye16WLtdhrzzC7qVlXnaOq/ayaEdZy48p+77PPOssu9iXRKsyUG2D1vrVqbWr9L+8bKi3XqFnDvp71tT38yCM29Mor7XsPyQrSCtpDhwwOQTrXQ9WaT/flws8++1zY56r2jvF9xPvv1zaEVfXhjTffDMF+5syZIbjv4Eubr71mmLXxpc25FwGWY3RyPw88RgABBBBAAAEEEEAAgZUIDBo8OARYBcAN/fiX4zseZ928KJGq6f6SS8H3k08+tVY+i6k9oZU89G3mS2/vuH287brLLisEWIXGnXfeye73ir0q6KRAm1x6f+2N7dX7MvvKC/fo+5o1a9qjDz/sS4o3s+HXXx+Oq1HBJv28l+9P/aMv0U1mdXUfveab2bPtT2eeGYLlMt9du50f0XL3XXeG2eDcAKu+nn7qqdbD76OiUsn1/gcfWOcu59mkl14Ky5G1nLlfnz52wgnHJ08JXyd6u84t6Wyz/f3Ujx39HNxHJk6wml4cKrm0xPgvl3Szf/zzUQ/UC0MBJy2N/svFF6/QdwIsATb5zPAVAQQQQAABBBBAAAEEViFwne/Z1BJizVjqKJsD9j/AhgwaaJod/SWXlhAr7HU45tiflhD77O0Dvre2fv16KwRYBc/ePXuke1sVPnOvTz791Ep8Sa72qaqIT+XK64dZzWZeFbhnr972xBNPhMq/OqLniMMP/9myXt1r0aKF/vpn7RWf0VWw3HLLLe364dfZvr/97QozsFrGe+P1I8KSaS3vTS4VlxowYKDd4+2XiSoIX9a7l516yinhKQrJatsFF11sf73zzvBY57vqrNdzzznbZ4431NbccM33GWntMR44eEjYY6z2HNruEF+iPdi28WXWCvS6CLAE2PBB4P8ggAACCCCAAAIIIIDAqgV0fmn3nr3SgKWjaMaMHmW77bprWA686lebzZ0714Zdc61pL62OlVEoa9WypY0be6ttsskmKwRYnS17/YjhoShSbmhM3iMUhLryKhs5alSoUKx7DezfL1QTPv+CC+3/Xn89nNWaBN/ka/L65KtCpi4tAdZM7xUeGH93ZPsVAuw222xjt906JlQHVmGp5FIxqyt8CfHtd/w1tGFTD919LuudBljttVXRpnP/XBJCsl6nI3m0V1ZHB2mJdHIp6H740cehiJVmY3VpGXE/r0580IEHpEfqEGAJsMlnhq8IIIAAAggggAACCCCwCgEdg6NjdCZ7tVwFLhU26tm9u51z9llhH+rKQmJyy5dfecXOOffPftbr+6GKbxUvZtTtkkvCbOT661f2AHt8WoW4Qf36doPPerb0/asqGJV/KQxfPewau/7GG9MAqyqybdq0tvPOP9/eeOPN0MakTcnX/Psk3yvA6jzYwQMG2O9/f9QKAbauB9hxt40Ny5wLCbAqJnX7HXf4PturQ+jXe2lmVW7am5tOv+oXHqSXLlvqS5F/DPtk9SNVI1Z15Usv+UtYaq2fEWAJsPoccCGAAAIIIIAAAggggMBqBObMmWsDfMnwbePGh7NMFQpVwGn4tdfaPvu0sao+O6kgmH9p6fAML040cNBgu/+BB8LyYT1P+18nPPign8W6nYe3ZXacVydOjtHRTOXAfv3s6KM7hP22+ffULGWJ7z998qmnlhdh8jA8auRNoRhUt+49wtJiva/OaD37rDNDgaX8e2jydZmHRs3CKlgqKGt/6lZ16qwYYOt6gB1beID9YOpUX87cK1Q7VqEnea0uSKuNao/+aVZZQf5uX368ww7bB1sCLAE2/3PM9wgggAACCCCAAAIIIFCKgJbETpkyxU72PZ4ffvhRKFyk4Kfqu5f70lnNltaoUdOD1vKCSwphqjysYkd33nWXF176WzoTqYDayWcXVcVYy4cX+oxuboBVmNz7N7+x67wSr46t0aylLhWCUtXeCRMftsu8YNJnn30WzobV8t+/P3C/bbHFFj4zO8zG335HCMrav3qpz/KefPJJodJwEiCT+2g2eaEXTdLPq/h7Nm+2Y3icW8Sp7v8QYHVe7ZNPPmlnnHmW6agdWWg/bh0P/GH2tRTf0D9/3iwP+zP/e0yQQuw1Xim5oxfM0lLqrAfYg9sdGo5RWglfmX7MObBl4uPFCCCAAAIIIIAAAggUl8DSpcvCbOddd99lQ64YaiqkpOCnI2g0E7vXXnvZnnvsbg0bNvSfVbavv/nGl/K+bi9Oesne8qCo806XLFkSZhJ1hmzfy/uE81cV0vIDrIKxApuOx1FRpD322CMEPxU7euzxx23ULbfYa6/9X1gmXM2f165dOy8oNcjD8Mb2j0cftT59+9n06dM9+Fb043Na2EUXXhACcbIcefacOfawVwe+8aaRYTZZZ7O2br239fdZ3+rVqpVpBlYVj9XXq6++2q7yZc4Ky9X8nscde4xXbu6Y7mctbXQVzp9++t82xM+I1fmxCu5q1+iRN7txnbB8+4QTO4VjgHTf2h7cp0/9oLRbFcXPqm20cZnbMeurL1Mz9XmbevVNn4PcS38oKetFgC2rIK9HAAEEEEAAAQQQQKDIBBQUNKOoZcTaf6q9qNoPqxlG7Q/VbKqKGa3nS4QXeqEmLR3+zsOcgodCqZ6jAkaX97nM9mvbNq2umx9g1W0tM1aIbdCgvu3cfCdTBd+PPv7I3n77HdPZqqr8q+doBlgViw868ECvRlzZZsyY6cWmetgj/3jUfvCluwqPKgql0Ny4cePwsxcnTbJXfE/upz6Dq3ZpRvimG26wfdq08TZVKlOAPalTJ/vUw73OtdWMqe6vCsVjvRDUb1q1KnVPr/qrSwFf1Y3bHXZ4mF2Wm86gvdqLRR111FH+h4ApdqLfX+fYZiXAaqn5R9OmLgf6r1H6jT/Q56/ONnXDzHzuzwt9TIAtVIznI4AAAggggAACCCBQDgQUVrXE9XZfpjt6zBg/2/WTtPCQZmSTZbp6nq7ka3U/Q7Vx40Y2zJfE7rLzziFsJr/PD7AKfTondrEHutx7+t08uC2/r36u43bO9SJS53ftGsKxfqb3e+HFF+2SbpemBadWvMdPbdJzdXbsmWecYZ39eBu1UbOgZVlCrMJLN48a7fuFB4WArxnm3XfbzSY+9JCH6Q1Sn4BTyv/R7G2v3r3tDq9u/J3Pwur1R7Y/wvf4jrR333vPA+xJmQqwIho75hY7ukOH8MeAfDIF2M22rEOAzYfhewQQQAABBBBAAAEEEFguoNCgmdXnnn/e/u7BTMt5P/fCSpoV1cxgcmmGVDOnCq5t9m4dijLVr1cvhFeFVF0KkfkBVsWXDj74oDDj+OFHH4X3SoLweh5SN/J7NvF7/u7II63DH/7gIXTzFYKh2vaW79cdc+utNsmXMGumVbOb4R7+fpoh1sys9rzqHvqnmT6FRe31Pfa4jqFver6KOo3xJcs77dTcVDk5uWb67LIqIf/V9/dqpldhunu3btbew+bxJ55ob745OcwOqppw7549vaLw8WloT+5R2lcVn3ruueft/AsvDLOxcmrky7J1rJCu0zxsf/bZ5+kM7JTJb5Z2m6L42ZpYQpx0pIXvsX7q8ceSb9Ov+ixu7gFW41aWixnYsujxWgQQQAABBBBAAAEEyoGAwqqWCf/nP/8JYVOVd7/xva9aaqzZxjoeLJo2bWq7+lmxjRs1DGE2v1ulBdjtttsuzNTq/pM9oE2Z8rZ9M3t2eKkKM+3UvLnvud3zZ2ez5t5bgfWrGTNCgH355Zd91vJj3zv5bVh2rLDabMem1rJlK29fE9vYQ2ZyLfG2jx8/3qZNmx4Cr4Jphw5/sK19n68CbnLpmJyn//2Mve5nzi5atDAE4ra+LLq+Vw4eN26czZu3fJ+mXn+s739VEFagX92lds/yZdoTJ04MxbL0/Jo1a9iBBxwY/B6a8JAbz/a2Ld9bq6OIivVakwH21+4jAfbXFub+CCCAAAIIIIAAAgisYwGFT4XMRYsW+xLORabZQwVAT1dWwWcOFfh0vI6+qiBRMuua2+zSAuz2HmA146ilxnrNDz6z+6OfkapLhZmq+t5YFY/SfUu7p56n+ypIa0mwZoY1Q7dUbfMZXLVlA686rD2z+e3S61RASa/TYuVKFSv58uTK4b20FDm5dG/1V8ucl7mB+qsZWt1PM7LBQa/372Wgr7mvT+6T/zVpt+6dzCpqObX2D6s9i33GMTX29mjfcbFeBNjCR6bC9/PnLV8kX/hreQUCCCCAAAIIIIAAAgj8ygIrC7A3XD/C9tpzz1UWPfqVm8btyyhAgC0ckABbuBmvQAABBBBAAAEEEEBgrQkQYNca9Vp/IwJs4eQE2MLNeAUCCCCAAAIIIIAAAmtNgAC71qjX+hsRYAsnJ8AWbsYrEEAAAQQQQAABBBBYawIKsKoke/Ipp9iTTz0d3reeVyoefs01tttuu4a9n2utMbzRGhUgwBbOSYAt3IxXIIAAAggggAACCCCw1gQUYFWU6NZbx9p7fs6pCtjU2nRT69jxONu2bt1Q/GitNYY3WqMC5SnADujXN5wnvEYB/oebEWD/BzReggACCCCAAAIIIIDA2hVQ5d8fwkys3lcVe5dXCFaV4Z8q/67dNvFuZRUoTwF2yKCB1rmkpKxdLvPrCbBlJuQGCCCAAAIIIIAAAggggEDhAuUpwL7yn5esaZMmhXdyDb+CALuGQbkdAggggAACCCCAAAIIIPBLBDqd/Ee7/4EHfslT1/lz/PjVdd4GNYAAWxTDQCMQQAABBBBAAAEEEEAgiwK/bdvWXn7l1aLu+odTP7DNN9+8KNpIgC2KYaARip3ajwAAA0JJREFUCCCAAAIIIIAAAgggkEUBFemqUKGCPTRhgs2fP98q+P8rhqtipYpe5Xo3a9SwYTE0J20DATal4AECCCCAAAIIIIAAAggggEAxCxBgi3l0aBsCCCCAAAIIIIAAAggggEAqQIBNKXiAAAIIIIAAAggggAACCCBQzAIE2GIeHdqGAAIIIIAAAggggAACCCCQChBgUwoeIIAAAggggAACCCCAAAIIFLMAAbaYR4e2IYAAAggggAACCCCAAAIIpAIE2JSCBwgggAACCCCAAAIIIIAAAsUsQIAt5tGhbQgggAACCCCAAAIIIIAAAqkAATal4AECCCCAAAIIIIAAAggggEAxCxBgi3l0aBsCCCCAAAIIIIAAAggggEAqQIBNKXiAAAIIIIAAAggggAACCCBQzAIE2GIeHdqGAAIIIIAAAggggAACCCCQChBgUwoeIIAAAggggAACCCCAAAIIFLMAAbaYR4e2IYAAAggggAACCCCAAAIIpAIE2JSCBwgggAACCCCAAAIIIIAAAsUsQIAt5tGhbQgggAACCCCAAAIIIIAAAqkAATal4AECCCCAAAIIIIAAAggggEAxCxBgi3l0aBsCCCCAAAIIIIAAAggggEAqQIBNKXiAAAIIIIAAAggggAACCCBQzAIE2GIeHdqGAAIIIIAAAggggAACCCCQChBgUwoeIIAAAggggAACCCCAAAIIFLMAAbaYR4e2IYAAAggggAACCCCAAAIIpAIE2JSCBwgggAACCCCAAAIIIIAAAsUsQIAt5tGhbQgggAACCCCAAAIIIIAAAqkAATal4AECCCCAAAIIIIAAAggggEAxCxBgi3l0aBsCCCCAAAIIIIAAAggggEAqQIBNKXiAAAIIIIAAAggggAACCCBQzAIE2GIeHdqGAAIIIIAAAggggAACCCCQChBgUwoeIIAAAggggAACCCCAAAIIFLMAAbaYR4e2IYAAAggggAACCCCAAAIIpAIE2JSCBwgggAACCCCAAAIIIIAAAsUsQIAt5tGhbQgggAACCCCAAAIIIIAAAqkAATal4AECCCCAAAIIIIAAAggggEAxCxBgi3l0aBsCCCCAAAIIIIAAAggggEAq8P8pVrz8Dq65FQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sqlite3\n", + "\n", + "from db_interface import (\n", + " has_events,\n", + " insert_chunk,\n", + " insert_entity,\n", + " insert_event,\n", + " insert_transcript,\n", + " insert_triplet,\n", + " update_events_batch,\n", + ")\n", + "from utils import safe_iso\n", + "\n", + "\n", + "async def ingest_transcript(\n", + " transcript: Transcript,\n", + " conn: sqlite3.Connection,\n", + " temporal_agent: TemporalAgent,\n", + " invalidation_agent: InvalidationAgent,\n", + " entity_resolver: EntityResolution) -> None:\n", + " \"\"\"\n", + " Ingest a Transcript object into the database, extracting and saving all chunks, events, triplets, and entities.\n", + " \"\"\"\n", + " insert_transcript(\n", + " conn,\n", + " {\n", + " \"id\": str(transcript.id),\n", + " \"text\": transcript.text,\n", + " \"company\": transcript.company,\n", + " \"date\": transcript.date,\n", + " \"quarter\": transcript.quarter,\n", + " },\n", + " )\n", + "\n", + " transcript, all_events, all_triplets, all_entities = await temporal_agent.extract_transcript_events(transcript)\n", + " entity_resolver.resolve_entities_batch(all_entities)\n", + " name_to_canonical = {entity.name: entity.resolved_id for entity in all_entities if entity.resolved_id}\n", + "\n", + " # Update triplets with resolved entity IDs\n", + " for triplet in all_triplets:\n", + " if triplet.subject_name in name_to_canonical:\n", + " triplet.subject_id = name_to_canonical[triplet.subject_name]\n", + " if triplet.object_name in name_to_canonical:\n", + " triplet.object_id = name_to_canonical[triplet.object_name]\n", + "\n", + "\n", + " # Invalidation processing with properly resolved triplet IDs\n", + " events_to_update: list[TemporalEvent] = []\n", + " if has_events(conn):\n", + " all_events, events_to_update = await batch_process_invalidation(conn, all_events, all_triplets, invalidation_agent)\n", + "\n", + " # ALL DB operations happen in single transaction\n", + " with conn:\n", + " # Update existing events first (they're already in DB)\n", + " if events_to_update:\n", + " update_events_batch(conn, events_to_update)\n", + " print(f\"Updated {len(events_to_update)} existing events\")\n", + "\n", + " # Insert new data\n", + " for chunk in transcript.chunks or []:\n", + " chunk_dict = chunk.model_dump()\n", + " insert_chunk(\n", + " conn,\n", + " {\n", + " \"id\": str(chunk_dict[\"id\"]),\n", + " \"transcript_id\": str(transcript.id),\n", + " \"text\": chunk_dict[\"text\"],\n", + " \"metadata\": json.dumps(chunk_dict[\"metadata\"]),\n", + " },\n", + " )\n", + " for event in all_events:\n", + " event_dict = {\n", + " \"id\": str(event.id),\n", + " \"chunk_id\": str(event.chunk_id),\n", + " \"statement\": event.statement,\n", + " \"embedding\": pickle.dumps(event.embedding) if event.embedding is not None else None,\n", + " \"triplets\": event.triplets_json,\n", + " \"statement_type\": event.statement_type.value if hasattr(event.statement_type, \"value\") else event.statement_type,\n", + " \"temporal_type\": event.temporal_type.value if hasattr(event.temporal_type, \"value\") else event.temporal_type,\n", + " \"created_at\": safe_iso(event.created_at),\n", + " \"valid_at\": safe_iso(event.valid_at),\n", + " \"expired_at\": safe_iso(event.expired_at),\n", + " \"invalid_at\": safe_iso(event.invalid_at),\n", + " \"invalidated_by\": str(event.invalidated_by) if event.invalidated_by else None,\n", + " }\n", + "\n", + " insert_event(conn, event_dict)\n", + " for triplet in all_triplets:\n", + " try:\n", + " insert_triplet(\n", + " conn,\n", + " {\n", + " \"id\": str(triplet.id),\n", + " \"event_id\": str(triplet.event_id),\n", + " \"subject_name\": triplet.subject_name,\n", + " \"subject_id\": str(triplet.subject_id),\n", + " \"predicate\": triplet.predicate,\n", + " \"object_name\": triplet.object_name,\n", + " \"object_id\": str(triplet.object_id),\n", + " \"value\": triplet.value,\n", + " },\n", + " )\n", + " except KeyError as e:\n", + " print(f\"KeyError: {triplet.subject_name} or {triplet.object_name} not found in name_to_canonical\")\n", + " print(f\"Skipping triplet: Entity '{e.args[0]}' is unresolved.\")\n", + " continue\n", + " # Deduplicate entities by id before insert\n", + " unique_entities = {}\n", + " for entity in all_entities:\n", + " unique_entities[str(entity.id)] = entity\n", + " for entity in unique_entities.values():\n", + " insert_entity(conn, {\"id\": str(entity.id), \"name\": entity.name, \"resolved_id\": str(entity.resolved_id)})\n", + "\n", + " return None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize core components\n", + "sqlite_conn = make_connection(memory=False, refresh=True)\n", + "temporal_agent = TemporalAgent()\n", + "invalidation_agent = InvalidationAgent()\n", + "entity_resolver = EntityResolution(sqlite_conn)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Ingest single transcript\n", + "await ingest_transcript(transcripts[0], sqlite_conn, temporal_agent, invalidation_agent, entity_resolver)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# View what tables have been created and populated\n", + "sqlite_conn.execute(\"SELECT name FROM sqlite_master WHERE type='table';\").fetchall()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# View triplets table\n", + "from db_interface import view_db_table\n", + "\n", + "triplets_df = view_db_table(sqlite_conn, \"triplets\", max_rows=10)\n", + "display(triplets_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then ingest the rest of the Transcripts. Note that this code has not been optimised to be production ready and on average takes 2-5 mins per Transcript. This bulk ingestion using the data in /transcripts (~30 files) will take up to 2 hours to run. Optimizing this is a critical step in scaling to production. We outline some methods you can use to approach this in the Appendix in [A.3 \"Implementing Concurrency in the Ingestion Pipeline\"](./Appendix.ipynb), including batch chunking, entity clustering, and more. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "from tqdm import tqdm\n", + "\n", + "\n", + "async def bulk_transcript_ingestion(transcripts: list[Transcript], sqlite_conn: sqlite3.Connection) -> None:\n", + " \"\"\"Handle transcript ingestion with duplicate checking, optional overwriting, and progress tracking.\n", + "\n", + " Args:\n", + " transcripts (List[Transcript]): List of transcripts to ingest\n", + " sqlite_conn (sqlite3.Connection): SQLite database connection\n", + " overwrite (bool, optional): Whether to overwrite existing transcripts. Defaults to False.\n", + " \"\"\"\n", + " temporal_agent = TemporalAgent()\n", + " invalidation_agent = InvalidationAgent()\n", + " entity_resolver = EntityResolution(sqlite_conn)\n", + "\n", + " pbar = tqdm(total=len(transcripts), desc=\"Ingesting transcripts\")\n", + "\n", + " for transcript in transcripts:\n", + " start_time = time.time()\n", + " try:\n", + " await ingest_transcript(transcript, sqlite_conn, temporal_agent, invalidation_agent, entity_resolver)\n", + " # Calculate and display ingestion time\n", + " end_time = time.time()\n", + " ingestion_time = end_time - start_time\n", + "\n", + " # Update progress bar with completion message\n", + " pbar.write(\n", + " f\"Ingested transcript {transcript.id} \"\n", + " f\"in {ingestion_time:.2f} seconds\"\n", + " )\n", + "\n", + " except Exception as e:\n", + " pbar.write(f\"Error ingesting transcript {transcript.id}: {str(e)}\")\n", + "\n", + " finally:\n", + " # Update progress bar\n", + " pbar.update(1)\n", + "\n", + " pbar.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> Note: Running the below cell for all transcripts in this dataset can take approximately 1 hour" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Bulk ingestion (not recommended)\n", + "sqlite_conn = make_connection(memory=False, refresh=True, db_path=\"my_database.db\")\n", + "transcripts = load_transcripts_from_pickle()\n", + "# await bulk_transcript_ingestion(transcripts, sqlite_conn)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We recommend loading the pre-processed AMD and NVDA data from file by creating a new SQLite connection using the code below. This will create the database needed for building the graph and retriever. \n", + "\n", + "You can find this data on [HuggingFace](https://huggingface.co/datasets/TomoroAI/temporal_cookbook_db)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading transcripts...\n", + "Loading chunks...\n", + "Loading events...\n", + "Loading triplets...\n", + "Loading entities...\n", + "✅ All tables written to SQLite.\n" + ] + } + ], + "source": [ + "from cb_functions import load_db_from_hf\n", + "sqlite_conn = load_db_from_hf()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idtextcompanydatequarter
0f2f5aa4c-ad2b-4ed5-9792-bcbddbc4e207\\n\\nRefinitiv StreetEvents Event Transcript\\nE...NVDA2020-08-19T00:00:00Q2 2021
174d42583-b614-4771-80c8-1ddf964a4f1c\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2016-07-21T00:00:00Q2 2016
226e523aa-7e15-4741-986a-6ec0be034a33\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2016-11-10T00:00:00Q3 2017
374380d19-203a-48f6-a1c8-d8df33aae362\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2018-05-10T00:00:00Q1 2019
47d620d30-7b09-4774-bc32-51b00a80badf\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2017-07-25T00:00:00Q2 2017
51ba2fc55-a121-43d4-85d7-e221851f2c7f\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2017-01-31T00:00:00Q4 2016
6db1925df-b5a5-4cb2-862b-df269f53be7e\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2017-11-09T00:00:00Q3 2018
7fe212bc0-9b3d-44ed-91ca-bfb856b21aa6\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2019-02-14T00:00:00Q4 2019
87c0a6f9c-9279-4714-b25e-8be20ae8fb99\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2019-04-30T00:00:00Q1 2019
910f95617-e5b2-4525-a207-cec9ae9a3211\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2019-01-29T00:00:00Q4 2018
10aab926b2-5a23-4b39-a29c-c1e7ceef5a55\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2020-04-28T00:00:00Q1 2020
116d45f413-3aa5-4c76-b3cf-d0fdb0a03787\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2019-08-15T00:00:00Q2 2020
12ad10e284-d209-42f1-8a7c-8c889af0914e\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2019-10-29T00:00:00Q3 2019
13a30da2d4-3327-432e-9ce0-b57795a0fe26\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2018-04-25T00:00:00Q1 2018
14038e0986-a689-4374-97d2-651b05bdfae8\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2018-11-15T00:00:00Q3 2019
156ff24a98-ad3b-4013-92eb-45ac5b0f214d\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2016-02-17T00:00:00Q4 2016
1634d010f1-7221-4ed4-92f4-c69c4a3fd779\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2020-02-13T00:00:00Q4 2020
17e5e31dd4-2587-40af-8f8c-56a772831acd\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2017-10-24T00:00:00Q3 2017
1860e56971-9ab8-4ebd-ac2a-e9fce301ca33\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2016-08-11T00:00:00Q2 2017
191d4b2c13-4bf0-4c0f-90fe-a48c6e03c73a\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2018-08-16T00:00:00Q2 2019
20b6b5df13-4736-4ecd-9c41-cf62f4639a4a\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2016-04-21T00:00:00Q1 2016
2143094307-3f8f-40a2-886b-f4f1da64312c\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2017-05-01T00:00:00Q1 2017
22e6902113-4b71-491d-b7de-8ff347b481cd\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2018-07-25T00:00:00Q2 2018
23dbaa7a7c-1db2-4b0c-9130-8ca48f10be6f\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2017-02-09T00:00:00Q4 2017
246ec75a2d-d449-4f52-bb93-17b1770dbf6c\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2018-02-08T00:00:00Q4 2018
25bcf360a8-0784-4c31-8a09-ca824a26264f\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2017-05-09T00:00:00Q1 2018
2601d2252f-10a2-48f7-8350-ffe17bb8e18d\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2016-05-12T00:00:00Q1 2017
27d4c10451-d7b2-4c13-8f15-695596e49144\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2016-10-20T00:00:00Q3 2016
286c832314-d5ef-42cd-9fa0-914c5480d7be\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2016-01-19T00:00:00Q4 2015
291207115e-20ed-479c-a903-e28dfda52ebd\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2018-01-30T00:00:00Q4 2017
30259fe893-9d28-4e4d-bc55-2edf646e150b\\n\\nRefinitiv StreetEvents Event Transcript\\nE...AMD2020-07-28T00:00:00Q2 2020
3102b1212b-cd3f-4c19-8505-8d1aea6d3ae2\\n\\nThomson Reuters StreetEvents Event Transcr...NVDA2020-05-21T00:00:00Q1 2021
32fa199b2c-1f58-4663-af8c-29c531fc97d6\\n\\nThomson Reuters StreetEvents Event Transcr...AMD2019-07-30T00:00:00Q2 2019
\n", + "
" + ], + "text/plain": [ + " id \\\n", + "0 f2f5aa4c-ad2b-4ed5-9792-bcbddbc4e207 \n", + "1 74d42583-b614-4771-80c8-1ddf964a4f1c \n", + "2 26e523aa-7e15-4741-986a-6ec0be034a33 \n", + "3 74380d19-203a-48f6-a1c8-d8df33aae362 \n", + "4 7d620d30-7b09-4774-bc32-51b00a80badf \n", + "5 1ba2fc55-a121-43d4-85d7-e221851f2c7f \n", + "6 db1925df-b5a5-4cb2-862b-df269f53be7e \n", + "7 fe212bc0-9b3d-44ed-91ca-bfb856b21aa6 \n", + "8 7c0a6f9c-9279-4714-b25e-8be20ae8fb99 \n", + "9 10f95617-e5b2-4525-a207-cec9ae9a3211 \n", + "10 aab926b2-5a23-4b39-a29c-c1e7ceef5a55 \n", + "11 6d45f413-3aa5-4c76-b3cf-d0fdb0a03787 \n", + "12 ad10e284-d209-42f1-8a7c-8c889af0914e \n", + "13 a30da2d4-3327-432e-9ce0-b57795a0fe26 \n", + "14 038e0986-a689-4374-97d2-651b05bdfae8 \n", + "15 6ff24a98-ad3b-4013-92eb-45ac5b0f214d \n", + "16 34d010f1-7221-4ed4-92f4-c69c4a3fd779 \n", + "17 e5e31dd4-2587-40af-8f8c-56a772831acd \n", + "18 60e56971-9ab8-4ebd-ac2a-e9fce301ca33 \n", + "19 1d4b2c13-4bf0-4c0f-90fe-a48c6e03c73a \n", + "20 b6b5df13-4736-4ecd-9c41-cf62f4639a4a \n", + "21 43094307-3f8f-40a2-886b-f4f1da64312c \n", + "22 e6902113-4b71-491d-b7de-8ff347b481cd \n", + "23 dbaa7a7c-1db2-4b0c-9130-8ca48f10be6f \n", + "24 6ec75a2d-d449-4f52-bb93-17b1770dbf6c \n", + "25 bcf360a8-0784-4c31-8a09-ca824a26264f \n", + "26 01d2252f-10a2-48f7-8350-ffe17bb8e18d \n", + "27 d4c10451-d7b2-4c13-8f15-695596e49144 \n", + "28 6c832314-d5ef-42cd-9fa0-914c5480d7be \n", + "29 1207115e-20ed-479c-a903-e28dfda52ebd \n", + "30 259fe893-9d28-4e4d-bc55-2edf646e150b \n", + "31 02b1212b-cd3f-4c19-8505-8d1aea6d3ae2 \n", + "32 fa199b2c-1f58-4663-af8c-29c531fc97d6 \n", + "\n", + " text company \\\n", + "0 \\n\\nRefinitiv StreetEvents Event Transcript\\nE... NVDA \n", + "1 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "2 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "3 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "4 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "5 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "6 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "7 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "8 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "9 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "10 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "11 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "12 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "13 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "14 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "15 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "16 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "17 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "18 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "19 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "20 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "21 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "22 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "23 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "24 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "25 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "26 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "27 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "28 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "29 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "30 \\n\\nRefinitiv StreetEvents Event Transcript\\nE... AMD \n", + "31 \\n\\nThomson Reuters StreetEvents Event Transcr... NVDA \n", + "32 \\n\\nThomson Reuters StreetEvents Event Transcr... AMD \n", + "\n", + " date quarter \n", + "0 2020-08-19T00:00:00 Q2 2021 \n", + "1 2016-07-21T00:00:00 Q2 2016 \n", + "2 2016-11-10T00:00:00 Q3 2017 \n", + "3 2018-05-10T00:00:00 Q1 2019 \n", + "4 2017-07-25T00:00:00 Q2 2017 \n", + "5 2017-01-31T00:00:00 Q4 2016 \n", + "6 2017-11-09T00:00:00 Q3 2018 \n", + "7 2019-02-14T00:00:00 Q4 2019 \n", + "8 2019-04-30T00:00:00 Q1 2019 \n", + "9 2019-01-29T00:00:00 Q4 2018 \n", + "10 2020-04-28T00:00:00 Q1 2020 \n", + "11 2019-08-15T00:00:00 Q2 2020 \n", + "12 2019-10-29T00:00:00 Q3 2019 \n", + "13 2018-04-25T00:00:00 Q1 2018 \n", + "14 2018-11-15T00:00:00 Q3 2019 \n", + "15 2016-02-17T00:00:00 Q4 2016 \n", + "16 2020-02-13T00:00:00 Q4 2020 \n", + "17 2017-10-24T00:00:00 Q3 2017 \n", + "18 2016-08-11T00:00:00 Q2 2017 \n", + "19 2018-08-16T00:00:00 Q2 2019 \n", + "20 2016-04-21T00:00:00 Q1 2016 \n", + "21 2017-05-01T00:00:00 Q1 2017 \n", + "22 2018-07-25T00:00:00 Q2 2018 \n", + "23 2017-02-09T00:00:00 Q4 2017 \n", + "24 2018-02-08T00:00:00 Q4 2018 \n", + "25 2017-05-09T00:00:00 Q1 2018 \n", + "26 2016-05-12T00:00:00 Q1 2017 \n", + "27 2016-10-20T00:00:00 Q3 2016 \n", + "28 2016-01-19T00:00:00 Q4 2015 \n", + "29 2018-01-30T00:00:00 Q4 2017 \n", + "30 2020-07-28T00:00:00 Q2 2020 \n", + "31 2020-05-21T00:00:00 Q1 2021 \n", + "32 2019-07-30T00:00:00 Q2 2019 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# View transcripts table\n", + "from db_interface import view_db_table\n", + "\n", + "transcript_df = view_db_table(sqlite_conn, \"transcripts\", max_rows=None)\n", + "display(transcript_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3. Knowledge Graphs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.3.1 Building our Knowledge Graph with NetworkX" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When constructing the knowledge graph, canonical entity identifiers derived from triplets ensure accurate mapping of entity names, allowing storage of detailed temporal metadata directly on edges. Specifically, the implementation utilizes attributes:\n", + "\n", + "* **valid\\_at**, **invalid\\_at**, and **temporal\\_type** for **Temporal Validity**, representing real-world accuracy at specific historical moments—critical for analysis of historical facts.\n", + "* Optionally, attributes **created\\_at** and **expired\\_at** may also be used for **Transactional Validity**, enabling audit trails and source attribution by tracking when information was recorded, updated, or corrected.\n", + "\n", + "Transactional validity is particularly beneficial in scenarios such as:\n", + "\n", + "* **Finance**: Determining the accepted financial facts about Company X’s balance sheet on a specific historical date, based on contemporaneously accepted knowledge.\n", + "* **Law**: Identifying applicable legal frameworks as understood at a contract signing date, or compliance obligations recognized at past dates.\n", + "* **Journalism**: Assessing if previously reported information has become outdated, ensuring press releases and reporting remain accurate and credible over time.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy\n", + "import pandas\n", + "import scipy\n", + "\n", + "print(\"numpy :\", numpy.__version__)\n", + "print(\"pandas:\", pandas.__version__)\n", + "print(\"scipy :\", scipy.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading transcripts...\n", + "✅ All tables written to SQLite.\n", + "Loading chunks...\n", + "✅ All tables written to SQLite.\n", + "Loading events...\n", + "✅ All tables written to SQLite.\n", + "Loading triplets...\n", + "✅ All tables written to SQLite.\n", + "Loading entities...\n", + "✅ All tables written to SQLite.\n", + "2282 nodes, 13150 edges\n" + ] + } + ], + "source": [ + "from cb_functions import build_graph, load_db_from_hf\n", + "\n", + "conn = load_db_from_hf()\n", + "G = build_graph(conn)\n", + "\n", + "print(G.number_of_nodes(), \"nodes,\", G.number_of_edges(), \"edges\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import networkx as nx\n", + "\n", + "# Print descriptive notes about the graph\n", + "print(f\"Graph has {G.number_of_nodes()} nodes and {G.number_of_edges()} edges\")\n", + "\n", + "# Get some basic graph statistics\n", + "print(f\"Graph density: {G.number_of_edges() / (G.number_of_nodes() * (G.number_of_nodes() - 1)):.4f}\")\n", + "\n", + "# Sample some nodes to see their attributes\n", + "sample_nodes = list(G.nodes(data=True))[:5]\n", + "print(\"\\nSample nodes (first 5):\")\n", + "for node_id, attrs in sample_nodes:\n", + " print(f\" {node_id}: {attrs}\")\n", + "\n", + "# Sample some edges to see their attributes\n", + "sample_edges = list(G.edges(data=True))[:5]\n", + "print(\"\\nSample edges (first 5):\")\n", + "for u, v, attrs in sample_edges:\n", + " print(f\" {u} -> {v}: {attrs}\")\n", + "\n", + "# Get degree statistics\n", + "degrees = [d for _, d in G.degree()]\n", + "print(\"\\nDegree statistics:\")\n", + "print(f\" Min degree: {min(degrees)}\")\n", + "print(f\" Max degree: {max(degrees)}\")\n", + "print(f\" Average degree: {sum(degrees) / len(degrees):.2f}\")\n", + "\n", + "# Check if graph is connected (considering it as undirected for connectivity)\n", + "undirected_G = G.to_undirected()\n", + "print(\"\\nConnectivity:\")\n", + "print(f\" Number of connected components: {len(list(nx.connected_components(undirected_G)))}\")\n", + "print(f\" Is weakly connected: {nx.is_weakly_connected(G)}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a visualization of the knowledge graph\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "import numpy as np\n", + "\n", + "# Create a smaller subgraph for visualization (reduce data for clarity)\n", + "# Get nodes with highest degrees for a meaningful visualization\n", + "degrees = dict(G.degree())\n", + "top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:20] # Reduced from 30 to 20\n", + "visualization_nodes = [node for node, _ in top_nodes]\n", + "\n", + "# Create subgraph with these high-degree nodes\n", + "graph = G.subgraph(visualization_nodes)\n", + "print(f\"Visualization subgraph: {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges\")\n", + "\n", + "# Create the plot with better styling\n", + "fig, ax = plt.subplots(figsize=(18, 14))\n", + "fig.patch.set_facecolor(\"white\")\n", + "\n", + "# Use hierarchical layout for better structure\n", + "try:\n", + " # Try hierarchical layout first\n", + " pos = nx.nx_agraph.graphviz_layout(graph, prog=\"neato\")\n", + "except (ImportError, nx.NetworkXException):\n", + " # Fall back to spring layout with better parameters\n", + " pos = nx.spring_layout(graph, k=5, iterations=100, seed=42)\n", + "\n", + "# Calculate node properties\n", + "node_degrees = [degrees[node] for node in graph.nodes()]\n", + "max_degree = max(node_degrees)\n", + "min_degree = min(node_degrees)\n", + "\n", + "# Create better color scheme\n", + "colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees)))\n", + "node_colors = [colors[i] for i in range(len(node_degrees))]\n", + "\n", + "# Draw nodes with improved styling\n", + "node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees] # Better size scaling\n", + "nx.draw_networkx_nodes(graph, pos,\n", + " node_color=node_colors,\n", + " node_size=node_sizes,\n", + " alpha=0.9,\n", + " edgecolors=\"black\",\n", + " linewidths=1.5,\n", + " ax=ax)\n", + "\n", + "# Draw edges with better styling\n", + "edge_weights = []\n", + "for _, _, _ in graph.edges(data=True):\n", + " edge_weights.append(1)\n", + "\n", + "nx.draw_networkx_edges(graph, pos,\n", + " alpha=0.4,\n", + " edge_color=\"#666666\",\n", + " width=1.0,\n", + " arrows=True,\n", + " arrowsize=15,\n", + " arrowstyle=\"->\",\n", + " ax=ax)\n", + "\n", + "# Add labels for all nodes with better formatting\n", + "labels = {}\n", + "for node in graph.nodes():\n", + " node_name = graph.nodes[node].get(\"name\", str(node))\n", + " # Truncate long names\n", + " if len(node_name) > 15:\n", + " node_name = node_name[:12] + \"...\"\n", + " labels[node] = node_name\n", + "\n", + "nx.draw_networkx_labels(graph, pos, labels,\n", + " font_size=9,\n", + " font_weight=\"bold\",\n", + " font_color=\"black\", # changed from 'white' to 'black'\n", + " ax=ax)\n", + "\n", + "# Improve title and styling\n", + "ax.set_title(\"Temporal Knowledge Graph Visualization\\n(Top 20 Most Connected Entities)\",\n", + " fontsize=18, fontweight=\"bold\", pad=20)\n", + "ax.axis(\"off\")\n", + "\n", + "# Add a better colorbar\n", + "sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma,\n", + " norm=plt.Normalize(vmin=min_degree, vmax=max_degree))\n", + "sm.set_array([])\n", + "cbar = plt.colorbar(sm, ax=ax, shrink=0.6, aspect=30)\n", + "cbar.set_label(\"Node Degree (Number of Connections)\", rotation=270, labelpad=25, fontsize=12)\n", + "cbar.ax.tick_params(labelsize=10)\n", + "\n", + "# Add margin around the graph\n", + "ax.margins(0.1)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n", + "# Print some information about the visualized nodes\n", + "print(\"\\nTop entities in visualization:\")\n", + "for i, (node, degree) in enumerate(top_nodes[:10]):\n", + " node_name = G.nodes[node].get(\"name\", \"Unknown\")\n", + " print(f\"{i+1:2d}. {node_name} (connections: {degree})\")\n", + "\n", + "# Create an improved function for easier graph visualization\n", + "def visualise_graph(G, num_nodes=20, figsize=(16, 12)):\n", + " \"\"\"\n", + " Visualize a NetworkX graph with improved styling and reduced data.\n", + "\n", + " Args:\n", + " G: NetworkX graph\n", + " num_nodes: Number of top nodes to include in visualization (default: 20)\n", + " figsize: Figure size tuple\n", + " \"\"\"\n", + " degrees = dict(G.degree())\n", + " top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:num_nodes]\n", + " visualization_nodes = [node for node, _ in top_nodes]\n", + "\n", + " # Create subgraph\n", + " subgraph = G.subgraph(visualization_nodes)\n", + "\n", + " # Create the plot\n", + " fig, ax = plt.subplots(figsize=figsize)\n", + " fig.patch.set_facecolor(\"white\")\n", + "\n", + " # Layout with better parameters\n", + " try:\n", + " pos = nx.nx_agraph.graphviz_layout(subgraph, prog=\"neato\")\n", + " except (ImportError, nx.NetworkXException):\n", + " pos = nx.spring_layout(subgraph, k=4, iterations=100, seed=42)\n", + "\n", + " # Node properties\n", + " node_degrees = [degrees[node] for node in subgraph.nodes()]\n", + " max_degree = max(node_degrees)\n", + " min_degree = min(node_degrees)\n", + "\n", + " # Better color scheme\n", + " colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees)))\n", + " node_colors = list(colors)\n", + "\n", + " # Draw nodes\n", + " node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees]\n", + " nx.draw_networkx_nodes(subgraph, pos,\n", + " node_color=node_colors,\n", + " node_size=node_sizes,\n", + " alpha=0.9,\n", + " edgecolors=\"black\",\n", + " linewidths=1.5,\n", + " ax=ax)\n", + "\n", + " # Draw edges\n", + " nx.draw_networkx_edges(subgraph, pos,\n", + " alpha=0.4,\n", + " edge_color=\"#666666\",\n", + " width=1.0,\n", + " arrows=True,\n", + " arrowsize=15,\n", + " ax=ax)\n", + "\n", + " # Labels\n", + " labels = {}\n", + " for node in subgraph.nodes():\n", + " node_name = subgraph.nodes[node].get(\"name\", str(node))\n", + " if len(node_name) > 15:\n", + " node_name = node_name[:12] + \"...\"\n", + " labels[node] = node_name\n", + "\n", + " nx.draw_networkx_labels(subgraph, pos, labels,\n", + " font_size=9,\n", + " font_weight=\"bold\",\n", + " font_color=\"black\", # changed from 'white' to 'black'\n", + " ax=ax)\n", + "\n", + " ax.set_title(f\"Temporal Knowledge Graph\\n(Top {num_nodes} Most Connected Entities)\",\n", + " fontsize=16, fontweight=\"bold\", pad=20)\n", + " ax.axis(\"off\")\n", + "\n", + " # Colorbar\n", + " sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma,\n", + " norm=plt.Normalize(vmin=min_degree, vmax=max_degree))\n", + " sm.set_array([])\n", + " cbar = plt.colorbar(sm, ax=ax, shrink=0.6)\n", + " cbar.set_label(\"Connections\", rotation=270, labelpad=20)\n", + "\n", + " ax.margins(0.1)\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + " return subgraph\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Get node information on NVIDIA, filtering for what they have developed\n", + "\n", + "# Find the node key for NVIDIA (case-insensitive match on name)\n", + "nvidia_node = None\n", + "for node, data in graph.nodes(data=True):\n", + " if \"nvidia\" in str(data.get(\"name\", \"\")).lower():\n", + " nvidia_node = node\n", + " break\n", + "\n", + "if nvidia_node is not None:\n", + " print(f\"Node key for NVIDIA: {nvidia_node}\")\n", + " print(\"Node attributes:\")\n", + " for k, v in graph.nodes[nvidia_node].items():\n", + " print(f\" {k}: {v}\")\n", + "\n", + " # Show all edges where NVIDIA is the subject and the predicate is 'DEVELOPED' or 'LAUNCHED' or similar\n", + " print(\"\\nEdges where NVIDIA developed or launched something:\")\n", + " for _, v, _, d in graph.out_edges(nvidia_node, data=True, keys=True):\n", + " pred = d.get(\"predicate\", \"\").upper()\n", + " if pred in {\"LAUNCHED\"}:#, \"LAUNCHED\", \"PRODUCES\", \"CREATED\", \"INTRODUCED\"}:\n", + " print(f\" {nvidia_node} -[{pred}]-> {v} | {d}\")\n", + " # Optionally, print the statement if available\n", + " if \"statement\" in d:\n", + " print(f\" Statement: {d['statement']}\")\n", + "else:\n", + " print(\"NVIDIA node not found in the graph.\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.3.2 NetworkX versus Neo4j in Production" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To effectively implement and utilize the knowledge graph we utilise [NetworkX](https://networkx.org/) for the purposes of this cookbook for several reasons. \n", + "1. **Python integration**: NetworkX seamlessly integrates with Python, facilitating rapid prototyping and iterative development\n", + "2. **Ease of setup**: It requires minimal initial setup, not requiring a client-server setup featured in alternatives. This makes it ideal for users who wish to run this cookbook themselves\n", + "3. **Compatibility with In-Memory Databases**: NetworkX can efficiently manage graphs with fewer than c.100,000 nodes, which is appropriate for this cookbook's data scale\n", + "\n", + "However, it should be noted that NetworkX lacks built-in data persistence and is therefore not typically recommended for production builds.\n", + "\n", + "For production builds, [Neo4j](https://neo4j.com/) emerges as a more optimal choice due to a wider set of production-centric features, including:\n", + "- **Native Graph Storage and Processing**: Optimized for graph data with high-performance and efficient handling\n", + "- **Optimized Query Engine**: Leverages the Cypher query language, explicitly designed for efficient graph traversal\n", + "- **Scalability and Persistence**: Effectively manages extensive graph datasets, ensuring data persistence, reliability, and durability\n", + "- **Production Tooling**: Offers integrated tooling such as Neo4j Bloom for vislualization and Neo4j Browser for exploration, enhancing user interaction and analysis\n", + "- **Advanced Access Control**: Provides granular security options to control data access" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4. Evaluation and Suggested Feature Additions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The approach presented above offers a foundational implementation of a Temporal Agent for knowledge graph construction. However, it does not fully address complexities or all possible edge cases encountered in real-world applications. Below, we outline several possible enhancements that could be used to further improve the robustness and applicability of this implementation. In the later \"Prototype to Production\" section, we expand on these enhancements by suggesting additional considerations essential for deploying such agents effectively in production environments. Further details on scaling to production are included in the [Appendix](./Appendix.ipynb)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4.1. Temporal Agent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Statement Extraction and Temporal Events\n", + "##### Duplicate Temporal Events\n", + "In this cookbook, the Temporal Agent does not identify or merge duplicate Temporal Events arising from statements referring to the same event, especially when originating from different sources. These events are saved separately rather than unified into a single, consolidated event. \n", + "\n", + "##### Static and Dynamic Representation\n", + "There's an opportunity to enrich the dataset by consistently capturing both Static and Dynamic representations of events, even when explicit statements aren't available. \n", + "\n", + "For Dynamic events without corresponding Static statements, creating explicit Static entries marking the start (`valid_at`) and end (`invalid_at`) can enhance temporal clarity, particularly for the purposes of retrieval tasks. \n", + "\n", + "Conversely, Static events lacking Dynamic counterparts can have Dynamic relationships inferred, though this would require careful checks for potential invalidation within statement cohorts. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Date Extraction\n", + "The implementation in this cookbook does not explictly record assumptions made during date disambiguation. \n", + "\n", + "In the absence of an explicit publication date, the present date is used implicitly as a reference. For some workflows, this assumption may have to be changed to meet the needs of the end users. \n", + "\n", + "Abstract dates (e.g., \"until next year\") are resolved into explicit dates, however the vagueness is not represented in the stored data structure. The inclusion of more granular metadata can capture more abstract date ranges:\n", + "```python\n", + "temporal_event = {\n", + " \"summary\": \"The event ran from April to September\",\n", + " \"label\": \"dynamic\",\n", + " \"valid_at\": {\n", + " \"date\": \"2025-04-01\",\n", + " \"literal\": False,\n", + " \"abstract_date\": \"2025-04\"\n", + " },\n", + " \"invalid_at\": {\n", + " \"date\": \"2025-09-30\",\n", + " \"literal\": False,\n", + " \"abstract_date\": \"2025-09\"\n", + " }\n", + "}\n", + "```\n", + "This structure permits the explicit representation of both literal and abstract date interpretations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Triplet Extraction\n", + "There are several possible avenues for improving the Triplet Extraction presented in this cookbook. These include:\n", + "- Utilising a larger model and optimizing the extraction prompts further\n", + "- Running the extraction process multiple times and consolidating results via e.g., a modal pooling mechanism to improve the accuracy and confidence in a prediction\n", + "- Incorporating entity extraction tools (e.g., [Spacy](https://spacy.io/) and leveraging predefined ontologies tailored to specific use cases for improved consistency and reliability" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4.2. Invalidation Agent\n", + "The presented Invalidation Agent does not refine temporal validity ranges, but one could extend its functionality to perform said refinement as well as intra-cohort invalidation checks to identify temporal conflicts among incoming statements.\n", + "\n", + "There are also several opportunities for efficiency enhancements. \n", + "- Transitioning from individual (1:1) comparisons to omni-directional (1:many) invalidation checks would reduce the number of LLM calls required\n", + "- Applying network analysis techniques to cluster related statements could enable batching of invalidation checks. Clusters can be derived from several properties including semantic similarity, temporal proximity, or more advanced techniques. This would significantly reduce bottlenecks arising from sequential processing, which is particularly important when ingesting large volumes of data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Multi-Step Retrieval Over a Knowledge Graph\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simple retrieval systems can often handle straightforward \"look-up\" queries with a single search against a vector store or document index. In practice, though, agents deployed in real-world settings frequently need more. User questions often require LLMs to synthesise information from multiple parts of a knowledge base or across several endpoints.\n", + "\n", + "The temporal knowledge graphs introduced earlier provide a natural foundation for this, explicitly encoding entities (nodes), relationships (edges), and their evolution over time.\n", + "\n", + "Multi-step retrieval allows us to fully harness the capabilities of these graphs. It involves iteratively traversing the graph through a series of targeted queries, enabling the agent to gather all necessary context before forming a response." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see the power of multi-step retrieval below:" + ] + }, + { + "attachments": { + "55e196a3-2d42-469c-8b7d-938a56b47f38.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACGQAAAigCAYAAABzt2bUAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAIZKADAAQAAAABAAAIoAAAAABBU0NJSQAAAFNjcmVlbnNob3SFRKeDAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMjA4PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjIxNDg8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kf6OJRgAAABxpRE9UAAAAAgAAAAAAAARQAAAAKAAABFAAAARQAAKMzdPuTW8AAEAASURBVHgB7N0F3BVV+sDxx/8KduwaKFi7tggWKCkIBiBgo6KUUgYmooRKKCG2pIhggJSkYqAgKCFggdi6rgHW2oG67v7PMzqv8849Z+7c984NXn7n84H3Tp2Z+d6pO+c552zy43ff/k9ICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAokJbEJARmKWZIQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgCBGRwICCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGRwDCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkLEJCRMCjZIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBGQU8BhYv369/Pqf/1i3YMsttpC//OUv1mmukb/++qus//ln6+TNN9tMKlSoYJ3GSAQKKRB13G691VayySabFGTzfvnlF5kwYaKsfPFF+fnn9XLgAQdKu7ZtZMcddyzI9rBSBBDIrcDnn38u4++7X9548w3ZYostpcbhh8s557Tm3plbdmvu//3vf+WHH3+0Ttti881l0003tU5jZPkVWL36VZn28MPyz/ffl112qSSNjjlGmpxwQvndYfYMAQTKhcBPP62X//yW3O/9coHCTiCAAAIIIIAAAggggAACCCCwEQoQkFHAL/3a666XhyZPtm7BTPPS+eCDq1qnuUZOMnn1MXna0sAbBkirM86wTWIcAgUVmDJ1qvTqc611G5Y+96zstNNO1mm5HPntt99Kq7POlnfefbfUarbddlu57957pVq1g0uNZwABBDZsgZdfeUU6nHe+fPf996V2ZP/99pNJD02UbbbeutR4BnIr8K8PPpDGxx1vXcntt94izU880TqNkeVT4MEJE2TAjQPlt99+K7WDp5x8kgwdMqTUOAYQQACBQgu8smqV3DVsmAnwfEs++eQT5+bMnjFdDjroIOd0JiCAAAIIIIAAAggggAACCCCAQPkRICCjgN8lARkFxGfVRSNQjAEZPa65RqbPmGk12neffWTuI3MK1nKHdaMYiQACZRb4j2mp6vgmTeWDDz+05nHO2WdLv772YEfrAozMWoCAjKwJy00G2iJGs+YtRFvTsqU7b79NmjVtapvEOAQQQCDvAiNGjpTb77xLtKWndImAjHRCTEcAAQQQQAABBBBAAAEEEECg/AgQkFHA75KAjALis+qiEUgqIOP55cvlhRdeSNkv7fqnS+fOKeOjRtSsVVu++uor5yzPzH9adqtSxTm9PE3QwJRPPlmXsku7776HtGhOLfUUGEZYBbRgYtTo0dZptWrVksMPO8w6LR8j33r7ba/A17WuKlUqy8L5812TGZ8DAQIycoC6gWaprWP07T/AufWnnnKy3DR4sHM6ExBAAIF8CaxYuVJan9tG/ve//8VaJQEZsZiYCQEEEEAAAQQQQAABBBBAAIFyIUBARgG/RgIyCojPqotGIKmAjFtvu11GjBqVsl+bbbaZrFn1Ssp414hffvlFqlY/JPJl6tTJk+SwQw91ZVGuxmvXLS++9FLKPjU4ur6MHTMmZTwjELAJaCsUB1S1d/XTo/uV0rlTJ9tieRm3ePESaXfeec51VaxYUV5bvco5nQnJCxCQkbzphpqj697u70/9enVl3Nix/iB/EUAAgYIJnHHmWfLSyy/HXj8BGbGpmBEBBBBAAAEEEEAAAQQQQACBDV6AgIwCfoUEZBQQn1UXjUCxBWQoTKNjj3N2X6DTX1yxXLbddlv9WO4TARnl/ivOyw4Wc0CG9u9er0FDp8MB++8vj8ye5ZzOhOQFCMhI3nRDzXHmrNnSvUcP5+a3b9tG+vTu7ZzOBAQQQCAfAtoSWPXDDpf169fHXh0BGbGpmBEBBBBAAAEEEEAAAQQQQACBDV6AgIwCfoUEZBQQn1UXjUAxBmTcd/8DMuDGG61G2k3HbbfcYp1WHkcSkFEev9X871MxB2SoxoUXd5Mn582zwtzQv5+cdeaZ1mmMzI0AARm5cd0Qc/3u+++lecuW8vHHa1M2v0KFCjJz+sOy/377pUxjBAIIIJBPgY8+/lgaNmpsXeUeu+9uWgLrKLvsskup6UcccYRss/XWpcYxgAACCCCAAAIIIIAAAggggAAC5VOAgIwCfq8EZBQQn1UXjUAxBmRo389Dhg6VcePvk99++63EqlHDhnLz0Js2mtYxdMcJyCj5+vmQhUCxB2R8/fXXXi38ZxYuKtnLv/zlL9LRdGVylelShZRfAQIy8utd7Gtbs+Y1uaJ7d3n3vfdKNnW77baTAf36SrOmTUvG8QEBBBAolMBbb78tzZq3sK7+WtOKTzvTmg8JAQQQQAABBBBAAAEEEEAAAQQ2XgECMgr43ROQUUB8Vl00AsUYkOHjfPDhh/Lyy6/Izz+vlwP2P0CqVTvYn7TR/CUgY6P5qnO6o8UekOHv/KpVq+X1N16XLbfcSg45pLporVZS/gUIyMi/ebGv8ZdffpEVK1fK+++/79UyP+Lww2X77bcv9s1m+xBAYCMRiArIGH7XnXLC8cdvJBLsJgIIIIAAAggggAACCCCAAAII2AQIyLCp5GkcARl5gmY1RS1QzAEZRQ2Xp40jICNP0OV8NRtKQEY5/xo2mN0jIGOD+arYUAQQQAABI0BABocBAggggAACCCCAAAIIIIAAAghECRCQEaWT42kbWkCG9uP9ySefyJdffil/+9vfvBqK9Hub44NkI8iegIzsv+T169fL2nXr5N///rfsvPPOsqvpo7pixYrZZ2xyyHdAhl5n1pl90S4kKlWqlOi+xAX56af18vkXn8sXX3whFTatILvvvttGURM7l/Ybc0CGdnv02WefyTpz/6xYoaJUrryrdw+NezwW83y6b3qufmGuPd988423X7vvtptsttlmWW12MQZk/PjTT/Lpp5/K559/Lvrss+OOO3r7q13b5CL9+uuv3jVdn7m+/+EH2XXXXaWy+Zer9eViH8gztwL//e9/5auvvjL3qy/k22+/9Z7L9RjZdNNNc7vihHPfGH5faFd4ei6vW/eJ/PLrL965rM9r//d//5ewZvLZFeKZaEO8b+YzIEOPJz339Z6k9wc9liqZf5tvvnnyBwA5lgjk6pmnZAVF/iHfz0E+Ry5/n/jr4C8CCCCAAAIIIIAAAgggkA8BAjLyoexYR7EHZOiP3yeeeEJmzpotq1evlh9+/DFlT7bcYgvTjUM1admiudeP9zbbbJMyj2vErNlzZM1ra1ImV6lcxdnP7vjx98naT9alLBMesf9++8lpp54aHu0NDxs+XL797ruUabVr1ZJjGjZMGV+WEbPnPCKvrnk1ZdG99txTWp99dsn4Zc8/L9MefljefOtt76WaFrRUqrSz7LP33nLG6afLUUceWTJv8IO+EJk9e7Y8OW+eCZL5VD41hX1bbrml7GIKsA8//DA59ZRTRA3ipNdee01mmrxs6cKuXWMXRH9nTO8ytrbUvNmJUr16NdskyTQg4867hpmXj9+n5LVy5Quyyhyn4aSmrn6bN/3LptLjqu7hRbyXnCNHj04ZryNObtlSDjroIOu0fI3Uwu05jzwqk6dMkff/9S+v0E5fzvppk0028QoLqx50oLQ9t43Ur19PdJwraSDH6DFjrJMfeXSuV5gcnrhblSpy/PHHhUd7w//4+9/lrDPPtE4Lj/z555/liSfnydRp0+TVV18Vve4Ek78vxzRoIOe0bi1Vq2Zm/8qqVfLo3LnBLL3Pmm/Pq68uGa+FyTNmzJSp3vn4Vsl4/8PWW20lDcw2nHtOa6lZo4Y/Omd/415D3n3vPXnhhRe8rnX0uqBJv/dOHTum3bZc2L/40kvyuLlvhJMen+PM9duW1NPVHVBDY16ndu2UxZL2cR0nuuJLunUT/f4zSfq96LXtiSee9AIx9CV+MG2xxeay7777SitznW9pril6L41Kr7/xhsyYOdM6i94nGjdqZJ3mGjl27L3y6eefWSdfcdllkYU6etzoOTV/wTPy3HPPeYVBwYz03NrFBIXtucce5rurJe3atZOtzP0pk1QMARkaEPHMwoXeM9DSZcu8Au/wPuj9paq5HzRv1kyaNGniBduE58lkWIM95pjnh6cXLJAXXnxR9FofTFrQrgEve+65hzQ/sbmc1LJF5LU9uKz/2XWsh6+Jes4uWvSseT6YJR999LEXiKLPTvqcUaVyZTnssEO955SddtrJzzpnf13n+4477CCdO3Vyrtf1vNeg/tFSt24dbzntCuVxc57OmTNHPvzoI/lMA2622doUblbyui06+6yzRO9ptqSFoZMmT5HlK1Z4z3D/1oDlv/7VHAeVpeHRR5tzu4Vk4hNne3U7dH16z9RrrRaWB5MW8Ov26rXltNNOle222y44OfKzFvC6nn3OPeecki6ctAD45ZdelpXm3qPPIH664vLLSubxx9n+5ur3xRNPPumdN7Z1nn7aabKfuebGTXo/vf2OO6yz72KOjfPO62CdFhypARgzZ86SGbNmid4T9FgLJj2f9Vxq2aKFeWZq5QWhBqfn4nPc878Qz0RJ3zfDfnHOL73mrjG/i14wvyleM92X/ec/v9+79Vrr/0acYb5T7dosnDQ4cbp5jrSlxsccI3vutadtklzTo0eswJyPP15rnv3niD6Xq5Xeo8JJu3HS37Mnn9RSGphrUKbBWXGPD71X6fn/orlPff7Fv73NqFixgtw0eHB4kySOezFdh8M7kI9nnrjXXt22N958UyZNmixvv/OO9/tMA2L1vlPF/C7bb9995Iwzzoj9DiC8r+HhQjwH6Tbk4vdJeN8YRgABBBBAAAEEEEAAAQQKIUBARiHU/1hnsQZk6IvWIUNukumm8Ed/EMdNWiNfC6t79rzGqz2abrkhNw2VMWPHpsy2x+67y/yn5qWM1xE1jqrl1ca1TgyMPPCAA2TOrNSXYlrAULX6ISkvRXXR6/r0kbZtzg3kUvaPV151lWjASTjVOuooefD++0SDF67sfpXMf+aZ8Cylho879lgZducdpWrEvvPuu9LaFLLri96o1KxpU7lxQH9TsBAdJKMF+5dfeaU1q6fnPekVqlknhkZqqwb1Gx4TGvv74E2DB3lBIraJmQZkHFWnrheAYMsr03EVKlSQ119NDeIohsJA175MfOghuXvMPfLRxx+7ZkkZr4UQF190oRc0lTLRjNBjqokJmkkq1a9XV8ZZzu1g/lqzd/Tdd5trwL3Wgs7gvMHPhx5yiAzo30/0HI+TXMeXFj6+/ccL9RUrV8oll13uFTjGyVMDcm675WbZ+x//iDN7meZJdw354MMPpesFF3pNZIdX0LDB0XKPsXWlXNrr8Xld336uVWc8vvsVl0vXLl1Slkvax3Wc6IqXPvds7EJVPZf03q7HVNykrS20a9tWul18UalrfXB5LfyoYwqRg4FX/nQ9J6ZNmewPpv2r9x+9l4aDRHTBA/bfXx4xBfCupPeLoebYX7s2fWCkn4cWSF/a7WLRAtG4hUOFvAbr+TFu3HgZYYLytFAybtJrylmtWkmPHlfFegYK5qutHN1jrpl6bfcDq4LTXZ/1WnR19+4lwQWu+YLjXcd68JqoNb0v7naJvPfPfwYXTfms36c+9/Xp0zvjoKWUzCJGuM53DTx48vHHnEvWPbqBFygRnuGyS7qZe+JF3vXzoou7yT/ffz88S8mwulxjnunOP/+8knH64ZFHH5XuPa5OCZoJzqQ+eux36dw5VoFruu3VZ/J+/QfIFBOMESdpbfkLunSWCy+4IFbgTtR5N/HBB+TImjVl5KhRcvudd1mvH9NNEJor+Fa3N9e/L+Y+9ph3L7fZdDXfQfcrr7BNso5bYJ7PO3Xpap3Wvm0b6dO7t3WajtSAk/4DBniBs+GgKtdCeqyccPzx0u/662IHQrvyihof5/zP9zNRru6bYYd059fChYvkcnM91dZmwukac13veP753mh9XtRjLan0hgngj7o36vPedddfL4uXLLU+A7i2Q4MzunbuJOd16BDr+qP5pDs+9P7U4+prrIG3Gmi6+uWXUzYnnbveb4rpOhzcgWJ45vGvvXpdueKKK2WBCRRNlzRQ9wbzDuDve+2Vblbr9EI8B+mG5PL3iXVHGYkAAggggAACCCCAAAII5FmAgIw8gwdXV4wBGVoj8yrzgllf/pQ1ValS2ash42rdwc930uTJ0scUXIWTNnW+ZtUr4dFeqwU1a6XWlE6Z0YzQl0KrTE1tfZEeTBrEcGTt32tFBsfr57GmALOBKchMIrkKDzQgY/y9Y72ACq1JHiedblr6GDTwRm9ftMuYM8462+vSIc6yWpNWC+p2MLVIXYmAjA0nIOOuYcPkDtNCSFnTVaYwQguGwinfARlaE+wK89L72ecWhzcl1rCe34MHDpQTTa30dCndy+XFS5bI+Z06Rxaq2dahLSYMvWmIaNBULlK6a8iJLVp6NSRt644KyMi1fTEEZOg1NlMf13GivnEDMrQWf59rr82oQD34/dUzNfbvuO02Z412V/dBWiN++dIlsQvxHnv8cel26WXBVZd8vuTii02LIBeXDPsf9CW5FgRPMAE3ZU0aPDB54kTv/pwuj6iC4dtvvcW0DpFcAFlwWzSwUAvZn1++PDg6o8/adLwGbKV7BvIz1cI/vQa9ZCnI8udJ9/ds0yKRBqrFSa5j3Q/IePXVNdLGtGoSbq0oKm8N+hs1ckSs1hGi8nFNc10PswnI0AChE1ueFDvoJhhYqveNjp27WGuo2/ZBa8ePHDE8baFoVMHlBabFsg7nd5QlS5faVhE5rpFp/e0Wc0ym62Yw6rzTQkENxOpuavO7UlRARj5+X2jAx5Hmd0K4JQrdXlegtmtf+vbrLw+a65UtTXjgfuf5ra3OXXzJpWX+HaXP7XqsaHBcLlK68z/fz0S5vm8GDaPOL22p6oSmzZzndKECMrQlvIGDBltbqQzuW9RnvRdpyxX6+zxdSnd89OrdxxkQVpaAjGK8DqtRMT3z6LX3wAMPlDPN738NXombtELGneaZUltJzCQV4jlIty/Xv08yMWBeBBBAAAEEEEAAAQQQQCBXAgRk5Eo2Rr7FFpChTR9rrR99CZFt0gKiW4YOlRbN3YUm2gR4m3btrata+fyylMIlbRr1rNbnWOe3jVw4f37Ky6fXX39dWpx8im12eerJJ0S7FEkiuQoP9GW4NmX95ltvZbSa8zq097pgudzUjMnkZYyupG6dOqa1gnucBQEEZGwYARlaG/cy8/1nmy4wrQ1caVodCKZ8BmRoTf9Tz2gVO6gouJ3hz3169pT27duFR5cadr1c1pmuvqq76arlnlit7pTK9I8BLcAcftedcvxxx9kmZzXOdQ3529/+5jW7rt0duZIrICMf9oUOyCirT9RxEicgQ2uN33Lb7a6vJPZ4bSHq4alT5K+m+elwuvfecTJwyJDwaG84kyCFa3r2kmnTp1vz0dYxbAWBA264Qe574EHrMpmMbG26f+jfr2/aRaIKhjPZ17QrCsyg6zz19DNiF9AHFk35qF203H/feDmkevWUacERWnter4daiJttuuO2W7MOUnvYFP5dZbpy0ubwM02VK+8qj5puP9IV+mear87vuh6WNSBj11139TZDC57iJu2eZqg5/3Yw1+CLTDdGWvifSfJb5YhaxlVgrMFa2223vbX7raj8gtO05YopJqAqqiZ+1Hmnhbr6rKBdnLmSKyAjn78vOptWLVytz8W5lvv7dkzjY70ubPxh/6/eYzQfPR7CSX/XaKBOJq0LhvPQYe3C6l7z3F7jiCNsk7MaF3Wvy/czUT7um0Es1/nld2UT9fuqEAEZN5rA43H33R/chTJ/1sJ5DdBP17Jb1PHR5IQTvK4yXe8JMg3IKNbrsCIX0zOPtnapQaIavJRp0uu9XvejWi4K5lmI5yBdfz5+nwT3k88IIIAAAggggAACCCCAQKEECMgolLxZb1RAxp233yZ77713Rlv32GOPy7ARI6zLDLxhgLQyfYq6kr6EOqPVmVnVwAnnrU0lT530kFerIzxNh7Wm3dGm1qAtaXcj4S4JbC+JtEBUX8jbCg/G3XNPSq0Q7Q9eX5aGk75Y1VY5ol5Uh5eJGnYVHkQtk8tpUQU1BGQUf0CGNmevXQzoX1fSLoO23XZbrysb18tSf1kt8A0WFOYrIEO7W+hgmnx+bvESf1Oy+qvn69RJk6RatYOd+diuG86ZyzBhu+22k7lzZife93s21xBbQEa+7AsdkBHnK7T5RB0n6Qrx9EW5BhemO+/ibJvOo62ujBye2hKOtlzV6Fh78M8pJ5/kFRbHWUftevWt3fO4ugvTAMKWJpDR1sVJnPWF5xltWlJo3KhReHSp4aiC4VwEZPzw44/eM1BUgVypDYwxoNeGGQ9Pi2w1IsnzRQvcHp092wR9/h5s4NrEqGPdtUzc8Zkch3Hz1Plc18OyBmRksu6k5tXnzEUL5kfeK1wFxkltQ+eOHaWHCUR0pajzzrVMcLwtICPfvy+mPfywXNPL3p3IkEEDveDm4DbbPmsXNsed0MQ2Sc4wLatoq3XhpC3waYsrWrCYRNLWDB4x53PSAU65PP91v+M+E+Xrvhn8LrI5v/IdkDF9xkzpcc01wc3P+rNeLx+eNjXymMrm+Mg0ICPrHSpDBnGuw8X2zFOG3Sy1iH7vs2bMSNs6WaGeg/L1+6QUCgMIIIAAAggggAACCCCAQIEECMgoELyuNiogI+nNigrI0Fp+J5nCFn0R60ra4oUW1uxvmtDVvx9+9JG8bYI43v/XvyILaXarUkU0uEILCsJJC68OPuRQa9PCtu5DBpmaiWNNDeFg0vyfnvekl8+vv/4anCR9evWS9u3alhrn6ibFVRBVauEMBlyFB8EstDWOIw4/XPbccw/TWsAnpm/gJbGbONba09r9yX777iPffvedvPzyK5HNnR9tmiu91wSo2NKGFpDRrsN58tXXX6fsymeffSZffPFFyngN2tGmXm2pginQ1+CEcIoqlMhFYWB4/eFhbcr+jDPPCo/2hrXG2qWXdJN999nHG9Ya19odjtY8dHUJckyDBjLm7tEl+en5fFG3S0qGgx/e/+c/rV0waCHB7nvsEZy15PPhhx4qfU0/6OF095gxctPNt4RHlwzri/z69erJniZfPcY//vgj05rM25FNtKd70ZjJy2XNS4+VA/bfz9umN958S7RVnfeMQVSqXauWPGBqwyeZ4lxDXOuzBRzky15rQo8Y9eex5W+jvnBVS1vSLh523HFH2yRp1+ZcawFa0j5Rx0lUQMY333wjzUz3MZ9++ql1+3XkYeZ8qGq669Dj+seffvTum9oXvF6zXGnQjTfIGaefnjK5xUkny+tvvJEyXv10O/V6F5V0Wc3Dljqef55cY+mO4PxOnWThomdti4h2Q9Ltogu982aXSpW8Jqf1fBlj7jfPLFxkXWannXbyttU68Y+R+b4Ga+tgcx97LGqTvGefww47VCrtXEk+XrvW3HNf8gJLoxbS1nNGDLvLOos+ezU+7nhniwMnHH+89wyjzwp6PVxrWnPQljRuu/0OaxCqrqSFaZXstlvc11idJ+pY1+l+0uc+PWb1mljFtOyl94m3THBOuuvhdFPgV71aNT+bRP66zne9Zj/5uPt7i1MAq+dntYOrirZ8oM+0Tz89P3Z3LZk+x7m6DfOR4myvzqstsFQzxnqv2m233eWjjz4UvV+tXr06MrBav1O9V7m604k67/xtjPobDsgoxO8Lbfa+Vt161t8mTZs0kbvuSN+S0XjTKsENpnUCW7rHPDs1NM9Q4dTRdAfnuubpvHou1axRw3vmr1ihones6bPdG2++Gc6qZPjkk1rKzTfdVDKcxIe457+uK1fPRPm+b/pucc8vf/7g32BAxlDzHPvs4sXByd7nX37+2WtFJmWCGaFd0WxjgqZtaYa5ZmqggJ/0Oq/dU0a1tKJB2FpxQ68Beu1617Reo9cA7doyKh3XuLHXJY5rnkyOj3Ae2QRkFNN1uNieecLO+sx80IEHyD7md5+2WPTuu+/Jq2vWRAYFa+s3nUxAXlQqxHOQbk++fp9E7TvTEEAAAQQQQAABBBBAAIF8CRCQkS9py3qKJSDjvvsfkAE3ptb28je5atWDZLB5MRlusUKna8sUPU1NNC0AdqXgS6zwPE1PbC5vv/NOeLRo85xntmpVarytGeIGR9eXsaaQt1nzFildediaRr/9jjutrYjUr1fXdOsxttT6shlwFR74eXYyrQRotxHBFjk0oET7CX5gwgR/Nutf3VZ9QbvDDjuUmj5z1myvqXEt+AwnfQn/worl1lpRG1pARnjf/OFbTXcBI0wQQjhtttlmXusn4fFRw1GFEoUIyHCdo/uYl7FzH5lj7Y5Ga7NrP+bznnoqZVe1YEADUbbffvuUaeERrcxLYdv57Z974fldwz/+9JPUrlPXWVjUwXQ90u2ii7xWPsJ5vLJqlVzXt6+sWWNv1v/a3r2lXds24cW84Tgvl9VBA7i08MOW9NzSwpmvLYFA/vyzZ0z3Cqf94Wz/pruGaP7a9HSbc8+Rf5i/u5mX/RpgpElbJwp2eVEoe29j/vhPA4UOqGpvyaRH9yulsyn0zyQl6aPrjTpOogIyhg0fLrffaS9w18LavtddJ/XMNTucfvppvdw77l65c9hwa8GhFrAseXZRqXuE5nHXsGFyx12prWfotJmmZvjBpmA5Ko2++24Zesut1lmmmBatDj/ssFLTlixdKm3bdyg1zh/Qgp3hJthA7y+2dOOgQTJu/H22SbJ40cLIlgLyeQ3WAtHmpma7K/19r71kQP9+XiF2OOBFa8PfaO7b2qWUK0144H5rAbgGVgwfOdK6WG9TM7pDh/bWaXou6XV5lSl8Dye9tmuQalSKOtb95TQfLbjWgJtwmjV7jtnnQV5rTOFpOtzWXJOuu/Za26Qyj3Od79kEZGi3EAP695eTWrYotV0a2Kn3Tu0mLyrZnuN++eUXGTR4iPM5TltzmjFtmjPbOAXG2oJOPxPwqIVy4aRBXtf362+97/vzHmtapxllWqmxpajzzp9fn1u1lYg6dWp73fwFnyM0MKxChQr+rOJ6dvFnyNXvi3PatPWa+PfX4//V4HDtEjFY+O1PC/49zxRcLnr2ueAo7/PWW20ly5ctFS0MD6blK1ZI63PtzyC6jLZKoq0UBp/5dXl9Xn/k0bne84WrKxhXN1LB9WfyOc75n+tnonzfN32fOOeXBrA3N79N//73vbzgOz/GUYMp9LuMStoajP4etSXt3k6D7OKkCy/u5nUN4pq3+YknynV9enuBGOF5FppAyN7muSMqMCMcOBXMI87xocHT7c0z98EHHyx7mHuFXks16f1xl112CWbnfY5yL7brcDE+8/igGoin96yWLZr7o0r+rlq1Wnqb+64tYFdn2n+//UyXYrNL5g9/KNRzUDH8PglbMIwAAggggAACCCCAAAII5FKAgIxc6qbJu1gCMpo0O9FZo0eDGq67tk/KS8TgrmlLFzfdfLPcM/be4OiSz9r6hBYQhAsydIauF1woT82fXzKv/0ELZrXWfzBpTVJ9WRxMHUwLGL1NQaq+PNea2cGkLUg8eH/pwqBrevaSadOnB2fzPp/burW1Rn/KjDFHuAoPdPGo1io0KONEU9vaVQNVC+nmPzXP+VLw6mt6ysOmWVJb0oJ7v5/k4HQCMoIav3+OKpQoREBGr959ZIqlECeqYEX3xN8PPfeqmRenxx3bWBqbQlTbcZCq8PuYpAIyZsyc5QUM2dajwRi9e/a0TSoZp8EQJ516qmk1Y23JOP9DVCFXupfLWvA4dfIk64ttP3/9q82Raysl4WuQP49/LfKHs/0bdQ3RvK+8/DIviCFdwZLOWyh7Xbef8h2QkYmPbmPUcRIVkKFdiGhXIuGkBRYzpz/s1YoNTwsOjzX3zUGOGtC2mtjalLbeI2zpissulQsvuMA2qWScFhpq4WE4aasVGgASvk/r97Z06TKv9Ygn5s2Tb7/91ltUW8hZtPAZa5Cfn7cGndQ9+uiSZfzx+tfWpVhwun/tCo7zPyd9De5rCrAfnDjRz77UX63Rfs+Yu70WCUpNCAzoM5AGprruvSc2aybabVg4fff99/LUU0/LY6ZlDq1t7bfypa0XaBBHVHr5lVfkdNPNXDhpcMwrL74Y2TR51LGu+WlQzth7xkR+t1EF0Pqcsmzxc85AnfA2xxl2XQ+zCciIaq1Cj78TmjYTPf5tKd1znBbKarcX4aSBcitMgb4rRRVc6jJ9zH2yvblfpkvjTSDUDSZoxpY0KEDPdf2ewinqvNN5NThJW9fSYLM4qVC/L+5/4EHpf8MN1k2cNHGC1DjiCOs0HanXrRrm94OtdQLXuazn/1QTEBdOej3V7qeONc9dUUmDXvXabDveXC0XReUXNS3d+Z+PZ6J83zd9j6jzS4O3R5kAy/omIKOsKYmADA2qOvqYRtZjQbfrlqFDU4LIwtur9xb9fa3dwtiSq9sdnTfd8aGtPmnXP7aWL23r0nFR7sV2HS7GZx411GfKaVMme9dgHbYlfT5rZN6VuILHNSBDAzNsqVDPQcXw+8TmwTgEEEAAAQQQQAABBBBAIFcCBGTkSjZGvsUQkBH1Ul0DKbQQX2tbp0v6AkObQbe1dqHL3nfvvVK3bp2UbAYOHmxqCY9PGd/KNNU+0DTZ7ietdVjt0MNSahIP6NdXzjZBI7bWEWzNoncwLVPYunGI+5Lb3550f12FB7qcrRZyML8bTU38caa5ZFvqblrV6Nqli22SN+5JU2CmNatsyfUdEJCRqhVVKJF0YWDq2lPH3GxqtI8yNdvDaVtTY08LffVcdSUNVNKucfR8KEtKKiBDa9lrzbNw0pf/2uR8nMCCZxYulI6d7cf/E4/N9VqMCOef7uWyNt+uXY7ESUuXLZM27dpbZ9UWa7TWf7gGrHXmGCOjriHaTc2wO++IkcvvsxTKPriBeo/IVwsZmfrodkYdJ66ADK1Bf1brc4K7WfL5JnNvO/UUe9cgJTP98eEUc79bvfrV8GhxFf65CrO0IF3vL66khTQ1j6plLeixtSgVzke/w8WLl3jBGdtuu40XDBmeJzzsqqne03SNcr7pIsWV8nUN1tqZdevVt3ZRoQUgc00BRiXTFUu6pDXdtZUNDZgJJy240kL4qGuDfjfz5j1lbOea2q8trTVgg/nqd6FdvunfcNIWGDRIzZWijnVdRltPOqR6ddfiJeNtgbD+RNc540/P9K/reljWgAz9TpY8+2xk4IqreyDddg3i0yb2XekG0+rceNP6XDhpAf1rq1eVakUiOE9UwaUG6miQcThoKri8/1mPx3PbtnMWyLpalYo677Tli2mTJ4u2ahEnFfL3xTrTvU/9hsdYN/PCrl3lChPQ6ErawsD5pvsRW9LAKr0uB5MGcNSuW1e0e5ZwOu2UU2TI4EHh0dbhwSYwzxbYri2hPLfwmcQCnNKd/7l+JirUfVPRo86v603rAtriWDYpiYCMqNZDWsToksrffg0U1VYobYFF2rXIkueeswbdRR0f2u3KbO2G1ARkZpJc7sV6Hfb3rVieeXR74nQ5ovM9aFrZ7Nt/gH5MSdqdmR5D4VTI56Bi+H0S9mAYAQQQQAABBBBAAAEEEMilAAEZudRNk3cxBGTcaZo+v9M0gW5LY00BcIMGR9smWcdpTRwtfLGlrublZvcrr0iZNPGhh0xXBP1SxodrH7pecvlNgbtqWLz0wspSL45sXZvoyseMHiXHNGyYsh1lHeEqPNAX6a++8rJoTSxXiqrZl65WcVTtaduLZN0GAjJSv4moQomogIz169dbX36mriF1zP+Z/qNdLzkfNq26XG1ad7ElLTRsZvpF16aQa9U6KrLQz7Z8unFJBGRoze+q1Q+x9m98gQkw0u574iR9sXx4zSOtxq6gqqiXy9rs762mdZ9M0hXdu8vsOY9YF9HAEi0gTCK5riGadyZNmBfSPuigL7bzFZCRiY+/jVHHiatw2dXlhDZnr83ap2ve3F+3qxsSvR7oPSychtw0VMZYutjSoCYt+NdALVt64skn5aJul9gmOYMmrTNnMNJ1voSDLsNZlvUaHM4n3XDUc0sX043OVaY7nbhp+IgRcpvpFi2Y9FjQ7t7uuP022a1KleCkrD/XqX+0aG3qcNIuzVzdL+m8Ucd642OOkdGj7N2ohNczyRTO97nu+vBobzhdUIh1oYiRruthWQMyDj3kEK+2ccQqvXNFz5lwyvY5TlsP0a49bMlVcKktnzw+99GM7i/a0pq2UKEtuISTdnmgzzLhFHXeac34EaaLorip0L8vTjVdhGgz/uGkASWzLC3l+fMNMC1r3Gda2Agn13U9qouD8eY6beuyKpy3Dkddi5LsEi3q/M/HM1Gh7ptq7Dq/9Dn6heXP6yxZJddvVc00bpclriBGfR6Y98TjzmuHbcNdzxY6r+v3ZNTx4Qrksq07OM7lXqzX4eC2Z/o5F888er9YYLqf1ECadEmv+8c3aWqdzRUIG3XtyeVzULH8PrFiMRIBBBBAAAEEEEAAAQQQyJEAARk5go2TbTEEZLia2dWacBo4EKfWenBfq5tWLLSmRThpH93azGo4aW3bduel1pIN93Wqtfy1NmY4+QVl+tJVX76G0/RpU6V6tWolow87ooa1Jqyrdn3Jghl+cBUe2FrtCGc9ecoU0w/sdeHR3vBTTz4R2VT0+//6lxx7/AnWZQnIsLJYR0YVSkQFZES9/LSuKDAyqpl6bYb2GNM1wjfffBNYIvWj9sW8n2mO9ogjDpc6tWpLjZo1IpvaT80hdUwSARnazUgD02+9LWnhyE6Owinb/CtXvmCtierq9iTq5XImrRj42zJ9xkzpcc01/mCpv5nULC21oGXAdQ3RWvarX37JWcM6nFUh7YPbkq+AjEx9/G2MOk78+4w/r//X1UWUBmLUqOFuEt9f3v/72edfyGuvveYPlvobDirUiS+9/LLXfU6pGf8YuNMU/Ddran8Z37vPtTJ56tSUxTSAY/nSJbGDubT2vQb/rV271uvK57tvv7MW+uqKZj3yiHXfNGBAAwdcqazXYFd+rvEzZ82W7qa1DlvKNLBHC0K6dL1ADjmkumlh4hCvlYkDDzwg9rmq26AFFK+uWeMFWnz11Vfyw/epte79bR1mAkC0ZY1wGmRaFzvDtLriSlHHeia1xKMKou82QR2NTHBHUsl1PSxrQEaLGDXNXQVr2T7HlSUgQ4N5npn/dMacDRs1lo8+/jhlOe2K56EJqUEHUefdxRdeKJddag/oSlmBGVHo3xejRo+Wm2+9LWXTNKBGu2xxtRpm6x5RMzmmQQOvu5ZwhlHPBPVMy4BRLeME8/r1V9MC0ZIlwVEln0ePHCGNHc9QJTPF/BB1/ufjmahQ903lcQUGuM6HmKQlsyURkOFqAUtbctNnzEyStrylLXDZ0sAbBkgry+/mqOOjrM+4LvdivQ6HvQr9zJNJq29RQQ7ndWgvvSy/Xwr1HFQsv0/C3zfDCCCAAAIIIIAAAggggEAuBQjIyKVumryjAjKmm0KTgw+umiaH0pO1tqKttQmdy/Xipb0JhnjOBEWE07777COPPfpIeHTa4ZannGotfDmyZk2Z+GBq880ffvSRHNP42JR8tYDoxRXLS8aPHDVKbrnt9pJh/RCsPayFEhpsEU5DhwyRU04+yRutgSIaMBJOWvNQg0+09ltSqayFB7r+qIAMV8Ggv91RARmuQAJayPD1/vye7vvyAABAAElEQVQbVSjhctSlcxWQoXlHtZyi021JCwK06fk6tWvLiSc2k3323ts2W+S4JAIytH90zSeXSQuhtTA6nKJeLmt/zFpDL5P08iuvyOmtzrQukq5munUhx0jXNUS7p5n/1DzHUqmjC2kf3Jp8BWRk6uNvY9Rx4rruuu6ffp5J/NVa8eHzVgsHtHWEzz//PGUVUU3kuwpF9B6p98p06Z1335UxY+6Rhaarhy+++CLd7JHTiyUgw1Voq88F2rVE3MLUyJ2NMVG7SZgwcaIse/55a1BrjCxKZskmIOOeu0dLQ1PwHCfp8aAtMNjSXXfcLk1Ny01JJdf1sKwBGWefeaYM6J/aOltwe10BGenWqXmU9TnOdY6GW40LbmfU5/M6dpRFzz6XMovrOhn17BN8nk7J0DLCdX3M1++Ld997T05oWrp7EX8zXYEHUc/QgwfeKKefdpqfRclf2++TkokJfejf93ppfXYyz1BR97p8PBO5jouEqLxsbPdNneA6v84w3+sg8/1mm7INyNB7+0HVqnuBeeFtObd1a+l7vT1YPzyvP+z6bazTu110kVx6SWoXl1HHx7PPLJBdd93Vzz72X5d7sV6H/R0rlmeejqZ7t2scgaP+tgb/HlWnrvz73/8OjvI+u46hQj0HFcvvkxQoRiCAAAIIIIAAAggggAACORQgICOHuOmyjgrImPnww2UKyHA1H+0KyNCXlfrSMpwybZrYX/6yK66URx591B8s+av9zi54+qmSYf/Db7/95vWDrjU6wmm1qQXsN8951dVXi3ZLEkxa0Kx9nfvJ1nx3sDuEf77/vhx3QmoBQZUqlWXh/Pl+Non8LWvhga68rC/yddmol8muQAICMlSudIoqlHA5ag65DMjQ/LN58a8FjNqtiTbBr4UxcVMSARmPPf64dLvU3Wd73G2Jmu+Iww+XyQ9NTJkl6uXySytXiPZhnUn67rvv5LAaNa2LxO3j2bpwaGQ215BgVoW0D25HvgIy4hSWBrfL/xx1nLgCMrR/9rffecfPIid/7xt3r9StUycl7+tNV18TTJdf4aS1vrX2t9YCD6ao7qy0GwK957uSfneDBg+WByc+JHrPTiIVS0CGy1GbCNeWDHKdNKhGW9x59rnFia0qm4AMDcTVAvM4KarAm4AMd0tnruuJmrsKLju0ayu9e9m7LYv6rm4cOFDG3Xd/yiybb765F4gcnlDWZ59wPjpc6N8Xug0aMKSFquF0YrNmoq3GhZMr8FVbC9TrwV//+tfwItK3X39zbUx99kiZMYsRF3btKldcnswzVNS9Lh/PRIW8b7rOrziBAXG+vmwDMjTQsVbdetZVlbW7kNr16luDN08/9VQZPGhgyrqijo+oa1dKRoER2bgXIjCu2J55+plAnHNMQE7cpMeQLWjWFZBRqOegYvl9EteV+RBAAAEEEEAAAQQQQACBJAQIyEhCsYx5FENAhqs547g1ZsO73sd0tTHJdLkRTlFNPGtfp9rUdzgFu+ew9QUd3sY27drL0mXLSmWjBdDab68mnabzhJO2HnD/+HHh0VkNZ1OYuqEGZHzw4YeiTe3a0k2DB8mpp5ximxTZn30mL/9uNS2ojDAtqYTTZpttJmtWvRIeHTlc1kKJXAdk6EZrTeqbbr7Z6zIgciccE7fffnvR5q81gCFOSiIgQ4OpNKgql+nAAw+UOTNnpKwi6uXyG2tezbgGfFRgweWmOfeLTLPuSaRsriHB9RfSPrgdUW49TJBQ506dgrOn/ZyUj7+iqOPEdR3S1p20ladcplEjhsuxjRunrEKbtm/XIbW7L51x9ozpctBBB5VaZsw998iQoTeXGqcDGvS4fOmykuDH8AwagHH5ld1l7mOPhSdlNVwsARnX9Owl06ZPT9mXsnYRkZJRxAitwXpOm7bWAuOIxdJOyiYgw3Ws21ZKQIZN5fdxZX2OcxVcXnTBBXL5ZZe6V+iYctvtd8jwkSNTpmqA5luvp3aTVNZnn5QVmBHF8PvC9Vy43Xbbed00hbtl7Ni5szxjnrHCKapLOdc1JJxHNsOuLtnKkmfUvS4fz0SFvG+6zq9iCciI6sJhiAmeOM0EUWSatBtLDdYPpxaObpuijo9M7g/B9WXjnu+AjPLwzJNpQIbrGpbr56Bi+X0SPFb5jAACCCCAAAIIIIAAAgjkWoCAjFwLR+RfDAEZp53RSl5ZtSplK121zVNmDI2wBUXoLK7CUp3WqXMXWbBwoX4slSY8cL/oS1BN2h1JuK/07ldcLl27dClZxlZLLdg0suuHf1Iv4ko2xHzIprCwrC/ydf2FbCHj+eXLvcKloIP/mYAMX8L9N+qFf3ip//73v7Jw0SKZP3+B6T5gkaxduy48S+TwlltsIU/Pe9LZh3pw4SQCMp4ztb/bn39+MNvEP7uuMVEvl+c98bj8fa+9MtqWqHNsQL++cvZZZ2WUn2vmbK4hwTwLaR/cjvIYkHHGmWfJS6Ylp1wmV0CGeh5Zu458++23KasP3xt1hnPbtvO6wwjPnK41rLFj75VBN90UXizr4WIJyLjl1ttk5OjRKfvjakEgZcYsRriefbLI0luUgIw/BTekgkDdatf2ugpP/9xT+ydXYaarBZgkAzKK4ffFq6+ukZMt3Yyo1tTJk+SwQw8tgfv555/liCOPkvXr15eM8z9EtU7guob4yybxN18BGfl4JirkfdN1fiX1OzDbFjL0GKxa3d6NXllaSYlqhdJ1TEU9M28MARnl4Zkn04AM1zUs189BxfL7JIlrNHkggAACCCCAAAIIIIAAAnEFCMiIK5WD+YohIEO7EdAmI8NJm+VdsWxpeHTaYdfLrmMbNZJRpla+LbmaVL7ZFAJpoc1nn30m2h1JOIWbWb/v/gdkwI03lpqtQoUKXrPMWgvO1UdqT9Mv6/mmf9YkUzaFqfkOyNAuZrSrGVvSFge0oDtOmma62bmmV2/rrBtLQIZ+dw9Nnmw1SDeyWtWD0/Zp78pDuyNYZAI0NCjmtdff8M4Z17z++DPPOENuvGGAP+j8m0RARtRL6hv695O6des61x93QkVzrleqVCll9qiXy3ePGimNjjkmZZmoEQueeUY6delqnaUs+VkzMiOzuYYE8yykfXA7ymNAxsWXXCqPP/FEcDe9z/vsvbeMuTu1kD9lxhgjdtxhR2frFbauvDTLmjVqyEMTHizJ/fsffpAapqBRv4Nw8u+z4fE6/Msvv0iDRo2tzZ3rdL2/avBm3Tq1RQt4bWnS5CnWoM9iCciYaLp9uc50/2JLK59fJtqiUCZp/Pj7pOrBVaV6tWqirTO50utvvCEtTjrZNdnrSklb7zqyZk3ZcsstrPMNHDxEtAulcCIg408R1zNpnAJYVzBDnG6Ryvoc59reqlUPklmWllz+3FP7Jw1G0KCEcHLll2RARjH8vtD9Ptrc421Bqxeb1qwuM61a+enZZ5+TDh07+oOl/j77zALZddddS43zBx6cMEH69rc/S+kz9NYZdovm5xv8u63JQ1v1SCIV+pmokPdN1/kV53oQxz7qeUtba9RWG9MlDbT88ssvU2ZrcsIJMuzOO1LGR42IOp/79Owp7du3S1k86vgo7wEZ5eWZJ9OAjEI9B0WdL7n+bZhy4DMCAQQQQAABBBBAAAEEEMiTAAEZeYK2raYYAjIGmn7h7x033rZ5kumLl6+//lpqHFXLmlebc86R66+71jrtgQcnSL8BqS8z/Wbslz3/vFe7N7zw43MfFS348pOrpoXf9Uk/88L0AfPiNJxcNZDD82UynE1hallf5Ov2RdXev/3WW6T5iSem7EZU0/f68k9fAsZJg00AzT2mNrUtbSwBGbZ9z8U4bSHjx59+kq232sqa/UcffyxLly6VCaaw0VYYowtpQaMWOKZLSQRkaOs22sqNLV1gWrm50rR2k6sU9XLZ1pJAuu24e8wY02XMLdbZZpqgpINNYWwSKZtrSHD9hbQPbkd5DMi4cdAgGWcK4MNp0003lZdWrnQGUoTnL+vwvKeekgsuujhlcV3/CnNub7P11t60yPlM4OU2jgJD1z1VMz3OdKNyyy03i7a2E5XOPudcWWEswqlYAjKiAqyGDhki2jVa3KSBcSe2aOnNXrFiRS8oQ4NjahxxhBxR44hS12tXjVRdWJ99zj/vPAl3pxDcDi04qn7Y4dYgGwIy/pTKpgC2mAIy9Dx7ceWKjLrY0mvuETWPlB9+/PFPkD8+NWrYUO4ePSplfFQBrusZMiWTP0YUw+8L3RRX0He1agfLjGnTSjY/7nwlC/zx4amnn5auF14UHu0Njx87VurVyz7g1Jp5GUcW+pmokPfNbK4HcbijCpjjBmScZLolWbMmtTuhOIFg4W184skn5aJufwYdBae7ft9FHR+Zvhfw15eNez6vw+XlmSfTgIxCPQcVy+8T/zjlLwIIIIAAAggggAACCCCQDwECMvKh7FhHMQRkRBX+n25eCg02fdbGTddd31cmTppknf36a6+VNueeY522aNGzcl6nTinT2pr5rzPL2WpuaIHT6pdf8mro+gtqDTitCRdOfq11LbjSgqlwmvvIHNlv333Do7MazqYwNeo7SfcyrCwBGe+8+640aZYaqKEAV5g+yy80fZenS1pL9+hjGllr6+qyBGSkE0w/Xb+npUuXydJly7yuB7T2dLracv/73/+kV+8+MtUECtjSiyuWy7bbbmubVDIuiYAMzax+w2Nk3brUrlW0pq4Wimif9nHS/Q88KDvvvJNX03CTTTZJu0jUy2Wt1f/kY3PTGvgr0ZeHxzdpam0xQLd/+dIlGdeo9/MO/83mGhLOq1D2we0ojwEZUa0CjRw+TI479tgggfPz559/Lnffc490Mt367Lzzzs75whO0af2atWrJTz+lNrEfLGxxPWvUNwWF40yBoSs9ZO7n15r7ui0tnD9fqlSpbJtUMk6vP4fXqJnS3ZjOUCwBGVEF0BpIMWliahBnyQ6GPtxx511y1/DhobG/D2qLJRqc4adLL79CHp071x8s+Ru3z3YtsNOCO1siIONPlQ2lINDfYtf26vRMAwjHmGvKkKE3+1mX+tuhXVvp3atXqXE6EHU+ZBqQEfUsm6/fF7pPy1eskNbnttGPpZI+Pyxb/JzssMMO3vjjTmgi/3z//VLz6EA69w8+/FAaHXtcynI6wuVsm1m7l7jp5pulxYnNEwvstK2n0M9Ehbxvus6vYmohwxWAoN9lJkGC+sx10imnigYK2tKjc2bL/vvtlzIp6vhI9xs0JbM/RmTj7vKIE6ASdQ2y7Ut5eebJNCAj6rqfy+cgPTyK4feJ67hlPAIIIIAAAggggAACCCCQCwECMnKhGjNPVyGJLl6WmtaTTFcJfa673rr2gaZrglami4Jw0gLGOvXqWQt0dN4JD9wvRx15ZHixlOGXXn5ZtOBWC2DCSWuKLnl2kbOg0vUiwO/b/gbTDcl40x1JMO21556iLV8Ek667+mGHpeyL3yXJKaefLqtXvxpcRPSFrAZ2aD+pSaZsClMzfYEU3O6yBGRoc/ZaaKatLoSTFlhrn9J+TevwdH/41ttulxGjUmtb+tMJyPAlMv8797HHTFc8A1OCALT29AITYFS5sr0ZbX9Nb7z5pjRvaa/lveDpp2T33XbzZ7X+TSogI+oYueySbnLxRfYapsGN0tZcOpzf0TtWtSWKKy+7XOrXrxecJeVz1MtlnTlu1y067/WmawNtdcSW6tWtI+PvtbcQY5s/3bhsriHhvAtlH9yO8hiQoffP2nXriQZGhNNOO+0k2ly9qysPf3697rZt38ELstL7kLYm1aVzJ+f90l/O/6u1X7UWbDidYboqGDTwRm+0q8n+Af36ytlnnRVetGT49jvulGEjRpQM+x/02rNm1Stpa+tH1c4tloAM3aczz24tL7z4or97pf72MYXW7U3hdbr07nvveYVftmNBuzpYtGC+97zh5+NqOSTc3Yw/f/jvgBtukPtMcJotEZDxp8qGUhDob7Fre3W6doGjAcR77rGHP7vzr7aS1dS0iGYL1tKFpkx6SA43z8vh5Hoe1/kyDcgoht8Xut0a6FC7Xn1rNxB+AXdUUMUTJmhz73/8Q7NyJtc1RAM17x8/TmoddZRzWX+CH9Clv0u0awvtTiXYCqA/X7Z/C/1MVMj7puv8KqaAjMWLl0g700KSLWl3ovMefyzW80FUa276/KzvGWwp6viwBTHY8giPy8Y9nwEZ5eWZJ9OADP2+XNcwnZar5yDNuxh+n+h2kBBAAAEEEEAAAQQQQACBfAkQkJEvact6iiEgQzerZ6/ezhr0Wnv+2t69I5vtnj3nEVNgfKN89dVXlr0UOallC7ll6FDrNB2pBXUHH3JoStPb2gf79GlTTQHs+fLsc4tLLd/YtIQxetTIUuN0oKWpDfTaa6+VGt/KBGIMvPEG74Ws1kQOpl122UWeW/hMcFQin7MpTM13QIbucJt27b2WF2w7r022D+jXzxq0okEwo0aPlttNzWB96e1KhQzI0JfbGhCkBaRxU5KFEnHX6Zov2Ax+eJ5zW7eWvtdfFx5datjVAo0G2WgT6OoTlVwBGXFqpwXzjTLVAt6+pkujM1u1craU8dlnn3nn9xdffBHMVo6sWdPr8uSIww8vNd4fiHq5rPPo/muB6+WXXebsfkELWbWwZOy4cdbAJc3nZtNljxYyJ5WyuYaEt6FQ9sHtiArIKEthSJI+up1Rx0lUIUT3Hj1k5qzZwV0t+awFnrfcPDQy6MlWAKDn5vnndTD9u7cv1c1FScaBD7NmzxG1CKdKlSrJ4kULxdWEuhYU6vSo6+KEiRPl+n79w1l7w+mCNbU1nBNNINi3335rXV7P18kPTbRO05FRx2ymBcPOlfwxQb8//R5tSVvj6nHlldKhQ3vntfK9f/5Tul1yqbMm8oVdu8oVl19WKvtul14mjz3+eKlxOqDf/SLzTBIVBBnVvLjmYVufjvdTWY91f3n/rwahnNC0mT9Y6u9dd9wuTZs0KTUum4Gynu8bSkGgb+PaXn+6BiNroFWwtRV/mv9XA6Sv6dlL9PuxJQ3oeHpeahCXzpv0eVfo3xf+/vfuc61MnjrVHyz527JFc7nVtErxoOnOsK/p1jCcNCBCu0dMl6aaVr56mtbIbEmvsXrNigpu10L4Dh1/Dzb189DnopNbtpRLunVL2xqRv0ycv1Hnvy6fj2eiQt03XedXWZ5BbNau+63OG7fLEv1ddezxJ3jnom0d++6zj9d65SHVq9smi3ZnNWz4CK/VLX3usiVXJQ2dN+r4iHoWsq3HH5eNez4DMsrLM09ZAjIK8Rykx0fUPSeXvw39Y5O/CCCAAAIIIIAAAggggEC+BQjIyLd4YH3FEpChTV9r6xG2FhL8zdWmzbXG1n6medM9dt9dPvzoI3nT1LzXvpOfWbjIny3lr77Ymzp5khx6yCEp04IjtLlfraEWTNp0uxak22r3atPuV/dILYS67Ior5ZFHS7881YIfLTw6qFr1lH3UF6Q6LelU1sID3Y5CBGRENSGs26Tfedcunb3vX5tU/3jtWnn99ddNk+uPOQM5dDk/5SMgQwNDbr71Nn+Vpf5q9x4tmp8oFStuVmr8EUccLro/4RT1gijpwsDwum3DLU4+xfO2TWvY4GgZZAKibAWr2o1PW1Ooqy2nhFNt09XBA/eND49OGbYFRPkznWUCKGqYZvjDQR0nHH+cNYDnPFPgsOjZ5/zFU/5qEFbnTh3lgAMO8AqxfzYvlj8y15oFCxaYwJ+7rV0faCZRQV9RL5eDG6DHgR7jBx14kOz7RxdG77zzjrz+xusy+u4xzpfjmsc222xjrlXPyhZbJNfSTjbXkOB++Z8LYe+vW/9qIYMG3v3888/B0d5nLXxu366d7LXXXqWmbb31VtK4UaNS4/yBpH2ijpOoQogXX3rJq1mo+2dLWqu9o6nt2sCcp1qQstVWW3mt3WgXRHpMaxdEtqTLaUCirUnx4PzaXVTNWrVTAhp1nkdmz5IlpqBv4JAhwUW8zxosorXko9JCc28/v3Nn6yzaXcnokSPlgP33LzVdnyPU8tbb77DWSPdn1oCQdm3ONU3zV/NGNW7cqFTwST6vwXpMNmjUWMLBXv626l/tWkmDOw879FDRYJevv/lG/mWuq88vXy7ajdKvv/4anL3ks6uVqZtMVxLaTY0tNTi6vgwZNCildRWtWT7ctFhyn2kxzLU+ze9vf/ub11VC5cpVvGuStjYWTGU91oN56GcCMsIifw6X9TnOVXD5Z86/F5jrsXjssY1Nd3v7ea1krVv3iQm+ekvmz18gk6ZMSXnWDS5/pQkOusAECdlS0uddMfy+0P10Xcu0xYHnlyyWrhdcKPOfeSaFJF1wk7+AtjSnv2O+/PJLf1TKXw3+OM0Eje+77z5e11Rff/21fPDBh94z/7Tp051BzVGF5ykriTEi6vwPLp7LZ6JC3Tdd51cxBWTodzB+/H1yg7kHuJLeP/UaoM/f+++/n+xgrvlvm+fVt9962ws80s+utP3228uiZxY4A5Cjjo+oZyHX+nR8Nu75DMhwXSd0HzakZ56yBGQU4jlIXTUV+vfJ71vB/wgggAACCCCAAAIIIIBAfgQIyMiPs3UtxRKQoRs30nQ3cYvpdiLpdPGFF3rN7qbL9/xOnWThomdLzaY1I27o3096mZpt4cKuwaaG4OmmSfZwumvYMLnjrmGlRmth6aWmhtkNAweWGq8DmXRXkLJwxIhsCgvL+iJfN6csXZbocvoyuanpt1prNeci5SMgQ4ODul6YvtuL4P5pyy1amB9OSRdKhPPPdDjdy1kt0K5atarXvLW+NPz662/kPVM7dsHChdaCWl1/V1PQ2v3KK9Juyo3mpfA483I4k6Q177XQMpw+/fRTaX7Syc7WdILza810V+2+4Hza5crsWTOdNcqjXi4H8wl+1pfdmqKC1ILzu46j4DyZfs7mGmJbVyHsw9sRFVgUnleHo2pyJ+0TdZykK4S4+ZZbZdTdd9t2IWVc3OP6uj59pK0JWIiTXC+zNQBEAwfCLUNpnr2uvlrOM61wRKUff/pJ6jdoKN+YPGxJA7G0f3Gtta9dk/3z/fe9QiHb+mzLB8dpjf1gVwz5vgZrYEW7DufFuuYEtzvd5yGDBsppp56aMpu2YnDGme7uYrT7mlpHHWkCBncz3U78JNoKx9tvv+3dq1Myixjht5QSnCWbYz2YDwEZQY3Sn8v6HOcquCyde+mhuNcUXUoDvDTQSwO+bCkX512hf1/ofmqrAUfVrmMN6tSg7dWvvurNEzbJpPtIbY1MA9jCv1fCeepw3O9MA+G1ZYUkU9T571pPLp6JCnHfdJ1fxRaQoc+eHc2xFBXA7Pquosbr7+p7x4yRuqaLPVeKOj7SPQu58szGPZ8BGeXlmacsARn63eX7Ocg/Xorh94m/LfxFAAEEEEAAAQQQQAABBHItQEBGroUj8i+mgAx9gXixaXLb1hd9xC5ETmrUsKHXrUi49rxtof4DBsj9D06wTbKOc/V//ejcuXLp5ekLmf1Me3S/0tTI7+QPJvY3m8LCsr7I140va0CGLrtk6VKvQCrOy2SdP5gqVKggWgtX/W0pHwEZ2hrEMcce66xlaNsuV0F6LgolbOuPO05rQ1940cVegEXcZaLm0yAGLZTR2qHpkqtLhKjlXAEZuozWQOvYpUusQouodeg0LdSY+OADorX9XSnq5bJrmUzGazcl2l1J0imba4hrW/JtH94OV7Px4fn84Q0lIEMDh1qf20a01m8SSVu9uSdmgIeub9LkydLnuuszWvX8p+Z5LR+lW0i76rlr+PB0szmna/diX/z73/LKqlXOeXRCoQMydBvG33e/NXBTp5UlpetSSo+Z5StWlCVrb5lzzj5b5plARO3OyZUIyGggWtgTTnEKYPNZEOhvn6vg0p+ezd84re7k4tmn0L8vfDNbC3r+NNtfDW5dOH++bZJzXFTLN86FHBO0S8VHTStH2223nWOOso0ulmeiQtw3XedXnOtBHO0kuizx16PdfZ186mkprUf608vy9xrTsmRH08JkVIo6Psp7QIa6lIdnnrIGZOj+5/s5SNepqdC/T37fCv5HAAEEEEAAAQQQQAABBHIvQEBG7o2dayimgAzdyB9+/FGuvqanPP7EE85tjjvhOFMwftOQwc5a6+F8Mn0BsPL5ZaLNrobT62+8IS1MDfy4adidd0iTE06IO3vs+bIpTC1UQIbuXFlrMl5lWlroZLqj2M9092BL+QjI0PUOMk3zj713nG0TrOM2lIAM3Xit4dnlggvk2ecWW/cl7sitttxSpphuhNJ1heDnpzX1Tm91pqxavdoflfZvVECGLjx9xky5vl9fU/N7fdq8XDNo4ZJ2H6PXmqgU9XL5yccf85qGnjhpUlQWzmm1jjpKRo0cUaqrBefMGU7I5hoStap82oe3QwtGmzQ70VpLOTyvDm8oARm6rf82QQcaDLjs+ed1sMypbp06MmL4MNHzNG7SFim0oCluiy4Hmi6B5phWZeKk9evXe4F6L7z4YpzZS81TufKuMu/xx2XuY4/LVaZFjqhUDAEZun3aJcidw4ZnFNhn2y9teWmouR/5Nctt82gA5Zlnt/aOHdv0qHHNmjaVO2+/TXr26i1TH37YOSsBGeUjIOO0U06Rdm3byLnt2osW1GaatMWVoeaZvGmTJpGL5iIgQ1dYyN8X/g4/Zq5F3S69zB9M+7dDu7bSu1evtPMFZ9AggyEmQHOcCe7KJum1c/y998o//v73bLKxLltMz0T5vm9uSAEZ+uVpq1PdTGWJN0wXodkkbRlDu9+59JJuabOJOj42hoCM8vDMk01Ahh4g+XwOCh6Qhfx9EtwOPiOAAAIIIIAAAggggAACuRQgICOXumnyLraADH9zZ8ycJdpihfZXnmnaequtpE/vXtbuRKLyesZ0rdCxc5eoWUqmaa3+FcuWlgwHP2gBb3VTWz5uKw+PmNpnB+y/fzCLRD5nU5hayIAM3Xlt5eLqnr1EX0rFSReZIIHLL7vUKwwsdECGfv8Xdbs4djO/G1JAhn4X+p1ce/31MueRR8vUtL6+5L+x/wCpX79enK+2ZB5tml77WNeXw3FSuoAMzePNt96SS0zhiOadafr7XnvJYNMVgDY1ni6le7n8N9P39iWXXZ5x60Dnm+4eenTvLvqiOxcpm2tIuu3Jl71tO56cN88L/Itzf9mQAjJ0X3/77Te5yxTmjzBdgMUNjvCN9Dhqc05rubpHD9EWhzJNWrAfN2jiUnON7HbxxbFX8d1330nnrhfIipUrYy+zxRaby1jTNPqRNWt6161z2rSNbCWjWAIydAe1NY8rruwuWjidadLuo642tZDPbNVK4rQO9vrrr0sX07WbtvAUN+l5MWniBNlpp528bTztjFamm6qvrYsTkFE+AjL8Gvx6Dnbs1NkLcLB+4ZaRu1WpIiNNkNeBBx5omVp6VK4CMvy1FOL3hb9uDQo5slZt+fnnn/1RkX8nPHC/HHXkkZHzuCZqYLsGS8W5z4XzqF+vrgw2XSzquZuLVGzPRPm8b25oARn6/WsLebeaLkXHjhuX8XOFLr/H7rvLLTcPlcMOPVQH06Z0x4fedzJN2bgXoqWiDf2ZJ9uADP1+8/kcFDyeCvn7JLgdfEYAAQQQQAABBBBAAAEEciVAQEauZGPkW6wBGbrp2gT29BkzRLsrePudd9Lujdbi0qb7TzW1+LSZ3UyT9o9+fJOmsRbTPuu1MMKVGjRqJB9/vNY1udT4VS+/JFtusUWpcUkMZFOYWuiADN3/devWycSHJsnkqVPlyy+/TCHRgqajTaH+eR06iNbo1qQFkIUOyPA3VF/6P/LoI6bQ/2355JNP/NEpfze0gAx/B7Tw7j5TWDBlytRYL/y1AO+Crl3MOXqS182Hn08mf7UQ425TwLpk6TIvmCKqlm6cgAxdtwaYaADQlKnTYhUm64vls886U9q3axe70Druy+V5Tz0l2tx4VNCJFpprV0ztTM1ZbR0jlymba0ic7cqHvWs7tKWMYcNHyKpXV8u7777nDP7a0AIy/P3VF8pTpkyRGbNmp63NXrFiRTm6Xj2v5mqcAlN/HeG/48aNlxsHDw6Ptg4/Omd27BZy/Aw0yHHGzJly513D5KOPP/ZHW/9Wr17NBH71L1UA/P0PP8gDDzxgrstz5cMPPxTtqz2YiikgQ7dLt2/27Nky03yHGuiSLshTC0+bNTnBaylq5513Du5a2s8aSDhi5Eh5cOJE0YKgqNSyRXPp3bOn7LDDDiWz6fcxevTdXrdjH69dWypYj4CM8hWQoV/6F1984Z2HU6ZNK/VdlxwQf3zYddddpbW5X57TurVsu+224cnW4VwHZOhK8/37IrijXUxg2dMLFgRHWT9roKa2BpBNwKW2XPTw9One880H5poXlfSZ+pDq1U13EuflpNW+4LqL9ZkoH/fNbAIDgoauz0l2WRJeh7YAOd0cT3PMPVSvAVFJj6eaNWqIttTUokWLjH7nxj0+otYfnpaNeyECMnT7N+RnniQCMtQgn89Buj4/FfL3ib8N/EUAAQQQQAABBBBAAAEEciVAQEauZMtRvq+99prXXcGnn37m9cWtBfTaSoW+6N9ll0pycNWD5eCDq5ajPWZXfAFtfllf0K81AS6fff6ZbLPNNt73XqVyZdlxxx392fhbIAEt5FyzZo1Xu3rdurXeX20CWmuw7bZbFalsvqfdTRDDwVWrZlWwkI/d06Csl156yQsGWrfuE++F87bbbStaMFJpp52ldp3aol0tZJoyebmsx/tLL78sH5hj/l//Mv/M3//7v01ktyq7eZ7169U3prtmuglFP3+u7It+x3O8gdrN0HOLF8sH5lha+8k6Exz2qdeKxg7mmNYC9X322VsaNGiQky5vcrlr2qqD7pcGhn1uCoa0hrPuk54bx5iApWwCS3K53WXN+8OPPpLly5d7wX36HWpB6zbbbiM77rCj7GyutdVMAIq21hOnRYyobdDrz/IVK2TFipXeOvRaXsEE7PzNPG/tvffecmzjRqKF7KTyK5BJwaWef6+9/pp8+MGHot3ffGaOSz0ed999N9l3n32lnmlpIZuAgnwobwy/L7RgV4O63n77bfN884msM/eC7779znu20ftAlSqVvetmrlrECH+Pxf5MVF7vm+HvoazDer/VrtE0mFWDWz/97FP54fsfRAMB9Td5pUq7eAHD5fFZtaxm2S63sT3z2Lzy9RwUXje/T8IiDCOAAAIIIIAAAggggMCGLkBAxob+DbL9CCCAAAJOgUwKH5yZMAEBBBBAAIEcC2QSkJHjTSH7cirAM1E5/WLZLQQQQAABBBBAAAEEEEAAAQQQKHoBAjKK/itiAxFAAAEEyipA4UNZ5VgOAQQQQCCfAgRk5FN741wXz0Qb5/fOXiOAAAIIIIAAAggggAACCCCAQOEFCMgo/HfAFiCAAAII5EiAwoccwZItAggggECiAgRkJMpJZhYBnoksKIxCAAEEEEAAAQQQQAABBBBAAAEE8iBAQEYekFkFAggggEBhBCh8KIw7a0UAAQQQyEyAgIzMvJg7cwGeiTI3YwkEEEAAAQQQQAABBBBAAAEEEEAgCQECMpJQJA8EEEAAgaIUoPChKL8WNgoBBBBAICRAQEYIhMHEBXgmSpyUDBFAAAEEEEAAAQQQQAABBBBAAIFYAgRkxGJiJgQQQACBDVGAwocN8VtjmxFAAIGNT4CAjI3vO8/3HvNMlG9x1ocAAggggAACCCCAAAIIIIAAAgj8LkBABkcCAggggEC5FaDwodx+tewYAgggUK4ECMgoV19nUe4Mz0RF+bWwUQgggAACCCCAAAIIIIAAAgggsBEIEJCxEXzJ7CICCCCwsQpQ+LCxfvPsNwIIILBhCRCQsWF9Xxvi1vJMtCF+a2wzAggggAACCCCAAAIIIIAAAgiUBwECMsrDt8g+IIAAAghYBSh8sLIwEgEEEECgyAQIyCiyL6Qcbg7PROXwS2WXEEAAAQQQQAABBBBAAAEEEEBggxAgIGOD+JrYSAQQQACBsgisXbtO3njzDeui9erWlYoVK1qnMRIBBBBAAIF8CixevER+/uXnlFVWrlxZDth//5TxjEAgUwGeiTIVY34EEEAAAQQQQAABBBBAAAEEEEAgGQECMpJxJBcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBEgICMEgo+IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACyQgQkJGMI7kggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlAgRklFDwAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSEaAgIxkHMkFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoESAgo4SCDwgggAACCCCAAAIIIIDA/7N3H+BRVG0bxx8VpIhdVATFTlF4pXdCU7oCUkVAikhHihTpIIIgHURAeu8t9CJdeu+IXQG7goLY3vMcOONkSUKCi9mQ//kuk9nZmTMzv5kN3/Wee5+DAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBwBAhnBcaQXBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAEyCQ4VGwgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBEeAQEZwHOkFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwBAhkeBQsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwREgkBEcR3pBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8AQIZHgULCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAcAQIZATHkV4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFPgECGR8ECAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQHAECGcFxpBcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMATIJDhUbCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggER4BARnAc6QUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAECGR4FCwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALBESCQERxHekEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDwBAhkeBQsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBwBAhkBMeRXhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU+AQIZHwQICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAcAQIZwXGkFwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwBMgkOFRsIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARHgEBGcBzpBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8AQIZHgULCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsERIJARHEd6QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEPAECGR4FCwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHAECGQEx5FeEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABT4BAhkfBAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBwBAhnBcaQXBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAEyCQ4VGwgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBEeAQEZwHOkFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwBAhkeBQsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwREgkBEcR3pBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8AQIZHgULCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAcAQIZATHkV4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFPgECGR8ECAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQHAECGcFxpBcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMATIJDhUbCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggER4BARnAc6QUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAECGR4FCwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALBESCQERxHekEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDwBAhkeBQsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBwBAhkBMeRXhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU+AQIZHwQICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAcAQIZwXGkFwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwBMgkOFRsIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARHgEBGcBzpBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8AQIZHgULCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsERIJARHEd6QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEPAECGR4FCwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHAECGQEx5FeEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABT4BAhkfBAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBwBAhnBcaQXBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAEyCQ4VGwgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBEeAQEZwHOkFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwBAhkeBQsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwREgkBEcR3pBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8AQIZHgULCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAcAQIZATHkV4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFPgECGR8ECAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQHAECGcFxpBcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMATIJDhUbCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggER4BARnAc6QUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAECGR4FCwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALBESCQERxHekEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDwBAhkeBQsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBwBAhkBMeRXhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU+AQIZHwQICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAcAQIZwXGkFwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwBMgkOFRsIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARHgEBGcBzpBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8AQIZHgULCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsERIJARHEd6QQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEPAECGR4FCwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQHAECGQEx5FeEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABT4BAhkfBAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBwBAhnBcaQXBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAEyCQ4VGwgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBEeAQEZwHOkFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwBAhkeBQsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwREgkBEcR3pBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8AQIZHgULCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAcAQIZATHkV4QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFPgECGR8ECAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQHAECGcFxpBcEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMATIJDhUbCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggER4BARnAc6QUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAECGR4FCwggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALBESCQERxHekEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDwBAhkeBQsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBwBAhkBMeRXhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAU+AQIZHwQICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAcAQIZwXGkFwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwBMgkOFRsIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCARHgEBGcBzpBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8AQIZHgULCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAsERIJARHEd6QQABBBBAAAEEEEBABg8Z6ils2bpVmjVtIrly5vTW6fu63rXA9/U9fx+6r27jGu/HzkfdJk+c4Pjs7+o1akZ4HdfvBz4Dl3tG/uv3eQaD+xnUhy/UnsHAz8B//YzF9jNwrf4ddO76mcuV68K/G/5/PyL84eIFAggggAACCCCAAAIIIIAAAgjEGwECGfHmVnGiCCCAAAIIIIAAAqEu8Gi69BFOUQc6/QNqOhDrD2QEvq8DcoOH/hPqaNakSYRARqi9r9fmH8zVa/MPNsf1+3ozPjxyOMI9CbxHcf1+4DNwuWfkv36fZzC4z7g+jKH2DAZ+Bv7rZyy2n4FQ+zsY+Bm50r+Dge6B/Ub4Q8YLBBBAAAEEEEAAAQQQQAABBBCINwIEMuLNreJEEUAAAQQQQAABBEJJQAfd/GELPbfAAbVrbaAxcCA0rgMXlzu+3pPAweZQGwyP7TPyb5+x2O4fOCgc+AzE9fuXewZC7X19JkPtGQz8jMT2Gfmvn+FQewYDPwPBCmQEuuqzQ0MAAQQQQAABBBBAAAEEEEAAgfgnQCAj/t0zzhgBBBBAAAEEEEAgDgX8g4GBA3H+9/QUAwfULjfQGbj/5fqP6/dDbbA7cCBU70HgYHOoDYbH9hm53DMU7Pfj+hm73PFD/RkMPD99JkPtGQz8jAT7GQr2Mx7qfycD/w4FPgNRvR/oHtV9CfxM6DNFQwABBBBAAAEEEEAAAQQQQACB0BUgkBG694YzQwABBBBAAAEEEAgxgZgMBF533YWTzmmm89CBOH/TgTh/i+/v67XE92vg/OP3M8ozyGcw1D7D+kxeyd96t4/+O5M7V05paqasci0wxEEow8nwGwEEEEAAAQQQQAABBBBAAIHQFyCQEfr3iDNEIE4EZs+ZI59++pnceeedUqtmjQjn8MMPP8jYcePtumJFi0rmzJkivB8XL3788UcZM3acPXT58uXkoQcfjIvTCNoxF4YvkmPHjnn9JUuWVBo2aOC9dgsDBw2Wv/76y72UlClTSo0Xq3uvdeHTzz6T2bPnRFiXy/yPvPny5pVDhw7JkqXLIrynL/R4adOmlXTp0skjDz8c4f2///5bRowcKXv27JVqVatKwYIFIrzPi+AIhOIz/fEnn4g+c2lSp5ZWLVvI9ddfH5yL9fWybt16mTxlihQvXlwqmM9yTNuV7hfT/oOx3d69+2TlqlW2q2ZNm0iiRImi7fZy3l9++ZUsXrJYTp8+Y/tp1LCBJE2aNNo+g/nmyZMnZcrUabbLalWrSKpUqYLZfcj2FRjI0BNlYCxkbxcnhgACCFwTAoHVM/SiAiuPXBMXykUggAACCCCAAAIIIIAAAgggcA0KEMi4Bm8ql4RAMARq160r6zdslHSPPy6LFi6I0KUOEj5dvIRd17NHd6lSuXKE9+PixSeffirFniluDz3ahAXCwgrGxWkE7ZiFixaTz7/4IkJ/69e8f8mAZ4YnM8nvv//ubXdT8uSya8f2CAPlEydNlm49enjb6ELjhg2lxavNZd78BdK6TZsI7wW+eO7ZstK+ch7pkAAAQABJREFUbVu566677FsbzHPxknk+tN1xxx2yaf26yw4s2435ESuBUHym27V/XWaZsJa2iePHSZ7cuWN1TTHZ2D37SZIkkW1bNkvyZMnsbqfPnJHBQ4bY5Qrly0uG9OkjdBfVfhE2iuMX02fMkA6dOtuz2L9n92XDE9F5f/b55/Zvnj+QtWPrFrn11ltt/0uWLpWdu3bJ3Sak9XK9elflyvfu2ycVKlayfc+cPk2yPPXUVTlOKHbqD2U0N+Ea/7eYQ/F8OScEEEAAgfgt4P93R6+Ef3vi9/3k7BFAAAEEEEAAAQQQQAABBBKWAIGMhHW/uVoEYixAICPGVEHfUIMYOris7bVWLaVvv/52uU/vXqZiQHm77H64QIZWu9i4aZNdvcx8Y95f1cIN6ubInl1279ljAxwukPHB5s3y3ujRcuzDD+Wrr07IdabO/pNPPiFnfz0rOuB7/vx526cOvOsAvLY9e/fK85X+CeGsXrlCHrj/fvseP4InEIqBDBfu0bDE++a+33333cG74Is9NWnWXJYuWybpTXWW8AXzvf6//vpryVvgQtBq6OBBUsJU0PC3qPbzbxPXy7ENZETn/c7w4dJ/4CB7STVNVRwNTNWpXdsLeXQ0wY9pJgDy+GOPyeLwhVfl0hNyIENBdXBMqw0Flsq/Kth0igACCCCQ4AXctCWEMRL8owAAAggggAACCCCAAAIIIIBAPBMgkBHPbhini8B/JUAg47+SvvQ4M2bOlNc7drJvfLBhvbzwYg3RqiRaqaJf374RdnCBDP0fZsdPnCQ6zYVuo9u6VubZ5+TwkSPS9rXWMnjoUDl79pxXIcNt07Vbd5lkponQgfYDe/fY1VqRoE2btrLi4hQLw4YMluLPPGPfW79+g0yYOFHeX7tWCGQ4xeD+DsVAhl7hh8eP26oLt9xyS3Av+GJvWvHh4MFDZrqcxyVx4sTeMS4XyIhqP6+DEFiIbSBDTzkq755vviljx0+w08esWX1hGhT/JRLI8Gv8u2UdANuyZavoNDM0BBBAAAEE4lJA/00iCBiXd4BjI4AAAggggAACCCCAAAIIIBB7AQIZsTdjDwQShMCVBjL++OMPCV+0WHbu3Cn7Dx4wg4VpJKspY1+yZAm55557PLtp06fLkSNH5ZFHHpYXq1e36/v0fduEBc5627R57TVJliypaOn9rVu3mW/jp5SGDRp47/sXAgevk5r9FixYKD/+9JNkz5pViptv0993Xyr/LnZ57dp1smz5chtY0DBCxgzppZ6ZjiNVqgvbhi9aJDt27DRTctwgr7dvbytIuE50OoCFC8Ptywav1PeuT781/v77a2Trtm12ugWtLvFM8WfswKnbN7rfr7ZsZQwXycMPPSTLly6RTp27yFTjldJMPaABDX/zBzJ2GPMNGzdJ7ZdqSQdzrtp+++03+V/WbKL3ZcK4sfKKmaokpoEM3d9fDaNundp26hJdr00ra7zdf4CdVuLmFCnsOh08XmdM15nzTJwoseTLl08KFy4kaR94wL4f1Y85c+fKvn37JW3atFKsWFGZOXOWnDp1ypi3EzfwH1NXvb6NmzaKhkb2HzhgplH4n+Q1FUQK5M8fYYBfz+WXX3+VJUuW2Hv14YfH5X+ZM0uePLnl6WLFItxr3VariEw39+HQ4SNy9txZeejBB+2zGzhNQ0yu5cjRo7J69WrRe3b69BnJnOlJCSsYJvnz59ND2Xalz7TbX39r/+Hhi+yqLp07iQYC9Bn56quvJHv2bFK6VClz7Ez+XaT/gIHmnE5LobAwSXFzCllqPn833phEXmvdKkJ/HV5vH2Gqmu+//14WG0v9XGiAKGP6DJI1axYpU7q0Dfq4g/jPqV3bNjLJTKmjz03lypXslBfOL3Xq++xnUT+ja0zw51dzr2ab50RbwQL5zTOVVhIlTuQ964H7uePp7xUrV5oB9S2ya/ceefDBtJI7Vy4pUaKEuOfWbfvNN9/IuvXrzX8bRAMg+tktYI4VeI/d9v7fMdnXH8jYu3uXtdXKNlqZRs+pZMmSotMOuea3ct7dul+Yfmjb9u3271aKm26S8uXK2V2ee+5ZmW+mIdK22VyvPrM6hcmzZcrYdfrZ0mo6rsXURbfX+7DShLP27t8nKU01Dq3WkyZNmgQxZUn1GjVFB8CaNWlCKMM9PPxGAAEEEAgZATedyYdHDofMOXEiCCCAAAIIIIAAAggggAACCCDwjwCBjH8sWEIAAZ/AlQQydPC/qZluYPWaNb6eLixqGGP82DHy6COP2BXde/SQCWYg9oknMsr8OXPkzC+/yFMmOOBvC+bOkYwZM0rzFi1l0eLFdhB2zHvv+Tfxlv2D1zrIrAPDf//9t/e+Tq0wfeoUud8MILrWz4QJho8Y4V56v5MnSybzzLE1EKHBCA1IaJs7a5ZkMgPnrrmpQG6//XbZvHGD3HDDDXaqBd1eAxD+duedd9rjP2gCB9E1Pefc+fLLd999J9WqVJEe3bvJQjOg3qLVhXNYsihcHnv0Ua8LfyDjt9/Oy7sjR0rOHDlkyqSJdht/oGLntq2Sr2DBWAUy9Hx0mggdbC5auLCMeHe47Td/WCE5efKkFCtSRN4d/o5dp4Pm9Rs0FK1U4G866D1/3txopzVp2bq1LDDhljSpU9vQhA7oa9u4bq0NuugUFjFxVXcdPNWB7MD24gsvSNcunb3Vv5rwT5269WT7jh3eOrfgD7XoOh2I1uOfO3fObeL9frtPHylnBsJdu9y1aFCkkfmmvQZHAlvTxo3tgK8O0F/JMx3Ynz8AUL7cczJ33j9TgOi2N954o4x6910TnPlnkF7vt4YRsmfLJgdMqErPUwM1q1Yst4GODmYqDG379+z2psf44ssvpdZLteXTzz6z7/l/6Lc49bnR4IA2/zkVMAGU9Rs22vWusovz06DInFkzZYip6jLITA0RWdPA1r7du+1bgfu57Xv26iVjx413L73f2UxQa9yYMTb0pSt1yp5yzz8vGiwJbEMGDZSSJsARVYvpvv5r16CK/n3xN7Ua894oL8Di3955P5ouvX+XCMtv9XpT2rZ/PcI6/4t2bV6zIRddF1MX3XbS5MnS9WIQRF+7VtiEdrRKjraZ06fFKLji9o0vv115eP/5Tp44gW8n+0FYRgABBBCIEwEXxHAHJzjoJPiNAAIIIIAAAggggAACCCCAQGgJEMgIrfvB2SAQMgIukHH99ddH+Ma2nqAO0muAQlvPHt2lSuXKdtkFJ/SFDuaWKV1Kdu/ZY0IKy+1AtgYXdHoLHaAfP2Gi9OjZUzSosMVUM9DqCOUrVrRhgwfuv19Wvf++DOjXT8qWKS1VX6huB81rmEoa+i3/yJp/8Frff/LJJ+T58hXM1AcHZUF4uK0UEVawgIweNcru/tHHH0uJUqVteEAHqqubwfovvvhCer3Vx1Zm0Kk5dIoOnbYjZ+488vvvv0uL5s2kcaNG3uHz5C9ggwqVzCBurzd72muoVLWqDWNkzZLFfGv9OVtpYIap9qDnpxU6VppggQ6CR9V0ahGdYkSbu37/VA2dO3aUmjVe9Hb3BzIee+wxaWICMTrwvWvHdvut+ylTp0rnrt1sEOX9VSslk6lWEpsKGXqg5ytVtpUydABbQy3adKD4URMM0evU8IC2ui+/LGvXrZfMmTPJm2+8YY5zVjp36WoqShyWp4sWleHvDLPbRfbDDabrezrIXtCEAu6/P431/uTjTySmrv4ASveuXWyFjuWmAspbpvpKokSJZIbx0PPT1qhJU1m+YoX1qlTxefPMZDLVIzZ4oYUe3bpKtYv3s6h5Hr788itbQaN506Zyg6mYMnTYO6JVCm677TbZvmWz7VN/RHct+oxVqFjJPk8aDqpapbLo50IDRFq5QtsY84wWNM9qbJ9pu3PAD/+AvgaGNABRylRh2L59hw05aYUQ9V5tHLQCizYXyNDlu0wlBB10f+ihB6W+ub/+/lxAQEMwhYoWswEdnWKkmLnXeXLnMpVnVsimDz6wfy+0KoMGsrT5+9C/L/q3QoNOz5UtawNYzs8FMrQyym5T2eLMmdPSf+Ag24d+5jJkyGDCO4nsPdKVgfvpOvd3Rpf1b4lWITl0+JDoZ1KrgGh4a9CA/vq2jDTufd7uZ58HDZDofXnXBLY0KKQVczQM5UIldgffj5juG3jtRQoVkrCwgrLKVEtZYypQaGtjKpGotTb/9s57gpmaSJtW9tGwgD5/OgCjLW/ePLJp0wd2WcMeWq1E72vDV16x6/QzrCG42LjoM67TJunffX0eNHykwbI5c+fZ/m3H5se1Gshw1THcdWpoRgMZNAQQQAABBOJaIDCQoedDlYy4viscHwEEEEAAAQQQQAABBBBAAIFLBQhkXGrCGgQQMAIukHE5DBfI0EHZrNlziFYdeO7ZsqLfdndNy+I3bHxhwHDUiHelsBmE1PL3devXt4P5B/ftNQPSS6WVmaKkhJlaRAf7tNKDVgto3qypFCpSVPQb+B3NNBwvmek4Imv+wWudXkAHB11r066dHTzUIMgOUyVCB4G1aRWGlebcatao4X0jfYAZ8B02fLit5qDhEW31zHnqYKm/30OHDknZcuXt+++NHGGnd3Df5NdBS60m4KYe0FDIsyYcom3GtKk2xGBfRPJjnPkm/xvmG/3adHoSN0j+dPES9nz9FSl0G38go5yZtqCwGRjXtmLZUtEpNV7v0FFmmMoe6jp08KCgBTLsQQJ+OCetaqLH0mDN8Y8+knOmwoIOAkfX3GC6bhNYiSQ2rnv37pMKlSrZQ2kgo6IZuNcAjFbv0MHom2++2b6nARudyuX8+fPSvk0bqVu3jl2vPxo0bCQrzQB5flM1QisoaPvhhx/sAHg2Ex5wFUo0bFDTVIXQtn7N+940N9Fdiw7w6zQv+iwuDl/o7fPnn3+aQFIlGyDSygkD+/eLEMjwP3t6vKieaX3P3/wD+rVMkKeTCfS4pgP6jZs2sy8HDxxggxr6wgUydKB/0/p1EQJE/v5cQGCXqVBRqUpV28+bb/SQyhf9dUXPN9+UseMn2M+cfvb0uv19vN62rdSpc8HQdmB+OD8XyHDr/cEkfb70mfa3yPZzg+kaKhllPqeuuc+ZhlF2mcCBhnV0Cp7effraaYbGjhltP6caPNtjwiC5cuW8ZLob15f+jum+/mvXkESrli28bsJMtRkN/WhIY6T5O6nNv73zdjs4Ww32aNgqsHU0lUymmeDU4yaopc+av8XGxf1N1P3d3xXXV41aL8kHmy+Eka7VQIaGXnTAS39rozqGu/v8RgABBBAIBYHAyln8OxUKd4VzQAABBBBAAAEEEEAAAQQQQCCiAIGMiB68QgCBiwIukKFTjbRq8WoEFx0Y1UFlbS6Q4R+UHW3CFPqtb9d00DtX3nz2G+n1zMB3OzMArmEIDRloW2sGv2fMnGmDEI0aNJAHTZBAB5z12+s6MJ0xU2ZbUcAFH1y//t/+QEZrM8jZ4OI3wnUb/7Qj/oFzDXlMnjxFjh47Kt+bAXdt3377nZw4cUJuvfVW2bF1i12n5/Z6x052SpKtH2yy77mBdf3G/NbNH9hBa2eWNGlSu43d+eIPnfJDp/KIbADav93L9V+xUwDo8dXWtXFmUFun1tAB7e3mvLTagTZ/IKOp+ZZ8tpy55KeffvKqa2hoRMMjr7VqKa+YYMmVVMhwfVzum+E6rUizV1t4U5akTn2fLeuv1UaKmsHm6JobTNdpYpYvXRJh09i6ln2unK3KoZ0kSZJEdGA/b57ctpKChmW0+Z9XXec89b1fTdUIrZ7gD/BoVZHxE8bL/gMH5asTX9lqARo0Ofbhh7qLLFq4QNI9/rhdju5a6tSrJ+vMlCWFzOfjPfM58bcjR4/a83XT2lzJM+3vT5f9A/qzZ86wFT7cNv7PpX+KFhfIcFPmuO0D+3MBAfdZ0OoY+vlwoRfdXqtbaEUQbe7z6z8nf+jIbmR+OL9/G8jQkFiW7NltRRg9p+TJk7tDiAZgvv32W/t63uzZtqKO/j0oa6rTaFUcbbfccovkNPtrtZJKpnqPXl9ULab7+q89MMDQqXMXmTp9eoQwmH975+3O4UoDGbF10dCRho+0sswc87fQ32aasFd7E/rSFng9/u2uhWUNZGw1/+nfWRoCCCCAAAKhIuCqZDQ30+Hxb1So3BXOAwEEEEAAAQQQQAABBBBAAIGIAgQyInrwCgEELgq4QXAdZNbBZn/zhylcIGPlqlXSoFFju9myJYvlkYcf9u9ipwf58PhxO41H37festN6PJH5f3ZgVKfBGGsqQ+iA/tt9+tjpEXSajAzp05sKBaNtmEM704F6HbCPrPkHrwMDIf5z0/CHBgW0asWL5tvdP//8c2TdRQhkfP/995I7X34bNNCAiFYwqFb9RTtdhX/KA62Cof1qRQb/4K//ADrVQts2r/lXecs6UJotR07RaSSia/6B9cBARq3adWTjpk1S11QdaNWihWTOktVajzeVHvKZig+xDWRoZQi9dh3ArlihgvTu9WZ0p2a/Rf7O8Hdl67ZtNkTjNtZpMrQKQ1QtqkF43T62rhqe0Koai8xzqBUHXNOQy0gzFYVWytApIl4xlTC06WC9P5DhttffK02lkcTmflY2FSA0MBFViyyQERgo0H3dtVQoX0769O4dVXd2fWyf6cg68w/o69RAOkWQv5UsXcaGSnQaCv3saXOBjPomPNLmtdb+zSMEPFxAoKep6KKfX63mohU13BQ2uuN3333nfX57m2l9tGKJ/5xcH/6DRPUsxLZChgYrtGqPTrWh1Wr0PkbW3jLPtAsM6fPSz0xh8v6atTaU47bXKhP6jVOdxiSqFpN9o7t255gmdWpZs3qVPUy02795ofpIbCtkxNbFBZwi+wxrdQytkqHtWg9k2IvkBwIIIIAAAiEmoIFBDU3TEEAAAQQQQAABBBBAAAEEEEAgdAUIZITuveHMEIhTgdgGMjS0kDNPXnvOr5ppRpqY6UZc04Hs0mWftS/f6N5NqlapYpd1eo3Pv/jCDtQPe2e4HfDWb2A/9NCD5pvtOUQrTUybPFnKmUFcnWbkwN49UX5LPbaD1+7b5TrAOt6EPh6/WN2glxkkHz9xUoRAhp7sCy/WsCGD8uWek86dOkmOXLlt0GGQGbzVUIa2Ll27yeSpU+033LW0v3+Q/9SpU6LVRqJrO3bulCrVXohuE/ueVixpaCqJaAsMZPR9u5+MGDVKcufKJW3NFDDlzTf7tWm1Dw0kxDaQ4aqDaB9tWreS+i+/rIuRNp3eYbuZ/kEDDzeYKSB2m6kspk2fYaajuVDxInC6A38nUQ3C6zaxddWqFRokyZkjh3z62WeyYcMGGTx0mA0HlC1T2lYP0eoIGjTR1qd3L6lQ/sL0M/pa973JVD7RYI02/5Q7er+LFC5insNEokGfJs2a221iGsjo3qOHTJg02QaWNLjkb1oV5uTJU1KsaFEzjc6LEaYsiUnIyN+XW/YP6Hcxz22NF6u7t2wQQwMZ2jp16CC1atawy7ENZGiQyjlMmTTRutuOzI+J5lq7mWvW5u6//5yuZiBDj1miVGnRIFhgAEbDT1pJxh9Q0XV79u61nxOd7ufQocP2HusURhrq8P/t0r79Lab7Rnft/1UgQ887Ni4dTHWg6ebvcvJkyWSzqYCiv11zVT30NYEMp8JvBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT+ESCQ8Y8FSwgg4BOIbSBDdy1VpqyZ/uOYDR60b9tGnnn6aTlopssYNHiwrN+w0fbur3LxUp06smHjJmlvpjDpN3Cg6BQKu3fuEJ0GRAfLddC8c8eO0v2NN8T/rXHfaXqLsQ1k6ACyDiTrwKsOjGvg47PPP5fnTJULna5Cp7rQ9XpcbTplyBvmG+k6vUWXTh2lafNX7YC9Tlei56ttwcJwO92CLjdu2FB0GohkZvBywcKF0qFTZ1NZo5R069IlwpQOuq1rQ4cNk4GDh9iXOrWKm17Dva+hlo8+/tiGLSaZ6TO0BQYylixdas9Np9vQ6gadunSNYBcYyNAKBtrnmLHjbPAgkQlSaCWLX389a+7dQZlkpnTR+6L96b3TKgiRNQ1j5DbT0pw7d04amuliWplpY7RpOMIN+o8fa6p05L0Q2gnsI7pARmxcBwwcZKe+0aDNogXz5e6777aH0vulNhoW0Yos2oo9U9yGHvQZ6GWqN+h7GhBq2aq1fP3N19KhfXvR6VYmmVBQ1+49bMDm/ZUr5b77UtlnRCtsaCUQbRrU0AoCWh0iumvxhxdq16opzZo1s8/esmXLpd3rr9sqLK7kdGyfaXsiAT/8AQC9zo7mGPnz55OjJiTVf8BAOz2O7jLXTD2RKdOTdu/YBjL8YSw1bGkCQ1mzZDFVJtbIW3362lCMPjc6PYk2/znFJpCh0/7kyV/A9qGhr0bmM6beriJHZO4dzedu2owZos/1gH5v20oYOiWNXvu8+fOlXt260syU+NZW9YXqdlogDTONeW+U/Xxr0KJAocKix9bplPTaImsx3Te6aw92IMOFJe644w5ZuihcbrvtNvus6fnHxmX2nDnStv3r9rJ1Gpv69V+Wu839XGqe2a7du3uVRK7FQIZ+69jf+AayX4NlBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZgIEMiIiRLbIJAABa4kkLHNVEeo/0oD0ZL42rTCgA7mu9asSRNv8FPXucoHaR94wA7a6uC5TnmgrXqNmnb6C/eeDuTrgH5ULbaD1zPNAHT7Dh1tdzpYfPfdKeXAgYO2usWXX31lp+jQN6dOniQ5smeXr746IQULF7bba1BCwyKFw8Jk1MgRdp3+0MHbZq+2kOUrVth1OgislRR0Cg1t+c2UIWNHj/YGkO1K3w9XhUOnZdHwQ2BzA6zqunPbVltBJDCQoaGSIsWetruqp07zUKJ4cRk6eJBdFxjImDd/gbQ2gZjoWuLEieVNE4rR6iDRNfdNet0mfbp0Jrxxl+zes9cO2Oqg8KoVy22wI7I+IhtMd9vFxvX4Rx9Jhecr2mlfNESSJctTcurU1zYopFUO/NVFNExR7+X68uvZs/ZQOnWJhnG06b3T6XJ0cF6fraeLl7BVErQ6QDpzbfsPHLD+aqOBBG0tmjeTxo0aRRvI0Gtp2fo1r2qIBoH0WO5z8mDatDJrxnQ7eB7bZ9qeRMAPfwAgWbKk9llUF/cZ1c31vur0KS7YENtAhvahgSUNFKixNv9nXyvdDDOhrLCwgvY9/znFJpChO7sQje3I/NDP1DgzHY+2yJ4hDVLo50qnWdKm4amzJjSkU/Boa/lqcxvs0OX5CxZKK1NVRluqVKkk3eOPmao9x+TEiRM2yKDVP7Jny2bfD/wR032ju/ZgBzL8QSZ3vjOmTbVhmdi46OfjJTMV0s5du2w3+pzo50CnVrrlllu8aZ+utUCGhjH03yHXNIyh09bQEEAAAQQQCDWBwUOG2lNyQUINmxIiDLW7xPkggAACCCCAAAIIIIAAAggkZAECGQn57nPtCEQjcCWBDO1OQw1dunWTAwcPyu+//26PoKEKrRbxYvXqEY441lRl6GkGgl3Lkzu3TBw/zr504QP33gtVq0r3bl3dy0t+x3bwWgeOBw4abKf30EFybToYPmb0ezJr1mwz1cIkO2jtAhn6vk6dsn//AV20rbepqlDRrPM37aubqaaw3FRS0OoT2nRAupLZrp2pGqKVNyJrOuiZNXsOG+rQb6H3MFO7BLaF4YukRatWdrWrNhEYyNA3s+bI6Q2S6uvWplpFA1O1QltMAxk64JrWeKRPn86GDNTmck2v/e3+/WXq1Gl2sNZtnyFDBjvdw/8yZ3arLvkd2WC6f6PYuO4yU6X0eKOn7N23z+tC78EL1apKOxM+0RCEa/o/XPfu00cOHjzkDdI/8vDD8mbPN2zFDLedTlvSpl17L7ChA/uDBgyQc7+dkx493zRTjZyMUSBD+/vrr7/sMfV+6sC4Nn0uCubPL2+Z6VN0kFtbbJ9pu1PAD38AYMHcOSZw0MZWLdHN9BrKlC4t3bp2iTC9zpUEMrS/ufPmy4iRI0VDMfr50qCJPj+vm6lYdPoY1/znFNtAxtq162SACRe5z+HlAhl6TJ0uqL2ZkmX79h1e+EarRejnwk2f5M5Nq0FolRoNYbimga3XzOdOpz2JrsVk3+iuPdiBDK1Wo5+DRYsXi1aw0eYCGbocGxcN8LQylWPWb9xo/67rZ6hggfx2aqqKlatod9fclCUEMuxt5QcCCCCAQDwQcEF2d6oaICSQ4TT4jQACCCCAAAIIIIAAAggggEDcCxDIiPt7wBkgcE0K/Pbbb3LkyFFJkya1aHWEUG1ameCo+RZ8iptT2OoY/sH6f3vOOjCt38TXAf4bbrjh33YXb/bXgWCt1PHzzz9LqntTSerU9wX13GPqqgPOWu1Ep415wISCbkqePMrz0AHr48eP21DOrbfeGul2GqTQSgu/met79NFHbRWISDeMxUqdIuWMGex+zPSnAYZgt8AAgFau+PSzz+TM6TOSIUP6q3JMve8aJnns0ceMfdJgX9IV96ehnsOHj9i/RzrtTFRNP7NffPmlrS5z55132r8LMb03/2bfqM7naq+PqYueh1b7OWampXr4kYe9qZqu9vnFVf/6bePBQy9841jPgQoZcXUnOC4CCCCAwOUECGRcToj3EUAAAQQQQAABBBBAAAEEEIhbAQIZcevP0RFAAAEEELhqAoGBDK0UQkMAgcsLaCDDlX7XrXPnyilNzbRbNAQQQAABBEJNgEBGqN0RzgcBBBBAAAEEEEAAAQQQQACBiAIEMiJ68AoBBBBAAIFrRoBAxjVzK7kQBBBAAAEEEEAgUgF/gFA3YLqSSJlYiQACCCCAAAIIIIAAAggggECcCRDIiDN6DowAAggggMDVFVi0eLH06z/AHmTJonBJkiTJ1T0gvSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgCBDI8ChYQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHgCBDICI4jvSCAAAIIIIAAAghcQwKUgL+GbiaXggACCCCAAAIIIIAAAggggAACCCCAAAIIxJEAgYw4guewCCCAAAIIIIAAAqEpMHjIUBk8dKh3crly5pTJEyd4r1lAAAEEEEAgVAT03yx/a9a0if8lywgggAACCCCAAAIIIIAAAgggEMcCBDLi+AZweAQQQAABBBBAAIHQEiCQEVr3g7NBAAEEEIhaoHqNmuKv6qQBQg0S0hBAAAEEEEAAAQQQQAABBBBAIDQECGSExn3gLBBAAAEEEEAAAQRCRIBARojcCE4DAQQQQOCyAgQyLkvEBggggAACCCCAAAIIIIAAAgjEqQCBjDjl5+AIIIAAAggggAACoSaggQz/t41z58opTZtQAj7U7hPngwACCCAgQiCDpwABBBBAAAEEEEAAAQQQQACB0BYgkBHa94ezQwABBBBAAAEEEEAAAQQQQAABBCIV0ADhVvOfaznNdCVMWeI0+I0AAggggAACCCCAAAIIIIBA3AsQyIj7e8AZIHDNCaxbv14mT5kixZ8pLhXKl7vmri8UL2jc+PHmf4jdJvXq1ZOsWZ4KxVMMuXP68ccfZey4cfL33yLly5WThx56MKjnOG7ceNmybZvUf7meZHmKexJU3IudrVt38W9N8dj9rbnS/YJ9DXH1jOizP2bsOHs55c3f6IcefDDYl0Z/CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggYAQIZPAYIIBA0AWKFHtaPvv8c0mSJIls2/yBJE+ePOjHoMN/BL786ispXLSY/PXXX5Ije3aZMmmiXHfddf9sEKJLS5Yuk127dspdd6W0oYWrcZoHDh6U+fMXyN/m/1o0bx7hWfzk00/l6eIlTCDjb3lv5AgpFBYWtFPQe1KoSFHbt96TqZMnBa3vhNbRuyNGyHfffy/Zs2UzIa9nIly+Pveff/HFhb81WzZL8mTJ7Punz5yRwUOG2OUK5ctLhvTpY7RfhI2u8osvvzTPSNGr94wsWbpUdu7aJXenTCkvm6CWv+mzX8wE5rSNHjlSwsIK+t9mGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIIkQCAjSJB0gwAC/wg0NQPfOtieLt3jEj5/frwIB/xz9vFv6ffff5ewIkXk66+/kVo1akinjh3ixUV07NxZpk2fIY899pgsXrjgqjwnC8PDpWXr12wwYusHm+SOO+7wbK5mIEPvScHCReSbb76Rl2rWkI4d4sc98XBCaEGDA3qvalSvLl06d4pwZk2aNZely5ZJ+nTpJHzBfO+9r7/+WvIWuBAyGDp4kJQwFTT8Lar9/Ntc7eWr/Yx07GQ+XzNmyOP6+QpfGOFyCGRE4IjyhZaA9zfKv/s1WEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIiQCBjJgosQ0CCMRKQCs1HDx0SNI9/rgkTpw4Vvuy8ZUJnD13Tj75+BPJkCFiJYAr6+2/2etaDmSo4Nmz5p588rG5Jxn+G9Br9CjRBTLs35qD5m+NCX/5/9ZcLpAR1X7/NeHVfEYIZPy7uzl4yFAZPHSo14mGMSZPnOC9ZgEBBBBAAIFQEdB/s/ytWdMm/pcsI4AAAggggAACCCCAAAIIIIBAHAsQyIjjG8DhEbgWBebMnSv79u2X++67z5TKr2svccfOnRIevsgu67fcly5bLps3b5Yzv5yRXDlzSamSJeSmm26KEcfGjZtk46aNsmPnLrNPcsn0ZCYpU6a0PPboo5fsf+zYMVm5arXs2r1LfvrpZ3nqf/+T3LlySeHChSJs6845bdq0UrpUSZk0ZYoc//C4PPFERqlUqZLcdeed9pzXrV8nf/7xpy3xX6pkSa+P782UCkOGDrOvX6pVU7766oQsXBQuR44cMd9Qf9xuH/gtfd349OnTMnrMWBNgOSgnT56yZiVLFJdny5aNUDHCf37FihaRmbNmy6mvT0n7tm3l1ltvlQEDB8rPP5+WvHnzytPFitrz0EFndV+/foNs3rpFHrj/fsmXN58UKhQmt992m93G/2PTpg9kk6kisXPXbkmaNIlkzZLFbFtInnziCf9m3rF0moNHH3lEFi9ZYu/3ww8/LEWKFJb/Zc4cYfvAF92697CrNm/ZIsc+/NCef1lz/64z/1fMnHs+cw2uxfSc3Pbu9/gJE0wY4lP5+JNPZMPGjXZ1peeft9elFTleqFbNVl3wT1mSzEx3sWDhQvnxx58kW9aspqrCM/Z+uD7db52OZPny5bJ12zb54YcfzfObwzxPRcyzFfG6+w8YaO9vvnx5pZiZmkKbW6fTo6S4OYUsNdNK3HhjEnmtdSvXfaS/jxw9KqtXr7b38/TpM5I505MSVjBM8ufPd8n2f/zxh4QvWiw7zb3ff/CApEmdRrI+9ZSUNJ+xe+65x9s+wjP7Ui05ZEJUq8wxkpjzKWqescLm3p84cUJmz5kjhw7rc/yYVK5UUVKlSuX14X8uK5n3xo4da6fJOH/+d3Mf88hzzz5nDP/Z3u24d98+ef/9NdZQpxnJkzu3PGO806RObTf59LPPZNy48XZ5nqmyo1OQaMArZ44cdl29unUlder7xB1fl3Xd2rXrZM3atfLrr7/KbPN3SFvBAvkl7QNpJVHiRNKhfXu7LnA/u/Lij42bNok+d7t2//M5KFyosP1b4N/Ofy8fedR8DhYvlr3m794j5nNQ1FSsyZw5k3/zSJddH1E9I1fSb2Sfr2fLlLHHd5+vwAoZSZMllQULzLP/00+S3Tz7xU1FkSu5b5FeZDxdSSAjnt44ThsBBBBIgALVa9QUf1UnDRBS1SkBPghcMgIIIIAAAggggAACCCCAQMgKEMgI2VvDiSEQfwVamSki5puB7cyZMsnsmTNssGC6KZ3fsXMXO3VE7Vq1ZOz4C4Ot7ir1fzQc894oSZIkiVsV6e9h7wyXAYMGXfLeTcmTS7+3+3oD37qBDsQ3bNzEVCo4e8n2dV56Sdq3a+uFHtw5p0p1ryRNktQO5LudMmbMIIXNAPqw4e+6VfZ3y1dflUYNG9hl//QXOvi52Ay068C4v73arKk0adzYW/XZ559LjZq1RAf4A1vlihWl5xs9Ljk/HbDWSgAaNNC2wQw+33vvPZKvYEE5deprqV+vnrR5rbV9r+/bb8uIUe/ZZf8PvZ5Z06ebIMCN3up3zLX1N6GOwKbH6m/60ZCIa+5YGjDZs3evHbR37yVKlEiGDxtqB/PdusDfj6XPYJ+DwPX6uq0595fNNWiLzTnZHXw/XqxZUzZviTjdgHs7zFi9N3KE6KC/C2RoCGfxkqURzuvuu++WaVMm2yCL2/ejjz8W7Vunh/G3G264QQYNGGBDHG69TpmhlRr898Sty54tmxwwYQmtkJD2gQdk1YrlbrdLfmugppH5pqNuG9iamudJvwV53XXX2bd+++03aWqm8Vi9Zk3gpjaMMX7sGBui0Tf9g/J58+QxYZwPvH20v1YtXpVZs+fY7dwb+vypyb333mtXtWzd2oRYwuVBE2S6/fbbbYjBbau/dVB/ugk3+UMcOsXIqy1bXfL5uNOEnqZPnWL70kEFHVyIqs2ZOdMGHtzx9W/NnFkzTShqqAwK+Jao6yOZCR3sMyELbYH7uW3eGT7cfA4u/fuin4MB/d6OMPWJu5dRfQ7efWeYaPAmuub6iOwZudJ+H00XdZWcdm1es8EV/70vXaqUDVX9/fff3qnqs6/34v40abx1Mblv3sbXwAKBjGvgJnIJCCCAQAIRIJCRQG40l4kAAggggAACCCCAAAIIIBBvBQhkxNtbx4kjELoCLtwQVSDj+uuvtwP2hUyFhVWr37ffaNerea1VK3ml/stRXti0adOlY5cu9v0c2bOLVlU4/9t5mTxtqnxspuvQqg4aULjNVH84bL7RX8GEGs7//rutwFDuuWflvntT2W/NHzVVM7T5AxXunHV9nty5TN9lzbmtsuen63TAvZLp70lTMWPc+Any4fHjcnOKFLLdVJ7Q9/yBDN3+iYwZpeLzFeTbb7+zxzx58qSuFh2kddUS3DF1ILp92zby8EMPy3QTYJk+Y6bddtGCBXYqBn3httXlZEmTSkETKtDB0saNGsrNN998SSDjzz//lCzZc9hKAVVMhQ8NORz/6Li0aNXaruvQvp3UNqEUbX5XDQdUNJUkfj79s8ybN1+++fZbe30Txo2zlSB0exfI0GUNg7xQtZoNvWglha+/+UY0HKMu/ikkdFvXJk6cJDr0G754kanisEtSpkwpDV+pb9ZcJ1mzZrEVOWJ7Tq5v93v5ihVyylQc2Xdgv6miMM+ubtWiha2oksa4FSlc+JJ7ppVAnq9Q3k63oyEDDTcULFBARo8aaQMP5879JkWfedoGX9S+UsXn5a677pL5prKABgj0ejUo4KaNiW6wXU9I99Wgz0MPPSj1X478uT90+LB5jivJ7+Y51mNWrVLZBh+0KskGUylG25hRo8zzUMAuN2/RUhaZSg3aNPRRpnQp2b1nj63ucs5Ma6OhidUrV9hn1z8or89QrRo1JEWKm2T4iJGmmsxPtg+tgFLjxery0UcfyXhz37S9bqqy1KlT2y67YIO+0Puug/vZs2ezA/zrN2wUfQ4zms/Cgrlz7PZaOadS1ao2jKEVWMqXe85WEZkxc5a9HxrgWGkCGz/88IMsW77C7jP0nXdEq3noZ75kiRJ2nQZo9HPjju8CGVp5Y/fuPXLmzGkvWKGVUXTamMSmQkY1c2xtgfvpuqnTpkmnLl110YZk9P5qVZ25pkLHtxc/BxPHj/OqdLj7q9trQKV6tarms3VWZpnPwTcXPwc7tm0VDSlF1VwfkQUyrrTfCRfvU/gi8/na5T5fr9hT0MovWvXHf+/1jSefNM9++Qpy8OBBWRB+4dkPM8/UaPNsaYvpffOHvOyO8fgHgYx4fPM4dQQQQCCBCRDISGA3nMtFAAEEEEAAAQQQQAABBBCIdwIEMuLdLeOEEQh9ARceiCqQoYPvrVq29C6kUJGi8sWXX9qQxsh3h3vf9vc2uLhQu249Wb9hg512ZOrkSd6Avw5+hpkpIzR88Ua3blK1ahV51wwqv92/v91zxbKl8tCDD3rdlS1XzkzPcNgO/M+dPcsez52zDp5u2/yBDTn8+OOPkid/ATsYrlMlaPlfrRywaPES8w3/lraawpLwhaJTYPgDGY+bqRUWLZjvXcd3330n+cMK2X5eMIO23bt2teeiA/7r1q+31+G+Sf+rqeaRw0yp8psJmvR9q7cZsC5nt3Xnpy+0EoDa+psLSbiBXa3OkSN3HjvYXbFCBWlnAh8aVNm+Y4ekMoPHqS9ODaF9OFetDrJm1SobwND1OiiuA8YaBqhbu7atKKLr3bE0gKBWKUwwRZtOA9G2/evWRV0zPfmkXR/Vj46dO8u06TOs3+KFCzwv3T625xTVMRaaweWWpmKLfvt/q5mO5Y477vA29d+zLGZKjxkm2OMqTbRt194GafyhGw1dvGgqmmhfWvnFTc2iQY0iTz9tq2H4Qz7RDbbrvdhkpr+53AD2uyNGmOd4gA1QLDbPmqs0oUGH8iaooQPoZUqXloH9+10IOWgIxzxDzz1bVvr17etd64qVK221GF0xasS79rPmH5R3z42+37NXLxl7cbqQSRPG2yl+dH3xkqVMqOcjG4oYMuhCNRUXbND3hw0ZLMWfeUYXbevxxhteiGOLmWJIAxSugoWGUbQqiIY4tOl1PGsCAdr0PmhYw7VizxS3n68a1auLTnfkb+74LpDh3tPKJOqvbejgQREqW+i6yParbaY80RCJGq81YSwNjmnTz4H+HdDPVF0TRNFpgrS5+2s/B1s2S4qLUy7p56CNeX60zZs924Yd7ItIfrg+/P5u3b/pVw/VsZP5fJnKRDrVjD47/ua/9/rsz5w+zXu7Tbt2NsSkz74GStThSu6b1yELCCCAAAIIIHBVBfT/R91q/nMtp6k8yJQlToPfCCCAAAIIIIAAAggggAACCMS9AIGMuL8HnAEC15yACw9EFcgIHHDtZKpeTDXVLx64/347SOsGxf0wOhiaLWcu+eWXXyJMa+G22bFzp/1Wuw70anMD+v5zcNuOeu89eavv2zZ4sN0MpGp1AHfOWtli3pzZ3sB89ly5RYMZjRq8Ii1NhQVt+i385ytVtgPzOpCpA5r+wf3IKn3Ufbm+rF23zlZPWGAGbN01zp03z04VoRU+/vzrT9v/wYOHbGWBzh07SE1TtUCbO7+HH3pIli1Z7O1v3zQ/XEjCP7D7Rs83ZdyECXYTreLxiKl2kM9MTVG+fDnJaCoGaFPXrDly2qoZL5sB6bZmSgN/q1f/FVvBRMMVGgTR83bHKpAvn4wZ/Z53LhqM0cFkDSz4wyT+/vzLUQUyruSc/P36l2MayNDqGQ3NPXYtfNFiU02klb2WdWvel/vMIL0L+egAtVb18DetKKEVKAoXKiQuVOQG1v33xK2rVqWK9Ojezd9FpMt1TGWTdWbKEq0m897IkRG2OXL0qJ3iR6cL0bbLTMdRqcqFChCjzbZhZh/Xzp8/L7ny5rMBnXp160i7Nm0iVEnQc9aqIdq0wkJ3E6bQdthUGHEVHurVr2+ehXWmakh+M73QhalwXLBBP0MauvAHTHQ6G/2caHOVYVzoIamp8nLrrbfa99wPfX7++uuvCBU49L3/IpBhn7mLYZbIPwcXrj1Tpidl7qxZ9pTdvSyQP5+MHT3aXYatjqEBDm1933rLVgHx3gxYcH1E9oz8m371MDENZLRu2UIavOJ/9hfZKWW0j/Xm2deAypXcN92fhgACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQhcgkJHQnwCuH4GrIODCA/4wxHTzTe2OnbvYAe59e3bbaTfcod/s1VvGmCkx0piqDe+vWukN8Lv39ffp06dtIEMHbN/q9aaZWuLCt+n92/iXny13YeqJUiVLyKABAyL0uXjJUmluBuA1OKDf0tdpOiI7Z+3PBTKaNm4kzZs1s4fwBzJcuMQfyBg8cKDocf2ta7fuMmnKFDvFx/o1a+z5uCoM/u38y5EFMvym/m1dSMI/sKvvT5s+3VahOGAqEOj1atMB9tfbtbVhD79rdxOMeeGFanYb96OLqTgyecpUMyh7r6x7/3173lEd68yZM3aaFD1On969pEL58q6bSH9HFci4knOK9ABmZUwDGe+NHGFCD2FeNytNpZCGjZtYszWmWoI+m+451UDGLbfc4m3rX9DAzPSpU6xTdIPtgffJ34d/WatGaPWICiZE06d3b/9blyzrOTdo1Niu19DOIw8/HGGbEqVK26l2dJoQDQr4qyT4Axz+QMaxw4e8z44LZPiDAi6Q8dijj8qSReERjqfTjOTMk9eu69XzDTvlj7seDW4kv1gdI8JO5oVOMeIPBv0XgQx95jSYpM9u967mc1At4HPQ1XwOpurnIJUNKeg5R3Z/df1p/Rxky66L9p7pvYuqRdZHZOt0/9j0q9vHNJDhv/e6n/85Wrt6tammc5+tXqLPYWzum/ZFQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgoQsQyEjoTwDXj8BVEIgs3PBvAxl6mqWffVaOHDkqVatUlh4mKOCqTOiUGhUrV5E0adJIlcqVzDf4C0i37j1k4uTJdkqEzeab+8mSJfOutGnz5rJk6TJb5UCnjdB+Ijtn3eFKAhklihcXndLBnZ9OL1GgUGE7pcUzZmoLndpBKypoxQJ9r85LL0mjhg3N1B83iQ5ih5kpXPSa/m0gQ6dt0PBIsaJFRadN2bJ1m2h1kH3798s999xjB5Y1XFCq7LNy1FRbyJ0rp0wcPz7CeecPK2S/8V+2TGnp//bb9r2rHchQ99iek+4TWQtmIMMFedRs+dIlNsjjjqnWd999t3tpf0c2sB7Zugg7Bbzo3qOHTJg02YYrNGThbzq1xMmTp+z9rVnjRfvsuADEq82aSpPGF8IZuo9W0yht7rO2N0xljqqmQkcwAxna7yIz7Uw6M12Pa5NNAKmLCSJpCzdT+KRPl066XAw2aDUcnUpIK7e4durUKftcutfu938RyNBjlSpTVo4eO2anaNGpWlzTz2i+gmHy7bffin4OBvTrZ9+K6l7GJjgRWR+RrdMDxqZf3T6YgYwruW96DjQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBK6AIGMhP4EcP0IXAWByMINwQhkuJCFVnjQb9yXKV1afvjhB3lv9BhbYUMvZbKZoiOXCRYsXbZcNHih33jXb9y/bKZ+SHl3Slm4YKH0NJUGfvvtN7N/KTu4GuxARpIkSaRr5862SoZWjZgwcaKMGHVhiod2ZkqQemZqkGNm4FdDB3p+/fr2kedM2ESnTejXv7+MMtej7YVqVaWbqVoR3fnZDc2PwJDEpk0fSK06dWz/Y820IgXy57ebTjHVLjqbMIsOhO/ZtVOSmnN1rho00PMrV66cnRpm/PgJ3pQnb5h9qlatYvsIPJY7h9hWyHBT1dxxxx2yJHyh3H777aLnoC225+TOIfC3f+oRfTZy5MhuPdXUX9UkJhUyNDCgARW9Z0WLFJH2bdtIWjNdiE4VUr9BQ9GpQ3q+0cMLJUQ2sB7ZusBz9r9eumyZNGnW3K6qXaumNDNVWtRomXm+273+up3io3nTJtK0SRO7jQsVaOBGz08DQAcPHZJBgwfL+g0b7TYaJtFKHsEOZOi0Ki1ffVXSp08v6800Kz179ZKPPv5YUtx0k+zcvs2e94KF4aJVNbQ1NiGk2i/VsmGpBQsXSodOne1nUp95nQLFtWdKlLT95MubV0aPGmn7cc+Jq9ChlWN0Sh3XdPoTN22IhlM08KT3XP/TFtl+/meuvZnSpZypJHLGTJE03oSUxk2YaPdzYRZ9EdW9jE1wIrI+Ilunx4tNv7p9J1ORaKqpkKOfr6Wmesltt93mfb6iuve6X2QVMq7kvmlf8bkNHjJUBg8d6l1Crpw5ZfLECd5rFhBAAAEEEAgVAf03y9+amf/fkIYAAggggAACCCCAAAIIIIAAAqEjQCAjdO4FZ4LANSNwtQIZWoWgVp0LYQbF0uCDVpLQaUy0ueoTOuiq4YbWr7WR8MX/VBVInDix3V63vd9U0xg3doxX5SCyc9btrqRCRrKkSeXsuXN2Wpbz5vz0G/baHjfVA6ZOmii33nqrfV3QVM346sQJG454ImNG+fTTT+Wnn3+Whx58UD7+5BO7TZ7cuWSCmc5Fr2W+GbSO6ZQlev1lnisnH374oe0/W9as1mnP3r3WIH++vDJ29Gg7QK2D1xreOHr0mD2mBl70nDV4oC2sYEFb1SOpuS5twQpk+KtX2I7ND53uQ881tufk9g/8rRUkwkx4wt0DfV9DA40aNoh1IEP3HTN2rLzZ+y1dtE2DAzrdhbaUKU3gZ95cueuuu+zryAbWI1tnN47ih97Hlq1fk8VLltgtNIig9+f8+fP2tYZAZs2YbgfbdcW27dul/isN7OC9vtYpJty2+rqZCW64/5E+qkH5K5myRM9Jm57vzSlSeMfXdT17dDeVayrron2/2astZPmKFfa17pc4cSI5e/acfe1/Lu0K88NVenCvdZ/DB/bbl5EFK9x2rrKGe619jxtzIewU2X72mattPgcmLKVNj+P/HGjgZKgJtrjPQVT3MjbBicj6iGydnk9s+tXt/SEKfa3NP8WS+miLyZQlel9je99s5/H4B4GMeHzzOHUEEEAggQlUr1HTVMLb6l21Bgg1SEhDAAEEEEAAAQQQQAABBBBAAIHQECCQERr3gbNA4JoSiCzcEIwKGYr0448/SvsOHeWDzZtFKzJou+WWW6SamYKhVcsW3jfAdb0GNfq+3c8GGTTMoS25mboke/bs0uvNnnKPb4qJyM5Zt7+SQMaQQYNk3vx5smr1+9qFHdjNni2rDDDVL1JeHKzX9R8eP26qHzQzoYnj+tKGI7TaQZnSZez6w0eOyJUGMrQ/HWDuZqa8WL5ipRda0bBKkcKFbSWHu+68UzezTadQad+hg3Hd4gUM7jTvP/N0MenSqZO9BrdtsAIZ5879Jj1MpZNFi5d499IFMvRYsTknd26R/R5tBuG1wsEJE37R9m8CGbr/xImTZJypeqIBGm1abUTvU29TEeJeU5nCtcgG1iNb57aP6rc+x7379JGF4YvsPdXtNIxU0FQ9eat3L/v8+/c9cOCgmSqkmxw4eNALIKV94AFbjeLF6tW9TYMZyNCgUINX6svrHTvZz6geRAMqjU3wxX9MXa+D+1qNYvnKlXYqHV2nIQetZNPOVPXQa/M3rbLRq1dvWbdhgw1IxDSQsXbtOhkweJDs33/Adne5QIZupM9cu9c7yGbz90UDENr0c1DcVBrp3KljhM9BVPcyNsGJyPqIbJ2eR2z61e3PmVBYjzd6ms/XYlvpQ9ddaSBD943tfdN94nMjkBGf7x7njgACCCQsAQIZCet+c7UIIIAAAggggAACCCCAAALxT4BARvy7Z5wxAggYAf3m+rFjH0rym5LLA/fff1kTrUTx048/mSoVj9kB9MvuEMsNdHD76eIlbFUJN/2FVmc4cfKEPPboo5LCVA2IqulUGCfNfw8//LCtLhDVdle6/mdTdeOzzz+3ZloZRKcwiKrp4L9W1UhqgisxcY2qn2CuD8Vz0uvTwIveN72/rmpCMK87sr4+/+ILG17RY2owIbqm0/IcOXJU0qRJHe09j66Py70XWGlCQwBa3UWr0Tz6yCOX212Of/SRfS4fMc++BltCpekzd8x8DpKF0OcgVGz0PEL1vgXTiEBGMDXpCwEEEEDgagoQyLiauvSNAAIIIIAAAggggAACCCCAwL8XIJDx7w3pAQEEEHLFVFMAAEAASURBVIh2+gt4ELhWBQIDGdfqdXJdCCCAAAIIIIBAqArodCVbfVOW5DTTlTBlSajeLc4LAQQQQAABBBBAAAEEEEAgIQoQyEiId51rRgCBoAtEViEj6AehQwRCTIBARojdEE4HAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkqAQEZI3Q5OBgEE4qvAF19+KbVeqm2nLOnVs6fkypUzvl4K541AjAV69uolq1atlgwZMsiwIYNjvB8bIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIJQYBARkK4y1wjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPynAgQy/lNuDoYAAggggAACCCAQ6gKDhwyVwUOHeqeZK2dOmTxxgveaBQQQQAABBEJFQP/N8rdmTZv4X7KMAAIIIIAAAggggAACCCCAAAJxLEAgI45vAIdHAAEEEEAAAQQQCC0BAhmhdT84GwQQQACBqAWq16gpW7Zu9TbQAKEGCWkIIIAAAggggAACCCCAAAIIIBAaAgQyQuM+cBYIIIAAAggggAACISJAICNEbgSngQACCCBwWQECGZclYgMEEEAAAQQQQAABBBBAAAEE4lSAQEac8nNwBBBAAAEEEEAAgVATIJARaneE80EAAQQQiEqAQEZUMqxHAAEEEEAAAQQQQAABBBBAIDQECGSExn3gLBBAAAEEEEAAAQQQQAABBBBAAIFYCeh0JVt9U5bkNNOVMGVJrAjZGAEEEEAAAQQQQAABBBBAAIGrKkAg46ry0jkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJEQBAhkJ8a5zzQgggAACCAQILF6yVA4fPiz33nuPvFCtWsC7ofHywMGDsmzZ8ggn88IL1eTee+7x1n377beyctUq2b1nj5w4cVIyZsggTz31P3m6WDG5/vrrve2u1YURI0fKL7/8KtmzZ5OCBQoE9TK/+eYbWbFipezdv0+++uqEpEv3uGR56ikpUbx4grANKiadIYAAAggggAACCCCAAAIIIIAAAggggAACCCQIAQIZCeI2c5EIIIAAAghEL9Cq9Wsyf+FCyZwpk8yeOUOuu+666Hf4l+++O2KkfP/9d5ItWzYp/swzMeqtTr2XZd369RG2nTNrpj1nXXn06FGp+3J9OXHyZIRt9IUGMvr17SPJkye/5L34tOL0mTMyZMhQ+dv8X4Xy5SVD+vQRTj9fwYJy6tTXUr9ePWnzWusI7/2bF/v275cGDRvJqa+/vqSbwoUKSf+3+8rNN998yXusQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgIQsQyEjId59rRwABBBBA4KLAfx3IeLp4Cfn4k0/kxeovSNfOnS97HzRsUfrZ5+Tvv/+WZ8uUkQXh4XYfF8jQoELBQoXl9OnTkiRJEgkzwYT0poKDBjj27N1n9ytbprQJDrx91cMml72Yf7HB1yYQka9gmL2eIYMGSckSxSP0djUCGb/8+qvkyZtPfj17VlKkSCHVTQWVVKnulV2798j8BQvs8atWriw9uneL17Z+yMEm9DJ46FBvVa6cOWXyxAneaxYQQAABBBAIFQH9N8vfmjVt4n/JMgIIIIAAAggggAACCCCAAAIIxLEAgYw4vgEcHgEEEEAAgVAQCPVARrv2r8usOXPkgfvvl25du4hWy9BwhgtkrFq9Who0amzXDRsyxFTdeNpjbfbqq6JTsmiYYNvmDyRx4sTee/FtIS4CGToFTMPGTaztjGlTJWuWLB5b+w4dZeasWZIyZUrZuG7tNTN1CYEM7xazgAACCCAQ4gLVa9SULVu3emepAUINEtIQQAABBBBAAAEEEEAAAQQQQCA0BAhkhMZ94CwQQAABBBCIU4GoAhl//fWXTJs2XbZu2yYfffyx3HnnHZIzRw6pVbPmJdN/fPPNN7Yixfr1G+zUFnly55IC+QtIlixP2Wv79LPPZNy48XZ5nqmsoNUsHn/8cdNfdrnO/F+9unUkderUlzhov2GFi8j533+X9m3bSHozTcdLdepGCGT0fLOXjB0/Xm6//XbZtH5dhNCFP6wxf+4ceSJjxkuOoSvmzJ0r+/btl7Rp00rpUiVl0pQpcvzD4/LEExmlUqVKctedd8rSZcvNNa6TP//4U8LCCkqpkiUv6ev777+XJSYAsmPXLlMF5GPJmD6DMcgiWqFDq3e4tmPnTgkPX2Rfduncyfa9efNmOfPLGTOQksv0XUJuuukm+/7adetkzZq1pkrFrzJ7zly7rmD+/OZcH5BEJmDSoX17u85fIaNa1SoycdJk+fzzz61zkSKF5X+ZM9vt3A+9v3oees82b91iAy/5TDWMQoXC5PbbbrObvTP8XZk2Y4bcZKZ7WRy+MEIVjLf69JVRo0dLokSJZNeO7ZIsaVLXdbz+TSAjXt8+Th4BBBBIUAIEMhLU7eZiEUAAAQQQQAABBBBAAAEE4qEAgYx4eNM4ZQQQQAABBIItEFkg448//jDBhzqyecs/37p0x9UgxdxZM72AwVcnTkj55yvKd9995zbxfg8eONCGC/Tbmy/WrGWDFN6bvoXZM2dcEhjQt/v17y/DR4y0g/0bTBWGAwcOSi1zXv4KGT/99JP8+utZE8RIJHfddZevV5Hh746QfgMGyA033CA7TOhAK2VE1pyBTseRNElSO6WK2y5jxgxSOCxMhplwgr+1NNU3GjVs4K364ssv5aXadeSTTz/11rkF/bbqiOHveMefbkIOHTt3sddRu1YtGyhx2+pv3X7Me6Os8ZChw2SQqfwRWdMQxN7du2xQwgUy8uXNI4cOHZbvf/jB20VDE8OHDZXChQp56/qaKVxGjHrPe+0W9HpnTZ8uN954o1t1ye89e/dK/QYN7T3XkMu8ObMjhDUu2SEerSCQEY9uFqeKAAIIJHABAhkJ/AHg8hFAAAEEEEAAAQQQQAABBEJegEBGyN8iThABBBBAAIGrL+DCCJkzZRINRlx33XXiDwy81qqV5MuXV7Zv3y49e/W2IYLOHTtIzRo17MmNHDVK+rzdT1KYig4jhg+X2++4XUaYEMX8hQtFAw5LwsPll19+keXLV8jfZo9h77wj35lKEjmyZ5eSJYqbNddJKVOVQqtQBLaBgwbJTz/9LOnSPS5Vq1SRTZs+uCSQEbiPvtZAyQJzfA09nD9/XvzXFtn2zkDf0+oeZcuUlVWrV5n/3reba6CjUsWK8qSpmDFu/AT58PhxudmEO7abkIe+p8crXLSYnDh50lboKFa0iOkntywz17zpgw+smQYlxo0Zc4nv9ddfb4MShUzVDT3emrVr7THV/ZX6L8vefftkz+49cvrMaek/cJB9r9Lzz0uGDOntsapVrWrXuUCGvrj33nvkharV5OzZs6aqxhz52lQa0SoXer46bcuff/4pWbLnMEGWX6WKqQDycr16cvyj49KiVWu7rkP7dlL7pZdsv/4fv5tKJb3f6iMTJ08WrbChQY933xkmhUxghYYAAggggAAC/62ABl63+qYsyWkCnUxZ8t/eA46GAAIIIIAAAggggAACCCCAQHQCBDKi0+E9BBBAAAEEEoiACyP4QwtagWKnmXbj6NGj4gb8laNa9RdlmwlmaCDgzZ5v2HDBe2bait5m+orkyZLJ/9m77zi5qroPwIfeWxKaBJRexELbpQioCKiAlJdqTFSUvhukBRAJvQnKy2ZfQaWZEECl6Cu9iEhzFwu9CAihl5BAgoDwAu89ozOZOzuzu8nu7NyZea6fOLfNvec8vxvmj/vNORdecH7YYP31cwGM+5IQQWtrSy4AUEy59bZfzo1A8Y1RXw/Hjx9ffKjP9b4CGTEocemll4UbbropvPrqq7nrDRs2LFySTGmyxhqrV7x+3iAGDO790z1hscUWC2+88UbYJJl2JYYQ4lQtcV72GFa59rrrw/cOPTQXsrg+mcZj9dVXD3+7776wexKAiG6nnHRS2GP33Qr3yk+pEoMXcZSOeO3iwMsB++0bDkuul18+/8WtQhxtI45m8bPzzs3dMx6L/dlsiy1z95iQBFX+HWbJfyskx7YIr7zyas479iE/GkicjuXIo7+f+97VV14RPrXuurkAyUYbb5KbOmbXXXYJRyXTwSyZTFPy57/8JSy/3HJlp4+Jd/rOPvuGOIVKXFYcOTLE6VaEMXIc/o8AAQIECBAgQIAAAQIECBAgQIAAAQIECKQEBDJSHDYIECBAgEBzCuTDCMWBjCjRfe+94bokfPDEk0+Gt995O4cz5ZkpYcbMmWHbbbYJnR3n5MICMTyww4475V7ux5MWX3zx3OgXW26xeW5UiTgiQ/FSjUDGzKRNRx59dLj5lltzwYN4vxiA2PpLXwpxapFVV12luAk91vMGpdNvbNi6cS6YceD++4VDDzkk9704YsV/7bZ77j6//uXlYb3Pfjacl4wIclYyvUrsa9fdd+UM8jcpPv/nPz0vF7QoDmT86vLLwvrrrZc/PRx73HHhsst/GVZaccVw6803zXYgY/PNNssFY2J4JC6vJaNjbLr5Frn2nnnG6WHnnXbK7T/5lFPDxRMn5tbjKB+rrrpq2GyTTcLOO+8U1ll77dz+4v+LU8PEEEccGWPHHXYIp516Sq/TmhR/1zoBAgQIECBAgAABAgQIECBAgAABAgQIEGg2AYGMZqu4/hIgQIAAgTIC+TBCcSDj11dcEY45dnzu5XuZr6QCGfH4Cy++GH7847PDbbf/IcyYMbPwlTh6xOSJvwhxlIr8MtiBjDhdyN7f+W64+09/yt1ilZVXDjvt+LWw/XbbhZVWWil/214/yxnEL+QDGe0HHRgOHjs2d43igEU+THFqMpXLhRdfHJZeeulw1x9vz4VB8jd8/fXXw8abfS4XiDgtGVUkTn1SHMh48P77wkILLpg/PeSvNXKFFcJtt94y24GMfZPpR8YdcXjhem+99VZuepI4escPTz8t7LLzzoVjl//yl+HyX/4qPPzII4UgSxwl5PtHHVmYkiZ/8ksvvRwuSvr4UfK/nXbcMcTwioUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoLyCQUd7FXgIECBAg0FQC5cIIOySjKDz66GO5ecjPSF7iL7fssjmTnZKpSh577PFUICMGIu5/4IGwxBJLhJU/8Ynw6GOPhVuSkSr+59xzcy/5Tz7hhLDnnnsUTAc7kHHTzTeHg9rH5u51YjK6xF577VkIMRRu2sdKOYP4lf4GMm648abQfvDBuTZMnjQpcduocMdLLpkcjk+mMYnLTTdcH2JgJAuBjDgFSgyXfGmrrUIMjXR13xt+fv754cGHHgrLJvW+4w+3pYIlsf1PP/NMbuqUOIVLfgSOuL+Rlo4JnaGjs7PQpdaWltx0NYUdVggQIECAQEYEurq7Uy2Jv1kWAgQIECBAgAABAgQIECBAIDsCAhnZqYWWECBAgACBmgmUCyO0bLJpmDZtWthjt93CySedmHv5Xhx8WHvttcIVyegKCyywQNhr1DfCvX/+c9i4tSVcmLzQn3/++UMMaWzxhS8kL+9fC8XTfcRObvuVr4an/vGPsNmmm4QLfv7z3Ev/OL1If5a7774nfHPvvXPBh6uu+HWIo3r89znnhM6fnJsLhFx84QVhruR/5ZY111wjN6VIuWPlDOJ5/Q1kRKvWTTfLtWuD9ddPpjf5Xm4aktv+8IdwxplnhSlTpuRGz7j7jj/mLOckkFE89cj3xraHAw84IHetfDBisy22CK+88mrozwgZxY4XXXB+2Pxzn8uxXHrpZWF8EqCJU5jc/7e/hgWT+uaXW269NRxwUFuuj3slAZuTkvMacRHIaMSq6hMBAgQaU2DU6DFJoHJWKGPypIm5MG1j9lavCBAgQIAAAQIECBAgQIBA/QkIZNRfzbSYAAECBAgMukC5MMIR444MV//2t7l7rbrKKuG9994Lzz3/fG4EjDhKQlxiiOLxRx4Ov7vmmnDYEeNyL+qXX365sMbqa4S/P/FEeOmll3LnxJcDG224Ye478f9+MH58bpqM/I44RcajDz3YrxEXioME+UBGHJni+htuzF+u4mec/mPFkSPLHi9nEE/sbyAjnvuLiRPDyaeelnOI2zGYEt3isuCCC4TOjo7w+S23zG3PSSAjfjE/ukjuIsn/fW6zTcNFFyQhlLnmCrMTyIiBme133Ck8+eSTufBFDJF8+OGHuZFO3n///dR18/caf/zx4dLLLs9tlk6nkj+nET4FMhqhivpAgACB5hAQyGiOOuslAQIECBAgQIAAAQIECNSvgEBG/dZOywkQIECAwKAJlAsjvPXWW7mQxa2//33hPjFMcM7ZPw4HH3JouPOuu3Iv8GMgI4YBrrzqqnBOx4TwYhLCyC9LL710OOKwQ8MuO++c35X7/MfTT4fTTj8j/PGOO8IHH3wQBhrIiKM23HzLLal7lNv4w+9vDTFIUG4pZxDPm51ARjz/N0mI5byf/iw3AshHH32U69taa64Zjj7qqNQ0JnMayLj9j39MRgTpyE0rEu83p4GM+N044sYJyVQqN918S66WcV+s5ReTkU1OOfmkMGL48LirsHTfe2/4zj77hnfffTeMbTsotLe1FY410opARiNVU18IECDQ2AICGY1dX70jQIAAAQIECBAgQIAAgfoXEMio/xrqAQECBAgQqKrAzJkzc+GCjy2/fFhmmWV6vVcMVzz/wgvJNCWvhuHJy/yVVlwxF0jo9UsNenDGjBnhmWSaktVXWy0stNBCme5lbOuzzz2XC8fEEUSGDRtWsb0xqPPGm29WDLZU/KIDBAgQIECAwKALxBBh8ZQlY9vbTFky6MouSIAAAQIECBAgQIAAAQIE5lxAIGPO7XyTAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBWQCCjLIudBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE5FxDImHM73yRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBUQyCjLYicBAgQIECBAgECzCnRM6AwdnZ2F7re2tITJkyYWtq0QIECAAIGsCHR1d6eaEn+zLAQIECBAgAABAgQIECBAgEB2BAQyslMLLSFAgAABAgQIEMiAgEBGBoqgCQQIECDQL4FRo8eE4lBGDBAKZfSLzkkECBAgQIAAAQIECBAgQGBIBAQyhoTZTQgQIECAAAECBOpFQCCjXiqlnQQIECAgkOEZIECAAAECBAgQIECAAAEC2RYQyMh2fbSOAAECBAgQIEBgiAUEMoYY3O0IECBAYI4FBDLmmM4XCRAgQIAAAQIECBAgQIDAkAgIZAwJs5sQIECAAAECBAjUi0Dx0O/5Nhv+PS/hkwABAgSyJBBDhMW/W2Pb20xZkqUCaQsBAgQIECBAgAABAgQINL2AQEbTPwIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcEWEMgYbFHXI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJpeQCCj6R8BAAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMBgCwhkDLao6xEgQIAAAQIECNS1QFd3d+iY0FnoQ2tLSxjb3lbYtkKAAAECBLIiEH+zipf4m2UhQIAAAQIECBAgQIAAAQIEsiMgkJGdWmgJAQIECBAgQIBABgRiGKOjMx3ImDxpYgZapgkECBAgQCAtMGr0mFAcyoi/V0IZaSNbBAgQIECAAAECBAgQIECglgICGbXUd28CBAgQIECAAIHMCQhkZK4kGkSAAAECFQQEMirA2E2AAAECBAgQIECAAAECBDIiIJCRkUJoBgECBAgQIECAQDYEBDKyUQetIECAAIG+BQQy+jZyBgECBAgQIECAAAECBAgQqKWAQEYt9d2bAAECBAgQIEAgcwLFQ7/nG2f497yETwIECBDIkkAMERb/bo1tbzNlSZYKpC0ECBAgQIAAAQIECBAg0PQCAhlN/wgAIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAZbQCBjsEVdjwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh6AYGMpn8EABAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKDLSCQMdiirkeAAAECBAgQIFDXAl3d3aFjQmehD60tLWFse1th2woBAgQIEMiKQPzNKl7ib5aFAAECBAgQIECAAAECBAgQyI6AQEZ2aqElBAgQIECAAAECGRCIYYyOznQgY/KkiRlomSYQIECAAIG0wKjRY0JxKCP+XgllpI1sESBAgAABAgQIECBAgACBWgoIZNRS370JECBAgAABAgQyJyCQkbmSaBABAgQIVBAQyKgAYzcBAgQIECBAgAABAgQIEMiIgEBGRgqhGQQIECBAgAABAtkQEMjIRh20ggABAgT6FhDI6NvIGQQIECBAgAABAgQIECBAoJYCAhm11HdvAgQIECBAgACBzAkUD/2eb5zh3/MSPgkQIEAgSwIxRFj8uzW2vc2UJVkqkLYQIECAAAECBAgQIECAQNMLCGQ0/SMAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBhsAYGMwRZ1PQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDpBQQymv4RAECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgMtoBAxmCLuh4BAgQIECBAgEBdC3R1d4eOCZ2FPrS2tISx7W2FbSsECBAgQCArAvE3q3iJv1kWAgQIECBAgAABAgQIECBAIDsCAhnZqYWWECBAgAABAgQIZEAghjE6OtOBjMmTJmagZZpAgAABAgTSAqNGjwnFoYz4eyWUkTayRYAAAQIECBAgQIAAAQIEaikgkFFLffcmQIAAAQIECBDInIBARuZKokEECBAgUEFAIKMCjN0ECBAgQIAAAQIECBAgQCAjAgIZGSmEZhAgQIAAAQIECGRDQCAjG3XQCgIECBDoW0Ago28jZxAgQIAAAQIECBAgQIAAgVoKCGTUUt+9CRAgQIAAAQIEMidQPPR7vnGGf89L+CRAgACBLAnEEGHx79bY9jZTlmSpQNpCgAABAgQIECBAgAABAk0vIJDR9I8AAAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGCwBQQyBlvU9QgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGmFxDIaPpHAAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAw2AICGYMt6noECBAgQIAAAQJ1LdDV3R06JnQW+tDa0hLGtrcVtq0QIECAAAECBAgQIECAAAECBAgQIECAAIH+CAhk9EfJOQQIECBAgAABAk0jEMMYHZ3pQMbkSRObpv86SoAAAQL1IzBq9JgQg4T5Jf5exSChhQABAgQIECBAgAABAgQIEMiGgEBGNuqgFQQIECBAgAABAhkREMjISCE0gwABAgT6FBDI6JPICQQIECBAgAABAgQIECBAoKYCAhk15XdzAgQIECBAgACBrAkIZGStItpDgAABApUEBDIqydhPgAABAgQIECBAgAABAgSyISCQkY06aAUBAgQIECBAgEBGBIqHfs83yfDveQmfBAgQIJAlAYGMLFVDWwgQIECAAAECBAgQIECAQE8BgYyeJvYQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAYkIJAxID5fJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0FBDI6GliDwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgQAICGQPi82UCBAgQIECAAIFGE+jq7g4dEzoL3WptaQlj29sK21YGLvDBBx+E+Kd4mWeeeUL8059loN/vzz2cQyALAk8+9VR46KGHw/zzzxfWX3/9sNyyy2ahWdpAgAABAgQIECBAgAABAgQIECDQTwGBjH5COY0AAQIECBAgQKA5BGIYo6MzHciYPGlic3R+iHo58ZJLwu1/vCN1t52+tkPYYfvtU/sqbVx51VXhuhtuTB3eequtwp577J7aZ4NAPQvccOON4ddXXlXownzzzRfaDjwgrPvJTxb2WSEwavSYEIOE+SX+XsUgoYUAAQIECBAgQIAAAQIECBDIhoBARjbqoBUECBAgQIAAAQIZERDIqH4hBDKqb+wO2RF48803w4cfflho0Nxzzx2WWGKJwna5lXfeeSccfOhhPUaSWWGFFcKJx40v9xX7mlRAIKNJC6/bBAgQIECAAAECBAgQIFA3AgIZdVMqDSVAgAABAgQIEBgKAYGM6isLZFTf2B2yI3Bg+9jwr3/9q9CgxRZbLJx91plhrrnmKuwrXZky5dlw0qmnho8++ih1KI6ScW7nhF6/m/qCjYYXEMho+BLrIAECBAgQIECAAAECBAjUuYBARp0XUPMJECBAgAABAgQGVyAO/d5dNPx7vHp7W9vg3qTJryaQ0eQPQJN1f04CGbkRMg45NHxQNLJGZBuZjJBxghEymuwJ6r27Ahm9+zhKgAABAgQIECBAgAABAgRqLSCQUesKuD8BAgQIECBAgACBJhMQyGiygjd5d+ckkBHJrr3u+nDVb35T0JtnnnlC24EHhE9/6lOFfVYIECBAgAABAgQIECBAgAABAgSyLSCQke36aB0BAgQIECBAgACBhhMQyGi4kupQLwJzGsiIl3zs8cfDQw8/HOZPpirZYIMNwgof+1gvd3KIAAECBAgQIECAAAECBAgQIEAgawICGVmriPYQIECAAAECBAgQaHABgYwGL7DupQQGEshIXcgGAQIECBAgQIAAAQIECBAgQIBA3QkIZNRdyTSYAAECBAgQIECgmgJd3d2hq6u7cIvW1pbQ2tJS2LYycIFaBTJefOml8OSTT4apU18Pr097Pcwz9zxhxIjhYcTwEeHTn/l0WHSRReaoc08+9VR4Kvkzbdq08MabM8Jiiy4ahg1bKnziE58Ia6+1Vphrrrn6vO7U118P77//fuq85ZdbrrD9r/feCy+88EL44IMPwsILLzwoIyXEaz340EPhmWemhNemvpa71+KLLx5WXGFkMhrD+mGBBRbI7Xvn3XfDG2+8UWhLXFkiOS+2o3iJ7Y/9KF4WWnDBsOSSSxbv6rE+c+bM8NY//5nav9RSS4UF/3P/1IGSjdiHBx58MGczbdr08M+3307ut0QYPmx4WGedtcPIFVYo+Ubfm7E9cVSKqVOn5p6V9//v/TBsqWG5Z2WtpJ7LLbtsxYu8/vq08N7776WOn3jyKeG9pH75ZZHkOTt63LgQSh6LpUeMCPPOO2/+tDAQl3iRZ599Lhlh47Fc7aZNfyM3ykZ0XXrpEeEzn/lM7jkt3KyXlXLtGD5sWJh//vlz34o1iH8Hpif+M996K8RnaJmll06e/4/369nv5dYOESBAgAABAgQIECBAgAABAgTqXkAgo+5LqAMECBAgQIAAAQKDKdAxoTN0dHYWLhnDGJMnTSxsWxm4wFAHMqY8+2z43TXXhPvufyB89NFHZTsw//zzhU032SRs/9WvhvjSuj/LnXfdFW686eYQgx6Vlvhi+itf3jZssfnmlU7J7T/51NPC0888Uzgnhjh+ft65SVBiajj/ggvDM1Om5MIY8YRPr7tuOHhse+HcOVm5/fY/ht9dd12YPn162a/HMMR+++4TPv2pT4Wu7nvDz84/P3XenrvvFrb+0pdS+6LzSaecmjLeMAl2HLDffqnzSjeuuvrqcO31N6R275/ce6MNN0ztK96I4Y9rrr02/PGOO8OMJEBRaVlj9dXDjl/bIay15pqVTinsf/PNN8N1STv+eOedqQBF4YRkJdblU4n/DttvF1ZZeeXiQ7n1M3/049w0Iz0O9GPHSccfHz72seULZ15x5ZXh+htvKmzHlQP33z9ssP56qX2lG3+8445w8y239vpczjPPPGHdddYJO+20Y1hpxRVLL5HaLteOcYcfHtZcY/UQ/w785n9/V/Y5isGVnXb8Wq91TN3IxhwJjBo9Jvk7OitEGH+vhAjniNKXCBAgQIAAAQIECBAgQIBAVQQEMqrC6qIECBAgQIAAAQL1KiCQUf3KDWUgI4YEzjjzrPCvf/2rXx2LI1sc9r1DwnLLVR4F4d3kWhMnTgpd997br2vGkzZOgj3fHDO6MKpA6RfLBTIm/PfZ4dQzzggvvpgOfAwkkPHee++HiZMmhXu6ukqb0GM7jtaw/7775sIJWQpkvPraa+Hc834ann3uuR5tLrdj7rnnDrv91y5hm623Lnc4t++dd94JJ592Wnj55VcqnlN8YL755gv7fve7Yf31Plu8O9QykDFjxoxw0S8m5kYMSTWql41Y452+9rXw5W23qTiaRaVAxpQpz4Rf/vqKXq7+7wDLvt/9TmjZaKNez3NwzgUEMubczjcJECBAgAABAgQIECBAgMBQCAhkDIWyexAgQIAAAQIECNSNgEBG9Us1VIGMfybTYBx3wolhesl0G331cLHFFgtxtILFFlu0x6lxhI2Ozv+ZrZfe+Yusv9564aAD9s9vpj5LAxmpgyUbAwlklLMvuXxqM46kED1Kpyyp1QgZsabHn3hSmFZhZI9U40s2vr7nHmGrL36xZO+/N88+pyM3TUnZgxV2xqDHYYd8LzX6Rq0CGXFKm9PP+GG/QyqlXdo5Gcli++22K92d2y4XyFhn7bXC439/ojBqS9kv/mdnfIbGth0U1v3kJ3s7zbE5FBDImEM4XyNAgAABAgQIECBAgAABAkMkIJAxRNBuQ4AAAQIECBAgUB8Ccej37qLh32Or29va6qPxddLKcqGAnZJpJXbYfvt+9eDKq64K191wY+rcrbfaKuy5x+6pfX/+y1/CuT/9WWrf8GHDwue33CKsssoqIb7cf/TRx0I8b+Zbb6XO2+4rXw677Lxzal/cuPmWW8Llv/p1j/2LLrpobgqLeP049cVTTz+d+yw9ce9vfjNsttmmpbvDUAQy/nbffaHzJ+f2uHfcseSSS4aVRo4Mw5L2v/zKK+HZZGSRt5NRIyottQpkdP7kJ+Fv993fo1lxapiVVlopLJbU4bWpr4Unnnyqx6gocVSL8ccck5oWJF7oraT23zvs8NRUK/HcLyXhjdVWWzU3qsljjz0e/vLXv+Zsim++2qqrhqOPHFfYdf6FF4WnnnqqsB1X4rQzxVPlxCDHiOHDU+fEjUMOHhuWWWaZwv5yQYhKU5bEaW3KjXoSp1hZesSIpM8fC++++254/oUXcv0t3OQ/K/G8GJqIU9SULuXaUXxODOystOLIMO8884YXX34pvPba1OLDufUF5p8/nHTiCSH+/bAMroBAxuB6uhoBAgQIECBAgAABAgQIEBhsAYGMwRZ1PQIECBAgQIAAAQIEehUYqkBGueBGfOn8mU9/OtW+F158MZx0yqnh/fffz+1fZJFFQmvLRmHUXnulzovTfRx6xBEhTm9RvHzh81uGXXfZJSy44IKF3fHca6+7Nlxz3fWFfXFl8cUXD2edcXqIowYUL5UCGUsssUT46pe3DauusmoSllgqN61EDAsstNBCxV/v1/opp50e/pEERYqX+KJ8x2TKiq2/tFWIQYH8EqdlufLKq8Jtt9+eChPkj9cikPFkEnQ4LRkFoniJjqO//vXwuc9tlppyI47oMfGSyeH+Bx4oPj1ssP764cD990vte/Chh8J/d0xI7fvyNtuE3Xb9r9S+aHLKqaeFF1/69xQysQ5rr7lm+M539g6LJs9MpeXA9rGpcEgMMJx91pmp9pb7brkgRLlAxnPPPR+OP+mkHpf4+MdXCt8aMyYJS6yYOnbnXXflphp5++23U/tXWGGFcOJx41P74ka5dsT9sf977b572DIJOBUvXV3d4ReXXJLqczwe/458JXmWLQQIECBAgAABAgQIECBAgACBZhIQyGimausrAQIECBAgQIAAgQwIDFUg44KLLg5333NPqsflXmjHE359xRXhw2Q6ks9+5jNh9dVWS4UT8hfo6r43/Oz88/Obuc94ftuBB1R8uV6uDQe3t/UYiaBcIGOppZYKxx97bFh00cov+1ON6WUjhgiOPe74HmccsN++YcMNNuixP7+jXKglHqtFIKPcc7PHbruGbbbeOt/c1GecxuOkU04JL730cmF/DBH8+MwfhoUXXriw76677w4XXvyLwnZc2eqLXwhf33PP1L64cc+f/hQeefTRsN5nPxs+uc46YYEFFuhxTumOagcyLpl8aS44U3zfkUm4YvwPjukR/Mmf88yUKblRWYpH7ojHjho3Lnn+V82flvusFMj47t7fDptsvHHq3PzG9TfcEK646ur8Zu6zdDSR1EEbBAgQIECAAAECBAgQIECAAIEGFRDIaNDC6hYBAgQIECBAgACBrAqUe7FejSlLfnfNteE3//u/KYYYcogjTsQX6nF9dpbzkulP7k2mNylexh1+eFhzjdWLd6XWy43qsMXnPhe+OWZ06rxygYzvfPtbYdNNNkmdN6cb5aZa+fS664aDx7b3esk40sexxx0Xpr7+euq8WgQy4rQiM2fOLLQjju5x9o/O6jUUcd31N4Qrr04HA/ZJRrTYuLW1cJ2/P/FEOOPMswrbcSWOvBGnrVk/GVFjxWQql4Es1Q5kHHL4EWHGjBmpJh417ohcsCi1s2Tj0ssuD7fedltq7zZf+lLYY/fdUvvKBTJWSKZAOSEZTSNOdVJuidMBHXzoYanRVeIILz887bSK3yl3HfsIECBAgAABAgQIECBAgAABAvUuIJBR7xXUfgIECBAgQIAAgUEV6OruDnHI/fzS2tqSTF/Rkt/0OQgCQxXIePW118IPxh8XPvjggx6tji+SRwwfHlZddZWwzlprh7XWWjMMT7Z7W8qFJlb+xCd6fcH84UcfhmeemZK67DprrxUOO+SQ1L5y144vvONIB4Ox/OrXV4Qbb745danRo74ePr/llql95TYunjgx3HHnXalDQx3IiKNdHJRM/VE8okMMZMRpNnpb4rQcL7/ySuqUnXf8Wth+u+0K++LzMf6EE8PLL88aSaNwMFmJ08ys/PGPJ8/IWrnnJAY0KgURir+XX69mIKOcS2xvHAWkrzY+8uhj4Udnn51vZu5z/fXWCwcdsH9qX7lAxrbJqCS7J6OT9La0f++QUDwtyrzzzhvO+5/OPtvV2zUdI0CAAAECBAgQIECAAAECBAjUm4BARr1VTHsJECBAgAABAgSqKtAxoTN0dHYW7hHDGJMnTSxsWxm4wFAFMmJL77zrrnDJpZeF999/v8+GL7P00mHHr+2QGj2h+EuHHTEuvPHmm8W75mh9+eWWCyefeELqu+UCGef8+EfJdCWLps6b042f/fz80HXvvamvH3HYoWGtNddM7Su3ccONN4ZfX3lV6tBQBzJiqCKGa4oDGakGzcbG57fcIoweNSr1jX88/XQ497yfhmnTp6f2l9uINfn8FpvnQh1xCpS+lmoGMqLLMceOTzVhjdVXD0cecXhqX7mNadOmh3FHH50yjQGjY44+KhWaKBfIGLXXnuGLX/hCucsW9h31/WPCa1OnFrZjQOTn552bunbhoJU5Fhg1ekyIQcL8En+vhAjzGj4JECBAgAABAgQIECBAgEDtBQQyal8DLSBAgAABAgQIEMiQgEBG9YtxyeRLw22335660Y47bB++tsMOqX2VNsq9IO7tX+y/+NJL4fwLLgxTnn220iVT+z/9qU+F0d8YFYaVTGlyQFt7eC8ZqWGgy2KLLRbOPuvM1Ivpagcy/rtjQnjwoYdSTT/5hBPC8ssvl9pXbuOeP/0pnH/hRalDgxnIuPKqq8J1N9yYuv7+++4TNtpww8K+p595Jpxy2ump8EDh4GyubLThBmH/ffft8a133nknTLpkco/gSo8T/7PjY8svH741ZkxulJVK58T91QxkxCBJdCleWjbaMOy3zz7Fu8qux5FB9jvwoJRpDCWdevJJqWez3N+3A/ffL2yQTOfS2yKQ0ZvO4B0TyBg8S1ciQIAAAQIECBAgQIAAAQLVEBDIqIaqaxIgQIAAAQIECNStgEBG9Uv3v7+7Jvz2d79L3WizTTYJe3/7W6l9lTbiSAZ//utfU4d333XXsO02W6f2FW/83//9X3jgwQdzfx586OHwxhtvFB/usT58+LBwyoknhuIREI48+vth6uuvp85dbtllU9v92VhkkUXC9486MnVqtQMZMZByT1dX6p6HHDw2rPvJT6b2ldu45trrwtW//W3q0GAGMsq1rTSQEd3jC/7iETLilCVLlYRmUo2ssLHuup8Me+2xR4WjIfz9iSfCAw88kDwrD4UXXnyx4nnxwNxzzx2OO/YHvU4tU81ARhyB4uhjfpByWWXllXOjXPTa8ORgnNLn+z84NvXd1VZdNRx95LjUV8sHMvZPAhnrpc4r3RDIKBWpzrZARnVcXZUAAQIECBAgQIAAAQIECAyWgEDGYEm6DgECBAgQIECAQEMIxKHfu4uGf4+dam9ra4i+ZaUTcRqRi36Rngam3FQJldp77HHHhzjqRfGy3z7fDS0bbVS8q9f15557PhkxY0p48qmnkpEjygc0xiTTWmyZTG+RX04744e58/Pb8fOM004NI4YPL941R+vVDmSUe6m+1x67hy9ttVWf7Y2jY8RRMoqXcoGM5194IRx3wonFp4U111gjjDv8sNS+0o1TTz8jPPWPf6R2lwYy4pQzMdjw4YcfFs6L7qefekpqNIfCwUFaef31abm2PfPM0+HhRx4NsY+lS18jUlQzkBGDRnHklmKXhRdeOHSc/eM+XWJA6ZxkiqbipVxfyj07B+4vkFHsVst1gYxa6rs3AQIECBAgQIAAAQIECBDoW0Ago28jZxAgQIAAAQIECBAgMIgC8eV7fAlfuhxx2GFhrTXXKN2d2o7TbsTpN0qX48cfG1YcOTK1O46m8Oxzz4XHHnssPPLoY+ErX942uf6aqXPiRpy64YIkdNB1772pY59Pwhijk1BGfrnw4l+Eu+6+O7+Z+9z7m98Mm222aWpf8UZsQwwzxOkdFlhggeJDqfVqBzJuu+0P4ZLLLkvdsz8hmH/+85/hmPHjw8yZb6W+Wy6QEc89+NDDUiMuLLHEEuFHPzyjYjggjtLwg/HH5WpQfIPSQEY8Vm6EkjOSQMaIESOKv5panzlzZnj870/kRnOYa665UseKN2I74nPy6GOPh4+vtFL48rbbFB8urJdzjFOXnHTC8YVzSleqGciI9yrn0p/AxE/OOy/85a9/SzV3u698Oeyy886pfQIZKQ4bBAgQIECAAAECBAgQIECAAIHZEhDImC0uJxMgQIAAAQIECBAgMFCBGFL4/rHjw6uvvpq6VJz+45DvHVxxxIn40vxHZ/93mJpM01C8jEyCGCckgYzi5dlnnwtnnX12iCGB/PLZz3wmtB90YH4z9Vlu+oZNN944fGfvbxfOe+jhR8LZ55xT2I4riy22WG7KiqWWXDK1P79x3fXXhyuv/k2IwYTtv/qVsMXmm4d55503f7jwWe1AxvTp08MRRx2dCkvEm++x265hm60rT/VywUUXh7vvuafQzvxKuUBGPNb+vUPC22+/nT8t97nPd/YOG7e2pvbFjfgc/PRnPw/3/uUvPY6VC2RcdfXV4drrb0idu8bqq4cjDjs0N3VI6sB/rh/DOw89/HBYccWRYZeddgqf/tSnUqfFESbGJ6N6vPLKK4X9saZnnn5aarqa/MHY5jgVR/HUNXF6mzNOPbVi6KTagYxyLnEql+OPPTYsuugi+aanPv+cmJ/705+l9sWNE48/LqzwsY+l9gtkpDhsECBAgAABAgQIECBAgAABAgRmS0AgY7a4nEyAAAECBAgQIECAwGAIXJe8WL8yecFeuiww//zhq8m/0l8jmeoiBjTiC/CXk5fljyUjF1x/440hTl1RupSbeiOOenH4kUeGGTNmFk6PIyR84+t7hc9vuWVhX34lTlXzs/MvyG/mPktDB7Et45JQw7Qk3FC8xKkz9txjj7DeZz9T2B3vf8cdd4bJl1+emk4innvM0UeHxRdfrHBuXKl2ICPeI4ZZHnn00biaWjbfbLOw667/FRZdZNbL+xhQuWTypck0HY+kzs1vlNrk9188cWK448678pu5z4UWWijstfvuYdNNNymEFmKgYfKll4U4bUa5pVwgIz4HxyRBntIlhjJGJXUducIKhUMxFHLFlVeF2++4o7AvrsRAxsHt6SmIyo0UEU322nOPHqOaRJfxx5+Qeg57C/rEex409uDw7rvvxtXCMu7ww8Nqq65S2J577rkLNvmd/Q1CRMsYEonPZ/Gy+OKLh68nfYjtm2+++XKH4ogh8e/ezbfe2uP86HjkEYcXXyK33t92lH4xtum1ovBU/Pv38/PO7dHP0u/ZJkCAAAECBAgQIECAAAECBAg0koBARiNVU18IECBAgAABAgQGLBBfzHd1dReu09raElpbWgrbVgZH4L333g+nnXFGbkqRgVxxlZVXzr1ELjfqxOW//FXuxXPp9eOL5zg1yrLLLBve/de7IU6h0tV9b49pM44aNy6svtqqqa/fd//9YcL//CS1L7+x8MILhzh9xQcffpCM/vFaanSO/Dml06Dk9w9FICP28/QfnpkKiOTvH1+Wx7BIHFnhlWTkkjfffDN/qOxnpUDGlCnPhtN++MNUYCF/gRgKWDqZXuTNGTPK2uTPi5/lAhlx/69+fUW48eab42qPJbZ92WWWCW+99VaIwYn33nuvxzn77fPd0LLRRqn9f7vvvtD5k3NT++JGvNZ6n/1sWH755XIhghdfeincmYRN3ioadSWet/OOO4btt/tqXC27HH/iSeG5558veyy/s1xQZHaCEFf/5jfhmuuuz18u9RnDHsssvXR4JwmFVKprrM1R444In/j4x1PfjRuz047iLwtkFGtYJ0CAAAECBAgQIECAAAECBJpVQCCjWSuv3wQIECBAgAABAmUFOiZ0ho7OzsKxGMaYPGliYdvK4AnEl+YxiFA8rcjsXD1OLXHsMd8Pw4cNK/u1d955J5z147PDM1OmlD3e286NNtwg7LfPPmX/NX9voYDerhmnzfh+MmrH/MkoIKXLUAQy4j2vufa6cPVvf1t6+4rbccSSRRZdJEyblh4VpFIgI17or3/7W246jA8//LDidfMHYoBl2LClkmlF0iNxVApkxJFHzjjzrFyIJn+N/n5umUwXM2b0N3qcHkeW+MWkST1G9uhxYpkdcRSXY44+KsQwTqXl0ssuD7fedlulw7n9Aw1kxD6ck/y368GHHur1PpUOfufb3wqbbrJJ2cMCGWVZMrNz1OgxSaBsVogw/l4JEWamPBpCgAABAgQIECBAgAABAgSCQIaHgAABAgQIECBAgECRgEBGEcYQrMbpFs6/8MLwxBNPztbd1ll7rfDtb30rDEtGRehtiWGPGMp49rnnejstdSyOEjDu8MN6TFeRPym+/L4pGaXhyqt/02NUjfw5pZ+VpsDInzdUgYzY9t9dc23432uu6TFlRb4t+c84skL7QQeG116bGi5Npl4pXnoLZMTz7rjzznDxxEnFX+mxHgM1Rxx2aHj44YfDL5ORL4qXSoGMeM67//pXmDTpkvCnopfQxd8tXY+jP+z2X7uErb74xdJDhe3octEvJoa77r67sK+vlRjCOOaoo8Jyyy3b66nxGTzuhBPD9DfeqHjeQAMZ8cJxOp+rf/PbcNMtt/RZ23xDYg2+OXp0arqd/LH8p0BGXiKbnwIZ2ayLVhEgQIAAAQIECBAgQIAAgbyAQEZewicBAgQIECBAgACBREAgY+gfg/gyPL4Iv+dPXeHxv/+94svkGBCIU41suvEmYeONW8uOXlGu9XFUhT//+S+5F9W9jZYRp3XY7itfCZtssnGYZ555yl0qte/pZ54JN998S/hrMuVFfBlebonTgOyy8059/ov1oQpk5Nv48COPJqNlXBv+/sQT+V2pz1VXWSXstuuuuSlbfv/728Lk2QxkxIvFkTJuvOmm8ORT/0hdO9puuMH6YZeddgojkilMYrhldgIZ+Yvdm9T0tj/8IffM5PeVfsYpbb4x6uvh4yutVHqo7Hb0iO257/4HKj6HCy20UNh6qy+GrbbaKiy6yCJlr1O6c+bMmUmA5+rw2OOPh6lTX+9x7cEIZOTvGftw662/D/c/+GDF5zJO79KaTN2y7bbbhMWTUEZvi0BGbzq1PyaQUfsaaAEBAgQIECBAgAABAgQIEOhNQCCjNx3HCBAgQIAAAQIEmk4gDv3eXfIv79vb2prOoVYdnj59enju+efDm2++Gd5IRhSYa665whJLLJH8WTJ5qb5ibn0gbXv5lVdyIz5Mnz4tTJ/+RlgkeaE+YsTwZNqMYWHkCiuEGPqY3SWOgPDUP/6RTOsxLWnzm8nIGvOHOPLAyJEjQxxtI8vLiy+9FJ579rnw2tTXwrzzzhuWWWaZ3J9okV/mNJCR//6MGTNCHAnl7bffSeq3eBiehFQWTkINg7W8NnVqeC4ZAWV6Mq3KjCT4EGu6xOKLh9VWWzV3rzm5T3z24rMSaxr/RJv4jMQASZxmZcEFF5yTyw7pd+KUPU8+9VTynE/PPZfzzz9fWDL5ezRi6REhBm7i3y1L/QsIZNR/DfWAAAECBAgQIECAAAECBBpbQCCjseurdwQIECBAgAABAgQIEBiQwEADGQO6uS8TIECAAAECBAgQIECAAAECBAgQqGMBgYw6Lp6mEyBAgAABAgQIECBAoNoCAhnVFnZ9AgQIECBAgAABAgQIECBAgACBRhUQyGjUyuoXAQIECBAgQIAAAQIEBkFAIGMQEF2CAAECBAgQIECAAAECBAgQIECgKQUEMpqy7DpNgAABAgQIECBQSaCruzt0dXUXDre2toTWlpbCthUCzSYgkNFsFddfAgQIECBAgAABAgQIECBAgACBwRIQyBgsSdchQIAAAQIECBBoCIGOCZ2ho7Oz0JcYxpg8aWJh2wqBZhMQyGi2iutvPQmMGj0mxCBhfom/V0KEeQ2fBAgQIECAAAECBAgQIECg9gICGbWvgRYQIECAAAECBAhkSEAgI0PF0JRMCAhkZKIMGkGgrIBARlkWOwkQIECAAAECBAgQIECAQGYEBDIyUwoNIUCAAAECBAgQyIKAQEYWqqANWRK47/77w21/uD1p0keFZm25xRZh/fXWK2xbIUCgNgICGbVxd1cCBAgQIECAAAECBAgQINBfAYGM/ko5jwABAgQIECBAoCkE4tDv3UXDv8dOt7e1NUXfdZIAAQIE6ktAIKO+6qW1BAgQIECAAAECBAgQINB8AgIZzVdzPSZAgAABAgQIECBAgAABAgQaQCCGCIuX1paW4k3rBAgQIECAAAECBAgQIECAQI0FBDJqXAC3J0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpPQCCj8WqqRwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECNBQQyalwAtydAgAABAgQIEMiWQBz+vatr1hDwra0twRDw2aqR1hAgQIAAAQIECBAgQIAAAQIECBAgQKAeBAQy6qFK2kiAAAECBAgQIDBkAh0TOkNHZ2fhfjGMMXnSxMK2FQIECBAgkBWB+JsVg4T5ZWx7mxBhHsMnAQIECBAgQIAAAQIECBDIgIBARgaKoAkECBAgQIAAAQLZERDIyE4ttIQAAQIEehcYNXpMKpARA4RGderdzFEXG0BfAABAAElEQVQCBAgQIECAAAECBAgQIDCUAgIZQ6ntXgQIECBAgAABApkXEMjIfIk0kAABAgT+IyCQ4VEgQIAAAQIECBAgQIAAAQLZFhDIyHZ9tI4AAQIECBAgQGCIBeLQ791Fw7/H27e3tQ1xK9yOAAECBAj0LSCQ0beRMwgQIECAAAECBAgQIECAQC0FBDJqqe/eBAgQIECAAAECBAgQIECAAIE5FIghwuLFdCXFGtYJECBAgAABAgQIECBAgEDtBQQyal8DLSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaTEAgo8EKqjsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA7QUEMmpfAy0gQIAAAQIECBDImIAh4DNWEM0hQIAAAQIECBAgQIAAAQIECBAgQIBAHQoIZNRh0TSZAAECBAgQIECgegIdEzpDR2dn4QatLS1h8qSJhW0rBAgQIEAgKwLxN6s4RDi2vS3E3y0LAQIECBAgQIAAAQIECBAgkA0BgYxs1EErCBAgQIAAAQIEMiIgkJGRQmgGAQIECPQpMGr0mFQgIwYIBTL6ZHMCAQIECBAgQIAAAQIECBAYMgGBjCGjdiMCBAgQIECAAIF6EBDIqIcqaSMBAgQIRAGBDM8BAQIECBAgQIAAAQIECBDItoBARrbro3UECBAgQIAAAQJDLFA6/PvGrS2hva1tiFvhdgQIECBAoG8BgYy+jZxBgAABAgQIECBAgAABAgRqKSCQUUt99yZAgAABAgQIECBAgAABAgQIzKFAV3d36pumK0lx2CBAgAABAgQIECBAgAABAjUXEMioeQk0gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGg0AYGMRquo/hAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI1FxDIqHkJNIAAAQIECBAgQCBrAoaAz1pFtIcAAQIECBAgQIAAAQIECBAgQIAAAQL1JyCQUX8102ICBAgQIECAAIEqCnRM6AwdnZ2FO7S2tITJkyYWtq0QIECAAIGsCMTfrOIQ4dj2thB/tywECBAgQIAAAQIECBAgQIBANgQEMrJRB60gQIAAAQIECBDIiIBARkYKoRkECBAg0KfAqNFjUoGMGCAUyOiTzQkECBAgQIAAAQIECBAgQGDIBAQyhozajQgQIECAAAECBOpBQCCjHqqkjQQIECAQBQQyPAcECBAgQIAAAQIECBAgQCDbAgIZ2a6P1hEgQIAAAQIECAyxQOnw7xu3toT2trYhboXbESBAgACBvgUEMvo2cgYBAgQIECBAgAABAgQIEKilgEBGLfXdmwABAgQIECBAgAABAgQIECAwhwJd3d2pb5quJMVhgwABAgQIECBAgAABAgQI1FxAIKPmJdAAAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoNEEBDIaraL6Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNRcQCCj5iXQAAIECBAgQIAAgawJGAI+axXRHgIECBAgQIAAAQIECBAgQIAAAQIECNSfgEBG/dVMiwkQIECAAAECBKoo0DGhM3R0dhbu0NrSEiZPmljYtkKAAAECBLIiEH+zikOEY9vbQvzdshAgQIAAAQIECBAgQIAAAQLZEBDIyEYdtIIAAQIECBAgQCAjAgIZGSmEZhAgQIBAnwKjRo9JBTJigFAgo082JxAgQIAAAQIECBAgQIAAgSETEMgYMmo3IkCAAAECBAgQqAcBgYx6qJI2EiBAgEAUEMjwHBAgQIAAAQIECBAgQIAAgWwLCGRkuz5aR4AAAQIECBAgMMQCpcO/b9zaEtrb2oa4FW5HgAABAgT6FhDI6NvIGQQIECBAgAABAgQIECBAoJYCAhm11HdvAgQIECBAgAABAgQIECBAgMAcCnR1d6e+abqSFIcNAgQIECBAgAABAgQIECBQcwGBjJqXQAMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBRhMQyGi0iuoPAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHMBgYyal0ADCBAgQIAAAQIEsiZgCPisVUR7CBAgQIAAAQIECBAgQIAAAQIECBAgUH8CAhn1VzMtJkCAAAECBAgQqKJAx4TO0NHZWbhDa0tLmDxpYmHbCgECBAgQyIpA/M0qDhGObW8L8XfLQoAAAQIECBAgQIAAAQIECGRDQCAjG3XQCgIECBAgQIAAgYwICGRkpBCaQYAAAQJ9CowaPSYVyIgBQoGMPtmcQIAAAQIECBAgQIAAAQIEhkxAIGPIqN2IAAECBAgQIECgHgQEMuqhStpIgAABAlFAIMNzQIAAAQIECBAgQIAAAQIEsi0gkJHt+mgdAQIECBAgQIDAEAuUDv++cWtLaG9rG+JWuB0BAgQIEOhbQCCjbyNnECBAgAABAgQIECBAgACBWgoIZNRS370JECBAgAABAgQIECBAgAABAnMo0NXdHbqTP/mlpaXFlCV5DJ8ECBAgQIAAAQIECBAgQCADAgIZGSiCJhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNJSCQ0Vj11BsCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgAwICGRkogiYQIECAAAECBAhkSyAOAV+8tCZDwFsIECBAgAABAgQIECBAgAABAgQIECBAgMDsCAhkzI6WcwkQIECAAAECBBpeoGNCZ+jo7Cz0M4YxJk+aWNi2QoAAAQIEsiIQf7OKl7HtbcWb1gkQIECAAAECBAgQIECAAIEaCwhk1LgAbk+AAAECBAgQIJAtAYGMbNVDawgQIECgssCo0WNC8ahOMUBoVKfKXo4QIECAAAECBAgQIECAAIGhFhDIGGpx9yNAgAABAgQIEMi0gEBGpsujcQQIECBQJCCQUYRhlQABAgQIECBAgAABAgQIZFBAICODRdEkAgQIECBAgACB2gnEQEbxvzbeuLUltLcZAr52FXFnAgQIEKgkIJBRScZ+AgQIECBAgAABAgQIECCQDQGBjGzUQSsIECBAgAABAgQIECBAgAABArMlEAOE3cmf/NLS0mLKkjyGTwIECBAgQIAAAQIECBAgkAEBgYwMFEETCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcYSEMhorHrqDQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJABAYGMDBRBEwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHGEhDIaKx66g0BAgQIECBAgMAABTomdIaOzs7CVVpbWsLkSRML21YIECBAgEBWBOJvVvEytr2teNM6AQIECBAgQIAAAQIECBAgUGMBgYwaF8DtCRAgQIAAAQIEsiUgkJGtemgNAQIECFQWGDV6TOjq7i6cEAOEMUhoIUCAAAECBAgQIECAAAECBLIhIJCRjTpoBQECBAgQIECAQEYEBDIyUgjNIECAAIE+BQQy+iRyAgECBAgQIECAAAECBAgQqKmAQEZN+d2cAAECBAgQIEAgawICGVmriPYQIECAQCUBgYxKMvYTIECAAAECBAgQIECAAIFsCAhkZKMOWkGAAAECBAgQIECAAAECBAgQmC2BOF1Jd9GUJS3JdCWmLJktQicTIECAAAECBAgQIECAAIGqCghkVJXXxQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFmFBDIaMaq6zMBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQVQGBjKryujgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQjAICGc1YdX0mQIAAAQIECBCoKNAxoTN0dHYWjre2tITJkyYWtq0QIECAAIGsCMTfrOJlbHtb8aZ1AgQIECBAgAABAgQIECBAoMYCAhk1LoDbEyBAgAABAgQIZEtAICNb9dAaAgQIEKgsMGr0mNDV3V04IQYIY5DQQoAAAQIECBAgQIAAAQIECGRDQCAjG3XQCgIECBAgQIAAgYwICGRkpBCaQYAAAQJ9Cghk9EnkBAIECBAgQIAAAQIECBAgUFMBgYya8rs5AQIECBAgQIBA1gQEMrJWEe0hQIAAgUoCAhmVZOwnQIAAAQIECBAgQIAAAQLZEBDIyEYdtIIAAQIECBAgQIAAAQIECBAgMFsCcbqS7qIpS1qS6UpMWTJbhE4mQIAAAQIECBAgQIAAAQJVFRDIqCqvixMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNKCCQ0YxV12cCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgqgICGVXldXECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgGQUEMpqx6vpMgAABAgQIECBQUaBjQmfo6OwsHG9taQmTJ00sbFshQIAAAQJZEYi/WcXL2Pa24k3rBAgQIECAAAECBAgQIECAQI0FBDJqXAC3J0CAAAECBAgQyJaAQEa26qE1BAgQIFBZYNToMaGru7twQgwQxiChhQABAgQIECBAgAABAgQIEMiGgEBGNuqgFQQIECBAgAABAhkREMjISCE0gwABAgT6FBDI6JPICQQIECBAgAABAgQIECBAoKYCAhk15XdzAgQIECBAgACBrAkIZGStItpDgAABApUEBDIqydhPgAABAgQIECBAgAABAgSyISCQkY06aAUBAgQIECBAgAABAgQIECBAYLYE4nQl3UVTlrQk05WYsmS2CJ1MgAABAgQIECBAgAABAgSqKiCQUVVeFydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaUUAgoxmrrs8ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAVQUEMqrK6+IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAMwoIZDRj1fWZAAECBAgQIECgokDHhM7Q0dlZON7a0hImT5pY2LZCgAABAgSyIhB/s4qXse1txZvWCRAgQIAAAQIECBAgQIAAgRoLCGTUuABuT4AAAQIECBAgkC0BgYxs1UNrCBAgQKCywKjRY0JXd3fhhBggjEFCCwECBAgQIECAAAECBAgQIJANAYGMbNRBKwgQIECAAAECBDIiIJCRkUJoBgECBAj0KSCQ0SeREwgQIECAAAECBAgQIECAQE0FBDJqyu/mBAgQIECAAAECWRMQyMhaRbSHAAECBCoJCGRUkrGfAAECBAgQIECAAAECBAhkQ0AgIxt10AoCBAgQIECAAAECBAgQIECAwGwJxBBh8ZQlY9vbTFkyW4JOJkCAAAECBAgQIECAAAEC1RUQyKiur6sTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTSggkNGERddlAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLoCAhnV9XV1AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoAkFBDKasOi6TIAAAQIECBAgUFmgY0Jn6OjsLJzQ2tISJk+aWNi2QoAAAQIEsiLQ1d2dakr8zbIQIECAAAECBAgQIECAAAEC2REQyMhOLbSEAAECBAgQIEAgAwICGRkogiYQIECAQL8ERo0eE4pDGTFAKJTRLzonESBAgAABAgQIECBAgACBIREQyBgSZjchQIAAAQIECBCoFwGBjHqplHYSIECAgECGZ4AAAQIECBAgQIAAAQIECGRbQCAj2/XROgIECBAgQIAAgSEWEMgYYnC3I0CAAIE5FhDImGM6XyRAgAABAgQIECBAgAABAkMiIJAxJMxuQoAAAQIECBAgQIAAAQIECBAYXIE4XUkMEuaXse1tpizJY/gkQIAAAQIECBAgQIAAAQIZEBDIyEARNIEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoLAGBjMaqp94QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECGRAQyMhAETSBAAECBAgQIEAguwJxOPjWlpbsNlDLCBAgQIAAAQIECBAgQIAAAQIECBAgQCCTAgIZmSyLRhEgQIAAAQIECNRSoGNCZ4hBjPgnLmPb2sLY9rZaNsm9CRAgQIBASiD+RsXfq/zvk/BgiscGAQIECBAgQIAAAQIECBDIhIBARibKoBEECBAgQIAAAQJZEogvuDo6OwtNEsgoUFghQIAAgYwIjBo9phAcjE2KgYzJkyZmpHWaQYAAAQIECBAgQIAAAQIECEQBgQzPAQECBAgQIECAAIESgfivjuOLruJFKKNYwzoBAgQI1FKg3O9UDGMYJaOWVXFvAgQIECBAgAABAgQIECDQU0Ago6eJPQQIECBAgAABAgRyw8DnR8k4OJmupD2ZtsRCgAABAgSyIFA6kpPRMbJQFW0gQIAAAQIECBAgQIAAAQI9BQQyeprYQ4AAAQIECBAgQCAXyJhrriCI4VkgQIAAgcwK5IMZRsfIbIk0jAABAgQIECBAgAABAgSaXEAgo8kfAN0nQIAAAQIECBCYPYE4TLwh4WfPzNkECBAgQIAAAQIECBAgQIAAAQIECBBoRgGBjGasuj4TIECAAAECBAjMkUD+XyKPTaYvGZtMY2IhQIAAAQJDJRB/g+Li92eoxN2HAAECBAgQIECAAAECBAgMXEAgY+CGrkCAAAECBAgQINAEAvkwRr6rQhl5CZ8ECBAgUG2B4t8gvz/V1nZ9AgQIECBAgAABAgQIECAweAICGYNn6UoECBAgQIAAAQINKhCnKRk1ekyqd3HaksmTJqb22SBAgAABAoMtUO43SChjsJVdjwABAgQIECBAgAABAgQIVEdAIKM6rq5KgAABAgQIECDQYALF/zo5du3Jxx9L9TC+MIshDQsBAgQIEBioQOlvSulvUAwE+s0ZqLLvEyBAgAABAgQIECBAgACB6gsIZFTf2B0IECBAgAABAgQaRCD/Qqzc6BirrblWrpfxWPwztr2t0Ov4Yq2rq7uw3dr673PyOxrteOxXcf/jdrQrXhyf9Xz0x6fRnpGh/jvQH2PP6Oz9HR3qGjba34H4TBb/dzD2Lz6D8TN3rK0tdTz/+xOPCWPkiPwfAQIECBAgQIAAAQIECBCoCwGBjLook0YSIECAAAECBAhkRSD/sqz4XybHfcVTmpQOJV/8Ii32Y6DHSwMhpfev9fHYx9IRRPKBlXgsLlk7HuuXr21sX+kLz1ofH+xnaKDPYOn3s/YMlv4diDXN+jNY2r6sPYOlfwdKn4GsPaOlz0DWntH4TBb/d7Cv9sXz8/+Nin2zECBAgAABAgQIECBAgAABAvUhIJBRH3XSSgIECBAgQIAAgQwLDPWLynp70RhLV/qyufhFZBaOl9Yway/Ds/ayu/RlfF8vk2t9PAvP2Oz+HcjaM1j6d6T0GcjaM9qI/52Mz7GFAAECBAgQIECAAAECBAgQqC8BgYz6qpfWEiBAgAABAgQIZFAgvqiMS/5fL1f7RWUjvmic3ZfVgx3oKH3ZnLWX4Vl72V36jNc6cNHX/ePfz1o/Y7N7/6w9g6V/R0qfgaw9o/X+38nY/jilSfy0ECBAgAABAgQIECBAgAABAvUrIJBRv7XTcgIECBAgQIAAgQwKxBfDpS/Q4r7u5E9+aUlesBWfM7vH43Xa29ryl8t9TujsTG07Pns+s1uDgdaw0b4fH76+nsH1Ntwo9Yz+7c/3prb7+n6zHW+0Z2So/47Fh6ve/jsYjeJS/PuQ2+H/CBAgQIAAAQIECBAgQIAAgboVEMio29JpOAECBAgQIECAAAECBOpHYPPPfyHV2Dv+cFtq2wYBAgQIECBAgAABAgQIECBAgACBRhMQyGi0iuoPAQIECBAgQIAAAQIEMiggkJHBomgSAQIECBAgQIAAAQIECBAgQIBAVQUEMqrK6+IECBAgQIAAAQIECBAgEAUEMjwHBAgQIECAAAECBAgQIECAAAECzSYgkNFsFddfAgQIECBAgAABAgQI1EBAIKMG6G5JgAABAgQIECBAgAABAgQIECBQUwGBjJryuzkBAgQIECBAgAABAgSaQ0AgoznqrJcECBAgQIAAAQIECBAgQIAAAQKzBAQyZllYI0CAAAECBAgQIECAAIEqCQhkVAnWZQkQIECAAAECBAgQIECAAAECBDIrIJCR2dJoGAECBAgQIECAAAECBBpHQCCjcWqpJwQIECBAgAABAgQIECBAgAABAv0TEMjon5OzCBAgQIAAAQIECBAgQGAAAgIZA8DzVQIECBAgQIAAAQIECBAgQIAAgboUEMioy7JpNAECBAgQIECAAAECBOpLQCCjvuqltQQIECBAgAABAgQIECBAgAABAgMXEMgYuKErECBAgAABAgQIECBAgEAfAgIZfQA5TIAAAQIECBAgQIAAAQIECBAg0HACAhkNV1IdIkCAAAECBAgQIECAQPYEBDKyVxMtIkCAAAECBAgQIECAAAECBAgQqK6AQEZ1fV2dAAECBAgQIECAAAECBBIBgQyPAQECBAgQIECAAAECBAgQIECAQLMJCGQ0W8X1lwABAgQIECBAgAABAjUQEMioAbpbEiBAgAABAgQIECBAgAABAgQI1FRAIKOm/G5OgAABAgQIECBAgACB5hAQyGiOOuslAQIECBAgQIAAAQIECBAgQIDALAGBjFkW1ggQIECAAAECBAgQIECgSgICGVWCdVkCBAgQIECAAAECBAgQIECAAIHMCghkZLY0GkaAAAECBAgQIECAAIHGERDIaJxa6gkBAgQIECBAgAABAgQIECBAgED/BAQy+ufkLAIECBAgQIAAAQIECBAYgIBAxgDwfJUAAQIECBAgQIAAAQIECBAgQKAuBQQy6rJsGk2AAAECBAgQIECAAIH6EhDIqK96aS0BAgQIECBAgAABAgQIECBAgMDABQQyBm7oCgQIECBAgAABAgQIECDQh4BARh9ADhMgQIAAAQIECBAgQIAAAQIECDScgEBGw5VUhwgQIECAAAECBAgQIJA9AYGM7NVEiwgQIECAAAECBAgQIECAAAECBKorIJBRXV9XJ0CAAAECBAgQIECAAIFEQCDDY0CAAAECBAgQIECAAAECBAgQINBsAgIZzVZx/SVAgAABAgQIECBAgEANBAQyaoDulgQIECBAgAABAgQIECBAgAABAjUVEMioKb+bEyBAgAABAgQIECBAoDkEBDKao856SYAAAQIECBAgQIAAAQIECBAgMEtAIGOWhTUCBAgQIECAAAECBAgQqJKAQEaVYF2WAAECBAgQIECAAAECBAgQIEAgswICGZktjYYRIECAAAECBAgQIECgcQQEMhqnlnpCgAABAgQIECBAgAABAgQIECDQPwGBjP45OYsAAQIECBAgQIAAAQIEBiAgkDEAPF8lQIAAAQIECBAgQIAAAQIECBCoSwGBjLosm0YTIECAAAECBAgQIECgvgQEMuqrXlpLgAABAgQIECBAgAABAgQIECAwcAGBjIEbugIBAgQIECBAgAABAgQI9CEgkNEHkMMECBAgQIAAAQIECBAgQIAAAQINJyCQ0XAl1SECBAgQIECAAAECBAhkT0AgI3s10SICBAgQIECAAAECBAgQIECAAIHqCghkVNfX1QkQIECAAAECBAgQIEAgERDI8BgQIECAAAECBAgQIECAAAECBAg0m4BARrNVXH8JECBAgAABAgQIECBQAwGBjBqguyUBAgQIECBAgAABAgQIECBAgEBNBQQyasrv5gQIECBAgAABAgQIEGgOAYGM5qizXhIgQIAAAQIECBAgQIAAAQIECMwSEMiYZWGNAAECBAgQIECAAAECBKokIJBRJViXJUCAAAECBAgQIECAAAECBAgQyKyAQEZmS6NhBAgQIECAAAECBAgQaBwBgYzGqaWeECBAgAABAgQIECBAgAABAgQI9E9AIKN/Ts4iQIAAAQIECBAgQIAAgQEICGQMAM9XCRAgQIAAAQIECBAgQIAAAQIE6lJAIKMuy6bRBAgQIECAAAECBAgQqC8BgYz6qpfWEiBAgAABAgQIECBAgAABAgQIDFxAIGPghq5AgAABAgQIECBAgAABAn0ICGT0AeQwAQIECBAgQIAAAQIECBAgQIBAwwkIZDRcSXWIAAECBAgQIECAAAEC2RMQyMheTbSIAAECBAgQIECAAAECBAgQIECgugICGdX1dXUCBAgQIECAAAECBAgQSAQEMjwGBAgQIECAAAECBAgQIECAAAECzSYgkNFsFddfAgQIECBAgAABAgQI1EBAIKMG6G5JgAABAgQIECBAgAABAgQIECBQUwGBjJryuzkBAgQIECBAgAABAgSaQ0AgoznqrJcECBAgQIAAAQIECBAgQIAAAQKzBAQyZllYI0CAAAECBAgQIECAAIEqCQhkVAnWZQkQIECAAAECBAgQIECAAAECBDIrIJCR2dJoGAECBAgQIECAAAECBBpHQCCjcWqpJwQIECBAgAABAgQIECBAgAABAv0TEMjon5OzCBAgQIAAAQIECBAgQGAAAgIZA8DzVQIECBAgQIAAAQIECBAgQIAAgboUEMioy7JpNAECBAgQIECAAAECBOpLQCCjvuqltQQIECBAgAABAgQIECBAgAABAgMXEMgYuKErECBAgAABAgQIECBAgEAfAgIZfQA5TIAAAQIECBAgQIAAAQIECBAg0HACAhkNV1IdIkCAAAECBAgQIECAQPYEBDKyVxMtIkCAAAECBAgQIECAAAECBAgQqK6AQEZ1fV2dAAECBAgQIECAAAECBBIBgQyPAQECBAgQIECAAAECBAgQIECAQLMJCGQ0W8X1lwABAgQIECBAgAABAjUQEMioAbpbEiBAgAABAgQIECBAgAABAgQI1FRAIKOm/G5OgAABAgQIECBAgACB5hAQyGiOOuslAQIECBAgQIAAAQIECBAgQIDALAGBjFkW1ggQIECAAAECBAgQIECgSgICGVWCdVkCBAgQIECAAAECBAgQIECAAIHMCghkZLY0GkaAAAECBAgQIECAAIHGERDIaJxa6gkBAgQIECBAgAABAgQIECBAgED/BAQy+ufkLAIECBAgQIAAAQIECBAYgIBAxgDwfJUAAQIECBAgQIAAAQIECBAgQKAuBQQy6rJsGk2AAAECBAgQIECAAIH6EhDIqK96aS0BAgQIECBAgAABAgQIECBAgMDABQQyBm7oCgQIECBAgAABAgQIECDQh4BARh9ADhMgQIAAAQIECBAgQIAAAQIECDScgEBGw5VUhwgQIECAAAECBAgQIJA9AYGM7NVEiwgQIECAAAECBAgQIECAAAECBKorIJBRXV9XJ0CAAAECBAgQIECAAIFEQCDDY0CAAAECBAgQIECAAAECBAgQINBsAgIZzVZx/SVAgAABAgQIECBAgEANBAQyaoDulgQIECBAgAABAgQIECBAgAABAjUVEMioKb+bEyBAgAABAgQIECBAoDkEBDKao856SYAAAQIECBAgQIAAAQIECBAgMEtAIGOWhTUCBAgQIECAAAECBAgQqJKAQEaVYF2WAAECBAgQIECAAAECBAgQIEAgswICGZktjYYRIECAAAECBAgQIECgcQQEMhqnlnpCgAABAgQIECBAgAABAgQIECDQPwGBjP45OYsAAQIECBAgQIAAAQIEBiAgkDEAPF8lQIAAAQIECBAgQIAAAQIECBCoSwGBjLosm0YTIECAAAECBAgQIECgvgQEMuqrXlpLgAABAgQIECBAgAABAgQIECAwcAGBjIEbugIBAgQIECBAgAABAgQI9CEgkNEHkMMECBAgQIAAAQIECBAgQIAAAQINJyCQ0XAl1SECBAgQIECAAAECBAhkT0AgI3s10SICBAgQIECAAAECBAgQIECAAIHqCghkVNfX1QkQIECAAAECBAgQIEAgERDI8BgQIECAAAECBAgQIECAAAECBAg0m4BARrNVXH8JECBAgAABAgQIECBQAwGBjBqguyUBAgQIECBAgAABAgQIECBAgEBNBQQyasrv5gQIECBAgAABAgQIEGgOAYGM5qizXhIgQIAAAQIECBAgQIAAAQIECMwSEMiYZWGNAAECBAgQIECAAAECBKokIJBRJViXJUCAAAECBAgQIECAAAECBAgQyKyAQEZmS6NhBAgQIECAAAECBAgQaBwBgYzGqaWeECBAgAABAgQIECBAgAABAgQI9E9AIKN/Ts4iQIAAAQIECBAgQIAAgQEICGQMAM9XCRAgQIAAAQIECBAgQIAAAQIE6lJAIKMuy6bRBAgQIECAAAECBAgQqC8BgYz6qpfWEiBAgAABAgQIECBAgAABAgQIDFxAIGPghq5AgAABAgQIECBAgAABAn0ICGT0AeQwAQIECBAgQIAAAQIECBAgQIBAwwkIZDRcSXWIAAECBAgQIECAAAEC2RMQyMheTbSIAAECBAgQIECAAAECBAgQIECgugICGdX1dXUCBAgQIECAAAECBAgQSAQEMjwGBAgQIECAAAECBAgQIECAAAECzSYgkNFsFddfAgQIECBAgAABAgQI1EBAIKMG6G5JgAABAgQIECBAgAABAgQIECBQUwGBjJryuzkBAgQIECBAgAABAgSaQ0AgoznqrJcECBAgQIAAAQIECBAgQIAAAQKzBAQyZllYI0CAAAECBAgQIECAAIEqCQhkVAnWZQkQIECAAAECBAgQIECAAAECBDIrIJCR2dJoGAECBAgQIECAAAECBBpHQCCjcWqpJwQIECBAgAABAgQIECBAgAABAv0TEMjon5OzCBAgQIAAAQIECBAgQGAAAgIZA8DzVQIECBAgQIAAAQIECBAgQIAAgboUEMioy7JpNAECBAgQIECAAAECBOpLQCCjvuqltQQIECBAgAABAgQIECBAgAABAgMXEMgYuKErECBAgAABAgQIECBAgEAfAgIZfQA5TIAAAQIECBAgQIAAAQIECBAg0HACAhkNV1IdIkCAAAECBAgQIECAQG0ELrr44tyNv/2tb/VoQH8CGb19v8cF7SBAgAABAgQIECBAgAABAgQIECCQcQGBjIwXSPMIECBAgAABAgQIECBQDwIxTHHhxb/INXXvb30zlIYy+gpk9PX9ejD4f/buBF6q+f/j+MceIbus2Qshad8QISVbKm3ITkV7lkopLQrZUsrWon2RVuVX0b5pobKE7MvPXvzw5//5nHzHmXNn7p25d+beWV7HQ7Of8/0+v2fOzJ3v+3y/lBEBBBBAAAEEEEAAAQQQQAABBBBAAAG/AIEMvwbXEUAAAQQQQAABBBBAAAEE4hbwhynci4OhjNwCGbG83q2XSwQQQAABBBBAAAEEEEAAAQQQQAABBNJFgEBGurQU5UQAAQQQQAABBBBAAAEEUlQgUqDCiuoPZUQLZMTy2hStNsVCAAEEEEAAAQQQQAABBBBAAAEEEEAgVwECGbny8CACCCCAAAIIIIAAAggggEAsAnkFKyIFMvJ6TSzb5TkIIIAAAggggAACCCCAAAIIIIAAAgikqgCBjFRtGcqFAAIIIIAAAggggAACCKSZQG4Bi+deeDGsNjZ6RvA+e4J/VI2wF3ADAQQQQAABBBBAAAEEEEAAAQQQQACBNBMgkJFmDUZxEUAAAQQQQAABBBBAAIFUFogWyoilzIQxYlHiOQgggAACCCCAAAIIIIAAAggggAAC6SJAICNdWopyIoAAAggggAACCCCAAAJpIpCfUAZhjDRpXIqJAAIIIIAAAggggAACCCCAAAIIIBCzAIGMmKl4IgIIIIAAAggggAACCCCAQKwC8YQyCGPEqsrzEEAAAQQQQAABBBBAAAEEEEAAAQTSSYBARjq1FmVFAAEEEEAAAQQQQAABBNJIIJZQBmGMNGpQiooAAggggAACCCCAAAIIIIAAAgggEJcAgYy4uHgyAggggAACCCCAAAIIIIBAPAK5hTIIY8QjyXMRQAABBBBAAAEEEEAAAQQQQAABBNJNgEBGurUY5UUAAQQQQAABBBBAAAEE0kwgUiiDMEaaNSLFRQABBBBAAAEEEEAAAQQQQAABBBCIW4BARtxkvAABBBBAAAEEEEAAAQQQQCBeAX8ogzBGvHo8HwEEEEAAAQQQQAABBBBAAAEEEEAgHQUIZKRjq1FmBBBAAAEEEEAAgZQWWL5iRUqXj8IhUFQCz7/worfpG66/rqiKwHYRSGmBypUqpXT50qVwfA6nS0tRTgQQQAABBBBAAAH+BmAfQCDzBQhkZH4bU0MEEEAAAQQQQACBJAs8/sST3hYef3LnZZI3x+oRQAABBDJYwP0g27ZNa3HXM7i6Cama+xy2IAZhjISQshIEEEAAAQQQQACBQhSw7/3e/5V3XhbiptkUAggUggCBjEJAZhMIIIAAAggggAACmSlgHUCEMDKzbakVAgggkCoCbVu3FgtnsOQU4HM4pwn3IIAAAggggAACCKS3gAUzCGendxtSegSCAgQygiLcRgABBBBAAAEEEEAgDwE6gPIA4mEEEEAAgYQL8MPsv6R8Dv9rwTUEEEAAAQQQQACBzBTg+39mtiu1yk4BAhnZ2e7UGgEEEEAAAQQQQCAfAjYMerMWLfN8pf3RzIIAAggggEC8ArFMtzF65EtZPZWJfQ7H4sRncbx7H89HAAEEEEAAAQQQKGyBWL7XMmJeYbcK20Mg8QIEMhJvyhoRQAABBBBAAAEEMlAgrzDGXTqcfKV/5vzMwOpTJQQQQACBQhKwzxsbASK3H2ezNZSRWxiDz+FC2kHZDAIIIIAAAggggEBCBdz3/tz+BiCUkVByVoZAoQsQyCh0cjaIAAIIIIAAAgggkG4CuYUxrAOoTevW6VYlyosAAgggkAYCuU3NkW2hjGhhDD6H02BHpogIIIAAAggggAACMQnkFs4mlBETIU9CICUFCGSkZLNQKAQQQAABBBBAAIFUEYgWxqADKFVaiHIggAACmS8QLZiRLaGMSGEMPoczf7+nhggggAACCCCAQLYKRPv+TygjW/cI6p3uAgQy0r0FKT8CCCCAAAIIIIBA0gQIYySNlhUjgAACCMQpEO1H2fe3bI5zTen1dMIY6dVelBYBBBBAAAEEEEAgMQLRvv8TykiML2tBoDAFCGQUpjbbQgABBBBAAAEEEEgrATqB0qq5KCwCCCCQ8QKRfpTN5B9k+RzO+F2aCiKAAAIIIIAAAgjkIhDp+789PdND2bmQ8BACaSlAICMtm41CI4AAAggggAACCCRbINLoGAyPnmx11o8AAgggkJdApB9lM/UH2ZNKlwnj4HM4jIMbCCCAAAIIIIAAAlkgEOn7fyaHsrOgSaliFgoQyMjCRqfKCCCAAAIIIIAAAnkLBM/KrVypkowe+VLeL+QZCCCAAAIIJFkgGFTIxB9kgz888zmc5J2K1SOAAAIIIIAAAgikrEDwu7EVNFND2SnbCBQMgQIIEMgoAB4vRQABBBBAAAEEEMhMgUijY1gYwzqDWBBAAAEEEChqgWz4QTYYOmF0jKLe69g+AggggAACCCCAQFEKBL8fZ2Iouyh92TYCyRQgkJFMXdaNAAIIIIAAAgggkJYCjI6Rls1GoRFAAIGsEsjkH2QjBSM5AzCrdm8qiwACCCCAAAIIIBAQyIZQdqDK3EQgYwQIZGRMU1IRBBBAAAEEEEAAgUQJBAMZjI6RKFnWgwACCCCQKIHgD7KZNKVH8HOY0TEStdewHgQQQAABBBBAAIF0FgiGsgktp3NrUvZsEiCQkU2tTV0RQAABBBBAAAEEYhII/oFLICMmNp6EAAIIIFCIApk8ikQwkMHncCHuWGwKAQQQQAABBBBAIGUF+J6csk1DwRDIVYBARq48PIgAAggggAACCCCQbQKZ3MGVbW1JfRFAAIFMF8jUAGGwXpz5l+l7MvVDAAEEEEAAAQQQiEUgOEpe29atpW2b1rG8lOcggEARChDIKEJ8No0AAggggAACCCCQegLBQEYmDQGfetqUCAEEEECgIAKZeIYcn8MF2SN4LQIIIIAAAggggEAmCxDIyOTWpW6ZLEAgI5Nbl7ohgAACCCCAAAIIxC1AR1DcZLwAAQQQQKCIBAhkFBE8m0UAAQQQQAABBBBAoAgE+M2qCNDZJAIJECCQkQBEVoEAAggggAACCCCQOQLBsw0YISNz2paaIIAAApkmQCAj01qU+iCAAAIIIIAAAgggEF2AQEZ0Gx5BIJUFCGSkcutQNgQQQAABBBBAAIFCFyCQUejkbBABBBBAIJ8CBDLyCcfLEEAAAQQQQAABBBBIQwECGWnYaBQZARUgkMFugAACCCCAAAIIIICAT4BAhg+DqwgggAACKS1AICOlm4fCIYAAAggggAACCCCQUAECGQnlZGUIFJoAgYxCo2ZDCCCAAAIIIIAAAukgQCAjHVqJMiKAAAIImACBDPYDBBBAAAEEEEAAAQSyR4BARva0NTXNLAECGZnVntQGAQQQQAABBBBAoIACBDIKCMjLEUAAAQQKTYBARqFRsyEEEEAAAQQQQAABBIpcgEBGkTcBBUAgXwIEMvLFxosQQAABBBBAAAEEMlWAQEamtiz1QgABBDJPgEBG5rUpNUIAAQQQQAABBBBAIJoAgYxoMtyPQGoLEMhI7fahdAgggAACCCCAAAKFLEAgo5DB2RwCCCCAQL4FCGTkm44XIoAAAggggAACCCCQdgIEMtKuySgwAp4AgQx2BAQQQAABBBBAAAEEfAIEMnwYXEUAAQQQSGkBAhkp3TwUDgEEEEAAAQQQQACBhAoQyEgoJytDoNAECGQUGjUbQgABBBBAAAEEEEgHAQIZ6dBKlBEBBBBAwAQIZLAfIIAAAggggAACCCCQPQIEMrKnralpZgkQyMis9qQ2CCCAAAIIIIAAAgUUIJBRQEBejgACCCBQaAIEMgqNmg0hgAACCCCAAAIIIFDkAgQyirwJKAAC+RIgkJEvNl6EAAIIIIAAAgggkKkCBDIytWWpFwIIIJB5AgQyMq9NC1KjVatXy6JFb+RYxaGHHiJly5aV0087Tfbcc88cjxfWHV999ZXsu99+UnyffQprk0nfzqzZc+Tzzz+TG1u1Cm1r2LPPyrHHHiuXXHxx6L5Uu/LK9Onyw/c/SMuWLVKtaJSnkASeenqInFqmjNSufX4hbTG2zQx5Zqj8+uuv3pNvveVmKV68eI4XTp02TbZu/dC7v2bNGlKxQoUcz7E7Pvn0U5kwcaLI36Lr2UduveUW73nzX39d1q1bH/aaXXfdVUqWPFxKlSolZ5crJ8WKFQt7PBVvpOL7+ONt2+Too46S3XbbLWayDRs3ymvz5smNN7SSEiX2j/l1RflE/z7oyrHLLrt4+8/pp58mpU85xd0duvxl+3ZZu3atvP3227Jjx859/LZbb5F9Ap+Jqbp/puoxIwScRVcIZGRRY1PVjBIgkJFRzUllEEAAAQQQQAABBAoqQCCjoIK8HgEEEECgsAQIZBSWdHpsZ8Rzz0nf/gNkb+1IdJ1hf//9t2zfscOrwKmnlpFnnn5ajjryyHxXaNEbb8gjjz4mgx97VEpp6CDWZdsnn8hFl9T1tj1v7hyxjqtMWDp07CSr1qyRBfPnhepUvVYtqV61mvTv1zd0X6rV9fY7W8tHH30kM1+dnrJlTDWzwirPHa3beO+tLp07JXWTZ1eoKA0uqy89e/TIczsWkli8ZImMfPGFpO4v73/wgdStV1/Kn322rNb31RODB0vdS3IGm26+9TZZrQG0PffaS84pX16efHxwxHI9M3SYDHp057Hq519+kWWL3/Se10+PkxMnTRLrIP/zzz9lL13PX3/9JX/88YdnceQRR8g9XbtG3HaeWIX4hFR7H0+ZOlU6d71HGjVsKL0f7BXWJrntQ+PGj5f7u/eQ1+e9JsccfXQhCuZ/U7YPLli4MCxg+Of//Z/89ttv3kob1K8vfR/q4+1bdsd7778vt952u9hn4aGHHiolDz9cRD8Gnx8+XA444ICwgqTq/hnPMSOsQtxIuACBjISTskIECkWAQEahMLMRBBBAAAEEEEAAgXQRIJCRLi1FORFAAAEECGSwD/gFXCBjlnayn3zyyaGHPtSO97lz52rH5GNSpkxpmTZ5clhHWeiJMVyZ/uoMad+xo7yqZ6iXLp3zDOBoq/j222+lXoPL5aQTT5RRL72Y7+1HW39R3U8go6jkM3e7Flw6Rc+uf2LwY0l9n8TTudpNQxuzdTSYFcuWJrVMQ4cNk4cHPSJzZs6Qho2byIW1a8uA/v1ybNM6w7du3SrVqlaVV2fOlBVLl8gee+yRY6do2ryF7Ph1hxyno14sW7Zclv4TyHBPvEU7yG3EAlev77//XtatXy8DtQxb3n1XxowaGXX0DbeOorxMtUDGwkWL5M42beWWm26Utm3ahNHktg+layBjve4ry5YsDu2fFup5a906GTtunEyeMlVuuO46ue/eezyHi+teKt988408O2yoFziKJZSYavtnPMeMsMbnRsIFCGQknJQVIlAoAgQyCoWZjSCAAAIIIIAAAgikiwCBjHRpKcqJAAIIIEAgg33ALxAtkOGe0+qmm8VGuFii/x922KHu7rgu8xvIsI3Ymei77757XNtL9ScTyEj1Fkq/8mVzIOMaDWHs0BF9Xn1lmtzVrp0sWbLUC1EEwxYukHGvjmJx2513yqgXX5TKlSuFNfbPP/8slXSkGgsHfLztEw1kLMszkOFW8NNPP0kdDcYccsghGj6bGupwd4+nymWqBTLMJdpxPhsCGW6/+O23/0m1mjXl4IMOkrmzZ8lnn38u519woVzfsmUooOGem9tlMJDhnltU+yeBDNcCRX9JIKPo24ASIJAfAQIZ+VHjNQgggAACCCCAAAIZK0AgI2ObloohgAACGSdAICPjmrRAFcorkPGCdlr2fqivN7qFjZThFhvKf+nSpbJixUqvM7RChQpSs0Z1b1h1e853330nr0yfLvK3yMZ33pap016Rm2+8UUMdh9mI63LRRXXkSJ0G5V09o3yJrqdxo0by1lvr5J1N78jxxx8vtc8/39uUnQV95BFHSs2aNbzb7p+8tm/TCIweM0ZOPfVUqVwpvNPV1mEhk48+/EhatGge6jjNa51u29Euv/rqK5k1e7a8/c473jrLnn66NGncWPbcc8+wl+Q3kGGdxZN0pJJzzz1XjihZUlbp9Avmv+++xbVjuYqcdeYZYdtxN6xcS7VjedWq1d60NBUqnCNVqlSRQ7XjONLy8bZtsmjhIlmtowAcfNCBUr1adald+3yJ1pEbj5ud7W3TWFib2zQ4NWvUlLPOOjM0XU6k8vjv+/rrr73Xrly1SnbdZVcpV66cetSSQw4+2P807/r/6VQAZrRmzVpv5IIypUtLxYoVIp5pbvvZMcccI1UqV5aNb7/tdcT/8st2b2qL6tWrhYWC8tsO8TjZWfNWx9Wr13hlL33KyXLOOeeE7cvzX39dPtHQgC1Dhg6VQ3RKg4ZXXanvr13ksMMPk0vr1vUes3/i2bY9f+1bb3nBhi1btngu9evXk1PLlJG8OlffeWeTrFi5wnvfz5g1UzZveVfa332XVyZb73XXtQy93+y2vf9tH16rIwTYPl1RjyOVKlWUvffe2x7Oc7H9qXqtc+W2W26W9hrGmPbKK9Kxc5eIYQsXyHhl6hSpWKWqXNeihQSneJmlI3q0vftuGTtmtIwaNdp73+Q1Qoa/kDZtxIjnn5d1a1bLPvvs438odD2/+0+y38cWirD9bdny5RpG2eYdT6pVqyYnn3RSqOyRrtgIIeZeU8MEJ55wQugpU3VEpB++/0EO1IDB5Q0uC93vjvlXXnmllNh/f3Eetq1TdJSmWPch/wgZe+kxduasWfLpp5/JSSedKDWqV5ejY5zG5H//+5/3WbVx49vyw48/ah2OlyZNmshh+n7yLzaSh32uXXnFFfLRxx97x4gPP/xQypYtK7V0yimrS16L7YPBETL8r7Fj7MqVK2Xl8mXeNCUXXnSx9NMpTK6+6ir/02Tx4iVi5encqWPYscmeFC2QYY/Fsn/a82xJ9jHD9hurg+1v+6tdlUqVxY61H6utfT40b9YsrG753T931oZ/TYBABvsBAukpQCAjPduNUiOAAAIIIIAAAggkSYBARpJgWS0CCCCAQMIFCGQknDStV5hXIKO5np370cfb5I0F/wl1pNpUIk1btPSG/7fpRKzjcf2GDXKwdoqP1qlFTtIOvPfee09sdA3NY8ivv/4qP2pHl5057ka7eHTQIO18PUdcp9q1TRrLmJfHeh0zV15xuXS77z7Ptbp2dFXXM9b79+sb1/btxVc1vEYsmGEdsP6h3v/++285r/YFXufhiOHPeo/FUievQFH+sY5/G3bfOheraADkv9pxZ8EMmwZmysQJUqxYsdAr8xvIsE7AOhdf4nXQmdWXGrQoefjh3nass+rerl2k1Q03hLZjV6xj3dpBtM5ly54uf/31txc4sJDIyBdfEAsp+Jc3Fy/2OvTs8XJnnenZrFu3XupdunPofOuonanT2zjPeNys8+1Wne7BgjjnlC8vn3/xhVe+OhdeII898khonf7y+K/btBDXt7rR25/O0E5QW8z4IO3wHaHTVpQu/e90OBbG6Nips0yfMcPrULbOWevo26odqBaS6dXzAQ10WDRo52L7mYWA9tQpLCZPneZNk/Pe++/LLxo8uuTii7V8g0L7bn7aIR4nK3vXe+6VKdqhfah2Cp+mQYh3tSxfqFer66+Xe7Sdzf/e++/XYNGbXgVs/fbeOuCAA7zbZ515pjz5+GDvefFs2178xJNPyeAnnpCSJQ+X0087XX744QfPuc+DveSBXg9Kg8vqS0+djiTSMn7CBO/19r7/6acfxc763zmyzk7rBfPnhRxHjx4jPXr1ksN1H7b98Lvvv5NNmzbLaRqieuG5Ed6xINI2/Pe548eEcWN1fz3LO85U1gBRC+3MddM+uOe7QMa8uXPk+htaybf//a83qobbl+155j5v/nxvSolOGuywIFM8gQybdqJbjwdk2pTJXj3ctv2X+dl/kv0+tuNHuw4dNFA2xzuOWwBoxcpVetj4Wx4dNDAs3OOvi13frqOTlK9QUdrceYe01pFHbLF2L1+xohe6suPUGg3puBFLHnn0URk2fISsW7tGLEjh97DgQaz7kGt7O3bc3727F6Cw94BNG7Nv8eLeNB8W8MltsUCP7Rd2HLFjyv7776cBgRVSbK+9ZPzYsToN0L/TeNlx28Ja7TRg1EGPLRZUsX3oyy+/9D5LXtLj6eEaOMxtyS2QYY7VNKBmU+4MfHiA995tcMWVenw7UJ7VwJXzs/U/PeQZeeSxx2TDW2tzhJdyC2TEsn/a+pN9zPjk00+lmU4N9LX627HqwAMPlE2bN8uJxx8v5513rvTq3UfW6/7hQk0F2T+tPiw7BQhksCcgkJ4CBDLSs90oNQIIIIAAAggggECSBAhkJAmW1SKAAAIIJFyAQEbCSdN6hS6QMUPPcD755J1nQlsnnHVQzZkzR5574UXpoR2/TTQwYYt1jDS48iodFWO7DHnqKe+sebt/2yefyN3t2ssX2jn1mg63vu+++9rd3pLblCWuU8060x/s2VPO1hEP/EswkBHP9l986SV5sM9DMkfP1PefuW2dm42aXCsDNORhZzvHs05/2dx160C/5NJ6Gnb4S6ZOniT77bef95CNYHDbHXdKFz2L+SYdHcQtBQ1kFNcAjHV8B0/7IwAAQABJREFU3tjqBq/TzjrMu2sn8EwdncPa0QUTPti6VRo2auyd6W4BGOv0ssU6Idve3U7e/+ADr+P4yCOO8O63M9evuqaRjiBRzgtIWNDBFgvT3KVta53TJ2iHmQtkxOtmneAfaCDitTmzvQ5PW/ecuXOlddu7tMPxGTlPR/6ItliQwgI2xx57jLz43HOhutiIGddpSMOG47fOftdpaR20EydN1s7kQVL3kotDq7Wz9jt3vUduatXKO7vcPWD72XYdEaNWrZrSt08fKa4dur///rvYPtT/4YHS/f77pKWOqGCL60COtR3idbJpGsaOGy99HnxQGl3T0BVR3Gg1Dz7wgFx7bZPQ/XYl2pQl8W57wsSJGvToJjdqsKdjh/ah8ITtG7Yv2/u8WdNrowYy/IXKbbqJ6a++Ku21g9tGzWnf7u7QdjZs3OiFdo7QfXLi+HHe/u1fZ/C6dXBbJ/niRQtl11139R5upu1kYZ/XX3st7PX+QIZZ9unbTxZp0Mzt/3bcs9E2KukoKrbftO/QMe5AxoyZs+Tu9u3lJR0lo2rVKsHierfj3X+S/T62Qtn7ZfyEifL0k0/I+eed541YY++pfgMGyOQpU2XMqJHeyDIRK6R3XlKvvndseOqJxz3z5RpqaH7ddd772txtxBELYdly0y23escgO1ZaGMZ5RBoJIrd9yH122PHWwkfVqlb11m/rs1CCHReXLX4ztF94Dwb+6XrvfTp60zQNzU3U0ZTKeI/a8bF2nYu80WjsuOQCO3bctmNs6VNOkcGPPSqljj3WC6ys0BEtrtP3ywUa8nMhqMBmQjddIGPJm2+E1muhQRslYvz4CbJ6zRp5ZsjTXrjIXmTH6Pv0/WjBMKtfiRI7R+FYvmKlt2/eeftt+lm7n9ysU+y4JbdARiz7Z7KPGTYiiR2vzHXokCGhzyv7HH1cg2D2ncNCnP5ARkH3T2eT7ZcEMrJ9D6D+6SpAICNdW45yI4AAAggggAACCCRFgEBGUlhZKQIIIIBAEgQIZCQBNY1X6QIZ0aowcEB/ueLyy0MPv6VTC1zTuIn01jPbGze6JnS/XZk9Z660uesueU5HnahZ498pRmIJZERan60zGMiIZ/t2lm+Nc88T67Rq07q1rc5bemtIY5yeyW+dddbxHs863Tr8l9bBZEP2lypVKmxKCQto1NJRF+ws7UcGDgx1wBU0kFFNO3pf0FCC6yi0slhHXpOmzeSB7t20w7ypV7yhOmrEU3om9TwNQNhUMf7FzlC2TjF/2GbIM0P1+UO8juydoxr8+wqvk/LCOt40AC6QEa9b67ZttZxrZb6OUODOfLYt/GfBAp225Cw56J/AyL9b/ffa8BEjZMDAQfLmwoX/jLjw72M2fP/12rE/fNhQOVeDFdahWL5iJblWR8Kw0SSCi40ssWDBQln8xqKQoe1ndla/hTpcoMZeZ/dV0ekPbDqex/WMdH8HcqztEI+TdUqeo0P32ygUvTR4EVwaX9vUq18wrBAtkBHPtm1bNgLJ99qRPXnC+BzTyNjIETalQlMNg0QbIcNf3tw6023Ulu9/+F4m6VQxLkjhXuumHZk9c0ZYkMo97i53aKdtJZ2qx45PD/bqGWpLd0zzh5PsNf5AhoUc6mqIwMItLmxmIbQrrro6FNRq175DUgMZse4/yX4fu/dLnQsuCI3M4IztfV/r/NoaYLpBOmjQJNrSuUtXWaXHIHtv23vE/jaeqNMrLXx9vlTVUR+u15GWbrv1Fu/l9l47T4MvvXXEFf/7Kb+BjHb6mXOHHuP9ix3LBulIHLN0NB8bpSjaYscemzrjKp0+xb94YRwNSSzxHSPsuD1Np+GycEkFnT7Iv1jYzEZ4WLZkcWg/9D/urts+aNuMtOyj0/RMmTRRTtRRp9zy62+/ydNPP61TEg3zRr9xUzN9p2W26VMsIGfHK//xoKCBjGQfMyzAYt9Dhz0zxAv/uLrapYWiLERooyG5QEYi9k//NrL5OoGMbG596p7OAgQy0rn1KDsCCCCAAAIIIIBAwgUIZCSclBUigAACCCRJgEBGkmDTdLWu89LOiLcpRbQvzVusY2TlqlXy+n8WiD+UYc/vN+BhaXzNNaHRCFzVreNkrHawWgDibu0kc0ssgQybRsDOOA4uwUBGvNu3jt/PP/9cZs141esos5BEDR2JobJOK+JCEvGuM1hGd3vp0mXaKbdJvtEgiDdXiz5gncs2BcOzGhZwAYqCBjIidUBae52t0wZcVr+eN9KIlck6/2x0i3Evjwlt25XVLu2s9tNPO1Xbd+fw+Hbmuk0bYZ3krqz+5195dUMNKPwWGiEjXjfbn269/Q6vo986f8/SKVGqaId6qVI5292/XbtunYyfffZZjikm7DFr0//q1AE2vYctNsqCjabx/IjhUkPDFMFl5qzZOuJHO2+kjuM0RGOL7Wc2/U4w6GKP2bZtuhMLCPg7kGNth3icbLQHc35i8GCdKuUi23zYYvXcf//9c7z3ogUy4tm2C4NYkKVL505h27UbNqVCufLnFDiQYe1loZMWzZrq6BjtcmzH6lileo2IoS//k+fqCBg2TdBQHVHApptxy4cffeSFje7WANCdd9zu7g4LZFg7nn/BhXp2fmkd6edJr11tGohH1X2pjl5gx8L8BDLcyB+jR76kI21UDG3bf8WNCBHr/pPs97F7v9gINUcfdaQW9d+pfKzcNoqNhc1slIxIxwV7jo0k0/uhvt7UJBYQsKmubJSTAf36ee+17du3a2BqmBd+sCll/EEY55HfQMbLo0flCEi495FNNWTTLeW2bNnyrqxdu1a2ffqJ/K1TOtlioQGb+sSmBHF1diNkbFz3Vo6w0nM6IspD/fp7+447DkXaprWldYq30RGO3GetPc9GybDjkgWF7LPKjb5hx553dfqvh/v31zqWD4WX8jtlSSz7Z7KPGRaWselWLHCxt4ZQgsvDGl4c+uzwUCAjEftncBvZeptARra2PPVOdwECGenegpQfAQQQQAABBBBAIKECBDISysnKEEAAAQSSKEAgI4m4abhq63zp239AxDOJLWBRsUpVqVqlirih6Ptop9vI0aPlQu1Qj7ZUqVxJmjdrFno4lkDG6/Nek2OOPjr0GnclGMiId/vubPvpU6dKmTKlvc6w5i13DqXvpsiId52ubO7SRsiwKUBsihI7Y/l4/d91aS5fuUKH+i/vjd7g79izs8ltNAZ3X7Cebt3+S9dx2bdPb2l49dX+h7zr1laXXHSR9Or5gLfey3Q6liNKHuF1WLvt+F90bbPmXgffqJde9J5fX0caOPzQw2T4s8NC5fI//4Ybb5IvdUoaN0JGftxsKokpOgXCG2++Ke9s2qRT3+zwwjH9+j4Usf3d9htccaUcqp3k0crmnmeXr82bJ3e0buOdbV729NP9D3nXLTjTUgNIo3Taisq6r9pi/tXUb0D/fjnqbqO+bN68RebqVDzmGG87xOPkRqGYMG5saNoCr4B5/BMtkBHPtm2KCgtKdNSREG695eYcW7TQT9kzz5KGDa8u0AgZbjv3dOksrbQdgosdd04740xprWGKtm3aBB8O3e6iU89MmjLFC+Lsvvvuofvtyhe6n51RtqxMnjgh1J7WGb5VO7wt/GXt2EOnSJo67RVZuXyZ7LnHHmKjj/z+x+86OsjO1+QnkPGMjmQw8JFH5I2FC/S9VzKsTO5GvPtPst/H7v1ix+0SJQ5wxQy7PFinL+r5QI+w+/w3Vq1eLXY8sdDGWWeeKeU1HNa9Wzdvyp3Ro8fIw2qySp1X6FQb1+l0QZN0BJYzzzjDW4XzyG8gY/5rc+XYY47xF0dsip16DS7X0N3DGlKrH/aY/8ZTTw+RwTpNhk3PdPppp8ke/+xH777/nnz99Tc5AhkrtZ426kfweDpq1Gh5QKcYWvLGGzlG8PFvz/bB9Tr6Q6SRNNZv2CBX65RR9997j1yngRY3Ykvnjh10SpKb/KuR/AYyYtk/k33MeEinCho1Zoxnu9tuu4XVy264urkRMhKxf+bYSJbeQSAjSxueaqe9AIGMtG9CKoAAAggggAACCCCQSAECGYnUZF0IIIAAAskUIJCRTN30W3dugQyrTa3zzpeTTzop1BHuzrC16T4OPvjgmCqcyEBGvNu3s/qr6hnZ11/X0jsbv7tOUTBHp1Z5c9HC0CgD8a4zWGkbgt7OZO6jHXKNrmkY9rCNxlHmlNIJHSEjUselbTQYyLi/e3dZvnxFKEgQVjC9YVMJXKkhjM6dOnoP3acdqEuXLQ9NOxB8fm2dsmSvvfYKBTLicbPQinUG2b5kZ87b8vvvv8viJUt0mpu7pVbNmqHQT3C7dtvabfbsObJ86ZIcnaE2dP+wZ5+Vy7Uup5Ypox2pX2vA4tyonbEvvzzW6zxdvWK57Lvvvt7mcgvERAtkxNoO8TjZNDvWLt3vv09aNG+eg2LipEmyY/sOadmyRdhj0QIZ8WzbVnjhRRd7U+w8pKGfYKezhWnO1ekrEjFlSZ2LL9HRUSqHwkP+yrz/wQfedCLPDn1GXGjK/7hdt9E8bBSNA0qUkOrVq2kAykWgdj5zw9sbZd269fKGvjdLljzcuzMYyHj9P//xRmx58fnn5DTtjK+ix4nbdVqNu3RkDVvyE8iwEXlsJJh1a1aHRjPwVub7J7cAgj2tsN/H7v0yWKf4uLTuJb6Sxn7Vpo85+5wKXpigjL4HmzZv4QVfbKSH93SEh0sva+BNq7FKbR4e9Iis09ER9tpzT28DuXnkNu3NOB3J5/7uPSRSmC+WQMbPP/8slapWk/o6gkZ/DWLt6huyomOnzjJbRwYJjpARDNI5oUQEMrZ98olcUOeiUCBqlh7v2t59d44pwGybLrRg5QuOMmGfRTbix4plS3O8h2PZP5N9zHD1ijYlkb3vps+YERohIxH7p2unbL8kkJHtewD1T1cBAhnp2nKUGwEEEEAAAQQQQCApAgQyksLKShFAAAEEkiBAICMJqGm8yngDGa5T9o7bbpV22lnkXxYvXiKPP/mEN7z6sb7pRxIZyMjP9m2o+bU6zPycmTO9jvp6l9aVHho+cEt+1ulea5duuHo7U9s/7co6PRO6YaPGXthgeAKnLIk1CDB12jTp1KWrNyVDcEQT99gzTz8lF9Su7VVn0uTJ0vXe++TJxx+Xiy+q469iaNQJm9bDjZARj5uFJqrVrKXTVDST+/QMcP9io1m8tW6dLNaQTDAE4J7n9iGbPufyBg3c3d5lf51C59kRI8RGQTn11DLefdaxaVN7TBw/Lmx6ARt9wc6cL1ZsL5mq4Qa3vWQGMuJxssJbuKLY3sVkzMiRocCI3W9TeZyvoRibhsWNWGP32xItkBHvtjvr/jJHpwKxaROO/Cc4s3MLInbm/PM6qkizptcWaIQMW989990vs2bP9qaBKXn4zsCE2449ZvuiBWZs+otIi00pYZ9l0YIryzRY1OL666WnhpKaanltCQYyLERQUUMhzXRkjDPPPEPadego48e+LGeXK+c9P95Axtix4+T+Hj3k5htvjDjli7dS/Se3AII9JxjIcO9Vm1olGe9j26aFrUrqiB4jX3wh7P3yzTffyG133CltWt8ZNRxjr7elbv3LpLzaHaXTnozW0NObOkqIvb9sZBWbpuQWHeVh85bNGtB4X6ZO/ve9l5tHMgMZblqTYJDul19+kYvq1pWffvq5SAMZX375ldQ87zy5qE4dPSYPDh2rzDo/gYxY989kHzNsn7LAnNXr8cceDQsuvfPOJrm6USNvChc3QobVNxH7p60n2xcCGdm+B1D/dBUgkJGuLUe5EUAAAQQQQAABBJIiQCAjKaysFAEEEEAgCQIEMpKAmsarjDeQYVW1Yc9tDvjmzZrKlTotxp56pvOiRYtk+Ijn5JBDD/WmirApANxiQY3rtZOycaNrNJxQSzuZi0u1qlW9h3M7y9meEKmjPN7tL9Sy3XTLrWIhkqeGPON10pc76yxXPO8y3nX6X7xp02ZpcOWVXvDi9ttu0+Hzj9az5FfLwwMHasd/MfmvhhF66QgP5593rnfbAiLBM60j1dO/DbueW8elPR7syP3jjz+8qTuWLV8ubVu3lho1qsvff/0lCxYukiefftoLXQwcMCDUAfvbb/9Tp5tl3foN0uZO7YDV8trypk4vMnbceC8k8Mfvf4QCGfZYPG521vmMWbOknU4B0uCy+t52bYQMC4FceEFteWJweKejrd8tVhebFsZGI7F2rKUdej/9+KOub6ZYWKOedqD6pxtZsmSp3HL77d60CLfr84/RKQ0+/vhjse/sNm3FiOHP6lQyZ7vVR9zP3IMFHSHD1hOPk4UJbtb9qPQpp3gju5x88smyePFiDSlMkc8//1xGjXzJm17Blc8ubbqNj7dtk2733eu9H206iMP/CTrEs21bx7VNm8nue+wunTp00OknzpIffvxBJk6cJB+o2zub3tG2uyymQMajeowYoseKe7t20U76o+RonZLIRjCx5YsvvpTmOi3DH3/+4Y0IUFanF7HAyfgJE3UakWkamLo/bNoj70W+f/r26y8jnn9eFuj0EUfruoOLBW9s9INyOn2GtbUFA4KBDHvN9a1u9Kbhsalt7DhhU0m4aRSCgQzbp7a8u8Ur46effaZTqtyhYYO/9PVf6XtmvWzYuFFsPS+PHpVj1AJ/+VLxfWz73E233ioVzzlHbtP3i4UzVuiINiN1Kg7bJ16ZOiUsbOavj7tuYR4b3WS//fb1Rk8a9PDDoRBBax115H96fLHOfgu8PNirZ+ix3Dxy24dy++yIZYQMN8pKCQ1u3aP7qL1ntn74oQzUETxsKqV3dWQPmz7kYp0GyjwiHbdd3ZMxQoat2/ZBO2ZW18/LizQkd4hO22SLjTLxyvTpXmDEjZCRqP3T1p/sY8Z4nRbo/m7dpXz58nKVfnYedNCBsmHDRnl57FipUKGCzNVQmD+QkYj90+qV7QuBjGzfA6h/ugoQyEjXlqPcCCCAAAIIIIAAAkkRIJCRFFZWigACCCCQBAECGUlATeNV5ieQYdV9/oUXZOToMbJNO+ts2X333b2zt/s82EtK6DQC/sU6R+9s09br8LTrJ55wgndmvHWS5tapZuuIFlSId/t2Rq51+NoIFvPmzgl1BvrLGc86/a+z614ncs9esn37du+h4vvsIz0f6CFHHnmktNcz77/86qtQ53Gkjr1o9fRvJ7eOS3teMJBh91mQ4YFeveS11+bJd99/b3fJoRqasakJ7u3aNdT57D2g/9gUL130/oWL3pBfdQSBXXfdVU479VSxztUnn3pKz3DfEhbIsNfF6mZTlPTp21cmTposNoWJLVaWGtWqaYdoV69Tzrszyj+27/TUaWFsyhlXF9vXmugZ1R07tM/RpkuXLpP+Wu5Nmzd7U1zYPmp16abTgbhRENymcvNPRCDDthOrkz3XRoB4qG+/UNmtHSzMYKETC2oEF+vAtOdbUMCWwY8+IvV0Kga3xLNt61Tv0vUesREErNPaRhOpqdOo2OgkdXT0jjoXXhBTIMM6ty2Es37DBq8Y1zZpLA/27OmK5IUy7rnvPlm9Zo23r9kDJxx/vNzYqpUX3go9McIVGwFlb32PTdeggBvlJPg0e9/NmjNHVurUDTY1TaRAxgs64kdvHfnDlgb168uggf+GCIKBDJs2Z4yO/OBfbNs2JcpxpY5T77pyTcOGOd5T/ufb9VR9H1tw7uFBg0L7nJX1tNNOlYH9B8gpp5xsN3NdXnzpJXmwz0Pec/roMadx40ah548cOUp69u7t3e6t+0AT3RfckptHbvtQbp8dsQQybPu2j7fVKZNsuhBbrD2va9FC7rjjdrn+hlYaQNokA/r19UIDkY7b3ov0n2QFMmx0kWeHD5d58+fL2zp6hDtuuu36pyxJ1P7p1p3sY4ZNjWJBv7VvvSV/aVDQjs1du3SRd7RNeuvnhD+QYWUq6P7p6pXNlwQysrn1qXs6CxDISOfWo+wIIIAAAggggAACCRcgkJFwUlaIAAIIIJAkAQIZSYLN0tV+pUGDb775Vk4++STZa6+9Cl0hGdvP7zqt8/oD7cy2y+O1Y9lGx0ilxUY4sFCCf1qVaOWzIIeFL4477jjZTzuzY1lidbPQx7aPt8muu+0aMVyQ17ask9LqYiMZHFeqVNQOebeeXzQkY6Ni2HQr+2gnflEvsTpZOX/W6RM+1GCDBRUsVFDQJZ5t29QN1lluAZA9fCPeFLQMwddb0Mb2tSN0FIKDDz44+DC3AwLJfh/bPmfvFzuG7R9lyphAkdL+5mc68sy3337rHe9sxAyWfwWSfcywoJ4FzuyzyRYXkgoGMlyJsnH/dHUv6CWBjIIK8noEikaAQEbRuLNVBBBAAAEEEEAAgRQVIJCRog1DsRBAAAEEcggQyMhBwh0IIIAAAggggAACRSyQVyCjiIuX1psnkJHWzUfhs1iAQEYWNz5VRwABBBBAAAEEEMgpQCAjpwn3IIAAAgikpgCBjNRsF0qFAAIIIIAAAghkuoCNIvXM0GFazb9zVHXchImyQ0dRWrb4zdCoGTmexB35EiCQkS82XoRAkQsQyCjyJqAACCCAAAIIIIAAAqkkQCAjlVqDsiCAAAII5CZAICM3HR5DAAEEEEAAAQQQSJaATVN0cd1LxaafCi4lSpSQ669rKZc3aBB8iNsFFCCQUUBAXo5AEQkQyCgieDaLAAIIIIAAAgggkJoCBDJSs10oFQIIIIBATgECGTlNuAcBBBBAAAEEEEAAgUwVIJCRqS1LvTJdgEBGprcw9UMAAQQQQAABBBCIS4BARlxcPBkBBBBAoAgFCGQUIT6bRgABBBBAAAEEEECgkAUIZBQyOJtDIEECBDISBMlqEEAAAQQQQAABBDJDgEBGZrQjtUAAAQSyQYBARja0MnVEAAEEEEAAAQQQQGCnAIEM9gQE0lOAQEZ6thulRgABBBBAAAEEEEiSAIGMJMGyWgQQQACBhAsQyEg4KStEAAEEEEAAAQQQQCBlBQhkpGzTUDAEchUgkJErDw8igAACCCCAAAIIZJsAgYxsa3HqiwACCKSvAIGM9G07So4AAggggAACCCCAQLwCBDLiFeP5CKSGAIGM1GgHSoEAAggggAACCCCQIgIEMlKkISgGAggggECeAgQy8iTiCQgggAACCCCAAAIIZIwAgYyMaUoqkmUCBDKyrMGpLgIIIIAAAggggEDuAgQycvfhUQQQQACB1BEgkJE6bUFJEEAAAQQQQAABBBBItgCBjGQLs34EkiNAICM5rqwVAQQQQAABBBBAIE0FCGSkacNRbAQQQCALBQhkZGGjU2UEEEAAAQQQQACBrBUgkJG1TU/F01yAQEaaNyDFRwABBBBAAAEEEEisAIGMxHqyNgQQQACB5AkQyEieLWtGAAEEEEAAAQQQQCDVBAhkpFqLUB4EYhMgkBGbE89CAAEEEEAAAQQQyBIBAhlZ0tBUEwEEEMgAgWwIZFgzvb9lcwa0FlVAAAEEEEAAAQQQQKBgAsHfrNq2bi1t27Qu2Ep5NQIIJF2AQEbSidkAAggggAACCCCAQDoJBP+4rVypkowe+VI6VYGyIoAAAghkiUAmBjKs6U4qXSasBQlkhHFwAwEEEEAAAQQQQCBLBTL1+3+WNifVziIBAhlZ1NhUFQEEEEAAAQQQQCBvAQIZeRvxDAQQQACB1BDI1B9kM7VeqbHXUAoEEEAAAQQQQACBdBXge3K6thzlznYBAhnZvgdQfwQQQAABBBBAAIEwAQIZYRzcQAABBBBIYYFM/UE2+FnMUMwpvBNSNAQQQAABBBBAAIFCEVi+YoXY93//wkhyfg2uI5C6AgQyUrdtKBkCCCCAAAIIIIBAEQgEO4GYsqQIGoFNIoAAAgjEJJAtgQzD4MfmmHYJnoQAAggggAACCCCQoQLB7/78XpWhDU21MlKAQEZGNiuVQgABBBBAAAEEEMivAIGM/MrxOgQQQACBwhYI/ig7euRLYj/MZsJyUukyYdVglIwwDm4ggAACCCCAAAIIZJFApNExMum7fxY1JVXNUgECGVna8FQbAQQQQAABBBBAILIAgYzILtyLAAIIIJB6ApkcyAh+Hps+Pzqn3j5IiRBAAAEEEEAAAQSSLxD83s/oGMk3ZwsIJFKAQEYiNVkXAggggAACCCCAQNoLBDuA+CM37ZuUCiCAAAIZKxD8YTbTAgvBUTKsITOtjhm7c1IxBBBAAAEEEEAAgYQIBH+nspXynTghtKwEgUITIJBRaNRsCAEEEEAAAQQQQCAdBIJ/6BLISIdWo4wIIIBAdgpkeiAj+JnsWpkfoJ0ElwgggAACCCCAAAKZLBDp+zC/U2Vyi1O3TBUgkJGpLUu9EEAAAQQQQAABBPIlEPxjlz9088XIixBAAAEECkEg0wMZRhj8XHashDKcBJcIIIAAAggggAACmSjA9+BMbFXqlK0CBDKyteWpNwIIIIAAAggggEBEgeAfvAQyIjJxJwIIIIBACghkQyDDmIOfzY6eUIaT4BIBBBBAAAEEEEAgkwT4/ptJrUldEBAhkMFegAACCCCAAAIIIICATyD4Ry+BDB8OVxFAAAEEUkogWwIZhh78fHYNYZ/Tbdu0FrtkQQABBBBAAAEEEEAgnQWifee1OhFGTueWpezZLkAgI9v3AOqPAAIIIIAAAgggECYQ/OOXQEYYDzcQQAABBFJIIJsCGcYe/Iz2N4ULZFg4gwUBBBBAAAEEEEAAgXQQWL58hVfM5StWiP0fbSGMEU2G+xFIDwECGenRTpQSAQQQQAABBBBAoJAEgp09BDIKCZ7NIIAAAgjELZBtgQwDCn5Ox43GCxBAAAEEEEAAAQQQSCMBwhhp1FgUFYEoAgQyosBwNwIIIIAAAggggEB2CgQ7eghkZOd+QK0RQACBdBDIxkCGtYudPWif17mdRZgO7UcZEUAAAQQQQAABBBCIJnCXjvzWpjWjv0Xz4X4E0kmAQEY6tRZlRQABBBBAAAEEEEi6AIGMpBOzAQQQQACBBAlkayDD8RHMcBJcIoAAAggggAACCGSCgIUwbCGIkQmtSR0Q+FeAQMa/FlxDAAEEEEAAAQQQQCDHUOiMkMFOgQACCCCQqgLZHsjwt4uFM1bo/8v+mYfb/xjXEUAAAQQQQAABBBBIVYEqlSt5RSOEkaotRLkQKLgAgYyCG7IGBBBAAAEEEEAAgQwSYISMDGpMqoIAAghkuACBjAxvYKqHAAIIIIAAAggggAACCCCQ9gIEMtK+CakAAggggAACCCCAQCIFCGQkUpN1IYAAAggkU4BARjJ1WTcCCCCAAAIIIIAAAggggAACBRcgkFFwQ9aAAAIIIIAAAgggkEECBDIyqDGpCgIIIJDhAgQyMryBqR4CCCCAAAIIIIAAAggggEDaCxDISPsmpAIIIIAAAggggAACiRQgkJFITdaFAAIIIJBMAQIZydRl3QgggAACCCCAAAIIIIAAAggUXIBARsENWQMCCCCAAAIIIIBABgkQyMigxqQqCCCAQIYLEMjI8AameggggAACCCCAAAIIIIAAAmkvQCAj7ZuQCiCAAAIIIIAAAggkUoBARiI1WRcCCCCAQDIFCGQkU5d1I4AAAggggAACCCCAAAIIIFBwAQIZBTdkDQgggAACCCCAAAIZJEAgI4Mak6oggAACGS5AICPDG5jqIYAAAggggAACCCCAAAIIpL0AgYy0b0IqgAACCCCAAAIIIJBIAQIZidRkXQgggAACyRQgkJFMXdaNAAIIIIAAAggggAACCCCAQMEFCGQU3JA1IIAAAggggAACCGSQAIGMDGpMqoIAAghkuACBjAxvYKqHAAIIIIAAAggggAACCCCQ9gIEMtK+CakAAggggAACCCCAQCIFCGQkUpN1IYAAAggkU4BARjJ1WTcCCCCAAAIIIIAAAggggAACBRcgkFFwQ9aAAAIIIIAAAgggkEECBDIyqDGpCgIIIJDhAgQyMryBqR4CCCCAAAIIIIAAAggggEDaCxDISPsmpAIIIIAAAggggAACiRQgkJFITdaFAAIIIJBMAQIZydRl3QgggAACCCCAAAIIIIAAAggUXIBARsENWQMCCCCAAAIIIIBABgkQyMigxqQqCCCAQIYLEMjI8AameggggAACCCCAAAIIIIAAAmkvQCAj7ZuQCiCAAAIIIIAAAggkUoBARiI1WRcCCCCAQDIFCGQkU5d1I4AAAggggAACCCCAAAIIIFBwAQIZBTdkDQgggAACCCCAAAIZJEAgI4Mak6oggAACGS5AICPDG5jqIYAAAggggAACCCCAAAIIpL0AgYy0b0IqgAACCCCAAAIIIJBIAQIZidRkXQgggAACyRQgkJFMXdaNAAIIIIAAAggggAACCCCAQMEFCGQU3JA1IIAAAggggAACCGSQAIGMDGpMqoIAAghkuACBjAxvYKqHAAIIIIAAAggggAACCCCQ9gIEMtK+CakAAggggAACCCCAQCIFCGQkUpN1IYAAAggkU4BARjJ1WTcCCCCAAAIIIIAAAggggAACBRcgkFFwQ9aAAAIIIIAAAgggkEECBDIyqDGpCgIIIJDhAgQyMryBqR4CCCCAAAIIIIAAAggggEDaCxDISPsmpAIIIIAAAggggAACiRQgkJFITdaFAAIIIJBMAQIZ0XWXr1gR/UEeQQABBBBAAAEEEEAgBQQqV6qUAqWgCAggkGwBAhnJFmb9CCCAAAIIIIAAAmklQCAjrZqLwiKAAAJZLUAgY2fz22e3LRbCIIix04R/EUAAAQQQQAABBNJDwIUy7LJyZf2fkEZ6NBylRCAOAQIZcWDxVAQQQAABBBBAAIHMFyCQkfltTA0RQACBTBHI9kBG8DM7U9qVeiCAAAIIIIAAAghkr4AFMtq2aU0wI3t3AWqegQIEMjKwUakSAggggAACCCCAQP4Fgp079ofw6JEv5X+FvBIBBBBAAIEkCWRrICP4WZ0kXlaLAAIIIIAAAggggECRCRDMKDJ6NoxAwgUIZCSclBUigAACCCCAAAIIpLNAsJOHQEY6tyZlRwABBDJbIBsDGcE6R2th+/xmQQABBBBAAAEEEEAglQVimW6vbevW3ogZqVwPyoYAArkLEMjI3YdHEUAAAQQQQAABBLJMgEBGljU41UUAAQTSWCAYTrARnTI5iBCsr7/p7tJhnStpCCOT6++vL9cRQAABBBBAAAEEMkPAhTLs9yh3PVgzQhlBEW4jkF4CBDLSq70oLQIIIIAAAggggECSBQhkJBmY1SOAAAIIJEwgGFDI5EBGsK4O0YIYbfSsQRYEEEAAAQQQQAABBNJdwAIZ0YIZhDLSvXUpfzYLEMjI5tan7ggggAACCCCAAAI5BAhk5CDhDgQQQACBFBUIhhQyNZARrKc1B0GMFN0pKRYCCCCAAAIIIIBAgQWCv025FRLKcBJcIpBeAgQy0qu9KC0CCCCAAAIIIIBAkgWCf/Ta0OfWwcWCAAIIIIBAqgkEgwqZGMgI1tHagDBGqu2JlAcBBBBAAAEEEEAg0QLB36fc+gllOAkuEUgfAQIZ6dNWlBQBBBBAAAEEEECgEASCf/ASyCgEdDaBAAIIIJAvgWBYIdMCGcH6GRJhjHztKrwIAQQQQAABBBBAIA0Fgr9RuSq8v2Wzu8olAgikgQCBjDRoJIqIAAIIIIAAAgggUHgCwT92CWQUnj1bQgABBBCITyAYWMi0QMZJpcuEgRDGCOPgBgIIIIAAAggggEAWCAR/p7IqM0pGFjQ8VcwoAQIZGdWcVAYBBBBAAAEEEECgoALBP3QJZBRUlNcjgAACCCRLIJMDGcHPYzPkTMBk7UmsFwEEEEAAAQQQQCCVBfhunMqtQ9kQyFuAQEbeRjwDAQQQQAABBBBAIIsEgn/kEsjIosanqggggECaCWRyIIPRMdJsZ6S4CCCAAAIIIIAAAkkVCH4/ZpSMpHKzcgQSKkAgI6GcrAwBBBBAAAEEEEAg3QUIZKR7C1J+BBBAIHsEMjWQsXzFCrG6+RdGx/BrcB0BBBBAAAEEEEAg2wSCv1dZ/fmOnG17AfVNVwECGenacpQbAQQQQAABBBBAICkCwT9wGSEjKcysFAEEEEAgAQKZGsgI1uuuNq2lTevWCRBjFQgggAACCCCAAAIIpK9AcJQMAhnp25aUPLsECGRkV3tTWwQQQAABBBBAAIE8BAhk5AHEwwgggAACKSMQDC6MHvmSWJAw3ZdMrVe6twvlRwABBBBAAAEEEChaAb4nF60/W0cgvwIEMvIrx+sQQAABBBBAAAEEMlKAQEZGNiuVQgABBDJSIFN/kOXMv4zcXakUAggggAACCCCAQAEFgr9ZtdVR5NrqaHIsCCCQ2gIEMlK7fSgdAggggAACCCCAQCELBP+4ZcqSQm4ANocAAgggELNAJgYylq9YIVYvt/A57CS4RAABBBBAAAEEEMh2geBvVgQysn2PoP7pIkAgI11ainIigAACCCCAAAIIFIpA8I9bOoIKhZ2NIIAAAgjkQ4BARj7QeAkCCCCAAAIIIIAAAmkqQHg5TRuOYme9AIGMrN8FAEAAAQQQQAABBBDwCxDI8GtwHQEEEEAglQUIZKRy61A2BBBAAAEEEEAAAQQSK0AgI7GerA2BwhIgkFFY0mwHAQQQQAABBBBAIC0ECGSkRTNRSAQQQAABFSCQwW6AAAIIIIAAAggggED2CBDIyJ62pqaZJUAgI7Pak9oggAACCCCAAAIIFFCAQEYBAXk5AggggEChCRDIKDRqNoQAAggggAACCCCAQJELEMgo8iagAAjkS4BARr7YeBECCCCAAAIIIIBApgoQyCjalv3ll1/kg61bZav+/+GHH8neexeT448/3vu/1LHHSrFixYq2gGwdgUIW+P333+Wvv/4K2yrvgzCOrL5BICOrm5/KI4AAAggggAACCGSZAIGMLGtwqpsxAgQyMqYpqQgCCCCAAAIIIIBAIgQIZCRCMb51/P333zJl6lR57PEn5PPPP4/64l122UUqVawo3bvdL6VPOSXq83gAgUwSuKrhNbJ+w4awKq1avkwOOOCAsPu4kZ0CBDKys92pNQIIIIAAAggggEB2ChDIyM52p9bpL0AgI/3bkBoggAACCCCAAAIIJFCAQEYCMWNY1bvvvivdH3hAVq1eE8Ozdz5l9913l5bNm0vbNq1l3333jfl1PDF1Bbbv2CG//PxzWAH3229/2WefvcPuy8YbBDKysdVjrzOBjNiteCYCCCCAAAIIIIAAAukuQCAj3VuQ8merAIGMbG156o0AAggggAACCCAQUYBARkSWpNw5//XX5c42beXPP//M1/rPKFtWJowbKxbQYElvgRHPPSd9+w8Iq0SvHj2kadNrw+7LxhsEMrKx1WOvM4GM2K14JgIIIIAAAggggAAC6S5AICPdW5DyZ6sAgYxsbXnqjQACCCCAAAIIIBBRgEBGRJaE3/nLL7/IxXUvla++/rpA6+7UoYPcesvNBVoHLy56AQIZ0duAQEZ0Gx4RIZDBXoAAAggggAACCCCAQPYIEMjInramppklQCAjs9qT2iCAAAIIIIAAAggUUIBARgEBY3z5fd26ybjxE3I8+8ADD5S7dCqSM844U04+6UT573ffydq1a2XVqtUybsIE+b//+7+w1+y1117yytQpcuIJJ4Tdz430EiCQEb29CGREt+ERAhnsAwgggAACCCCAAAIIZJMAgYxsam3qmkkCBDIyqTWpCwIIIIAAAggggECBBQhkFJgwzxWsfestadTkWvn777/Dnlu5UiV57JFH5NBDDwm7392Y/uoM6dCpk/z111/uLu/ymquvlof69JZddtkl7H5upI8AgYzobUUgI7oNjxDIYB9AAAEEEEAAAQQQQCCbBAhkZFNrU9dMEiCQkUmtSV0QQAABBBBAAAEECixAIKPAhHmu4Jmhw2SgBi/8yz577y1zZs+SI0qW9N+d43qkjvszypaVyRMnEMjIoZU+d0Rq1149ekjTptemTyWSVFICGUmCzZDVMmVJ6jTkqtWrZdGiN3IUyEKGZfVz6vTTTpM999wzx+OFdcdXX30l++63nxTfZ5/C2mTStzNr9hz5/PPP5MZWrULbGvbss3LsscfKJRdfHLov1a68Mn26/PD9D9KyZYtUKxrlKSSBp54eIqeWKSO1a59fSFuMbTNDnhkqv/76q/dkmxKwePHiOV44ddo02br1Q+/+mjVrSMUKFXI8x+745NNPZcLEiSKavy5efB+dYvAW73nzX39d1q1bH/aaXXfdVUqWPFxKlSolZ5crJ8WKFQt7PBVvpOL7+ONt2+Too46S3XbbLWayDRs3ymvz5smNN7SSEiX2j/l1PLFwBfLTtjay5KeffSal9DMxU5ZUPXYWti+BjMIWZ3sIJEaAQEZiHFkLAggggAACCCCAQIYIEMhIfkN27tJVJk+dGrah1nfcLnffdVfYfZFubPvkE7mgzkVho2tYmOOtNavFfszNa7HXL1ywUD774nP58suvZC/tHDvqqCPlBJ3y5MILLojpB+D//ve/8sOPP4Zt6qgjjwy99s8//5TVa9bIF198qR0u38vBhxysP4SV0mlYyuY7NPLTTz/JvPnz5aOPPpYvvvxCbBtHHnGkHHPM0XKBlvvQQyKPKuIv5A79gf2LL77w3yUHH3SQHHDAAaH77Me+b775xrttHQWRfoi3B237W7dulc1b3pUt726RTz/9zAvTlCp1rBx33HFSqWLFqD8G//bb/+Qz7UDzL5MmTZJhw0f475K2re+UevXqhd233777ymGHHRZ2X/BGIqyC64x2O6994eeff5YZM2d6Vl9/863sscfucszRR8tZZ50ltWrWjGl/yG8goyBt5K9vLPvNO+9sko8+/li+1X2n+L7F9T11lNehYlMKsSRXgEBGcn3jWbsLlu2tHYmuM8xGgtq+Y4e3mlNPLSPPPP202OdFfpdFb7whjzz6mAx+7NG4Oljss++iS+p62543d05Mx578lrEwX9ehYydZpZ+3C+bPC9Wpeq1aUr1qNenfr2/ovsIsUyzbuv3O1vp5/pHMfHV6ypYxlnpk4nPuaN3Ge2916dwpqdU7u0JFaXBZfemp4dO8FgtJLF6yREa++EJS95f3P/hA6tarL+XPPtv7HvvE4MFS95Kcwaabb71NVmsAbU/9jD+nfHl58vHBEctlAexBj+48Vv38yy+ybPGb3vP69R8gE/V73y/bt3vfJ+27go1+98cff3gURx5xhNzTtWvEbedlVZiPp9r7eIr+bdW56z3SqGFD6f1gr7A2yW0fGjd+vNzfvYe8Pu817ztqYRqyrX8Fvte/GW+48Sa5+aYbpd6ll/77gF7Lb9t2vedemTh5sgx6eIBc3qBB2DrT9UY8x850rWMs5SaQEYsSz0Eg9QQIZKRem1AiBBBAAAEEEEAAgSIUIJCRfPyrr2kk69aHnxn33PBnvQ7qWLZerWYt+frrr8Oeaj8iHnvMMWH3+W/YmcuDH39Cli1fHhbm8D9n//33l8bXXCNt27SWvTXkEW3pP+BheXZEeHhg9MiRUrlSRe8H5scGPy5f6pnIweWE44/X0ElbubRu3eBDUW9bqGOQjiYya84c+d///hfxebvvvrueCXyRdGzfXo7Wzv5oy4KFC8V+RPdPFXN32zbS+s475Yknn5KXx46Vr/8JY9g6Jk0YL2edeWaO1Y0cOUr6Dxwov/32W47H3B0nn3yydO7YQc4/7zx3V+hyxcqVYp3I/nKEHszjyqV1L5HB+uN+pOlpEmmVRzFCD+e2L9gZpPd16x613Wx/tf2hwWWXhdYX6Up+AhkFbSN/OXLbb95at04e6NlLNr79tv8l3vUDDzxQmusIJ21at44pLJVjBdwRkwCBjJiYCuVJLpAxSzvZ7Rjolg+1433u3LnaMfmYlClTWqZp50ikY5h7fm6XNnVX+44d5VU9vpQufUpuTw177Ntvv5V6DS6Xk048UUa99GK+tx+20hS4QSAjBRohw4pgwaVTTjlFnhj8WFLfJ/F0KnbT0MZsHQ1mxbKlSS3T0GHD5OFBj8icmTOkYeMmcmHt2jKgf78c27TvkhbKrVa1qryqodMVS5do4HSPHHtC0+YtZMevO+Q4HfVi2bLlsvSfQIZ74i233S5r164N1cs6pO3vg4Fahi3vvitjRo2MOvqGW0dRXqZaIGPhokVyZ5u2cot26Ldt0yaMJrd9iEBGGFWR3bBAvP2N2/3++6RF8+Zh5chv2z6moarhzz0vTz/5RMx/Z4dtOAVvxHPsTMHiJ6xIBDISRsmKEChUAQIZhcrNxhBAAAEEEEAAAQRSXYBARvJbqNw5FeQXPVPOv+QVqPA/9z8LFoh1LvmX87TjP9IoEdbpP1zDE9YRZiMGxLKcdtqp+sPVk96Qv5GeH60T/u23N8pD/fpHeknoPhvF49FBA3Oc+RR6gu/KG2++KR06dZbvvvvOd2/0qzbShXUgVK1SJeKTonWs24gTFhwIBiSCgQwrh515Z+uJdWnSuJE82LNn2I/5yQhkJNoq1vpF2xc+/vgj72xDO+Mzr6Vli+Zy3z33hM6oDz4/nkBGotrIX4Zo+01V7Yhpef0NUQMnbh3NmzWVB7p3dze5TLAAgYwEgxZgddECGW6VrW66WWyEiyX6/2GHHerujusyv4EM24h9BlqAL5MWAhmZ1JqpUZdsDmRcoyGMHTqiz6uvTJO72rWTJUuWeiGKYNjCBTLu1VEsbtNQ76gXX5TKlSuFNaCNEFZJR6qxcMDH2z7RQMayPAMZbgU20lkdDcYcoqO/vTptath3SPecVLhMtUCGmUQ7zhPISIU9Jvcy5BbIyG/b5va63EuTuo8SyNjZNgQyUncfpWQI5CZAICM3HR5DAAEEEEAAAQQQyDoBAhnJbXL7gbZ8xUo5Ov83rl8nxXTI4kQvzw4fLv0fHhj3am3+5en6I/B+++2X47WROuGrVa0iK1auiin0YR1iw54ZkuuZSmv0jMGmenbUn3/+X47t53aHrXvCuLFyRtmyOZ4WqWM9x5N8dwQDGQ0bNRYbESHeJTjkdaIDGcmwirWOkfYFG2r7iy+/zLGP57bOu3RUFhtJItISTyAjUW3kL0ek/cbOHv5Rp+35KsJIMP7Xuutt7rxD7mrb1t3kMoECBDISiFnAVeUVyHhBOy17P9TXG93CRspwiw3lv3TpUlmxYqXXGVqhQgWpWaO6HHroztCGBa1emT5d5G+Rje+8LVOnvSI333ijN33TLrqSiy6qI0fqNCjv6hnlS3Q9jRs1krfeWifvbHpHjteRmWqff763KTsL2qa6qlmzhtu0d5nX9m0agdFjxsipp56qI0GFd7raCixk8tGHH0kLDZe5kT/yWmdYASLcsGPLrNmz5e133vHWWfb006VJ48ayp04z5l/yG8iw7yKTdKSSc88915tuy0bRMv999y2uHctVdHSoM/ybCV23ci3VjuVVq1Z7IboKFc6RKhqCjBQItRfZNGCLFi6S1fqZfvBBB0r1atWldu3zJVpHbjxu1nln01hYm9s0ODVr1NTpsM6MGu4LVeKfKzbSmL125apVsusuu0q5cuXUo5YccvDBwafK//3f/4kZrVmz1hu5oEzp0lKxYgVvagvX5u5Ftp8doyNAValc2Rs9yTrif/lluze1RfXq1cJCQflth3icLBhpdVy9eo1X9tKnnCznnHNO2L48//XX5RMNDdgyZOhQOUTfew2vulJ20f8OO/ywsJHN4tm2rW/tW295wYYtW7Z4LvXr1xObEi6vTkWbCmzFyhXe+37GrJneFHHt777LK5Ot97rrWobeb3bb3v+2D6/V72lHlCzpjSxRSUduy23EN3udW2x/ql7rXLntlpulvYYxpr3yinTs3CVi2MIFMl6ZOkUqVqkq17VoIcEpXmbpiB5t775bxo4ZLaNGjfbeN3mNkOHKYpc2rcmI55+XdTol4T777ON/KHQ9v/tPst/HFoqw/c1G5bNjgB1PqlWrJiefdFKo7JGu2Agh5l5Tp7Q7UadSdIuNuPbD9z/IgTrN4OUN/h1VzR3zr7zySimho/w5D9vWKTpKU6z7kH+EDJvKceasWd5UhCeddKLUqF4919H3XBnt0kbys8+qjRvf9qZ2PPGE46VJkyZy2D+fZf7nRrtudVq+fIW3Hx+ugfFy5c7yPsOCoSB7vU15s1yNV+n7+1udTtKm2qmkn1F+O3uec7HjvR2vFmqw3EYEtGNUdbWysPx7770nFu7+7rvvvfeOHQv9i7O2z1cLDNnnnh0TDz7oYKmqfwNaGD5S4DGW48WYMS/L77//Lj/p59LjekLARXXqeGWwz/cz9Zhu9XJ1iLdtXbmvvuqqsL9pk3VM95sFr8di4X9NvMdOe//YSCL2vrNRL6tU0vbVz5yPdUpF+6xr3qxZjjbavHmLPn+ZjsyzQfeb4/VzrWLYZ4O/PKl2nUBGqrUI5UEgNgECGbE58SwEEEAAAQQQQACBLBEgkJHchrYfsc7RH0iCozG8vWG92I+AiVzWb9ggjZtcK38ERsawH/UqaidKqWNLeT/mbdq0SWze7OBy5eWXRxyqOVInvP+1B2tnxqna2bbnHnvK+1s/kG3//Mjvf84+OiXKbP2B3Trvg4v96HbZ5VfIp599FnxIzjzjDO+HRvvR7wMdLtp+rApa2g+R06ZMlmLFioW9PlLHetgTAjf8gYwZM2fJ3Tolin9bVoaGV1/tTdVyQIkD5LPPP5MJEyflmI7GfhR7c+GC0A/q1i7tOnTUTgbtXfxn+VH3ix9++MHd9C4P0h+e99t337D7zjvvXOl2332h+5JlFdpAHlfy2hesDqfriCtHH3W0155v69Qe3+kPhsFlt9128zotztYOseASayAjkW3kL0Ne+01x7SgprZ1zNtKK/ehpw4xHGhnkyccf96bW8a+b6wUXIJBRcMNErSGvQEbzli3lo4+3yRsL/hPqSLXRnprqFE42/L9NJ2Idj3aMtM+R0Tq1yEnagWcdRTa6hh0xf/31Vy8MZWeOu86fRwcN8j7TXKfatU0ay5iXx3odEldecXnomFm9Vi2prmes9+/XN67tm48dhyyYYR2w/g54+0w4r/YF3ufSCJ16zB6LpU65mVsnlw27b8f3Ktq59l8NpFgww6aBmTJxQthnW34DGR/psarOxZdIv4f6eFY2zVjJww/3tmOdqfd27SKtbrghrJj2eWvtYJ9dZcuerse5v73AgYVERr74glhIwb+8uXix2JQM9ng57VQzm3Xr1nsjZFnnt3XUztTpbZxnPG7W6XSrrtuCOOeULy+ff/GF932gzoUXyGM6zZlbp788/us2LcT1rW709icX4DRj+8waodNWlC59Sujp1nHXsVNnmT5jhtehbFOj2bF+64cfeiGZXj0f0ECHdR3uXGw/sxDQnvpda/LUad5+/d7773sjo11y8cVavkGhfTc/7RCPk5W96z33yhTt0LaA02kahHhXy/KFerW6/nq5R9vZrO69/37tYH3Tq4Ct395bNuqYLTZ125OPD/aeF8+27bU2HdzgJ56QkiUP1+8Cp3vfc8y5z4O95IFeD+qUZfWlp05HEmkZP2GC93p73//00486Tdz//hlZZ6f1gvnzQo6jR4+RHr16yeG6D9t++N3338mmTZvlNA1RvfDcCO9YEGkb/vvc8cNCveXOOss7zlTWAFEL7cS87957/E/1pr+zY9a8uXPk+htaeZ3hNqqGf78z93nz58uyJYulkwY7LMgUTyBj7Lhx0q3HA973WatHpCU/+0+y38d2/GjXoYMGyuZ4x3ELAFlg246VNkJebtMWbtfRScpXqCgWYrXpBG2xdi+vncQWurLj1BoN6bhwwiM6hd+w4SNk3do13t9Qfg/rgI91H3Jtb8eO+3VEMwtQ2HvAvs/tW4J7l/wAAEAASURBVLy4PDtsqBcQiNQG7j47pllQx/ZvO6bsv/9+2tG9wgvbj9cpEU9Rh7yWsWO1zR94QOx7pYXLvvnmW7FjRyWt/5Cnngzbj/+rAYwW+h7euvVDfW+dpu/XEhpC3Cx2f/++D8mVV1wR2pxzadzoGnl1xkw5SkP3X3z+uReAuOG667wg2k233KqftyfKZ59+JhYcuKlVK+napXNoHc5o9MiXvNFj7Hhi3+3tfWB/Q9qUivZZbN/n3RLr8aJu/cu8zzs7XpmjnQxQXN1tsbDTzTrKjKuDfWblp21tJMpj/pnWMpnHdFf34GWsFu518R47P/n0U2mmUyRZ0MaO2TZt4qbNm+XE448X+9uxV+8+sl7fJ/5wlwvJFiu2l1TQkN56DWVYKMbMu+m0Mam+EMhI9RaifAhEFiCQEdmFexFAAAEEEEAAAQSyVIBARnIbvjADGdbZYB0i/sV+1OunP9Qdq2dv+hfrzO6i00b89ttv/rtlhp6p5u+YsAejdcLvpSN8dLv3Xj0brHHYOqa/+qo3JYgNA+1fOukPtrfqmYjBZcgzQ3WKlUfD7rYf2R8ZONALP/gf2LBxoxdu+Oijj/x3S49u9+eYfzi3jvWLL7pIrml4tZygYQ4Li9hinRGuw6+F/mC5dNnysG301qlIgnW1H5ztB1nbln+xH/gjhQ3cc1xHprttl720k6Jp02v9d+W4niyrHBuKcke0fcHcbJhu+0HdOuPcYmfAPfX00zL02eE5RlOxM+KeeuLxsA4Ne12sgYxktVFu+411/N6v+7zt+26xzuT2HTtJcJ+spWd8jnh2WI76uddxmT8BAhn5c0vGq9xxzD43Tj5555nQdky0Dqo5c+bIcy+8KD2049cdN63jrsGVV+moGNu1s+kp76x5K9e2Tz6Ru9u190baeW32LB214d9gWm5TlrgOI/vMsqmigsfcYCAjnu2/+NJL8mCfh2SOBgn9Zx9b52YjDT4O0JCHdYDFs85IbWAdRZdcWs8LdU2dPCl0Rq+NYHDbHXdKl04d5SYdHcQtBQ1kWMefHadvbHWDd2yyYGB37QSeqaNz+D//LQBpIxDZme7W6WadPbZY51nbu9t5HXIWhHQhSzsr+aprGumZzeW8gIQFHWyxkYXu0ra1zukTtKPIBTLidbNO8A80EPHanNmh0cXmzJ0rrdveJc8OfUbO0zPBoy0WpLDPlWOPPUZefO65UF1sxIzr9HuTfU+zzn7X6WsdtBMnTfbqXfeSi0OrtbP2bRoz67jsrO3iFtvPtuuIGLVq1ZS+ffp4HYv22Wf7kI1Y1l07ulpqh5ctrpMx1naI18mmaRg7brwGIB6URtc0dEUU1xH3oHb+Xnttk9D9diXalCXxbnvCxIka9OgmN2qwp2OH9qHvU7Zv2L5s7/Nm+h0nWiDDX6jcppuw75j2mWuj5rRvd3doO/b90EI7R2jwd+L4cXl+9tp3t40aGl28aKE3YoBtv5m2k4V9Xn/ttbDXuxEyLJBhln369pNFGjRz+78d92y0jUo6ioq9X9prCDfeQIYLmb6ko2TYCASRlnj3n2S/j62M9n4ZP2GiTn34hJyv0ylaB729p/oNGCCTp0yVMaNGeiMeRKqP3XdJvfrescF9H7TRIprrd3B7X5u7jThiISxbLERgxyA7VloYxnm4TnvvSf/8k9s+5D47LAhg4aNqOiWdLbY+C5XZcXHZ4jdD+8U/qwy76HrvfTp60zQNzU3U0ZTKeI9Z2WrXucgbccDK7w/shL1Yb7j9uKEGSR7s1TO0H9uoerfefoeOKlgjFDZz78Xt23/REQefkdI6apstFhrso6NQjdEAyDNPPxUaHcq52EiMY18e4wU47JhkQaEZOhqI1duCFhb8sfs7dOrkBWqszhZ+tMUZ2d9Ggx4eEDbKoY22dI/Wv4WObOg68l0Z4/l8N69qNWt5x0hbl39xdchv2/oDGck8pvvL7K7HaxHvsdNGZrHjtu1fQ4cMCf3dbt8nHtdAnH33sjCrP5BhI7nYtKB33n6bBl5u8j6nbP+ZpJ919+vnRtfOncK+a7i6pNIlgYxUag3KgkDsAgQyYrfimQgggAACCCCAAAJZIEAgI7mNHGsg40MNGLS2KQ7s1MAYlof69PbOiHFPteGIa51f2xtm291nPxTbNCQlSpRwd4VdTpw0Se657/6wUSBu0R9p/B0N9oJonfADB/SXK3RUjUjLUD3j9OFBj4Q9ZD+o2g+rwR8o7Ucl6zBxi/2YO37sy2H1c4/ZpZ09doV26v1Pf0R0i42kYSNc+NcdrWM9WjDErctd2hm1M2fO1I6qOV5oY8b0V0I/mLrn2OUyDW7YWWv2g7xbrDPEzkyLtriOTP/jsQQykmXlL0du16PtC93uu1eu07Phoy2uM8j/uHV+LXljUahzzD0WayDDnp+MNoq23zRq2FD69H4wbB9zZbZO2sbXNg0bKcP2YzuLMxlTE7ntZuMlgYzUafVIxzF/6YKfETYF1DWNm0hvPbM9eHycPWeutLnrLnlOR52oWePfKUZiCWREWp+VIxjIiGf7dnZrjXPP8zov/NMr9daQxjg9k986ruyM3njW6bdx161jxYbsL1WqVNiw4TbqTi0ddaGiTudi4UT32VbQQIZNN/aChhLc+qwcq9eskSZNm8kD3btph3lTr2j2Gf7UkGdkngYgbDQg/2Jn5tpnkT9sY2HBp7RjyDqyDzts59Qz7jVeJ+WFdbxpAFwgI143+360WqcPma8d4v4zfv+zYIGeWX6WHPRPYMRt0385fMQIGTBwkI5ctTBH2RYvXiLXa8f+cD0j/lwNVlhHmk0zd61OF2OjSQQXG1liwYKFslg/u5yh7Wd2Vr+FOvzTvtl9VXT6A5uO5/HHHvOe7zoZY22HeJysM85GZLNRKHpp8CK42GeU1S8YVrC2tGm5nhi8s4zudfFs215joeDvtSN7sn4Xs88//2IjR9i0NU01DFLQQIaN2vL9D9/LpPHjc3SYu2lHZs+cERak8pfFru/QzspKOlWPfYe1znDXlu6Y5g8n2fP9gQwLOdTVEIGFW1zYzEJoV1x1dSio1a59h6QGMmLdf5L9PnbvlzoXXCADtdPeOZqZve/t75KbNPzVQUeci7Z07tJVVukxyN7b9nr7u3SidvgvfH2+VK1RU67X75a33XqL93J7r52nwZfeOuKKPde9n/Lbad9OP3Pu0A5q/+KCz7N0NB8bpSjaYscemzLiKp0+xb94YRydQsK+3/o9/M+x6xYusZFrbBSm4PvlUT1eDH/ueVn65hveKBnuvTh0yNOh0IVbn7VBvcsaeKEQCwP5XWwUC/8IQu7vlcvq1ZNBAx8Olc/C/DfceJM3KseF2pa2uEDG3XrsvfOO293mQpcW7rDXLdEy2jZdGSN9Hkf7fC+MQIbbR5N1TA+B+K7EaxHvsdNNhWnTgVoIyr/Y36IWprS/j/yBDDtubv1wq7ym4UsXPnSvq9eggf6du4/3t3du+6x7flFdEsgoKnm2i0DBBAhkFMyPVyOAAAIIIIAAAghkmACBjOQ2aKyBjC1b3pX6+sOwv1M/t5KN1jMvK1f+d257N3yz/zV3t20TGgLYf7+7bmfGVNAf723IYLeUOvZYb0hm/w8ykTrh7UfKVzXsEfwR0a3Hzi6zebb99TniiJKy6D//Dl1vz7Wh6S/VHxL9z6ui9RqpZyD6y+DW6y4jjQZinS02TLZbInWs20ghdoajzZ8c62Jls7N83XDewdd9psMA2xD2/jrYkMDBIa/9r3M/+vvvyyuQkUwrfzlyux5pXyh7+uleGCbavmDrs87FK69u6J0571//YB0Zpd6ldf13xTxChv9FiWyjSPuNjfph+407G9a/bXfdftC097F/mf/aXJ0q6Fj/XVwvoACBjAICJvDl7jhmZ8TbWbXaJ+Mt9n5cqXPcv/6fBeIPZdjz+w14WBpfc02ODgHrNBmrHax29ubd2knmllgCGfbejPQ+CwYy4t2+dWB8rsf3WTNe9T6P7DhWQ0diqKzTiriQRLzrdPUKXi5dukyHG98k32gQxAUzrXPZzmC24fPd52FBAxmROiCtvc7WaQMuq1/PG2nEymYd0Pa5N07Prnbb9pfZzmq36akG6lnw9rh1Ltq0EdZJHun5dvy3EblcICNeN9uf7Kxx+5yxzl8b3r+KdqiXKpX38dXOeP9Mp0QLTjFh9bE2tSH/bTh+W2yUBQsFPj9iuNTQMEVwmTlrtjd8v43UcZyGaGyx/cym3wkGXewx27ZNd2IBAXNxHcixtkM8Tjbagzk/MXhwxOmyrJ42pVqwMy5aICOebbswiHV6dtEzrYOLfc8sV/6cAgcyrL0sdNKiWVMdHaNdcDNeW1apXiNi6Mv/5LkaHLJpgoId3BaONo9gJ7Q/kGHteP4FF3pTl9m0Enb7aQ0vParu1oFux8L8BDLciAk2coGNbhdpiXf/Sfb72L1fbISao486Uov871Q+Vn4bxcbCZjZKRqTjgj3HRpLpraM82NQkFmiyqa5slJMB/fp577Xt27drYGqYF36wKWX8QRjnkd9AxsujR3lTN1g53OLeRzbVUL1LL3V3R7y073xr166VbZ9+In//tTOUbZ3lNvXJhrfWRq2z249tiq3uGvIKLjaFiHnZ9Cm22HvRRttZr+uMFPLtoSNEzZv/ujddor3OudjIfo0bNwqt3sJENiJTXw312xSMbrFRbOo1uNwbCaPBZZd5d7tAhpvSxz3XXU6ZOtUbMWiujmp1/HHHeWWM9/O9MAIZbh9N1jHdefgvk33stNDQIxrascDF3v+M8ujf/sMa4rSRCV0gw+1vxxxztDdazS6B96kFSDZv2SJrV6+KuH/5112U1wlkFKU+20Yg/wIEMvJvxysRQAABBBBAAAEEMlCAQEZyG7WwAhmROspP0OHB7cf33Bb70dCGNXWLTT3xzob1YYGFSOu2DrhIZ4+69dilnWVq9XeLdQLYuv0/ykbq/LaOEZs7OrfFQhD2Q55/sR9W7Wxit0Rat83nHjwL1D0/2qWdSfm+jsqxRX+ssks769W/7Ph1h0zReeP9SxPtlHiw5wNhdfU/bj/W9e0/wH9XnlOWRKpPoqzCCpLLjUj7Qms9c87fgRrt5XbGn51x7V/u1TOQW+m+5F/iGSHDvS6RbRTJ2UInUyZNjNqeVo47WrcR6+TxL9aZ6Yba9t/P9fwLEMjIv12iX+mOY5HOJLaAhYXyqlapEpqayIZWHzl6tLgzcCOVxwJ5zZs1Cz0USyDDPzR56IV6JRjIiHf77mz76drxVKZMabHOgOYtdw6l76bIiHed/vLZdRshw6YAsSlK7DP7eP3fdWku1w7K8meX90ZvcJ+bBQ1kBDviXHmsrS7Rqbx6/fO5dZlOx3JEySO8Dmu3bfdcu7y2WXPve8Kol3aGJy1Qevihh8nwZyNP02RnX3/55ZehQEZ+3GwqiSk6BcIbb74p72zapFPf7PDCMTYt2zFHH+0vXtj1BldcKYdqJ3m0svmf/Nq8ed6x3I73dtwPLhacaamfWaM0NOpCsbafVVO/Af375fiMsFFfNm/eItZpaY6uozTWdojHyY1CEa0DNVgXdztaICOebbvvuh11JIRIU9NZ6KfsmWdJQ50qriAjZLjt3NOlc47vDlYfO+6cdsaZYt9L2rZp46qY47KLTj0zacoUL4jjpqpzT7JRC84oW1YmT5wQas9gIMM6wKdOe0VWLl8me+p3Wxt95Pc/ftfRQXa+Jj+BjGeGDpOBjzwibyxcoO+9kq44YZfx7j/Jfh+794sdt0uUOCCsrO7GwTp9Uc8HeribOS5XrV7tHU8stHHWmWdKeQ2Hde/WzZtyx8LmD6vJKnVesWKlTjHUygsA26h4tjiP/AYyLDQbnNLRhRMe0REkLqtfP0d53R1PPT1EBuv0EDY90+mnnSZ76N9Ptrz7/nvy9dff5BrI+Pnnn72/kaK9X9w23KW9FyfoqIZrV60M7ZPuMbt8TMNA/8/efcA7UaV9HH/WBlZULGAvSLNgpSlYAVHEsopKsXeKIqggCIKi0u0VUUGqBRtSLKs04Sr2VbCgYkVdy9pQ39X3eQZOmMxNcjPJTW4y+c3no6kzc873TCbcnP+cc+fd93j7tL+1krm4QIabcsttw9XZpiYJBjL84TP3fru1EUIscObOhWHOF247+QhkuGM0V+d0Vxf/bRgLd05LdiwkOndep1MmPThxotfeicLwFhBzgQ0bUcrto27d3TQ8s7O/qHH3B+vn1E03FvdCgTwgkFEgDUExEAgpQCAjJBhvRwABBBBAAAEEEIi2AIGM3Lav+9HNflDxL2+/+UbcVSjZjpBhQ+Q+8dRT/l1kfN+u8HNXi9pGEnXC29Dm/k6zRDuzKwhtaHO3WGfEe+++E/dj4uQpU+Qqnb8+6OPWCXN70+hRcVezJepYP61L54RXoyXaz896hVqfK6/UK/yeCV2+XAQycmmVqP6Jnkt0LNiP1u4H3ETruOdc56a/rc/SqV6u7NvHvcW7DRPIyEUbJTpujmzT2rvqOFHHpCt8n75XesNsu8d2O2H8eO0wTHylq/993E9fgEBG+la5fmeqQIbtu+Uhh8puderEOsLdFeA23UfNmjXTKl5lBjLC7t+u6m+mV2Sfcfpp3tX4A3SKglmzZsu8OS/GRhkIu81gpV2nlk1z1eGkE+NettE46tetV6kjZCTquLSdBgMZ/QcMkEWLymJBgriC6QObSuB4DWG4Kc76aQfqSzp9l5t2IPj+w3TKkmrVqsUCGWHcLLRiHTF2LNmV87b8oVOWzV+wQKe5uURatmgRC/0E92uPrd1m6tRji15aEPfvD3vtu+++k7vvuUeO1bo0qF9fO1K/1iDPwToCSuLO2EmTJsvV2laLyxbJRhttZJsoF/zxnlz9v2SBjHTbIYyTTbNj7TKgfz/p0rmzvxjefZum7tdffpXTTusS91qyQEaYfdsGj2jdxgvF2pR6we9KC9McrNNXVMaUJa3aHKmjozSJhYf8lfngww+96UTuuetOcaEp/+t230bzsFE0NtXp/A48sLkGoFwEatU73/r32/LGG2/KXO1wdqOuBQMZz+tobzZiywP3jZWG2hnfVM8TF+q0Ghfb1IO6ZBLIsBF5bCSYN15dHBeKXlWqVf9P1tHu3pPvz7H7vNhoZzY9RiaLBWr32W9/6X9lXw2+1ZeOnbt4I5LZqEduZDibZucVtbGpEG0quGo6apktqTyuGjjQ+9yXLXyp3PHoRn9IFOZz4YRk5wDbr/1t17hZc2mnI2gM1SDWWvr3jVt6X3a5zNSRQVKNkGHvbaMjVdg5LVFI3I4DO/+eqlP8WKDFfRbnz5lTbtol29bFOlqM/b3lRihK5pJJICPZZ8mmIrzuhqHeudBGNnFlDPP9no9AhjtGk7Vntud08w8uYS3Cnjtn6PdZj0su8UZe2nWXXYK7984/T06fHhshw95g583mzZulFYgrt8ECeYJARoE0BMVAIKQAgYyQYLwdAQQQQAABBBBAINoCBDJy2742TOjuelWgTQ/iX4JTGdgP6ZMmT9G3xAc3bJ2pDz/izTPsXz84ZYkNF24dyZWxzNTh2evoj4RuSdQJb0Nitz2yjXtLwtt0Ahn3jBnjDcObcAMhnwxO+ZGoYz3dQMY777yrHT0XyyfLl4csxaq35yKQkUurdCuZ6FgYf//90qxZ0wo34a4s9gcyOpx4ogy59pq4H8vTDWTkqo0SHTddOneSgdrhmGohkJFKp/JeI5BReZbZbilsIMN1yl50wfnSUzsT/Mv8+Qvk5ltvkeFDh8oOvml+KjOQkcn+bUSK1954XWY9/bTXUW9TLPnPBZls01/vsffd53VqBf9NYPO/2zzwFjYYU4lTlqQbBHjs8cflsiv6iE3JEBzRxL125+23yeGHHeZV55FHH9UAYz+59eabpU3rVv4qirtC2ab1cFOWhHGz0ETzFi11mopO5aYCs5GJbLj1+RqSCYYAXCHcMWTT5xyrU0v5F/edZqOgNGhQ33vp8FatvdHFrBPYf/Wxjb5gw/pXr15NHtNwg9tfcCQW//azDWSEcbL9Wrii+vrVZaKGAV1gxJ636UoO1VCMTcNy2y03x8ru1qlbt265juGw+75cj5dZOkqUTfETnN7Lrhi/TztwO3U8Na0OwVSd6X379ZcZM2d6nZG1tl4zTZ3VxV6zY9ECM9ZJnGixKSXseyRZcGWhBou6aFh0kIaSOmp5bQkGMixEcICGQjrpyBh77bWn9NRQ9NTJk2Sfvff23h82kDFZ//3fXwME5559dsIpX7yN6v+SdbS714OBDPdZzdXn2PZrYataOqLH+Afuj/u8WGf7BRd1le7duiYNx7hyt213jOyrdtvqtCcTNPQ0T0cJsc+X/XvRpik575xzdEqFJRrQ+EAee3TNZy+VR6pjKNtAhpvWJBiks5Bw67ZtdUSCnyoMZFj5npr+tEzVkdRsGkj/8s+TOoiNBDjnhX95I7B8+eVX0vLQQ+UMnc4lOB2i/Z1ylE4hZSF5N3JhMpdMAhk2+sk4/Xe+O99ZOS0Qd5S2WXWdLuPJx6Z5r4U9X9h28hHIsP3k8pxu2w8uYS3CnjvNzYKDrVu1kptvHB0X4LK/jf7ZoYP3u4ObssTKZ9/Pz+tIXNOffCLuogsLqF3YtZs3ml+i0Y2CdavKxwQyqlKffSOQuQCBjMztWBMBBBBAAAEEEEAgggIEMnLfqHaVsP0441+sgyXZ1Xv+99l9+yEpGAwIBjLsx5xHtUPBv9SuXUtH4ajufyqt+zast12Z5hbXYeEe2611utioAamWdAIZrhPH30m/6aabymb6X9jFfvT1j9SQqGM9nUDGjz/+qD98HiY2b3WmSy4CGbm0SreeiY4F6+Dzz0WdbFt2da51lvjb2n5kd1dYu/XSCWTkso0yPW4IZLgWzO0tgYzc+obZethAhm3bhuW3obQ7d+oox+u0GOvplc5z9KrfMfeOlS10uiobVtymAHCLBTXO0E7KkzucpOGEltrJvKE0b9bMezlVp5q9IVFHedj9v6hls8CjhUhsyiXrpN+7USNXPO827Db9K7/77hJpf/zxXvDiwgsu0OHzt9Or5BeLzQFfvXp1+Y+GEQbrCA+HHnKw9zjbKUvSDWRYiNTCDgsXLZIe3brJQQcdKH9rwPSFF+fIrbff7oUuRgwbFuuAtam8zjnvXHnjzbeke1ftgNXy2jJPpxeZPGWqFxL4848/Y4EMey2Mm111Pn3GDOmpQcn2x7Tz9msjZFgn0xGHH5ZyBCOri00LY6ORWDu21I6s/+r3/PQZT+tV3dPlaO1A9U83smDBS3LehReKTYtwob5/++23l08++UTs38vLli2Te8fco1PJ7GNV8JZEx5l7LdtAhm0njJOFCc7V46ieBixsZBfr6J0/f76GFKbJF9rB++D4cd70Cq58dmvTbdi/Ma/qd6X3ebR6b7066BBm37aNUzt2knXWXUcu69VLp59oJD/8+IM8rKFi6wh+R0dIs3+jpTNliU1xdoeeK2xas2233Va20ylpbAQTW6xzurN2TP/5f3+KDfO/h04vYoGTqQ89rNOIPK6Bqf4pR3C7Xq/qv1eDUC88/5xsp9sOLha8sdEP9tbpM6ytrSM6GMiwdc4462xvGh6b2sbOEwsXzI99HoKBDDumlr631CvjZ59/rlOqXKT/FvpL11+hn5k35a233/amyLGp99bXTu5kS7KOdvf+YCAjH59jO+bOOf98OWC//eQC/bxYOKNMR7QZ/+AE77h6Qjvs/X9TuLL6b+1vGBvdZOONN/JGTxo5fHgsANBNRx35Xc8v9neUBV6uGTwo9loqj1THUKrvjnRGyHCjrNTQaSEtBGGfmWUffSQjdAQPm0rpvfff90b8aKPTQJlHosXavsvpp8vP+rdGDz1n7rvfvvKuTsX0xJNPedMyBcMed9x5l4zUkUjs74sT9LuzxqY15E09doaPGCn2d9O4+++TLXRqJluSuWQSyLDvu0022VjOO/dcnU5yW63nMrnp5ls0ILNUbPQM931s+w1zvrD32yhUBzRp6k0RdLZOR2MDjRysU0DZvwuS1cHWC9u2uTynW3kSLWEsMjl3TtXpkfpfNUD23XdfOUH/DbH55pvJW2+9rRd3TJb9dfpOm0LRH8iw461Tly7eZ6d3r0ulYYOG3jlpmv52MPuZZ+XGUSOl3dFHJ6pKwTxHIKNgmoKCIBBKgEBGKC7ejAACCCCAAAIIIBB1AQIZuW/hk04+RV57/fW4HV2gHRe99QfrihYbqnsvnUPefvzzL8FAxij9ke52/bHOvwzXYXStwyvbJVEnfGUFMuZpR4HNLe/vpD/xhBPkeu3k91+NlUkdMu1Ytx/RbB5v/2I/cp53ztk6vPWBq+aq9w1P/Kl2QrQ79ri4OuQikJFLK39dU91PdCycrz/SXta74mPZOhjvumdM3OatA+h07VjxL+kEMnLZRpkeNwQy/K2Yu/sEMnJnG3bLmQQybB/36dW24ydMlOV67rRlnXXW8UZhGHLNYKmh0wj4F+sc7dq9h9fhafdteO6ZT0/3vh9SdarZNpJ1lIfdv12Jah2+1qn47OxZCb+bwmzTXz+773UiDxocCwFuqHO+D9K53LfZZhux6ci+WrEi1nmcr0CGlcs6c68ePFie0c6a777/3p7yrqy1qQmu7NMn1vnsvaD/s861K/T5F+fMld90BIG11lpLO30aiHWu3nrbbV4Hnhshw62TrptdkT3k+uvl4UceFft3kS02tdpBzZtrh2gfrzPKbTPRrR07g3SqEZtyxtXFjrVT9Epi65wK/nvDRnQaquV+d8kS799fdoxaXa7S6UDcKAhuP8mOM3u9MgIZtp10ney9NgLEddffECu7tYOFGSx0YkGN4GIdd/Z+CwrYEpz+Lcy+rVP9ij59xUYQsH+32mgiLXQaFRudpJWO3tHqiMPTCmRY57aFcN586y2vTKeecrJcM2iQd9/+Z6GMvv36yeJXX/WONXtul513FuvUtfBWqsVCzuvrZ8xd2Z/ovfa5mzFrlrys013YSCOJAhk2ZcO1OvKHLe3btZOROs2NO46CgQybNmeijvzgX+y9NiXKTjvupNPttZWTdMQw/4gs/ve6+6k6qe09wUCGPZePz7EF54aPHBk75my/DRs2kBFDh0ndurvZw5TLA+PGyTVDrvPeM0TPOSef3CH2/vHjH5RB117rPb5Wj4FT9FhwSyqPVMdQqu+OdAIZtn87xnvolEnLP/3UK4615+na4X3RRRfKGWeepQGkd2XYDdd7neWuvMFbm07jCp3uzqYoWblypffytnret6Dy0TodSnCxY26cBl3cd6d9VzRu3FhuuO46DbJsHnt7MpdMAhk2auJY/c62wJP7W82+hy2IkujCgjDnCyuwhTvu1/a3aWBscdNmJquDvSeTts3VOd3Kk2wJY5HJudOmRrHAo/3GYCNy2ndUnyuukHf02LxWvy/9gQwro4Wa+mqI0c6b7niz71Eb9auiiyyS1TGfzxPIyKc2+0Kg8gQIZFSeJVtCAAEEEEAAAQQQiIAAgYzcN2KisIT9SD1Th0BPdHWev0QTJ06SAb4fod1rwUDGo9OmeT/quR/L7H02v7v/qk+3rv/WhhLfU68uTHYFl703USd8ZQUyrAPARtLwl3sHvRp19swZXiedv6z+++5HersqLdmSace6zcv79IyZcZvt17ePnKlDWCdarDPDOgz9dchFICOXVonqlei5RMeCtZd1stnV3MkW60Cz4Y2DI73YMNqtjjgibrV0Ahm5bKNMjxsCGXHNmLMHBDJyRpv3Da/QoME333yrV/HXkWrVqkVi/5nWyTqvP9TObLvdWTuWU51P8w6lO7SOPAslVHSlu5XNOoDt6umddtpJNtbO7HSWdN0s9LH8k+Wy1tprJQwXVLQv+562uljH90477hjrQE+2nl29bqNi2HQrG2jnZ1Uv6TpZOX/S6RM+0mCDBRX805dkWocw+7apG6xD1QIg6/pGvMl038nWs6CNHWu1dRSCmjVrJnsbz68WyPXn2I45+7zYOWyTJFPGRK0xbGoRm3bSznc2YkYmizuOt95qq7jpJJJty6assO/OevXqVhjiSbaNip4PhlbsM21BCPusWSd+RUuY80VF26rM16vinB7GIpNzpwUWLXhn39G2uLBYMJDhHO14s7DhlnqxQaq//937C+WWQEahtATlQCCcAIGMcF68GwEEEEAAAQQQQCDiAgQyct/A9gNWm7ZHxXXY214bH3CA3Dh6lGyV5Ict67y2OeS/X31lqr+kwUCGXVnU7MCDZOXqK0ftvXa11r06/YjNQZ9osSuybLjctddeR+fBPtUbanjzzTYr99ZEnfCVFciwnSUaQcSGFb+0Z89yZbEnzKOdzuO+Qq8ss878npdcLHUD8y/b+zLtWLehsBcuKrNNxJZZekX2rtohk2ixKydtKHT/YlfdXuMbVtn/mt13V5b7nx80cIDOr97R/1S5+7myKrejJE8kOhbsrRXNez5Cr5y88+574rZqV/a9NH9euU6udAIZuWyjTI8bAhlxzZuzBwQyckbLhhFAAAEEEEAAAQkGMiApHoGKAhnFU5P4khLIiPfgEQLFIkAgo1hainIigAACCCCAAAII5EWAQEZemL35roOd/LbnzTQA0UtHZNh7n729odjt6tiPP/5E5mlH9U06X7kN+51oCQYy7D02xPITOnypf7FO7246N/GZZ5weu3LGXrfhhS/XYb4t1OCWjTbcUO64/TZp1rSpe8q7TdQJX5mBjMlTpshVA6+OC6xYmKSDDt/cS4cS94dELNzSr39/Hd53cayMdlVQLw1vnK/TwPiXTDvWL7v8Cpmm85D7l7PPPNMbntf/nI36MPrGm2TM2LH+p737Nm/7A/eN9crurljyv8mGsR2iQ4T7FwuX2PDG/vnDg+vmyspfjlT3Ex0L7v1Htmkj/XUKklqr55635+0qvmuuHSJPz4wfccReszmwh2p9ra39SzqBjFy2UabHDYEMfyvm7j6BjNzZsmUEEEAAAQQQQIBARmEfA/Z7gU3fKPJ3uYJO0ellftXRpBbqbwnBvyPLvbmIniCQUUSNRVER8AkQyPBhcBcBBBBAAAEEEEAAAQIZ+TkGbI7h9scdLzYUabLFfjSxH1j8U18ke2+iQIbNDXvMscfJjz/+WG41myJlF53zd8MNNpRPP/tMvvrqq3LvqV+/njzy0ENSbb314l5L1AlfmYEMGzr1lI6d5PU33ojbrz2wYcVtSoyttZPfymxlNyP/YqGTxx+b5g0/7n8+0471yZOnSP+BA/2b8u7Xrl1LWupc6Ob4iQ7F/eLcufL56jnXy73Z98TUyZNk33328T0jkmiak7g3rH4w7ZGHvSll3Gu5snLbr+g20bEQXMecdth+B6+tvtChnBMtG6y/vtdmO+sQz8ElnUBGLtso0+OGQEawJXPzmEBGblzZKgIIIIAAAgggYALTn54hI0ePlgnjx3nTlKBSWAL292Ci0TetlDVq1JAzTj9Njm3fvrAKnWVpCGRkCcjqCFSRAIGMKoJntwgggAACCCCAAAKFKUAgI3/tYj9u9ezVS/7666+0d7rH7rvLNtts43Xg+1dKFMiw15959lnp2r1HqH3YehvrXM9TJ00UG9khuCTqhK/MQIbt7zMNNhx7/AkJwyTB8vgf2+gYNqrEccce63/au59px/rKlb9LKx3t4csEoZVyO9EntqldW9q0bi33PfBAopclUSDD5hM+7IhW8rvO+5tqCQYy7L25sEpVBv9riY4FC8xYGMh+HEx3uX7ItXKSjoCSaEknkJHLNsr0uCGQkag1K/85AhmVb8oWEUAAAQQQQAABBBAoVAECGYXaMpQLgdQCBDJS+/AqAggggAACCCCAQIkJEMjIb4O/9NJCL5Tx7X/+U+GOq1WrJo9MnepNX3LDsOFx708WyLA3zZ03T3pddrl89913ceske7DP3nvL6FEjZbttt034lkSd8JUdyLAd2ygi3XtcLP9+552E5Qg+udVWW8noESOkSZPGwZe8x5l2rNvKFpi4qFt3eePNNxNu2z1po5rcctONWoYmcnir1vL999+7l2K3iQIZ9uJdd98tw0eOir0v0Z1EgQx7X2VbJdp3oueSHQs2tY5NgVPR6C7mNaBfP+nY8dREm/eeSyeQYW/MVRtletwQyEjapJX6AoGMSuVkYwgggAACCCCAAAIIFLQAgYyCbh4Kh0BSAQIZSWl4AQEEEEAAAQQQQKAUBQhk5L/Vv/nmG7lfR1N45NFpkiyYYSNjjBg2TOrU2VXG3HuvhAlkWI2ss/resffJtMcek+9/+CFhJW1UjC6dOkqP7t1TzjGbrBP+yDatE27XPXno4Ud401a4x//4xz/kvXffEbtNtvyhI0aMGz9epujUKR999HHCt6277rrS6ojDZeCAAVJz880TvseezLRj3W3w999/l6sHD5Ynn5ouK1eudE/HbrfYYgu5adSoWCDkvffek4cefkSef+FfOqXJ8tj7kgUy7A0zZ82WsfeNlffe/yDhdDbJAhm2bmVa2fbSWVIdCxYEumHoMFmqDsHF2rxlixbSvVtX2btRo+DLcY/TDWTYSrloo0yPGwIZcc2YswcEMnJGy4YRQAABBBBAAAEEECg4AQIZBdckFAiBtAQIZKTFxJsQQAABBBBAAAEESkWAQEbVtbRN8bD41Vfliy++kM8//0JHF/jLm/e10V6NZI89dpe1114768L9+eef8uqrr8nnX3wuX+q0ErbUrFlTdthhB2l8wAEpgxhZ7zzLDbz19tvy8cefyFdffSm//PKrbL75ZlKrVi1p1rSZTrGyUZZbT3/1//3vf/LhsmXyjo7cYeXZRIMsu+yyizRr1lRsFJNCWPJllSqQYQ42Hc+7S5Z4gZTlyz/xwjfb6sgrdkxvv/12OaMqhjbKWeVLbMMEMkqswakuAggggAACCCCAQEkLEMgo6ean8kUsQCCjiBuPoiOAAAIIIIAAAghUvgCBjMo3ZYsIRFWgokBGVOtNvQpHgEBG4bQFJUEAAQQQQAABBBBAINcCBDJyLcz2EciNAIGM3LiyVQQQQAABBBBAAIEiFSCQUaQNR7ERqAIBAhlVgM4u4wQIZMRx8AABBBBAAAEEEEAAgUgLEMiIdPNSuQgLEMiIcONSNQQQQAABBBBAAIHwAgQywpuxBgKlKkAgo1RbvnDqTSCjcNqCkiCAAAIIIIAAAgggkGsBAhm5Fmb7CORGgEBGblzZKgIIIIAAAggggECRChDIKNKGo9gIVIEAgYwqQGeXcQIEMuI4eIAAAggggAACCCCAQKQFCGREunmpXIQFCGREuHGpGgIIIIAAAggggEB4AQIZ4c1YA4FSFSCQUaotXzj1JpBROG1BSRBAAAEEEEAAAQQQyLUAgYxcC7N9BHIjQCAjN65sFQEEEEAAAQQQQKBIBQhkFGnDUWwEqkCAQEYVoLPLOIFSCGRYhT9YuiSu3jxAAAEEEEAAAQQQQKAUBYK/WfXo1k16dO9WihTUGYGiEiCQUVTNRWERQAABBBBAAAEEci0Q/OO2SePGMmH8uFzvlu0jgEARCkyZOlVmzpqtJf87VvquF3WV/ffbN/aYOwjkUiCKgQzzqlOvfhwbgYw4Dh4ggAACCCCAAAIIlKhAVP/9X6LNSbVLSIBARgk1NlVFAAEEEEAAAQQQqFiAQEbFRrwDAQQQQKAwBKL6g2xU61UYRw2lQAABBBBAAAEEEChWAf6dXKwtR7lLXYBARqkfAdQfAQQQQAABBBBAIE6AQEYcBw8QQAABBApYIKo/yAa/ixmKuYAPQoqGAAIIIIAAAgggkBeBRWVlYv/+9y+MJOfX4D4ChStAIKNw24aSIYAAAggggAACCFSBQLATiClLqqAR2CUCCCCAQFoCpRLIMAx+bE7rkOBNCCCAAAIIIIAAAhEVCP7bn9+rItrQVCuSAgQyItmsVAoBBBBAAAEEEEAgUwECGZnKsR4CCCCAQL4Fgj/KThg/TuyH2SgsderVj6sGo2TEcfAAAQQQQAABBBBAoIQEEo2OEaV/+5dQU1LVEhUgkFGiDU+1EUAAAQQQQAABBBILEMhI7MKzCCCAAAKFJxDlQEbw+9j0+dG58I5BSoQAAggggAACCCCQe4Hgv/sZHSP35uwBgcoUIJBRmZpsCwEEEEAAAQQQQKDoBYIdQPyRW/RNSgUQQACByAoEf5iNWmAhOEqGNWTU6hjZg5OKIYAAAggggAACCFSKQPB3Ktso/yauFFo2gkDeBAhk5I2aHSGAAAIIIIAAAggUg0DwD10CGcXQapQRAQQQKE2BqAcygt/JrpX5AdpJcIsAAggggAACCCAQZYFE/x7md6ootzh1i6oAgYyotiz1QgABBBBAAAEEEMhIIPjHLn/oZsTISggggAACeRCIeiDDCIPfy46VUIaT4BYBBBBAAAEEEEAgigL8OziKrUqdSlWAQEaptjz1RgABBBBAAAEEEEgoEPyDl0BGQiaeRAABBBAoAIFSCGQYc/C72dETynAS3CKAAAIIIIAAAghESYB//0apNakLAiIEMjgKEEAAAQQQQAABBBDwCQT/6CWQ4cPhLgIIIIBAQQmUSiDD0IPfz64h7Hu6R/duYrcsCCCAAAIIIIAAAggUs0Cyf/NanQgjF3PLUvZSFyCQUepHAPVHAAEEEEAAAQQQiBMI/vFLICOOhwcIIIAAAgUkUEqBDGMPfkf7m8IFMiycwYIAAggggAACCCCAQDEILFpU5hVzUVmZ2H/JFsIYyWR4HoHiECCQURztRCkRQAABBBBAAAEE8iQQ7OwhkJEneHaDAAIIIBBaoNQCGQYU/J4OjcYKCCCAAAIIIIAAAggUkQBhjCJqLIqKQBIBAhlJYHgaAQQQQAABBBBAoDQFgh09BDJK8zig1ggggEAxCJRiIMPaxa4etO/rVFcRFkP7UUYEEEAAAQQQQAABBJIJXKwjv3XvxuhvyXx4HoFiEiCQUUytRVkRQAABBBBAAAEEci5AICPnxOwAAQQQQKCSBEo1kOH4CGY4CW4RQAABBBBAAAEEoiJAECMqLUk9EFgjQCBjjQX3EEAAAQQQQAABBBAoNxQ6I2RwUCCAAAIIFKpAqQcy/O1i4Ywy/W/h6nm4/a9xHwEEEEAAAQQQQACBQhVo2qSxV7TGjRuL/QbFggAC0RMgkBG9NqVGCCCAAAIIIIAAAlkIMEJGFnisigACCCCQVwECGXnlZmcIIIAAAggggAACCCCAAAIIhBYgkBGajBUQQAABBBBAAAEEoixAICPKrUvdEEAAgWgJEMiIVntSGwQQQAABBBBAAAEEEEAAgegJEMiIXptSIwQQQAABBBBAAIEsBAhkZIHHqggggAACeRUgkJFXbnaGAAIIIIAAAggggAACCCCAQGgBAhmhyVgBAQQQQAABBBBAIMoCBDKi3LrUDQEEEIiWAIGMaLUntUEAAQQQQAABBBBAAAEEEIieAIGM6LUpNUIAAQQQQAABBBDIQoBARhZ4rIoAAgggkFcBAhl55WZnCCCAAAIIIIAAAggggAACCIQWIJARmowVEEAAAQQQQAABBKIsQCAjyq1L3RBAAIFoCRDIiFZ7UhsEEEAAAQQQQAABBBBAAIHoCRDIiF6bUiMEEEAAAQQQQACBLAQIZGSBx6oIIIAAAnkVIJCRV252hgACCCCAAAIIIIAAAggggEBoAQIZoclYAQEEEEAAAQQQQCDKAgQyoty61A0BBBCIlgCBjGi1J7VBAAEEEEAAAQQQQAABBBCIngCBjOi1KTVCAAEEEEAAAQQQyEKAQEYWeKyKAAIIIJBXAQIZeeVmZwgggAACCCCAAAIIIIAAAgiEFiCQEZqMFRBAAAEEEEAAAQSiLEAgI8qtS90QQACBaAkQyIhWe1IbBBBAAAEEEEAAAQQQQACB6AkQyIhem1IjBBBAAAEEEEAAgSwECGRkgceqCCCAAAJ5FSCQkVdudoYAAggggAACCCCAAAIIIIBAaAECGaHJWAEBBBBAAAEEEEAgygIEMqLcutQNAQQQiJYAgYxotSe1QQABBBBAAAEEEEAAAQQQiJ4AgYzotSk1QgABBBBAAAEEEMhCgEBGFnisigACCCCQVwECGXnlZmcIIIAAAggggAACCCCAAAIIhBYgkBGajBUQQAABBBBAAAEEoixAICPKrUvdEEAAgWgJEMiIVntSGwQQQAABBBBAAAEEEEAAgegJEMiIXptSIwQQQAABBBBAAIEsBAhkZIHHqggggAACeRUgkJFXbnaGAAIIIIAAAggggAACCCCAQGgBAhmhyVgBAQQQQAABBBBAIMoCBDKi3LrUDQEEEIiWAIGMaLUntUEAAQQQQAABBBBAAAEEEIieAIGM6LUpNUIAAQQQQAABBBDIQoBARhZ4rIoAAgggkFcBAhl55WZnCCCAAAIIIIAAAggggAACCIQWIJARmowVEEAAAQQQQAABBKIsQCAjyq1L3RBAAIFoCRDIiFZ7UhsEEEAAAQQQQAABBBBAAIHoCRDIiF6bUiMEEEAAAQQQQACBLAQIZGSBx6oIIIAAAnkVIJCRV252hgACCCCAAAIIIIAAAggggEBoAQIZoclYAQEEEEAAAQQQQCDKAgQyoty61A0BBBCIlgCBjGi1J7VBAAEEEEAAAQQQQAABBBCIngCBjOi1KTVCAAEEEEAAAQQQyEKAQEYWeKyKAAIIIJBXAQIZq7gXlZXJokVl3gPvvj5mQQABBBBAAAEEEECg0AWaNG7sFdFumzTR/1Y/LvRyUz4EEAgnQCAjnBfvRgABBBBAAAEEEIi4AIGMiDcw1UMAAQQiJFDqgQz7zrbl5ltX3UaoaakKAggggAACCCCAQIkK9OjWTXp071aitafaCERTgEBGNNuVWiGAAAIIIIAAAghkKEAgI0M4VkMAAQQQyLtAqQYyCGLk/VBjhwgggAACCCCAAAJ5FiCYkWdwdodADgUIZOQQl00jgAACCCCAAAIIFJ8AgYziazNKjAACCJSqQCkGMoJ1LtW2p94IIIAAAggggAACpSEwYfw4pjIpjaamlhEWIJAR4calaggggAACCCCAAALhBQhkhDdjDQQQQACBqhEIhhOi/mNtsL5+9YtXD+vc2ObfZu5tPw33EUAAAQQQQAABBApUYFFZmVcy+y3K3U9U1Kj/Oz9RnXkOgSgJEMiIUmtSFwQQQAABBBBAAIGsBQhkZE3IBhBAAAEE8iQQDChE+YfaYF0dsQtidNe5tlkQQAABBBBAAAEEEChmgeBvUv66RPnf+v56ch+BKAoQyIhiq1InBBBAAAEEEEAAgYwFgn/82lW29kcvCwIIIIAAAoUmEAwpRPVH2mA9rR3s+7mHjorBaBiFdlRSHgQQQAABBBBAAIFsBYK/TbntRfXf+65+3CIQVQECGVFtWeqFAAIIIIAAAgggkJFA8I9eAhkZMbISAggggEAeBIJBhSj+QBuso7Hy3ZyHg4tdIIAAAggggAACCFSpQPD3KVeYKP6b39WNWwSiKkAgI6otS70QQAABBBBAAAEEMhII/sFLp09GjKyEAAIIIJAHgWBYIWo/zga/k42U7+U8HFjsAgEEEEAAAQQQQKAgBBL9e9gK9sHSJQVRPgqBAALpCRDISM+JdyGAAAIIIIAAAgiUiEDwj106fkqk4akmAgggUIQCUQ9k1KlXP65V+E6O4+ABAggggAACCCCAQAkIBH+nsir36NbNm76vBKpPFRGIhACBjEg0I5VAAAEEEEAAAQQQqCyB4B+6dP5UlizbQQABBBCobIEoBzIWlZWJ1c+/cCWgX4P7CCCAAAIIIIAAAqUiEPytyurNv41LpfWpZxQECGREoRWpAwIIIIAAAggggEClCQT/yCWQUWm0bAgBBBBAoJIFohzICNaN7+NKPnjYHAIIIIAAAggggEBRCQRHj2OUjKJqPgpb4gIEMkr8AKD6CCCAAAIIIIAAAvECBDLiPXiEAAIIIFC4AsHQwoTx48SCC8W+JBodIyp1K/a2ofwIIIAAAggggAACVSMQ/L2KQEbVtAN7RSATAQIZmaixDgIIIIAAAggggEBkBYJ/4HJFbmSbmoohgAACRS8Q1UBGsF58Fxf9oUoFEEAAAQQQQAABBLIUCP5eZZtj2pIsUVkdgTwJEMjIEzS7QQABBBBAAAEEECgOgeAfuHQCFUe7UUoEEECgFAWCwYWojCIR1XqV4jFKnRFAAAEEEEAAAQQqTyA4bUlU/v1feUJsCYHCFCCQUZjtQqkQQAABBBBAAAEEqkiAQEYVwbNbBBBAAIHQAlENLgR/aObKv9CHBisggAACCCCAAAIIRFAg+JsV05ZEsJGpUiQFCGREslmpFAIIIIAAAggggECmAsE/bhkhI1NJ1kMAAQQQyLVAFAMZi8rKxOrlFr6HnQS3CCCAAAIIIIAAAqUuEPzNikBGqR8R1L9YBAhkFEtLUU4EEEAAAQQQQACBvAgE/7ilIygv7OwEAQQQQCADAQIZGaCxCgIIIIAAAggggAACRSpAeLlIG45il7wAgYySPwQAQAABBBBAAAEEEPALEMjwa3AfAQQQQKCQBQhkFHLrUDYEEEAAAQQQQAABBCpXgEBG5XqyNQTyJUAgI1/S7AcBBBBAAAEEEECgKAQIZBRFM1FIBBBAAAEVIJDBYYAAAggggAACCCCAQOkIEMgonbamptESIJARrfakNggggAACCCCAAAJZChDIyBKQ1RFAAAEE8iZAICNv1OwIAQQQQAABBBBAAIEqFyCQUeVNQAEQyEiAQEZGbKyEAAIIIIAAAgggEFUBAhlRbVnqhQACCERPgEBG9NqUGiGAAAIIIIAAAgggkEyAQEYyGZ5HoLAFCGQUdvtQOgQQQAABBBBAAIE8CxDIyDM4u0MAAQQQyFiAQEbGdKyIAAIIIIAAAggggEDRCRDIKLomo8AIeAIEMjgQEEAAAQQQQAABBBDwCRDI8GFwFwEEEECgoAUIZBR081A4BBBAAAEEEEAAAQQqVYBARqVysjEE8iZAICNv1OwIAQQQQAABBBBAoBgECGQUQytRRgQQQAABEyCQwXGAAAIIIIAAAggggEDpCBDIKJ22pqbREiCQEa32pDYIIIAAAggggAACWQoQyMgSkNURQAABBPImQCAjb9TsCAEEEEAAAQQQQACBKhcgkFHlTUABEMhIgEBGRmyshAACCCCAAAIIIBBVAQIZUW1Z6oUAAghET4BARvTalBohgAACCCCAAAIIIJBMgEBGMhmeR6CwBQhkFHb7UDoEEEAAAQQQQACBPAsQyMgzOLtDAAEEEMhYgEBGxnSsiAACCCCAAAIIIIBA0QkQyCi6JqPACHgCBDI4EBBAAAEEEEAAAQQQ8AkQyPBhcBcBBBBAoKAFCGQUdPNQOAQQQAABBBBAAAEEKlWAQEalcrIxBPImQCAjb9TsCAEEEEAAAQQQQKAYBAhkFEMrUUYEEEAAARMgkMFxkEjglcWLZc6cueVe2nLLLWSPPfaQ3Rs2lPXWW6/c6/l6YsWKFbLRxhvLhhtskK9dFt1+vvnmG3lwwgQ56qijpF7dukVXfgqcvcCrr70mL7z4olxw3nmyAZ+V7EFzvIVSPq9lUve33n5bnnn2WTn7zLOkRo1Nctw6lbP5xx5/XJYt+yhuY//4xz9kxx13lN13b5jwXP2///1P3njzTXnrzbfkP99956179NHlz+vPPf+8vPHGm3HbXmuttaRWra297e+z995SvXr1uNfz8eC22++QBvXry2GHHZqP3bGPNAUIZKQJxdsQKDABAhkF1iAUBwEEEEAAAQQQQKBqBQhkVK0/e0cAAQQQSF+AQEb6VqX0znvHjpXrhw6T9bVhbbBIAABAAElEQVTzZu211/aq/vfff8svv/7q3W/QoL7cefvtsu0222TMMmfuXBk1+ka56cbRsuMOO6S9neWffiqtj2zr7fvZ2bPEOrNYygu8++4SaX/88XLT6NFyVNsjy7+BZ6pMINNjP2yB73/gAbn2uutl0YL5UrNmzZSrf//993Lm2efIueecLUdriIel8gVSGac6r+XreKn8Gqe3xUzrPmXqVOk/YKA8/+wzsv1226W3syp+17nnX+CFpPxhwv/TwMXKlSu9krVv106uv26IVKtWzXv8888/S/eLL5G58+bJBuuvL7vuuquIfuX1vvRSObB587ja3KDf2Q8/8oj8/Msv8n//93/eNv766y/5888/vfdtU7u29O3TR9oe2SZuvVw/2Gf/A6T9Me1k0MCBud4V2w8hQCAjBBZvRaCABAhkFFBjUBQEEEAAAQQQQACBqhcgkFH1bUAJEEAAAQTSEyCQkZ5Tqb3LBTJmPPWk7LbbbrHqf/TxxzJ79mwZqUGK+vXryeOPPppxIOLJp6bLpb17y1N6xXC9eumP4PDtt9/K0e2PlTraMfXguAcy3n+sUhG9QyCjcBs202M/bI3CBDJsRJXmLVrKgP79pEvnzmF3xfvTEEhlnOq8lq/jJY0q5OQtmda9WAMZb+poFws1JOXChBaaeP2NN2TylCny6LTH5MzTT5d+V/b1rK/SEMOkyVPkumuvlWPbHxMLaqRqiPMuuFBe09Fxyha+5O3DgkA2wsaIkaNk6XvvycQHx8sB+++fahOV+hqBjErlrLSNEcioNEo2hEBeBQhk5JWbnSGAAAIIIIAAAggUugCBjEJvIcqHAAIIIOAECGQ4CW79AskCGe49Z51zrthV2wv0v6222tI9Heo2m05Gu/p3nXXWCbW/UnszgYzCbfFsjv0wtSKQEUYr9+9NFciwvSc7r+XreMm9QPI9ZFL3qAQynMrKlb9rKKqF1Nx8c5k9c4YXpjjksMNlE52OJUz4MRjIcNv/73//K610dKkttthCg5CPxQIh7vVc3RLIyJVsdtslkJGdH2sjUFUCBDKqSp79IoAAAggggAACCBSkAIGMgmwWCoUAAgggkECAQEYCFJ6SigIZrqPXRrewkTLc8pMOr/7SSy9JWdnL8qtOb7K/XoXb4qADZcstV4U2vvvuO3niySdF/hZ5+51/y2OPPyHnnn22hjq2slHYpXXrVrKNToPynl7Fu0C3c3KHDvL662/IO+++IzvvvLMcduiqOeitI26b2ttIixYHuV17txXt34ZunzBxojRo0ECaNG4ct649sJDJxx99LF26dI51VlW0zXIb8T1h5dx+++2laZMm8va//y0LFy6Un3/+Rfbbd1858MDmCUMl/9Ph619ZvFheffU172rm+vXqyQEH7C/77rNPrEy+Xcgff/zhWS1YsEC++fY/sludXeXkk0+Wr1d8nXTKkiVLlsrCRQv1qum3ZNdddtbtH5DQwzpJ7crqefPmy+dffC7NmjaTg6w9tUMvncWu/H75lVdk8eJXvbrUq7ub7Lfffgn3ZdtbsWKFvKRGr7yy2JsqZ//995OmTZuW25//+Pjtt990nUXy5ptvyE477aTD+B8oO+ywfVzxXpwzR+zYO/644+TjTz7x2uGjjz6SPfbYQ1q2bCk1Ntkk7v32wOpu5V64aJF8sny5NNprT2muUwTsVqdOuffaE19//bXXDlbftf6xluy9995y8MEtZYvVU4Wke+y7jafbRvZ+uwLejl2zs33vuececuI//+kd6xVNWTJx4iTvGPrvTz/JzbfeKq1btfKunrfP416N9vKOO1emdNvHvT/RbUVO/nXCfBbcZ61hw4by/PPPy9KlS2WvvfaSg7V9N9poI7EwhB0H77//vn7+G0obPdesr1NAuMV/TFnHtXna57Dm5jWlWbOmeuw3Tfh5Tec4SdfYf14Le7xY+e28+5qOtFC7Vi2vDRs3PiCujlZX91k4sk0br472OTjkkEPEzjO2mNN8PZfY+dempGpxUAtppMeBm7rKe1OC/02aNFm218/dQQceGHt1oX4ulyxZ4j3u1KmjrLvuut79n/RYe0RHV2rWrJnUq7tqdKRM6m7ruClLqq23njw9Y4Z89tnnUkfPgVaO7dKcxuT333/3vpfefvvf8sOPP3rnxFNOOUW2Wv295SrkP0bSOe+49fy3NmVJcIQM/+sXdu0mL7/8srys52cbQaPFwYd4x97QG66PO/9/+tlnMn78g9Khw0neaFH+bSQLZNh7bFqTe++7T954dbFssMEG/tXK3Q/73ffa66/LggUveZ89+95r1+5oaVC/viQLZNh5y45HO8duoufgpo2beN+Ln+g52o6/zp06lfvMhTkvlqsQT8QJEMiI4+ABAkUjQCCjaJqKgiKAAAIIIIAAAgjkQ4BARj6U2QcCCCCAQGUIEMioDMXobaOiQEbn007Tju3lMveFf8U6iWzY+Y5dTpNly5Z5HUTW2fPmW29JTe2QnqBTi9TRjmzrDLXRNTSPIdah9aN2ftnVum60i9EjR2pH4n7iOtpOPeVkmagdfdZZc/xxx8pV/fp52AdqJ+uBzZqLv5Mqnf3byieceJJYMOOJx6bFym7P//3332JXI++6yy5y75h7vNfS3aatn2ixclqIZD3tiHz0scc9l/c/+EBDGT+LdYjeOGpkrO62vnVA977scnly+nSv4986FK1zapl2mp6iIYvBg67WDnfrKl+1WBjjgou6eh2rdbVjc6cdd5TlGh748ssvZeCAq6SXbuum0aPlqLZHulXEhWmqV68m+2s44k0NZVhn/OldushVOl2FW6yj+bQzzvQCGfvtu48Xmil7+RUveGBXa1c0zYzVpU/fK2WahnYskNNQO+be07pb2c464wzp2+eKOH/rzLNjQxtCgxK7y19//e2FWNbTjtbxD9wf6zC28rnjw4be79q9h2y26aaeow3Hv6Eed3ffdZeGPg5wVZFevS/zttXzkos9EwtVfPuf/8hXX33ltfc43f7WGgpyi9W9Z69eMmPmLO/4tSCJ1d2OkdEjR6hnW/dW79ZCK2ecdbZ3TO+pIQ9b/v3OO7K5Xul+7913e1bpHvu2brptZO/9Qj1P7dhJVmggZK8995TNNttM3tVO8M0221SObN3am15okU6PYJ/DREvbdseIdZBbe1ln/MYbbywbbrih91Y7Js4952zvfpj2SbQfey4dJ7du2M+Cfdbq16svX3zxhfz8yy+yztpri3Va792okYwaMVxO7dRZ1l5nbS+w8tnnn0tjDSHde8/dscCCO6YmjB8nF/fs6R2z2227nXc+++DDD73PkJ2f/MGEdI+TdI3957UP9LOSzrnSvCZMmCgDBw+Wrbfe2vucfPf9d2Ij5DTU4Nn9Y+/1zp/O1T4LZRoasiDECy++6B0XNk3N0Ucd5XWOn6/TXVgozkJjdmxZu7c64nA9V42K+7y67bnbf57UwbO0z6qbisPM7RxqU11NnjjBO9/Y++fNny9nnn2OjL//fg1cNfE2kUndXZtZ2foPGOAFKOy7xM4DG+kxfM/dd1U4NYcd8xaSsM+rfXY32WRjDQiUSfVq1WTq5MlSVz/7bnH7S/e849bz36YKZPyiIcbmGoA54rDDZMTwYZ7jddff4H0f2DnXPxqVhYXM95677pRDDj7YvwtJFciwaVGuGni1PD7tUe/4iFvR9yDsd98tt94mN91yi9SqtbXs3nB3+eGHHzzTIdcMlqsHXyPtj2kng3T6FbfYZ7NT5y7ytfo30uCUO2/tqsHLQw45WAZfO0TefO3VuNBImPOi2w+3yQUIZCS34RUEClmAQEYhtw5lQwABBBBAAAEEEMi7AIGMvJOzQwQQQACBDAUIZGQIF/HVXCBj+hNPyG67rRoRwDqjrdNq1qxZMvb+B2Rg//5yigYmbLGOyfbHn6CjYvwid9x2m3dVrD2//NNP5ZKel8qX2vH9jA7BblequyXVMPyu48s6/a8ZNEj20dEG/Iu/8846/8Ls/4Fx4+SaIdfJrBlPe53xbrvW8djhlFNlmF6JbCMphNmm20bw1sr5i46I0bJlC7l+yBCvo9tCFFaGocNHiHWEnqad3m6xTsWHH3lUO/1HStsj27indSSRx+XyPn3lnLPOkssv6x17/rLLr/A664Lvn/3MMxoo6C125ffNN94YC2TY6CQW0uh64QXa0X6OVx4Lpzyi++yvnWV9Lr9MztERS2xZ/Oqrcop29F+twY5OHTt6z9mIF8eecIJUW6+aTJk0Ma5z2nuD739X6fYmT5kqQ665RjqcdGLsFdepds3VV8upp57iPf+hhnhO7HCyNwqF1cU652yxztIel/QU6xC3DsRtatf2nnfHhwU9RgwbKs31SntbbPQL64y0K68thLDWWmt5z1sn9NMzZ3qd0DfdOFp23GEHL1xRplein37mmXK4BnFuvfmmWEeytcPUhx6W22+9RQ7V0QOsE95GTbhh2DB5dNpjYh2yNmKJLRaWsZCPjcrxwNixsbLbSBCna0jD1nvhuWdjowPYOqmO/TBtZMfSURqo+OPPP+TuO++MhVbs2L3xppvknnvHekGLVIEMK48tZt28RUvvmOzSufOqJ1f/P2z7xK28+kFYp7CfBfusrdBRYex4O+nEf3pt7z7r1n7XXXuN97m284Udg0O0o9vCSkcftSpc446pTTXcM1I7w1vq1BFusdEc+l7ZT8zFH1oKc5zYtlIZ2+vB85o9Z0uq4+XJp56SS/X4tpGGLu15SSzg9dbbb4uFK2rrZ+bhqVNix7Z9Fh7X88AxOnpBz4sv1uN2h1U70f+fceZZ8qEez8/MmukFEuyFWbNnS7ceFyfs+I+tqHcG6nl6+vSnYyM72LnHRkawTvhR6mx2F+l5x5Z7xoyRYSNGyqsvl3kBIHsuk7q7NrMQkX1+g+cBCwUsnD8vdh6w/QSXPtqudn6d9vDDOnJKfe9la6fDWrX2RvKxwIMLmLj9pXveCe7LHrtAxoJ5c2PbtXOwjRIxdepD3nn3zjtu94JE9n4LS9mxOkdHkrBzUe3atexpDR59KVO1zMe1by877bSjfhefEhuNJ1UgY/rTM+SSSy+VcTpKho38kmgJ+933kJbjyv5Xydl6Lu3d69LYMWgjilhg0P4d0KnjqbFAhh0brXXqFHO96447YuE+C2HdrKEO+/eFBTb9gYww58VEdeK58gIEMsqb8AwCxSBAIKMYWokyIoAAAggggAACCORNgEBG3qjZEQIIIIBAlgIEMrIEjOjqLpCRrHrWCX7cscfGXn5dh8k/6eRT5Fq9SvtkHULdv8ycNVu6a8ffWB11osVBa6YYSdXJ6Dq+Em3Pth3svAuzf7vy9yAdBt5CCd27dYsV9VoNaUx56CGvA89GCAizzdhGAnesnCtX/u51yFunoVvsuaY6pL5N52KBCRcq2feAxnKqjoRho0cElys1APPCCy/K/Llz1rxfOzw7nHSS9O93ZfDtYldWj9Ur0P2BDLviftlHyzQcMzMuIGArH60dexusv4FeFT7J2751ph3d/lgvpHG2BkHcYuEIm45mj913T9rRaR1r++nw83ZV9GANXgSXk0/t6AVeXEfxXTqKxG133CnPakewTV/jX+xKauu88weA3PFhHcquk9etc8edd+moEKNlxlNPapho1dXtrhPaf5W+e791QtuIEgs1wOFvh1aHHx67St291zpqWx56mAZjzpRe2qlpy5h77/U6l+fpaAP+K9jttfnzF8gZ2lE+Rq/Ut6kz3JLq2A/TRq++9pqY5W233OxNNeK2b7cWnjn+nyd6IapsAxlh28dfDnc/jJN1CIf5LNg+7LNmo6rMe/GFWFDoV+3UbdykqWyqAZ85/3o+drzaCBpNNMTTUQNY/a7s6xXRHVOX9OghXS+60BU7dmvhJxvZwXWkuzKme5zYhnIRyLDj5fsfvpdHdPoOF0ByhX5cA3W9tdwzn54eC5+5z4KFLnbWKX78Szet+2KdKum52bPiRib41wsv6LQljWTz1UEp/zru/sOPPCJ9+/WXF9XZglPW2dv5tNPlWd3WqFGj5aeff9IRSVaNPGRlsPOrvebCDsFzuttuqs+Ka7N0zwNum/5bq5sFuE44/nj/03KpBtpe0pDEgtXnW3uxMvZngQzbZ6JlA51CZ9ojD8uuu+4a97IFRgYOGuyFq7bbdlvvtd9W/iaff/6FF9DYcIMNvfDYLjq6ky3ZBjLCfvfZ6EDfa/jl0Yemxj57XkH0f88+95zYNCwdNXznRsiwIJz92/PuO+/wQibuvXZrwU8L59loOv5ARpjzon973E8uQCAjuQ2vIFDIAgQyCrl1KBsCCCCAAAIIIIBA3gUIZOSdnB0igAACCGQoQCAjQ7iIr+YCGXbFq00poheyeot1lrysw90//68XvJEJXCjD3n/DsOFysoYD1tXpOfyLdVxO1s5CC0Bcoh3obkmno8067Gw0g+AS7LwLu3/r3LGpDWZMf8rrELTO64N02PcmjRvr9AYjvOfCbjNYRnts5ayjnWv3q4/reHTvs04zm47EOkvtNbui3UZauO/eMXKQhjWCy9MzZnpTKVhHqk1NYtPB2DQBiYast3Wt08/24aYssTpaSGL77bfzRnf4h6yZ+sTeb51wS5YuldcWvxK7Ot46aGfNfsZ7/0EHNpd9dFQIm+akevXqtkrS5e1//9sLA9yiozQc2aZ1uff9R6cLsWlo3LFinZQ2fY2NuhF0spWPPLqdDoPfQI+5VcP4u47RSRMejE2D4Hbi9m3Twdg0DLZYB7CNkPH2G6+X6zAcq1eKX3fDUHlp3lxvmgrXDjYNwHbbbqNrxzvZiAE7qr+NkmFlNePPdQqMp554vFzZzdzqalfU+5dkx37YNrKQg4208rq2mZtmxL+fG4YOkzF67GUbyAjbPv4yuPthnFwbpPtZsH3YZ80+vyOHD49rh2Y6BcRBzZvLsKE3xD1/QNNm0qZVK7lm8CDveXdMPTRlcmx0Ald2u5322GPeKDWzdaQfCzK4MqZ7nNg2KjuQ4Y6XLp066ugYPW0XcYsde00PPCguKGefhUXaIe6fbsqtZOf28y+8yPuMWNCkUaO9pKkGWnbcsfw52K3jbpcsWSrH6MhCd95+m444c5jYFBY2goMFYSbptFND9bz6yqKF3mfepnCxaYBsNBz3eQ+e0912k31W7HXXZumeB9w2g7dLl74nr2m4aflnn8rfGuqxxUIDNvXJW6+/FitjZezPPkvWEd69a1fd7pqS2CgZdo630Wjse8l979loIsNHjvKm3THX9TW0YUumU5a4EVVsah6btifREua7z4XvLEh4xeWXlducTcOy9777xQUyLDQ3SoOIFrhw9fGvOFyPlbvuGRMLZLjjPMx3l3973E8sQCAjsQvPIlDoAgQyCr2FKB8CCCCAAAIIIIBAXgUIZOSVm50hgAACCGQhQCAjC7wIr2odMtdrZ65/lAFXXQtYWGdms6ZNvSvzrUNtyHXXy/gJE+QI7cRLtjRt0lg6d+oUezmdjrbnn31Gtt9uu9g67k6w8y7s/t2V409qJ2v9+vViV3P7ww1ht+nK5r+1cjZXq2BnsL3HRg2xTkzr4DXDZ559Vi7q1t27QtpGnwguL720UE7TgMyDOt1CE7W0aUm6du8hyTqQ3RQsLpBhU2dYIKOudoTuvNPOwc3HHg++eqBsvvnmscc2wslzzz/nXTm/fPlyHUVjfbmsdy9vCoLYmwJ33FXRycoWeLvXkVu7Vm0dvv72WOen/z2ndursXf3/4LgHvNddx+hzz8yWHbbf3v9WcSN7jBoxXKdlaOe9Zp3QLy9eLC9qPVwHsFvpwQcnyNU6zcWCuXO9ES5cO9jxWqPGpu5tcbc11WeQOtnS/rjjZUsNLY255+5y245byfcg2bEfto1sVJdJU6Z4ncbB0RFsd3fedbeMGDUq60CGdbSHaR9fVWN3wzi5NrDRAtL5LNhOgucEt2MLZByin8Prhlwb1z7JAhku8OTWd7cu4OQ+f66M6R4ntp3KDmS446XvFZfLWXpuCC52rm64517STUf86NG9u/eyfRZe0emIbBqd4GfB3vDFl1/KNJ2WZ+68efLOu+96o+FY0OWG669LeC52+7R9Wcf7hRdc4I0w0uX002XrrbeW4UOHygcffCBHHdPemzqlfr160kjf1/vSnrHpkWwbydov2WfF1gl7HrB1gsttt98hN+k0GXbO271hQ1l3nXW8t7z3wfvy9dffJAxkpHveCe7LHlsg400d/cGNyON/jwvZ9b+yr5x+2mneaBE2UoxNj2Sj7PjbK9NAhjsnzNWRZGrXWjX9ib8Mdj/Md587BnvriEHnn3ducFNeHfbYq5GcqNMIuREybPSmBydO9GxtOqHgcruOluQCGxtssIE37VMm313B7fI4XoBARrwHjxAoFgECGcXSUpQTAQQQQAABBBBAIC8CBDLywsxOEEAAAQQqQYBARiUgRnATqQIZVt2Whxwqu9WpE+uEdlfdLpw/T2rWrJmWSDodbekGMsLu367abdb8QDnj9NO8K8sH6LQaszR4MG/Oi7FRG8JuM1Glk3Uy2nuDgYyvv/5aOyUP9q6EdkEC/zbtKnMLDiwuWyQbbbSRrFixwpt6ZdgN18vx2mEeXGyY+8uu6BMbIcNeb9XmSGnevFmsYyy4jv/xxzp6hwUwWrZoEXt6+aefyujRN8qT06fLU7p9C7MkWmxaGOsIH9C/X8Lghk1v8Osvv8ppp3XxVu8/YIAsWlQWC6cEt2nbOl6nyLn8st7eS64jNtHxkSyQkawTOhjIcO3ggizBsgQf27Ezc+YsWfTSgrgOU3vfd999J3frNA3Hatkb1K8fWzXVsR+mjZ548knpddnlsWkiYjtYfafPlf3ErLMdISNs+wTLYY/DOLk28Idq/NsMfhbstWSftbCBDH8oy7/P+zUIZSOp2OfPph9yZUz3OLFtVXYgw7Zpx0vTJk1k8KCryx1/Nr1QWx1dxl+nZIGM33//3Qum2Xm9du3atmn5448/ZP6CBXquusQ7D9jUOP5QgPcm3/9sxB5bd/TIEbKvTqd0lU6z1OGkE71OeRup4xyd+sjCZPa+8fffL02bNomtnaz9Un1Wwp4HYjtbfeenn36Sxs2aSzsdSWeojqCylm/Iit76uZqpo+EkGiEj3fNOcH/2OFUgw86vh7dqrWGVVeEGO3800e+pCzTo4KZIctvMNJBho0PZSChvvLq43BQ3btthv/uOaN1GDth//3KhJ9ueBXwO1mme/FOWzNDzZY9LLombSsft2257XtrL+47xT1kS5rzo3xb3kwsQyEhuwysIFLIAgYxCbh3KhgACCCCAAAIIIJB3AQIZeSdnhwgggAACGQoQyMgQLuKrhQ1kuE6Xiy44X3pqR4t/mT9/gdx86y3eldI7+KYfybSjzbYd7LzLZP/WMfmaTmEx6+mnvSDE0Ue1lYFXXRUreibbjK28+k6wnP7Xg4EMe80642wqj4enTombWsOuPj+6/bE6VUg1eUw72F2nqHV01di0hjz60EOyzuoru207Noy8dXra9B0369DwR7U90p4W66B//vnnZfqTT8RNo2Hvv7BrN9lv331jVznb6AsTJk2S+RpS8Y+Y4aYmuHbQIDn55A7edhP9r/WRbaX6+tVl4vjxXoDEvcemUTj0iFbetCyug9eFR+647dZyo6y419xUCLadsB2xyTqhbVvBQIY9d5iWr5ZePT7+gfvj2sE61C+4qKt079ZVbKoKW9xxPGLYUDm2fXvvOfe/oTqNzz06rYiNxNKgQXqBjDBt9Olnn3llPa1zZ+387ud2691+9dUKaaMdzb/88kvWgQzXBum2T1xBVj8I6xT2s5DssxY2kGEjXozTsID7jFnxLZhwlE6zUV1Hh3nysWmx18IcJ7adXAQy+vbrLzN0Oh6b+qiWjkjhX+y1Rx59NBYisdeSfRas8795i5bSRUcx6qcjNPgXG7nHpjSyc4Hfxf8eu3/1oMEyV0N5N+iISR31mPSPNmLnu5W/rZRWrVpJfz3PLn65zAu2uG0kaz933FgArF69uu7t3m3Y80DcyvrATW80RINuFhxxy88//yyt27bVkRl+qtJAhpXHPge//vabN/WLm+LJns8kkDF58hTpP3CgnHv22QmnF7Ht2hL2u+9yDf7N0hGbbKqVbVaHeVZtadVoG/dpmKlTx1NjQUD7HFj4sLUeCzffODouGPLOO+/KPzt0EJvCxR/ICHNedPvmNrUAgYzUPryKQKEKEMgo1JahXAgggAACCCCAAAJVIkAgo0rY2SkCCCCAQAYCBDIyQCuBVcIGMozEhkK3YcY7d+rojdiw3nrryZw5c2TMvWNliy239KbiWG/ddWN6FtQ4QzuGTu5wkl593VI77TeU5s2aea+n6mizNyTqvAu7/xe1bOecd75YiOQ2HSLdQhB7N2oUK5/dCbvNuJX1QaJyuvckCmQsWPCSnHfhhbLXnnvq0P/ny/Y6HccnOlKF/dty2bJlcu+Ye7zh6902bGqQbj0uln323lu6db1IdtxhR/lUr7K+9fbbZaMNN5Tn/vWvuECGddJ36tLF61Tt3etSadigoSx9b6lM08DA7GeelRtHjZR2Rx/tbX7p0ve8jrG6u+0m/ftdqSOi7CbLPlomt952u5jd49rR6w8ZuDK524ULF8m5On1Bvbp1vZFIdtPtzJ8/XzuIp8kXX3whD44f500RYO+3zjfr9F24aJH06NZNDjroQPn7r7/khRfneHVp07qVjBg2LBaOSHV8ZDtChpXHyn7O+efLAfvtJxdoO1g4o6ysTMbr9Caf6KghT2in/I6rw0VW9h6X9BSb0sKOpZba0fjfH3+U6TOe9sIaR2vHbnDKmlTHfpg2srIOGz5C7h4zRk7RTswTTzxRwzObyVtvvS2jb7pJp3PZTubMnZdWIMNGjTmgSVPZc4895GwdycAGCzhYp/qwz3HY9rFyBZewTmE/C8k+a2EDGXYO2GSTjeW8c8+VbbfZ1jvmb7r5FlmydKk30oQ7R1n9whwn9v5UxvZ6sjqkOl6+/PIr6azTW/z5f396Iyvsoe1noaepDz0sFqQZeFX/uKmikgUybP82KsT0GTOkp4Yn2h/Tzvu82QgZ1hl+xOGHyS16TKUKZNhoLFdqCOQcPa8/rqO3zNNpMdz7x49/UEbp+u2OPkps+iULa7jXMq172POA7ce/WBDNRu6ooSG4vn2u8M67yz76SEaMHOVN1fLe+++LTR/SpnVr7xyQ7f5s32FGyLD322gwAzT8ZmEUO5fU0RFMbPlQRz8ZMWq0N5WJC4fZZ8bO59b2n33+uU5Vc5GOTvKX2DnlDZ0m5a233/amAJo04UFZX8NFqZYw3312Tjy1YydZZ9115LJevaSRTlHyw48/yMMPPyIf6vfWO+++o8fTMbFAhu13qoYI+181QPbVEOAJxx8fO29NmjxZ9tfRNmxKLn8gI+x5MVXdeG2VAIEMjgQEilOAQEZxthulRgABBBBAAAEEEMiRAIGMHMGyWQQQQACBShcgkFHppJHYYCaBDKv4fXpl+fgJE72pLuyxjdpwxOGHy5BrBkuNGjXsqdhioz507d7D69y3+7vusot3lbd10qXq+LINJOu4DLt/u0rXOi+tc/3Z2bPiOghdQcNs063jbpOV015PFMiw562zcujw4fLukiXeSBdm2LBBA28EBAteBJeZOtXK8JEjveCGvbbZZpvJqTpyxXE6jUmbtkfFTVlir9vVz321g3Xxq6/KypUr7SlvtAwbHeTINq29x+5/1uF8zZAh2sn3nveUlcXCIjb8/HE6DUdFS9nLL8t1198Qq8taa63lTd1hAQULavgX67C/evBgeUaDId99/7330pYa5LHRPa7s0ycWxrAXUh0flRHIsH1YJ7i5unaw5xo2bCAjhg6TunV3s4exxY7fQXqVvU1748pux7uFJCz44u94tpVSHfv2epg2sveP1iDU5ClT5T86yoEtO2iQ57LeveVH7RTtP2BgWoEMW8+CB/ePGyc2lYMtL82bGxtJJUz7eCsn+F9YpzCfhWSftbCBjJl6lf9YPY9Zp/bff//t1cLOTdZh7zq+/VULc5zYeqmMk9WhouPFQhl9+636TP+moynYssvOO3vBGgu8+ZdUgQwbCWTI9dfrNDePik1hYot9Bg9q3lzr38frNPdvK3jfjZ5jbu3btZORI4bHjn33ubTXLJQxWj9b/s9FJnUPex4Iltce2ygZPXRKFpsuxBYr0+kaWrvoogvljDPP0jDBu2LTQllooDL2FzaQYWV65tlnZZKObvGmhip+0LCXfxlz912x49KmBZqoAQ7/YvWpVWtr2WnHncRGgTpJQ1trr722/y1J74f57rPpca7o09fztKCLjebUQqeaspGDWuloSa2OODwukGE7talR7Lz12uuvy18awLPvuT5XXCHvaJtcq8ehP5Bh7w97XrR1WJILEMhIbsMrCBSyAIGMQm4dyoYAAggggAACCCCQdwECGXknZ4cIIIAAAhkKEMjIEI7VUgqsWLFCh+f/VnbbrY5Uq1Yt5Xtz8WIu9p+Lbaaq+8861YSNilFn111lgw02SPVW7zXrlP3p5590JIs6cR2dyVa0Tl4LG2y5xRbe1d/J3mfPf64jWlj9bZSMjTfeKNVbE772k04B8JFeeW6dxBttVPH6dlW1hT/cKBQJN5qnJ63s1g47a9k32XjjlHu1zmYru3V47rTjjmm1Q6oNhmkj2/f7ekW/TXljI3rkcsm2fcI6hf0sZFL3YGe7TVthoyXUVksLJVS0hDlOKtpWpq/b8WIjeViZa9asmelmvJE8ln+yXNZae61ywamMN1rgK9o57ttvv5WddtrJGzGjwIub1+KF+e6zz83HOqqTBe78U6ykKrAFgSysZ+d8W+7XKU6u1WlvgoEMt40w50W3DrflBQhklDfhGQSKQYBARjG0EmVEAAEEEEAAAQQQyJsAgYy8UbMjBBBAAIEsBQhkZAnI6ggggAACRS8QDGQUfYWoAAJFKlBRIKNIq1VwxSaQUXBNQoEQSEuAQEZaTLwJAQQQQAABBBBAoFQECGSUSktTTwQQQKD4BQhkFH8bUgMEEEAAgewECGRk58faCIQRsGlN7rzrbl1l1bRA/nWn6HRBv/76qyycPy82aob/de5XjgCBjMpxZCsI5FuAQEa+xdkfAggggAACCCCAQEELEMgo6OahcAgggAACPgECGT4M7iKAAAIIlKTA9KdnyMjRo2XC+HHelB8liUClEciTgE070qbtUWLTFwWXGjVqyBmnnybHtm8ffInHlShAIKMSMdkUAnkUIJCRR2x2hQACCCCAAAIIIFD4AgQyCr+NKCECCCCAwCoBAhkcCQgggAACCCCAAAIIlI4AgYzSaWtqGi0BAhnRak9qgwACCCCAAAIIIJClAIGMLAFZHQEEEEAgbwIEMvJGzY4QQAABBBBAAAEEEKhyAQIZVd4EFACBjAQIZGTExkoIIIAAAggggAACURUgkBHVlqVeCCCAQPQECGREr02pEQIIIIAAAggggAACyQQIZCST4XkECluAQEZhtw+lQwABBBBAAAEEEMizAIGMPIOzOwQQQACBjAUIZGRMx4oIIIAAAggggAACCBSdAIGMomsyCoyAJ0AggwMBAQQQQAABBBBAAAGfAIEMHwZ3EUAAAQQKWoBARkE3D4VDAAEEEEAAAQQQQKBSBQhkVConG0MgbwIEMvJGzY4QQAABBBBAAAEEikGAQEYxtBJlRAABBBAwAQIZHAcIIIAAAggggAACCJSOAIGM0mlrahotAQIZ0WpPaoMAAggggAACCCCQpQCBjCwBWR0BBBBAIG8CBDLyRs2OEEAAAQQQQAABBBCocgECGVXeBBQAgYwECGRkxMZKCCCAAAIIIIAAAlEV4I/bqLYs9UIAAQSiJ0AgI3ptSo0QQAABBBBAAAEEEEgmwG9WyWR4HoHCFiCQUdjtQ+kQQAABBBBAAAEE8izAH7d5Bmd3CCCAAAIZCxDIyJiOFRFAAAEEEEAAAQQQKDoBRnUtuiajwAh4AgQyOBAQQAABBBBAAAEEEAgI1KlXP+6ZD5YuiXvMAwQQQAABBApBIKrfV1GtVyEcM5QBAQQQQAABBBBAoHgFohjILt7WoOQIpC9AICN9K96JAAIIIIAAAgggUCICwY6gCePHSZPGjUuk9lQTAQQQQKAYBKI8ohPfw8VwBFJGBBBAAAEEEEAAgXwLEMjItzj7Q6ByBAhkVI4jW0EAAQQQQAABBBCIkEDwD9we3bpJj+7dIlRDqoIAAgggUOwCwe8qCw5agDAKS3AoZr6Ho9Cq1AEBBBBAAAEEEEAgG4FgINu2xYiu2YiyLgL5EyCQkT9r9oQAAggggAACCCBQJALBjiArNn/kFknjUUwEEECgBAQS/RgbpdGc+B4ugYOYKiKAAAIIIIAAAgiEEohyIDsUBG9GoAgFCGQUYaNRZAQQQAABBBBAAIHcCwSHS+fq3NybswcEEEAAgfQEgoGFKI2O4QT4HnYS3CKAAAIIIIAAAgiUukDUA9ml3r7UP/oCBDKi38bUEAEEEEAAAQQQQCADgWBnl22CUTIygGQVBBBAAIFKFwiGFaI0OobD4nvYSXCLAAIIIIAAAgggUOoCjI5R6kcA9S92AQIZxd6ClB8BBBBAAAEEEEAgZwLBDq8oXoGcMzw2jAACCCCQE4Hgj7G2k6gGBvkezskhxEYRQAABBBBAAAEEikggUVA5ioHsImoSiopAaAECGaHJWAEBBBBAAAEEEECgVAQS/dFLKKNUWp96IoAAAoUnkCiMcXH3btK9W7fCK2wllIjv4UpAZBMIIIAAAggggAACRSvAv4eLtukoOAJxAgQy4jh4gAACCCCAAAIIIIBAvAB//MZ78AgBBBBAoGoESi2M4ZQT1ZtwpNPhFgEEEEAAAQQQQCCqAol+j7K6MjpGVFucekVZgEBGlFuXuiGAAAIIIIAAAghUikCiP4KtM6iHXpVstywIIIAAAgjkSsC+gxaVlXn/+fcR5ZEx/PW0+8lCGXwPB6V4jAACCCCAAAIIIBAFgUS/Q1m9CGNEoXWpQykKEMgoxVanzggggAACCCCAAAKhBZL9MUwwIzQlKyCAAAIIpCFg3zu23Hzrqlv/KqUUxnD1ThTKsNf4HnZC3CKAAAIIIIAAAggUu0Cy356sXoQxir11KX8pCxDIKOXWp+4IIIAAAggggAACoQRS/WHsRsqwq3VZEEAAAQQQyERg0aIyb7VEIQy3vVIMY7i6Jwtl2OsumOHuu3W4RQABBBBAAAEEEECgkAVSBbFduQljOAluEShOAQIZxdlulBoBBBBAAAEEEECgigRShTKqqEjsFgEEEECgRARKOYzhmjhVKMO9h1sEEEAAAQQQQAABBKIiQBgjKi1JPUpZgEBGKbc+dUcAAQQQQAABBBDISGBRWZlYMMNuWRBAAAEEEMi1gAUxbOnejVGYzIHvYVNgQQABBBBAAAEEEIiyAGHsKLcudSs1AQIZpdbi1BcBBBBAAAEEEECg0gToEKo0SjaEAAIIIJBAgCBGAhTfU3wP+zC4iwACCCCAAAIIIBAJAYIYkWhGKoFAnACBjDgOHiCAAAIIIIAAAgggEF7AjZRRpiNmLFy0atQM91z4rbEGAggggEApCjRp3NirdtMmq24ZDSP9o8C+c/kOTt+LdyKAAAIIIIAAAggUjoD9HcDfAIXTHpQEgVwIEMjIhSrbRAABBBBAAAEEEEAAAQQQiBNoccihcY/nvvCvuMc8QAABBBBAAAEEEEAAAQQQQAABBBBAIGoCBDKi1qLUBwEEEEAAAQQQQAABBBAoQAECGQXYKBQJAQQQQAABBBBAAAEEEEAAAQQQQCCnAgQycsrLxhFAAAEEEEAAAQQQQAABBEyAQAbHAQIIIIAAAggggAACCCCAAAIIIIBAqQkQyCi1Fqe+CCCAAAIIIIAAAggggEAVCBDIqAJ0dokAAggggAACCCCAAAIIIIAAAgggUKUCBDKqlJ+dI4AAAggggAACCCCAAAKlIUAgozTamVoigAACCCCAAAIIIIAAAggggAACCKwRIJCxxoJ7CCCAAAIIIIAAAggggAACORIgkJEjWDaLAAIIIIAAAggggAACCCCAAAIIIFCwAgQyCrZpKBgCCCCAAAIIIIAAAgggEB0BAhnRaUtqggACCCCAAAIIIIAAAggggAACCCCQngCBjPSceBcCCCCAAAIIIIAAAggggEAWAgQyssBjVQQQQAABBBBAAAEEEEAAAQQQQACBohQgkFGUzUahEUAAAQQQQAABBBBAAIHiEiCQUVztRWkRQAABBBBAAAEEEEAAAQQQQAABBLIXIJCRvSFbQAABBBBAAAEEEEAAAQQQqECAQEYFQLyMAAIIIIAAAggggAACCCCAAAIIIBA5AQIZkWtSKoQAAggggAACCCCAAAIIFJ4AgYzCaxNKhAACCCCAAAIIIIAAAggggAACCCCQWwECGbn1ZesIIIAAAggggAACCCCAAAIqQCCDwwABBBBAAAEEEEAAAQQQQAABBBBAoNQECGSUWotTXwQQQAABBBBAAAEEEECgCgQIZFQBOrtEAAEEEEAAAQQQQAABBBBAAAEEEKhSAQIZVcrPzhFAAAEEEEAAAQQQQACB0hAgkFEa7UwtEUAAAQQQQAABBBBAAAEEEEAAAQTWCBDIWGPBPQQQQAABBBBAAAEEEEAAgRwJEMjIESybRQABBBBAAAEEEEAAAQQQQAABBBAoWAECGQXbNBQMAQQQQAABBBBAAAEEEIiOAIGM6LQlNUEAAQQQQAABBBBAAAEEEEAAAQQQSE+AQEZ6TrwLAQQQQAABBBBAAAEEEEAgCwECGVngsSoCCCCAAAIIIIAAAggggAACCCCAQFEKEMgoymaj0AgggAACCCCAAAIIIIBAcQkQyCiu9qK0CCCAAAIIIIAAAggggAACCCCAAALZCxDIyN6QLSCAAAIIIIAAAggggAACCFQgQCCjAiBeRgABBBBAAAEEEEAAAQQQQAABBBCInACBjMg1KRVCAAEEEEAAAQQQQAABBApPgEBG4bUJJUIAAQQQQAABBBBAAAEEEEAAAQQQyK0AgYzc+rJ1BBBAAAEEEEAAAQQQQAABFSCQwWGAAAIIIIAAAggggAACCCCAAAIIIFBqAgQySq3FqS8CCCCAAAIIIIAAAgggUAUCBDKqAJ1dIoAAAggggAACCCCAAAIIIIAAAghUqQCBjCrlZ+cIIIAAAggggAACCCCAQGkIEMgojXamlggggAACCCCAAAIIIIAAAggggAACawQIZKyx4B4CCCCAAAIIIIAAAggggECOBAhk5AiWzSKAAAIIIIAAAggggAACCCCAAAIIFKwAgYyCbRoKhgACCCCAAAIIIIAAAghER4BARnTakpoggAACCCCAAAIIIIAAAggggAACCKQnQCAjPSfehQACCCCAAAIIIIAAAgggkIUAgYws8FgVAQQQQAABBBBAAAEEEEAAAQQQQKAoBQhkFGWzUWgEEEAAAQQQQAABBBBAoLgECGQUV3tRWgQQQAABBBBAAAEEEEAAAQQQQACB7AUIZGRvyBYQQAABBBBAAAEEEEAAAQQqECCQUQEQLyOAAAIIIIAAAggggAACCCCAAAIIRE6AQEbkmpQKIYAAAggggAACCCCAAAKFJ0Ago/DahBIhgAACCCCAAAIIIIAAAggggAACCORWgEBGbn3ZOgIIIIAAAggggAACCCCAgAoQyOAwQAABBBBAAAEEEEAAAQQQQAABBBAoNQECGaXW4tQXAQQQQAABBBBAAAEEEKgCAQIZVYDOLhFAAAEEEEAAAQQQQAABBBBAAAEEqlSAQEaV8rNzBBBAAAEEEEAAAQQQQKA0BAhklEY7U0sEEEAAAQQQQAABBBBAAAEEEEAAgTUCBDLWWHAPAQQQQAABBBBAAAEEEEAgRwIEMnIEy2YRQAABBBBAAAEEEEAAAQQQQAABBApWgEBGwTYNBUMAAQQQQAABBBBAAAEEoiNAICM6bUlNEEAAAQQQQAABBBBAAAEEEEAAAQTSEyCQkZ4T70IAAQQQQAABBBBAAAEEEMhCgEBGFnisigACCCCAAAIIIIAAAggggAACCCBQlAIEMoqy2Sg0AggggAACCCCAAAIIIFBcAgQyiqu9KC0CCCCAAAIIIIAAAggggAACCCCAQPYCBDKyN2QLCCCAAAIIIIAAAggggAACFQgQyKgAiJcRQAABBBBAAAEEEEAAAQQQQAABBCInQCAjck1KhRBAAAEEEEAAAQQQQACBwhMgkFF4bUKJEEAAAQQQQAABBBBAAAEEEEAAAQRyK0AgI7e+bB0BBBBAAAEEEEAAAQQQQEAFCGRwGCCAAAIIIIAAAggggAACCCCAAAIIlJoAgYxSa3HqiwACCCCAAAIIIIAAAghUgQCBjCpAZ5cIIIAAAggggAACCCCAAAIIIIAAAlUqQCCjSvnZOQIIIIAAAggggAACCCBQGgIEMkqjnaklAggggAACCCCAAAIIIIAAAggggMAaAQIZayy4hwACCCCAAAIIIIAAAgggkCMBAhk5gmWzCCCAAAIIIIAAAggggAACCCCAAAIFK0Ago2CbhoIhgAACCCCAAAIIIIAAAtERIJARnbakJggggAACCCCAAAIIIIAAAggggAAC6QkQyEjPiXchgAACCCCAAAIIIIAAAghkIUAgIws8VkUAAQQQQAABBBBAAAEEEEAAAQQQKEoBAhlF2WwUGgEEEEAAAQQQQAABBBAoLgECGcXVXpQWAQQQQAABBBBAAAEEEEAAAQQQQCB7AQIZ2RuyBQQQQAABBBBAAAEEEEAAgQoECGRUAMTLCCCAAAIIIIAAAggggAACCCCAAAKREyCQEbkmpUIIIIAAAggggAACCCCAQOEJEMgovDahRAgggAACCCCAAAIIIIAAAggggAACuRUgkJFbX7aOAAIIIIAAAggggAACCCCgAgQyOAwQQAABBBBAAAEEEEAAAQQQQAABBEpNgEBGqbU49UUAAQQQQAABBBBAAAEEqkCAQEYVoLNLBBBAAAEEEEAAAQQQQAABBBBAAIEqFSCQUaX87BwBBBBAAAEEEEAAAQQQKA0BAhml0c7UEgEEEEAAAQQQQAABBBBAAAEEEEBgjQCBjDUW3EMAAQQQQAABBBBAAAEEEMiRAIGMHMGyWQQQQAABBBBAAAEEEEAAAQQQQACBghUgkFGwTUPBEEAAAQQQQAABBBBAAIHoCBDIiE5bUhMEEEAAAQQQQAABBBBAAAEEEEAAgfQECGSk58S7EEAAAQQQQAABBBBAAAEEshAgkJEFHqsigAACCCCAAAIIIIAAAggggAACCBSlAIGMomw2Co0AAggggAACCCCAAAIIFJcAgYziai9KiwACCCCAAAIIIIAAAggggAACCCCQvQCBjOwN2QICCCCAAAIIIIAAAggggEAFAgQyKgDiZQQQQAABBBBAAAEEEEAAAQQQQACByAkQyIhck1IhBBBAAAEEEEAAAQQQQKDwBAhkFF6bUCIEEEAAAQQQQAABBBBAAAEEEEAAgdwKEMjIrS9bRwABBBBAAAEEEEAAAQQQUAECGRwGCCCAAAIIIIAAAggggAACCCCAAAKlJkAgo9RanPoigAACCCCAAAIIIIAAAlUgQCCjCtDZJQIIIIAAAggggAACCCCAAAIIIIBAlQoQyKhSfnaOAAIIIIAAAggggAACCJSGAIGM0mhnaokAAggggAACCCCAAAIIIIAAAgggsEaAQMYaC+4hgAACCCCAAAIIIIAAAgjkSIBARo5g2SwCCCCAAAIIIIAAAggggAACCCCAQMEKEMgo2KahYAgggAACCCCAAAIIIIBAdAQIZESnLakJAggggAACCCCAAAIIIIAAAggggEB6AgQy0nPiXQgggAACCCCAAAIIIIAAAlkIEMjIAo9VEUAAAQQQQAABBBBAAAEEEEAAAQSKUoBARlE2G4VGAAEEEEAAAQQQQAABBIpLgEBGcbUXpUUAAQQQQAABBBBAAAEEEEAAAQQQyF6AQEb2hmwBAQQQQAABBBBAAAEEEECgAgECGRUA8TICCCCAAAIIIIAAAggggAACCCCAQOQECGRErkmpEAIIIIAAAggggAACCCBQeAIEMgqvTSgRAggggAACCCCAAAIIIIAAAggggEBuBQhk5NaXrSOAAAIIIIAAAggggAACCKgAgQwOAwQQQAABBBBAAAEEEEAAAQQQQACBUhMgkFFqLU59EUAAAQQQQAABBBBAAIEqEPh/9u4Efqbq/+P4J2Qp2lWU1l+0ILLvWuwSStrI3maJKNkqskTWFKlkrZCdrJU9Klu0oFQqJVKKkrbfObfuuPd+78x3Zr6z3Dvzuv/Hv5m5y7nnPM8dv2vu2zkEMpKAzikRQAABBBBAAAEEEEAAAQQQQAABBJIqQCAjqfycHAEEEEAAAQQQQAABBBBIDwECGenRz7QSAQQQQAABBBBAAAEEEEAAAQQQQOC4AIGM4xa8QwABBBBAAAEEEEAAAQQQiJMAgYw4wVIsAggggAACCCCAAAIIIIAAAggggIBnBQhkeLZrqBgCCCCAAAIIIIAAAgggkDoCBDJSpy9pCQIIIIAAAggggAACCCCAAAIIIIBAeAIEMsJzYi8EEEAAAQQQQAABBBBAAIEsCBDIyAIehyKAAAIIIIAAAggggAACCCCAAAII+FKAQIYvu41KI4AAAggggAACCCCAAAL+EiCQ4a/+orYIIIAAAggggAACCCCAAAIIIIAAAlkXIJCRdUNKQAABBBBAAAEEEEAAAQQQyESAQEYmQGxGAAEEEEAAAQQQQAABBBBAAAEEEEg5AQIZKdelNAgBBBBAAAEEEEAAAQQQ8J4AgQzv9Qk1QgABBBBAAAEEEEAAAQQQQAABBBCIrwCBjPj6UjoCCCCAAAIIIIAAAggggIASIJDBZYAAAggggAACCCCAAAIIIIAAAgggkG4CBDLSrcdpLwIIIIAAAggggAACCCCQBAECGUlA55QIIIAAAggggAACCCCAAAIIIIAAAkkVIJCRVH5OjgACCCCAAAIIIIAAAgikhwCBjPToZ1qJAAIIIIAAAggggAACCCCAAAIIIHBcgEDGcQveIYAAAggggAACCCCAAAIIxEmAQEacYCkWAQQQQAABBBBAAAEEEEAAAQQQQMCzAgQyPNs1VAwBBBBAAAEEEEAAAQQQSB0BAhmp05e0BAEEEEAAAQQQQAABBBBAAAEEEEAgPAECGeE5sRcCCCCAAAIIIIAAAggggEAWBAhkZAGPQxFAAAEEEEAAAQQQQAABBBBAAAEEfClAIMOX3UalEUAAAQQQQAABBBBAAAF/CRDI8Fd/UVsEEEAAAQQQQAABBBBAAAEEEEAAgawLEMjIuiElIIAAAggggAACCCCAAAIIZCJAICMTIDYjgAACCCCAAAIIIIAAAggggAACCKScAIGMlOtSGoQAAggggAACCCCAAAIIeE+AQIb3+oQaIYAAAggggAACCCCAAAIIIIAAAgjEV4BARnx9KR0BBBBAAAEEEEAAAQQQSBuBjg92lpIlrpaWLVpkaHM4gYyXJ0yQzVu2yqgRwzMczwoEEEAAAQQQQAABBBBAAAEEEEAAAQT8JkAgw289Rn0RQAABBBBAAAEEEEAAAQ8K6DDG5i1bjJq1anF3hlBGZoEMHcYYP2GicXzJEiUIZXiwj6kSAggggAACCCCAAAIIIIAAAggggEBkAgQyIvNibwQQQAABBBBAAAEEEEAAAYeANUxhbnKGMkIFMsI53iyXVwQQQAABBBBAAAEEEEAAAQQQQAABBPwiQCDDLz1FPRFAy6kJGgAAQABJREFUAAEEEEAAAQQQQAABDwtYR8gwq2kNZQQLZLiFMRghwxTkFQEEEEAAAQQQQAABBBBAAAEEEEDAzwIEMvzce9QdAQQQQAABBBBAAAEEEPCQQKhQhlsggzCGhzqPqiCAAAIIIIAAAggggAACCCCAAAIIxFyAQEbMSSkQAQQQQAABBBBAAAEEEEhfgWChjPETJtpQ9OgZznWMjGEj4gMCCCCAAAIIIIAAAggggAACCCCAgM8FCGT4vAOpPgIIIIAAAggggAACCCDgNQG3UEZmdSSMkZkQ2xFAAAEEEEAAAQQQQAABBBBAAAEE/CZAIMNvPUZ9EUAAAQQQQAABBBBAAAEfCEQSyiCM4YMOpYoIIIAAAggggAACCCCAAAIIIIAAAhELEMiImIwDEEAAAQQQQAABBBBAAAEEwhEIJ5RBGCMcSfZBAAEEEEAAAQQQQAABBBBAAAEEEPCjAIEMP/YadUYAAQQQQAABBBBAAAEEfCIQKpRBGMMnnUg1EUAAAQQQQAABBBBAAAEEEEAAAQSiEiCQERUbByGAAAIIIIAAAggggAACCIQr4BbKIIwRrh77IYAAAggggAACCCCAAAIIIIAAAgj4VYBAhl97jnojgAACCCCAAAIIIIAAAj4SsIYyCGP4qOOoKgIIIIAAAggggAACCCCAAAIIIIBA1AIEMqKm40AEEEAAAQQQQAABBBBAAIFwBTZv2SI6lEEYI1wx9kMAAQQQQAABBBBAAAEEEEAAAQQQ8LsAgQy/9yD1RwABBBBAAAEEEPCMwIZ335UNG971TH2oCAJeE9iydYuUuLqE16pFfRDwjEC5cmWNupQr+++rZypGRXwtMOqZ0b6ufywrz3cslpqUZQrwdwBTglcEEEAAgUgFuDeJVIz9EfCnAIEMf/YbtUYAAQQQQAABBBDwiID5kGPUaB52eKRLqAYCCCCQEgI6lNGxQ3shnJES3ZnQRnBvEh4337HwnNjLXUB/z7j/d7dhLQIIIIBAdAL63sS8P4muBI5CAAGvChDI8GrPUC8EEEAAAQQQQAABTwvwI6ynu4fKIYAAAikjYP4oq19ZEAglQBAjlE7wbXzHgtuwxS5gjoRBEMPuwicEEEAAgdgLdGzf3ghnx75kSkQAgWQIEMhIhjrnRAABBBBAAAEEEPCtAEEM33YdFUcAAQR8LcBDY193X1wrz0Pi2PHy8CN2lqlUEt+xVOpN2oIAAgj4S4B7E3/1F7VFIJgAgYxgMqxHAAEEEEAAAQQQQMAhEE4YQz8wK1+Of8XsoOMjAggggEAYAus3vCv6wV+ohR9lQ+mk3zZ9vdzZrHnIhnNvcpyH79hxC96FJ8B3LDwn9kIAAQQQiE5A35voJdTfAbj/j86WoxDwkgCBDC/1BnVBAAEEEiSgb/DWrl2X6dlOP/10adnibvnpp5/k5QkTpEaNGlL0qqsyPS6WO3z77XeyaPEiVYdDkiNHjsBQbYcOqc8nnignn3RSLE/n+7K++26f5M2XV/KefLJn2vL8uHFy4YUXSu1atTxTp3StiNt3+YNt22T58jeldatWcuqpp0RM41ZmxIX45IBQYYxOHdpL2f/m+vRJc6gmAggggICHBfT9uv7fnWA/zPKjrIc7L4FV09dHsDCGvjfRSwc13DVLRgG+YxlNWJNRINR3TO+tv2d8xzK6sQYBBBBAIDqBUL87cf8fnSlHIeAVAQIZXukJ6oEAAggkUGD8yy/LM88+J/LPP8ZZ//77bzny66+SM2dOyaX+31wuvvhimTljuny5Z4/UqFVbBvZ/Um65+WZzc0Jeb2zYUHbs2ClXXXml5MmTR6ZOniQ6jFGl+rWSN29eWfX2W3KiCmbEcvnxxx+lRavW0rZNa6lfr14siw6rrFWrV8vQYcNl1IjhRpAhrIPUTnu++srop/PPO0+WL10iJ5xwQriHxnW/SlWrSsXyFWTwU4M8U6e4NtjDhX/x5ZcZvsvTpk+XXn0ekzeXLZULChWKuPZuZUZciA8OCPaXYn6E9UHnUUUEEEDAxwKhHhrzo6yPOzYGVQ/2oJggRmS4fMci80qnvfmOpVNv01YEEEDAWwLBfoPi/t9b/URtEIhEgEBGJFrsiwACCKSowFdffy3X3VBD/euODtL+gfsztDJZD1yPHv1dipUoIS3vvlt6PNo9UK/DR45Irdp15LTTTpN5c2ZL9uzZA9ti8Wb//v1SsUpV6d2zhzRv1iwWRUZUxvwFC6VL166yYO5cKVKkcNjHHjhwQOo1uEku+9//ZPLECZ4JPxDICLsL476j23eZQEbm7MH+IkwYI3M79kAAAQQQiI1AsP8t4kfZ2Pj6rZRQD4r51/rR9WYwU75j0Xn6/ahg1wP3/37vWeqPAAII+Ecg2P8WcW/inz6kpghYBQhkWDV4jwACCKSpgFcDGb8dPSrFS5SUzp06yf333WvrnT///FOyZctm/L9tQww++DWQoZuuXfTULl5aCGR4pzcIZETeF8H+AsyPsZFbcgQCCCCAQNYECGVkzS9VjubeJH49GcyWBx/xM/dqyf8rcnmGqnH/n4GEFQgggAACcRbg3iTOwBSPQAIFCGQkEJtTIYAAAl4ViCSQoafwmDd/vnz66ady5plnSfny5eTq4sVdm3b48GFZu26dvPvue/KrmhKlTJkyUqVyJcmfP7/r/ubKqVNfkWPHjsmxP47JkKHDpJqa8qJSxYrinIDj/ELnS40bbjAPk9emTZMLLrhA/nfppbJm7Vr57rvvpNldd0m+fPmMfXbt2mXU54Nt26VY0aJSpUplY1+zAPO8v6h6jxo9WmrWqCGlS5Uyzlv86uJS6pprzF1tr7/88ou8PnOmVK9e3aj3e6q9ejKYZnfdGdgvM4uDBw/K3Hnz1DQyIh9+/JHMmTtP2rRqJWeffbZx/lq1akrBggUls3Npg4IFCkrVqlUC59ZvMjv/H3/8IVOmTpUr1dQw5cqWtR2rP+hpVL74/Atp1uyuwMgb2z/8UFasWCk7d+40RiupWLGC1K5VK8Ox4QQy9n77rSxZskRq1fy3ndZCdMhk8pQpUrLkNVJC9YO56JFSNmzYIGvWrDVWVa1SRcqVKysnnXSSuUvgNbP2B3ZUbzK7Tqz7Wt+vXLVKfvjhB2ncqJExzc7adWtl2/YPpUjhy6RSpUrGNWfd33wfjmNm/a7LCqecSAMZH3/8iazfsF62frBNfVcuMb7DZdX32DodjluZZttS4VXPy67/Amxd+DHWqsF7BBBAAIFECriFMnhYnMgeSP65uDeJbx8Ee/Dx6Y5P4ntiSveMgNufs9z/e6Z7qAgCCCCQdgLcm6Rdl9PgFBUgkJGiHUuzEEAAgUgEwg1k9Oj+iLz62jQ5osIVBc4913gArB+W91TTibRs0cJ2Sj3KxJ3N75bdu3cboYeTTz5ZPdT9QIU4zpQpajqNyy67zLa/9UOd+jcaAYK///5b9u3bJ3nz5lWhirxql+ORDF1+ZfWQ+4XnxwYeDusH/0UuKyy7v/hchTH2yemnny4zZ0xXAYUC8vTQofL8Cy8aD8ULq3N/+NFH8smOHfJEnz5yxx23G6c3z/vXX3/J999/bwQ58uY92ThvcxXsaNumtbWagffmA+mb1YP4eQsWSA41hcqlKhQy6/UZRt3CsdAhgNZt2xlBDh1eOXTokBFcMUe7GPb001KmdCnJ7Fxu4Ydwzq8bc3OTW41AiZ4GxvrA/Z9//pHq110vl1xysYx/8UVj25QpU+XJgQNF96sOcGzbvl2+VaEKbTBo4ADb8W51CuD99+add9ZL85YtZeLL46VihQq2zebUNdYpdb7Zu9eor+4rfX79+q56aH7KKafIGwvmS548eQJlhNt+fUA410mgYMebh7p2M74TD6oRXR559FEpetVVkk9du9tUcEVfT3oKnLubN7cdFa5jZv0eaTkD+z8pt9x8s1GXYFOWTJg4UZ4cMFBy584lZUqVlg+2bZNDP/9sBI0e69070A6zbtYyAxt9/sbtL738GOvzTqX6CCCAQAoIuD0sJJSRAh0bRhO4NwkDKQa7uDnzHYsBrE+KcI6Owf2/TzqOaiKAAAIpLMC9SQp3Lk1LGwECGWnT1TQUAQQQCC4QbiAjuwoadO3SRVq3amk8cP/pp5/kscefkIWLFslCNbpDkSKFjZPokEaDRo3VqBhHZOxzz8nlRYoY6/d89ZU82LmLfKtGrli66I3AyBXBahZqypJ6DRpIwXMLyDhHIGPfvu+l20MPyW23NZVT1cN5vej6lFQPlKtXryajRowIhAWe7D9AZs6eLYvfWCjnqJEozEU/wK9YparxAL15s2bm6qCv5gPpPLlzy7ChTxsjepx44onG/tFYzF+wULp07SoL5s4NmJonD3UuvY8z/BDJ+SdOmiT9lMkS5aEDJeayecsWufW222XwoIHSqGFD0f1Yq05dqVO7llo3yJgiRYc2nho8RF4cP94IwVhHTXHWySzX+hppIGPM2Odl+MiRMn/OnICRDuHUqF1b7rrjDnnk4W5G8ZG0P9LrxFp//V4HMvR34ZJLLpHnnhklF110kbGLHu3lyQED5JVXX5NnVJ21m14icQzV79GUYw1PuAUy9Cg4D3V7WB5QUwW1bdPGCN7oUVRmzZotPVWI6ZFuXY31uh1m3axl6vWpsDj/BaoO/0ydPCkVmkYbEEAAAQR8LuAMZfCw2OcdGmb1uTcJEyoGuzm/Y7pIRsmIAazHi3B74EW/e7zTqB4CCCCQJgLcm6RJR9PMlBUgkJGyXUvDEEAAgfAFwg1kVKxQXiaoB+7W0RM2btokt91xpzzWu5fcdee/U3Rs2bpVmjS9TZ7s21ea3trEVpElS5dK+46d5KUXxomeYiLUEk0gI1u27LLyrTclW7ZsgaL1SBsVKleR4sWKybixYwL1/1n9a/9tavqSUqWuUaMA5A7sH20go0H9+vL0kMGB8nWB0ViEE8hwO5c+nzP8EMn5Dxw4IJWrVTcewndo314XZyw6uDJtxgxZv3aN8WBe+8xSQZZGajSMsy3Tz3z+xRdSs3Yd6ff440YgxjzeWSdzvfU10kDG5MlTpG///kb4Q/eruby/caMxssiFauoavUTS/kivE/Oc5qsOZMxVQYZXp05Ro5mUNlcbrzrsoUMsV155RSAUFImjGXpw6/doyrGGJ9wCGa3atJXdn++WZYsXixkuMhukw1B5cueRGdNeM651s27WMs19/fzq9mOsDmO4Tenj53ZSdwQQQAABfwq4/SBLKMOffRlurbk3CVcqdvs5R0rgOxY7W6+WROjJqz1DvRBAAAEEtAD3JlwHCPhXgECGf/uOmiOAAAIxEwg3kNFZTcVwv/oX89ZFj4xwTZmyUq+uehD/xBPGA9qXVGhjkBotoWmTJsboCdb99dQSr02fLvffe490fvBB66YM76MJZFQoV16GDH7KForQBevRH/oPHCQXFCok1117rZQocbWUK1dOzjzjjAznjTaQ0b9fP7m1yS228qKxCCeQ4XYufWJn+CHS8+sH8XvVdCCLFi4wDHVIoXK1asZDaD1tihnG+fW332T16tWya9encvjIYaPNf6nQwcsTJ8nDanSPdm3bBBycdQpssLyJNJChwyPNWrSUPXv2SJXKlY0ARGk1pUuxokVtYZxI2x/JdWKpvvFWBzKWLFsmH2zeZKuDuV/3Hj1llTJbu2plxI5m6CFYv4fbH2Y51vCEM5Ch+7xU2XJSqND5UrJECTVR0PGpgnRb9NRDH3/yiWze+L4KZuRO2REy+DHWvHJ5RQABBBDwqoAzlMHDYq/2VGzq5exvRu6KjWuoUjAPpZN62wg9pV6f0iIEEEAg1QSc9ya6fYzklGq9THtSVYBARqr2LO1CAAEEIhAIN5Ax4Ml+0uQWe+BAn6ZshYpS84YbpF/ffwMZ/QcMlMlTp8oN118ftBbly5UNjKgRbKdoAhkVy1eQwU8NCjzwtpb9wbZtskBNB/LO+vWyc9cu0Q+e9QgePbp3l5NOOimwa7SBDOtDbrOwaCzCCWS4nUuf0xl+iPT8c9XUM10ffsSYCuTyy4uI/lHqruZ3GyOLXFu9utEsPUVG23vulS/UiBhFr7pKzjrrLOORvQ7bvL1ypTFlzD3t2hr76v846xTYYHkTKpBx6NAhKa2CNp06dJD2D9wfOEpfH7PVFBorVMBh69YP5IeDB+W8ggXlKTW1SnkVttFLpO3Xx4R7neh9rYsOZKxXXmtWrnC9/gY9NVgmqGDQti2bjVEnInF0C1KY585qOc5Axi+//GKErAoXvkwuvuhi8zQZXp94/DEj0BSqbhkO8tEKZyCD0TF81HlUFQEEEEgTAecPsjygT+2O594kOf3r/JeoPPRITj8k4qz8mZoIZc6BAAIIIJBVAe5NsirI8QgkR4BARnLcOSsCCCDgKYFwAxnBQgDOQMb8BQuki344raa4OPPMM6Nua6wCGQfVg/oN774nNWvcINmzZzfqox/y6wfRg58eKr179pC7mzcP1DOWgYxoLGIZyIj0/Ed+/VUqVKykPJrJQ126SB81/ciSJUtljQo9mFNX6GDByxMnyhsL5sull1wScNPBgOtr1JSu6rhIAxnbP/xQGt18i7iFfnRA4uYmt9oCGZu3bJHsanqa4sX/na5Ej9Sybft2eVSNQvG9mlLlnTWrjdFZIml/pNdJoOH/vdGBjHnq2t+iRo44+eSTnZvl3vsfkH379sms12cYgY1IHEOFHrJajjOQoSteo1ZtqVixgjzx2GMZ2uFcEapuzn399Jm/4Pqpt6grAgggkL4C/O9V+vQ9gYzk9LXzO0ZINzn9kIiz8h1LhDLnQAABBBDIqoDzf68YJS+rohyPQGIECGQkxpmzIIAAAp4WiHUgY++330q1a69znZZk3bp3ZOQzo2TwoEFy4YUXhnSJVSBjqZpG4oEOHWXMs6Nto3boETLKqfBB5UoVxTodRywDGdFYxDKQEc35dbBg89YtsuSNN9ToFtWkbp3a8nifPoG+anfvffLJjh3y9vJlgYCL3vjCiy/KU0OejmqEjD/VdCclS5eR0tdcI+NfetE2wkTXbg/LHDVyx4MdOwZGyKh/001qWpDsMnfWTNu+kyZPlr5P9pelixfJJRdfLJG0P9LrJADy3xvtNnf+fFVPPZLHA7bNn+3eLTc2uEluv+026d2rp7EtEsdQoYesluMWyHi0Zy958803ZYFyP/vs/IG26FFQ7m/fwZjK5N572hnrQ9UtcKDP3jiHK+ZfHPusA6kuAgggkEYCPCxOn8529jUjNSSm73nokRhnL5zF2deEb7zQK9QBAQQQQMAp4BzRiUCGU4jPCHhTgECGN/uFWiGAAAIJFYh1IENXfuzz42TYiBFqWpI7pFHDhpIzZ05ZtWqVvPjSeDkrf36ZPfN1yXniiSHbGatAxtGjv8uN6gH+4SNHpE+vXlK+fDn58ccfZfbs2TJG1bOPekDevFmzQF30KBFl1BQZxYoWldatWqkH/iLVqlY12hDYyfImswfSkVqsXbtOWrRubUynUrVKVcmb92SpWKGCccbMzuU2PUik51+p+qlNu3uMQM2zY8bKjGmvGQ/gzSZPUKNjPKmmpWmr6ti4cSPJlSuXLF68WF6bPkP0yCMXX3SRGl2js1QoX944xK1OZlnW1569e8vrM2dJI9VXtWvXkhNznCgzZ82S348dkyVLl9oCGdNnzJCevftIwwYN5N577pH8KjSwdetWebxvPzl8+LAxbYg5oke47Y/0OrHWXb/XgYy3VqyQAgUKSCXVXw0a3CinnHKKbNq0SYaokVi00ytTp0iBc881Do3EMVS/Z7Uct0DGd9/tkzvVd+IEdfF3faiLXHnFlbJj5w6ZPWeOLF22XEYMGyr169Uz2hGqbsYOPvwPgQwfdhpVRgABBNJUgAeI6dHx3Jskr5956JE8+0SfmdBTosU5HwIIIIBANALcm0SjxjEIJF+AQEby+4AaIIAAAkkXiEcgQzfq5QkTZPLUV2TPnj1GG3PkyGGMUNG/X1859dRTM213rAIZ+kTf7N0rjz3+hOiwgZ7eQi//u/RSNY1JDXmwU0c12kI2Y535H31zq6fl+OWXX4xVegqM/CpI4raE80A6Egs9WkT7jp1kxcqVot/raUEWv7HQeDie2bmChR8iPb8eGeOHH36QCwoVkjeXLbWNQqHr9NTgITJpyhTRIyboRe83csRw2bxpswwbOVJOVUGEFW+9aRwXrE5OS11WPzW6xTw1FcrPP/9iTHdzXfXq0veJx+XKYsVtU5boY6dMmSrPjhkj+w8cMIo6+aSTpGzZssYoGlcXL24rPtz2R3qdWE+iAxnvbdwor0yZLI90725Mk6O36+te12fI4KcMJ/OYSBy/VN8hPY2I27RBWS3HLZCh66hHF9FTwGxUgZKjR48a1dbfgcdUcKZ2rZpmMySzazKwo4/e8NDDR51FVRFAAIE0FyCQkR4XAPcmyetnHnokzz7RZyaQkWhxzocAAgggEI0A94XRqHEMAskXIJCR/D6gBggggEDKC+zbt0/27z8gl132P2OUgGQ2+ODBg6IDKOecfbac+99IBYmsT7ItYnl+HZjZtWuX5MuXzwgaZM+ePSaUeiqZ77/fr/rnnEzL02EEHVY4okY/ufKKK4zwQ6iDwm1/NNeJGchY+V8QRU99owMeOviTN2/eoNWKlWOsynFWVBt//Mknkv+ss5LynXHWJxGfnT+8M2VJItQ5BwIIIIBANAIEMqJR898x/PCevD5z3hcyLHjy+iLeZyaQEW9hykcAAQQQiIUA94WxUKQMBBIvQCAj8eacEQEEEEAAAQRSUMAZyEjBJqZNk5w/vBPISJuup6EIIICA7wQIZPiuy6KqMD+8R8UWk4Oc94UEMmLC6slCCGR4sluoFAIIIICAQ4D7QgcIHxHwiQCBDJ90FNVEAAEEEEAAAW8LEMjwdv9EUjvnD+8EMiLRY18EEEAAgUQKEMhIpHbyzsUP78mzd94XEshIXl/E+8wEMuItTPkIIIAAArEQ4L4wFoqUgUDiBQhkJN6cMyKAAAIIIIBACgoMGDhItm3fLq9MmSwnnHBCCrYwfZrk/OGdQEb69D0tRQABBPwmQCDDbz0WXX39/MP7UTXNYahF3zfnypUr1C5J3ea8LySQkdTuiOvJCWTElZfCEUAAAQRiJODn+8IYEVAMAr4UIJDhy26j0ggggAACCCCAAALxEnD+8E4gI17SlIsAAgggkFUBAhlZFfTH8X794X39hg1yV/O7QyKfddZZsn7tmpD7JHOj876QQEYyeyO+5yaQEV9fSkcAAQQQiI2AX+8LY9N6SkHAvwIEMvzbd9QcAQQQQAABBBBAIA4Czh/eCWTEAZkiEUAAAQRiIkAgIyaMni/Erz+8t2nXTlasXBXSl0BGSB42JlCAQEYCsTkVAggggEDUAn69L4y6wRyIQIoIEMhIkY6kGQgggAACCCCAAAKxESCQERtHSkEAAQQQiL8AgYz4G8frDJu3bJGSJUqEVbwff3jf9emnUrf+jfLPP/+EbCOBjJA8bMyCgP6O6SXc7xmBjCxgcygCCCCAQMIE/HhfmDAcToSAhwUIZHi4c6gaAggggAACCCCAQOIFCGQk3pwzIoAAAghEJ0AgIzq3ZB+lHxR3fLCz8aB41IjhmVbHjz+8P9qjp8yYOdPWtpo1asjSZcts6whk2Dj4ECMB8zumi9PfsXBCGQQyYoRPMQgggAACcRXw431hXEEoHAGfCBDI8ElHUU0EEEAAAQQQQACBxAgQyEiMM2dBAAEEEMi6AIGMrBsmugTrg2J9bv2gOLNQht9+eN+/f79Uu+56OXbsWID3/PPOkzcWLpDiJUoG1uk3BDJsHHyIgYDzO6aLDCeUQSAjBvgUgQACCCAQdwG/3RfGHYQTIOATAQIZPukoqokAAggggAACCCCQGAECGYlx5iwIIIAAAlkXIJCRdcNEl6BHxtAPjK1LZqEMv/3wPmz4CHlu7FhrE+WRbl2lebNmclXxq23rCWTYOPgQA4GXJ0yQ8RMmZigps1AGgYwMZKxAAAEEEPCggN/uCz1ISJUQSIoAgYyksHNSBBBAAAEEEEAAAa8KEMjwas9QLwQQQAABpwCBDKeIPz5HGsrw0w/vv/72m1SpVl0OHToU6IzcuXPLmpUrJE+ePAQyAiq8iadANKEMAhnx7BHKRgABBBCIlYCf7gtj1WbKQSAVBAhkpEIv0gYEEEAAgbQWeH7cOLnwwguldq1aSXF4Y9Fi2bv3G2nTunXg/MmuU6AivAkpsP3DD+Xtt1fIH3/8IRdffLE0aniTsf++ffuM4aOzZ88e8vhU3UggI1V7lnYhgAACqSdAIMO/fRpJKMNPP7xPnjJVnujXz9YxTW6+WQYO6C+///47gQybDB/iKRBpKINARjx7g7IRQAABBGIl4Kf7wli1mXIQSAUBAhmp0Iu0AQEEEEAg6QLPjRkra9etkymTJsoJJ5yQ0PpUqlpVKpavIIOfGpTwc+uGPtS1m7y3caOsfOvNwPnjUacff/xRWrRqLW3btJb69erFzfj+9h3kgkKFpPsjD8ftHJkVnIg6HDx4UCpVrSa5cuWSS1QYo9Q110jPHo/KylWrpE27e6RWzZryzMgRgT7NrM6ptJ1ARir1Jm1BAAEEUluAQIa/+zfcUIZffnj/66+/pEat2rLnq69sHTNv9iy58sorCWTYVPiQCIFIQhkEMhLRI5wDAQQQQCCrAn65L8xqOzkegVQTIJCRaj1KexBAAAEEkiLQ+7HHZJEaKeK9DesT/gA7HuGHSBATFcjYv3+/VKxSVXr37GHMPx1JHSPZt2btOnLZZZfJ6FEjE96XZj0TUQczeDH2uWfl+uuuM08tGzdtkrtbtpLGjRpK38cfD6xPpzcEMtKpt2krAggg4G8BAhn+7j9d+3BCGX754X3xkiXSvmMnW6fo0O+0V18x1jFCho2GDwkSCDeUQSAjQR3CaRBAAAEEsiTgl/vCLDWSgxFIQQECGSnYqTQJAQQQQCDxAgQy4j9CBoGM2F7XZiDj1alTpHSpUrbCjx07Jjlz5rStS6cPBDLSqbdpKwIIIOBvAQIZ/u4/s/aZhTL88sP7zU1ula0ffGA2y3gdMWxoYHQ7Ahk2Gj4kUCCcUAaBjAR2CKdCAAEEEIhawC/3hVE3kAMRSFEBAhkp2rE0CwEEEEAg/gIffvSRvPvuuyL/iLyxeJF8smOndO7UUU5Q/6eXFi3uDoywoIfvfV9N67Fx4ybZsXOnXHH55VK6dCljmgi3KU4i2T+SETK+//57WffOO/Le++9LthOyydVXXy3Vq1eTs848MwOY/sF07rx5sn37h/LToUNy6SUXy+233y5n589v2zfcETL+/PNP2bJ1q6xZs1a+2fuNVKxQUSpXqij5HeXZClcfpk59RXRA4JfDh2XU6NFSs0YNI0CglYtfXdwwNI/Zt2+fvLN+vbz//kbJli2bYVyhQgXJf9ZZ5i6ur2++9Zbs+XKPsW3suHFyptr/lsaNjZ48+5yzpV7dusY2HWL44YcfpE7t2mpqj9Xy+ee75dprr5XLixSRTZs3y1bVvhZ3H+9382Rff/ONLFu2TOrWqSPnnHOOudr2Gm4d9EGHjxyRDRs2qHa+L/sPHJBrSpaUcuXKqT66xFam84OepkT3qb5mP/3sM5k2Y4Y0u+tOKXR+of+u2uNHlC5TWooVLWqs2KmuWT0lz21Nm8qvv/4q6ze8q9q6RS666CLVh5XlggsKHT8wBd4RyEiBTqQJCCCAQJoIEMiwd7R+6OrXZfyEiRmqXrJECRk1Yrj44Yd3Pcpa09vvsLVB3+evXvG25MiRw1ifCoGMqlUqS5XKlW3tTOUPm7dsTZnmbd6yxbUt+jumv2sEMlx5WIkAAggg4DEBP9wXeoyM6iDgCQECGZ7oBiqBAAIIIOBHgRmvvy7PjH5WP9uWQ4d+kqNHf1cP289Wn/4NZLy9fJnx46MOV3Tt9rDMX7jQmAqj0PnnyxdffCG7P/9cbrv1Vunb9wkVjvj3GO0Q6f7hBjL0v1Zr0aq1/Pbbb1K8WDF9Ktn+4YdyxhlnyEsvjJMihQsb6/R/9GgUbdrdIx99/LHxUP6UU/IZD+Fz58qlhhx+VYoUOb5vOIEMHcZo3qKl8S/mSpe6Rs4++2x59733RQco5sycKZdfXiRwbuebOvVvlMMqjKFddKAkX758kjfvyWq3E6T5XXdJ2zatjUP0D2wtW7cx9IsWvUr+/vsf0aEZ/QPw5IkTjBCMs2zzc49evWS1CoroRbddH3P66aepTycYVub0Jbqt76oQhLZasXKlnKWCG3oKFR3YGDFypIx+box88uH2wI/ORoHqP+ZoFFMnT5KyZcqYq22v4dZBB0KatWghu3d/Llepubh1PT/86GMjKPLUwAHSqGFDW7nWD7t27ZLWbdsZ1+zRo0flxx9/lDNVGMc6Gsbff/9t9Ev3h7tJm9b/2k6bPl169XlMdP0f6NBRzjj9dDnxxBNVCGmHnHzSSTJu7FgVCClrPZWv3xPI8HX3UXkEEEAgrQQIZIjoEIZ+aBzsYavfLwj9oPjOO24X3dfmUq5sWeO+zPzshVcd/D2g7lOtS768eaVAgQKBVakQyPj37yJ5A23iTWoI6FBGk6a32Rrz6Y5PbJ/5gAACCCCAgBcECGR4oReoAwKRCxDIiNyMIxBAAAEEEMggEGrKkl59+sjrM2fJiGHDpHatmoFj9UgF3R7pLq1btpRH1MNvc4l0/3ACGTr80fiWJsZIBhPHj1cP8U83TqcDDi3UQ/effjokK99603jIrjd079FT5sydK7NV6OSKKy439j2gRmK49oYaRqDgxXHPB0b/CCeQof/F3G133CmP9+mtflD+91/O6Qf/DRvfbJxz+muvSvbs2Y3zBPtPqClLPtu9W/QQySXViB/Dhj4daJ+uc8cHH5Rduz6VObNnyXkFCwYrPrC+Zu06RnDGDGEENqg3uq1z58+XG+vXU6OhdFKeFwQ2ZzWQEShIvQlWBx1sadCosRql4og8P2ZMIETzxx9/yICBg2SqCsuMeXa0XH/dddbiXN+bIRHnlCWH1GgopcuVl0e6dc0QyND/ynHokMFSoXx5o8wv9+yRtvfcK/oH+HffWWeMSuJ6Mp+tJJDhsw6juggggEAaC6R7IMNtqo9UvBx0CHf5m28GmubFQEagciHeEMgIgcOmpAro4NMbixbZ6kAgw8bBBwQQQAABjwgQyPBIR1ANBCIUIJARIRi7I4AAAggg4CYQLJChH6BfU6as3K6meni0+yMZDu3Zu7e89dbbsm7NaiPgEOn+usBwAhkvvvSSDH56qKxRozqcfbZ9ypF1696Ru1u1kheeHyvVq1Uz6qhHf9CjJzhHW+jyUFd5R02VsW71qogCGXrKi3oNbhI96kJrdS5z0UGKI2r6jaJXXZXpw/xQgYzn1TQjz44ZK8uXLDZG3zDL1696upAatWpLn5491ZQr9n/1ZN3PfB8sDKG3m4GMZeo8F190kXmI8ZqIQIae8kX/y63nxzwn16mpUqyLvna08eVq9BId/nGbCse6fzSBDB1Cuf++e63FyJixz8vQ4cPljfnzpLBllBXbTj77QCDDZx1GdRFAAIE0FkjnQEa6hDH8MkJGOF9DAhnhKLFPogX0d0yPkMGUJYmW53wIIIAAAtEIEMiIRo1jEEi+AIGM5PcBNUAAAQQQSAGBYIGMbdu3GyNTjH/xBde5hhctXmKM4LB08SLjAX+k+2u6cAIZ7e69T75RwYQF8+ZmeFCvR6rQ02Do0Q+sy44dO2Xz5s2y5+uv1PQffxub3lPTjOxQ4YptWzYHyglnhAx9cAf1MH/xkqXG/LxVKleSEuqHr9KlSkmePHmspw36PlQgQ4/S8NNPP4keacMtiKCnPblCTYsydMgQ1+3Wk2YWyNjw3nvGXNjO8yQikPGSGt3kqSFPywfKX08f41wef6KvLFP/enLNyhWZtjOaQIZzNA19fj0tjB7pZLgamaR+vXrOKvnyM4EMX3YblUYAAQTSUiBdAxl6ehIdyHAurVrc7Vzlm8/jJ0zMUFfzQXGq/PCeCoGMqlUqu/69LkPnpdAK/fe2VFheVt8x59RG5ndMt49ARir0Mm1AAAEEUl8gVe4LU7+naCECdgECGXYPPiGAAAIIIBCVQLBAxrLly+X+9h1k1uszpFjRohnKXr9+gzRr0UKmTJwo5cqVlUj31wWGE8ho0LCR5D/rLHnxhXGZPqjXZT773BgZ+cwzcsYZZxijV+T4bzqRnZ/ukn37vpftW7cEygk3kKHLXbJ0qTHc8sZNKuihprs4SYUxuj7URZo3a6Y3h1xCBTJubNhQzj3nXBk3dkygXtbC7rirmbF+yqSJrtut+2YWyHhv40ZjepdIAhm63e07djLm+i5bpoz1dK7vg9Wh/4CBMl1NI7Nl4/uu7Rg5apSMeX6cEZg58cQTXcs2V0YTyFi+dIlcaJmmRZe1a9cuqXtjA2MqkwY33mgW7+tXAhm+7j4qjwACCKSVQLoGMpyjY1gfqvrxAnC2R7fB2qZU+eE9FQIZHdu3l44d2vvxMkvrOmf2HdM4BDLS+hKh8QgggIBvBFLlvtA34FQUgRgJEMiIESTFIIAAAgikt0CwQMb333+vAhPVZNjTQ+TG+vUzIL322jR5rG9f2fjuBsmbN69Eur8uMJxARp/HH5dFixbLhnfWZZga5ODBgzLuhRfkpptuUqNIXC6//PKLlK1QUerXrSuDnxpke/Df7eFH5I3FiyMOZHz+xRdGAKNa1aoBg6++/lqGDRsu8xculAVz58rlagSLUEuoQIb21+EWPdKIMyihy6xQuYo0bNBAHlFTpmS2BAtD6OPcwidmeXr0ioFPDZa3li+TCwoVMlcbry+8+KIxssUrUyZLVgIZ8xcslC5du8raVasyTD2jT/Rg5y7GiCYzp093dbBWKppAxpvLlmZoG4EMqyrvEUAAAQQQSKxAOgYy3EbH0NMN6ACDH5dwHhSnyg/vBDL8eIX6v87hfMd0Kwlk+L+vaQECCCCQDgKpcl+YDn1FGxGwChDIsGrwHgEEEEAAgSgFggUydHHX16gpp5xyirw+fZpk/2+kCb3+zz//lPo3NZRcuXLKnJkzAw/QI90/nECG+SB/iApYNFTBC+syWE2BMU4FBubNmS1XXnGFbP/wQ2l08y3Sv18/ubXJLYFdDx8+LDXr1JFDh36OOJDxZP8BMvXVV42pNM4888xAmXpalPqqPv1UYOS225oG1ru9CRXImKMCHd0e6S5jnh0tN1x/ve3wufPmSVcVJBn73LNy/XXX2ba5fYg2kLFx0ya57Y47pcuDD8p9994TKPrYsWNSp159+VKNCJLVQMa3334nVa+9Vlo0by49ezwaOId+o8uvq85z5x13SI9Hu9u2uX0gkOGm8u86RsgIbsMWBBBAAAFvCRDIsI8k4a3eybw24T4oTpUf3glkZH5NsEdsBcL9jumzEsiIrT2lIYAAAgjERyBV7gvjo0OpCHhXgECGd/uGmiGAAAII+Ehg+IgRxlQRPbo/Iuedd56cf/75xmgTugnr1r0j7e67z5iyRD+ov0BN+fDll1+Kfui7e/dueenFF+SakiUDrY10/3ACGX/88Ycxz/bbK1bI/aoOVapUlV9+/lkWLnpDdFijngpamKNh/PXXX1K+UmU5JV8+48F+8WLFZPfnn8vTQ4fJr7/+KjvVFBW9VBigVs2acu6557qOGuGskw5e3NK0qVz2v/9Jr5491OtlqszdxtQoK1aulDmzZhphkACCy5sj6txlypU3HFu3aqUCLCJ6xI2cOXOKbp+eGmb9hg3S4YEHVPsqyz9//y0rVq6S0c89JzVr3KCm1BhiC8S4nMJY1fT2O+QL1T99evU0ytbtP+ecc4xtoUbI0MGLBo0ay4EDB6RpkyZy7bXV5YcffpCxagoRXUcd2Ag3kBGqDmPGPi9Dhw+X25RnYzVVy6mnnSoffPCBDHl6qJx22mkyacLLcpaaniazhUBGcCECGcFt2IIAAggg4C2BdAxkvDxhgoyfMDHQEdapPQIrffAmkgfFqfLDO4EMH1yYKVTFSL5jutkEMlKo82kKAgggkMICqXJfmMJdRNMQcBUgkOHKwkoEEEAAAQQiE9BTcnTt9rBsVQ/G9XK7Gu2h3xNPBAp55531asqKIfLxJ5+IDjzkyJHDCCD0Vg/93YZXjmR/Z/ghcFLHGz0ixxNq1IslS5bKwR9/NLaeeuqpctutt8pDXTrbpjLRo2R07PSg7PnqK2M/PQ3I3c2ayQP33y93t2wpH338sTw1cIDc3LhxWIEMXYieUqRf//6yY+dOo0xtoMMOd9x+W4ZRO4wdXP6jH5S/PHGiMa2K3vzOmtWSP39+Y08dynhcTf+ybNnyQPv0tjq1a0nPRx8NK4yhC1q6bJkMGDhIvv7mG6PckcOHST01fYteQgUy9HY9/UuXrt1E/+VI1yd37lzStnVrKXF1CWlzzz0ydfKksKYsCVUHfZ4JymDSlKnGNDD688knnSRlypSRQapPzrKMQKK3BVsIZASTESMsNWr06MAO5cqWNfousII3CCCAAAIIeESAQIZIqxZ3S8sWLTzSI+FVI9IHxanywzuBjPCuD/bKukCk3zF9RgIZWXenBAQQQACB+Aukyn1h/KU4AwLeEiCQ4a3+oDYIIIAAAikucPjIEWNUjP9deqmcpB6iZ7ZEun9m5ZnbP/3sMyOgcNGFFwamSjG3WV+/2bvXGPHhoosuklPVtCuxWHSZ+/btM0bJyJcvbyyKzFDGZ2rkER34uFCNRpKMRf/YfECNjlFAjSCSLVs2McMP4QYywq2znsZl//4DUqRI4bADJ+GWnc77MUJGOvc+bUcAAQT8JUAgw3+BjGgeFKfKD+8EMvz154tfa+scRUe3I5yRdAhk+LXHqTcCCCCQXgKpcl+YXr1GaxEQIZDBVYAAAggggAACCMRZIF6BjDhXO22LJ5CRtl1PwxFAAAHfCRDI8F8gY/OWLcZUgubFFs6D4lT54Z1AhtnrvMZbwBrKCOc7putDICPevUL5CCCAAAKxEEiV+8JYWFAGAn4SIJDhp96irggggAACCCDgaQE9zcncufNUHf+x1fPNt96WD7Ztk7ffXC6Fzj/fto0P3hMgkOG9PqFGCCCAAALuAgQy/BfI0D1phjLCfVCcKj+8E8hw/x6zNj4COpSxectWGTVieFgnIJARFhM7IYAAAggkWSBV7guTzMjpEUi4AIGMhJNzQgQQQAABBBBIVYEtW7dKl67dVB7DHsjIkyeP1KtbV+6/795UbXpKtYtARkp1J41BAAEEUlqAQIY/Axn6otShDB3ICGdJlR/eCWSE09vskywBAhnJkue8CCCAAAKRCKTKfWEkbWZfBFJBgEBGKvQibUAAAQQQQAABBBCImQCBjJhRUhACCCCAQJwFCGT4N5ARyaWRKj+8E8iIpNfZN9ECBDISLc75EEAAAQSiEUiV+8Jo2s4xCPhZgECGn3uPuiOAAAIIIIAAAgjEXIBARsxJKRABBBBAIE4CBDIIZMTp0opLsQQy4sJKoTESIJARI0iKQQABBBCIqwCBjLjyUjgCcRMgkBE3WgpGAAEEEEAAAQQQ8KMAgQw/9hp1RgABBNJTgEAGgYz0vPIT12rnfWHH9u2lY4f2iasAZ0qYAIGMhFFzIgQQQACBLAgQyMgCHocikEQBAhlJxOfUCCCAAAIIIIAAAt4TcP7wXq5sWZk6eZL3KkqNEEAAAQTSXoBABoGMtP8SxBnAeV9IICPO4EksnkBGEvE5NQIIIIBA2AIEMsKmYkcEPCVAIMNT3UFlEEAAAQQQQAABBJIt4PzhnUBGsnuE8yOAAAIIBBMgkEEgI9i1wfrYCDjvCwlkxMbVi6UQyPBir1AnBBBAAAGnAIEMpwifEfCHAIEMf/QTtUQAAQQQQAABBBBIkIDzh3cCGQmC5zQIIIAAAhELEMggkBHxRcMBEQk47wsJZETE56udCWT4qruoLAIIIJC2AgQy0rbrabjPBQhk+LwDqT4CCCCAAAIIIIBAbAWcP7wTyIitL6UhgAACCMROgEAGgYzYXU2U5CbgvC8kkOGmlBrrCGSkRj/SCgQQQCDVBQhkpHoP075UFSCQkao9S7sQQAABBBBAAAEEohJw/vBOICMqRg5CAAEEEEiAAIEMAhkJuMzS+hTO+0ICGal7ORDISN2+pWUIIIBAKgkQyEil3qQt6SRAICOdepu2IoAAAggggAACCGQq4PzhnUBGpmTsgAACCCCQJAECGekRyNCXFw+Lk/MlS8fvWHKkk39WvmPJ7wNqgAACCCCQuQCBjMyN2AMBLwoQyPBir1AnBBBAAAEEEEAAgaQJEMhIGj0nRgABBBCIUCAdHxa/PGGCjJ8wMSDVqsXd0rJFi8DnVH3jfFg8dfIk0aFRlvgK4B5fXy+V7uzrT3d84qXqURcEEEAAAQQMAQIZXAgI+FOAQIY/+41aI4AAAggggAACCMRJgEBGnGApFgEEEEAg5gIEMtJnhAzn/QlTZ8T865ShQOcDD70DD+kzMKXMCgIZKdOVNAQBBBBIaQHn/QmjuqZ0d9O4FBIgkJFCnUlTEEAAAQQQQAABBLIu4HzgwV9us25KCQgggAAC8REgkJG+gQx9RREOiM/3yizV+f3intCUSc1XAhmp2a+0CgEEEEg1AQIZqdajtCddBAhkpEtP004EEEAAAQQQQACBsAQIZITFxE4IIIAAAh4QcD4wTodpLNJ1yhJ9uTkfGDNKRny/hE7vdPh+xVfU26U7+5vAk7f7i9ohgAAC6SpAICNde552+12AQIbfe5D6I4AAAggggAACCMRUgEBGTDkpDAEEEEAgjgIEMtJnhAx9GTnvUfQ6HhprhdgvTmtGx4i9sddKJJDhtR6hPggggAACbgIEMtxUWIeA9wUIZHi/j6ghAggggAACCCCAQAIF+AE+gdicCgEEEEAgSwIEMtIrkKEvFudDY0bJyNJXyPVg54MOvVOnDu2lQ/v2rvuzMjUEnN8twk6p0a+0AgEEEEg1Aed9CqHRVOth2pOqAgQyUrVnaRcCCCCAAAIIIIBAVAIEMqJi4yAEEEAAgSQIEMhIv0CG8z5FX3aEMmL35XM+5DBL5uG8KZG6rwQyUrdvaRkCCCCQSgLOexUCGanUu7QllQUIZKRy79I2BBBAAAEEEEAAgYgFnA86+MttxIQcgAACCCCQIAECGekXyNCXlvPBsV5HKEMrZG1xPuAwS2N0DFMitV+d3ytCOKnd37QOAQQQ8KuA836F36z82pPUO90ECGSkW4/TXgQQQAABBBBAAIGQAgQyQvKwEQEEEEDAQwIEMtIzkOH8Id68JAllmBKRvwYzJYwRuaVfjyCQ4deeo94IIIBAegk471kIZKRX/9Na/woQyPBv31FzBBBAAAEEEEAAgTgIEMiIAypFIoAAAgjERYBARnoGMvTF5Pwx3rzA9I/yHTu0F/3KEp6A897PPIowhimRHq8EMtKjn2klAggg4HcB5z0ggQy/9yj1TxcBAhnp0tO0EwEEEEAAAQQQQCAsAeeP8vzlNiw2dkIAAQQQSIIAgYz0DWToy835g7z1EiSYYdVwf++857PuRRjDqpEe7wlkpEc/00oEEEDA7wLO+z9+s/J7j1L/dBEgkJEuPU07EUAAAQQQQAABBMIScP44z19uw2JjJwQQQACBJAgQyEjvQIa+5Jw/yrtdhvpeRv8/y78Co0aPDklBGCMkT8puJJCRsl1LwxBAAIGUEnDe+/GbVUp1L41JYQECGSncuTQNAQQQQAABBBBAIHIBAhmRm3EEAggggEByBAhkEMjQV57+YV7fv+hXlqwJEMbImp+fjyaQ4efeo+4IIIBA+ggQyEifvqalqSVAICO1+pPWIIAAAggggAACCGRRgEBGFgE5HAEEEEAgYQIEMghkWC82ghlWjcjeE8SIzCsV9yaQkYq9SpsQQACB1BMgkJF6fUqL0kOAQEZ69DOtRAABBBBAAAEEEAhTgEBGmFDshgACCCCQdAECGQQy3C5CghluKhnX6SG+y5crKx3at8+4kTVpJ0AgI+26nAYjgAACvhQgkOHLbqPSCAiBDC4CBBBAAAEEEEAAAQQsAgQyLBi8RQABBBDwtACBDAIZmV2g+kd7vbzLdCYBqrIqiKHDGCwIWAUIZFg1eI8AAggg4FUBAhle7RnqhUBoAQIZoX3YigACCCCAAAIIIJBmAgQy0qzDaS4CCCDgYwECGQQyfHz5UnUEPCVAIMNT3UFlEEAAAQSCCBDICALDagQ8LkAgw+MdRPUQQAABBBBAAAEEEitAICOx3pwNAQQQQCB6AQIZBDKiv3o4EgEErAIEMqwavEcAAQQQ8KoAgQyv9gz1QiC0AIGM0D5sRQABBBBAAAEEEEgzAQIZadbhNBcBBBDwsQCBDAIZPr58qToCnhIgkOGp7qAyCCCAAAJBBAhkBIFhNQIeFyCQ4fEOonoIIIAAAggggAACiRUgkJFYb86GAAIIIBC9AIEMAhnRXz0ciQACVgECGVYN3iOAAAIIeFWAQIZXe4Z6IRBagEBGaB+2IoAAAggggAACCKSZAIGMNOtwmosAAgj4WIBABoEMH1++VB0BTwkQyPBUd1AZBBBAAIEgAgQygsCwGgGPCxDI8HgHUT0EEEAAAQQQQACBxAoQyEisN2dDAAEEEIhegEAGgYzorx6ORAABqwCBDKsG7xFAAAEEvCpAIMOrPUO9EAgtQCAjtA9bEUAAAQQQQAABBNJMgEBGmnU4zUUAAQR8LEAgg0CGjy9fqo6ApwQIZHiqO6gMAggggEAQAQIZQWBYjYDHBQhkeLyDqB4CCCCAAAIIIIBAYgUIZCTWm7MhgAACCEQvQCCDQEb0Vw9HIoCAVYBAhlWD9wgggAACXhUgkOHVnqFeCIQWIJAR2oetCCCAAAIIIIAAAmkmQCAjzTqc5iKAAAI+FiCQQSDDx5cvVUfAUwIEMjzVHVQGAQQQQCCIAIGMIDCsRsDjAgQyPN5BVA8BBBBAAAEEEEAgsQIEMhLrzdkQQAABBKIXIJBBICP6q4cjEUDAKkAgw6rBewQQQAABrwoQyPBqz1AvBEILEMgI7cNWBBBAAAEEEEAAgTQTIJCRZh1OcxFAAAEfCxDIIJDh48uXqiPgKQECGZ7qDiqDAAIIIBBEgEBGEBhWI+BxAQIZHu8gqocAAggggAACCCCQWAECGYn15mwIIIAAAtELEMggkBH91cORCCBgFSCQYdXgPQIIIICAVwUIZHi1Z6gXAqEFCGSE9mErAggggAACCCCAQJoJEMhIsw6nuQgggICPBQhkEMjw8eVL1RHwlACBDE91B5VBAAEEEAgiQCAjCAyrEfC4AIEMj3cQ1UMAAQQQQAABBBBIrACBjMR6czYEEEAAgegFCGQQyIj+6uFIBBCwChDIsGrwHgEEEEDAqwIEMrzaM9QLgdACBDJC+7AVAQQQQAABBBBAIM0ECGSkWYfTXAQQQMDHAgQyCGT4+PKl6gh4SoBAhqe6g8oggAACCAQRIJARBIbVCHhcgECGxzuI6iGAAAIIIIAAAggkVoBARmK9ORsCCCCAQPQCBDIIZER/9XAkAghYBQhkWDV4jwACCCDgVQECGV7tGeqFQGgBAhmhfdiKAAIIIIAAAgggkGYCBDLSrMNpLgIIIOBjAQIZBDJ8fPlSdQQ8JZCoQMbRo7+rdv8Ts7Zny5ZNcubMGbPyKCj1Bf7880/R/29dTjzxRMmePbt1Vdjv//77bzl27Jht/xw5coj+f5bECxw9etR2Uj/9GfH777/LP//Y/3zMnTu3rT18ECGQwVWAgD8FCGT4s9+oNQIIIIAAAggggC7l3eEAAEAASURBVECcBAhkxAmWYhFAAAEEYi5AIINARswvKgpEIE0FEhHIOHTokJQuVz7DA8eskF9dvLi8Pn2anHDCCVkphmPTSOCpwUPkhZdesrV49KhRUrtWTdu6cD+sWLlS2t5zr+26bt7sLunTq1e4RbBfjAR+/e03KV6ipK20IoULy8L582zrvPqhVNlyov+cNJd8efPK5o3vmx95/U+AQAaXAgL+FCCQ4c9+o9YIIIAAAggggAACcRIgkBEnWIpFAAEEEIi5AIEMAhkxv6goEIE0FSCQkaYdn4bNJpCRup1OICN1+9baMgIZVg3eI+AfAQIZ/ukraooAAggggAACCCCQAAECGQlA5hQIIIAAAjERIJBBICOcC0n/cK+XDRv+fQ3nmFTcp1y5skazypX99zUV20ibohcgkBG9HUf6S4BAhr/6K5LaEsiIRMu/+xLI8G/fUfP0FiCQkd79T+sRQAABBBBAAAEEHAIEMhwgfEQAAQQQ8KwAgQwCGcEuTn0/o3+wN8MYwfZL1/VmKKNjh/Zivk9XC9r9rwCBDK6EdBEgkJG6PU0gI3X71toyAhlWDd4j4B8BAhn+6StqigACCCCAAAIIIJAAAQIZCUDmFAgggAACMREgkEEgw3khOe9jnNv5nFFABzIIZmR0Sbc1iQhk6IelAwcNEvnHXffHn36SxUuW2Dbmzp1LGt50k5yg/s9tOf/88+Wedm3dNrEOAVcBAhmuLCmxkkBGSnRjpo0gkJEpETsg4EkBAhme7BYqhQACCCCAAAIIIJAsAeeDDP0j/dTJk5JVHc6LAAIIIIBAUAECGQQy9MVhjIShpiMZNXp00GuFDZkLEMzI3CiV90hEICMzv48++lhuatxY/vnneGIjf/78sm71KjnhBPdARmZlsh0BpwCBDKdI6nwmkJE6fRmqJQQyQumwDQHvChDI8G7fUDMEEEAAAQQQQACBJAgQyEgCOqdEAAEEEIhKgEAGgQznj/LBLiQdNihfrmywzSm/fr0KrJiLNgu1dGzf3hgxI9Q+bEs9AQIZqdentMhdgECGu0sqrCWQkQq9mHkbnPd+/COizM3YAwEvCBDI8EIvUAcEEEAAAQQQQAABzwgQyPBMV1ARBBBAAIFMBAhkpHcgw/mDvPNy6dShvXRQ4QKWjALaTt/zBQtnEMrIaJbqa1IpkPHnn3/K2ytWyM6du+Tbb7+VQz//LOecc7acV/A8qVixghQpXDis7vz6m2/k999/t+176SWXBD7/dvSobN26VXap85x2+mly5ZVXinV7YEf1Ztv27fLZZ7vlZ1WXK664XIoXKya5cuWy7pLhvR4pZPfnn9vW58mdWwoWLBhYt0Wdf+XKVfL9998b7Tz33HPkwgsukNq1aokeXSTaRY9Wsn7Devnuu+/ku33fS25V13PPPVcKFSok119/nZxx+ulhFf3DDz/IT4cO2fY9T9U/t2qHXv766y/ZtetTOXzksGTLlk2uKVnStq/1w5Fff1X77pJPPvlEduzYqdp7SAqdX0guvPBCKVKksFyl/MNZkh3I+ElNzfPDwYMZqnriiSfKBcrXXDKz09f5xk2b1DX+nfz0449y5llnGX1frFjRqEeUOXzkiLz11tvyubru9u3bJz//8oucc3Z+9f05R0qqvildqlSmZetrfP+BA2YzjNezzz5b8uXNa1v3zTd75ejvR23rrB8uvugi45ow1+n2frlnj/nReD0pTx4pUKBAYF1WAxm67svffFO++OJL+fa7b0Wfs2CBguq6P19uuP56OUsZR7N89fXXsnzZctnz1VdG3xcocK7RVyVLlFB/HlwRKLJU2XJyyPJ90WabN74f2B7sjf4erVi5UrZt2y7f7P3GqLc2L1K4iNSpXVvy5Pn3+/bL4cPGnxXWcvKrNp1yyinWVUHfb9q8WTYZ19y3su/7/cafAwULFpBi6s+zihUqZHptBC04wg3O+z8CGRECsjsCSRIgkJEkeE6LAAIIIIAAAggg4E0BAhne7BdqhQACCCCQUYBARvoGMpw/xluvDoIYVo3Q70MFMwhlhLZLta2pEMjQ4Ylnn3tOpk2f4frA2+yzMqVLy4OdOop+iBdqaXxLE/lg27bALnralJ0ffyT6gXqnBzvLu++/bzz4DOyg3lStUkWeGTlCTj75ZGP1N3v3yv0PtJcPP/rIupvoh+86fPD0kMFSQAUd3Bb9cPnqktfYpnDRI/1MnjhRDqsHq+3uvU/eU3VwW3LkyKEexNaSXj17yplnnOG2i+u6adOny4SJk2TXp5+6btcrddmVK1WSh7p0lisuvzzofnqDW/hh6uTJUuLq4tL14Ydl1eo1ckSFAPSSO3cu2bZlS4aHutqh/4ABMn3G6zYL4yDLf6pXqyYPd+sqhS+7zLI241u3Oo0eNUqFWGpm3DmMNfpBeNt77rXVrXmzu6RPr14ZjtYhhyZNb5O9KihkXbJnzy6jRgyXWjWP12HQ4MHy4kvjrbvJK1MmS9kyZeT1mTNl+MhRRmjCtoP6cMnFFxvXd906dZybgn7W4Yihw4fJUhUaOKqCRsGW884rKLc3bSptWrc2rgO3/ebMnWf0rXVbr0cflRYt7raukutuqGEEFGwrLR+WL10iF6mwjbl8+tlnUrtuPfOj8XpTgxtl6JAhgXXRBjJ0cOvpYcNk8ZKlGUJYZuH6utdBp64PdZHzzzvPXB3yVYe6nniir6xcvVr+/vtv1311mT26d1dBqwISTSDjlVdflefGPm+Ep9xOoMMWw59+WqpVqyrzFyyUzg89ZNvNrW9sO6gP+nrT16Lug2CLDoK1bdNablPXR7wX5z0ggYx4i1M+ArERIJARG0dKQQABBBBAAAEEEEgRAQIZKdKRNAMBBBBIAwECGekZyHD+EG9e6gQxTInIX533f2YJhDJMidR/9XsgQ//L8/YdOspHH38cVmfpB+DdH+4mLVu0CLq/WyDj7TeXy333PyAfq1Eagi2V1CgcL44bZwQNbr39Dtm9e3ewXY0RESZPmqhG7zg+6oW5c7BAxjMjR0qLVq0zhDzM46yv+l/iPzd6tBQrWtS6OsP7A2pEg+49ehr/yj7DxiArdKikc6dOxkNYHVZxW9zCDzqQMX3GDJk7b57tELdAhg6ydH6oa0hDayG6XwcPGig3NWhgXW1771anRAQydIim6R13GKN7WCukRwYZPGiQNLzJXudggYztahSEAU89ZS0iw3td5vChT0u9unUzbHOumD1nrvTt10/06AnhLnoUjmHqIb8excK56FFbbrnV/lC+VcsWRujA3FeHp4qVKBk0pKD3Gzd2jFx37bXmIbJ27Tq5u1WrwGf9xvm/UdEEMlarUFCXbt3kRzXKSDjLaaedZoSuKpQvH3L3tevWSafOXYwAV8gd1UYdonl9+jS5VoVUwh0h47ffjqrvbA9Z+MYbmRVvBMBGjxopv/76W0SBDD0qTc9evWXBwoWZnsPcQYdk+qvryRwFx1wfy1fnfSCBjFjqUhYC8RMgkBE/W0pGAAEEEEAAAQQQ8KGA8wd5/nLrw06kyggggECaCBDISL9AhvNHePNSJ4xhSkT/6rwHNEtyPvAy1/OaWgJ+DmToB5j1G9ykphj4LuJO6dOrpzRv1sz1OGcgw3WnICv11A6/qOkeduzcGWSP46v1v7afO3uWnHrqqcdXqndugQw9ZUmek06Sgy5TXtgOtnzQ0ywsmDsn6HQLeuqVW9WoDaFCJpbiMrx9sGNHaf/A/RnW6xVu4QfXHdVKZyBDT9lxfc1axmggwY5xW59XjU4yT7XXOv2HdT+3OsU7kHHs2DFp1aaNmgbmXWtVjPdP9n3CdVQBt0CGnhbi3ffeyzAyS4ZC1Qo9osMLY8dKlSqV3TYb6+bNXyBdunYNuj3UBj0lxtxZMzNMjaODDWXKV7AdqoMhI9UIHOaivxf1brQHUMxt5qsOTOmROMxl1uzZ8nD3R82PxuvTahQRa5Al0kCGnoLj9jvvMqbOsRWcyQdt+/q0aVK06FWue37+xRdyU8NGxnfYdQeXlTlz5hR9nViXUFOWPKIsZiqTcBdd5zPUaDl6eiPrEmyEDD1lUtt77lEhrVXW3cN6r0d6efaZUWHtG81OzntBfrOKRpFjEEi8AIGMxJtzRgQQQAABBBBAAAEPCzh/jOcvtx7uLKqGAAIIpLkAgYz0C2Q4+1x/BQhjxO4PAud9oFnypzuCjwZg7sOrvwX8HMi4T00Jsmz58gwdoB/IX3XVlXL6aafLV19/Le9v3Ci/qekvrEuuXLlkzszX5TKXaS6CBTL0aBBXFy8uhQqdL+vXb5D9anSJUMs555wjJUuUkP3794t+AKwfdDqXx/v0lrvuvNO22i2QYd1BjwZx2WX/k8sLFxFRA1Ts2LHTCIC4TY1QrWpVNWrH8xmmA9HlPdS1m8ydP99atPFet7PQ+edL4cKFjVDETvUQ/aDLKAJ6vxeeHyt6yhDn4hZ+cO5jfnYGMvo8/ri88upr5mbjVU+/0KJ5M7lcTZWiR+jQo4+8PGGifKemArEuVdSUKuNfetG1vW51imcgQ/dHp86dZdHiJdYqGu+DPQzXG90CGdYCzjzzTDVlTBHJeWJOYyoJPUqMczkpTx5ZsugNKVCggHOTEcDR06e4TVGigwD6O5E/f37DWAcM/vzzzwxllLrmGpk6eVKG6UtKliptG3FDB5Ree2Vq4PjFS5ZI+46dAp/1NEL6d4fRasohc7n1lltkQP8nzY8yRoVLhg4fEfis3+hRJUpcfXVgXSSBDB2Yqn/TTaKna3EuxYsXk0svuURyZM8hn6lrbLOaSsf5vdXbdZDKORLEX3/9JTffeqts3/6hs1jD6YorLpfC/7tMflfhC/2d0tMDOcs2DwwWyNAjVjzYxT71iHnMuWoKpCuKFBH9+uWePcZIOtZRN8z9zNdg1+AE9b16cuBAc7fA6+mnny4llbm+pr5Xf6bpEVH0n23O5amBA+Tmxo2dq2PymUBGTBgpBIGECxDISDg5J0QAAQQQQAABBBDwsoDzh3gCGV7uLeqGAAIIpLeA8+G8fiig/3crlZeXJ0yQ8epHcnNppeZkDzXkvrlfqrw6HxoTxoh9zzrvBfUZGCUj9s5eK9H53UpGCOejjz6Wm9QDPOvDSf1AeN3qVa4P1rWhDjg0VdOCWI/R/xL8iccekya33Cx66gZz0f8yvGfvPvL2ihXmKuO1dq1axhQEzmk33AIZeoSKZ0c/I1WrVDGO1Q9f16xdK/e37yB6Ggbn0kg98H2yX1/RwQ+9fLN3rzz2+BMZpgapXKmivPzSS7Z2hgpkFClSWAY8+aQRDLGe84Nt2+RRNfWI28gc8+fMEf0w2Lp88skOubFhQ5uf3n7VlVfKIPVA9QoVfLAuM15/XQYMesoY/cO6Xoc2Fs6ba6u/3u4WftDrtUczFUC59trqxkgWOlyh/XXIQC/6AfINtWrbppHQARQ90oczPPPzzz9L7Xr11L/8P/5QWPfTlk0bRR/jXNzqFM9ARr8n+8tENU2Lc+ncqaM8cL/7yCJ632CBDG3Xu2ePDKNq6NEuevXunWFUhoe7PiTt2rZ1nl7cgky6Hx647165V42MoL9H5vLtt99Krz59ZOWq1eaqwKueCkN/h6xLw5tvtgUS9CgwK956M7DLc2PGyLARIwOfm991p1RVoaE27e4JrNNhj2mvvhL43OcxFdB5zR7QeW/9O6IDAuYSSSDDLeChw1N6qpeyZcqYRRqv29Q0MZ0feki++PJL2/rHlHczVXfrslKNKNG6XTvrKuO9bo8OmOggh3XR4YIePXsZ4Qnrev0+WCBDjy7i/I7rkWG6qODPXXfeYftzT09tMlKNVqGDS/rPK+fiFsjQIZ0KlSrbQjX6uLvUlDtd1fWkz2Uuet9nnxsjY55/3lxlvOqRedasXGG7jmw7ZOEDgYws4HEoAkkUIJCRRHxOjQACCCCAAAIIIOA9AeeP8AQyvNdH1AgBBBBA4F8BAhnpNUIG9yiJ++Y7rfWZk/GAPnEt5kx+DWT0VsGLV1+bZuvAHt0fkVYtW9rWmR/09BwNG98sn332mblK9FQB69euET36gnVxC2Tc266tdFUPZp3LE337yeSpx0cA0Nv19ABvL18mJ1seXur1+qFuDRU2sIZI9EPaxW8stAUaggUyCqp/mb5o4YIM5eqy9XL4yBGpU7dehilcWrVoIT0e7f7vTv/9120UCh2u0P/y/0TLA3nrQdu2b5dbbm2a4eGuHgFBj4RgXdzCDzokoQOUzn2tx+n3f/zxhxF2eWPRIln+5ltSt3ZtI9ziDM7ofUeOGiXPPHt8dAW9bvnSJXLRhRfqt7bFrU7xCmQ8P26cDBl6fKoOsyLt1PQlD3cLPVVIsECGc5oOs0z96nY+Z7BB77dPjShS9drrMvTh8KFD5cb69fQursu9990vy996y7atUsWKMvHl8bZ1nTp3kYVvvBFYp4MeH237IHB9P9RNjcoyb35guw42VKtWVa67oUZg3WmnnSbvb1gf+HzPvffJm2+/HfjsFlaIJJChv4N65A9z0dflDBX40KNjuC16JIubGjW2TStSvFgxmfX6DNvuzrbrjTrYNFuNxGMNuVgPOqBG2alZp67ocJF1cWujHnlDB16cix4Bx22UGnM/ZwjGXO8WyJi/YKERQDH30a83XHedjHnu2UAfWrfp990eeURmz5lrW/2Suv51v8Z6IZARa1HKQyAxAgQyEuPMWRBAAAEEEEAAAQR8IuD8AZ5Ahk86jmoigAACaShAICO9AhnOB8bpMCJKMr/WTm9GyUhmb8T/3M7+TkYAJ5oRMspWqCgHDx4MAOkpGja8s07yqNdgy5ixz6upD4bbNg8dMlhuatDAts4tkDH9tVflmpIlbfvpD9OmTZeeagQB61Kvbh0ZMWxYhgeYOohR7OoSctQyosapp55qPHy2hg2CBTLGPDtaatxwg/VUGd7rKVz0qB3W0Mf/Lr3UCHJYz1GuYiX54YcfbMfrUQn0Q/xQi1sAxS3w4RZ+uEWNgjJwQP8MLqHOd0xN73BMBTSs/zLfuv9sNfrHw90ftbU3mJNbnWIdyGjapIlcraZ16KmCBtY+0HXWIxg87rhWrG0x37sFMgqraUQWqJFIrCO/mPvr159++klKlytvXWVMLbF6xfEgg9449ZVX5LEn+tr206O0TBhvD1bYdlAf9u79VgUH6timOdHX06b33zNGczD3H65Gv3hWjYJhXTasWxsYAcU5goYOdJQvV06KlShpCzxYR8DQo+d8+OFHgSKLFr1KTTc0M/BZvwk3kLFz1y6pW/9G27H6/FMmHR+BzLbxvw8tWrVSIaF1tk1rV60UPbKGuZS4ppQRijI/69dZM2YEDXqY+72qwiC91Sgg1sUtkDHuhRdk8NNDrbtJXdUno0bY/0yz7aA+6Cln9MgaegoW6+IWyNDTyehpZazLK1MmZxg5xLpdj1Z06223W1eJ/h70f7KfbV0sPhDIiIUiZSCQeAECGYk354wIIIAAAggggAACHhYgkOHhzqFqCCCAAAI2AQIZ6RPIcP74ri+EZDwwtl2AKf6Be8IU72BH8/wYyHALLOhAhh7hIdSip8Ow/st4vW/nTp3U9BH32Q5zC2SsW71azj47v20//WHuvHnS9eFHbA/f71HTRHRTw/u7LfqhuX54bi758uWTTe+9awspuLVP/yv+bVu3SE414kCoRQcYipe8xngIa+6nwwybN74fOIceLaS4egBuDQzoaQbeWbM6sI95rPN13bp35G71cNp6bK2aNUVPX2ENfLiFHx7r3UtN83CXs8iQn3/88UdjioadO3YaI4w4p17Q/bnunXdsZeipJ26sX9+2Tn9wq1OsAxkZTvrfipsbNZKBaiqYbCrEkNniFsho3aqlPKpGIgi1lCxdxjaljB6d4uPt22yHDB7ytIx78UXbun5PPC6333abbZ3bBz1F0MZNm2ybFs6fJ0Us37tZs3VAxj4ayzw16sqVaiocvVytrs0jv/4aKENPbXHuuecaIQkdljAX66grzvBQfTVNzYhh9mBCuIGMFStX2qZH0efT0yOdV7CgeWrXVz3l0P79x6fG0TtZ6/jL4cNSslRp27H6O6VH4Mls+e6776Ryteq23dwCGX379ZNJU+yj8QxSAadbXEbNsBWmPrhN++IWyGh0yy2ip2mxLnrkkGwnHJ8CyrpNv//r778yHFOxQgWZNOFl565Z/uy8J+QfEWWZlAIQSIgAgYyEMHMSBBBAAAEEEEAAAb8I8OO7X3qKeiKAAAIIEMhIn0CGs6/58T3+33/nAw99RkIw8XdP1hn8GMjQD+Fr1q5jCwVE63f7bU2l3xNP2A53C2ToKRT0VArOxS2Q0bH9A9KxQwfnrsbnUmXLiQ6GmEu4gQw9BceyJYttoQezDOfr9TVqypd79thWb1GBjLx58xrrdn/+udRS0yRYQxVly5QxphOxhipsBfz34dtvv1NTXlxrO1ZP3zBzxnRb3bIafvhUTS3zoJr+4pMdO9yqEXKd1wIZdevUFj0liA7VhLO4BTIe79NbjbBxZ8jDq193vXz9zTeBfXRf7vrk48Bn/ebBLg/JgoULbev06BB6lIjMlkd79JQZjpEpnFNT6MCGDm5YlxeeHyvXVq9uTJdSqWq1wKaTTzpJtm7+N+DhHJlhYP8npYkKB+jpa64sVtx2vT1w333S+cFOgXL0m3ADGa9Nmya9+jxmOzbaDyOHD5N6desah+vRJ/R3yrro75QeXSKzRX8PdVBFt8Fc3AIZeuSbpcuWmbsYrzOmvSYlS5SwrXP7MHHSZOnXv79tk1sgo0LlKhmCJ7aDwvygp2Jasuj41DVhHpbpbs77E+4JMyVjBwQ8IUAgwxPdQCUQQAABBBBAAAEEvCJAIMMrPUE9EEAAAQQyE3A+pE+HKSxenjBBxk84PqR2qxZ3S8sWLTKj8v32dOxrL3Sa8yF9OnzHvOCejDo4+zoZ4ZtIpyz5YNs2ubnJrbaHtNHa6YflI9U0JtYgghcDGWVKlzYe7lrrGazNt995l7z3/vu2zavVSAQF1EgEetn6wQdyy61NbX7BplmxFaI+6OkPrihazHbshRdcIMuXLrEZZiWQMX/BAjXlRx/51TKSgrMeoT57LZDxcNeu0q5tm1BVtm1zC2ToEUhq16pl28/5IZxARms1esvKVatth+oH5/oBembLsOEj5LmxY227DR0yRE35c3wKkAMHDkj5SpVt+5gjcOiRTJq3aBnYZp16xFl2m9atpPvDDxsBE90u6zJ40CBp3KihdVXYgYwX1OggT6lRQmKx9H38Mbnj9n+n6tDfKf1nknXRYQ0d2ghnue6GGrLnq68Cu7oFMtq0aycrVq4K7KPfOEcosW20fJg5a5Y88mgPyxoRt0BGUT2lkhpBJ6vLmWeeKXqqmlgvBDJiLUp5CCRGgEBGYpw5CwIIIIAAAggggIBPBAhk+KSjqCYCCCCAgKTjQ/p0DWR44WFxOn7lnN+xju3bq3/x3z4dKVK+zV74jkUayPjq669FP8C0jvCQJ3duY+qDSDusWtWq0qun/UGlFwMZBQsUkJVvv2ULPQRra9Xq18reb7+1bdbTnWgjvegHv3oUDatfiauvFv2v7TMLfOiRN26oWct27DUlS8q0V1+xHRttIGPN2rXSsnUbW/m2hoTxwWuBDG2qR3wIZ2oJ3Ty3QMazz4wSPTVMqCWcQEY3Ne3J7DlzbcW8rEIKVarYQxS2Hf778FC3bmqKnvm2TRPHj5dKlSra1jmnJTFHtJgydao83rdfYN8GN9aXYU//G46YM1dP/fNwYNt1akSNcWpkDbcRN/S1VuqaawL76jfhjpDhFkzQI9+c7jL6je0ELh86qP9d1G3Qi/5e6O+UddHfqdenT7Oucn2vp+HRQQg9Goi5uAUy3EYoCSeoo8sc8vRQef6FF8zijVe3QIYe/WbvXvufHRdfdJHtuHA+aFP950msFwIZsRalPAQSI0AgIzHOnAUBBBBAAAEEEEDAJwIEMnzSUVQTAQQQQIBAhroG0mGEDH54T96X3XlfSCAjeX0R7zP7MZBx7Ngx4wHm33//HeApdP758tbyZbZQQGBjhG+8GMjQD/U/UNM75MmTJ2RrflP/ul0/ELfanHLKKbLx3Q0BG/3g96riV4fcJ9hJVqxcKW3vudcWmHAbXSPaQIYOY6xes8Z2+mJFi8qdd9whlSpWkFNPVdPGnHB88+xZs+Wxvn2Pr1DvkhnIqFihvJxyyqmyeMkSW530dCXPjBwhNWvUsK13+xDPQIZzJAp9/t49e8rdzZu5VcW2rpGaQmTbtu22dW6ja9zYsJF8/PHxqVJuadxYBg0cIH379ZNJU6YGju/cqaM8cP/9xucPPtgmjZs0CWzTo668uWypvLFokXR8sHNgvX6zfu0aOeuss2zrwg1krFmzVlq0bm071qyfbWWEH3777agUc0wdor93m957N9OSdEBKB8ysi1sgY8TIUTL6ueesu4kZdrGtdPnQqk0bWbXa/r1yC2Q0aXqbbN6yxVbCqrffloIFC9jWJesD94XJkue8CGRNgEBG1vw4GgEEEEAAAQQQQCDFBJw/vDMfZ4p1MM1BAAEEUkjA+a/302E6hXQcIYMf3pP3pXXeFxLISF5fxPvMfgxkaBPnaAB6nQ5kXFCokH7ruhw8eFA2vPuemvqhZiCc4LajFwMZup79VfCgaVP7tAjO+k+bPl169XnMFpi44orLZd7s2bY2V7v2Ovlm717b4c8+84wahcH+YNi2g/rwQIcOsmTpMtvq+++9R7p0tj80jzaQUa5iJfnhhx9s5c+dPUuuuvJK2zrzw5P9B8iESZPMj8ZrMgMZzZvdJT26d5fWbdvJ2nXrbPXKmTOnjH/xBSlfrpxtvfNDPAMZbiNEXKlsZ78+Q3RoJNjy4YcfGYEJPZqDueTIkUM2q6lx8uT5d+QVc337jp1sgZTKagSNCWokjRatWsmatcdNdEClTu3axmG/HD4sJUuVNosw6rJdjeoyRQU4+qspSswl78kny5ZNG82PgddwAxlff/ON8WdH4ED1Rv+ZsWzJ4pDt19Mk6aV4sWLGq9t/ypSvID/++KNt0wtqlI9r1WgfoZaRo56RZ5591raLWyBj0eLF0qHTgxn2e2PBfCmgRtAJtujr8O6WrTJsdgtkPKyu3Vmz59j2fUqFaW5WoZpgix5pZ/acOaov62S4FoIdE+167gujleM4BJIrQCAjuf6cHQEEEEAAAQQQQMBjAs4f3glkeKyDqA4CCCCAQECAQAYjZAQuBt7ERcB5X0ggIy7MnijUr4GMocOGyZjnx9kMy5QuLZMnTpQcOTI+WNYPDfVD8lWrV4sOKDykAgTVq1WzHW9+8GogI1++fLJo4QI595xzzKraXvfv3y+169WXQ4cO2dY/2LGDtH/gAds6N79zVLkL5s6R008/3bav+WHxkqXqgXAnW9hDb3tj/jwpXLiwuZvxGk0gQ4/qcUXRYvJ/9s4DPorii+MPBAkqRVqiQBCl96AovRch9N6kNxFBegsQmiCS0BGQEnrvRVSQEsBK70VQISQERAQREJT/vP275+7e3uXucne7m/ze56O3Mzs7M/udvcsw89v3lJv+7Anh6wPRKjGJ3NDdu3cptF59io2Lk7Okz8jJH4tQEvVUeZzwpE92lSgy9LyFsCBjZFgYscCgdZu2dPbcOcUVRCwo4Ge0aNEiqnxlwpeCjHv37lGZ8hXoofCkorSB/ftR927dlFm2Yy7bqm1bO+8YLKZgUYXWJkdE0px5/3038+bJIz23FUQonVhFKJ3t4rnJr3huylaoSPHx8bbq+Flfu24dLVwUZcsrWLAgbd200ZaWD1wVZHD5ps1b0LHjx+VLpc+ePXoIUZFa7CAXYJFFaP0GUt9qVK9OfT/oQ/ny5pVP2z7DRoykVUIQpTQWSrBgggUWenb+wgVq2LiJKlwJl9MTZDx69IhKlytPPIZK4/At06ZE6oZsYo8mPYWISsldvlZPkBEtvGh0FN40lJYpUybpdyFbtmzKbNvxnLlzaXLkFMqaNSsxx5ZCNJY6dWrbeW8eQJDhTZqoCwT8RwCCDP+xRksgAAIgAAIgAAIgAAIWIKBdeIcgwwKDhi6CAAiAQDIlAEEGBBnJ9NH3221r54UQZPgNvd8bsqog4/KVK1Srdh07ccCbpUrRqJEjVBu9vHH/cUQErVy1WsWXBRn8BjuHA1GaWQUZ3EfeHA0bNpTqhoZSypQppW6zkGHHZztp3PjxdEvjXYLvjUM/aD2HXL12jarXrKUSP3BlLIAYGTacqlWtSmnSpJHqZ48Vc+d9KnmiUIZC4ZMsglmxbKkdQ0/FDxUqVbYTWMz9ZLbUH6kz//6PxScDBw8RHhcOKrOl40YNGlD4qJFS/9mLg2ye9km+XvvpTJDBZVlcwJv/1xUiBM5nwcuqFcvptVdf5aSd+VKQwY0NHjKU1guPKVrjZ2qAEGbkyJ5dOvXkyRPhUeY7GhU+mn76+WdtcSEsiaIypUvb5a9bv56GDBtuy2dxwYHo/VSi5Ou27ys/uyePHbU9Y1z4nfYd6OtvvrFdN2vGdOm53r5jhy3v7Vq1aOb0aba0fOCOIGPV6tWSFxn5Wv7k70lzEZKF718pSOLfmWHDw+iHw/955eC+D+jXl7p17aqsgg4fOUItWrVW5XGCw32MCQ+nShUr2r4nzJb7weKVP+7ft7tGT5DBhcZ/+CEtWrzErjwLfdq2aUNFihSWvGVcufIT/SC8l6wVY6EUOCkv1BNk8Pe7ovCeE6cROfEzMeLf3wW5Dr4H9sgzZtx4VRtcdoPwuMK/Vd42CDK8TRT1gYB/CECQ4R/OaAUEQAAEQAAEQAAEQMAiBLQL7xBkWGTg0E0QAAEQSIYEIMiAICMZPvZ+vWXtvBCCDL/i92tjVhVkMKQJEz+iBYsW6fIKCgqkXMG56M6dO/TzL7/YeQTgi6ZGRkjCBm0FZhZkyH0NCEhDefOIt/SFluTSpR/pwYMH8inVZ8vmzWnsmNG2jWDlycgpU2j2nLnKLNsxh6/IFRwseXpg8YOesWCDhQVFi9h7e/BU/PBB3360TbEBL7ebP38+qiQ8KKRPn45+vHyZvvhyF93X2ciWy/Mnv6V/5uQJ27172idlncrjhAQZXPbixYvUonUbYlGQ0thzwuoVK6TNemU+H/takMHeEho2aWoXGkbuR4YMGSib8HbAIozHjx/L2arPOrVr0/SpU1R5cuK777+n1m3fkZPS54jhw2msEAzJljNHDtqze5eclD7DR4+hZYKJbCyQOH7iBLEXCdne7d6d+gsxhNbcEWSwkICFE1y31vi5Z/ESe4thUQILl7SChuefe462CE8y/P3QWtdu3WnPvn3abCnNook8wlsIe7rgZ/ivv/7SLceZjgQZ9//8kxo0bKQrkHFYmYMTeoIMLrr7q6+o+7s9da9Knz69+N3JQ4+fPKaff/7FzhsPX9S6ZUsaMzpc9/rEZkKQkViCuB4EjCEAQYYx3NEqCIAACIAACIAACICASQloF94hyDDpQPmpW1o3toltlt8k4rjJVjUtD6vfjyfjwIuG2rciAwIC7KriRU7+T2m8IO4sLrWyLI5BwBUCEGRAkOHKc2JkGd7IOnbsON28GU83b92iDGITg919v/baaxRSooRtg9DIPjprWzsvhCDDGS1rn7OyIIPnGy3FZrc2/IArI9KyRQsaKzYNtd4x+FozCjJYgJE5U2aKuX7dlduTyrAHhk0b1lPatGl1r+F5XdfuPWjf/v265xPK/PijidSoYUPdYp6KH86cOUtNmjUTG77quaRuIyKzXNky9GzqZ3U3wc0gyOB+8yZyh06d7cQNr+bOLQlatJ4EfC3I4D6xaKJdh452c3Y+l5AVyJ+f1qxeRc85eK7YMwiHH3FmlStVpPmKsCZcdvGSpSrRht71Ez8cT02bNLE75Y4ggy++FhND9YWwQSuUsatYk8H/Bpw0cSI1bFBfc+b/ydu3b0vhTRyJmPQu4jnBBSE6YbGFbI4EGXz+7Nmz1K5jJ+JQKq5Y+XJlRZijIFq3YYOquCNBBhcaP2ECLYparCrvSoJDyqxdtZL0/o3oyvUJlYEgIyFCOA8C5iQAQYY5xwW9AgEQAAEQAAEQAAEQMIiAduEdggyDBsIEzXLc6dfffMurPSlerBitX6uOqevVBnxYmbsLfD7siqFVNxJvqXEcYqUd/u5b4rfolObpIrKyDhyDQEIEIMiAICOhZ8SI87y5yS7IV61ZS2fOnHHYBX7ztm5oHXrv3XfF297pHZYz8oR2XghBhpGj4du2rSzIYDK8iTlixEjasm2bS6BYIDxk0EBq9476DX7lxWYUZOTLl4/WrFxBrdq0pbPnzim7q3vMc+9ZM2eIjdhA3fNyJr+tHxE5RYRBWGwLJyGfc/TJAoIPx42l6tWqOSpCngoyuMLvRaiF9/v0oVu3fnVYP5/g0BIcGoE9PrRt195OOGwWQQb3ddv2HdSvf3/65+lTTtqMQ0wsW7KE2HuCbJ7OpStXrSYJDeR6WGx08dxZOWn3efTYMeo/YCD9cvWq3TlHGRzWZEz4KKd/u56KeywWEiK8tjx0VA117NCehg8dqjp/4MBB6tC5sypPm+DwOByWSGue/HuN77tX7z5O/14r22FR5ZSIycTrJM6Mw5y81+t9unjpkrNi0jn2YMPeJDj80pWffrKVdybI4EL8zHPf9bx82CoRB6XfeovmiJA/GzZsFKFFxilPkTNBBo/hgoULabL4bdAK7VWVKBLs0WREWJgQgNkL9hXFEnUIQUai8OFiEDCMAAQZhqFHwyAAAiAAAiAAAiAAAmYkoF14hyDDjKPknz5BkKHm7MkCn7qGpJGCICNpjGNSuQsIMiDIMNuzzBspgwYPId7gctWyZMkibWzVrFHD1Uv8Vk47L4Qgw2/o/d6Q1QUZMrAdn+2k5SLcAW/YOTIWKfDmZ+FChRwVkfLNKsjYvmUz3bt3j2bOmk1Lly+387jAnc8qQk20adWSunfrJoXscHqjipPsMWHp0mW0e88eh6EUWExWT2zId+nSmbJkzqy42v4wMYIMri02No4GCOHMD4eP2IWM4PPFihalmTOm08si9Acbe/lg0cM+ES7i9r+eA8wkyOA+8gb3hI8m8aHK+N/dC+d/ShwChs1fggxui/+ds0iE/dm4abPDMBjs5a5smdLUSoSicPXvVWi9+qpQI9yW0saJMDrspUZp16/HUsUqVZRZdseHovdL3qa0Jzz99xp7AFyydCmtFkJKpSBCWT8/RzWqV6fwkSNI681EWU55zEKxWeJ7umbdOilskvIcH7Noof077aTwKyycqVHrbVX7CQkyuA4WTURHH6CVQgh68tQpYs8kXFf2l1+m3LlfkTyJ1H77bS4q7nGZW4IM6SLxvxMnTkphob7ctcvh70KO7NnFffSjenVD5ct89glBhs/QomIQ8CkBCDJ8iheVgwAIgAAIgAAIgAAIWI2AduEdggyrjaD3+gtBhpqlpwt86lqsn4Igw/pjmJTuAIIMCDLM9Dzzm6qNmzUX4Uluut0tdn8+feoUertWLbev9eUF2nkhBBm+pG1s3WYQZHiTAL/1zi7948SG/q8ifMCLGTNSJiEeKPXG6/Sy2Ki0gvHcs3hISZXHCvaQwYIMOcTKLREK6cKFi8K7wS9040a82KTOSsHBwdLb+6lSpfL4NlnwceToUekN/Pj4myL0QBpRd6CoOyeVKF6c+DfLn/bw4SOxsX+eTp8+I204s1cMFtYUL17MxsKf/UnKbbFnJ/buEC+ep7viOciaNQsFBQVJ4hcW+iR1Y0+AHG4sLi6W7t//UxJfBAUFUpkyZYgFEp4Ye6D59tvvpO/pzZu3pN+joJeCqFy5ch7X6agfsicLve+/p4IMuS1eH2DBKc93+PeGBSWZxe9qwQIFqXBh5wI3uQ5vfEKQ4Q2KqAME/E8Aggz/M0eLIAACIAACIAACIAACJiagXXiHIMPEg+XjrkGQoQYMQcb/eUCQoX4ukDKWAAQZ1hVk9P6gL4WUKC7clXdI8CGywsL748ePqWHjJg7fBOaNEX6Dm+PK/3H/vu49cwgFDutVsEAB3fNGZGrnhRBkGDEKnrXJ3zE2Fvq4YklNkOHKPZu9jCuCDLPfA/oHAiBgHgKJFWSY5U6sMC80Cyv0AwTMRACCDDONBvoCAiAAAiAAAiAAAiBgOAHtwjsEGYYPiWEd4EXgCRMmOmz/tzt3aOfnn6vOBwQEUKMGDVR5ykTOnDmoW9euyizLHEOQ8f+hgiDDMo9ssugoBBnWFGTwRrEc0qOTiB+fkCjDCgvv7OZ94ODBdt+7Um+8QYOFu/0ihQuT/LZqXFwczV+wgJatWGkXk53dis+YNtWuHqMytPNCCDKMGgn32lV+x0JKlHBJlAFBhnuM/VEaggx/UEYbIJB8CGj/pvOdhw0dSh3EXMxKZoV5oZV4oq8g4C8CEGT4izTaAQEQAAEQAAEQAAEQsAQB7T/SIciwxLAZ0kl2Z1u/UWNV2+zG9usD0aq8pJKAIOP/IwlBRlJ5opPGfUCQYT1BhnKjWH4KExJlWGHhXe+3sXrVqjTnk9nybdp9rhUx5YcOD1PlcxiA6L17KDAwUJVvVEI7L4Qgw6iRcL3dRVFRtDBqseoCV0QZEGSokJkiAUGGKYYBnQAB0xLglyM4jI8r9uDBn7Rpy1a6I16qUNrY0eHUqmVLZZbpj60wLzQ9RHQQBAwgAEGGAdDRJAiAAAiAAAiAAAiAgHkJaBfeIcgw71gZ3TMIMojycxzvrVuMHgq/tq+36Xj4u28pQ4YMqn5MnDRJvAG+UJU3a8Z0qlWzpioPCRBIDAEIMqwnyGDPGHIoBeXYOxNlmH3hXU+wlzp1ajqwb68UW115n9rjJs2a0/ETJ1TZi+bPpwoVyqvyjEpo54UQZBg1Eu61qyd8SkiUAUGGe4z9URqCDH9QRhsgYF0C7JmLPXQlxpYujqIypUsnpgq/X2v2eaHfgaBBELAIAQgyLDJQ6CYIgAAIgAAIgAAIgIB/CGgX3iHI8A93K7biTUEG1/XNN99S7I04unEjngIC0lBQYBAFB+ekauIN4xdffNFjRH///TcdOvQ1nTp9Sqr71q+/0osZM4q3j7NR3rx5qXKlSpQmTZoE69fbcPOFIOPeH3/Qrl276aeffiJ2a8/tZs2SmbJly0blypajokWLJNhXbYGnT5/StZgYOn/+vPTfpR9/pIwZMlKu4GAKzhVMpUqVonQvvKC9TDfta0HGxUuX6PDhwxQTc51irsdQ6lSpKXv27JQjR3aqWqUKZRRjBwMBmQAEGdYTZPDYuSvKMPvCO/9u1Q6tKz+W0meB/Plp25aEN0nGjR9PUUuWqq4dEz6KWrdqpcozKqGdF0KQYdRIuN+uu6IMCDLcZ+zrKyDI8DVh1A8C1iaQWEFGUFAQfbHzM3oubVpLgTD7vNBSMNFZEPAjAQgy/AgbTYEACIAACIAACIAACJifgHbhHYIM84+ZUT30hiBj9Zo1FLV4CfFmliNLlSoVVShXjvr160sFCxRwVMwu/8GDhzRz1ixav3Ej3bp1y+68nMFChLqhodSv7wdOhR++FmRcvXaNJkdE0q7du+nRo0dy9+w+c+bIQePHjaWyZcrYndPL+Obbb2nAoMGSuEPvPOex4KVXz57UpnUrYt7OzFeCjFOnTkvjtXvPHmIBiZ4FBARQ44YN6b2e75rGnb9eP5HnPwLJUZCh3WR15lnCfyPhfkvuiDLMvvAeHX2AOnbpooLwdq1aNHP6NFWeXkLPm9Aw8cZrp04d9Yr7PU87L4Qgw+9DkKgGtb8XXJkjTxkQZCQKtU8uhiDDJ1hRKQgkGQKJEWTwv4FnTp9O5cqVtRwPs88LLQcUHQYBPxGAIMNPoNEMCIAACIAACIAACICANQhoF94hyLDGuBnRy8QIMlggMWTYMNq7b7/LXWf37/0+6ENdOnemFClSOL3u5MlT1G/AALoivEy4almzZqWJ4k3lSpUq6l7iS0EGu5odPWYM/XH/vm7b2kwWTYwYPkwIKFprT9nST548oanTptM84fr+n3/+seU7OyhYsCCtW73KqccQXwgyWIzRqm0bYhGNK/bSSy/R4kUL6dXcuV0pjjJJmEByFGRUqFxFNaLTp06RNlhVmRZJuCrKMPvC+927d+2EhZkyZaLcr7yS4Eg0bd6Cjh0/rio3NTJCEgqqMg1KaOeFEGQYNBCJaNZVUQYEGYmA7KNLWaDbo+d7ovb/hKo5suegMaPDE5wL+6hLqBYEQMBEBOYvWEAHDx1yq0fPP/8C5RNeIps3a0rsIcOKZvZ5oRWZos8g4A8CEGT4gzLaAAEQAAEQAAEQAAEQsAwB7cI7BBmWGTq/d9RTQQZvujdv2ZLOnjvnUZ/79uktPCT0dHjtj5cvU9NmzYlDf7hrLHSIWriASr/1lt2lvhJkbN6ylfoPHGjXnisZbYRL+5EjwuiZZ56xKz7p48mSGMPuRAIZ7YQwYuSIEQ5LeVuQcefOHapTrz7Fx8c7bFPvRObMmWnn9m1OvZroXYe8pEUguQkyFkVF0cKoxapBjN67R5W2WsIVUUZSXXjn8FF16zcgFtApba0QxrEXAzOYdl4IQYYZRsX9PrgiyoAgw32uuAIEQAAEQMD/BJLqvND/JNEiCPiXAAQZ/uWN1kAABEAABEAABEAABExOQLvwDkGGyQfMwO55KshgzxVbtm6z6zl7veBwHPnz5ZPEFOcvXKDffvtNt9z8uXN1PVmwh4nGTZrS5StX7K5jDxuvvfoqvSLeWL4ee50uXbxELLLQGofv2LJxA7EXBqX5QpDBopRmLVrSw4f2niGYB7+9FJwzJ508fdphyJERw4dT+3bvKLtKMTHXqWbt2nahTyqUL0ehdepQUGAQ3RReSvZH76et27arruXEmlUrqWRIiF0+Z3hbkLHz88+pV+8+qrayZ3+ZWjZvTiGiDyzYOHToa/pMlNM+Dz179JBCzaguRiJZEdAKMqpXq0ZvvVkqSTLQCjH4JnnTvmOH9qa832PHjrncr6PHjhMLM7Qmh2NJigvvcXFx1KxlK4qNjVXdNr+tuu+r3bpCO1VBPyW088KKFcpThfLl/dQ6mvEmAUe/Iexlhw2CDG/SRl0gAAIgAAK+IpAU54W+YoV6QcBMBCDIMNNooC8gAAIgAAIgAAIgAAKGE9AuvEOQYfiQmLYDnggyWIBQr0FDu3sqXLgQTfzwQypYoIDq3Np16+jDCRPtvF2waGP71i2qspyIWryExol6tMYihFHCkwS7kJeNRRCRU6dK12hDeuh5ifCFIOPd93rRl7t2yV2yffbv+wG1Ft4vMmTIYMu7FhNDPXu9T8xdaVxmr9i84zjAss2YOZOmzZgpJ6XPenVDaUpEhCqPE/M+/ZQmTVbnD+zfj7p362ZXljO8LcjQ8+Qxf95cqlypkqr9CxcvUiMhtmH33WwZM2ak+uKenHnzUFWARJIkoBVksOeUZ599Nknea3K9KRZlFCpUiHisZbPy3IS9Ny1btowWib9Xt2/flm/J9sm//+8KsZlZTDsvTJcuHb2g+Htjln6iH54TYGEXizIgyPCcIa4EARAAARDwHwEIMvzHGi2BgDcJQJDhTZqoCwRAAARAAARAAARAwPIEtAvvVt70sPxgmPwGPBFkjBwVTitWrVLdGYsrNguPFBwuRM9OnjxFTYS3BK1oYvXKFfR6yZKqS2rVrkMcskRprVq0oLFjRiuzVMdRwv3/uAkTVHksbjh04AClTRtgy/e2IOPGjRtUsUpV+vvvv21t8MHggQOoa5cuqjw5ce/ePWrZug2x9xClTY2MoLqhocos+uXqVdq5cydt/+wzunDhIn2x8zPJA4mqkEg8fvyYipYIUbnMb1C/HkV8/LG2qJT2tiBj4ODBtHHTZlVbs2ZMp1o1a6ryODHho4/o6dOnVK1qVXrj9ddN8wa5XUeR4TcCEGT4DbWhDRUWgoxdu3fb+mC1uQmH6oo+EC0J8Hbt2m0nMpRvrH69ujR50iRKmTKlnGX4p3ZeCEGG4UPikw6wKGOHmC8o7dJ5z0LLKevAMQiAAAiAAAh4mwAEGd4mivpAwD8EIMjwD2e0AgIgAAIgAAIgAAIgYBEC2oV3q216WARzkuimJ4KMN8uUtXsj2Fl4DBnU6DFjaeny5XJS+uzUsQMNGzLElnfx0iWqHVrXluYDflt+1+c7iTeQHBkLIho0akznzp9XFZk35xOqWqWKLc/bgowVK1fSyHC1UMSV79vyFSto1Ogxtn6xaIRDdzh7o5pDfXAoFkdWuWo1Yg8cshUsWJC2btooJ1Wf3hZkzJw1i6ZOn6Fqg132d+/alWrWqE6BgYGqc0iAgJIABBlKGknzmDeK27RuZUkPGTdv3qRFQvS3UggR2TOGM6sjwkxNiZhsOqGZdl4IQYazUbTuOfaQwSHUlAZBhpIGjkEABEAABMxCAIIMs4wE+gEC7hGAIMM9XigNAiAAAiAAAiAAAiCQxAloF95d2SBO4khwew4IuCvI4DeEi4qNNaVlyZKFvjl4QJmle3zw0CFq37GT6hx7UGBPCrLt27efOmvCbHCokmlTIuUiDj8jp0yl2XPmqM6PDAujdu+0teV5W5ChF6rj3e7dqX+/vrY29Q5u3bpFEZFTqHjxYlS8WDHKmzevQ+8ifP2TJ0/o8pUrwkvGBclTxu+//25X7ZatW1WbhblfeYW+FEIWPfO2IIM9edR8u7bKQ4fcbooUKSSvHiEhJahsmTJUpnQZevnll+TT+AQBaZOeF2Vl43A7STFkydFjx+nosWPybao+WbCQFEzv/uRQClZbeGdPTQsWLKSNmzdLXoicjQ97w2jcsCGNGzvG6W+5szp8eU47L2RBRoXy5X3ZpKnqDilR3FT9SUxnFgpxkJ6xGIO/awhZokcHeSAAAiAAAmYjYLV5odn4oT8gYBQBCDKMIo92QQAEQAAEQAAEQAAETElAu/AOQYYph8kUnXJXkMGiAN54V9qbpUrRimVLlVm6x7GxsVSh8n/eKrhQsWJFacPatbbyq1avprCRo2xpPnj/vfeoT+/3VXl6CQ6ZwaEzlNa1c2caPGigLcvbgoy+/fvT1m3bbfXzgdYrh+qkmwkO8TJr9mwhNJmb4Iagtmp/CjK47bXr1lG48ILy6NEjbVfs0rmCg6n3++8Th1WBgYDWQ8bypUuI/24lVVsUFUXaTdXovXssf7u9P+hrJziRxRh8c1ZaeN+wcSMNCxuhKzJTDlRAQAA1adSIOnXqSPy7ZlbTzgt79+olfoN7mbW76JcDAnq/HVxUFmPwMQQZTAEGAiAAAiBgdgJWmheanSX6BwL+JABBhj9poy0QAAEQAAEQAAEQAAHTE9AuvEOQYfohM6yD7goyjp84QU2aNVf111UPFuzloUDhIqpreQNr95df2PLmffopTZocYUvzwdjR4dSqpdoFt6rAv4mDB4UHjk5qDxwtmjWj8ePG2op7W5DRWYTk2Lc/2lY/H3y2fRvlzZNHledJgkOU9BswgKIPHPTkcvK3IIM7ySFn+g8cRPxcuWJVKlWisWNGE4c3gSVfAslNkMEjrRWnderQnjp26GDZhyAhMQbfmFUW3llcNnR4mNOxKJA/P4XWqU0tW7RwGkrKaSV+PKmdF0KQ4Uf4XmrKFTEGNwVBhpeAoxoQAAEQAAGfErDKvNCnEFA5CFiQAAQZFhw0dBkEQAAEQAAEQAAEQMB3BLQL7xBk+I611Wt2V5DBoSmqVq+huu0SxYvTujWrVXl6iZ9/+YWq1aipOlUyJITWrFppy1u3fj0NGTbcluaDHiKEyQARwiAhWyM8bfAbzUrr2aMH9ev7gS3L24IM9sjBnjn6OVtCAAAMIUlEQVSUxm+q1qmt9iKiPO/qMceB13P/7+r1RggyuG+PHz+mr/bsIQ4/s3f/foqPj3faZQ5f8uXOnZQmTRqn5XAy6RJIjoIM7eaqlQUZrogx+Om1wsL7tZgYCq1bj+7/+afdFy5btmzUumULatCggRSGya6AiTO080IIMkw8WDpd0/5eyEWUnjHkPAgyZBL4BAEQAAEQMDMBK8wLzcwPfQMBowhAkGEUebQLAiAAAiAAAiAAAiBgSgLahXcIMkw5TKbolLuCDN5sL1S0GD19+tTW//Tp09OR77+zpR0d7N23j7p06646rfWuoeflomaNGjR75gzVdXqJiZMm0fwFC1WntN41vC3IiJwyVYQTmaNqs6N403340KGqPG2CN/tatWlLIULM8sYbb1CpN15XeYlgIQYLMpSWIkUKSZxSoUJ5KlSoEKVMmVJ5WhK73Lx505ZnlCDD1oF/D86eO0enTp2io0ePORRojBNeMvhNc1jyJABBBpFVBRmuijH4ybbCwvsIETJrpQidpbRnn32W+Deqfr16lCpVKuUpyxxr54UQZFhm6MgdMQbfFQQZ1hlb9BQEQAAEkjMBK8wLk/P44N5BwBEBCDIckUE+CIAACIAACIAACIBAsiSgXXiHICNZPgYu3bS7ggyutGKVKnT9eqyqfhZMsHDCmfXs9T598eWXqiJaDxZ6Hjief+45EQZkO7EnBUfGAoe364RSbKy6X4sXLqRy5craLvO2IGP9hg00eOgwW/18wGKJTevX2QkmlIW279hBffqqvX60adWKRoePkootX7GCRo0eo7yEalSrRp/MnqXKkxN3796lkqXelJPSpz8FGf/8848IU3KWvvn2Gzr09dfUXXg14d8drXHYGg5pwvevNOW9K/NxnDwIQJBhTUGGO2IMfpLNvvD+999/U9kKFenXX39VffE+nTuHqlSurMqzWkI7L4Qgwxoj6K4Yg+8KggxrjC16CQIgAALJnYDZ54XJfXxw/yDgiAAEGY7IIB8EQAAEQAAEQAAEQCBZEtAuvEOQkSwfA5du2hNBxuSISJozb56q/sDAQNq+ZTNlzJhRlS8ndn7+OfXq3UdO2j53bNtK+fLmtaX5oGnzFnTs+HFVXpVKlSQxgqO3k0ePGUtLly9XXZM1a1aK3rtH9UaztwUZ9+7dozLlK9DDhw9VbTdv2pTGjxtL7NVCa/f++IPq1q9PMTHXVac47AuHf2GbMXMmTZsxU3Ve6+1DeXL+ggU0cdLHyix6JVcu2vXF56o8OdFI9O/kyVNyUvo8/N23lCFDBlWenteRWTOmU62a/4We4WeobfsOxKIQ2ZyJR/REN40aNqCPP/pIvhyfyYwABBnWE2S4K8bgR9rsC+8XLl6kOiJcidJeeukl6e+IMs+Kx9p5IQQZ5h9F9pTF3zOt6YUpUZaBIENJA8cgAAIgAAJmJWD2eaFZuaFfIGA0AQgyjB4BtA8CIAACIAACIAACIGAqAtqFdwgyTDU8puqMJ4KMq9euSeEx2CuC0rJkyUIjw4ZTtapVKU2aNNIpftOYxRuLlywlbflSIlTHyuXLlFVIxxs2bqJBQ4bY5RcpUphGjxpFRYsUkbxPcNiUHy9fpvEffkjRBw7ale/Vsyd90Ke3Kt/bggyufPCQobR+40ZVO5xgkUFr4fWC+ysLSQ4fOULhwvMFh/FQmpbF2nXraOjwMGURCilRglYsW0qpU6dW5W/dtp0GDh5M7H1Cac888wxtXLeW8uXLJ/FShjjxpiCD2+W3ym/fvm1rntsKHzlCun9b5r8Hm7dsFV4yBqqyw0SIlw4i1AsseRKAIMN6ggztZjH/PvFGsTMz+8I7e/dp16Gj6hZYMNjunbaqPFcT/LeQhYFmMO28EIIMM4xKwn3QCp8SEmNwjRBkJMwVJUAABEAABIwnYPZ5ofGE0AMQMCcBCDLMOS7oFQiAAAiAAAiAAAiAgEEEtAvvEGQYNBAWaNYTQQbfVkTkFPpk7lzdO2QhQK7gYGJPEDdv3tQtw4KN1SIsB4sstMYb/Lwp9t3332tPSemAgAAKzplThE25Tn/cv69bhr1DbNywntK98ILqvC8EGRwmpWGTpnZu7uWG06YNoJw5ctI1IWTh9vVM6xL/0o8/Uu3QusSiE6Xx/ZQtW5ZeDwmhuPgb9MMPh+nEyZPKIrrHA/r1pR7du9vOeVOQwZWyKGbR4iW2+uWDN0uVkkKX5BLj8eDBn3Tk6FFiAYlWPLJ65Qp6vWRJ+TJ8JjMCEGRYT5DBj6gsynBFjMHlzb7wvmXrNuo3YAB31SvGAjr+DTSDaeeFEGSYYVRc64MsynBFjME1QpDhGleUAgEQAAEQMJaA2eeFxtJB6yBgXgIQZJh3bNAzEAABEAABEAABEAABAwhoF94hyDBgECzSpKeCDPZ20VVs8O/bH+3RnXJ4CvYg4cjYs0aDxk0oLi7OURGH+S88/zytFeE/8ubJY1fGF4IMboQXlNp37GQnNLDrgCaDxSvDhXcIvTewOcQLh3pxxbiegf370aTJEXaeSPh6XwsyOHRL2/bt6fTpM650V1WmTu3aNG1KpG54F1VBJJIsAQgyrCnI4AeSRRksyHDFzL7wvkF4OhokPB55yyDI8BZJ1OPO9wyCDDwvIJD0Cfz11192830WrMNAwEoEzD4vtBJL9BUE/EkAggx/0kZbIAACIAACIAACIAACpicAQYbph8g0HfRUkME38OjRI5ocGUlRwjOC1pODoxvMlCkTTRg/Tgpr4qiMnH/jxg0aLMQKBw4ekrMS/CxUqBBFfDxJV4zBF/tKkMF1s/eHAQMH0S9Xr3IyQUuXLh3NmDqVypcvp1uWF1tHjBylGw5Fe0GXzp1oyKBBkmcRdruvNV8LMri933//XYgyOtDZs2e1zTtMFy1ahFYsXUbsRQSWfAlAkGFdQYY7T63ZF94hyHBnNFHWrAQgyDDryKBfIOA9Aq56uvNei6gJBLxPwOzzQu/fMWoEgaRBAIKMpDGOuAsQAAEQAAEQAAEQAAEvEYAgw0sgk0E1iRFkyHg4tMgSsan+1Z49xCICPQsMDKR6dUOpa+fOlDlzZr0iunks9Ni4aTOtWbuWDh854lD4UbBAAWrSqBG1bduGUqVKpVsXZ/pSkMH1cwiVhQsX0abNmx0KM7h/5cuVpWFCbPJq7tx8mVNjwcvM2bPpzp07duW4rmFDhtg8bPz222+0YuVKMRZ76eSpU7a35/whyODOcSiSHZ/tpIVRi+jUqdN2/ZUzOKRNj+7dhJeUhk7HSy6Pz6RNAIIMCDLM8IRDkGGGUUAfEksAgozEEsT1IGB+AhBkmH+M0MOECUCQkTAjlAABMxKAIMOMo4I+gQAIgAAIgAAIgAAIGEYAggzD0CfrhjlsxZEjRyk2Lpbi429SQEAaypYtkIKDc1KJ4sUpZcqUieITE3OdTp85LcKY3CAOafJixowUGBRIefPmpTyvvZaoun1x8cmTp+jKTz/RjRtx9OefDyhLlsyCRzbiEELp06d3u0m+/zNnz9D58+cpderUFBT0ElWqWIEyCg5mtMtXrtC1q9foeux1wSCeMmTIQDlyZKfs2bNTPjFmHGYFBgJMAIIMCDLwTfAtAe28sHevXtT7/V6+bRS1G0IAggxDsKNREPArAQgy/IobjfmIAAQZPgKLakHAxwQgyPAxYFQPAiAAAiAAAiAAAiBgLQLahXfeAF6+dIm1bgK9BQEQAAEQSBYEIMiAICNZPOgG3qR2XghBhoGD4eOmIcjwMWBUDwImIABBhgkGAV1INAEIMhKNEBWAgCEEIMgwBDsaBQEQAAEQAAEQAAEQMCsB7cI7BBlmHSn0CwRAAARAAIIMCDLwLfAtAe28EIIM3/I2snYIMoykj7ZBwD8EIMjwD2e04lsCEGT4li9qBwFfEYAgw1dkUS8IgAAIgAAIgAAIgIAlCWgX3iHIsOQwotMgAAIgkCwIQJABQUayeNANvEntvBCCDAMHw8dNQ5DhY8CoHgRMQACCDBMMArqQaAIQZCQaISoAAUMIQJBhCHY0CgIgAAIgAAIgAAIgYFYC2oV3CDLMOlLoFwiAAAiAAAQZEGTgW+BbAtp5IQQZvuVtZO0QZBhJH22DgH8IQJDhH85oxbcEIMjwLV/UDgK+IvA/AAAA//8q2gccAABAAElEQVTs3QW4I9XdB+CDu7VIKVLa4i0ui7sWt+KwSIGvXdyd4u4tDosVa3F3ihW3QlngoxSKlfIhxfWbE5psMjf33mTvTTIzeed54CaTkXPe/2R3duZ3z4z2yX8+/DaYCBAgQIAAAQIECBAoCZx8yqnh5FNPrWgMWXDBcPGFF1Tee0GAAAECBLIisPGmm4WHHn640pz491X8e6vI03nDh4dzh59f6eKWQzcPWwwdWnlfxBexxrHW5cm5SVmi9T/T54U7DBsWdth+WOt3bA9tF5hxlllr9vnSiOdr3ntDoJMCb7z5Zrj11lvDa6/9M7z9r3+FySadNEw11ZRhueWWC7POMkulaa++9lr48ssvK+/HGGOMMMOPflR5X37x7rvvhvc/+KD8tvRzmh/+MIw77ril119//XV48cWXwkcffxRGH330MO8889QsW/3m408+SZZ9MTz//PNhxIgXwgcffhCmm3a68KNkv7PMMnP42eyzVy/e6+v+2vSf//wn3HDjjeF/X345vPPOv8NYY41Z2s/cc80VFl98sTDaaKP1uu3yB2utu2545pm/lt+Wfj728ENhkkkmKb3+6OOPw8v/+3J45R//CO+9916YeuofhJlnnrmuYc1GvCHQRgHnhW3EtisCgygwmkDGIGraFAECBAgQIECAQO4F0hfe3fTIfUl1gAABAoUVEMgIoRsCGfEAdrO4M1/jbvyOdUa683v1Het8DbSgp8Drb7wRDjn00HDnXXeHb775pucCyZzlll02nHj8caUwxQorrRxe/vvfK8tNOOGE4YlHH+kRVjjq6GPCWeecU1kuvrj4wgvD3HPNGXbbY4/w53vvCx8n4YQ4jTvuOOGZJ5/ssY1PPv00HHb44eHyK/4Yvv2299/5XWrJJcMeu+8WZp5pptL2evvfkUcfHc4+59yaj/9w0YVhwQUWCFddfU3Y74ADwueff17zefnN9NNNF3baccew+mqrlmfV/dlbICMGUc4599xw2hlnhE8//azHugsNGRL22WvPMHuD4ZIeGzCDwCAKCGQMIqZNEWijgEBGG7HtigABAgQIECBAIPsCAhnZr5EWEiBAgMB3At14s7gbR8iI1U7fLO6G0VCy8D3vxu9YFtw70Yb0d8wIGZ2ogn1WC9x//wNhp113LY3UUD2/3uuFFxoSzjz99LDGWmsPKJBx+RVXhGuuvbZmF/UCGc8+91zYedfdwsvJaBWNTHGkjqOPPDKssfpqvS7eWyDjlVdeScIYB/YaSKne4OabbhL22XvvEPdXb6oXyHj0ob+EvffdL9x2++31VqnMm2yyycIlF18UZvzpTyvzvCDQCQGBjE6o2yeBgQsIZAzc0BYIECBAgAABAgQKJCCQUaBi6goBAgQKLtCNN4u7NZCRrrVHZ7Tny+0mfXucs7AXtc5CFbShLPDiSy+FtdddLxmt4dPyrH5/TjHFFOH999+veWRJMyNk9LaDdCAjPlpk2RVWDB999FFvq9SdP+EEE4Trrr0meczItHU/rxfI+OEPpw5vvvlWnyNwpDe2Y/JYqe2Tx0vVm+oFMn7y4x/XhFjqrVee94Mf/CBcfsklIbbLRKBTAgIZnZK3XwIDExDIGJiftQkQIECAAAECBAomIJBRsILqDgECBAoskL5J3w2jJnRrICN9fhIPa7/B39ovd9rcY+xa693prQtkdLoC9l8W+Oqrr8Iaa68dRox4oTyr8nOsscYKs806a+nxH59/8Xl44YUXwwsvvthrYKEVgYwDDjoo/OGSSyttii8mnnjiMHSzTcOsSdtiG+PIGecNPz+89fbbNcstvtii4bzUo1LKC9QLZJQ/iz+/973vhZ/NPluYdpppwz9f/2f467PP1R09JI6Ocdklf0gevzJX9eql1/UCGeWFRhtttFJYZJaZZw4ff/JJeH7EiPB///d/5Y8rP2edZZZwfRIsMRHolIBARqfk7ZfAwAQEMgbmZ20CBAgQIECAAIGCCbj4XrCC6g4BAgQKLCCQEcKWQzcPWwwdWuAqj+xa+oaxUTJG2rTiVdq7r9+6bsX+bbO9Aul6Czy119/eRgrccuutYdgOO/YIWcTHkhzy29+GGWaYYeTCyatHH3ss7H/ggeHFF1+qmR/fNBvIGGecccKmG28cll56qTD9dNOVwhUxqPD973+/tO0PPvggLLfiSjVBiBiAuP6aq8NMM81Us/8PP/wwrLTKKuFf/3qnMn+88cYNTz3+eBh99NEr88ovegtkjDnmmGGbrbcOw37z6zD22GOXFw9ffPFFOPV3vw9nnn12iCGW6mmF5ZcPvz/1lOpZpde9BTLiyBcnHn9cmH+++SrrxO3HawOnn3lmZV75xZ+uuDzMNeec5bd+EmirgEBGW7ntjMCgCQhkDBqlDREgQIAAAQIECBRBQCCjCFXUBwIECHSHgEBGdwUy0ucoAhmt+56nreOe3KBvnXcWtiyQkYUqaEMU2Ga7/wl33nVXDUa8+X9Z8qiMMccco2Z++U18VMlKq6wa/v3vf5dnlX42E8iIwYo40lZ1KKFmY/998+WXX4b77r8/3HjTTeH2O+4Mv1hppXDoIQeHGNxITyedfHI4JQlNVE933HZr+NH001fPKr3uLZCx/777hs2T0Td6m4YnI3EcesQRNR/HUToevO/eMOmkk9bMrxfIiIGPW2++qRRAqVn4v2+2TMIgf773vpqPfr3ddmGXnXeqmecNgXYJCGS0S9p+CAyugEDG4HraGgECBAgQIECAQM4F0hfgDU+d84JqPgECBAosIJDRXYGM9AX4eGgLZQz+F7yes9ExBt85a1sUyMhaRbq3PT+fc67w2eef1wDcdP11PUagqFkgeXPNtdeG3fbYs2ZkjWYCGesmj0k54vDD6gYr0vsqv4+jSHyRBDQmnGCC8qyan1ddfXXYY6+9a9p0+u9/F5Zbdtma5eKbeoGMn//8Z+HKK66oO6JGeQPffPNNWHOddcNzzz1XnlX6efKJJ4RfrLxyzbx6gYyNN9ww/PagA2uWq35z8y23lEYsqZ631pprhGOOOqp6ltcE2iaQPk9xzapt9HZEYEACAhkD4rMyAQIECBAgQIBA0QQEMopWUf0hQIBAcQUEMrorkBGP5PR5SpwnlBEVBmdK3+Qob9XoGGWJ4v4UyChubfPUszjSxQILLVwTYJh66h+EPycjZtQbgaK6b3F0jIUXW7xm3WYCGQfuv1/YdJNNqjfZ7+v33nsvjHjhhfDCiBfCK//4R/j6669r1vn7K6+EBx58sGbeCccdF1ZbdZWaefFNvUDGsF//Ouy04w49lk3POP6EE8PvTz+9Zva+e+0VtthiaM28eoGMs844PSy91FI1y1W/+dvzz4fV1lizelZYbNFFwvBzz62Z5w2Bdgmkz1UEMtolbz8EBiYgkDEwP2sTIECAAAECBAgUTCB9o8M/bgtWYN0hQIBAgQQEMgQyyoezUEZZYtR/pm9wlLdkdIyyRLF/CmQUu7556d2IJNiw6hpr1IQqFl900XDuOWf3G8iIfZxvwSHhgw8+qHS3mUDGqcnjRVZacYXKun29eOl//zfstPMu4fkRI/parO5nzQQyjj/22LD6aqvW3U71zKuviaOD7FE9K2yZhDH2SUIZ1VO9QMaNyegjM880U/ViNa9ff/2NsOQyy9TMW2jIkHDRBefXzPOGQLsE0ucrrlm1S95+CAxMQCBjYH7WJkCAAAECBAgQKJiAQEbBCqo7BAgQKLCAQEb3BTLi4Zw+Vykf4kIZZYnmf6ZvbpS3IIxRlij+T4GM4tc4Dz18+plnwjrr/bImkLHSiiuGU046saFAxpJLLxNef+ONSldbEci47vrrw777HxA++eSTyn6aedFMIOPC84eHhRdaqN/Nx1E4Nhu6Rc1yv1x33XD4YYfWzKsXyHj0ob+ESSedtGa56jcCGdUaXmdBIH3OIpCRhapoA4H+BQQy+jeyBAECBAgQIECAQBcJpG9y+MdtFxVfVwkQIJAzAYGM7gxkxMM0fb5SPnTjecsO2w8L8aepMYHeLIUxGvMrylICGUWpZL778eabb4Ulll66JpAx88wzhxuuvabfQMann30W5ppn3vDNN99UEAY7kHHf/feHLbbauqZ9lZ01+KKZQMZRRxwe1ll77X63/Mc//Snstc++Nctts/XWYY/dd6uZVy+Q8djDD4VJJpmkZrnqNwIZ1RpeZ0FAICMLVdAGAs0LCGQ0b2YNAgQIECBAgACBAgukL8oLZBS42LpGgACBnAsIZHRvICMeuulzlurDWTCjWqP+6778hDHqmxV5rkBGkaubn7599dVX4WdzzhW+/vrrSqPHGmus8PgjD4fxxhuvMq/eiyefeiqst/4GNWGJwQ5kxDDGvffdV7P7OX7+87DxRhuFRRdZOAk2JCNNjDby46uuvCocePDBI2ckr5oJZGz7q1+F3XfbtWb9em+OPubYcObZZ9d8tP+++4bNN9u0Zp5ARg2HNzkVEMjIaeE0u+sFBDK6/hAAQIAAAQIECBAgUC2QvjgvkFGt4zUBAgQIZElAIKO7AxnxWEyft6SPz/JIGfHnkCHdPWrGQw89XOKJNzLif71Nwhi9yRR7vkBGseubp96tvOpq4cUXX6xp8habbx723WfvmnnVb7799tsQzwkefuSR6tlhsAMZQxZZNLz77rs1+7jmqivDz2afvWZe+c2hhx0ehl9wQflt6WczgYzpp5su3Hj9dWHcccet2Ub1m88//zysvMqq4dXXXqueHU7//e/CcssuWzNPIKOGw5ucCghk5LRwmt31AgIZXX8IACBAgAABAgQIEKgWSN/YEMio1vGaAAECBLIkIJAhkBGPx/S5S5aO0by1RRgjbxUbvPYKZAyepS0NTODMs84KRx97XM1GRh999HBoMtLEL9dbt2Z+fPPFF1+EY487Ppw7fHiPzwYzkBEfhTLbz+eoGb1j8sknDw/ed2/dx6l8+OGHYZXVVg9vvvVWTbuOP/bYsPpqq9bMi2+OPProcPY55/aY/6uttgp77rF7j/nlGcckVmckZtXTBOOPHx584P4wfmpUEYGMaiWv8yogkJHXyml3twsIZHT7EaD/BAgQIECAAAECNQLpmxoCGTU83hAgQIBAhgQEMgQyqg/HeIE+nsf0NfpD9fJejxQQxBhp0a2vBDK6tfLZ6/c777wTlllu+fDpZ5/1aFz8t+kqv1g5zDTTTOHzzz4PL7z4Qrj0ssvDy3//e49l44zBDGTE7S2+5FI9AhZnnPb7sOwyy8SPK1Psw+577hXuu//+yrzyi7XWXCMcdOCBYZyxxw5jjjlmeXavgYy4wEorrhj233efMNVUU1WWj/s4+NDDwk0331yZV36x9lprhqOPPLL8tvJTIKNC4UWOBQQyclw8Te9qAYGMri6/zhMgQIAAAQIECKQFBDLSIt4TIECAQFYFBDIEMuodm4IZ9VTqzxPEqO/SjXMFMrqx6tnt82VJyGLfAw4YcAMHO5Cx0867hOtvvLFHu2aZZeaw5OJLhIknnij878svh1tvuz18/PHHPZarnjHWWGOFv/31mcqs3kbIqCyQvJh66qlDfIzJa/98LbzxxpvVH1Vex1Exrr3m6jDDj35UmVd+IZBRlvAzzwICGXmunrZ3s4BARjdXX98JECBAgAABAgR6CAhk9CAxgwABAgQyKiCQIZDR36EZL9o/nPwXp7889N3P/tYp6ucLDVmw0rXthw2rvPaCQBQQyHAcZE1g3/33D5ddfkVDzYojTcQRJOKjTqqDEIMdyHjuub+FddZbL3z51VcNtWvRRRYOY481drjrnnt6LN9IICOGL954883wVYP7izs58vDDwrrrrNNjf3GGQEZdFjNzJiCQkbOCaS6B/woIZDgUCBAgQIAAAQIECFQJCGRUYXhJgAABApkWEMgQyMj0AapxBHIkIJCRo2J1UVMvuujicFjy6I0vv/yy115PMP744dBDDg6rrbpqmH/IQuH999+vLDvYgYy44UcefTRsv+OO4d//freyn3ovJptssnDlH68IbyaBini+8u2339Ys1kgg43ennBw++eTT5PEne9asW+9NDKUcsN++YaMNN6z3cWmeQEavND7IkYBARo6KpakEqgQEMqowvCRAgAABAgQIECAgkOEYIECAAIG8CAhkCGTk5VjVTgJZFxDIyHqFurd977zzTrjij38KN950U/Kojn+WRsCYeOKJS4/kmGuuOcP/bLddmHKKKUpA7QhkxB29+eZbYbc9dg+PPvZ4+Prrr3sUZ8455ginJmGKHyaPGInTPff8OXnUyQ3h7uTne++9V5rXaCBjxRVWCPfee1+IjzQZ8cILpXWr/zfaaKOFJZdYPMSRj+aac87qj3q8FsjoQWJGDgUEMnJYNE0mkAgIZDgMCBAgQIAAAQIECFQJCGRUYXhJgAABApkWEMgQyMj0AapxBHIkIJCRo2J1eVM/+fTTMP5449VVaDSQUXflUZj52WefJyGJEeHZZ58L//rXv0IcFSOGImJQJAYlmpli4OLsc86tWSWOkBEDGXH65ptvwt/+9nz4x6v/CK+++mpp+9NMM02yr7nCdNNOW7OeNwSKLCCQUeTq6luRBQQyilxdfSNAgAABAgQIEGhaQCCjaTIrECBAgECHBAQyBDI6dOjZLYHCCQhkFK6kXdmhdgcyBhO5v0DGYO7LtgjkWUAgI8/V0/ZuFhDI6Obq6zsBAgQIECBAgEAPAYGMHiRmECBAgEBGBQQyBDIyemhqFoHcCQhk5K5kGpwS+Pzzz8N8CywYPkt+lqcJJ5wwPPHoI02PVlFev50/BTLaqW1feRYQyMhz9bS9mwUEMrq5+vpOgAABAgQIECDQQ0AgoweJGQQIECCQUQGBDIGMjB6amkUgdwICGbkrWeEb/OGHHyaP8DgnfPttY119+plnwv0PPFCz8OSTTx4evO9egYwaFW8I5FtAICPf9dP67hUQyOje2us5AQIECBAgQIBAHQGBjDooZhEgQIBAJgUEMgQyMnlgahSBHAoIZOSwaAVv8quvvRaWXX6FJJDRYCKjjscC888f/nDRhQIZdWzMIpBXAYGMvFZOu7tdQCCj248A/SdAgAABAgQIEKgREMio4fCGAAECBDIsIJAhkJHhw1PTCORKQCAjV+XqisYORiBjv332DkM33zwXXh5ZkosyaWQGBAQyMlAETSAwCgICGaOAZhUCBAgQIECAAIHiCghkFLe2ekaAAIGiCQhkCGQU7ZjWHwKdEhDI6JS8/fYmMNBAxlJLLhlOP+33YcwxxuhtF5maL5CRqXJoTIYFBDIyXBxNI9CHgEBGHzg+IkCAAAECBAgQ6D4BgYzuq7keEyBAIK8CAhkCGXk9drWbQNYEBDKyVhHteeedd8Iee+2dQDT+yJLRRx89TDvNtGHIkAXDL1ZeOVeIl11+ebj5lltq2jzsN78J8807b808bwh0u4BARrcfAfqfVwGBjLxWTrsJECBAgAABAgRaIiCQ0RJWGyVAgACBFggIZAhktOCwskkCXSkgkNGVZddpAgQI5E5AICN3JdNgAiUBgQwHAgECBAgQIECAAIEqAYGMKgwvCRAgQCDTAgIZAhmZPkA1jkCOBAQyclQsTSVAgEAXCwhkdHHxdT3XAgIZuS6fxhMgQIAAAQIECAy2gEDGYIvaHgECBAi0SkAgQyCjVceW7RLoNgGBjG6ruP4SIEAgnwICGfmsm1YTEMhwDBAgQIAAAQIECBCoEhDIqMLwkgABAgQyLSCQIZCR6QNU4wjkSEAgI0fF0lQCBAh0sYBARhcXX9dzLSCQkevyaTwBAgQIECBAgMBgCwhkDLao7REgQIBAqwQEMgQyWnVs2S6BbhMQyOi2iusvAQIE8ikgkJHPumk1AYEMxwABAgQIECBAgACBKgGBjCoMLwkQIEAg0wICGQIZmT5ANY5AjgQEMnJULE0lQIBAFwsIZHRx8XU91wICGbkun8YTIECAAAECBAgMtoBAxmCL2h4BAgQItEpAIEMgo1XHlu0S6DYBgYxuq7j+EiBAIJ8CAhn5rJtWExDIcAwQIECAAAECBAgQqBIQyKjC8JIAAQIEMi0gkCGQkekDVOMI5EhAICNHxdJUAgQIdLGAQEYXF1/Xcy0gkJHr8mk8AQIECBAgQIDAYAsIZAy2qO0RIECAQKsEBDIEMlp1bNkugW4TEMjotorrLwECBPIpIJCRz7ppNQGBDMcAAQIECBAgQIAAgSoBgYwqDC8JECBAINMCAhkCGY0eoPHivek7gSELLoiCQA8BgYweJGYQIECAQAYFBDIyWBRNItCAgEBGA0gWIUCAAAECBAgQ6B4BgYzuqbWeEiBAIO8CAhkCGb0dw/F8Jk4nn/rdz96W69b5MZRR+m/Idz+71UG/RwoIZIy08IoAAQIEsisgkJHd2mgZgb4EBDL60vEZAQIECBAgQIBA1wkIZHRdyXWYAAECuRUQyBDISB+86fOY9Ofe9xSIwYwdth9WCmj0/NScbhEQyOiWSusnAQIE8i0gkJHv+ml99woIZHRv7fWcAAECBAgQIECgjkD6Rka8SH/xhRfUWdIsAgQIECDQWQGBDIGM8hGYPn8pz/ezcQHBjMatirikQEYRq6pPBAgQKJ6AQEbxaqpH3SEgkNEdddZLAgQIECBAgACBBgXSNzQEMhqEsxgBAgQItF1AIEMgIx506eOg3oEYz2dMIcSbGP1NOwwbVhoxo7/lfF4sAYGMYtVTbwgQIFBUAYGMolZWv4ouIJBR9ArrHwECBAgQIECAQFMCAhlNcVmYAAECBDookL4RH0d0KvqN9/OGDw/nDj+/or7l0M3DFkOHVt5324v0MVDd/x2Tx3AsmAQxin5MVPe5kdflUEY85yu/Tq8nlJEWKf57gYzi11gPCRAgUAQBgYwiVFEfulFAIKMbq67PBAgQIECAAAECvQoIZPRK4wMCBAgQyJhA+ma8QEbGCtTi5qTrX95dDGJsn4zyYOpfIN7U6C2YIZTRv1+RlhDIKFI19YUAAQLFFRDIKG5t9azYAgIZxa6v3hEgQIAAAQIECDQpIJDRJJjFCRAgQKBjAukb8gIZHStF23ecrn1sgCDGqJchff5X3pJQRlmi+D8FMopfYz0kQIBAEQQEMopQRX3oRgGBjG6suj4TIECAAAECBAj0KpC+IB+H+Y43uEwECBAgQCBrAumb8gIZWatQa9qTrnvcizDGwK3T54DlLQpllCWK/VMgo9j11TsCBAgURUAgoyiV1I9uExDI6LaK6y8BAgQIECBAgECfAumL8QIZfXL5kAABAgQ6KJC+MS+Q0cFitGnX6fOUuFthjMHDr+cbt/7SiOcHbye2lEkBgYxMlkWjCBAgQCAlIJCRAvGWQE4EBDJyUijNJECAAAECBAgQaI9A+kK8QEZ73O2FAAECBJoXEMgIYcuhm4cthg5tHi+na6RvGgtjDH4h0+eCcQ9GyRh856xtMf3dEsLJWoW0hwABAgSigECG44BAPgUEMvJZN60mQIAAAQIECBBokUD6IrxARougbZYAAQIEBiwgkNFdgYz0OUo8gNw0HvDXqO4G0tYCGXWZCjVTIKNQ5dQZAgQIFFZAIKOwpdWxggsIZBS8wLpHgAABAgQIECDQnED6ArxARnN+liZAgACB9gkIZHRXICN9w9joGK37rqVvdsQ9CWW0zjsLW05/v4SdslAVbSBAgACBtED6HMU1q7SQ9wSyKSCQkc26aBUBAgQIECBAgECHBAQyOgRvtwQIECDQtIBARvcEMtIX3+PB4oZx01+ZplZInxMKZDTFl7uFBTJyVzINJkCAQFcKpM8JBTK68jDQ6RwKCGTksGiaTIAAAQIECBAg0DqB9MV3/7htnbUtEyBAgMDABAQyuieQka6185OBfXcaWTt9ThjXEYJpRC6fywhk5LNuWk2AAIFuExDI6LaK629RBAQyilJJ/SBAgAABAgQIEBgUgfTFdzc8BoXVRggQIECgBQLpm/QXX3hBiH9vFXk6b/jwcO7w8ytd3HLo5mGLoUMr74v6ohtrnYVaukmfhSq0pw1q3R5neyFAgACBgQkIZAzMz9oEOiUgkNEpefslQIAAAQIECBDIpIBARibLolEECBAgUEegG2/Sd2sgw83iOl+ANsxKf8c8tqQN6B3ahe9Yh+DtlgABAgSaEhDIaIrLwgQyIyCQkZlSaAgBAgQIECBAgEAWBAQyslAFbSBAgACBRgTSN4uNkNGIWv6WSV94jz3w6Iz21DF9XiiQ0R73TuxFIKMT6vZJgAABAs0KpM8LjerarKDlCXRGQCCjM+72SoAAAQIECBAgkFGB9IV3/7jNaKE0iwABAgSCQEYI3fDIEhfeO/dlT58XCmR0rhat3rNARquFbZ8AAQIEBkPAeeFgKNoGgfYLCGS039weCRAgQIAAAQIEMiyQvvAukJHhYmkaAQIEulxAIEMgo8u/Ai3vfvq8UCCj5eQd24FARsfo7ZgAAQIEmhAQyGgCy6IEMiQgkJGhYmgKAQIECBAgQIBA5wXSF94FMjpfEy0gQIAAgfoCAhkCGfWPDHMHSyB9XiiQMViy2duOQEb2aqJFBAgQINBTQCCjp4k5BPIgIJCRhyppIwECBAgQIECAQNsE0hfeBTLaRm9HBAgQINCkgECGQEaTh4zFmxRInxcKZDQJmKPFBTJyVCxNJUCAQBcLCGR0cfF1PdcCAhm5Lp/GEyBAgAABAgQIDLZA+sK7QMZgC9seAQIECAyWgECGQMZgHUsD2c5nn302kNVr1h1nnHHCaKONVjOvk2/S54UCGZ2sRmv3LZDRWl9bJ0CAAIHBERDIGBxHWyHQbgGBjHaL2x8BAgQIECBAgECmBdIX3gUyMl0ujSNAgEBXCwhkCGRk4Qsw82yzh2+++WZQmnLTDdeHmWaccVC2NRgbSZ8XCmQMhmo2tyGQkc26aBUBAgQI1AoIZNR6eEcgLwICGXmplHYSIECAAAECBAi0RSB94V0goy3sdkKAAAECoyAgkCGQMQqHzaCvIpAx6KQ22AEBgYwOoNslAQIECDQtIJDRNJkVCGRCQCAjE2XQCAIECBAgQIAAgawICGRkpRLaQYAAAQL9CQhkCGT0d4y043OBjHYo20ezAk88+WRplXnmnruhVQUyGmKyEAECBAh0WEAgo8MFsHsCoyggkDGKcFYjQIAAAQIECBAopoBARjHrqlcECBAoooBARn4DGTvstHOYZ+65whZDh/Z7aGb9wrtARr8ltECbBWIYI37H4nTyiSck37X+QxkCGW0ukt0RIECAwCgJZP28cJQ6ZSUCXSAgkNEFRdZFAgQIECBAgACBxgUEMhq3siQBAgQIdFZAICOfgYx4o7j82/tbDt2831BG1i+8X33NteHbb79t6svw7LN/DcMvuLDHOjfdcH2YacYZe8zv1Iz0eeEOw4aFHbYf1qnm2G8DAtVhjPLijYQyBDLKWn4SIECAQJYFsn5emGU7bSPQSQGBjE7q2zcBAgQIECBAgEDmBNIX3ocsuGC4+MILMtdODSJAgAABAgIZ+QtkVIcxykdwf6GMIl14//rrr8OVV10VTjrl1PDWW2+VCSo/BTIqFF6MosB5w4eHc4ef32Pt/kIZAhk9yMwgQIAAgQwKFOm8MIO8mkSgZQICGS2jtWECBAgQIECAAIE8Cghk5LFq2kyAAIHuFBDIyF8go95v78ejt69QRlEuvN98yy3hhBNPCv/78st1v7DTTzdduOySP4Qpppii7uedmJk+LzRCRieq0Pw+RyWUIZDRvLM1CBAgQKD9AkU5L2y/nD0S6KyAQEZn/e2dAAECBAgQIEAgYwLpC+9GyMhYgTSHAAECBCoCAhl9BxkqUBl70WwoI+8X3h948MFw7PHHh6effqZuJWIAY/vf/Dr8cr31wphjjll3mU7NTJ8XCmR0qhLN77fZUIZARvPG1iBAgACB9gvk/byw/WL2SCAbAgIZ2aiDVhAgQIAAAQIECGREIH3hXSAjI4XRDAIECBDoISCQEcI8c88d4qMI8jY1E8rI64X3Z575aymIcf8DD9Qtz0QTTRS2/dXWYfPNNg/jjTdu3WU6PTN9XiiQ0emKNLf/ZkIZAhnN2VqaAAECBDojkNfzws5o2SuB7AgIZGSnFlpCgAABAgQIECCQAYH0hXeBjAwURRMIECBAoK5ANwYy6gUZ7r37rro+WZ9Zry+xzenHl+TtwvtXX30Vdtpl1xAfUVJvGnfcccNmm2wSttt2mzDxxBPXWyQz89LnhQIZmSlNww1pNJQhkNEwqQUJECBAoIMCeTsv7CCVXRPIlIBARqbKoTEECBAgQIAAAQKdFkhfeBfI6HRF7J8AAQIEehPoxkBGtFh8qaVrSNIBhpoPM/6mkVBG3i68f/zJJ2GueeatK7/h+uuH7Yf9Jkw55ZR1P8/azPR5oUBG1irUWHsaCWUIZDRmaSkCBAgQ6KxA3s4LO6tl7wSyIyCQkZ1aaAkBAgQIECBAgEAGBNIX3gUyMlAUTSBAgACBugLdGsiod3M1Prpki6Gb13XK+swnn3wynDv8/B7NLAdN8nbhva9AxjZbbx3GH3+8MNtss4U555gjTDHFFD36naUZ6fPCGMhYfPHFstTElrQlHpNxeuLJp1qy/U5sNIaf6k3xkUfxzw+BjHo65hEgQIBA1gTydl6YNT/tIdApAYGMTsnbLwECBAgQIECAQCYF0hfeBTIyWSaNIkCAAIFEoFsDGbH46VEyinpAxFDG7LPPXqp1uY9ZPzfpK5BR7kP551RTTRV22WnHsM7aa5dnZepn+rxwookmChNOOGGm2qgxAxeIoYz11t+gZkMvjXi+5r03BAgQIEAgCwICGVmogjYQaF5AIKN5M2sQIECAAAECBAgUWCB94T3rNz0KXApdI0CAAIF+BLo5kNHboz76Icvlxz9LAhm333FHpe1ZPzdpJpBR7tQmG20U9tt3nzDmmGOWZ2XiZ/q8UCAjE2UZ9EbEETJuvOmmmu0KZNRweEOAAAECGREQyMhIITSDQJMCAhlNglmcAAECBAgQIECg2ALpC+9Zv+lR7GroHQECBAj0JdDNgYzoEkMZ5yWP+ujtUQR92eXps0022jAcc9zxlSZn/dxkVAIZsXMLDRkSLjx/eBhttNEqfe30i/R5oUBGpysy+PuPYYw4QoZHlgy+rS0SIECAwOALCGQMvqktEmiHgEBGO5TtgwABAgQIECBAIDcC6QvvWb/pkRtYDSVAgACBQRfo9kBGGbQcyIjhjLxO5T6k2x9vFH/xxRe5emRJ7MOXX36Z7kr47PPPwyt/fyW88OIL4eRTTw2vv/5Gj2VO+92pYfnllusxv1Mz0ueFMZCx+GKLdao5bd/vPHPPFeZOAgtFmOqFt8phjNg/gYwiVFkfCBAgUHwBgYzi11gPiykgkFHMuuoVAQIECBAgQIDAKAqkL7wLZIwipNUIECBAoOUCAhktJ27LDs4bPjycWydMEsMY8YZxES+8/+ejj8KvfzMsPPiXv9QYxzBGDGVkZUqfF+4wbFjYYfthWWmedjQosMNOO/cYSac6jBE3I5DRIKbFCBAgQKCjAkU8L+woqJ0TaJOAQEaboO2GAAECBAgQIEAgHwLpC+8CGfmom1YSIECgGwUEMvJf9f7CGLGHWb7w/vbbb4f4iJLqaeofTB3GG2/c6ll1X998yy1h2A471nw2y8wzhxuuu7ZmXiffpM8LBTI6WY1R23cjYYy4ZYGMUfO1FgECBAi0VyDL54XtlbA3AvkSEMjIV720lgABAgQIECBAoMUC6QvvAhktBrd5AgQIEBhlAYGMUabLxIqNhDFiQ7N84T0GKmKwono6+8wzwlJLLlk9q+7rGOSYa555az6bZJJJwmMPP1Qzr5Nv0ueFAhmdrEbz+240jBG3LJDRvK81CBAgQKD9Alk+L2y/hj0SyI+AQEZ+aqWlBAgQIECAAAECbRBIX3gXyGgDul0QIECAwCgJCGSMElsmVmo0jBEbm+UL74cdfng47/wLakx333WXsO0229TMq/fm9dffCEsus0zNR9NPN1248/bbauZ18k36vFAgo5PVaG7fzYQx4pYFMprztTQBAgQIdEYgy+eFnRGxVwL5EBDIyEedtJIAAQIECBAgQKBNAukL7wIZbYK3GwIECBBoWkAgo2myTKzQTBgjNjjLF96HJ2GMQ5NQRvU091xzhcsu+UMYY4wxqmf3eH3lVVeFPfbau2b+YosuEoafe27NvE6+SZ8XCmR0shqN77vZMEbcskBG476WJECAAIHOCWT5vLBzKvZMIPsCAhnZr5EWEiBAgAABAgQItFEgfeFdIKON+HZFgAABAk0JCGQ0xZWJhZsNY8RGZ/nC+9+efz6stsaaPWx/vd12YZedd+oxvzzjjTfeDKuvtVZ4//33y7NKP7f91a/C7rvtWjOvk2/S54UCGZ2sRmP7rvcdm2fuucPJJ57Q5wYEMvrk8SEBAgQIZEQgy+eFGSHSDAKZFBDIyGRZNIoAAQIECBAgQKBTAukL7wIZnaqE/RIgQIBAfwICGf0JZe/zejeL443ieMO4tynrF943G7pFeODBB3s0P55D7bTjDuFnP/tZGH+88Uqfv/POO+G6664Pvzv99PDBBx/UrDPmmGOGO2+7Lfzwh1PXzO/km/R5oUBGJ6vR+L6rR8hoJIwRtyyQ0bivJQkQIECgcwJZPy/snIw9E8i2gEBGtuujdQQIECBAgAABAm0WSF94F8hocwHsjgABAgQaFhDIaJgqUwtWhzL6C2PEhmf9wvuTTz0VNtpk0/DFF1/06jz55JOHjz/+KHz66We9LrPxhhuG3x50YK+fd+KD9HmhQEYnqjBq+4yhjDj1NzJGeesCGWUJPwkQIEAgywJZPy/Msp22EeikgEBGJ/XtmwABAgQIECBAIHMC6QvvAhmZK5EGESBAgMB/BQQy8nsoxFDG3MmoGH2NjFHuXR4uvN9w441hp112Dd9++2252U39XGzRRcLZZ54Z4igZWZrS54UCGVmqzuC2RSBjcD1tjQABAgRaI5CH88LW9NxWCeRbQCAj3/XTegIECBAgQIAAgUEWSF94F8gYZGCbI0CAAIFBExDIGDTKTG8oLxfe77r77nDAQb8Nb775ZsOeo402Wthw/fXDnnvuESYYf/yG12vXgunzQoGMdsm3fz8CGe03t0cCBAgQaF4gL+eFzffMGgSKLSCQUez66h0BAgQIECBAgECTAukL7wIZTQJanAABAgTaJiCQ0Tbqju4oTxfeP/7kk3DeeeeFG268Kbz40ku9uo0/3nhhiSWWCFtuMTTMO888vS7X6Q/S54UCGZ2uSOv2L5DROltbJkCAAIHBE8jTeeHg9dqWCORfQCAj/zXUAwIECBAgQIAAgUEUSF94F8gYRFybIkCAAIFBFRDIGFTOzG4srxfe//7KK2HEiBHhnXf+Hd59990w3njjhimmmCJMNdVUYf755gvjjDNOZs3LDUufFwpklGWK91Mgo3g11SMCBAgUUSCv54VFrIU+EWhGQCCjGS3LEiBAgAABAgQIFF4gfeFdIKPwJddBAgQI5FZAICO3pWuq4S68N8U1qAunzwsFMgaVN1MbE8jIVDk0hgABAgR6EXBe2AuM2QQyLiCQkfECaR4BAgQIECBAgEB7BdIX3gUy2utvbwQIECDQuIBARuNWeV7ShffOVS99XiiQ0blatHrPAhmtFrZ9AgQIEBgMAeeFg6FoGwTaLyCQ0X5zeyRAgAABAgQIEMiwQPrCu0BGhoulaQQIEOhyAYGM7jgAXHjvXJ3T54UCGZ2rRav3LJDRamHbJ0CAAIHBEHBeOBiKtkGg/QICGe03t0cCBAgQIECAAIEMC6QvvAtkZLhYmkaAAIEuFxDI6I4DwIX3ztU5fV4okNG5WrR6zwIZrRa2fQIECBAYDAHnhYOhaBsE2i8gkNF+c3skQIAAAQIECBDIsIB/3Ga4OJpGgAABAjUCAhk1HIV949ykc6UVyOicfbv3LJDRbnH7I0CAAIFREXBeOCpq1iHQeQGBjM7XQAsIECBAgAABAgQyJOAftxkqhqYQIECAQJ8CAhl98hTqQzeLO1NO37HOuHdir+nv2MUXXhDiSHkmAgQIECCQJQFh0SxVQ1sINC4gkNG4lSUJECBAgAABAgS6RCB9QfalEc93Sc91kwABAgTyJODvqzxVa2BtTdfazeKBeTa6tkBGo1L5Xy5da4+nyX9N9YAAAQJFFEj/feWcsIhV1qciCghkFLGq+kSAAAECBAgQIDAggfRNDxdkB8RpZQIECBBogYARnVqAmuFNpi++OzdpT7HS54RCuu1x78Re/MZxJ9TtkwABAgSaFUifmwhkNCtoeQKdERDI6Iy7vRIgQIAAAQIECGRYwAXZDBdH0wgQIECgJJC+QR+H1o8XZE3FFHBu0v66ps19x9pfg3buMV3vuG8BnHZWwL4IECBAoD+BdCA7Lu/vqv7UfE4gGwICGdmog1YQIECAAAECBAhkSMAF2QwVQ1MIECBAoIdAvYuxfjuuB1OhZtQ7NzFKRmtLnP4N1B23Hxa2HzastTu19Y4KpGvuO9bRctg5AQIECKQEBLJTIN4SyJGAQEaOiqWpBAgQIECAAAEC7RNI3/hwQbZ99vZEgAABAn0LuBjbt09RP3Vu0r7K1gs9+Q3U9vl3ak/p71hsh7p3qhr2S4AAAQLVAvXOTQSyq4W8JpBtAYGMbNdH6wgQIECAAAECBDokUO+CrH/sdqgYdkuAAAECFQF/P1Uouu5FvdoLjLbmMEiHnoyO0RrnLG7VKBlZrIo2ESBAgED63MSj1BwTBPIlIJCRr3ppLQECBAgQIECAQBsF0hdk466FMtpYALsiQIAAgRqBejfkXYytISr8m3rHgHOTwS17+oZH3DrjwTXO8tbqfccEn7JcMW0jQIBA8QWcmxS/xnpYfAGBjOLXWA8JECBAgAABAgRGUaDeBdm4KRflRxHUagQIECAwygL+ThplukKt6DhobTnr3fAQemqteRa3Xi+ULZSRxUppEwECBIov4Nyk+DXWw+4QEMjojjrrJQECBAgQIECAwCgKuPExinBWI0CAAIFBE+jt7yKPURg04lxtqLfjQWB0YGV0w2NgfkVa+6GHHw7xeEhPQhlpEe8JECBAoJUCzk1aqWvbBNorIJDRXm97I0CAAAECBAgQyKFAbzc+XJTNYTE1mQABAjkT6O3vIGGMnBVykJvb23Hh3KR56GgZb8DH/6onI2NUa3Tf695CGfG42GH7YSH+NBEgQIAAgVYI9Hae59ykFdq2SaA9AgIZ7XG2FwIECBAgQIAAgZwL9PYP4tgtF2ZzXlzNJ0CAQAYF+vp7RxgjgwXrQJP6OkYEM/ovSF9+bnj079cNS/QWyoh9d/7fDUeAPhIgQKC9As5N2uttbwTaKSCQ0U5t+yJAgAABAgQIEMi1QF//OI4dixdmq3+W3vgfAQIECBBoQuDkU0/tc2lhjD55uu7DRs5N4vnJkCF+mz8eHA899N0oGH19z4Qxuu5r1GeH+wpllFcsfceMmFHm8JMAAQIEmhSIf9fE/3qbnJv0JmM+gfwICGTkp1ZaSoAAAQIECBAgkAGB/m58ZKCJmkCAAAECBRUQxihoYQfYLecmAwSsWt13rArDy4pAvEkWv2d93SyrLOwFAQIECBAYRAHnJoOIaVMEOiggkNFBfLsmQIAAAQIECBDIr4ALs/mtnZYTIEAgbwIuxOatYp1pr2DGqLvH71icth/23c9R35I1iyzg/L/I1dU3AgQIZEvA+X+26qE1BAYqIJAxUEHrEyBAgAABAgQIdLWAC7NdXX6dJ0CAQMsE4tDECyWPmXCDuGXEhd2wYEbjpXWzo3ErS44UcP4/0sIrAgQIEBhcAecmg+tpawSyIiCQkZVKaAcBAgQIECBAgEDuBeLF2Tg93MezP3PfSR0gMIoC5w4/v2bNLYduXvPeGwIEvhNYMAlixDCGicBABcrnJTGgYfpOIIac4uR79p2H/w9coPw9c/4/cEtbIECAQDcLCGF3c/X1vRsEBDK6ocr6SIAAAQIECBAgQIAAgQ4LLL7U0jUtuPfuu2ree0OAAAECBAgQIECAAAECBAgQIECgaAICGUWrqP4QIECAAAECBAgQIEAggwICGRksiiYRIECAAAECBAgQIECAAAECBAi0VEAgo6W8Nk6AAAECBAgQIECAAAECUUAgw3FAgAABAgQIECBAgAABAgQIECDQbQICGd1Wcf0lQIAAAQIECBAgQIBABwQEMjqAbpcECBAgQIAAAQIECBAgQIAAAQIdFRDI6Ci/nRMgQIAAAQIECBAgQKA7BAQyuqPOekmAAAECBAgQIECAAAECBAgQIDBSQCBjpIVXBAgQIECAAAECBAgQINAiAYGMFsHaLAECBAgQIECAAAECBAgQIECAQGYFBDIyWxoNI0CAAAECBAgQIECAQHEEBDKKU0s9IUCAAAECBAgQIECAAAECBAgQaExAIKMxJ0sRIECAAAECBAgQIECAwAAEBDIGgGdVAgQIECBAgAABAgQIECBAgACBXAoIZOSybBpNgAABAgQIECBAgACBfAkIZOSrXlpLgAABAgQIECBAgAABAgQIECAwcAGBjIEb2gIBAgQIECBAgAABAgQI9CMgkNEPkI8JECBAgAABAgQIECBAgAABAgQKJyCQUbiS6hABAgQIECBAgAABAgSyJyCQkb2aaBEBAgQIECBAgAABAgQIECBAgEBrBQQyWutr6wQIECBAgAABAgQIECCQCAhkOAwIECBAgAABAgQIECBAgAABAgS6TUAgo9sqrr8ECBAgQIAAAQIECBDogIBARgfQ7ZIAAQIECBAgQIAAAQIECBAgQKCjAgIZHeW3cwIECBAgQIAAAQIECHSHgEBGd9RZLwkQIECAAAECBAgQIECAAAECBEYKCGSMtPCKAAECBAgQIECAAAECBFokIJDRIlibJUCAAAECBAgQIECAAAECBAgQyKyAQEZmS6NhBAgQIECAAAECBAgQKI6AQEZxaqknBAgQIECAAAECBAgQIECAAAECjQkIZDTmZCkCBAgQIECAAAECBAgQGICAQMYA8KxKgAABAgQIECBAgAABAgQIECCQSwGBjFyWTaMJECBAgAABAgQIECCQLwGBjHzVS2sJECBAgAABAgQIECBAgAABAgQGLiCQMXBDWyBAgAABAgQIECBAgACBfgQEMvoB8jEBAgQIECBAgAABAgQIECBAgEDhBAQyCldSHSJAgAABAgQIECBAgED2BAQyslcTLSJAgAABAgQIECBAgAABAgQIEGitgEBGa31tnQABAgQIECBAgAABAgQSAYEMhwEBAgQIECBAgAABAgQIECBAgEC3CQhkdFvF9ZcAAQIECBAgQIAAAQIdEBDI6AC6XRIgQIAAAQIECBAgQIAAAQIECHRUQCCjo/x2ToAAAQIECBAgQIAAge4QEMjojjrrJQECBAgQIECAAAECBAgQIECAwEgBgYyRFl4RIECAAAECBAgQIECAQIsEBDJaBGuzBAgQIECAAAECBAgQIECAAAECmRUQyMhsaTSMAAECBAgQIECAAAECxREQyChOLfWEAAECBAgQIECAAAECBAgQIECgMQGBjMacLEWAAAECBAgQIECAAAECAxAQyBgAnlUJECBAgAABAgQIECBAgAABAgRyKSCQkcuyaTQBAgQIECBAgAABAgTyJSCQka96aS0BAgQIECBAgAABAgQIECBAgMDABQQyBm5oCwQIECBAgAABAgQIECDQj4BARj9APiZAgAABAgQIECBAgAABAgQIECicgEBG4UqqQwQIECBAgAABAgQIEMiegEBG9mqiRQQIECBAgAABAgQIECBAgAABAq0VEMhora+tEyBAgAABAgQIECBAgEAiIJDhMCBAgAABAgQIECBAgAABAgQIEOg2AYGMbqu4/hIgQIAAAQIECBAgQKADAgIZHUC3SwIECBAgQIAAAQIECBAgQIAAgY4KCGR0lN/OCRAgQIAAAQIECBAg0B0CAhndUWe9JECAAAECBAgQIECAAAECBAgQGCkgkDHSwisCBAgQIECAAAECBAgQaJGAQEaLYG2WAAECBAgQIECAAAECBAgQIEAgswICGZktjYYRIECAAAECBAgQIECgOAICGcWppZ4QIECAAAECBAgQIECAAAECBAg0JiCQ0ZiTpQgQIECAAAECBAgQIEBgAAICGQPAsyoBAgQIECBAgAABAgQIECBAgEAuBQQyclk2jSZAgAABAgQIECBAgEC+BAQy8lUvrSVAgAABAgQIECBAgAABAgQIEBi4gEDGwA1tgQABAgQIECBAgAABAgT6ERDI6AfIxwQIECBAgAABAgQIECBAgAABAoUTEMgoXEl1iAABAgQIECBAgAABAtkTEMjIXk20iAABAgQIECBAgAABAgQIECBAoLUCAhmt9bV1AgQIECBAgAABAgQIEEgEBDIcBgQIECBAgAABAgQIECBAgAABAt0mIJDRbRXXXwIECBAgQIAAAQIECHRAQCCjA+h2SYAAAQIECBAgQIAAAQIECBAg0FEBgYyO8ts5AQIECBAgQIAAAQIEukNAIKM76qyXBAgQIECAAAECBAgQIECAAAECIwUEMkZaeEWAAAECBAgQIECAAAECLRIQyGgRrM0SIECAAAECBAgQIECAAAECBAhkVkAgI7Ol0TACBAgQIECAAAECBAgUR0Agozi11BMCBAgQIECAAAECBAgQIECAAIHGBAQyGnOyFAECBAgQIECAAAECBAgMQEAgYwB4ViVAgAABAgQIECBAgAABAgQIEMilgEBGLsum0QQIECBAgAABAgQIEMiXgEBGvuqltQQIECBAgAABAgQIECBAgAABAgMXEMgYuKEtECBAgAABAgQIECBAgEA/AgIZ/QD5mAABAgQIECBAgAABAgQIECBAoHACAhmFK6kOESBAgAABAgQIECBAIHsCAhnZq4kWESBAgAABAgQIECBAgAABAgQItFZAIKO1vrZOgAABAgQIECBAgAABAomAQIbDgAABAgQIECBAgAABAgQIECBAoNsEBDK6reL6S4AAAQIECBAgQIAAgQ4ICGR0AN0uCRAgQIAAAQIECBAgQIAAAQIEOiogkNFRfjsnQIAAAQIECBAgQIBAdwgIZHRHnfWSAAECBAgQIECAAAECBAgQIEBgpIBAxkgLrwgQIECAAAECBAgQIECgRQICGS2CtVkCBAgQIECAAAECBAgQIECAAIHMCghkZLY0GkaAAAECBAgQIECAAIHiCAhkFKeWekKAAAECBAgQIECAAAECBAgQINCYgEBGY06WIkCAAAECBAgQIECAAIEBCAhkDADPqgQIECBAgAABAgQIECBAgAABArkUEMjIZdk0mgABAgQIECBAgAABAvkSEMjIV720lgABAgQIECBAgAABAgQIECBAYOACAhkDN7QFAgQIECBAgAABAgQIEOhHQCCjHyAfEyBAgAABAgQIECBAgAABAgQIFE5AIKNwJdUhAgQIECBAgAABAgQIZE9AICN7NdEiAgQIECBAgAABAgQIECBAgACB1goIZLTW19YJECBAgAABAgQIECBAIBEQyHAYECBAgAABAgQIECBAgAABAgQIdJuAQEa3VVx/CRAgQIAAAQIECBAg0AEBgYwOoNslAQIECBAgQIAAAQIECBAgQIBARwUEMjrKb+cECBAgQIAAAQIECBDoDgGBjO6os14SIECAAAECBAgQIECAAAECBAiMFBDIGGnhFQECBAgQIECAAAECBAi0SEAgo0WwNkuAAAECBAgQIECAAAECBAgQIJBZAYGMzJZGwwgQIECAAAECBAgQIFAcAYGM4tRSTwgQIECAMGSTugAAQABJREFUAAECBAgQIECAAAECBBoTEMhozMlSBAgQIECAAAECBAgQIDAAAYGMAeBZlQABAgQIECBAgAABAgQIECBAIJcCAhm5LJtGEyBAgAABAgQIECBAIF8CAhn5qpfWEiBAgAABAgQIECBAgAABAgQIDFxAIGPghrZAgAABAgQIECBAgAABAv0ICGT0A+RjAgQIECBAgAABAgQIECBAgACBwgkIZBSupDpEgAABAgQIECBAgACB7AkIZGSvJlpEgAABAgQIECBAgAABAgQIECDQWgGBjNb62joBAgQIECBAgAABAgQIJAICGQ4DAgQIECBAgAABAgQIECBAgACBbhMQyOi2iusvAQIECBAgQIAAAQIEOiAgkNEBdLskQIAAAQIECBAgQIAAAQIECBDoqIBARkf57ZwAAQIECBAgQIAAAQLdISCQ0R111ksCBAgQIECAAAECBAgQIECAAIGRAgIZIy28IkCAAAECBAgQIECAAIEWCQhktAjWZgkQIECAAAECBAgQIECAAAECBDIrIJCR2dJoGAECBAgQIECAAAECBIojIJBRnFrqCQECBAgQIECAAAECBAgQIECAQGMCAhmNOVmKAAECBAgQIECAAAECBAYgIJAxADyrEiBAgAABAgQIECBAgAABAgQI5FJAICOXZdNoAgQIECBAgAABAgQI5EtAICNf9dJaAgQIECBAgAABAgQIECBAgACBgQsIZAzc0BYIECBAgAABAgQIECBAoB8BgYx+gHxMgAABAgQIECBAgAABAgQIECBQOAGBjMKVVIcIECBAgAABAgQIECCQPQGBjOzVRIsIECBAgAABAgQIECBAgAABAgRaKyCQ0VpfWydAgAABAgQIECBAgACBREAgw2FAgAABAgQIECBAgAABAgQIECDQbQICGd1Wcf0lQIAAAQIECBAgQIBABwQEMjqAbpcECBAgQIAAAQIECBAgQIAAAQIdFRDI6Ci/nRMgQIAAAQIECBAgQKA7BAQyuqPOekmAAAECBAgQIECAAAECBAgQIDBSQCBjpIVXBAgQIECAAAECBAgQINAiAYGMFsHaLAECBAgQIECAAAECBAgQIECAQGYFBDIyWxoNI0CAAAECBAgQIECAQHEEBDKKU0s9IUCAAAECBAgQIECAAAECBAgQaExAIKMxJ0sRIECAAAECBAgQIECAwAAEBDIGgGdVAgQIECBAgAABAgQIECBAgACBXAoIZOSybBpNgAABAgQIECBAgACBfAkIZOSrXlpLgAABAgQIECBAgAABAgQIECAwcAGBjIEb2gIBAgQIECBAgAABAgQI9CMgkNEPkI8JECBAgAABAgQIECBAgAABAgQKJyCQUbiS6hABAgQIECBAgAABAgQ6I/DEk0+WdjzP3HP3aECjgYy4jXrr99igGQQIECBAgAABAgQIECBAgAABAgQyLiCQkfECaR4BAgQIECBAgAABAgTyIBCDFDvstHOpqSefeEKPUEUjgYy4ftzOlkM3D1sMHZqHbmsjAQIECBAgQIAAAQIECBAgQIAAgV4FBDJ6pfEBAQIECBAgQIAAAQIECDQiUB3GKC+fDmX0F8gohzHK6wtllCX8JECAAAECBAgQIECAAAECBAgQyKuAQEZeK6fdBAgQIECAAAECBAgQyIjAecOHh3OHn9+jNdWhjL4CGekwRtxQfGxJXN9EgAABAgQIECBAgAABAgQIECBAIK8CAhl5rZx2EyBAgAABAgQIECBAIEMC/YUyegtkCGNkqIiaQoAAAQIECBAgQIAAAQIECBAgMKgCAhmDymljBAgQIECAAAECBAgQ6F6BvkIZMXhRPd17911BGKNaxGsCBAgQIECAAAECBAgQIECAAIGiCQhkFK2i+kOAAAECBAgQIECAAIEOCvQWykg3KT6S5Iknn6yZ7TElNRzeECBAgAABAgQIECBAgAABAgQI5FxAICPnBdR8AgQIECBAgAABAgQIZE2g0VBGdbuFMao1vCZAgAABAgQIECBAgAABAgQIECiCgEBGEaqoDwQIECBAgAABAgQIEMiYQDOhDGGMjBVPcwgQIECAAAECBAgQIECAAAECBAZFQCBjUBhthAABAgQIECBAgAABAgTSAo2EMoQx0mreEyBAgAABAgQIECBAgAABAgQIFEVAIKMoldQPAgQIECBAgAABAgQIZFCgr1CGMEYGC6ZJBAgQIECAAAECBAgQIECAAAECgyYgkDFolDZEgAABAgQIECBAgAABAvUE6oUyhDHqSZlHgAABAgQIECBAgAABAgQIECBQJAGBjCJVU18IECBAgAABAgQIECCQUYHqUIYwRkaLpFkECBAgQIAAAQIECBAgQIAAAQKDKiCQMaicNkaAAAECBAgQIECAAAECvQnEUMYTTz4VTj7xhN4WMZ8AAQIECBAgQIAAAQIECBAgQIBAYQQEMgpTSh0hQIAAAQIECBDopMBDDz8cHnro4VIT4msTAQIECBAYFYEdth9WWm3IgguOyurWIUCAAIE2CTj/bxO03RAgQKDgAvG8f8iQ5D/n/wWvtO51s4BARjdXX98JECBAgAABAgQGLHDyKaeGk089dcDbsQECBAgQIJAWiBdlY0DDxdm0jPcECBDonIDz/87Z2zMBAgSKLuD8v+gV1r9uFRDI6NbK6zcBAgQIECBAgMCABFyIHRCflQkQIECgCQEXZpvAsigBAgRaJOD8v0WwNkuAAAECPQSc//cgMYNArgUEMnJdPo0nQIAAAQIECBBot4ALse0Wtz8CBAgQKAvsMGxYacSM8ns/CRAgQKD1As7/W29sDwQIECBQXyAGMy6+8IL6H5pLgEBuBAQyclMqDSVAgAABAgQIEOi0QH8XY3dMhpWP04Ke+9npUtk/AQIEcisQ/66J00MPP1y3D0IZdVnMJECAQEsE+jv/jzfKFhqyYGnf/g3QkhLYKAECBAov0N/5v1BG4Q8BHewCAYGMLiiyLhLoT+DRxx4Lf7733hC+rb/kDDPMENZea836H7Zg7qeffRZOP/308O1/27PjDtuHMcYYo889vf322+Gxx58IL774Yvj666/DZJNNFrYYunmf66Q/fOPNN8Mdt98Rnnrm6fDuu++GOX4+R1hggfnD4ostll50lN7feNPN4Y03Xg9bb7VVQ+u/9dbbYcKJJgwTTjBBQ8v3t9Bgb6+//fm8MwJPP/1MuP2OO5LjbMsw8cQTd6YR9to1At98803p74/Hkz9/4zQkuRC56CKLFLb/fV2MjUGM7ZPfWjYRIECAAIHBEoiBjPh3T71ghlDGYCnbDgECBHoXcP7fu41PCBAgQGDwBfo6/xfKGHxvWyTQTgGBjHZq2xeBjAqcc+654Yijjg7jjzde3eDDIsnNtVNPPimMNtpobenB735/Wjjx5JPDbLPNGp577m/h2SQgMc7YY/e675tvuTXstsce4bMkyPHjJDwy0UQThWmmmSacfOIJDbf56WeeCb/adrtSEGOGH/0oTDfdtOEvDz0cvvzyyzB0s83CPnvvFUYfffRe21D+4NfDtg/TTzdd2GvPPcqzKj933W338EgSfrnnzjv6bderr70Wll9xpTBt0o/bb72l3+UrO+nlxWBvr5fdmJ0Bgcsuvzzsu/8B4a47bg/TTTttBlqkCUUWuO3228P//GZY+MEPfhCmnHKKsN4664QNN9igkF3u7WKsIEYhy61TBAgQyJRAbxdmhTIyVSaNIUCgYALO/wtWUN0hQIBAjgR6O/8XyshRETWVQEpAICMF4i2BbhQoBzJuvO7aMPPMM3eU4N///ndYdoUVw/LLLhummmqqcMZZZ/UZyPjXv/4VFltyqTD3XHOFo488IsTRPJqdPvjgg7D4UkuHn80+ezjowAPCLP81+Oijj8IFF14Ujj/xxHDAfvuGzTbdtN9Nr7DSymGmmWaqG2BpJpARHVZZfY0w04wzhgvPHz7gQMZgb69fCAt0TEAgo2P0Xbnjo485NpydhPoee/ihUhiuqAi9XYyNz/CM/xg2ESBAgACBdghsvOlmPUbLEMpoh7x9ECDQbQK9nf8LY3fbkaC/BAgQ6KxAvb+PhDI6WxN7JzCqAgIZoypnPQIFEshSIOOAgw4Kf/zTleHWm28Kl156aTj9zL4DGVdedVXYc+99wmm/OzUsl4Q4RmW69bbbwm+236G0zzjCRnpaa511k0egTBrOScIh/Y0SMliBjNiGr776Kow55pjp5ozy+8He3ig3xIotFRDIaCmvjacEjjr6mHDe+eeH55/9a+qT4ryNv5UQb4ClJ2GMtIj3BAgQINAOAaGMdijbBwEC3SzQ2/m/MEY3HxX6ToAAgc4J1AtlCGV3rh72TGBUBQQyRlXOegQKJNBsIOOjjz8ODz30UHj00UfDO8lIDvPOM08YMmRI+OlPflKj8p///CcJV/wpLLXUUuGLL74Ijzz8SPg2WWLTTTauWa785n9ffjmsmowKsdkmm4S999ozHHvccf0GMq744x/DPvvtH+647dbSo0LK24o/L7nk0tJjTLbYYmj17B6vDz3s8PCnJNjx+CMP1w1c7LjzzuHhpO0P3Hdv3c/vuPPO8Oo/Xi1t9/Qzzwzfn3zysO7aa4fRkjlTTjVlWOUXvyh9Vj1CxrPPPRf+/Od7w/vvvxfmmGOOsOQSS4aJJ56opm2XXnZZ+OHUPwxLLLF4ZX4MVTz51FPhvvvuD6+/8XpYZOFFwmKLLhKmmGKKyjK9vai3vXIt4/bitMTiiye1XDCMP/74vW2mZv5fn3023H33PeGFF14Ik046aVhkkYXDSiuuWLNMb28a6cu3334bhic3e+eac64w77zz9NjUdddfH8Yaa6we+/z4k0/Cgw8+WDlG5/j5z8Niiy0WZvzpT3tsI86II608kCz/SHJMjz7a6GGuZMSVpZZaMkz+/e/3WD62Oy73UPJIm3+8+o9S22K/Z05GRklPPXyTWsbvSnw8UPXU6HLV6/T2ujqQMXZic+ONN4V/vv7PMGMy2ko06O0xJm+//XZi8JfwWPJYnfh4nvnnnz85vhYKkyfHc3l67733wtVXXxMWT/pRbXnlVVeHD95/P0z2ve+FNddYvbx4GJEcFw/c/0BYZ521k+N74sr8N998M9z/wAPh4UceCZNMMklYcIEFwqKLLlpxiY/YueP2O8Iyyy4TfjT99JX1yi9iH+N61cdaf9ssrxu/B9Mn24ztv+/++8Nbb70VNt100zDRhBOWF+nzZyPHbXkDX3/9dXg08YymI154McyePIZpvvnmC/PNO2+PP0vK7Zp9ttnCnXfdFf72/PPJsTVnWHLJJUtte+edd8Ld9yTftRfjdmYPK664QsWrvL/4s1GH6nWqXzfS5meffS75M/Hh0mq3J3/+xe/D3sljo+I0RhIi22zTTUqvi/K/eje+hDGKUl39IECAQD4F6v3d9NKI5/PZGa0mQIBAxgTq/RkrjJGxImkOAQIEukxAKKPLCq67hRQQyChkWXWKQHMCzQQy3n333bDp0KHh5Zf/XnrERxw54tnn/hbi/KOOODysteaalZ2/8o9/hOVXXCmss9Za4drkxvmYY4wRfprcBL3yj1f0uBkZV9ru178JjyQ3aO+8/bbSzdZGAhnvJzeBF15s8bDtr7YOO+24Y2Xf8cXQLbYMH370n/Cn5OZtXyNbfPnll+Gbb74J44wzTs365TfLLLd8iCNnnH3WmXW3s89++4V7/xtoiDdN46gW0SUkkYw5k7DFqSefVFqvHMiIbT3iqKNLjyP5d+IWb6DGMMuFF5wfpqwKViy6xBJhkYUWDkcfdWRp/XgjeLOhW4Snnn46zD/fvGHKKadMbmg/GuKN9KuT4Muss85SbnLdn+ntvf7GG2Gd9X4Z4g3YONRZ/BlvssYb5zdef10YLxUaSG/0oosuDocecUSYYIIJSus/89e/lvoS631kciz0Zd5oX2KbZv3Zz8Ovt9s27LzTTukmlNofwyMXDD+vsr//+7//Kx2jI0a8UDKeKgnFPP30M+Gzzz8vPdZm1VVWqdlO9By65Vbh008/LdUrfhiDJt9LwgXnJDUvP8Imzo/t3mmXXcPNt9xSCirEz2KoIB4/xx97TCV8E5d9/fU3wtrrrVf6rOwbf9NmkpLv9YnvuHGxhpcrLdzA/8qBjJNPPCHsu9/+peMkhlaeHzEiTJBYxeN4gSRsUT098eSTYYvEINbs50l4Jfbn2cRgzGS9+Mic2WadtbT4J4nR3PPOF3YY9psw7De/Kc377LPPwjzzLxCmnWaa8GYSbnji0UdKIZn44fEnnBjOPPvs8PQTj4exxx67tHwMKGy51dalesRgQjx+YwBjnrnnDuede06YMDmePvzwwzBkkUXDJhttGPbdZ5/SeuX/xWXjd3K3XXYO2227bcPbLK+/yOJLhFlnmbn0Z9hbyb4nm2yycOUVl4epp566vEivP2P9N918aHj6mWeS7+B8ie0Upfq//fa/wtVXJt/BWUZ+B+Oxu+vue4Trb7ihFNaJQZi/v/JKePnvfw8b/PKX4ZCDf1s5ZuMOY7tiYCMeNx9/8nHy5+WYJZf4OKbjjzs2bLDRxsmfLWOEMUYfI7z2z3+WanjO2WfVhDIase21c8kHjbY5BuFOPvV3pU39J6lVDBSV/cZN/hy97Zab+9pNrj6r99txwhi5KqHGEiBAoLACM87y3flZuYN+S64s4ScBAgRGXaDe+b8wxqh7WpMAAQIEBk8gHcpw/j94trZEoB0CAhntULYPAhkXKAcyNlj/l+H73+s5IsDGG29UCgrEm5Grr7V2+CS5WXjGaadVblTHQMPhRxwZLr7kktKjQ5ZdZplSj8uBjPHGHbd0Q3HJJGAQbwzXm+K2b7/jzmREiKnDnHPOUVqkkUBGXPCeP/857H/AgWGGGX6U3FCfM4w77jil9a9MfpM/3izeaIP1w0+SwMMvVl65NL+Z/x1z7LHhjLPODvvts3cYuvnm/a7a3yNLYjBlluRm8O9OOaX0m/9xBIj42+WbJSGXZZdZthLeiDtKBygee/zx0k3Zgw7YP2y80UaltsQb52uuvU7J9fJLLwljJKGX3qb09k47/YxwwkknheuuvrrUprjeW2+9HZZfaaXkRvhGYc89du9tU6UbxSuu/Iuw8korJiGHI0shlNiX+PiCs889N/wpucEdf7u/t6nRvjQbyIjH0WprrhX+ldxoH37euSGOjBGnOD8GYm68+eZww7XXhJmTIEWc4s3xtdddLxkxYbpwftLueHM+TnHEjKFbbZWMYPJBuOfOOyrH7X77HxAuT25Gx0fkLJWMXBC9Y3gg9juOsvKHiy4sjRgTt3Ha6acnvieH665JfP+7vzgaw3e+G1d8G10ubrORqRzIiMGa351yclh4oYVKq/3j1VfDr7bZNryXhJgefvCBShggjkyzTmIwzzxzhxOSUWniSCdx+ncy+s32O+4UXnzppXBt0rcf/vC7wMLKq6wafvzjH4ffn3pKabm/JKPlbLLZ5uGcZHSYrbbZJsTjMI6aE6etk/dv/+ud5Bi7qvS+vK84IsahhxxcCovED2IgJAaoFlhg/nB2sp04/c9vhpXCR/fdc3dpxI7SzOR/p59xRjguCXrcfccdYZppfhia2WbcRgw+xPrusduuYYP1168ZuaO8j95+xuN2/Q03Cr898ICa7+AayXcwjkZyxWWXVtoaj5U/XnllOOmE48OKK6xQ2eTV11wb9thrr7DVFltUjoH4YbldRxx2aFgnGWEnjlJy/gUXhkMOO6x0nB1+6CGlwFucP3z4+aUwVNx2eQSeZh0qDap60Wyb46pFf2RJ+rfjPKez6oDxkgABAgQ6KpC+IBsbY5SMjpbEzgkQKICA8/8CFFEXCBAgUFCBeuf/QhkFLbZuFVJAIKOQZdUpAs0JlAMZMcgQH9eQni5LbrDG35CPj8pYb/0NkjDG78MySy9ds1i84b1K8riR+JvnJx5/fOlmbzmQsfqqq4Zjjzm6cgO4ZsU+3jQayHgjGWHiwIN+G+66++5SoKP8uI04P97Qj7+ZHh8pcUAykkUjUxxh4dbbbgsXJiNAxEcubJgEOg4+6KCG2t9fIOOa664Ll/7h4tJv11e3Jd6Mjo8o+MsD91f2kw5QxMeCROO9kqDEVltuWVk93oj9OPkN9Z//7GeVm8GVD6tepLd34YUXhYOTm70xPBFH8ihP8bfs4yNQ6j0qorxMHAnkyuQm/VrJaBjVo3rEEQCiwSGJ1waJW29To31pNpARRy6Io37EY3CVX9QGcOJv8S+cjLqwWfJ4it2Tm/FxOvucc8LRxx4X7kseBRFHO6ieHnjgwbB54nzWGaeXwhfxGJ83GQli+eWXC8cdc0z1oiF6LLH0MqWb7LvtukvpswsS33gz/corrkgeS/NdMCR+kPZtdLmaHfbxphzI2HXnncL/bLddzZIx/BHDDHEElPIjVs5IAhC/+/1ppcf+pB9988/XXw/LrbBiOHD//ZLvwQalbe2+557JIzgeL41kE2fEfwxckYzQcu/dd4WFFl0sDN1s08rIFYsmj+JZKgliHZaECeIU9xX3f/ONN4SfJKGO6umQQw9NQl2XhseTETbiI13iKCTDdtgxpEcjiI81mmiiicIlF19UWr2ZbcYVYvAhBmn+fNedle9adTv6eh3/PFhltdXDPonBlltuUVm09B38KPkO/vy772D5WNlwww3C3smy6SmOXHJH8liSv9x/X+Wj2K4Yarr/z/dUvsdxRJIFk1Fy4uNZYjClPOpMfCTPAkMWSkIhyQgie+9d2kazDpUd//fFqLQ5rlrkQEa9345LH49pR+8JECBAgEA7BYyS0U5t+yJAoBsE0n+uOv/vhqrrIwECBPIjkA5lCGTkp3ZaSkAgwzFAgEAoBzJuvO7aysgB9Vjickcdc2x4+sknQhyWPj0d9NuDw23Jb62XbxyWAxmHHXJI+OV666YX7/d9I4GMGJ5Ya511w4zJo1D2Tn7rfMYZf1rZbgw5NPLIkvIKcaSKGFK49fbbSyMqLJqEOIYmv/m/9NJLlRfp92d/gYw4QsNfn3qyx0gW5w0fHg5LRhl54N57K8GAdIAi7nz75LEsN99ya+nxDosvtmiYO3nMQ3x0Qn+PF4nrprcXR0DYNHkEyqvJyAmLL7ZY6REI888/X2lUifhb+P1N8WbxvUl7X3zxpeSRBR+VFv86CS2cd/4FyegDu4VtfrV1n5topC/NBjLOPe+8cPiRR4VH/vJgZbSL6kbEkRFi6KB8Y3ub7f4neUTE6+H6ZNSM8rzy8nH0kfgonnJI4Zln/hrWWnfdsHQyMsY0yeM50tMtSYgnhlhi4CZOJd/k8RbxERtLVHznr9y0L6/f6HLl5fv7WQ5kXHbJH0J8JEj19Oyzz4U1ktEXTjz+uFB+dEscNeP9Dz4oje5QvWz5dRwRY7bkURrHJ6PFxGl4Ut/DkkfVxODERBNOGOJvEE099Q/CsUcfHXbYaefwUfKYoHOTx5S89957YYEkTHDIbw+qhDnivp5OHm2z8oorljdf+RlHD7n9zjtDfPzMIgsvHL744oswZOFFwmpJoOvgZBtxisGHODLLocnjPuLoFnFqZptx+Rh8WGThhUrtje+bnWJI5JZbR34H55l7njBf6Tv43SNo4vbKx8rwJPCzWPI9TU83JX8OxNFHbr/1ljDDj35U+ji2a6EhC1acy+vEkEv8rh9z1FHlWaWf0XaF5ZarhF2adajZWPJmVNoct1HkQIbfjksfJd4TIECAQNYE0hdkjeSUtQppDwECeRKoF8g28lCeKqitBAgQKL5A+vw/9tjfVcWvux4WQ0Agoxh11AsCAxJoNJBx2OFHlB7X8ORjj/a4eR0bcNLJJ4fTzjgzPJMENuKjScqBjDgE/7rrrNN0GxsJZJSDDPUekdFMIOOCCy8MBx96WOnm6C/XW680ukK9m+79daK/QMbDSeij3m/mX3zxH8KBBx+c/Hb8n8NUU01Z2k06QFHed7wZfHsSfHns8SdKYYo4mkAclSGO/NDXVG97nyaPdLnqyqvC3clv5T/11NPh3STgMs0PfxiOOvKI5ObwkF43F0MGv9p2u/BKMiJGHJlj8sknD6MlS8cAxV3JaBO777pr2HabX/W6fvmD/vrSXyBjldVXD9+b7Hulm/gxUBEfnXPJZZeFeIz29fiW8v5XTx5vMkXS9rPPOrPuMV1eLv68LQnqxMdoxLBAfBxIven73/te+O1BB1Y++vTTz5KRRK4M99zz5/Dk00+HGCCKj9k4Kgk0VPs2ulxlw328KAcy7rz9tjD9dNPVLPnCiy+GX6y6Wumm/+qrrVr6bLU11gxT/+AH4cxkJJB604Ybb1IasSH+ZlCc4ggfG2y0cSl4Eh9LM/d884f4GJ31krDKxX/4Qzg6CW099sjD4eFHHkkexbNFaYSQ8mOI4r7+nYRc0kGR6v1uusnGId5MiNM+++5XCmk8cO+fS4/Fif/oOC15ZMlDyUgy5Ro0u80YfIhhq3TAoboN/b2uHLfJSCHxu/Ddd3DX5Du4SWnV8rFydTJySBw1Iz09+Je/hE2TsE71b1v11q4YyIijjBx5xOE1m0kHMpp1qNlY8mZU2hy30U2BjOp6pf28J0CAAAECnRBw87AT6vZJgEBRBdI3uYTcilpp/SJAgEC+BYzmlO/6aX33CghkdG/t9ZxARaDRQMZ1198QdklGPoihgfTjHeLGdtp5l/DqP18Lf7r88tLN7XYEMuKoHJclj4SIIyJMmPy2fvXUaCAj3mCON503Sh4vcOD++1ceF1C9rUZf9xfIeCTZ1z133tHj5n8jgYz4OJA4msWSyc3Z8vTaP/8Zjj/+hHDdDTeE66+5Jsw66yzlj3r8TAcynngyGalj9DFC+WZ5fFzCM8noBXvvs2/4V/IIjgfvu7d0E7zHhpIZRx51dDISxvmlR1/89Cc/qSwSb04vu/wKYbdddukzkNFMX+IN/+WXXTYcfdSRNW6xvXPNO1+Ya845kkDG8NJnN9x4U9gp2Xe0mCV5fE56OvGkk5LHs8wZllnmu0fuHJA8WuWmm24ODz34QI+6x/DEmWedFdZYY43SI3vi6BrxpvkpJ50YVl5ppfSme7yv65uMsrH3vt/5xsdVxNBIo8v12EEvM8qBjLvuuL30uJ7qxeoFMvY/4MDwl4ceCrfdcnP1opXXMRCwVmKwZ/KonDjFkVHmTtz3T/oRR86I4Yw7bru1NDpIeftX/vGK8Ogjj4ajjzsuPP3E42Hssccurbvf/gckQaLHw003XF9639//Yrs2SUapKY80EUfH+ElyvJ32u1Mrqza7zd6CD5UN9vGidNz+I/kOLln7HTwu+Q5eH7+DyUgrs84ySygfKyck/V9t1VV6bPGSSy8NBx18SCm4MuEEE5Q+761djQYymnVIN2pU2hy3UeRARvofuH7jIH3UeE+AAAECWRDw91UWqqANBAgUQSA9Qp5AdhGqqg8ECBAonkA6QOixJcWrsR4VU0Ago5h11SsCTQk0Gsh48823whJLL508xmOzsO8+e9fs4x9JUOAXyaMNNt5oo7DP3nuVPmtHIOOaa68Nu+2xZ3JzeJ8eI0Q0Gsj4/Wmnh5NOOSU8nvxW/wT/vTla07km3rQykHHoYYeHiy+5pPRImO9///uVVo0Y8UJYNblhfkgSLthgg+8e41D5sOpFOpAR1xk9CWRcc+WfaoIO5dFCbr35pvCTH/+4agsjX8ZHfTw/YkS4KxmFoXokirOSR1XEx9r0N0JGM30ZuuVW4amnnwoP3n9/zaNyLk+COPsmN/jjYx7KgYx4U3nRJZYMv0xGazj0kINr+nVPEiTaepttw77J8Tl0881LnSmHjI5Jwh5rJh7VUxzp4cykP9defVWYfbbZSh8ts9zy4QfJaBIXXXB+TYDjnSTAsu2vfx12HLZ95Wb9qqsnvkng4tpkhIzq6fwLLgyHHHZYKQDx4xlmCI0uFx+hEsMbM888c+lRIdXbrH7dbCDjqquvCbvvuWc447Tfh2WXWaZ6U+Hqa+L3a49w5umnhWWS7355io8xmXeeecK0004TLvrDJUlI657SRzEkM2SRRcM2W28VRrzwQvLfizX9j/vaI3m0UAxYLLroIuXNlX7Gf0y8/Pe/JyNXHFkaYSfOjH1eYullwuKLLho222zTEEeBOPXkk8JKK4585Emz2+wt+BDbO+EEE5ZGMKlpWNWbQ5O6XXzJpaX+fi8ZDaU8xe9CrGP1o1TisTLJpJOUAmrVjwD6KnmsT1x2nHHHSb57I4+N3trVaCCjWYdy26t/NtvmuG5RAxnp3zj223HVR4rXBAgQIJAlATcQs1QNbSFAIM8C6YCbQEaeq6ntBAgQKK6AQEZxa6tnxRYQyCh2ffWOQEMCjQYy4sZOO/2McNwJJ4QN1l8/rL3mmqUbjk8nj2I45tjjwqSTTprcGD+v9PiKuGw7AhkffvhhWD/5Df3XX389LLfsMqXRI8Yff/y4++QRKqeEsccZuzJiR2lmnf/9OrmJ/kjyeIWdd9qxzqffzZpkkkmSx5j8otfPyx+sv+FGpX4fsN++pVEB5pxjjuQRJFOVPt51t93DQEbIiMGLdRP3mWacMeyXBFBmmnGm5Ab2y+F3vz8t3J08JuTqJFhRDg6U21P9Mx3IKAca1kwe+7HdttuGKaacInlsyVOl39z/6KOPSsGP+OiZetPwZHSMQ5NH2Pxqq63C2muvFcYZZ5xw8803h0svvyJ88MEHIQYNdt1l57DwQgvVWz0005dy6GaRhRcqhSamn376cO+994W77r47fPLJJ6WARDzu4iNL4hRHtTg6OR5jv1ZLHssx2aSThVtuvSV5dMjVpWP0issurYym8uWXX4Yddtq5tK1fb7dtWDwZAeM/yTF1w003hhjWWGXllf+fvbMAt9pY4viUUlxKW5wLtLi7u7u7Fnd3d3d3lxZ3d724OxQoUKzQFgr19vXNLM0hycm5es69R/77fY+TbDa7s79J7muy/8wYInNIqglJ1ZIrZw7FTMQZp0+fpmUrVtLDBw9oy+ZNKlKE2CF8+w0YSNWqVlFt48WNSxcvCt9h9PaXX9SifsSIEYPcbtGixTRq7FjKlCkjbVy3ToawLMEVZAiDdpyK5eTpUySK6oIFC9K/LISQa2oGX1ulS5WiiePHGYQ3IuC48803FDtWbPr0009UChTNmA6dOtMfnArnydOnlDVLFho5Yrh2iESMIGOd4dQ9nTt2pIKFCtJPP/2k0mUsWbqM6nC6oOHDhtray4YIY1Zx1J0qlSqxQGQzneR0JXK9aSW4fVoJH65w5JJqLOKRSB6SHkX+llkVEV7UknswVSoVISQl34v37vE9OHMWp/05osRN6f4T7xz396fWbdtRpowZqV2bNuSX1I8efPtAib/us/Bk0cIFlC1rVtswVnbJwaAKMoLLwTawbiO4NsupEGToAGITBEAABEAABMKBAF7IhgN0DAkCIOCVBMyCDETI80o3Y1IgAAIg4PEE8N//Hu9CTMBHCUCQ4aOOx7RBQE8gOIIMOU8W49UCNEfFkBKdBRC5cuWiMaNH0We6yA1hIciQ8UU8IIIQST0ii8TyVb1WRBCxfu27FCpanfm3afMWdPTYMXO1YT9lihQqzYK26G84qNvZs3cvjRo9hr5jgYiUqZMn2YQcoRVkSH8nT55S0RXka34psqAvc5R0K+YID6qB7h+zIEMOrWAhwczZs+nFy5eqpfgyd+7c1KF9O04Fkll3tnFTFn9lIXbZihX0zz//qINJ/fxo6pTJdOH8BZrEqUFix4pFhyzSs2g9BWcuIjKYwYveT589o2hRo1KO7NlpOEfA6NO3LwsxIighkN43Mq9FfJ1KihcpsoBfiIUG48aMplhsl77IXIYOH067d++hH1kcIEUEOHVr11aiEn10Azkmi9bjJkygmzdv2eaePn16mjBuLKXmhXp9Wf4f35c6vvKlfYcO7ZXftLZBaScpMSQajJSb165qp9r9BleQIR2IKEPS/+zZt08JJKQuLgtIypctwxFv+hrEGHJMxBMjRo2STUNUCNmXuQhPKcOHDqF6deuqbe0fGWvwkKG0d/9+21ji02ZNm1Knjh0MkUfkHC36hGxL5JNRI0fIpqEEp08r4YOk2qlStRq94b8la1Z9raJ/GAbQ7YgoRyK82N+D9fgerKxrSeR/4gRHjBlvu1bkfhXR1KCBA5RYRd/Yyi45HlRBhrQNDgdpb1WCY7OcD0GGFUXUgQAIgAAIgEDYEcAL2bBjjZFAAAS8mwAEGd7tX8wOBEAABLyFAKK6eosnMQ9fIwBBhq95HPMFAScSkDQNL168pDRpUtst2DpxGHRlQeDxkyf0/PlzFSUjZswYFi2CXiWCBEk58wtHbZDFYlk0Dmr5jSMh3Llzh2LGjEkiyNCnLwlqH8GZi6QkkVQRQbVR2mvXaFDO+ebuXTWH5MmS2SJuOJqHLN5LdASJBmIWeejPCSrfoLQT4YCkC7nGKVxcVe7ynIRVMo5E4soi6U2EtwhpJDWOWfgSkrFD0+cff/xBFSpVpokTxgcoRtLsevyY78Hv+R5kEU7MGAHfgxIR5d7de5QyVUolKNL6cNVvaDhoNoW1zdq47vKLh1t38QTsAAEQAAEQCIwABBmBEcJxEAABEAgaAQgygsYJrUAABEAABMKXAN5ZhS9/jA4CISUAQUZIyeE8EAABEAABEAhDAhL9pU/ffix+iUFLFi0Kw5G9f6g///yTunFKoWMcKefUCX9DShTvnz1maEUAD7dWVFAHAiAAAiDgjgQgyHBHr8AmEAABTyQAQYYneg02gwAIgIDvEcA7K9/zOWbsHQQgyPAOP2IWIAACIAACXk5AIjJc4sgYhQsXphjRo3v5bMN2ehKdZNPmzVSwQAFKkCBB2A6O0dySAB5u3dItMAoEQAAEQMCCAAQZFlBQBQIgAAIhIABBRgig4RQQAAEQAIEwJ4B3VmGOHAOCgFMIQJDhFIzoBARAAARAAARAAARAwFsI4OHWWzyJeYAACICA9xOAIMP7fYwZggAIhA0BCDLChjNGAQEQAAEQCB0BvLMKHT+cDQLhRQCCjPAij3FBAARAAARAAARAAATckgAebt3SLTAKBEAABEDAggAEGRZQUAUCIAACISAAQUYIoOEUEAABEACBMCeAd1ZhjhwDgoBTCECQ4RSM6AQEQAAEQAAEQAAEQMBbCODh1ls8iXmAAAiAgPcTgCDD+32MGYIACIQNAQgywoYzRgEBEAABEAgdAbyzCh0/nA0C4UUAgozwIo9xQQAEQAAEQAAEQAAE3JIAHm7d0i0wCgRAAARAwIIABBkWUFAFAiAAAiEgAEFGCKDhFBAAARAAgTAngHdWYY4cA4KAUwhAkOEUjOgEBEAABEAABEAABEDAWwjg4dZbPIl5gAAIgID3E4Agw/t9jBmCAAiEDQEIMsKGM0YBARAAARAIHQG8swodP5wNAuFFAIKM8CKPcUEABEAABEAABEAABNySAB5u3dItMAoEQAAEQMCCAAQZFlBQBQIgAAIhIABBRgig4RQQAAEQAIEwJ4B3VmGOHAOCgFMIQJDhFIzoBARAAARAAARAAARAwFsI4OHWWzyJeYAACICA9xOAIMP7fYwZggAIhA0BCDLChjNGAQEQAAEQCB0BvLMKHT+cDQLhRQCCjPAij3FBAARAAARAAARAAATckgAebt3SLTAKBEAABEDAggAEGRZQUAUCIAACISAAQUYIoOEUEAABEACBMCeAd1ZhjhwDgoBTCECQ4RSM6AQEQAAEQEBPYMXKlfT99y/0VXbb2bNno6JFitjVB7Vi5qxZlDZtWipRvHhQT0E7EPA4ApevXKF9+/ZT82bNKHbsWIHa/88//9Cj776j5MmSBdoWDRwTwMOtYzY4AgIgAAIg4F4EIMhwL3/AGhAAAc8lAEGG5/oOloMACICALxHAOytf8jbm6k0EIMjwJm9iLiAAAiDgJgRatGpFN2/dtrTmf//7H4s1vqcmjRvRgP79LdsEpTJbjpxUuVIlGjpkcFCae32bWbNn03H/E7Ry+bJwmWu7Dh0pqZ8f9endK1zG9+RBjxw9ShMnTaZpUyZTMpOQYvWaNTRg0GDav3eP4hvYPPv07UfrNmygCePGUtUqVQJrjuMOCODh1gEYVIMACIAACLgdAQgy3M4lMAgEQMBDCUCQ4aGOg9kgAAIg4GME8M7KxxyO6XoNAQgyvMaVmAgIgAAIuD+B169f04hRo2jjps3UvWsXatumTYiNhiDDiG4gL9rv2LWLzp0+ZTwQRnuly5ajVKlS0YxpU+mDDz4Io1G9Y5it27ZTtx49aNvmzZQmTWrDpIIryJg6bRrNX7iIZs2YToULFTL0hZ2gE8DDbdBZoSUIgAAIgED4EoAgI3z5Y3QQAAHvIQBBhvf4EjMBARAAAW8mgHdW3uxdzM2bCUCQ4c3exdxAAARAwI0IbN+xg4aPHEUSIWPQgP5UsUKFUFkHQYYRHwQZRh6etOdMQYbM+++//6aIESN6EgK3sxUPt27nEhgEAiAAAiDggAAEGQ7AoBoEQAAEgkkAgoxgAkNzEAABEACBcCGAd1bhgh2DgkCoCUCQEWqE6AAEQAAEQCAgAs+ePaNBg4fQgUOHqFrVKtS/b1/6+OOPAzrFcOz8hQvk7+9Pt27fIb8kSahSpYqULm1aciTIeP78OfmfOEnnzp2jCBEiUM6cOSl/vrz02WefGfrVdp4+fcqpPvzp9JkzFDt2bMqdKxcVKFCAokWNqjWx/d6+c4f8j/vT5atXKHPGTFSwUEFKmSKF7bijjVWrV1PSpEkpb548dOXqVTp16hS9efOWcuTITgV5LKvF83/++YfO8hxkHjL39OnScvsclCN7dlsEimvXrtPp06fVsNt37uR2t6hb5y42M5o0+dLW1lb538bhw0fohx9/oHIc2eLwkcN0//59KlasGKVNk8bW9MaNG3Ty5Cm6dOUKz/MLysVshI8WAWP/gQP08MFD1X7OvHn0KTOuWb06SXyMePHjUYXy5dWx7Tt28u+/tn1V+d8/Z86epWtXr5HYqhWNl7A9dvw4yTXUqGFDihkzJtvKdv/wA1WvVo2+ffCA7TtJ9+7do4wZM1KRIkUodqxYWjcB/sp1spMjily9dk1dJxkzZKA6tWtT5MiRDecFZ7x///2XlixdSlkyZ6Hs2bMZ+pGdrdu20UcffURly5ShH3/8kTZv2SJY6NqN67Rp8xZq0awZxYsXT/ErU6Y0JUqUiPQRMiJHikQ72M/fffeYUqZMwddOQfLzS2IY5/bt2+p6rlmjhuIlB4MzB62zP//8U7EX/79584Zy585Nhfh6j8T2r+eUKCWKF1fXtNbe237xcOttHsV8QAAEQMB7CUCQ4b2+xcxAAATClgAEGWHLG6OBAAiAAAiEjADeWYWMG84CgfAmAEFGeHsA44MACICAFxO48803VKt2HYoVOxaNHDZcLegGZ7raC+aECRNShnTp6KdXr+ja9es0YtgwGsr/q1ypEg0dMtjW5YWLF6lps+ZKMCAL9BKN4xovuEfkReTlS5coIYetMW+I4KFZ8xb0+x9/KKGDLNI/fPSIsmXNSosXLaQY0aPbmo+fMJHmLVhAmTJlpNQpUyk7bt66RUMHD6L69erZ2llt5C9UmEryAnbEiB+qdC2S2uMOizvevH1LZUqXpqmTJxlEGSLG6N6zF23bvp1Sc1sRotz/9lu6x6KJuiwaGD5sqJrj2nXraNqMmWrI18xG5hE/fnybCYf276MPP/zQtq/fkBQZZ86eo7SpU9PBw4eVYGVg/3420cSSJUtpxOjRFCVKFMqVMwddunyFfv75Z2rcsAENGjhQddWv/wA6yoIJKS9evFBziBNHxDYfUOZMmWzpS+o1aEgiVvh65QqbmEOdxP+MnzBBpdi4df2a7ViBwoUpTarUdO/b+yzGeE5x4sSh9WvXUCK+Drr36KlEFF27dFaMhM9LFmiIsOaLzz+n5cuWUnwWNQRUxO/tOnSkt8xfRDIi8JDrSvyygceJqhPjBGc88VvaDBmpXZvW1LXLe2GMZkuNWrUpWrRotGzJYvqG743mLVuJHoN+/fVXknQ+cePGtV0Hk5iLcNcEGVMmTaIBgwZRPG4jog659qJzX/NZCJM7V05tCFv7/Xv3UFI/P1UfnDnICX/wddSqTVsl7JAUKsmTJadHfF+8YhtHjxxBTfgemzt7FhVnAY+3FjzceqtnMS8QAAEQ8D4C2n8vazPr1KEDderYQdvFLwiAAAiAQBAJQJARRFBoBgIgAAIgEK4E8M4qXPFjcBAIMQEIMkKMDieCAAiAAAgERkD7D0SJbCCL5Kl58T9vntxUt04dFZUgoPNFbNCXF/xbNG9GPbp1sy1US5SKNm3bKeFEAxZCaIKMuxwloUbNWpQtW1aaPHGiLQrHy5cvqSNHjRBxyJaNGznqQEI1rNZeIj6MGD5MRSaQAyLqaNK0GUeDyEkLeLFbiqSAyJojJxUrWpSmT52i6uSfESNHcrSAjbR75w7b+baDug0RZPz6yy9UmIUGo0eNVAvpEoFg2fLlNGbceE7hMoAaN2poO2PAwEG0jqMQiFBDBBtakSgKvfr0oeZNm1LvXj21avUb3JQlIsjYsnUbVapYQYkHtMV76Wzzlq0sduhJHdq1o5YtWyh7//rrLxUZYcCgwdSHx27RvLlh/NIcaUMEDTOmTbUJK7QGIRFkPH/+PfXs3p3q1q1jiHoh4oIdHNkiDV9LU6dMpmQceUTEHhJpo3GTJiwSKE4zp0+zs0GzRUQTZctXUGKdTRvW26JIHDh4kFrzddWrR3dq2aKF1lwJQII6XnAEGVqUERkoKClL5B6SeeXLm1fZ9uDhQ2rZug399NNPdMr/uO1+0gQcZkFGUOcgnXdiMcmevftoGvMtXaqUGk/+EUY9evVWwpx5c2ZDkGEjgw0QAAEQAAEQCD8CEGSEH3uMDAIg4F0EIMjwLn9iNiAAAiDgrQS09+3a/PJwVNuVy5dpu/gFARBwUwIQZLipY2AWCIAACHgDAYmacPTYuwgKP/zwksUOl3ihdy8VZ2HDNBY2SPQFR6UJp2+QiBgbWZghqUf0Zd/+/dSmXXvSCzLmsnhi5qzZJAvREmlAX757/JhKli5DgwcOoHp166pD0n7i5Cm0a8d2FVlB3374iBG08utVdP7sGZW6RCJt5OX0EFkzZ6Z5c+fYmkrEiCtXrqrUIwHNRQQZEnXg0IH9FDNGDNv5UpcnX34qWLCgEjLIARF/ZM+Zi+rVq0t9e/e2tdU2+g8YSPt5Yfzk8WNalfoNqSBj357dHAEhmaGvZixIuHfvPskxczqVCpUqqwgS69asNpzjbEFGhAgf0mHmZfa9CDI2b91Kq75aSTk5hYu+iJDmxs2bdJIFCnrBg76NMN/C50sKGXlg0YqIOgrxdSl9iqBHOz8447lSkNG1c2dq17aNZq76nT1nLl/Dk2nH1i1K7CSVjgQZQWUmwhtJB9SwQQPq07uXYTzZGTd+gooUA0GGHRpUgAAIgAAIgEC4EIAgI1ywY1AQAAEvJABBhhc6FVMCARAAAS8kAEGGFzoVU/IJAhBk+ISbMUkQAAEQcB8Cq1av5tQLg2nOrJlUskQJS8NkYTtHLo6kwdER+vSyXxT+hVM8ZMmW3SDIaNmqtUqpsHb1Kss+y1WoSOnSpSVJBSFF2l++epXKlSlj1/7Zs2e078ABlVoif7586viSpcto1JgxKg1E8eLFKGuWLCrdxSeffGJ3vrlCBBmpUqakpYsXmQ9Ra04NIelI9uzaqY6JwKNazZq0ZOFCFmoUsGu/k6NDSMQPs5AiJIKM02fO0rHDhwxjiPhE2PuxYCE7p24xl4uXL9HNm7fo4rmzBkGNswUZ+fLkpfHjxtqEEZodWoSMq5cu2qVjWbxkCY0cPYb8jx7liCVGUY52vvbr73+C037cpO9ZNKSVLRwZJD2nxpk/b65t3OCM50pBhqR7MQtQJM1K1eo1WEAygSpWqKCm4UiQIREygsLs/IULVKdefY4OM5eKcEQXcznCbCXVClKWmMlgHwRAAARAAATChwAEGeHDHaOCAAh4HwEIMrzPp5gRCIAACHgjAQgyvNGrmJMvEIAgwxe8jDmCAAiAQBgSeMVRLURwUb1aVcuUBhKhIEfuPFSzenUaMniQpWUSeSI7iwJ6du9GrVu1smsj0QwyZsmq+tBSllSqUpUSJkhgiGChP1HSZki0BS2Em7R/+cMPlCN7dn0zw3ajhg0MURQuX7nC6SW20cmTp0hSp4h4oW7t2tS3bx8VScNwsm5HBBkF8uej8WPH6mrfbXbo1JkFDjeVwEJq9u7bR23bd6BN69dTxowZ7NqfOHmSGn3ZRM1DH+EhJIKMs+fO0RGOtqEvb968oWwcoSNtmjSUPHly/SHD9rAhg0kvRgmpIGP4iJG0fOVKunX9mk0EUYCFAPnz5qNxY8fY6rTBRSBxmtOTHDl4wO7YypVf0eBhw+j4kSMUP3487RTDr1x/nbp0pf0suPni88/pc/7fB/+1OH3mDGVlEcrC+fNsfQdnvMAEGRUqV6ZP4nyihD5aBA4ZOigpS0SAI+lZ9OUOX4PlOWLJxPHjqHKlSuqQI0FGUJkJF4k+IxFIrO6Nc+fPU936DSDI0DsC2yAAAiAAAiAQjgQgyAhH+BgaBEDAqwhAkOFV7sRkQAAEQMBrCUCQ4bWuxcS8nAAEGV7uYEwPBEAABMKagIgl8uQvQBXKlaPBgwbaDS+L1lk5LYQIGfr362d3XKsoUao05cqZk8aMHqVV2X6fPHlKhYsVM0TIEEHCyVOnaO/uXbZ2+g1JOVKtShXq3aunqh4wcBDJ4vLO7dv0zSy3f/zxR5L/2C1dqpQtKsPr169VeohxEybSwP796cvGjSzPlcrgCDK+//571V7SZlSq+C7qgb7jr1etoiHDhtO5M6cpRvTotkPOEmRIh5LepWCBAg4FM7ZBdRsBCTJacRSQm7du0aH9++xSkLTgSCUSdSE4gowzLCSRdCZ6UYOYEhRBxsFDh0jsGTl8ONWuVVM3A6JCRYpS6lSpaIFJkBGc8bJkz0GlS5a0E5PIfSHHsmTOxIKMJQbbgyLIkFQ8Sf38DPYGR5AR1DnItS737/AhQ1SEGsOAvLN69RrqP2gQIWWJmQz2QQAEQAAEQCB8CECQET7cMSoIgID3EYAgw/t8ihmBAAiAgDcSgCDDG72KOfkCAQgyfMHLmCMIgAAIhDGBzl270XF/f9q5bSvFjWtMHSGLz127d1cpEYoWKeLQsl59+tCuXbtp144dlChRQkO7kaNH0+IlSw2CjI2bNlPP3r3Vl/slihc3tN+0eQv14NQn+kVkaS9jSGqQAgXyG9rLi+179+9zRIsx9NFHH9GevXupXYeOdn1LhIzc+fJTIU4tIgIKRyU4ggzpo3jJUhT749i0fs0ag4Dh77//poqVq1DkKJFp84YNhuGcKcjo26+/StmyY+sWg/9ETNOOo3dkz57NLnJJQIKM2XPm0sTJk2nNqq8pe7ZsNru/uXuXKvF8/mGOYSXIWLR4MaeeGUsicNBHnLh0+TLVrF2HfVnQLkJGUMUMMrEmTZvRpSuX6cTx4xQlcmTbXNesXUv9WQSUN09utxZkiMFlylegP37/nbZu3kQxY8a0zeHtL79QZY4s8/DRI8O99Otvv9HlS5cpR47s6n6xneDBG3i49WDnwXQQAAEQ8DECEGT4mMMxXRAAAZcRgCDDZWjRMQiAAAiAgBMJ4J2VE2GiKxAIQwIQZIQhbAwFAiAAAr5C4Aan4GjWoiUvzkak9m3bUsYMGen3P36no0eP0YJFiyhTxoy0eOECihIlikMksugrqREiRvyQU5f0oCxZMpOkQ1m3bj3dvXDA+iMAAEAASURBVHePrl+/rtI0aClL/vrrLyUWOHn6FHXq0IEK8sL6v7zQf+jwYZoxa7aKbiGpHT788EM1pogbRFxwhtNfdO7YkQoWKkg//fSTShmyZOkyqlOrFg0fNlS1/Z0Xp0UI8cuvv9LggQN4UT0P/chtN2zYSHPmzaNBAwZQ40YNHc4luIIMEbO0bttOcWrXpg35JfWjB98+oKnTp9N9FoosYnbZOLWGvkyaPEXZ0o9FJokTJ6IkSZJQurRp9U0M29169CCrlCXS6NmzZ1S/YSMlBunBaWPSp09PtzjCxYaNmxSfKZMmUsUKxugdderVp28fPGAW/SlSpEiUOVMmThsSX41555tvqHbdehQ/XjyqVbMmL9zn4DQtN2j+wkXklyQx+Z84GWaCjBs3blLlatWocKFC1JbZJvVLwtfAORo/YYK6Hn/gCBHDODpEsaJF1L6kLAmOIGPTZhEG9aH8+fJSVY7IkpTTjMh1v52FRSJckDQpy5YsNkTIOH7cn5o0b051atdiuwpTjBjR+fx8ip1VChJ1gP9xRYQM6fvqtWvUuElTih49GjVr0oSSJ0tODx8+pEVLl3Iak2y0Zes2gyBDrlVJdfJlo0Y0kP3vDQUPt97gRcwBBEAABHyDAAQZvuFnzBIEQMD1BCDIcD1jjAACIAACIBB6AnhnFXqG6AEEwoMABBnhQR1jggAIgIAPEPju8WPq07cfXbh4kf744w8141ixYlHZ0qVVKgxZtA+siPCiZ6/edI3FFxKdQQQcEsFgAgsrJK2GpIbQBBnSl4gyhgwdRnv27VPiCqmTCB3ly5ahfn372sQYUi9F2g8eMpT27t9vax8talRq1rQpderYwRCd4vHjJzR46BA6fOQoSfoJKSlTpFBCjy6dOxnaqoO6f4IryJBT/U+coLHjx7Nw4Zaae8SIESl9unQ0iAUhWbNk0fX+bvP+t99S95496fLlK6qift26NIztdVQCEmTIOZIWpi+nYpG0LiJIkSIsh3AamjLsQ3ORKCKjRo8h8buUqZMnUYXy5W3NJAJFv/4D6PadO4pVBhZ5dO3SmS5evETTZ84MM0GGGCSiicF8nfzCER+kRI8WTV2TImLp2q07PXv+nA5yehU/3g+uIEP6W7V6Nc1kEdBTFrZIyZghA40dM1rNPxqPZRZkiDioQ6fOSjwk2ym++IIjw2xXoo3wEGSIzVeuXqU5c+fSyZOn6Oc3byhJ4sTUplUrysQpV6pUq66ixRTntEFShNnW7dupbetW1L1bN1Xn6f/g4dbTPQj7QQAEQMB3CECQ4Tu+xkxBAARcSwCCDNfyRe8gAAIgAALOIYB3Vs7hiF5AIKwJQJAR1sQxHgiAAAj4GAFZYJYv+aPHiMHRCPxCNPs3b9+qCBFp0qQOckoEEXOIiEGflsLR4CKwkPQZH3zwgYpgECFCBEdN6UeOoPDou+9UtIcECRI4bOesA5Im4t7de5QyVUoSsUhYF/GfRJWIG/czcsZ8f/75Z/qA+cbk6yE8iwh87rLP5fdzjloRULSWkNr5nIUd0aJHt821Rq3aZCXICGn/YXGepOX5888/bXy0CCNzZ88iTZChWPL9ljpVqrAwKUzGwMNtmGDGICAAAiAAAk4gAEGGEyCiCxAAARBgAhBk4DIAARAAARDwBAJ4Z+UJXoKNIGBPAIIMeyaoAQEQAAEQAAEQAAGnE/BEQYYZgpUgw9zGG/bxcOsNXsQcQAAEQMA3CECQ4Rt+xixBAARcTwCCDNczxgggAAIgAAKhJ4B3VqFniB5AIDwIQJARHtQxJgiAAAiAAAiAgNcSkJQoj/9L3aJN8jVHBlmydBlVq1KFxowepaKxaMfc8Xf9hg307L+UK3r7/E+cJHnw27Jpo0qhoz/mTdt4uPUmb2IuIAACIODdBCDI8G7/YnYgAAJhRwCCjLBjjZFAAARAAARCTgDvrELODmeCQHgSgCAjPOljbBAAARAAARAAAa8j0LVbd7p05TLRv8appUiRgnp070ZpUqc2HnDDvY6dO9O169ft5hApUiQqUbw49ezR3Q2tdp5JeLh1Hkv0BAIgAAIg4FoCEGS4li96BwEQ8B0CEGT4jq8xUxAAARDwZAJ4Z+XJ3oPtvkwAggxf9j7mDgIgAAIgAAIgAAIgYEcAD7d2SFABAiAAAiDgpgQgyHBTx8AsEAABjyMAQYbHuQwGgwAIgIBPEsA7K590OybtBQQgyPACJ2IKIAACIAACIAACIAACziOAh1vnsURPIAACIAACriUAQYZr+aJ3EAAB3yEAQYbv+BozBQEQAAFPJoB3Vp7sPdjuywQgyPBl72PuIAACIAACIAACIAACdgTwcGuHBBUgAAIgAAJuSgCCDDd1DMwCARDwOAIQZHicy2AwCIAACPgkAbyz8km3Y9JeQACCDC9wIqYAAiAAAiAAAiAAAiDgPAJ4uHUeS/QEAiAAAiDgWgIQZLiWL3oHARDwHQIQZPiOrzFTEAABEPBkAnhn5cneg+2+TACCDF/2PuYOAiAAAiAAAiAAAiBgRwAPt3ZIUAECIAACIOCmBCDIcFPHwCwQAAGPIwBBhse5DAaDAAiAgE8SwDsrn3Q7Ju0FBCDI8AInYgogAAIgAAIgAAIgAALOI4CHW+exRE8gAAIgAAKuJQBBhmv5oncQAAHfIQBBhu/4GjMFARAAAU8mgHdWnuw92O7LBCDI8GXvY+4gAAIgAAIgAAIgAAJ2BPBwa4cEFSAAAiAAAm5KAIIMN3UMzAIBEPA4AhBkeJzLYDAIgAAI+CQBvLPySbdj0l5AAIIML3AipgACIAACIAACIAACIOA8Ani4dR5L9AQCIAACIOBaAhBkuJYvegcBEPAdAhBk+I6vMVMQAAEQ8GQCeGflyd6D7b5MAIIMX/Y+5g4CIAACIAACIAACIGBHAA+3dkhQAQIgAAIg4KYEIMhwU8fALBAAAY8jAEGGx7kMBoMACICATxLAOyufdDsm7QUEIMjwAidiCiAAAiAAAiAAAiAAAs4jgIdb57FETyAAAiAAAq4lAEGGa/midxAAAd8hAEGG7/gaMwUBEAABTyaAd1ae7D3Y7ssEIMjwZe9j7iAAAiAAAiAAAiAAAnYE8HBrhwQVIAACIAACbkoAggw3dQzMAgEQ8DgCEGR4nMtgMAiAAAj4JAG8s/JJt2PSXkAAggwvcCKmAAIgAAIgAAIgAAIg4DwCeLh1Hkv0BAIgAAIg4FoCEGS4li96BwEQ8B0CEGT4jq8xUxAAARDwZAJ4Z+XJ3oPtvkwAggxf9j7mDgIgAAIgAAIgAAIgYEcAD7d2SFABAiAAAiDgpgQgyHBTx8AsEAABjyMAQYbHuQwGgwAIgIBPEsA7K590OybtBQQgyPACJ2IKIAACIAACIAACIAACziOAh1vnsURPIAACIAACriUAQYZr+aJ3EAAB3yEAQYbv+BozBQEQAAFPJoB3Vp7sPdjuywQgyPBl72PuIAACIAACIAACIAACdgTwcGuHBBUgAAIgAAJuSgCCDDd1DMwCARDwOAIQZHicy2AwCIAACPgkAbyz8km3Y9JeQACCDC9wIqYAAiAAAiAAAiAAAiDgPAJ4uHUeS/QEAiAAAiDgWgIQZLiWL3oHARDwHQIQZPiOrzFTEAABEPBkAnhn5cneg+2+TACCDF/2PuYOAiAAAiAAAiAAAiBgRwAPt3ZIUAECIAACIOCmBCDIcFPHwCwQAAGPIwBBhse5DAaDAAiAgE8SwDsrn3Q7Ju0FBCDI8AInYgogAAIgAAIgAAIgAALOI4CHW+exRE8gAAIgAAKuJQBBhmv5oncQAAHfIQBBhu/4GjMFARAAAU8mgHdWnuw92O7LBCDI8GXvY+4gAAIgAAIgAAIgAAJ2BPBwa4cEFSAAAiAAAm5KAIIMN3UMzAIBEPA4AhBkeJzLYDAIgAAI+CQBvLPySbdj0l5AAIIML3AipgACIAACIAACIAACIOA8Ani4dR5L9AQCIAACIOBaAhBkuJYvegcBEPAdAhBk+I6vMVMQAAEQ8GQCeGflyd6D7b5MAIIMX/Y+5g4CIAACIAACIAACIGBHAA+3dkhQAQIgAAIg4KYEIMhwU8fALBAAAY8jAEGGx7kMBoMACICATxLAOyufdDsm7QUEIMjwAidiCiAAAiAAAiAAAiAAAs4jgIdb57FETyAAAiAAAq4lAEGGa/midxAAAd8hAEGG7/gaMwUBEAABTyaAd1ae7D3Y7ssEIMjwZe9j7iAAAiAAAiAAAiAAAnYE8HBrhwQVIAACIAACbkoAggw3dQzMAgEQ8DgCEGR4nMtgMAiAAAj4JAG8s/JJt2PSXkAAggwvcCKmAAIgAAIgAAIgAAIg4DwCeLh1Hkv0BAIgAAIg4FoCEGS4li96BwEQ8B0CEGT4jq8xUxAAARDwZAJ4Z+XJ3oPtvkwAggxf9j7mDgIgAAIgAAIgAAIgYEcAD7d2SFABAiAAAiDgpgQgyHBTx8AsEAABjyMAQYbHuQwGgwAIgIBPEsA7K590OybtBQQgyPACJ2IKIAACIAACIAACIAACziOAh1vnsURPIAACIAACriUAQYZr+aJ3EAAB3yEAQYbv+BozBQEQAAFPJoB3Vp7sPdjuywQgyPBl72PuIAACIAACIAACIAACdgTwcGuHBBUgAAIgAAJuSgCCDDd1DMwCARDwOAIQZHicy2AwCIAACPgkAbyz8km3Y9JeQACCDC9wIqYAAiAAAiAAAiAAAiDgPAJ4uHUeS/QEAiAAAiDgWgIQZLiWL3oHARDwHQIQZPiOrzFTEAABEPBkAnhn5cneg+2+TACCDF/2PuYOAiAAAiAAAiAAAiBgRwAPt3ZIUAECIAACIOCmBCDIcFPHwCwQAAGPIwBBhse5DAaDAAiAgE8SwDsrn3Q7Ju0FBCDI8AInYgogAAIgAAIgAAIgAALOI4CHW+exRE8gAAIgAAKuJQBBhmv5oncQAAHfIQBBhu/4GjMFARAAAU8mgHdWnuw92O7LBCDI8GXvY+4gAAIgAAIgAAIgAAJ2BPBwa4cEFSAAAiAAAm5KAIIMN3UMzAIBEPA4AhBkeJzLYDAIgAAI+CQBvLPySbdj0l5AAIIML3AipgACIAACIAACIAACIOA8Ani4dR5L9AQCIAACIOBaAhBkuJYvegcBEPAdAhBk+I6vMVMQAAEQ8GQCeGflyd6D7b5MAIIMX/Y+5g4CXk7gzdu3tHr1arp56xY9ffqMEidKROnTp6O6depQlChRXDb7ufPmUbJkyahsmTIuGwMdO4/AP//8Q4+++46Ss898uTx79pxixIxBMaJHdxqGy1eu0L59+6l5s2YUO3Ysp/UbUEevXr2ixUuWUKlSpShjhgwBNbUd+/bBA/JLkoQ+/PBDW11INzzpetqxcxc9efKYWjRvHtLpeu15eLj1WtdiYiAAAiDgdQQgyPA6l2JCIAAC4UQAgoxwAo9hQQAEQAAEgkUA76yChQuNQcBtCECQ4TaugCEgAALOJHDq1Gnq1qMHvfzhB0qZMgWLMRLTo0eP6Ju7dylJ4sQ0ZfIkypI5szOHtPVVoHBhyp83H40bO4Y++OADW314bLTr0JGS+vlRn969XDr8rNlz6Li/P61YtjTc5hzSufbp24/WbdhAE8aNpapVqriUk7t2/pDvjVJlyqp7Y9+e3U7z4eo1a2jAoMG0f+8edR2GxfxFXCFzGT1yBNWsUSPQITdu2kS9+vSlWtx25Ijhhrk7uq5379lDcmze3DkUP148wxjudj05moMY3b1HTzpz7hwdPrDfMG/DhHx0Bw+3Pup4TBsEQAAEPJAABBke6DSYDAIg4JYEIMhwS7fAKBAAARAAARMBvLMyAcEuCHgIAQgyPMRRMBMEQCDoBN5yZIzS5cpRxIgRafrUqQbhhQg1OnftSjFixKDtW7dQ5MiRg95xEFu6kyCjdNlylCpVKpoxbapLF1wHDh5MO/lr+zOnTrp0nIBcENK5Tp02jeYvXESzZkynwoUKBTSE1x57+fIlVahchVKlTEnLly5xmg89QZBx+MgRat+xE7Vq0Zw6dexo8LGj63oVR94ZOHgIHdi3V0XW0J/kbteTozmIzRBk6D1n3MbDrZEH9kAABEAABNyXAAQZ7usbWAYCIOBZBCDI8Cx/wVoQAAEQ8FUCeGflq57HvD2dAAQZnu5B2A8CIGBHYPacuTRx8mRaMG8uFS1SxO74ps2bqWfvPjR8yBCqW7eO3fHQVkCQET5RQUIqyBB///3330rAE1rfe/L5rmDgCYKMgPzvSMwQkCAjoP7C4/pwNAexBYIMxx7Bw61jNjgCAiAAAiDgXgQgyHAvf8AaEAABzyUAQYbn+g6WgwAIgIAvEcA7K1/yNubqTQQgyPAmb2IuIAACikCXrt3o8NGjdP7Macsv/f/880/KlDUb1a1Tm4ZyZAcpt2/fVik36tapQxcvXqJr16/RF59/QcWLF1PHtTYSYePCpUsqTUGWLJmpeLFiFClSJFsb2dALMg4cPKj6k/ocObJTwQIFLBf+JaqHpPw4ffoM/frrr5QrVy4qVLAAxY0bV041lO+//1619T9xQqVikagOYsuHH36o2u0/cIAePniotufMm0effvYZ1axenUQmES9+PKpQvrw6JovKSZMmpZQpUtCx48fp2bNn1KhhQ4oZM6Y6/vz5c9q5axddvXaNIkSIQBkzZKA6tWvboopcu36d7T1N9C/Rjl076eat29S1cyce550go0mTL238//nnHzrLqRHOnTtPt5h1urRpKWfOHJQje3ZbGzUo/xOYXVo7+XXGXDXfS3oLbe7StwgUzp49RydPnaIHDx9ypJVMlD9/fkrNEUfM5e0vv9Apbnfs2HF1SHySJ09uihYtmrmp5b4wPnTosLoOP/74Yx4nH5UtU8ay7f1vv6WjR46q6zDFF5/zOHkoV86cJJEeXr16TVUqVzKcF5gftcbCPVHCRFS48LsoIW/evKF169dT0aJFKUH8+Mp/p8+coRjRo/OYeSkrX3OBFb0gIzLfJ6vXrKW79+5RwgQJKF++vFSAeUokG638+++/tGTpUmadhbJnz6ZV2363bttGH330kUM20lCfsqRihQq0ZetW+uabb+jTTz+jvHnzGCLmSHttngX43hTfBnZdyzkXLl7ka34XtWvTmuJ8HEeqqHz5chSfOVldT+KbHzh9UvVq1ZR9J0+epHvMIWPGjFSERWOxY8VSfej/kb9Tcl+ePHlK2Zg7d24qVKggReL5r+cUOyWKF1f3r/4cbTuwOWj3pl6QIecc4evq1aufKFOmTFSkcBGKFevd3wKtX+33xo2bfF+cpEuXr/Dfjy/U36vc/DcrvFM0afY54xcPt86giD5AAARAAATCggAEGWFBGWOAAAj4AgEIMnzBy5gjCIAACHg+Abyz8nwfYga+SQCCDN/0O2YNAl5NoGr1GvTP//5HWzZucLhAWKhIUUrBC4mLFy5UbbSFYxFpfL1qNS9ExqJqVavQwP79Fauvv15Fg4YOpei8wJ41axZ68eIl3eFFXlkInz1zhmqvQdUEGX/+9RcdOXqE00Ck4rZ3eFH1LS8kl6YpkyYZFqFfvHhBDRp/qRZoRRwRnRe8L12+zAvIn9IKTh8hKUe0cujwYWrdpi0lTpxYiRmePH2qFodLlihOUzkqiCyI9hswgI7+JwyQvmXBO06cj7mLDygzL7Rq6UvEzjSpUtO9b++zGOM5t4lD69eu4UX5hGrxvV2HjiRCkby84C+LybJgK7Zs4DZRo0altevW0fQZM0WPQa9fv6Lff/+DF6TjqXHE3oOczkHGFjFGj569aOv27ep8vyRJ6FsWFdy7f5/qssBj2LChFIHt1kpAdmlttF9nzFXz/f69eyipn5/qWsQYXbt3Z0HKbvqMBS1pUqei02fO0v/4upo0YbxN1CKNHz95QjVq1VbzzMOL5jJfEarINbRj21bFSrPX6nfFipU0YvRo5Xc5/8rVq/SU/VqDF+/HjB5luIbF/23bd6AoUaIoQYT4+9Kly9Tky8bM81vFdcO6tbZzRAQTmB81m7TrdtzYMep8TdgwZtRI+oqv/2cs0BEhhYhHhE/f3r2oebNm2umWvxpbuTb78r2UPHkyJSISMcI3d+9SmdKlaeqUyRTxPzGRsEubIaMSOnTt0sWuT+EsIpdlSxbb5mhupNndr09vdS//wgInvd39+/ahpk2a2E7T2o8eOYJElBPYdS0n/soCnNc//6wEU5qgRO6rLJkzs+hkDQ0YNJj015MIH4Rb1y6dqTvfCyL8eMn3lPj5i88/p+XLliqRl2bUH3/8Qa34PheRVpo0qSl5suT06NEjevX6NYmdTZo1p7mzZylBmHaO/jewOWj3pibIaN2yBY0eO06lrNHsSvHFF8queCZRmAhmRowazddgZMqVIyddvnJFsWjUsAENHjhQb4ZHb+Ph1qPdB+NBAARAwKcIQJDhU+7GZEEABFxIAIIMF8JF1yAAAiAAAk4jgHdWTkOJjkAgTAlAkBGmuDEYCIBAWBAoU76C+op/3ZrVDhdtS5Yuoxbav165QrXRFlFl8XM4Cy+yZc1qM1W+yu/GC6oSZWLE8GG2SBRnzp5Vi6YSyUITQ8hJsrD9ww8/UulSJXnxdKRaaJev3ZctX05jxo2nQQP6U+NGjVT/srBduVp1jorxC82ZNYvSpkmj6h/y4qtE+njKUSv27Nxhi9zQpGkzustChr27d1GUyJFV2z1791L7jp1o3pzZVIyjGehLQGk8xM7nz7+nniw8kNQt2lf6sihelhmK+GDThvW2sSXaR+u27ahXj+7UskUL/TAUUFqEAYMGcaSFDUqIIoIUrWzeskWljmnetCn17tVTq1b8rOyyNXCwEZK5Slea7/UL6GLzmrXraNaM6YqpRB/5mRfgx44fz9EJNtLK5cuUIEbOlxQ5k6dOpa2bNqnFc6kTgUupsmWpYf36hrnJMX0RP5cpV57KlS1D48aMUQIWiRIxlq+TBYsWKYGMLPJLuX79BtXkCC55WbQxaeIEkkgaUsQuuT4lkocIejauX6eu6eD60ZEgQ0RIHdq3Z/FFU9Xvq1evaPCQobR9507axul/0qZ9d80qY0z/aGylj+ksWChUsKCtxYaNG6lP335Uv349GsK8pThTkCE+69Gtm6Xd2/nak3tdilmQoSr/+8fRdR1QyhJtzvrrSYQPElEjTerUSoCSjCPTiJ/lb0hjFocUL1acZk6fpvjK0J1YjLJn7z6axmKV0qVK2UySe7BHr97K53K/S4SewIqjOch5YtcW/vsmLGZOn05mu0oUL2ETcEl7iTYigpL2bduovwEiHvuLhWcb+J7ozz7s3bOH3d8GOc8TCx5uPdFrsBkEQAAEfJMABBm+6XfMGgRAwPkEIMhwPlP0CAIgAAIg4HwCeGflfKboEQTCggAEGWFBGWOAAAiEKYHQCDJGDBvGaTlqGext0aq1+pJ9y6aNNjGG1mDylCm8cL6Y/DkSRuzYsVW1LGxLtIhD+/fZxAxyQL56z5O/gEpbMn3qFLX4epHTn9SqU5esxt29Zw916NSZFs6fR5ICQ0qHTp1U2g9Z7NWnw5DICZl54f4TjnKhL4GJFCJE+JAOH9ivUpJo54mdsvAq6UwkYoNWZAG5EAs+cubIQZMnTrQtHstxR4u+IjjJnis31WMhQV+OWGAu/fmL+gMHDpL/saO2/oSflV3mc837IZmr9GFeQNdsLlWiBE0YP85ml7SViCNFePG8GYtIenTvJlW0fPkKGsbCG4kuIhFItCLRKSTljCxyOyrSnwgTqnE0DH0kAklLIvMZPmSIEsvI+TNmzqJ5CxbQAfa9RO3Qlx9//JGKliipoi1ogozg+tGRICM/pxZZwuIQfTqKc+fPU936EhFhADVs0EBvimFbY9uFr9v27doajslOr959VKqVk/7HVf/OFGQE1e6wEmRs5ntq1Vcr1f2jByEiqxs3OQXIfwxE4JCNI08I1z4chcRcxo2foK4DZwkygmqX2NGsRUuOxHKP9rK4RFLH6EuFypUpahSOnLN6leFa0bfxpG083HqSt2ArCIAACPg2AQgyfNv/mD0IgIDzCECQ4TyW6AkEQAAEQMB1BPDOynVs0TMIuJIABBmupIu+QQAEwoVA2QoVVWqRgCJklChVmuLFi0dfrViuFg+1heN9e3YbFtAlSkSO3HmoapXKluH433LqAikx+EtxrcjCtkQqMC9iy3GJMHGfI1zs5qgXssC9kBe6JWpGnVq1DGlMpK0sTq/i9Aft2rTmVAfv0jfIF/XSh3z9X7J4cZU+JW+evJQsmfWif2AihXx87vhxYy0XUP39T9DNWzfpexYNaGXLlq2UPl06mj9vruEcR4IMSb9RvWYtWrRgviE6gtafpARR0QB27aTPkydX1cIvILu0c82/IZ2r5nstooFmcxG2I0niRDzM+3QqMqZEJBGxihZd5eXLl9SoSVN6+PChmqOkscmZMwdlypjRIHQx26vt//rbb3T06FG6c+cbevvLW1X9DwtZFi9dxtFIelArTichRdJUvHnzhhxd1zVr16G///mbNnIqGb14Iqh+dCTI6Nq5M7XjiAj6IuIcEdpUKM+iEY4oox9P305jK4v0WbNk0R9S25s4wkZPFmXI/SCpO5wpyAiq3WElyJAIGVcvXbQTdS1esoRGjh7Doq6j/DcpLp2/cIHq1KtPC/gek2vQXI5wu+YtWwWYskR/jqN7U9pokTuCYpf2t9DPL4mKIPSB6b6QNEsiLLlw7iwLM6LoTfDIbTzceqTbYDQIgAAI+CQBCDJ80u2YNAiAgAsIhJUgQz7gIZX81TmTiBAhAkWKFMk5naEXnyAgHyLJ//RFPrqQd40hKfK+QCID64ukd9VSvOrrse16Ar///rthEE/6GyEfl8k7R32RtM0oRgJ4Z2XkgT0Q8BQCEGR4iqdgJwiAQJAJyBfn9x88UBEqHC0UZ8meg4oVLWKL9KAtHGuL8tpgsgAuC8+S+qB1q5ZadYC/5oVtfeOOvLh948ZNlXJEbBs5ajQtX7mSSnI0Bkclb57chigET54+pY0bN9HRY8fo+o0bnO7kV8qdKxeNGT2Kkvr5GboJTKSQP28+Gjd2jGFBXf7jt1OXrrT/wAG1SP45L5RrkoTTZ86wCCSritqhZ+to0Xfvvn3UrkNH2rBurRIoGIzjnZMnT7GYoQmtWLqU8vA8pQTETzVw8E9I5ipdmX2v2Zwvbx6KFetd1BPzkJ9+8gkNHTLYVv0bP+xs5LQNh44cpkuXLtMPHLEicaJENHbMaMqbJ4+tnXlDUpa0bN2GvuWIGBkzZFCRL4S1CBMOctQTSSejXXdVOLVNnDgf0+KFCw3+0vqU6/7Vz69tgozg+tHMXRMqjBoxnGrVrKkNY/vNnS8/lS5ZkoYPC1yQISl2kidLZjtX2zh46JBK+7OcRQl5mXdgggyJwvBJnE9o2ZLFlgyk3+DarbUfPXIE1axRQzNN/Tq6rkOSsuQ0i6mOHDxgZ/fKlV/RYI7Mc/zIEYofP56679q0a6+iaeTInt1gj+xo0Unmzp7llJQlQbVL+1uYOnUq+jz553Z2aRVyX8j94ekFD7ee7kHYDwIgAAK+QwCCDN/xNWYKAiDgWgJhIch4/fo15eQPY8wLjqGZmaQ5dfThRmj6xbneS0DS5M7nd0v6MmPaNNKnGdYfC2xbovbKuy39dd24UUNO2TwgsFNx3MkE5KOvzFmzGXqV9Lnbt24x1LnrjnwUKX8ntRIzRgz14Y+2j993BPDOClcCCHgmAQgyPNNvsBoEQCAAAkOHDaeVX39NJzgNxqeffmrXUksH0bF9O+rUsaM6bl6U158kKVAk4sWMaVPtFlMlYoWICurXr2dbhDQvbOv7Mgsytm7bRt169KSTx49Z2qo/VxbY5T+4UqVMSQkTJlSHRIF+3N9fCSgKFSxIM6dPM9gYEpGCtkg+cvhwql3LuBBfqEhRSp0qFS3gNCpBEWR8//33LLAoQpMmjKdKFSvqp6O2V61arRajz50+RTH4P7KlBMRPNXDwT0jmKl2Zfa/ZPHXyZCpfrqyD0d5XX7jIUQ8ifMgpY96lK5EHUImy0bdffxVdRK5DR18FjBk7jiNhLKUd27ZSii++sHUqQg2J4qIXAg0ZOoz2sMDl6KGDdl8tyJgFixShuJ/FJS1lSXD9aOYekFBBDA2OIGP+3DlUlO0zlyU891FjxpL4P2bMmOqwiKVE6GEWCskc5VgW5ryMBRz660/fb3DtDqi9MwUZZziFjaQHMtttFmRI+hlJbaRPV6Of3+rVa6j/oEHkrJQlQbVLbChVpizlz5+Phg5+L0bS2+ZN23i49SZvYi4gAAIg4N0EIMjwbv9idiAAAmFHAIKMsGONkcKXAAQZ4cvflaNDkOFKuu7TN95ZuY8vYAkIBIcABBnBoYW2IAACHkHg1KnT1PDLL6lm9eo0ir961y+AShi9Dp06q6/QJWpDhvTp1ZzMi/L6icqi7LbtO2j1V1+RfB2uLzVq1abHT57QYf7yPfJ/ISLNC9v69mZBhkS7KFKsuCEtidZeUk1MZYHFuDFjOCVJMvrpp58oX8FC1KhBA+rfr6/WTP22Z2HJ+QsXOe3BEcN8QyJSWLR4sVokl2ghyTg1h1YkJYGkxRDhx8IgCjLkXBEWxIoVS32xoQ9/KOERK1apSpEjR6JN69fb7A6In2aL1W9I5ir9WPlebI4fPz4tX7rEIH54welbJHpBxw7tbQKDilWqcGqSD2nzhvdzkH6XLV9Ow0aMpD2cjkXScViVVm3aclqYW3Rw317DOPMXLKCx4ycYImRs37GTunCklv59+1ATvr71ZcWKlTSEBTQSZUMTZATXj2buAQkVZOzgCDLy5M7FLJfafCzni5iofMVKFDVaVNqycaPtmET6uHTlMp04fpyiRI4sTVVZs3Yt9R84iCOO5PZqQYZMVkRgf3DUla2bN9mEKlIvKZIq8z0jgp3wEGT07T+A9u/fT9u2bFHpVcQmKRLZRCLhZOPoOW1at3pX6eH/4uHWwx0I80EABEDAhwhAkOFDzsZUQQAEXEoAggyX4kXnbkQAggw3coaTTYEgw8lA3bQ7vLNyU8fALBAIhAAEGYEAwmEQAAHPJNC7T19az4u8hQsVohrVq1HixInp4cNH9NWqr+ns2XPUvGlT6tunt21yVovy2sFnz55TI14Al8XQTu3bU/Yc2TntyA3asnWbShsygtMN1KldS2seYIQHsyBDTpozdx5NmjKF05LUp2pVq6rcn0c4fcGChYvos7jvIh5E4lyOUnr07EXbd+6krpz6pFLFCirygkTI6MPRGEoUL24XxaNOvfoqhcOgAf1Vv5kzZVJCA+nLvAAvdVIkpUrlatUUu7Zt2nAalCR0hpmNnzCBJG+fpOMYNmQIScoXLY/fZLZ/Ns+jHzMV1kmSJKF0adOq/kRY0qptW5WypG2b1pSURR4POKWMvDy+d+8eLVwwn7Jnex9Oz5FdqrMA/gnJXKU7K99L1JMWrVtTrhw5qA3bnCBBAjrN0UmWs/DhwcOHtHnjBlsKDk0oUJXTabThc+LGi8tpSy7REI7U8vbtWzp2+BBJLk6rIhEiRnDampbNm1N1vk4jswBh165dtGrNWhWi7/Pkyal7t66UL29eEjFRn779aMOmTVSNRSBFihRWIoYjR4/S+fMXVISRfzkP7cZ161R9cP1o5u5MQUaxokV50f5vatWyJadySUz37t+jqdOm063bt2nB3LkqXYnGZ9PmzdSzdx/Kny8vVeV5yvVy9Ogx2r5jB8mDpYhbgpKyxCoFiYxhFpIENE9H1/WevXupfcdO1LhhQ2W7RPfQUtNYXU/dOQpOcCJRXL12jRo3aUrRo0ejZpzSJ3my5Pz36yEt4uslR/Zs6m9PUAUZjuYgLIJrl/wtbNCokbq+enTvRunTpWcf3qKNfE3u2buPpkyaSBUrVJCuPb7g4dbjXYgJgAAIgIDPEIAgw2dcHaKJyn/TyAcLUmQb5R2BTh07qI08ud+lzQQXEBACEGTgOvAVAhBkeK+nIcjwXt/qZ4Z3Vnoa2AYBzyEAQYbn+AqWggAIBIOALF6vWLmSI0zMMOSekxQmkgaiZo3qti/ypVurRVT9cJLGojcvhkuKkt/5y3UpiRMlol49e1CF8uX1TR0KHaSRlSBD6hdzCoblK79Si66yLykuSpYoQSOHD6PYsWNLlSoSVWDU6DG0liNKSAoTKXFZtFEwf34WmPShTz6Jo+q0f2ThWNp/9/ixqpo6eZLNXvMCvHaO/Mqi+GBOkfELi1CkRI8WjYYMHqSEFl27dadnz5/Twf37yI+FF1IkDYyIRSSKhpR6devQ8KFD1bb8c+LESY74MJ5u3LypvqaX+aVPl44GslBEvqrXl4Ds0rczb4d0ro58L0KScSxC0WyW8dKnT0cTOM2IOVKKRKiYOXs2vXj5UpklvHLzy70OnBZH8rk6KhIlRB6El61YobhIu6R+fjR1ymS6wCKLSVOnUmyOLnLov1QXcl3PmDmL9nGUArErKgtkChQooCKmjBw1imTBXCK/aFFhguNHM/eAhApip1nYIHXmorE9zgKjufPm0UaO+PDzz29UM0kD1I+jfYhoylxWrV5NM2fNpqfPnqlDEvlj7JjR1I8jNERjtmElyHB0Xcu9J4KMo8eOKb+lTZuGtrIoQbhrc5YIM+JLKcEVPsg5kvZmDotVRBz085s3lISFTm1ataJMnLKlSrXqNHf2LCperJg0DbA4moOcFBK7JKqPpOM5d/687W+h/A0aPHBgiPPNBjiBcDqIh9twAo9hQQAEQAAEgk0AgoxgI/OJE8zXhU9MOoSTFFGGCDQgzgghQC86LSwEGbJYOpqjoPK3FJblp1evaNfu3YZjUaJEVh8rfEAfGOq1HfkgpnWrltoufkEgUAIQZASKyGMbQJDhsa4LluF4ZxUsXGgMAm5DAIIMt3EFDAEBEHAFgX///VctUj999lQtaMaLFy9Uw8gCuqSYiM/9yCKks8tzFjq8ePGSUqVKqaIlOOr/l19/pYcPHlKEDyNQmtSpHTULVb2kIbh7965acP6coxJo0TBC06lEGZGoGLIYLwvrnlDecJQLsTk5R6sQcYSjIteGRM8QEYuITUR0EtTyG4t87ty5o9JTyCK+PrWLoz7kIUsEGZr4om37DnytPzMIMuRcV/jRkU2B1Yug5M6db5RwKCj3j9wP0aJHp5gxYqiuJUVQYIKMwGzwtOPCTIRY2v2nRT4JqiDDVfOV611EQXE/+0xFkHHVOOHVLx5uw4s8xgUBEAABEAguAfPCe6cOHdTicnD7QXvvIGC+HrxjVmEzCwgzwoazO48SFoKMwOZ//foNqsLpd+Vdllbk2dmcnlY7hl8QCAkBCDJCQs0zzoEgwzP8FFor8c4qtARxPgiEDwEIMsKHO0YFARAAARAAAacScCTIcOog4dyZLwoyzMjdRZBhtsvb9vFw620exXxAAARAwHsJmBfgIcjwXl8HNDPzdRBQWxwLmIAIM1YuXxZwIxz1SgIQZHilWzEpCwIQZFhA8ZIqCDK8xJGBTAPvrAIBhMMg4KYEIMhwU8fALBAAARAAARAwE3j46BFt3bqNq99/LSNtfv/9D1q4eLFK/zF75gxb1Azz+Z6yL6lWHv+XZkez+fXPP9OSpcuoWpUqNGb0KI+fozYvR7/rN2xQEU/Mx/05/Y88eG3ZtFFFYjEfx75zCODh1jkc0QsIgAAIgIDrCZgX4iHIcD1zdxvBfA2Y7ROBQd48uVW1pFVEIRJmUuS/+awKRBlWVLy/zpsEGRLR8OChQ3T79h16ymkn5Xk6fvx4nHo3MeXPny/IkVYl/a2WLle7AlJ88YW2SRLt89KlS3SHx/k4zsec5jU96Y/bGvKGpOW8e/cepzH9mdKlS0uZM2UKMDKsnCuRQu7dv6/vRkUKTcQphLVykcc/fPgISaphmWeCBPEpWdKknFKzTKgi20q0kpOnTqrn8mfPv6cokSOr6JB+HNW0RIni9EkcY8pgzR7z7w8//ECvXr82VEsKZC0KpkQ1lUiib395SxEiRKDs2bIZ2up3JFquRFe9ydEqb926zfN9zamE/ShZsmSUJk1qysD8g1LCW5DxilPz/PDjj3amfvTRR7bUr3IwMHZynUs61adPn9Grn36iTzmCp/g+U6aMIX5nJJF9Dxw4SPf5upOorZJCNn68uHz/xKds7JucOXIE2rdc41pKY22SErFZi/6q1T1+/IR+/+NdWmytTv/7OUfqlWtCK1pkXm1ffqNFjUoJEya0VYVWkCG2S5rkb799wGmEn5KMmShhIvLzS6JSa3/GjENSHn33He3bu4/kvab4PmHCBMpXksY6HUcZ1kqO3HkMqceF2YVzZ7XDDn/lPjp0+DBduXKVHj95rOwW5mlSp6FyZctS1KhR1LkSBVn+VuiLRH6NFUBEZH3b8xcu0Hl1zT2l59+/UH8HEiVKyNdcJsqfL1+g14a+r9Bs451VaOjhXBAIPwIQZIQfe4wMAiAAAiAAAsEicObsWerdt5+8lbA7L2lSP+rapQtlyZzZ7pinVXTt1p0uXbls1p1QCk5106N7tyC/PPK0eevt7di5M127ft2OQaRIkahE8eLUs0d3fXNsO5kAHm6dDBTdgQAIgAAIuIyAeTEeggyXoXbLjs3+1xvZuWMH6sgpbFAcE5D/5hOGVsIMiDIcc/PWI94gyBDxxMxZs2j1mrWWC96a73LlzEldOnciuc4DKtVr1qLLV67YmkjK1Ns3rpMsqHfu0pVO8zsKWbDVl8KFCtH0qVMoOqcflfL4yRNqxylW1fOtrqEsvov4YML4cZQwQQLdkfebsricJVt2QwoXEZgtX7qU3vLCaqs2bUnek1gVSSNbrmwZGtC/P336ySdWTSzrVq9Zoz4GufPNN5bHpVL6LligAHXv1pXSpU3rsJ0csBI/rFy+nLJmyUw9evWiI0ePqdS30jZKlMh05eJFu0Vd4TBy1Chas3adgYWcoy9FixShXj17UOpUqfTVdttWNs2YNo1FLKXt2galQhbCW7ZuY7CtcaOGNGjAALvTReRQq05desJCIX2R1L3TpkymMqXf2zBm3DhasHCRvhl9tWI55c6Vi9atX0+Tp05ToglDA975gtMuy/Vdvlw58yGH+yKOmDh5Eu1h0cDvLDRyVBInTkT16tShFs2bO0xVvGnzFuVbfR8D+valJk2+1FdR8ZKllEDBUKnb2bdnNyVnsY1WvuG00mXLV9B21W+VypVo4vjxtrqQCjJEuDVh0iTatXuPnQhL61yuexE6yXu5JIkTa9UB/oqoa+jQYXT46FGSlLxWRfrs16cPibAhJIKMr77+mmbNmWv5UZOMJ2KLyRMmUJEihWnrtu3UtbvxfZqVb8x2yvUm16L4wFERMVDLFs2pLl8fri54Z+VqwugfBFxDAIIM13BFryAAAiAAAiAAAiAAAh5KAA+3Huo4mA0CIAACPkjAvCAPQYbvXARm32szhxBDIxH0X0fCDIgygs7QG1p6uiBDvjzv0LETXb9xI0jukAXwPr16UtMmTRy2txJkHNy/j9q2a083OEqDo1KAo3AsmDdPCQ1q16tP9+7dc9RURURYvmwpR+94H/VCa+xIkDF96lRq0qy5nchDO0//K1/iz5oxgzJlzKivttt++fIl9enXX31lb3fQQYWISrryxxSyCCtiFatiJX4QQcaatWtp85YthlOsBBkiZOnavUeADPWdiF/HjRlNVSpX1lcbtq1sCgtBhoho6tSvr6J76A2SKBDjxoyhqlWMNjsSZFzlKAijxo7Vd2G3LX1OnjiBKpQvb3fMXLFx02YaNnw4SfSEoBaJwjGJF/klioW5SNSWmrWNi/LNmjZRogOtrYinMmXN5lCkIO3mzZlNxYsV006h48f96ctmzWz7smH+776QCDKOsiioW8+e9BNHGQlK+fjjj5XoKl/evAE2P+7vT527dlMCrgAb8kER0axbs5qKsUjltS6iTEARMn777Xe+Z/vR9h07Auue5F6dMW0q/frrb8ESZEhUmv4DBtK27dsDHUNrICKZkXw9aVFwtHpn/uKdlTNpoi8QCDsCEGSEHWuMBAIgAAIgAAIgAAIg4AEE8HDrAU6CiSAAAiAAAoqAeVHe/GIemLyTgNnv2ixXLl8W6BfvWlv82hNo0KixXbQMiDLsOXlrjScLMmQBs2LlKpxi4Fmw3TNoQH9q3KiR5XlmQYZlIweVktrhDad7uHX7toMW76vla/vNGzdQ7Nix31fylpUgI2qUKBQ1WjT60SLlheFk3Y6kWdi2eRM5SrcgqVdqc9SGgEQmuu7sNrt06kQd2rezq5cKK/GDZUOuNAsyJGVHidJlVDQQR+dY1cfg6CRbeL5JOb2KVbGyydWCjD///JOatWjBaWBO25k0YthQy6gCVoIMSQtx+swZu8gsdp1yhUR0mD9nDhUqVNDqsKrbwmmBu/Xo4fB4QAckJcbmDevtUuOIsCFX3nyGU0UYMpUjcGhF7osKlYwCFO2Y9iuCKYnEoZUNGzdSrz59tV31O4GjiOiFLMEVZEgKjnoNGpKk/AhOEbbrVq+mjBkzWJ52/9tvqUrVauoetmxgUSkRYeU60ZeABBm9mcV6ZhLUIjZ/wtFyzClLHEXIkJRJLVu3ZpHWkaAOYWsnkV5mTp9m23f2Bt5ZOZso+gOBsCEAQUbYcMYoIAACIAACIAACIAACHkIAD7ce4iiYCQIgAAIgoNItTOMvf7UCQYZGwnt/zf+dos0UYgyNROh+rUQZuK9Cx9RTzvZkQUZbTgmyd98+O9SyIJ8hQ3qK83EcevTdd3T23Dn6jdNf6EvkyJFp0/p1lMoizYUjQYZEg5B0qX5+SejkyVP0gqNLBFTix49P2bJmpRcvXpAsAMtCp7kMGTSQGjZoYKi2EmToG0g0iFSpUlLa1GmIOEDFrVu3lQDEKjVCkcKFOWrHXMtIFt179KTNW7fqu1bbMk+/JEkoderUShRxmxfRf7SIIiDt5s+dQ5IyxFysxA/mNtq+WZAxaMgQ+urrVdph9SvpF5o0bkRpOVWKfPUv0UcWL1lKzzgViL4U4pQqixYusJyvlU2uFGSIPzp37Uo7d+3Wm6i2HS2Gy0ErQYa+g08//ZRTxqShSB9FUqkkJEqMuUSLGpV279xBCRMmNB9SAhxJn2KVokSEAHJPxI0bVzEWgYE5PY90mCN7dpL//5XFfn3JliOnIeKGCJRWfbXS1mTX7t3UoVNn276kERIB4AxOOaSV2jVr0qiRI7Rdms3ikomTp9j2ZUOiSmTNksVWFxxBhgimKlapQpKuxVwyZ85EKb74giJ+GJHu8jV2gVPpmO9bOS5CKnMkCBF31Khdm65evWbuVnFKly4tpU6Ziv5g8YXcU5IeyNy3dqIjQYZErOjC6Y6tSgJOgZQuTRqS3wcPH6pIOvqoG+ZzHF2DS/i+GjF6tLk5xYkTh7Ixc7mmvue/aRIRRf62mcvY0aOoRvXq5mqn7Jv/WxDiUadgRScg4HICEGS4HDEGAAEQAAEQAAEQAAEQ8CQCeLj1JG/BVhAAARDwbQLmSAlYOPb+68FKMAAxhnP9bsX4m1uO0zM4d3T0Fl4EPFWQIQKHOpwWRL+gKYvDQwcPplo1a5CkbtCKfBnef+AgOnjokFalfsuWKaNSEJjTblgJMiRCxcwZ06lwoULqXFl8PXb8OLXr0JEkDYO5VOMF3xHDh5EIP6Q8fvKEBg8ZapcapGCB/LR44UKDgCAgQUaaNKlp1IgRShiiH/PylSvUl1OPWEXm2LppE8lisL7cvHmLKlWtauAnxzOkT09jeEE1HQsf9GXtunU0asxYFf1DXy+ije1bNhvsl+NW4gepFx6NWIBSrFhRFclCxBXCX0QGUmQBuWSZsoY0EiJAkUgfZvHMzz//TGUrVOAv/98vCoufLp4/R3KOuVjZ5EpBxvARI2kpp2kxl66dO1H7dtaRRaStI0GGsBvYv59dVA2JdjFg4EC7qAy9enSnVi1bmocnKyGT+KF92zbUhiMj6EUWT58+pQGDBtHhI0ft+pFUGHIP6UvVGjUMggSJAnPowH5bk1mzZ9OkKVNt+40bNqDCLBpq0aq1rU7EHqu//sq2P2gwC3RWGQU6Z06eUAIBrVFwBBlWAg8RT0mql9y5cmldqt8rnCama/fu9O2DB4b6wcy7EduuL4c5okTzVq30VWpb5iMCExFy6Iu8f+nXf4AST+jrZduRIEOii5jvcYkM042FPw0b1Df83ZPUJlM5WoUIl6wigVgJMkSkk69AQYOoRuxpyCl3evD1JGNpRdrOnDWbZs+dq1WpX4nIc+zwIcN1ZGgQih28swoFPJwKAuFIAIKMcISPoUEABEAABEAABEAABNyPAB5u3c8nsAgEQAAEQMCaAAQZ1ly8tdb83ygyT4gxXONt8+I8xE6u4exOvZp9Hh4inOvXb1AV/qJaL66QL/T9jx6xW+jX2A1k4cXXq1Zru+q3X5/e1KxpU0OdtiPpOapWr0F3797VqkhSBZw8fowk+oK+WAky2rRqST14YdZchg4bTstXvo8AIMclPcDBfXspum7xUuplUbcUiw3085RF2l07thvm6UiQkYi/TN+5fZtdv9K3lLe//ELlylewS+HSrEkT6te3z7tG//1rFYVCxBXy5f9HpqgH2olXrl6lmrXr2C3uSgQEiYSgL1biBxFJyN9uc1v9ebL9119/KbHLjp07ad/+A1S+bFklbjELZ6Tt1GnTaPrM99EVpG7fnt2UPFky2TQUK5tcJciYO28ejZ/4PlWHZkgrTl/Sq2fAqUIcCTLMaTq0PuXXajyzsEHaPeeIIoWLFbfz4eSJE6lSxQrSxLK0aduO9h04YDhWIH9+Wrp4kaGuc9dutH3HDludCD2uX7lsu7679+SoLFu22o6LsKFIkcJUvGQpW93HH39MZ0+dtO23btOW9h88aNu3EisER5Ah96BE/tCKXJdrWfAh0TGsikSyqFKtuiGtSOZMmWjDurWG5ua5y0ERNm3kSDx6kYv+pJccZad0ufIk4iJ9sZqjRN4QwYu5SAQcqyg1WjuzCEartxJkbN22XQlQtDbyW7J4cZo9a6bNh/pjst2zd2/auGmzoXohX//iV2cX838PIkKGswmjPxBwDQEIMlzDFb2CAAiAAAiAAAiAAAh4KAE83Hqo42A2CIAACPggAQgyfMvp5sgNeAHvOv+b7y0ZKTwW6F03Q/RsJuCpgozc+fLTjz/+aJuOpGg4dcKfovKvozJ7zlxOfTDZcHji+HFUpXJlQ52VIGPNqq8pe7Zshnays3r1GurPEQT0pUL5cjRl0iS7BUwRYmTKkpV+10XUiB07tlp81osNHAkyZs+cQaVKltQPZbctKVwkaode9JEyRQol5NCPkSd/Afrhhx8M50tUAlnED6hYCVCsBB9W4oeaLLoZPWqkHZeAxvuT0zv8yQIN/Zf5+vYbOfpHrz59DfN1xMnKJmcLMurUqkVZOK1DfxYa6H0gNksEgyGma0U/F23bSpCRmtOIbONIJPrIL1p7+X316hXlzJNXX6VSSxw99F7IIAdXfvUVDR46zNBOorQsWWQUVhga8M6TJ09ZOFDOkOZErqfzZ8+oaA5a+8kc/WImR8HQl1P+x20RUMwRNETQkTdPHsqUNZtB8KCPgCFirWvXrtu6zJgxA6cbWm/bl42gCjJu37lD5StWMpwr469YttRQZ95p0qwZi4T8DdXHjxwmiayhlazZcyhRlLYvvxvWrnUo9NDafc1ikIEcBURfrAQZ8+bPp3ETJuqbUXn2ybQpxr9phga8IylnJLKGpGDRFytBhqSTkbQy+vLViuV2kUP0xyVaUe269fRVJPfByBHDDXUo3G+mAABAAElEQVTO2ME7K2dQRB8gEPYEIMgIe+YYEQRAAARAAARAAARAwI0J4OHWjZ0D00AABEAABAwEzIvG+IrfgMerdsz/fSKTQ3QM17rYvECP+8u1vMO7d7O/w0OAE9wIGVaCBRFkSISHgIqkw9B/GS9tu3buzOkj2hpOsxJk+B89SvHixTW0k53NW7ZQj169DYvvrTlNRE8O729VZNFcFs+1EjNmTDp/5rRBpGA1P/mK/8qlixSJIw4EVETAkDlbdrUIq7UTMcOFc2dtY0i0kMy8AK4XDEiagRPHjtraaOeaf/39T9CXvDitP7dM6dIk6Sv0gg8r8cPggQM4zUNDc5cB7v/0008qRcPtW7dVhBFz6gXxp/+JE4Y+JPVEpYoVDXWyY2WTswUZdoP+V1GjWjUazalgIrCIIbBiJcho3qwp9eVIBAGVbDlzGVLKSHSKG1evGE4ZN34CzVuwwFA3fOgQqle3rqHOakdSBJ07f95waPvWLZRGd99t2CgCGWM0li0cdSU9p8KRkoWvzV9+/dXWh6S2SJAggRJJiFhCK/qoK2bxUEVOUzNlklGYEFRBxqHDhw3pUWQ8icaTOFEibWjLX0k59OLF+9Q40khv45u3bylbjpyGc+Wekgg8gZVnz55RwSJFDc2sBBnDhg+nZSuM0XjGsMCppkXUDENnvGOV9sVKkFGtZk2SNC36IpFDInzwPgWU/phs//O/f+zOyZ8vHy1bstjcNNT75v8mhEA31EjRAQiECQEIMsIEMwYBARAAARAISwKbNm+hV/yw2qTJl2E5bKjHkrB7B1m1/9dff1OiRAnt8mGGeoBQdCBhH5NxqEtzXsxQdIlTXUhAXs48+u47y/CkLhzWa7rGw63XuBITAQEQAAGvJwBBhte72DZBs6/x8t2GxmUbYO4ytG7ZsScKMmQRvnTZcgZRQEjh1qtbh4YPHWo43UqQISkUJJWCuVgJMjp1aE+dOnY0N1X7OXLnIRGGaCWoggxJwbF39y6D6EHrw/xbolRpevDwoaH6IgsyYsSIoeru3b9PZThNgl5UkTtXLiV204sqDB38t/P06TNOeVHMcK6kb1i/do3BttCKH77h1DJdOP3FzVu3rMwIsM7dBBnly5UlSQkiopqgFCtBxpBBAznCRoMATy9avAR99/ixrY348s7NG7Z92ejSrTtt277dUCfRISRKRGClb7/+tNYUmcKcmkIEGyLc0Jf5c+dQsaJFVbqUAoWL2A5FjxaNLl14J/AwR2YYPXIE1WJxgKSvSZ8ps+F6a9+2LXXt0tnWj2wEVZCxavVqGjBosOHckO5MnTyJKpQvr06X6BNyT+mL3FMSXSKwIvehCFVkDlqxEmRI5Js9e/dqTdTv2tWrKFvWrIY6q52ly5bT8JEjDYesBBn5ChayE54YTgrijqRi2r3zfeqaIJ4WaDO8swoUERqAgFsSgCDDLd0Co0AABLyJgOSoO87Kefl6yZXlyJGjNIFDTk6fOoWSJU3qyqHcvu+27dqrrz0k/6inFAkxmr9QYYoaJQp9/sXnlD5tOpUbNKzsl68tmjRrTi1bNCdR2ZtLgcKFKX/efDRu7BjDywVzu5DuywNVUj8/6tO7V0i78LnzjvCXSRMnTVZhGUUsoy99+vajdRs20IRxY6lqlSr6QypsK1gbkNjt4OHWDgkqQAAEQAAE3JSAecEYX/C7qaOcYJY5XQmiYzgBahC6cIdF+iCYiSZOIOAOvg5uhIzLV65QjVq1DYu0IUUhi+VT+Z2SXojgjoKMXDlzqsVdvZ2O5lyvQUM6c/as4fBRjkSQkCMRSLl0+TLVrF3HwM9RmhVDJ7wj6Q/SZcxkOFfexe3bs9vAMDSCjK3btnHKj0H0qy6SgtmOgPbdTZDRq0cPatWyRUAmG45ZCTIkAklgHwoFRZDRnKO3HOb3qPoiC+eygB5YmTR5Cs2aM8fQbOL48Zzy530KkJcvX1LeAgUNbbQIHBLJpHGTprZj+tQj5r5bNG9GfXr1UgITmZe+jBszhqpXq6qvCrIgYz5HBxnLUUKcUYYNGUz1671L1SH3lPxN0hcRa4hoIyileMlS9PDRI1tTK0FGi1at6NDhI7Y2smGOUGI4qNtZz+/JevP7Mn2xEmRklJRKHEEntOXTTz8lSVXj7IJ3Vs4miv5AIGwIQJARNpwxCgiAgA8TGMiK4x27dtG506dcSmHrtu3UtXv3IP9HqEuNCefOPVGQcZgfJprzQ8W8ObOpOH9lEdZFQg6KIGRg/37UuFEju+FdLciQr3pScS5Qc3hPO0NQYSMg93w3fqGxbfNmSpPGGJJ26rRpNH/hIpo1YzoVLlTIdo5sgLUBh+UOHm4tsaASBEAABEDADQlAkOGGTnGRSebFYggyXATa1C24m4B48a7Z156QskSiIsoCpj7Cg3zkIakPgluK8EcYA/h9gL64oyAjUcKEdPjgAYPoQW+zfrtw0WL05OlTfZVKdyKMpMjCr0TR0PPLmiULydf2gQk+JPJGydJlDOdmz5aNVn/9leHckAoyjh0/Tk2btzD0b5hIEHbcTZAhTCXiQ1BSS8j0rAQZM6dPI0kNE1AJiiCjJ6c92bhps6GbxSxSKFTIKKIwNPhvp3vPnpyiZ6vh0NJFi6hAgfyGOnNaEi2ixYqVK2nIsOG2tpUrVaRJE96JIyTibw8WYGilOEfUmMeRNawibsi1liN7dq2p+g1qhAwrYYJEvoljEf3GMIDFTscOHUjmIEXuC7mn9EXuqXVrVuurLLcl0qsIISQaiFasBBlWEUqCItSRPsdPmEhz58/Xule/VoIMiX7z5Inxb8fnyZMbzgvKjjCVvyfOLnhn5Wyi6A8EwoYABBlhwxmjgAAI+DABCDLC3vmeLMiweqAKC4IQZIQFZeeOEZAgQ0aSL3YiRoxoNygEGXZI7CrwcGuHBBUgAAIgAAJuSgCCDDd1jJPNMv+3iXQfHovFTp6WR3SHe8wj3OQUIz1RkPHnn3+qBcz//e9/NgZ+SZLQgX17DaIA28FgbrijIEMW9S9zeoeoUaMGOJvf+Ot2WRDXs4kVK5b6WEoTW8jCb4bMWQJs42iQQ4cPU8vWbQyCCavoGiEVZIgY4+ixY4bhM2XMSA3q16cC+fNR7NicNuaD94c3bthIg4cNe1/BW+EpyMifLy/FihWbdu3ebbBJ0pVIZN/SpUoZ6q12XCnIMEeikPEH9u9PXza2/0DJbFs1TiFy5cpVQ7VVdI1KVavRjRvvU6XUrF6dxoweRcOGD6dlK1bazu/auRO1b9dO7V++fIWq16plOyZRV/bv3UM7du6kTl262upl4+TxY/TZZ58Z6oIqyDh27Dg1ad7ccK5mn6EymDu//fY7ZTKlDpH77vyZ04H2JAIpEZjpi5UgY8rUaTRj1ix9M9LELoZKi51mLVrQkaPG+8pKkFGrTl26cPH/7J0FvBXF+8bfPz8RVFQQJMUmBAHpTqWkpEMppaREurs7FZDu7gbpVJCSthBJEyVV9D/Pwh539+6595x7zzl3955nPh89u7OzE9/ZvezMPPO+R0w57Ny2TXMvbYqMpRPrdyHd2MVSR7BYEvCTAAUZfgJjchIgARIAgRs3b8qBAwcEH7AIRYoUlrzKz+CjDwaEJ06clM8+u/+xuVZ9NJ85e0baftBGS4v/NWhQXxscwyrCz7/8LGWVdYAdO3fIt8p/ZXGlws2YIYOW9u7du0p1vUq+/PKE/KZ8a8J0Xp3ateTpp5/WrsPNxUqlnkY4ceqkQEkNc3Ypnk6uxZUuXdr0sYiBwP79B+SoMmv58ksvSm7lxw++/PTBqHbTg/8hb5jvQzsff+JxzY9ioYIF5bvz52Xvnr1St+47nsXetevWaXfpPgON+cA85AlVf7Q5qoAFZKQ/cOAzpao+L9nUwLiAGmimV5YT7ALqAlctUIonfSqJUqMXlNdLlBBvggx/2qSX5ysz1P3I0aPaM3Hx0kUpkL+AFFLqeL2v9PyMv8b+g1/QhYsXS7133pa0z6TVklVQCnN9cAWl+MFDh+SQ+u/M2XOS6ZWMkjNnTk0Nb+y/P/74Q5YoX5bFlIoekzOff/a5/Ktyq6vytQtz587T0v1x44aMHT9eGxTnUvliXJ81W1aP2t5oIWOrGoQcOXJUyy5nzhyqnQU9z4KxjC9PnJDt23fI2bNnNR+z6EujaclPt26V789/r90ycfJkSaoGkhgAouzkKZJ7fFAa87QeI288L4cV+xTJk0s2VWdYGHn44YetST3v7UH1jP2ozEdi9wreW6tJSiNDsN2+fbtcUxZE4Eu0YIECmr9TlIsdKz///IvAZGqxYkVN5e3Yqd7tn39W5iMry5kzZ5Xboj1yXL0HGdKn055TTKTYhRuqH/bs3av+fnyumSXFO1q4UEHPc6Q9M+pvAjrV886/+64kV20Ht9KlS6l3PrXGHPlg5wl88frD+r9n7Qv1rJ2VVzJmlFy5Yv6s2bXXqXEc3Dq1Z1gvEiABEiABKwEuFluJxM1zfpvEXr/yHYs99qEu2Y2CDDCyWgNAHAQZcFPpLWBceUCNOcuo8aNxPsGa3omCDNRxgBIe1KxZw1pd0/nCRYuku7JYa7R+8YqaR1m1fLmpzUWLl5CLly6Z7p0wbpyywmBeGDYlUCctWrWSjZs2m6KbN2sqbT80L5pHV5CRt0BBbU7BWMDK5cskc6ZMxijPcf8BA2XGrFmecxzEpiCjnpoz7Nq5s7zXuIk2x2GsGOZrpk35RJtjMcZbj4MpyLCzEJFJsV2+ZLE252Oti36O+V4IJjBvogdshDms5pkeeeS+5RU9vmXrD0yCFMwRzlCWNBqoOZzdal5VDxColC1TRjvF3Fz2nLn0S1pdvjx6ROYoAccA5aJED4kee0yOfHFIP/X8+irI+OHiRe1vh+dGdYC/GZs3boi0/XCThJA1Sxbt1+5/uZW7Y7hFNoZPlJWP4mqeMrIwZuw4GTdhgimJnSBjvbJC3cowx44bkG7dmtWSSlnQ8RYwR1a/4bsRLtsJMjqqZ3fZ8hWmtEOUmKaqmrP0FvC3ZvmKFdocv/VZ8HZPdOP5XRhdcryPBGKXAAUZscufpZMACbiQwMWLl7SPb6jsoUDFRzg+hJ5Uit91yr8jProWL1miFrfvf0Re/+03uaOEFSlSpPC0dvunW7QPXLgb+PzgIcmYPr1sU+p6LL7DZQSEDbBY8F6TppqaGou3TyhRxH618JwwQQJZuGC+WthNL2fPndMGN8gYPiWvK9EGBAD6rngMvrC4jjBjxkzpP2iQJFSmGXOrxdWjSnX9+++/awKAnj16aGn0/0GVDB/FqEO2rFnlqSRJ5OTpU/LiCy+oxe4S0kepuY+qHQmPPfqodkutOvcX+xfMm6tn4fkdOmy4TFEDjrNKMBJZgKChTdt22mAFHNC+zz7/XNupMHL4sAiL87uUornJ++9r7XlNLcJjEuHI0WNSrmxZga/Gb7/7TjasW+sp0t824UZfmaHudes3EAxMwDt58qe1ul+9ek1WLFvqEdh4KvPgwNh/8E2IAQv8C+piArgvwWI4nrF2HTrKmrVrNXEKdrygfd8oAU+tGjWkb98+Ek+1HwEilZKly0hVJQRYpZ7Hh9Tug5deekmWqUGl3URL2fIVBCIAlHHt2jVt8T5RosdUTv+nno13pHGj+4p5XZDxp9pBsnPXTkn3cjo599U5+eOPG9okzuiRIz3PHeqBwSKet8fUIBHvyfEvv5TLylQo6oUdAahL1+7d1Y6P+6ImPGt4bpMkUbs8VNkY3EXlvmT+/AXSs08f7Tl87bVs6nn9SdXpK00g8fGE8eqdeQJV0QLEEXUbNJBvvvlWm8BAOSdOntImODCoqvzWW3pSD8OaNaor5uskTZo0ckXV/bp6XxrUq6eJLxqpd/Pll1+SS+rvwe9KBPOuyrtrl86ePNq17yAQpLT54APln7KLvJo5szZAPK7iwBnveX2VlzGAwdv16qs6fqMEUy9p7OB/E8/EnJkzNJcu5x688xDZ2L3zMHOJ91uffMJOCgyqfWWN56C9etZWq2cNLmTwrH0XoGfN2FanH3Nw6/QeYv1IgARIgAR0Alws1knE7V9+m8Re//Idiz32oS7ZrYKMEWos/vGkySZc2DQwe+ZMNcb+nykeJ1g0xCL5zl27BAKFdkpAUKyoeYOBfpNTBRnYdLB+7RpJaZhn0+uMX4yty5Qrr82RGePbtG4lLVu0MEaJHT/M361ZuULNTyQxpdVPNmzcpBaEPzCJPXBt3epVkl7NZRlDdAQZmG985dUspkV/zJPt273Ldl4Hc3vlKlSUy1euGItWbjCGKVcSFUxxOIlOnSJkYoiwsxYCQUZPNecDgUGdt9+RU6dPG+4QgaAAz2iWLPabVZA4mIIMbMTJX6iwYC7OGDq0aytNlTthu4C0tdU8mdU6BsQUEFVYw/ARIwWbj/SQ7uWXtee2sHKlg/kxPaxVzw3mQPUAd8KYN9IDnnXMM0+bPkOPUu/uK7J6xXLPuX7gqyAD6avVqKltLNPvxW/zZs2UqKiNMcpzjDnLchUraXUr+cYb8mGbD2w30HXv0VMWKEGUMUAoAcEEhBN2AZuB3qpS1eSuBOnsBBnYvJivYCE1H/mHKSu4bxkzaqStyyb0WXMlojJy12+2E2RgzrmhsqZhDE899ZT2dwEbouzCxEmTZPjIUdq8PDjWUqKx+PHj2yWNcRy/C2OMkBmQQKwQoCAjVrCzUBIgATcT+HjiRBmlzKOtVoMz/YP5ihr0lFQf4O8oYUKnjh1MzYvMZQkEGatWr5EK5cupD9k2ph0Mnbt0lRVqJ/zypUu0RXlkCqFBcfXRiwXuKYaPelyD+4IP27UT64c8rsG3IXwctlQm8Bo3bqQtYMM0IxTh2DHQWdW50QNTdfiwRVvi/V88zU+hbp0CC7WYjJo6fbo2YAm0IAMf7IvUAAML6ZgMgBlDDCoxUFyqdjDMmzNbs2iA9uBDvWr1Gpr1htEjR3gGyRCktGnbVvbu2y8vPP+8R5ARnTb5w0z35dinV0/NfCTqiAF0JTWYeFh9fMNfYLx48RDtNcBayntq0GfnsgRslqi+wsDC6CsT1lM6dFI7Dho29Dx3uiADPlFHKkEO/MD6MgDAhAUGfRAK1KtbN0I9IciANYhSJd9QPj8HaGIBWOCYNXu2GiQPUwPtbp77IH4pXfZNpQovLUOVgh9CC0z6oC8hzlm6eJEm9DEW4q8bjdVKbNJWiR5gUaN/v74eBT8srDRp9r5mVWLMqFHaZAUEMxUrV1EChpsy6eOPPe8t3oGBgwbL3PnztecO1lUQdIYQPy1QPjmxAwVpO3TsJGuUNZhEagA5f+4c7b0EA7xb6zds1CZHdIsoEGTAOs6LyqrNR+PGyvPqeURA+v4DB8o8JSYZN2aMxgjxxjpOVKYXdSs5YNnmw7baxMqm9es0wQzSI0TmssQqyLh/x/3/R8a6e0/1rC1dJhDYYLeUHgL5rOl5OvmXg1sn9w7rRgIkQAIkYCTAxWIjjbh7zG+T2OtbvmOxxz7UJbtVkIGNGhh/Y8xtDLCG2qtnD8/4F9cwxzJsxAiZv2ChMak2B4Md7NZNHE4VZKDyWBzt3rWLlC9XzjPfgnmYdes3SH81Z/GT2pRhDGibvmHBGH/hhx/kjVKlTeIHXIcAAvMcmCdIoOYGELDRY9LkTzRLFCjLGCCCwbyVlWF0xQ+FixaLILCY9PFHWn2M5WIuB/NCsOBpDZUrVZLeap4K9dc3biFNdOtkzV8/j0yQgTQQF2Dx/5JBhIB4CF6wsctqtRTXEIIpyED+nTp30eYbcWwMeKbaK2HGM2pzDgLma/DvcK/efbT5ImNaHM9WG2jy58tnjdas13bu2s0TD3HBbrXB6bUcOT3vK+YKjx857HnGkBgbvvbt3++5b4KaU8JzrVsnxgVYn8UmJmvwR5CxYOFCbU7YmAee3xrKJQvabxQk4e9M127dNcu9enrUvX3bD6VJ48Z6lParz5GaItVJ6tSppG/v3to8pf6egC3qAfEKrFFbg50gA2kGqHm16TNnWZNrQp933n5bXn01s2Yt49tvvxNYyV2sLAljXtsu2Aky8H4XURsSMd9vDHgmejz4u6DHow2Yg+vbf4CpDKTF5jj8rQp04HdhoIkyPxIIDQEKMkLDmaWQAAnEIQKzZs+Rfmpwt2zxYpOSG+4ksBgL/37G4IsgY8umjfL8c88ZbxMMaH755Vfl8uC/nftIANEFLGVAGW8MkQky4CMPlgFQjnEQhvuhoofvzSWL7g/IYZWizjt1leBjUoRdEhjgQwgBSxCBFGTg4zVHrtxSUi32jxg2zNgsbWcDPoIhOsCAAAGimAkfT5RtygynvgCu34TBaHHlcxAfvrqFjOi0yR9mEIiAY9dOneTddxvqVZGvlaWDmzduagOB6AoydDa1lauaLip/a+imrJts3bpN9j7YKaGLCSqWLy/Dhw2NMBlgvV8/90WQcefOXYF1F+xG0QPELjClCbcl2BGAQRXyWqZENJWVNYzk6p3QA6x6QAzQTw3AatWqqUdrv5GJBEwJH5zAQgWU7avUjgCId4xh1OjRSvgxXfaqge6TTz6pKf7h/xGTF3BnYgzgC4V/xgzpNREC6q8zfLNsGU8c7oG7H1jZqKAG5yPUThN9ALlHmZqE782Pxo8T7BJAgCBj5erVmnADEzPGgDIxYZYp0ysyVtUV+cDdDerYH6ZXlWUOY9i4aZPA1OXUTyZLkcKFPZcCLcjQnrXceaR2zZrSpXPwnjVPAxx8wMGtgzuHVSMBEiABEjAR4GKxCUecPeG3Sex1Ld+x2GMf6pLdKsgAp0GDh2ibZ+yYpUyZQs1TPSe/Keut57//PoJFANyDjS5YhLYGJwsy9LomTJhAs+CpDG3KV199Lbdv39YvmX5hXbSfsi6qj+ONF0eqzRwfTZxkjPIcY74B83yw9IC5DrsAwQOEBXauSaMrfsDGDGwIsYYMau6iqNpMAyu6mHPatHmL3LRZyDbeh006J48f87Q9unUy5mk8jkqQgbSw9llTbWKDKMgYYDlh4bx5JnfL+vVgCzIwp/RW1WoRXMPo5WM+CXNamCPCJh278Kay0jt29Ci7S5rlXMyvGkOPbt20OWU9DlZJt6l5NmPo3aevzFFM9ACBBKynYu5RD+83bSrtlBjCGvwRZGAOqGbtOlre1nzw3MPaKqzFQJQA4ZJV0ACryavUZkXrPDjyaqzm7GAJ2i7AOsrLyloI5hPxDGPjkrfgTZBxU1mJrvRWZVuBjLe8vMXbCTKQFq5/m77f3PY2WOSFxZO//v5LzitXzNggaA11atWSvn16W6MDcs7vwoBgZCYkEHICFGSEHDkLJAEScDsBWKmAWhk714sUKqS5R8ilFlyhvrVbdI9KkPHZ5wdl947ttlhOnzkjhw8flgsXfpB//r2vvoe44OzZcwIfgsbgTZABVW9OtciaVg0gc7z2mvEW7fjIsaNy+vQZOXLooOb+A2KHkaPHyDFVrp3Pu2HDR8ikTz4JqCADpuMqqwFGcWUZA+4hrGHj5s3aB77uEqWRsiTxs/J5ulxZ1LALyOv2rdseQYa/bfKXGeqABXMsnGdXjAsXKqh+s0tO5b7EjqFdnb1ZyNDZzJg6VQqpfK0BlhlaK+sqmzasF1gF0cUEA5RbmRrVq1mTez33RZABNxrwd2mdwMAA5Vullt+oLDjo1zAI3KVMoJ4795VSud/Qyr2nBntQsHdUlmGaNG5kqos/ggytf/LklbcqVZReFnc7yFRX1WOQhzBV1XmIcp1zTO06gNULa8Bgd/Onn2rvIeqvM+yv3KEY/dJioFjmzXIysH8/qa6eMT1gYuFNJcgZPnSIVKpYUYuGIAPP7THl2sfu7wJ2ScBE7J6dOzRmqCMsjdSsXj2CaAqDXph7hD9aWNLRQ6AFGXArgwk3+HItrP62WUOgnjVrvk48d/Pg9rYyo3r+u/PaxAbeS0yyvPDCC5rLKfwmSnT/vXAid1/rBHGYMrbsSY53THf15InkAQmQAAmECQEuFodHR7v52wQ9hIUs60KOtefwb7ndd7M1XajP+Y6FmnjsledmQQa++eFKFkJ/f0MtJcjvpxYN9bG88X4nCjIgwEj6VFK5eOmSsaqRHsMCA9zJYjOSXcAcQ+OmzWTHzp12l6OMGzZksMkNqvGG6IofTioXq1XV/MBfqm99CQUL5FcWWh+2XQR3giADbcC/ZQ3efS+CuOFFNU7FfJ/VkkCwBRmoE+ZY6zVoqI2bce5PgGXTRcoi7qNenitYBoEl2shCsaJFIlhAnjlrtkm0YXf/4IEDpFrVqhEu+SPIwM0/XLwoFZWwwSqUiZCxJQL/XsMiLubl7MIvas4Wm5+8iZjs7sF86lklOoHYQg/eBBm4furUKanX8F3N/bOePrLfQgULKDdHKTULxMZ03gQZSDNAuWKerlyA+xvgUmaxcjcOt+HBCG7/LgwGE+ZJAm4gQEGGG3qJdSQBEnAcgdu37ygLAMsEi+hHlEoZH5pp0qSWIepDLV/evKb6RiXIgGWNndu2me7ByQTltmCMchGCAUmWzJk9VgDOqsXfq+qj/oQSUhiDN0EGfOplV9YnMFB4Xi3Yewt9e/fSysLH5tx58zXBh92EGMQNI0aN9lmQ0a9/f5k9d56cPXXSW9GyecsWeb9FSymQP79S+T9hmy6p4tBH1RGhQqW3lGWMZGrheIptWli3uHTpskeQ4W+b/GWmVwKCjC1qYf/QoS80wQ4GZe2VRRP4zowqeBNk6GxWKPN6EP1Yg261YY7yvZk3bx6PmGDQgP62gzPr/fq5L4KMAvnyy1A10WCdqIHv1FOnTsvmjRu0axArYTLjO2UR41X17MLU5/+pgjAJC4V8B8WkaROzSUN/BBnonxxKZNReuaex5qO3x/g7YOAgzR0OREfWuiPdmLFjNZ+7MBOJiQpdkGFlqAsyhg4eZJps8SbI2K8mGyC2sitz8JChmplTvUzUcfbcufLG668bq246zqf6F6YX9RBoQQaeteYtW2kmFe129gTqWdPr7+RfNw5usStpqBIenfvqK4/5UzvG2IHzgfKdDPGQ3bNpd4+T4jDBlC17DlMb4ad57aqVrmyPk9iyLiRAAu4kwMVid/abv7V247eJ3kbsKi9ZuozmflOPs/vFYlwuJWh3WuA75rQeCV593CzIABUsYvbo0VNWKfeevgSIoOC+1s5lqX6/EwUZ+PZfpFyL1n77HTl1+rReVa+/2bJmlQnKmmVKtdM/soDd+iNGjlKbSGaaxhqR3YP5OmzYiGwcH11BBsqFS1bMt/z0k9n9irVOcC0B1wiw+PBOvfqaC11jGqcIMlCnNWvXSVs1J/SPxcUO5rvmzJqluZzQ6x4KQQbKOnzkiGblFHNZvgZYlME8qrc5TOQDK8NZs2dXVlvueM22YYP60q1LF9P13bv3aFZYTZGWE7jHgVsia/BXkIH70W5sMjt50vu8rbGc5MmTyyjlIhnutCMLcHPSQs0xYY4iqgALNrAmAWuysK6rh8gEGUiDZx51hwWRyALm6icqq7nLli1XrkX6m5JGJshAH2ID1XD1twHCN18CLJr06N7d5w16vuRpTePm70JrW3hOAuFEgIKMcOpttpUESCAgBPCh/r94/5OsWbNo+eHjDFYMuiizc9eU+cL9e3Z7xBNIEB1BBhacc6vF7wrly8mwIUNM9W7fsaNgp7qvggzcDH+YcCkB35FRhfUbNqgB332LC1CpW0Obtu3UAGqtSZABU3Rnvzqn3Fl8GmFBDNYsdu7aHakgQ1eNw+VF2TJlrEVGOO/WvYfs3bcvglk/PWHx19/Q/C/qLkui0yZ/mGGw8L0yUVdUKdv1AHN+GMyD1Rq1UAhBTGTBmyBDZzNK+XnF82ANC5Tv117KzcWhzw6one+JvIoJrPdZzwMpyIDYAJMY69asNvkCxSDv9ZKlbIUU/ggyUPfSylIFLHbAZ6Z1URmTFhAP1KlTW+2ceUp04cIetdslefL/XKjoDGAK9PsfLshSZYUCeQVKkIGJMIhAHntgqUMvD7/NmreQq1evapMmKHO1SttWWdXA34+kSZMak3o91tu1ZuVKgdlSY4D/yu49e9n6yPXGGs9awSJFZaRyx1JBubyxhkA9a9Z8nXjupsEt3qv+AwbKVhthX2RsseABn9KvZMwYWTLHXaMgw75L8DccO/v0AEGl1aWXfs0tv1hUuKG+h4zhcSXa9LYDzZiOx84lgIlM+F83BuxWjWwy25iWxxEJcLE4IpO4GOOmbxMrf193l1KQYSXH81ATcLsgQ+e1bv0GtclmnmaNQI+z/kKkgMXPzJkyWS+Zzp0qyIAYG/Nm4yd8pG1ssHMngW/ht5Xr16ZqTgqCBF8DLCbMVq6KP1XjK2+uFODGAa5MGzV6T5JFMX6PiSADdb58+Yq0V8KZg2rjj52loaxZssj4cWMltXL9gQArHxA97FCC/V9+/VWLc5IgAxXCAvcgNW9kDVjgh8VOuIBBCJUgA2VhnDl9+nRZvmKlNieEOGuAG48C+fNJbeWKolTJktbLtudwb2x0NWJN1F+50YGVGmPABrMiFne7xus4hoteCCOsITqCDOSBZ33W7NmycNFikyDCmD+eI7jp7a3mEazWTIzpjMcY001Q7+kiZeEYbpOsAVaF69etp7lfwdwYBJz+CDKQH+bld6l55/kLFwosv2JuC3mlSZ1aWQt9Xtusps81ww25P4IM5I9w7NhxzS0UNjJ5+7sA19nt1MYxu7nb+7kE7v9u/i4MHAXmRALuI0BBhvv6jDUmARKIZQLllcm1eOojfJWykGEMukk5WAl4wWCJIjqCjC+/PKH8GFYV7NA3ukbA7iIspsKUnD+CjC7KPcIW5ftu3epVpgUaDOaaK8sUOXJk1wapaI++MI/BhXWxG2rpKtVraKrgo8oVA/wFIuhWMxYrU30wMaeHr77+WsALi0SRWchA+hJvlJSUKVMqRfxMk6la1Kdp8+bygVJV64KHZcuXS8fOXWSCGnSWLlVKL077hYUKLHZjsV4XZESnTf4w6z9ggMydv0BzP2EclMDlDNpvN8AyVVqdeBNkIB3YPJn4SU0wYLRagkWN8spaSIIEDwssaEQmJrCWZz3XGfXo1tV2h0zBIkXEVwsZTZq9L2j7ti2bTeKkT5RFE7gOiamFDNS9R69e2iQDfI2mT5/O1Jyq6hmF+dId27ZKArXrBxMYGMw2qFdPunU17zyAD903y5WXt+vUka5dOmv5BEqQsXL1ammjLBG0bNHCVD9Y2qigngsM4nt076Zdu6RU/UWLl4jglgQX9+7dp6zljNXMQT733HOevAItyEDGEMxgUWzJooWmvgvks+ZpgIMP3DK4xWQhTL56mxCICjEmlLCzBX5v3RIoyLDvqazKasgtNdmlBwi7IPDCvwtuDVOnqonaoeaJWuxCq1O7tlubxHorArorNiOMyHxvG9Px2J4ABRn2XOJarFu+TazcsSsW1g192VVKQYaVHs9DTcAJgoxAthnCbZj0v6LGw3D5miRxYnlKfSPmzpVTUquFSjcEX7794VYYbn2/v/C92vRwTduE8axy2YvF/YceeijazYTg4wvlyhc78K9d+1G5Hkig8k4hzz6bVl7Lls00bxXtQvy4EW4bz5w9IydOnNQWnGEVA8KabNmyuvqb3w8EIUuKuU9Yd7imnqff1XMAC72Yr4T4xe2id18g4nsd82JXrlyWmzdvaeKLlClTSH5l1RgWK6ITYIHmwIHPtPf0xx9/0v4epUyVUgqqzYPRzdNbPfRvDrv3P7qCDL2s69evaxZV8HcBf28gKMHY+5WMr0jmzJEL3PQ8AvHr1u/CQLSdeZCAmwlQkOHm3mPdSYAEYoXAosWLpauy0FD5rUrSrGlTSa5U90eOHJXeykrBjZs3tUV540ffSOXeY+LkydK1c2fNrckzyly8viO5bfv2SuUe0WUJhBJ5CxSUJ9XCKBaQ4T4Ag4Fhw0coU3e3BW5LunftqsQI90UMALFnz16p/+67Ulspq4sUKaztyocLEIQrV65InXfqagPG9u3aSia1C+KMWjBftnyF5i5k9MgRAnN7ekAbuylTlzmUab1qVasIBnr4IJ+3YIEavOeSTZs3myxkYKKteo2a2gAFptlyqgE+Bv4TPp6oDVwgMIlKkLFv/37NzQUmB8AVg53PlMuHWXPmKusT52XVyhXynBpUI9y5c0fea9xEjh0/Jq1btlTtLaINQHcrRfQCZRkgodpp+af62NcFGbjH3zb5wwzig+qKe7p06aSHspTy8ssvyzdq0R0q8O1qd8JK5asU/gMjC5EJMvbs3StN32+uPQfNmzWTtGoC4Px352Xs+PFaOVPVDgL0FYI3MUFkZeMaVOu58+bTynhPPUdYwyuquMKMKYI/gowZyjpGf+WCo/F770mVKpXvWytRllcWKKU9Bi8QLLVr+6Hkz5dPyxv/q1m7jlb3nkqggDIx0MWuE2/hypWrUrd+fe2da60EDzly5tCeuVWr18iu3buVCKav1KxR3XP7xxMnKVc7o7SdB1XeeksTuBxTJg3xTiVWE1OzZkzXXKvgBm8M/XVZsnX7dkmldqkUVO9hxYoVNKHDF198oZWJHR/z5s6RVOo518PESZNl5OjRyi1JHc0lCjjsVM/PFLUomUz9nVm+dInyCfvfzh688w0UY7SziPJLmijRY5rbH+QXmYWMyFhD/NHk/fe15+D9Zk3VZNOzcl69f1jswTMdiGdNb6+Tf90wuL2t/g6WV7ttICqKScDzv15Zs3HLxJIvk7Ix4eHWeynIcGvPhV+9KcgIfJ9TkBF4pqHKcfqMGfKaErMbBe3eynbDt4ld3es1aKhZNjRe69Wjh2zYuDHC7n0KMoyUeBwIArBuiuDLO4Z0cU2QgTa5PfDb3+09yPqTgLMIxFSQ4ZTWuPW70Cn8WA8SiC0CFGTEFnmWSwIk4GoCs5VIYMLHH3v84MJSBNT3LVu20BaSjY2DqbV2HTpo5s0QX0ftiodpSARvggxcg4gBviLh+gIBu1wb1KsrLZS1iLpqYguCh6GDB0mVypW161AAt2zVWhMA4PilF1+UjevXadfwP5i8g1uVQ2pBGIIGBCzAwdSc1coErmFhG4u6mMSAhYtMmV6RLp06yQlVr/6DBpkEGUgPf31du3XXxCIwFwfTeb16dJejR4/JFGWOMCpBBvKA8GDo8OFy+vQZjylGiEeGDx0i6ZXYwRggIOjYqbNyh7JT88cIyxGo43C1m3bCRx8pPqdNggzc62+b/GEGQQncBuimCCHKgagAO3nfqlTRWHXb48gEGbgBLlqGDBvmYYP8MymRBywsGCeYvIkJbAu1RGJCH65GsBMEYd/uXZ5FWn8EGXj+YJZz1pw5nn58Nm1aGTN6lBz+4rCMHDNGExtt3/qfixuIfAYOGiw/XLyolT1m1Egp9+ab2rG3/8EMYacuXTW/qvozDZOEHTu0t70XQhFN4PNgARvvbW7lc3PwoIEmM6PeGPoryPhcia3g17OTEmMd+OxzrRnoN+xiGaaeaTCxBkzMz547T75/UEekhz/aAf36ypNPPmlKrr3zylfmdmWKVH/nIULC34rIBBlRsd63b7/2rMEfL8RhwXjWTA1x4IkbBrf4ezND+di1BjzX7yvhVi4lboM4DFYwIKb5Uonqxk2YID9ZXAXgfvwbYLWIZM3XKeeclLXvCQoy7Lkw1nkEKMgIfJ9QkBF4pqHIEd9802bM1Ioaq76Rjd/zduW74dvEWm+ILuDX3RiwqxxWFRsrAf72HTuNl4SCDBMOnsSQAOYxWrf5UMvFl3cMCSnIiCH0INzOb/8gQGWWJBDGBKzfzUDRvUsXadCgvquouPG70FWAWVkSCBIBCjKCBJbZkgAJxH0CWADFzuSbyioGFsaxaBmMcPHiJbWA9pNmVSAQ/rVRb4gVnn76vsm9qOoMU/gQO+jtm6EmDu0EGXo+cKeCe5IlS6ZFDVUuKnwVZOh5wDULFhBhSSGqNsNXKAQcz7/wvM9m7vxtkz/M0F9Xr13VrGUE2uwe+MAKyzdffyMvp3tZHlWWQJwcsIP/nLLm8vjjj2viAywMByOgf2ClJIUSAfmyyx/uWWAiMUOG9Ca3HIGsW7v2HQSCjB0PRCcoE25U4EonkQ8mHq9evarVMZ3qZ91/aiDr50te2rOm3kPU+VG1yB9OwemDW/hFhWseiOWMAWIfCJ/gu9QuwGcr3D1tVf6QrWHiRxM08Y813mnnnJS17xEKMuy5MNZ5BCjICHyfWCeWYT2udauWgS+IOQaMgFGMoWca1YKx079N9HbovxBLl1Iu0SBw1wPGlEuV4D9LllelUZMmFGToYPgbcAJGMYaeeVTvGNJRkKHTcs4vv/2d0xesCQk4kQDEn3Dj40u4ffuWrFi1WjAvYgz9+vTWXAob45x+7LbvQqfzZP1IIFQEKMgIFWmWQwIkQAJxhEBUggxrM2EpYer06T5ZyLDeG6pzf9sUqnqxHPcSsAoy3NuS8Ky50we3U6ZOlcHqb6sxwKfx2tWrPa6djNeMx7CAU7JMWY+FJ/1a/bp1NYs7+rlTfzkpa98zFGTYc2Gs8whQkBH4PqEgI/BMg52jnSADZUa2YOz0bxMrszFjx2mWuYzxNatXlwH9+2lRFGQYyfA40ASi846hDhRkBLonYp4fv/1jzpA5kEBcJtBBWXJevmJljJo4e+YMk0vlGGUWopvd9l0YIiwshgQcT4CCDMd3EStIAiRAAqEnADcFEydNsi140ZIlyirILTmwd4/JugA+Bg8ePGi6B65LZs6eIzChD/cUsRmi06bYrC/LdjcBCjLc3X9OH9x2Vq56lixbZoLcvFlTafvhfbPMpgs2JwsXLpJuPXuarhQskF9mKPdScHmjB0yAXr78385WxCd96ilJnDixnkSzFAULMAivZMwojz32mOea9QDWbHbv2SMnT55U+V6RX9XOlCQqr2TJkspr2V6TggULeKwxWe/Vz32ZlP3pp5/km2+/lfPnzwusKKVJnUZeVbtxUffohi8OH5YvlMsv1Puqcpf0VJIkkjp1KrXLN4sUyJ/fxM2XMmCpadv27Zp7oh9+uCi//PqrpEiRXKtr5syZJI9yp+QtXFJ9clv1jTFUqlzF444M8eijhfPmwt+ZMZlmrSh+/PieuED2MfoX1q1Onzmr3HedEbQrVcqU8txzz8rzyuIV2uTNUhJ2UsOKkDEsWbJUPlHiI2PAzv9y5czurGCNCm7SIguw+LN16zb5Vj0XsED0uxImpUj+tGKeQrJnzy65cub0qQ/xXYNnyxgeSfiI9izocb/88ovAXR3Spn3mGa0M/Zqvv3DfdffuXVNyuKLTw+3bd5SLuLPa8w1LYla3bno6/KJf8KydPXtWe36vK0tmKR88a/nVe58hfXpj8oAfw92XMcByltWFQbGiRaSLcu9lDLDM9tyzzxqj5Gflcum369dNcXBVljBhQi0O33pnVf6wXoed+DlU3+rhurrP6rIpuXLdBytekQVYPrtz976rPz3d88895/VZ1tOE8peCjFDSDlxZ/i4YO/3bxEgGLjfLvFnO9HcM79qnmzbKUw/+LaYgw0iMx8Eg4O87hjpQkBGMnohZnr58+8esBN5NAiTgZgIxFWSkVOPVTRvWO94CsbWP3PRdaK07z0kgnAlQkBHOvc+2kwAJkIAXApi8L6V2UNuFJxM/KfXr1pO3KlU0XYaViVlz5pjicJI0aVJp3Og9KVWyZIRroYyITptCWT+WFbcIDBw0WOBWYt6c2T4t8sWt1ru/NU4f3MJdydFjx0ygp34yWYoWKWKK83aCBdE3K1TUFoz1NFjQ3rNzh+l53b5jh/Lx3syUrk3rVtKyRQsZN36CzF+wQK49EGMgn6WLFwncplgDJlLHjx8vS5ctl5/VYrW3gIXlls3fl3cbNvSWRCKblIUQY+jwEbJi5UpTnZEZRAjllOn07t26mgQlXgt6cGHJ0qUyZeo0+errr70mxaJx4/fek1q1anpNo1/AIvucuXNl6rTpJnb6df03Y8YM0rRxY6lQvrwe5fmtW7++7Nt/wHPuz8GGtWvk5Zdf9twSqD6ercSXQ4YPN4lCPIU8OEiXLp10bN9OihcrZr0kn33+udR5p26EeF8i3lT9il3ldgGL6SNGjZRNm7dEWrc0aVJL7Zo1pZHqR91Fm11+eP6yvvbfIj/S5MubV+bMmimfbt0qg4cM1cQY+r2dOrRX30CN9FOffytXqyawJKEHCKXOnT4l31+4IB+2bScnlKgJ3zUIEDNMmTxZT+r5xbM2fsJHsnDxYoFIxFvInSuXtPmgteTNk8dbkhjFp8v4SoT30ZcM8f0I8a8xDB46VHsfjXH4dxZ/d9p16Ci7du2Sm7duaZch0vjy6BFP0mnqnRs4ZIjnHAd9evWUt+vUMcVZT6rVqClHjh41RaNeqJ9TAgUZTukJ/+vhz4Kx079NjK1/v3kL2fypWYzfs3t3qVf3HU8yCjI8KHgQRAL+vGOoBgUZQeyMaGYd2be/UUgezex5GwmQgMsJxESQAWH/+LFjtY0hbsPgpu9Ct7FlfUkgmAQoyAgmXeZNAiRAAiRAAiRAAiTgOgJOH9y+ljOX3Lhxw8QVVoieSZPGFOftBFYjsqhFZX1BV093+ODnpt3i3hbrId7o1qNnhEVWO0HGsePHpW37DvKdshjga6haubL079dXE1FY7/E2KTtfLcpWrlpNW7C23mM8x8LtrBnTI7XkgfRY1O3evYesXrvWeHukx5UqVNBMseu79a2JYTEBi+lr1q2zXvJ6DlFGByViMIZQCDJ87WMs9Hfs3EXwrPgaatWsIf379jUlD4YgA6Zr+/brJ39Y3hVTwZaTLMqSykglLHlBWfSwC94EGd26dpGatWprgiHjfYEUZHyh3s/qShxgFQfZCTIg3GjRqrWcOnXKWB2vx7Bc0qVjR2nQoL7XNNG9EApBxsJFi2Sl8gdtDBRktDTi4LGDCfi6YOz0bxMd8a5du6WhRYgGSzyrViw3WZahIEMnxt9gE/D1HUM9KMgIdm/4nz8Eps2UyEvkX8/Nz6R5Rvr26W0Sknsu8oAESCCsCMCd6569e/1q82OPJdIsDNaoXk1gIcONwS3fhW5kyzqTQDAJUJARTLrMmwRIgARIgARIgARIwHUEnDy4/UO5WsiRO08EMcSJ48ckwcMP+8w6T/4CEXbNr121SjJk+M99gZ0gI7ICrIIMuCqANQ+reCSyPPRrOXPkkI/Gj4uwC91OkJEwYQLNBPqlS2b3Knpe1t9CyjXKJ8otl9F1hzENhBOwDOKPyEC/v3SpUmqXzRjbCeKJkybL8JEj9aQ+/7Zp3VpZJWnuSR9sQYanIJsDax/bWQ+wuS1CFBiVKV3aEx9oQcaq1WuUEKi9J39/DiBGWblsqTyt3FlYg50gw5rGeB4oQYYxT+uxVZAB1xzlKlaSK1euWJNGeW7dwR7lDT4kCLYgw1sVKMigIMPbs+HEeF8WjJ38baIzhdDzzfIVIrh2mjt7VgQrPBRk6NT4GwoCvrxjqAcFGaHoDZZBAiRAAiQQUwJu+C6MaRt5PwnERQIUZMTFXmWbSIAESIAESIAESIAEok3AyYPb33//XXLmyet4QcaNmzelarXqAlGGXUiVKqW8mvlVzXIGdvxDBGENcHU1YdxYk7jBTpBhvA/uJl566UVl4eAFuXr1qpw5e1ZuPXBhYExXv25d6dG9mzHKczxj5kzpP3CQ51w/SJIkibyWLZukTpVKflSuWg4rNwb4tYbBAwdItapVrdGam5izqj7GAKsahQoVkmefTSuHDx+Wbdt3CJ4/Y3js0Udlx7atHlcrHTp2ki9UWmOARQQjQ1g8sLOYMm3qFIGLFT3ERHSzdt16adO2ralc8Efb8+bJLYmfTCwXL12UxUuWRnCxA/c0u5WLnEcfeUSrCiypwHqIMVxXz/pvv/1mjNKENzAtawzFixVVrmj+68tTp09L9Zq1bF2U4F64ToHY4hv1bH6rLLdYLcUgbwiCsIBodV/iBkGGnasAtOnZtGklc+bMkiRxYrnwwwU5eOiQ3L59B5c8IUGCBLJCiVHSGdzaeC5G8+CNUqVNz8jdP/+MIBbBM54sWTJTCYlVPSEAMgY7lyXG68ZjCjIoyDA+D244jmrB2MnfJjpf7FIdPHSYfqr9enMrRUGGCRNPQkAgqncMVaAgIwQdwSJIgARIgARiTMAN34UxbiQzIIE4SICCjDjYqWwSCZAACZAACZAACZBA9Ak4eXDrFEEGLEFUr1ZVXnzxRc+iOhZQ9QXsmbNmSb8BAyN0Au7r0qmjPPPMM55rsKCBtEuXLfPE6Qfz586R3Lly6aeaS4hs2XOYFnj1i7ly5pRRI0dIKoPZUQgmunTrHsHaRSK1MH9AmTZNkMBsVeTOnbuSXwkkYInEGN6uU1s6tGsnuE8PSPvRxx/JRxMn6VHaLxaWd23fZrLAgYX87MrVzL179zxps2bJIksWLZR48eJ54nDQsVNnWbZihRYH39hI171bV8n+2mumdMaTrIqJUXiSNGlS2b9nt0nMYkyvH0cmyIiqj+0sdfTv00dq1aqpZ6/9erM4grZD4OItTJ06TQYNHWq63Ld3L6lTu7YpznryfouWsnnLFlM0rKG0eL+ZNGva1POMIsHly5ele8+esmPnLlN6nFiteCAuMkFGpkyZpPF770n69Okk6VNPIblyjZNIHnkkoXbsz/8qV6smx49/GeEWCEngxiZH9uwCUROeD4goHn/8cS0thDo1lOsUY8A7CW4QyhiftWvXrkk35ZZnm8XdDCyXoO3BCmgX2mcM3hZsjWlw7E2QAQZ133lbihcrpglP0N9gg/dAD9OmTZeBQ4bop9pvn1495e06dUxx1hM7KzAH9u4x5W29J9TnY8eNl7Hjx3uKLVK4kPpbdf+Z8ETywBUEDh85YlvPsaNHyZ9KzPR23Xqe63nz5NGEY56IWD7Av7clS5cRCDL1gL9/m9avV3+vUulRnl83CzL4jnm60XUHkb1j+M6iIMN1XcoKkwAJkEBYEnDynFVYdggbTQI+EqAgw0dQTEYCJEACJEACJEACJBAeBJw8uHWCIAPChKZNGkf6MJQpV16++uorU5rXS5TQLF7oog3jRSzad+rcxSNE0K/VqllD+qlFfiyuInizkPGSEoasWbXSJILQ84Dgo2SZshGsWcycPk0KFiigJ9N+V69Zq7m6MFqbQL0/njDetJhtvMkooNDjp0yeJMWKFtVPlUWCH6TEGyVNQpKMGTMo1xjLBNYsjAFWRQYNHiJvvF5CSqiyk9u4zjCmx3GgBRm+9DHKPXrsmKxbt07WbdioCXPWrl5lEjwgDcL+/QekboMGpvYP7N9PalSvfj+Bzf+jI8iAVZQixUuYhC/IetSIEVKhfDmbUu5HNXu/uWzZutV0Hc8GnhFj8CbIgNsQuMHRn1PjPdE5thNkwL/xmpUrPJZS7PLt0bOXzF+40HSpW+fO0rBhA1OcfgILGW9VqWKyZPOwcn0EwYEu8tDTBuo30IIMvD/z5szWrJpEVsdwEmSg74zisci48Jp7CLyjhIHDRvzn9sppgoz2HTvKipWrTEDbfdhG3m/WzBSnn7hZkMF3TO/FuPUL4RMsbBnDV2dOG095TAIkQAIkQAKOIODkOStHAGIlSMChBCjIcGjHsFokQAIkQAIkQAIkQAKxQ8DJg9vYFmTA7cGWTRu9ihPQY3BBUlYJMoyiBizyfnHwc0modrJ7C+eUgAO+5/X7sNBaWFmr+GTSRM9CtzdBxphRo6Tcm2W9ZS19+/WXWXPmmK4PGtBfWfkw79Rv9cEHsl6JC4xh7uzZmgsOY5zxGFYJatau46k3rtVUQoP+/fp66g23GOcwDAAAQABJREFUGFleyy5//fWX8VaBy5JqytIIrIDYCVVMiSM5CaQgw5c+tlYFfXb9+nWvYoGLly5JsRKvmxg1bFBfunXpYs3Kcx4dQcbcefOkV5++njxwUKhgAZkxzSysMCVQJ5cuXZZSZcua3JxAXIFn1ugixZsgY+e2bZI6dcQd4NZyfD23E2QMU9YdKr9VKdIscufLL7/++qsnDVzCHNi3L1IrHR9PnCgjRo323IODEcOGSaWKFTxx6N+bNq5/PAksB3jPvT3PgRZkVFOCksGDIlrjsVRJKMiwEuG52whkVlZ4tnz6qafaThJkHPriC+3fQU/l1AH+Ldmwbq3g33+7QEGGHRXGxSaBd9V3yYBBg01VoCDDhIMnJEACJEACDiHg5DkrhyBiNUjAkQQoyHBkt7BSJEACJEACJEACJEACsUXAyYPb2BZkwJ3BuDGjPUIDuz7asXOnNGrS1LT4DjPQixbMj/Q+5NWv/wBJrUybZ82WVV7NnFktJD9iKsKbIOPIoYOR7gi3c6HS7sMP1c7dpqb8q1SrLseOHzfFwWWI0dWD6aI6uffPvQjuJQrkz6esK0w3tbdz126yZOlS6+3aeaLHHpOMGTNKvrx5JH/+/Jp7Em+LWHYZBFKQ4UsfW+uAfoFFlDNnzmi/cOdiDLdu35LlK1Yao6R2zZrSr28fU5zxJDqCjKHDhsvkKVOM2SgLK72ldi3zjldTggcnENVgUdEYYPEjQ/r0nig7QQZc9Rw8sN+TJhAHdoIMa12s5djVDYKM9Ib6W+/BOYQ03373nelS2zYfSPP33/fEXbx4SYoqay2+hokfTVAWXl63TR5oQUavHj00dyW2hRkiKcgwwOCh6whgoRhukZzqsqRi5Spy8uRJE9fJEz+WEsWLm+KMJxRkGGnwOLYJ4B1rqCx50WVJbPcEyycBEiABEvCFgJPnrHypP9OQQLgSoCAjXHue7SYBEiABEiABEiABErAl4OTB7R9//CE5cucxiR3QiBPHj0kCL7tQ7RqZJ38B+eWXX0yX1q5Si88Z/lt83r5jhzRu2sxUVr2670jP7t1N91lPFiiXCT169Tbd966a5O7apbM1qd/ndoKMJEmSyGf79prED9aMl69YIR2VSxTd+gaut2ndSlq2aGFKWqBwYbl27UdTXHRO4EIFO4ONLix+/vlnadGqtRw8dCjKLBMmTKAtaHdVFiRC7bLElz7WGwB3MJ27dpWNmzab2OrXI/sNhiCjTdt2smbtWlOxc2bNVEKXvKY4u5MuSjCz2CKYmTp5shRV7kj0YCd6gGADYolABjtBxqHPDsiTTz7ptRiIKkqWLuP1uj8X6igBS18lZNGDkwUZE8aNldKlSulV9fobToKMIoULSauWLb2y4AVnEjhy5IhMmzEzQuX0hWInf5uky/iK6d8ACBmXLVkcoS3GCDcLMviOGXvSXcfT1Tt2WL1rxqC/Y4ijIMNIhsckQAIkQAJOJeDk70KnMmO9SMAJBCjIcEIvsA4kQAIkQAIkQAIkQAKOIeD0wW32XLkFwgxj2Lpls2Ye3Bjn7fjPP/8UWFSAGw1jOAz3DI8/7omKriBj8iefyNDhIzz54KBPr57ydp06prjonNgJMmABYO2qlSbxgzVvXwUZWbK9Jrfv3LHe7vd50qRJZf+e3RHqdO/ePZn8yRQZM25cBP52haA/uikhS7WqVe0ue+ICaSHDV0HGyZOnBC5ezn//vace/hwEQ5DxXuPGsmPnLlM1Nq5fJxDIRBVGKrcdHyn3HcZgdd3hZEEGLLvAwksgwpvKfcvY0aM8WYWzIMPOas6BvXsE77hTwthx42Xs+PGe6rRWYozWrSjI8ABxwQEWiFu3+TBCTY0LxU7+NrEKMhIot0UQS0YW4F7p7l2zNaWnnnrK5OIkf768AndNsR34jsV2DwSmfLxjkYkxUAoFGYFhzVxIgARIgASCS8DJ34XBbTlzJwF3E6Agw939x9qTAAmQAAmQAAmQAAkEmIDTB7fVa9aKMKE8ZfIkKVa0qE8kzp49K+UqVjLtZk2ZMoXs2r7dJCCIriBj6bJlympCN1P+dWqrHfe9e/tUv8gSBVuQUbR4Cbl46ZKpCi88/7zp3JcTuLGIzEULrBls3rxZtu/YKV8cPhylOKNvr15Sp05tr0WHWpABNxdFFKubN296rVNUF4IhyOjQqVME1yjTlQuTwspiQFShXYcOsnLValOymdOmScGCBTxxThZkXPjhByn++hueuuLgkUcSSsoUKU1xvpwUU1ZBuinLJ3oIZ0FGgcJFlNWcazoK7ZeCDBMOnsSQgC9iDBTh5G8TqyAjhkg8txctUlimKpFnbAcKMmK7B2Jevi9iDJRCQUbMWTMHEiABEiCB4BNw8ndh8FvPEkjAvQQoyHBv37HmJEACJEACJEACJEACQSDg9MFtl27dZfGSJaaWN2nUSDp2aG+K83Yyd+486dW3r+ly4YIFZdrUKQERZOzdu0/qv/uuSZCRKdMrslIJNYwuPEwVeHACiwvx48eX3LlySc6cOSXdyy+b7gm2IKNGrdqaQMJYtx3btkqa1KmNUQE9hrWTQ198IV9+eUJbcMPz988//5jKePrpp2Xvrp0mFsYEoRZkTJw0WYaPHGmsgiRLlkyaNHpPCRgKStpnnhFVWc/1C8qKRvlKb5meiWAIMuysXPTo1k3q16vrqYu3Azs3IVbrGk4WZMDyTeas2UyM0Q/bPt3irck+x6PdW7Z86nP6vHlyS4oUKWzTHz/+pYC1MVgtchivGY8HDx0qU6ZOM0aJry5LZs+ZK3369TPdG5UlCezef1VZzTG6OkIGFGSYMPIkBgR8FWOgCCd/m1CQEYOHgLcGnYCvYgxUhIKMoHcHCyABEiABEggAASd/FwagecyCBOIsAQoy4mzXsmEkQAIkQAIkQAIkQALRIeD0we206dNl4GCzCe+HH35Y1ii3HS++8EKkTf7tt9+kZJmyAlPhxtCgXj3p3u2/HfG4Fl0LGdipX+KNkqZFzP/973+yb/cugTlyb+HHH3+UQkWLCdx66CFdunSaO5J48eJpUcEWZHTq3EWWLl+uF6/9Dh44IFKXIVishUuUsmXKKIsEj5juNZ6A+YHPPpd9+/bJjZs3ZLhaXLYTqMAVSNUaNeSvv/4y3q65QIHowS6EWpDRuk0bWbd+g6kqcK3SsEEDU5x+sklZA2nRqrXpmQiGIAPWWTp1MT/HmTJlkuVLFgueQW/hxImTUqV6ddOz99BDD8nhgwc1KxP6fU4WZKCORUsoCy8XzRZeIMjQBDJ6Iyy/v/zyi7bQW6Z0advn0ZI8xqexJcjYuGmT9gwaG1C+XDkZPdLsXsl4fdnyFdKxc2djlHZMQUYEJIyIBgF/xBjI3snfJhRkROMB4C0hIeCPGAMVoiAjJN3CQkiABEiABGJIwMnfhTFsGm8ngThNgIKMON29bBwJkAAJkAAJkAAJkIC/BJw+uD116rS8VbWqafEYbYQVirGjRsnzXlxsQPDQoVNn2b1nTwQkdi5PoivIQOZ2liYyq4Xx2TNnyBNPPBGhfES0aNVKNm7abLrWvm1bada0iScu2IKMXbt3y7uNGpuEAxCRrF65QlIkT+6ph/FAtxYBKxbNmzWVWjVralY+jGk6Ku7LV6405btqxXLJ9MorxmSe4w4dlesNld4Ytm7ZLM+mTWuM8hxbBRmoMxaN7QQfnpvUQXT7+B0l4Nl/4DNjVrJx3Vp56aWXTHH6SeOmzWSbcoljDLWU6KR/P7OlFuP1qcoSwiAlWjGGPr16ytt16hijTMewNpK/UGG5c+eOKb5Du7bStMl/z5HxItLWfucdgVDAGCCwGTdmtDFKnC7IGD5ipEycPNlUZ1ibmTNrpq0gBWKi9xo3lp27dssr6lls/+GHUlS5KwlmsBNk2LG2q0NMLGScOn1aKigrLcYAIdsG9dzavVc3lDue8hUqyg8XLxpv0Y4pyIiAhBF+EvBXjIHsnfxtMmr0GD8JiKxZu1bOK+tJxlD5rUqSOlVqTxS+ZxAX24EuS2K7B6JXvr9iDJRCQUb0WPMuEiABEiCB0BJw8ndhaEmwNBJwFwEKMtzVX6wtCZAACZAACZAACZBAkAm4YXA7ZOgw+WTq1AgkEiZMII2UuxC4+0ivrEvAKsDX33yj3GF8KR9NnCTXr1+PcE/5cm/KqBEjIizeR3exHgXAYkRHZW3Cauo/a5Ys8kHrVpIje3Z5/PHHtbpgwXPwkCGyYeMmU90SPfaY7Ny+zSTgCLYgA65CihYvIZevXDHV5Zk0aQSuL15/vYQn/u+//5ZFixZLn/79TeIYpF26eJEkTZrUk3bW7NnSt/8AzzkOsmXNKmNGjxKkN4Y7d+4qCxnV5cyZs55osDr02QHRLYV4Ljw4eC1nLrlx44Ypet6c2RpnPRL3Wu+Pbh/bCUbea9hQunTupBen/cLlAxbqpkwzu5nARTyfM6dPkyRJkgisUVjD9OkzZMDgwabokm+8IUOHDJZHEib0xFvvtbNygsSwhtBeCTN03ug/vOu9eveR786f9+SnH0A8lD9fPv1U+3W6IOObb7+VUsoCjjXkyZ1bevXsIRnSp/dc+v3332XY8BEyf+FCTxwOihctKp9MnmSKC+QJrJFUqlLFlGWaNKllwdy5AlGTHvC3yyooiokgA/m+XrJUhAXgl5WICMKgXOpvJgL+Bhw5elQgorJ7LpCGggxQYIgJgegsFLvh28QfJo2USG77jp2mWxbMm+t5F00XYvmEgoxY7oBoFD99xgyZNmOm6c53G9T3aslLT0hBhk6CvyRAAiRAAk4mENe+C53MmnUjgUASoCAjkDSZFwmQAAmQAAmQAAmQgOsJuGFwi4Xuim9V1sQWMQEO0cD6NattXYlEd7Ee9cFid70GDeWzzz+3rR4WW19QO19/+vlngRsVu2C3wB9sQQbq8enWrdKseYsIYhJcg3WPdC+/LH/9/Zd8f/57+c1G4FK7Vk3p16cPknsC3EIULFI0ghuSxxMlkgoVygsWhZ944km5fPmSErOsFCysG0PBAvllhhI1WBeo9TTlK1WS06fP6Ke2v8WLFZPJEz825RHdPl6wYKF079UrQjmpUqWUIspCxYsvvijnlchhx65dyoVGRAsD1hsXL1wg2V97zRQNNyfNW7YyxdmdrFi6VF59NbPn0uXLl5UFmWrys3q27MKTTz4pydXCPxbbrW5h9PRvli0rY5VYxhqcLshAfQcqEcs0JWaxCylTppTnnn1We+ewM91qSQT3wIUHxCvBChCC5MidJ8rsu3bqJO++29CULqaCjDlK9NG7bz9TnvoJ3sXUqVPL9xe+l9u3zRZW9DT6LwUZOgn+xoSAUZThy0KxG75N/OFBQYY/tJg2OgSMogxf3jGUQUFGdEjzHhIgARIggVATiGvfhaHmx/JIILYIUJARW+RZLgmQAAmQAAmQAAmQgCMJuGVwC5PnED3cvn07WhxhWQCLzqVKlrS9P7qL9XpmP/30k1RWC+NWaxP69ch+KyuBwYD+/QQuBYwhFIIMlDdwkFrUVrsr/Q2vvJJRFi9YIAkNFhz0PGA1BNYb/lFuIvwJsHoyXy0kZ3n1Va+39VGLzLNVmshCIAUZsOJRsnRpn/s2dapUUrpUKZk+c6ZtFe0EGVevXpXib5SUP//80/YePdIqyEA8hEB4NyAM8jdkzJBBFimByKOPPBLhVjcIMtDmmrXryNFjxyLUP6qI2srdTr++ZjFRVPdE5/qb5SvI2XPnIr01GIIMFDhg0CCZbtk17a0iJZSICcIdq0CKggxvxBjvLwGIMrK/li3KXfvI1y3fJr4yoCDDV1JMFxMCEGUgNGzQQPuN6n8UZERFiNdJwP0EMLaARTRjsBu7Ga/zmAScRiCufRc6jS/rQwLBIkBBRrDIMl8SIAESIAESIAESIAFXEnDT4Pby5SsySO2IX7dhg1+sCxUsoFxwdJeXXnrR630xFWQgYyyqd1Cm//fu2+e1HOMFuNRo9+GH0rRJY2O05zhUggy4WpmqLFIMHznK50X9GtWqSY/u3eQRm4V8vQGLFi+W7j17RZgE1K9bf8Fj5PBhUVosgCsaLHJfvXbNmoXnPJCCDGSKvoUFi6gW/iH8GTdmtOTNm1dzGfHrr7966qQf2AkycG3S5MkybMRIPZntr50gAwkhWGrXvoOyeHDB9j67SFiG6Nu7l8lNjjGdGwQZqO/NW7eke48esnrNWmP1vR5D+NS5Y0epV/cdr2kCeeHzgwelbv0Gkb5bwRJk4N3u2LmzZokmsjZlypRJFs2fJ60/aCNbt283JaUgw4SDJyEi4KZvE1+QUJDhCyWmCTUBCjJCTZzlkUDoCVRWY7bjx780FQzXkLCix0ACbiEQ174L3cKd9SSBmBKgICOmBHk/CZAACZAACZAACZBAnCLgxsHt/v0HZOjw4XLy1Cmvi5xwEwJXEq1btpSyZUpH2WeBEGSgECyALl22TCBG+OLwEa/lvpo5s7Ru1VJKFC/uNU2oBBl6BY4dPy7Tpk2XTVu2eLXU8EyaNNKu7YdSoXx5/bZIf+EqYubMWbJEMbmlFs7tAkQMFVV+zZo2VX32gl2SCHFwizJ85EjZf+AzuaBECOBuDIEWZCBvuM7p3bevtvBv5/4iWbJkMkbVKW/e+y4qzp49K4uXLJWt27YJOOjBmyAD1zds3KjEMdPlnLKocOPmTf0Wz683QQYS4HmZPn26tvgOSwd2Ae9Fgfz5pHatWl6txej3uUWQodd33fr1MnfefG1nvR5n/c2WNatysdNbIEAIZTh1+rSMUM/GlydOCqzpWEOwBBkoB1ZEZihrLXPmzpMfLC514JYIpu2bNG6sWehp0rQZBRnWzuF5rBBw47dJZKAoyIiMDq/FFgEKMmKLPMslgdARoCAjdKxZUvAIxLXvwuCRYs4k4CwCFGQ4qz9YGxIgARIgARIgARIggVgm4ObBLRYaL/zwg3z77bfafzh/4YUXtP+ef+45iR8/fqzShbWCkydPytUrV+UXZSkhceLE8vTTySRrlqzy7LNpY7VukRUOCxSwuHD58mVlGeKasoKRUJImTSoZM2YUCEmiE/64cUO++uoruXTpsvrvoiZuSJ06jaRJk1peUsIZiBncEu7duydff/ON1rfffXdennj8cU38k18JHRIkSOCIZuC5g+uJa6r/fv/jD+25S5kypXr2sqjjpx1Rx2BVAu/dKSXWgkUdCHeSqPfuKfX85s6VS1KnThWsYh2fL8xVX1Lv9EUlyoAw54Xnn9fea2PFKcgw0uBxbBJw87dJbHILRNljx42XsePHe7KCsBUCUoa4R4CCjLjXp2wRCVgJUJBhJcJzNxLgd6Ebe411JgERCjL4FJAACZAACZAACZAACZCAgQAHtwYYPCQBEiCBMCZAQUYYd77Dms5vk9jrEAoyYo99qEumICPUxFkeCYSeAAUZoWfOEgNPgN+FgWfKHEkgFAQoyAgFZZZBAiRAAiRAAiRAAiTgGgIc3Lqmq1hREiABEggqgRq1aitXS4dNZRzYuyeCJQ1TghCfcLE4xMBjqTh+m8QSeFUs37HYYx/qkinICDVxlkcCoSdAQUbombPEwBPgd2HgmTJHEggFAQoyQkGZZZAACZAACZAACZAACbiGAAe3rukqVpQESIAE/CJw5coVmTtvvk/3XLl6RVauWi1wbWIMhw8dlMcTJTJGxeoxF4tjFX/ICue3SchQRyiI71gEJHE2goKMONu1bBgJeAhQkOFBwQMXE+B3oYs7j1UPawIUZIR197PxJEACJEACJEACJEACVgIc3FqJ8JwESIAE4gaBY8eOS5Xq1aPdmGTJksn+PbujfX8wbuRicTCoOi9PfpvEXp/wHYs99qEumYKMUBNneSQQegIUZISeOUsMPAF+FwaeKXMkgVAQoCAjFJRZBgmQAAmQAAmQAAmQgGsIcHDrmq5iRUmABEjALwIxFWS8U6eO9O7V068yg52Yi8XBJuyM/PltEnv9wHcs9tiHumQKMkJNnOX5Q+DS5cuyadMmuXDhB7l67ZokSZxYUqRILm+88YZkzJDBk9X3Fy7IX3/95Tn/3//+J88/95znXD/4+eef5bfr1/VT7TdN6tSSMGFC7fjevXty7txXcuPmDYkXL57kyJ7dlNZ4cvPWLZX2nJw+fVrOnDkr13+/LmmfSSvPqXIzZEgvmTNlMib3ehxVnf744w9Zu26dfP3NN/Ljjz9J/PgPaeW8li2bFC5cSP7v//7Pa976hagEGTdu3pRvvv5Gvjt/Xn799VdJlSqlpE+f3pahnid/SSDUBPhdGGriLI8EAkOAgozAcGQuJEACJEACJEACJEACcYQAB7dxpCPZDBIgARKwEIiJICOTWkyYO3uWo9yVoHlcLLZ0chw9tX6boJlfnTkdR1vrrGbxHXNWfwSzNhRkBJMu844ugYuXLkm//v1l67btEdyo6Xm+8frrMnrkCE1MUapMWfnm22/1S5JIuVk7fPDzCGKFIUOHySdTp3rS4WDu7NnyWras0r5jR9m5a7fcVOIEhIQJE8jxI0ci5HHr9m0ZMHCgLFq8RP79918trd3/ihUtKh07tJf06dLZXfbEDR46VKZMneY5x8G8ObMlT+7csnzFSunes6fcvXvXdF0/eTZtWmnzwQdSsUJ5Pcr215sgA0KUqdOmyceTJsnt23ci3Jsvb17p2rmT4HuQgQRim4D1uzBvnjzaOCW268XySYAEIidAQUbkfHiVBEiABEiABEiABEggzAhwcBtmHc7mkgAJhA0BLFBgUcPXgJ2WKVOklKxZs0i1qlXloYce8vXWkKXjYnHIUMd6QVwsjp0ueLtuPcG3oR4gzMLCB0PcI8B3LO71qdtbtGfPXmnTrp1mqSGqtuTPl1cmT5wolSpXiZEgY9HixbJy1SpTcXaCjBMnT8qH7drLN8pahS8BljqGDh4slSpW8JrcmyDju+++U2KMXl4FKcYM69d9R7p26SIozy7YCTIOHtgvXbp1l81bttjd4olLkiSJzJ87R15+6SVPHA9IIDYIcM4qNqizTBKIOQEKMmLOkDmQAAmQAAmQAAmQAAnEIQIc3MahzmRTSIAESCCOE6AgI453sKF5FAYYYITw0LpIT0FGCOGHuChrX9MKTYg7gMWZCJz76iupUq26stZw2xQf2cnTTz8tv/32m8lliT8WMrzlbRVkwLXI66VKy40bN7zdYhuf6LHHZPWqlcrNyDO21+0EGalTp5LLl69EaoHDmtkHrVpKq5YtrdHauZ0g48UXXjCJWGxvfBCZMmVKWTR/vqBeDCQQWwQ4ZxVb5FkuCcSMAAUZMePHu0mABEiABEiABEiABOIYAQ5u41iHsjkkQAIkEIcJUJARhzvX0jT2tQVICE6t34Qokov0IQAfS0VQkBFL4FlsBAJ///23VKpSRc6cORvhWvz48eWVjBk19x93/7wrZ8+ek7PnznkVLARDkNGzd2+ZN3+BqW5PPPGENKhXVzKquqGOsJwxfcZMuXL1qild4UIFZbrFVYqewE6QoV/D71NPPSWZM70iz6R5Rn64+IN8eeKkrfUQWMdYOH+ecr+SzXi7dmwnyNATwTIaxCIZ0qeXm7duyekzZ+SXX37RL3t+M2bIIGuUsISBBGKLgPX7hC5LYqsnWC4J+EeAggz/eDE1CZAACZAACZAACZBAHCfAwW0c72A2jwRIgATiEAEu0sehzoyiKda+RnKKA6KAFsPLVqskXPCIIVCH305BhsM7KIyqt3HTJmnZ+oMIIgu4JenXp488//zzJhoHDx2SHr16yblzX5niceKvICNBggRS9+23pXjxYvJs2rSauAJChaRJk2p5X79+Xd4oXcYkhIAAYs3KFZIuXTpT+b///ruUKVdOrl370RP/yCMJ5egXX0i8ePE8cfqBN0EGXMY1adRIWrZoLg8//LCeXP78808ZP+EjmTxlikDEYgylSpaUj8aPM0Zpx94EGbB8MXrkCMmVM6fnHuSPf3snTp7sidMPli5eJNmyZtVP+UsCISXAOauQ4mZhJBAwAhRkBAwlMyIBEiABEiABEiABEogLBDi4jQu9yDaQAAmQQHgQsC7St1YmulsrU90McZOAdcGY/R28frZ+D6IkuisJHm8n5Gx9vyh4ckKvhGcdmjR7X7Zu22ZqPBb/FypXGQ899D9TvH4CVyVlypWXn376SY/Sfv0RZEBYgb9zRlGCKbMHJ3/99Zfs3rNH1q1fL1s+3Spvlikj/fv1FQg3rGHM2LEyTokmjOHTzZvkuWefNUZpx94EGT26dZP6yvqGtzBDWeLoP2iQ6TKsdOzbvUsSJ05sircTZEDwsWnDek2AYkr84ORdJQbZuWu36VLzZs2k7YdtTHE8IYFQEbB+o1AwGiryLIcEYkaAgoyY8ePdJEACJEACJEACJEACcYwAB7dxrEPZHBIgARKIwwQoyIjDnWvTNGt/IwkXjW1ABSCK1jECANFlWVCQ4bIOi8PVfTVrNrlz966phevXrI5ggcKUQJ2sXLVK2nfsZLKs4Y8go5pykzJo4ABbYYW1LP0cViT+VAKNRI89pkeZfpevWCEdO3cx1WniRxPkjddfN6XDiZ0g49VXM8uyxYttLWroGfzzzz/yVtVqcvLkST1K+x07epS8WbasKc5OkPF27drSp3cvUzrjyYaNGzWLJca4ym9VkmFDhhijeEwCISPAOauQoWZBJBBQAhRkBBQnMyMBEiABEiABEiABEnA7AQ5u3d6DrD8JkAAJhA8B6wI9LSbE/b63LhqzzwPf59b3CiXQOkbgOTstR+u7RbGT03ooPOoDSxe58+U3CRhSpUopO5XFDDsLFEYqsI6Rv1Bh073+CDJ69egudd95x5hllMe//vqrnDl7Vs6eOSvfnT8v9+7dM93z7Xffyd59+0xxo0aMkArly5nicGInyGjZvLm0+aB1hLTWiJGjRstHEyeaort17iwNGzYwxdkJMj6ZNFGKFytmSmc8OXX6tFSo9JYxSgoVLCAzpk0zxfGEBEJFgHNWoSLNckggsAQoyAgsT+ZGAiRAAiRAAiRAAiTgcgIc3Lq8A1l9EiABEggjAtaFYy7Ox/3Ot/Y5Wsx+D1y/2/GlKfDA8XVyThRkOLl3wqduZ5SwoXylSiZRReGCBWXa1ClRCjJAKWeevHL9+nUPMH8EGeOVe5EypUt57o3s4Kuvv5Y2H7aV02fORJbM9po/goyRw4dLxQrlbfMxRq5YCesgHY1R8q4SY3RVogxjsBNkrFPWR9KnS2dMZjq+ePGSFC1RwhSXL29emTNrpimOJyQQKgKcswoVaZZDAoElQEFGYHkyNxIgARIgARIgARIgAZcT4ODW5R3I6pMACZBAGBGwLh5zYT48Ot/qTgOtZt/HvO+t75OeI61j6CTi9i8FGXG7f93SumPHj0vV6jVMgowypUvLuDGjfRJkFC1eQi5euuRpbjAEGavXrJFuPXrKrVu3POX4c+CPIGP2zBmSP1++KLOHFY56DRqa0tWoVk0GDuhvirMTZBw8sF8SJ05sSmc8oSDDSIPHTiDAOSsn9ALrQAL+E6Agw39mvIMESIAESIAESIAESCAOE+DgNg53LptGAiRAAnGMgHUBmYvycayDI2kORRmRwInGJeu7pGfxQauW0qplS/2Uv3GYAAUZcbhzXdS0y5evSJHixU2CjPTp08vaVSujFGTcvnNHsmXPIf/884+nxYEWZOzes0cavtfIVD9PYT4e+CPIGDJooFStUiXKnJcsXSqdu3YzpWvSqJF07NDeFGcnyDj02QF58sknTemMJxRkGGnw2AkEOGflhF5gHUjAfwIUZPjPjHeQAAmQAAmQAAmQAAnEYQIc3MbhzmXTSIAESCCOEbAuIlOQEcc6OIrm2IkycAufgyjAGS7jHUIYO/7+r+GSUIxhpBH3jynIiPt97IYW/v3335I5aza5d++ep7rx48eXLz7/TB555BFPnN3BkaNHpXrNWiaxRKAFGRBj7Nq921R8lldflbfr1JGCBfIrYYOyNPF//11evmy59Orb978IdeSPIKNp48bSoX070/12J0OHDZfJU6aYLvXo1k3q16triqMgw4SDJy4lwDkrl3Ycqx32BCjICPtHgABIgARIgARIgARIgASMBDi4NdLgMQmQAAmQgJMJUJDh5N4JTd28iTJQOoQZefPmkbx58oSmMi4pBd96Bw58ZivC0JtAMYZOInx+KcgIn752ekvLlq8g586dM1WzYf360q1rF1Oc8eTff/8V/Hvw2eefG6Ml0IKMvAUKys8//2wqY+XyZZI5UyZTnH7Sf8BAmTFrln6q/fojyHg2bVpZt2a1JEyY0JSH8eTu3btStlx5+f7CBWO0TPxogrzx+uumOAoyTDh44lICnLNyacex2mFPgIKMsH8ECIAESIAESIAESIAESMBIgINbIw0ekwAJkAAJOJkABRlO7p3Q1S0yUYZeC4oy7pPAd15UgWKMqAjFzesUZMTNfnVjqyZ/8okMHT7CVPV48eJJf2Vpokb1aqZ4nPz5558yfMRImTZjRoRrgRRkwBXKK69mMVnvSJYsmezbvcvWncrvv/8u5SpUlMtXrpjqNXL4cKlYobwpDieDhw6VKVOnRYhv/N570qljhwjxesQwxWqSYmYMjz36qOzbu0cetVgVoSDDSInHbiXAOSu39hzrHe4EKMgI9yeA7ScBEiABEiABEiABEjAR4ODWhIMnJEACJEACDiZAQYaDOyfEVfNFlBHiKrmuOAgxEFopyyIM4UeAgozw63OntvjHH3+UEm+UlNt37kSoIsR15d4sK+nSpZO7d+7K2XNnZcHCRfLNt99GSIuIQAoykF/hosUiCCwmffyRvF6iBC57AtrQoVNn2b1njydOP6j8ViXp3auXJHj4YXnooYf0aK+CDCQoU7q09OjWVVKkSOFJjzL69h8g6zds8MTpB1UqvyVDBw/WTz2/FGR4UPDAxQQ4Z+XizmPVw5oABRlh3f1sPAmQAAmQAAmQAAmQgJUAB7dWIjwnARIgARJwKgEKMpzaM7FXL+szEXs1cU/JEGLkUYuctCLinj4LRk0pyAgGVeYZXQILlciiW8+e0b3dc1+gBRltPmwra9at8+SvH2TIkF6KFi4iTzzxuHz9zTeyafMWuXnzpn7Z9jd+/Phy6svjnmveLGR4EqiDVKlSCdyYXPjhgly6dNl4yXMMqxirVq6Q5597zhOnH1CQoZPgr5sJcM7Kzb3HuoczAQoywrn32XYSIAESIAESIAESIIEIBDi4jYCEESRAAiRAAg4lYF18b6129rd+sMvfoVVmtUJEAN8zeD4QcMxgJgDxRb68eWgNw4wlrM8oyAjr7ndk47v16CELFy32qW6wNAELEnB1YhRCBFqQcfLkKalavbr89fffPtWrYIH88nD8h2Xbjh0R0vsiyID44tLly/K3j+WhkMEDB0i1qlUjlIcICjJssTDSZQQ4Z+WyDmN1SeABAQoy+CiQAAmQAAmQAAmQAAmQgIEAB7cGGDwkARIgARJwNAEKMhzdPY6qHEUZ/3UHLWH8x4JH/xGgIOM/FjxyDoE5c+bKAOV646+//vJaqccefVT69+srFcqXl1x588lvv/3mSRtoQQYy/vzgQWn1wQfy008/e8qxO0iSJIksW7JYLitBBdxq/fvvv6ZkvggyJowbK7du3VbuTzqZ7rU7gSilZ/duUqd2bbvLWhwFGV7R8IKLCHDOykWdxaqSgIEABRkGGDwkARIgARIgARIgARIgAQ5u+QyQAAmQAAm4hQAFGW7pKdaTBEjA6QQoyHB6D4Vv/X788UdZvGSprFu/Xrnq+EGzgPHEE09oLjmyZcsq7zdrJsmffloDFApBBgq6fPmKtO/YQQ4e+kLu3bsXoXOyZski45WYIrVyMYKwY8dO5epkrWxXv7/++qsW56sgo3SpUrJr126BS5MzZ89q9xr/93//939StEhhzeJRtqxZjZciHFOQEQEJI1xIgHNWLuw0VpkEFAEKMvgYkAAJkAAJkAAJkAAJkICBAAe3Bhg8JAESIAEScDQBCjIc3T2sHAmQgIsIUJDhos4K86reun1bHn3kEVsKvgoybG+ORuSdO3eVSOKMnDhxUq5duyawigFRBIQiEEr4EyC4mDJ1mukWWMiAIAPhn3/+kVOnTsv578/L999/r+WfJk0aVVY2SfvMM6b7eEICcZkA56zicu+ybXGZAAUZcbl32TYSIAESIAESIAESIAG/CXBw6zcy3kACJEACJBBLBCjIiCXwLJYESCDOEaAgI851aVg2KNSCjEBCjkqQEciymBcJuJkA56zc3HusezgToCAjnHufbScBEiABEiABEiABEohAgIPbCEgYQQIkQAIk4FACFGQ4tGNYLRIgAdcRoCDDdV3GClsI3L17V3LmziN31K8eEiVKJIcPfu63tQr9/lD+UpARStosy80EOGfl5t5j3cOZAAUZ4dz7bDsJkAAJkAAJkAAJkEAEAhzcRkDCCBIgARIgAYcSoCDDoR3DapEACbiOAAUZruuyOF/h33//XbnwmCr//utbU48dPy579u41JU6WLJns272LggwTFZ6QgLsJcM7K3f3H2ocvAQoywrfv2XISIAESIAESIAESIAEbAhzc2kBhFAmQAAmQgCMJUJDhyG5hpUiABFxIgIIMF3ZaHK/y9xcuyOslSylBho+KDBseuXPlknlzZlOQYcOGUSTgVgKcs3Jrz7He4U6AgoxwfwLYfhIgARIgARIgARIgARMBDm5NOHhCAiRAAiTgYAIUZDi4c1g1EiABVxGgIMNV3RUWlQ2EIKN71y7SoH59V/CiyxJXdBMr6QACnLNyQCewCiQQDQIUZEQDGm8hARIgARIgARIgARKIuwQ4uI27fcuWkQAJkEBcI0BBRlzrUbaHBEggtghQkBFb5FmuNwIxFWQUK1pUJn78kTz0v/95K8JR8RRkOKo7WBkHE+CclYM7h1UjgUgIUJARCRxeIgESIAESIAESIAESCD8CHNyGX5+zxSRAAiTgVgIUZLi151hvEiABpxGgIMNpPcL6/Pjjj9KxcxcFwneXJfHixZNn0jwjefPmkTfLlnUVxIWLFsmGjRtNdW7ZooXkzJHDFMcTEgh3ApyzCvcngO13KwEKMtzac6w3CZAACZAACZAACZBAUAhwcBsUrMyUBEiABEggCAQoyAgCVGZJAiQQlgQoyAjLbmejSYAESMB1BDhn5bouY4VJQCNAQQYfBBIgARIgARIgARIgARIwEODg1gCDhyRAAiRAAo4mQEGGo7uHlSMBEnARAQoyXNRZrCoJkAAJhDEBzlmFceez6a4mQEGGq7uPlScBEiABEiABEiABEgg0AQ5uA02U+ZEACZAACQSLAAUZwSLLfEmABMKNAAUZ4dbjbC8JkAAJuJMA56zc2W+sNQlQkMFngARIgARIgARIgARIgAQMBDi4NcDgIQmQAAmQgKMJUJDh6O5h5UiABFxEgIIMF3UWq0oCJEACYUyAc1Zh3PlsuqsJUJDh6u5j5UmABEiABEiABEiABAJNgIPbQBNlfiRAAiRAAsEiQEFGsMgyXxIggXAjQEFGuPU420sCJEAC7iTAOSt39htrTQIUZPAZIAESIAESIAESIAESIAEDAQ5uDTB4SAIkQAIk4GgCFGQ4untYORIgARcRoCDDRZ3FqpIACZBAGBPgnFUYdz6b7moCFGS4uvtYeRIgARIgARIgARIggUAT4OA20ESZHwmQAAmQQLAIUJARLLLMlwRIINwIUJARbj3O9pIACZCAOwlwzsqd/cZakwAFGXwGSIAESIAESIAESIAESMBAgINbAwwekgAJkAAJOJoABRmO7h5WjgRIwEUEKMhwUWexqiRAAiQQxgQ4ZxXGnc+mu5oABRmu7j5WngRIgARIgARIgARIINAEOLgNNFHmRwIkQAIkECwCFGQEiyzzJQESCDcCFGSEW4+zvSRAAiTgTgKcs3Jnv7HWJEBBBp8BEiABEiABEiABEiABEjAQ4ODWAIOHJEACJEACjiZAQYaju4eVIwEScBEBCjJc1FmsKgmQAAmEMQHOWYVx57PpriZAQYaru4+VJwESIAESIAESIAESCDQBDm4DTZT5kQAJkAAJBIsABRnBIst8SYAEwo0ABRnh1uNsLwmQAAm4kwDnrNzZb6w1CVCQwWeABEiABEiABEiABEiABAwEOLg1wOAhCZAACZCAowlQkOHo7mHlSIAEXESAggwXdRarSgIkQAJhTIBzVmHc+Wy6qwlQkOHq7mPlSYAESIAESIAESIAEAk2Ag9tAE2V+JEACJEACwSJAQUawyDJfEiCBcCNAQUa49TjbSwIkQALuJMA5K3f2G2tNAhRk8BkgARIgARIgARIgARIgAQMBDm4NMHhIAiRAAiTgaAIUZDi6e1g5EiABFxGgIMNFncWqkgAJkEAYE+CcVRh3PpvuagIUZLi6+1h5EiABEiABEiABEiCBQBPg4DbQRJkfCZAACZBAsAhQkBEsssyXBEgg3AhQkBFuPc72kgAJkIA7CXDOyp39xlqTAAUZfAZIgARIgARIgARIgARIwECAg1sDDB6SAAmQAAk4mgAFGY7uHlaOBEjARQQoyHBRZ7GqJEACJBDGBDhnFcadz6a7mgAFGa7uPlaeBEiABEiABEiABEgg0AQ4uA00UeZHAiRAAiQQLAIUZASLLPMlARIINwIUZIRbj7O9JEACJOBOApyzcme/sdYkQEEGnwESIAESIAESIAESIAESMBDg4NYAg4ckQAIkQAKOJkBBhqO7h5UjARJwEQEKMlzUWawqCZAACYQxAc5ZhXHns+muJkBBhqu7j5UnARIgARIgARIgARIINAEObgNNlPmRAAmQAAkEiwAFGcEiy3xJgATCjQAFGeHW42wvCZAACbiTAOes3NlvrDUJUJDBZ4AESIAESIAESIAESIAEDAQ4uDXA4CEJkAAJkICjCVCQ4ejuYeVIgARcRICCDBd1FqtKAiRAAmFMgHNWYdz5bLqrCVCQ4eruY+VJgARIgARIgARIgAQCTYCD20ATZX4kQAIkQALBIkBBRrDIMl8SIIFwI0BBRrj1ONtLAiRAAu4kwDkrd/Yba00CFGTwGSABEiABEiABEiABEiABAwEObg0weEgCJEACJOBoAhRkOLp7WDkSIAEXEaAgw0WdxaqSAAmQQBgT4JxVGHc+m+5qAhRkuLr7WHkSIAESIAESIAESIIFAE+DgNtBEmR8JkAAJkECwCFCQESyyzJcESCDcCFCQEW49zvaSAAmQgDsJcM7Knf3GWpMABRl8BkiABEiABEiABEiABEjAQICDWwMMHpIACZAACTiaAAUZju4eVo4ESMBFBCjIcFFnsaokQAIkEMYEOGcVxp3PpruaAAUZru4+Vp4ESIAESIAESIAESCDQBDi4DTRR5kcCJEACJBAsAhRkBIss8yUBEgg3AhRkhFuPs70kQAIk4E4CnLNyZ7+x1iRAQQafARIgARIgARIgARIgARIwEODg1gCDhyRAAiRAAo4mQEGGo7uHlSMBEnARAQoyXNRZrCoJkAAJhDEBzlmFceez6a4mQEGGq7uPlScBEiABEiABEiABEgg0AQ5uA02U+ZEACZAACQSLAAUZwSLLfEmABMKNAAUZ4dbjbC8JkAAJuJMA56zc2W+sNQlQkMFngARIgARIgARIgARIgAT+n737gJOjrP8H/iBNqnRQERtdmpRL6CIqSFekSEjoiHIJ0nvvHZJTUakJkY70JtKLOUClSJemIAiC0suPv//nGdzN7uZq7vZ2Zvc9vszN7szOPM/7O0uyO597ngoBH24rMKwSIECAQK4FBDJyXR6NI0CgQAICGQUqlqYSIECghQV8Z9XCxdf1QgsIZBS6fBpPgAABAgQIECAw2AI+3A62qOMRIECAQL0EBDLqJeu4BAi0moBARqtVXH8JECBQTAHfWRWzblpNQCDDNUCAAAECBAgQIECgQsCH2woMqwQIECCQawGBjFyXR+MIECiQgEBGgYqlqQQIEGhhAd9ZtXDxdb3QAgIZhS6fxhMgQIAAAQIECAy2gA+3gy3qeAQIECBQLwGBjHrJOi4BAq0mIJDRahXXXwIECBRTwHdWxaybVhMQyHANECBAgAABAgQIEKgQ8OG2AsMqAQIECORaQCAj1+XROAIECiQgkFGgYmkqAQIEWljAd1YtXHxdL7SAQEahy6fxBAgQIECAAAECgy3gw+1gizoeAQIECNRLQCCjXrKOS4BAqwkIZLRaxfWXAAECxRTwnVUx66bVBAQyXAMECBAgQIAAAQIEKgR8uK3AsEqAAAECuRYQyMh1eTSOAIECCQhkFKhYmkqAAIEWFvCdVQsXX9cLLSCQUejyaTwBAgQIECBAgMBgC/hwO9iijkeAAAEC9RIQyKiXrOMSINBqAgIZrVZx/SVAgEAxBXxnVcy6aTUBgQzXAAECBAgQIECAAIEKAR9uKzCsEiBAgECuBQQycl0ejSNAoEACAhkFKpamEiBAoIUFfGfVwsXX9UILCGQUunwaT4AAAQIECBAgMNgCPtwOtqjjESBAgEC9BAQy6iXruAQItJqAQEarVVx/CRAgUEwB31kVs25aTUAgwzVAgAABAgQIECBAoELAh9sKDKsECBAgkGsBgYxcl0fjCBAokIBARoGKpakECBBoYQHfWbVw8XW90AICGYUun8YTIECAAAECBAgMtoAPt4Mt6ngECBAgUC8BgYx6yTouAQKtJiCQ0WoV118CBAgUU8B3VsWsm1YTEMhwDRAgQIAAAQIECBCoEPDhtgLDKgECBAjkWkAgI9fl0TgCBAokIJBRoGJpKgECBFpYwHdWLVx8XS+0gEBGocun8QQIECBAgAABAoMt4MPtYIs6HgECBAjUS0Ago16yjkuAQKsJCGS0WsX1lwABAsUU8J1VMeum1QQEMlwDBAgQIECAAAECBCoEfLitwLBKgAABArkWEMjIdXk0jgCBAgkIZBSoWJpKgACBFhbwnVULF1/XCy0gkFHo8mk8AQIECBAgQIDAYAv4cDvYoo5HgAABAvUSEMiol6zjEiDQagICGa1Wcf0lQIBAMQV8Z1XMumk1AYEM1wABAgQIECBAgACBCgEfbiswrBIgQIBArgUEMnJdHo0jQKBAAgIZBSqWphIgQKCFBXxn1cLF1/VCCwhkFLp8Gk+AAAECBAgQIDDYAj7cDrao4xEgQIBAvQQEMuol67gECLSagEBGq1VcfwkQIFBMAd9ZFbNuWk1AIMM1QIAAAQIECBAgQKBCwIfbCgyrBAgQIJBrAYGMXJdH4wgQKJCAQEaBiqWpBAgQaGEB31m1cPF1vdACAhmFLp/GEyBAgAABAgQIDLaAD7eDLep4BAgQIFAvAYGMesk6LgECrSYgkNFqFddfAgQIFFPAd1bFrJtWExDIcA0QIECAAAECBAgQqBDw4bYCwyoBAgQI5FpAICPX5dE4AgQKJCCQUaBiaSoBAgRaWMB3Vi1cfF0vtIBARqHLp/EECBAgQIAAAQKDLeDD7WCLOh4BAgQI1EtAIKNeso5LgECrCQhktFrF9ZcAAQLFFPCdVTHrptUEBDJcAwQIECBAgAABAgQqBHy4rcCwSoAAAQK5FhDIyHV5NI4AgQIJCGQUqFiaSoAAgRYW8J1VCxdf1wstIJBR6PJpPAECBAgQIECAwGAL+HA72KKOR4AAAQL1EhDIqJes4xIg0GoCAhmtVnH9JUCAQDEFfGdVzLppNQGBDNcAAQIECBAgQIAAgQoBH24rMKwSIECAQK4FBDJyXR6NI0CgQAICGQUqlqYSIECghQV8Z9XCxdf1QgsIZBS6fBpPgAABAgQIECAw2AI+3A62qOMRIECAQL0EBDLqJeu4BAi0moBARqtVXH8JECBQTAHfWRWzblpNQCDDNUCAAAECBAgQIECgQsCH2woMqwQIECCQawGBjFyXR+MIECiQgEBGgYqlqQQIEGhhAd9ZtXDxdb3QAgIZhS6fxhMgQIAAAQIECAy2gA+3gy3qeAQIECBQLwGBjHrJOi4BAq0mIJDRahXXXwIECBRTwHdWxaybVhMQyHANECBAgAABAgQIEKgQ8OG2AsMqAQIECORaQCAj1+XROAIECiQgkFGgYmkqAQIEWljAd1YtXHxdL7SAQEahy6fxBAgQIECAAAECgy3gw+1gizoeAQIECNRLQCCjXrKOS4BAqwkIZLRaxfWXAAECxRTwnVUx66bVBAQyXAMECBAgQIAAAQIEKgR8uK3AsEqAAAECuRYQyMh1eTSOAIECCQhkFKhYmkqAAIEWFvCdVQsXX9cLLSCQUejyaTwBAgQIECBAgMBgC/hwO9iijkeAAAEC9RIQyKiXrOMSINBqAgIZrVZx/SVAgEAxBXxnVcy6aTUBgQzXAAECBAgQIECAAIEKAR9uKzCsEiBAgECuBQQycl0ejSNAoEACAhkFKpamEiBAoIUFfGfVwsXX9UILCGQUunwaT4AAAQIECBAgMNgCPtwOtqjjESBAgEC9BAQy6iXruAQItJqAQEarVVx/CRAgUEwB31kVs25aTUAgwzVAgAABAgQIECBAoELAh9sKDKsECBAgkGsBgYxcl0fjCBAokIBARoGKpakECBBoYQHfWbVw8XW90AICGYUun8YTIECAAAECBAgMtoAPt4Mt6ngECBAgUC8BgYx6yTouAQKtJiCQ0WoV118CBAgUU8B3VsWsm1YTEMhwDRAgQIAAAQIECBCoEPDhtgLDKgECBAjkWkAgI9fl0TgCBAokIJBRoGJpKgECBFpYwHdWLVx8XS+0gEBGocun8QQIECBAgAABAoMt4MPtYIs6HgECBAjUS2DEyFEh/b1VWsa0t4cxo9tLD/0kQIAAgT4KCGT0EcpuBAgQINBQAd9ZNZTfyQlMtYBAxlTTeSEBAgQIECBAgEAzCvhw24xV1ScCBAg0p0BtIGPihPFhWFtbc3ZWrwgQIFBHAYGMOuI6NAECBAgMmkDtCHnp3/7pM4CFAIF8Cwhk5Ls+WkeAAAECBAgQINAAAV/INgDdKQkQIECg3wICGf0m8wICBAh0KVD7738Bty6ZPEmAAAECDRao/fe/EfIaXBCnJ9BHAYGMPkLZjQABAgQIECBAoHUEfCHbOrXWUwIECBRZoPbvq6efeLzI3dF2AgQINEyg9jeO3eBqWCmcmAABAgR6EKgNZAgQ9oBlE4EcCQhk5KgYmkKAAAECBAgQIJAPgdoPuL6QzUddtIIAAQIEJguYYmuyhTUCBAgMVEAgY6CCXk+AAAECQyEgkD0Uys5BYPAFBDIG39QRCRAgQIAAAQIECi5Q+4Vs6o7fOi54UTWfAAECTSZQGx40f3STFVh3CBAYUoHakFs6uX//D2kJnIwAAQIEehGo/a7Kv/97AbOZQI4EBDJyVAxNIUCAAAECBAgQyI9A7W8dGCUjP7XREgIECLS6QFc3Dg1X3OpXhf4TIDBQgdobXf79P1BRrydAgACBwRSo/Z5qt9HtYXR7+2CewrEIEKiTgEBGnWAdlgABAgQIECBAoNgCtV/Ipt74Lbli11TrCRAg0CwCRsdolkrqBwECeRLw7/88VUNbCBAgQKBSwN9RlRrWCRRPQCCjeDXTYgIECBAgQIAAgSESqP3tA78lN0TwTkOAAAEC3Qp09WWs0TG65bKBAAEC/RKo/fe/4eD7xWdnAgQIEKiDQFej4xkdow7QDkmgjgICGXXEdWgCBAgQIECAAIFiC3R100soo9g11XoCBAgUWaCrv5fcLCxyRbWdAIG8CfjvbN4qoj0ECBBobYGuwhhJxAiurX1d6H3xBAQyilczLSZAgAABAgQIEBhCgdrfkkunFsoYwgI4FQECBAhkAl3dJAs1L30AAEAASURBVEwbjI7hAiFAgMDgCtROC5WOLvw2uMaORoAAAQK9C3QXxjA6Ru929iCQNwGBjLxVRHsIECBAgAABAgRyJdDdB2ChjFyVSWMIECDQ1ALCGE1dXp0jQCCHAkIZOSyKJhEgQKCFBLr7LkoYo4UuAl1tKgGBjKYqp84QIECAAAECBAjUQ6C7D8LpN+XGjG7PfmOuHud1TAIECBBobYEUxEh/B6X/1y5GxqgV8ZgAAQKDK9BVKCOdQTB7cJ0djQABAgQmC6R//6dlbMcnPydvCUEYo1LDOoFiCQhkFKteWkuAAAECBAgQINAgge5CGak5pWBGab1BTXRaAgQIEGgCgSyAMamzyy9hS90TxihJ+EmAAIH6CnQXykhnLX0GSD8tBAgQIEBgIAI9BTHScYUxBqLrtQQaLyCQ0fgaaAEBAgQIECBAgEBBBHoKZVR2wZeylRrWCRAgQKCvAl2NhFH7WmGMWhGPCRAgUF+BnkIZpTP7939Jwk8CBAgQ6I9AX/79L4zRH1H7EsingEBGPuuiVQQIECBAgAABAjkVSB+WS0PI57SJmkWAAAECTSiQvohti7+F7aZfExZXlwgQyL1A+vd/V8PH577hGkiAAAEChRVI/+4fPqwtjG5vL2wfNJwAgU8EBDJcCQQIECBAgAABAgSmQkAwYyrQvIQAAQIE+i3gN+L6TeYFBAgQqJuAYEbdaB2YAAECBP4nkP79nxZBjP+B+EGgCQQEMpqgiLpAgAABAgQIECDQOIHS8JJGzWhcDZyZAAECzSbgt+GaraL6Q4BAswmUwtmpX6XPA83WR/0hQIAAgaETKP37P51REGPo3J2JwFAJCGQMlbTzECBAgAABAgQItISAL2Rbosw6ORUCY366e9Wrxp52atVjDwgQ+ETAlCSuBAIECBRPwGeA4tVMiwkQIJAXAf/+z0sltINA/QQEMupn68gECBAgQIAAAQIECBAg8D+B1b+xVpXFnbfdWvXYAwIECBAgQIAAAQIECBAgQIAAAQLNJiCQ0WwV1R8CBAgQIECAAAECBAjkUEAgI4dF0SQCBAgQIECAAAECBAgQIECAAIG6Cghk1JXXwQkQIECAAAECBAgQIEAgCQhkuA4IECBAgAABAgQIECBAgAABAgRaTUAgo9Uqrr8ECBAgQIAAAQIECBBogIBARgPQnZIAAQIECBAgQIAAAQIECBAgQKChAgIZDeV3cgIECBAgQIAAAQIECLSGgEBGa9RZLwkQIECAAAECBAgQIECAAAECBCYLCGRMtrBGgAABAgQIECBAgAABAnUSEMioE6zDEiBAgAABAgQIECBAgAABAgQI5FZAICO3pdEwAgQIECBAgAABAgQINI+AQEbz1FJPCBAgQIAAAQIECBAgQIAAAQIE+iYgkNE3J3sRIECAAAECBAgQIECAwAAEBDIGgOelBAgQIECAAAECBAgQIECAAAEChRQQyChk2TSaAAECBAgQIECAAAECxRIQyChWvbSWAAECBAgQIECAAAECBAgQIEBg4AICGQM3dAQCBAgQIECAAAECBAgQ6EVAIKMXIJsJECBAgAABAgQIECBAgAABAgSaTkAgo+lKqkMECBAgQIAAAQIECBDIn4BARv5qokUECBAgQIAAAQIECBAgQIAAAQL1FRDIqK+voxMgQIAAAQIECBAgQIBAFBDIcBkQIECAAAECBAgQIECAAAECBAi0moBARqtVXH8JECBAgAABAgQIECDQAAGBjAagOyUBAgQIECBAgAABAgQIECBAgEBDBQQyGsrv5AQIECBAgAABAgQIEGgNAYGM1qizXhIgQIAAAQIECBAgQIAAAQIECEwWEMiYbGGNAAECBAgQIECAAAECBOokIJBRJ1iHJUCAAAECBAgQIECAAAECBAgQyK2AQEZuS6NhBAgQIECAAAECBAgQaB4BgYzmqaWeECBAgAABAgQIECBAgAABAgQI9E1AIKNvTvYiQIAAAQIECBAgQIAAgQEICGQMAM9LCRAgQIAAAQIECBAgQIAAAQIECikgkFHIsmk0AQIECBAgQIAAAQIEiiUgkFGsemktAQIECBAgQIAAAQIECBAgQIDAwAUEMgZu6AgECBAgQIAAAQIECBAg0IuAQEYvQDYTIECAAAECBAgQIECAAAECBAg0nYBARtOVVIcIECBAgAABAgQIECCQPwGBjPzVRIsIECBAgAABAgQIECBAgAABAgTqKyCQUV9fRydAgAABAgQIECBAgACBKCCQ4TIgQIAAAQIECBAgQIAAAQIECBBoNQGBjFaruP4SIECAAAECBAgQIECgAQICGQ1Ad0oCBAgQIECAAAECBAgQIECAAIGGCghkNJTfyQkQIECAAAECBAgQINAaAgIZrVFnvSRAgAABAgQIECBAgAABAgQIEJgsIJAx2cIaAQIECBAgQIAAAQIECNRJQCCjTrAOS4AAAQIECBAgQIAAAQIECBAgkFsBgYzclkbDCBAgQIAAAQIECBAg0DwCAhnNU0s9IUCAAAECBAgQIECAAAECBAgQ6JuAQEbfnOxFgAABAgQIECBAgAABAgMQEMgYAJ6XEiBAgAABAgQIECBAgAABAgQIFFJAIKOQZdNoAgQIECBAgAABAgQIFEtAIKNY9dJaAgQIECBAgAABAgQIECBAgACBgQsIZAzc0BEIECBAgAABAgQIECBAoBcBgYxegGwmQIAAAQIECBAgQIAAAQIECBBoOgGBjKYrqQ4RIECAAAECBAgQIEAgfwICGfmriRYRIECAAAECBAgQIECAAAECBAjUV0Ago76+jk6AAAECBAgQIECAAAECUUAgw2VAgAABAgQIECBAgAABAgQIECDQagICGa1Wcf0lQIAAAQIECBAgQIBAAwQEMhqA7pQECBAgQIAAAQIECBAgQIAAAQINFRDIaCi/kxMgQIAAAQIECBAgQKA1BAQyWqPOekmAAAECBAgQIECAAAECBAgQIDBZQCBjsoU1AgQIECBAgAABAgQIEKiTgEBGnWAdlgABAgQIECBAgAABAgQIECBAILcCAhm5LY2GESBAgAABAgQIECBAoHkEBDKap5Z6QoAAAQIECBAgQIAAAQIECBAg0DcBgYy+OdmLAAECBAgQIECAAAECBAYgIJAxADwvJUCAAAECBAgQIECAAAECBAgQKKSAQEYhy6bRBAgQIECAAAECBAgQKJaAQEax6qW1BAgQIECAAAECBAgQIECAAAECAxcQyBi4oSMQIECAAAECBAgQIECAQC8CAhm9ANlMgAABAgQIECBAgAABAgQIECDQdAICGU1XUh0iQIAAAQIECBAgQIBA/gQEMvJXEy0iQIAAAQIECBAgQIAAAQIECBCor4BARn19HZ0AAQIECBAgQIAAAQIEooBAhsuAAAECBAgQIECAAAECBAgQIECg1QQEMlqt4vpLgAABAgQIECBAgACBBggIZDQA3SkJECBAgAABAgQIECBAgAABAgQaKiCQ0VB+JydAgAABAgQIECBAgEBrCAhktEad9ZIAAQIECBAgQIAAAQIECBAgQGCygEDGZAtrBAgQIECAAAECBAgQIFAnAYGMOsE6LAECBAgQIECAAAECBAgQIECAQG4FBDJyWxoNI0CAAAECBAgQIECAQPMICGQ0Ty31hAABAgQIECBAgAABAgQIECBAoG8CAhl9c7IXAQIECBAgQIAAAQIECAxAQCBjAHheSoAAAQIECBAgQIAAAQIECBAgUEgBgYxClk2jCRAgQIAAAQIECBAgUCwBgYxi1UtrCRAgQIAAAQIECBAgQIAAAQIEBi4gkDFwQ0cgQIAAAQIECBAgQIAAgV4EBDJ6AbKZAAECBAgQIECAAAECBAgQIECg6QQEMpqupDpEgAABAgQIECBAgACB/AkIZOSvJlpEgAABAgQIECBAgAABAgQIECBQXwGBjPr6OjoBAgQIECBAgAABAgQIRAGBDJcBAQIECBAgQIAAAQIECBAgQIBAqwkIZLRaxfWXAAECBAgQIECAAAECDRAQyGgAulMSIECAAAECBAgQIECAAAECBAg0VEAgo6H8Tk6AAAECBAgQIECAAIHWEBDIaI066yUBAgQIECBAgAABAgQIECBAgMBkAYGMyRbWCBAgQIAAAQIECBAgQKBOAgIZdYJ1WAIECBAgQIAAAQIECBAgQIAAgdwKCGTktjQaRoAAAQIECBAgQIAAgeYREMhonlrqCQECBAgQIECAAAECBAgQIECAQN8EBDL65mQvAgQIECBAgAABAgQIEBiAgEDGAPC8lAABAgQIECBAgAABAgQIECBAoJACAhmFLJtGEyBAgAABAgQIECBAoFgCAhnFqpfWEiBAgAABAgQIECBAgAABAgQIDFxAIGPgho5AgAABAgQIECBAgAABAr0ICGT0AmQzAQIECBAgQIAAAQIECBAgQIBA0wkIZDRdSXWIAAECBAgQIECAAAEC+RMQyMhfTbSIAAECBAgQIECAAAECBAgQIECgvgICGfX1dXQCBAgQIECAAAECBAgQiAICGS4DAgQIECBAgAABAgQIECBAgACBVhMQyGi1iusvAQIECBAgQIAAAQIEGiAgkNEAdKckQIAAAQIECBAgQIAAAQIECBBoqIBARkP5nZwAAQIECBAgQIAAAQKtISCQ0Rp11ksCBAgQIECAAAECBAgQIECAAIHJAgIZky2sESBAgAABAgQIECBAgECdBAQy6gTrsAQIECBAgAABAgQIECBAgAABArkVEMjIbWk0jAABAgQIECBAgAABAs0jIJDRPLXUEwIECBAgQIAAAQIECBAgQIAAgb4JCGT0zcleBAgQIECAAAECBAgQIDAAAYGMAeB5KQECBAgQIECAAAECBAgQIECAQCEFBDIKWTaNJkCAAAECBAgQIECAQLEEBDKKVS+tJUCAAAECBAgQIECAAAECBAgQGLiAQMbADR2BAAECBAgQIECAAAECBHoREMjoBchmAgQIECBAgAABAgQIECBAgACBphMQyGi6kuoQAQIECBAgQIAAAQIE8icgkJG/mmgRAQIECBAgQIAAAQIECBAgQIBAfQUEMurr6+gECBAgQIAAAQIECBAgEAUEMlwGBAgQIECAAAECBAgQIECAAAECrSYgkNFqFddfAgQIECBAgAABAgQINEBAIKMB6E5JgAABAgQIECBAgAABAgQIECDQUAGBjIbyOzkBAgQIECBAgAABAgRaQ0AgozXqrJcECBAgQIAAAQIECBAgQIAAAQKTBQQyJltYI0CAAAECBAgQIECAAIE6CQhk1AnWYQkQIECAAAECBAgQIECAAAECBHIrIJCR29JoGAECBAgQIECAAAECBJpHQCCjeWqpJwQIECBAgAABAgQIECBAgAABAn0TEMjom5O9CBAgQIAAAQIECBAgQGAAAgIZA8DzUgIECBAgQIAAAQIECBAgQIAAgUIKCGQUsmwaTYAAAQIECBAgQIAAgWIJCGQUq15aS4AAAQIECBAgQIAAAQIECBAgMHABgYyBGzoCAQIECBAgQIAAAQIECPQiIJDRC5DNBAgQIECAAAECBAgQIECAAAECTScgkNF0JdUhAgQIECBAgAABAgQI5E9AICN/NdEiAgQIECBAgAABAgQIECBAgACB+goIZNTX19EJECBAgAABAgQIECBAIAoIZLgMCBAgQIAAAQIECBAgQIAAAQIEWk1AIKPVKq6/BAgQIECAAAECBAgQaICAQEYD0J2SAAECBAgQIECAAAECBAgQIECgoQICGQ3ld3ICBAgQIECAAAECBAi0hoBARmvUWS8JECBAgAABAgQIECBAgAABAgQmCwhkTLawRoAAAQIECBAgQIAAAQJ1EhDIqBOswxIgQIAAAQIECBAgQIAAAQIECORWQCAjt6XRMAIECBAgQIAAAQIECDSPgEBG89RSTwgQIECAAAECBAgQIECAAAECBPomIJDRNyd7ESBAgAABAgQIECBAgMAABAQyBoDnpQQIECBAgAABAgQIECBAgAABAoUUEMgoZNk0mgABAgQIECBAgAABAsUSEMgoVr20lgABAgQIECBAgAABAgQIECBAYOACAhkDN3QEAgQIECBAgAABAgQIEOhFQCCjFyCbCRAgQIAAAQIECBAgQIAAAQIEmk5AIKPpSqpDBAgQIECAAAECBAgQaIzAOeeem514u223naIBfQlk9PT6KQ7oCQIECBAgQIAAAQIECBAgQIAAAQI5FxDIyHmBNI8AAQIECBAgQIAAAQJFEEhhirPPPS9r6vbbbhNqQxm9BTJ6e30RDLSRAAECBAgQIECAAAECBAgQIECAQKWAQEalhnUCBAgQIECAAAECBAgQ6LdAZZii9OLaUEZPgYy+vL50XD8JECBAgAABAgQIECBAgAABAgQIFEVAIKMoldJOAgQIECBAgAABAgQI5FSgq0BFamplKKO7QEZfXpvTbmsWAQIECBAgQIAAAQIECBAgQIAAgR4FBDJ65LGRAAECBAgQIECAAAECBPoi0FuwoqtARm+v6ct57UOAAAECBAgQIECAAAECBAgQIEAgrwICGXmtjHYRIECAAAECBAgQIECgYAI9BSzOPve8qt6k0TNqn0s7VI6qUfUCDwgQIECAAAECBAgQIECAAAECBAgUTEAgo2AF01wCBAgQIECAAAECBAjkWaC7UEZf2iyM0Rcl+xAgQIAAAQIECBAgQIAAAQIECBRFQCCjKJXSTgIECBAgQIAAAQIECBREYGpCGcIYBSmuZhIgQIAAAQIECBAgQIAAAQIECPRZQCCjz1R2JECAAAECBAgQIECAAIG+CvQnlCGM0VdV+xEgQIAAAQIECBAgQIAAAQIECBRJQCCjSNXSVgIECBAgQIAAAQIECBRIoC+hDGGMAhVUUwkQIECAAAECBAgQIECAAAECBPolIJDRLy47EyBAgAABAgQIECBAgEB/BHoKZQhj9EfSvgQIECBAgAABAgQIECBAgAABAkUTEMgoWsW0lwABAgQIECBAgAABAgUT6CqUIYxRsCJqLgECBAgQIECAAAECBAgQIECAQL8FBDL6TeYFBAgQIECAAAECBAgQINBfgcpQhjBGf/XsT4AAAQIECBAgQIAAAQIECBAgUEQBgYwiVk2bCRAgQIAAAQIECBAgUECBFMpIy3bbbpv99AcBAgQIECBAgAABAgQIECBAgACBZhYQyGjm6uobAQIECBAgQIDAkAqMGDkqTOrsLJ9z4oTxYVhbW/lxb9vHjusIYzs6yvuPaW8PY0a3lx/nbXvqW+pjaUl9T30sLY3entrx9BOPl5qT/Vx4scWrHjd6e3+vkd6uocHe7hoc3Gs8XXx5uwZr3wODfQ0N9jWet/8O1r5Hpva/g5Xu6b+d6b/9lX9/VP2HywMCBAgQIECAAAECBAgQIECgMAICGYUplYYSIECAAAECBAjkXaD2Rmt/b0Tm/UZjbfsaHbjo7fzpeqm92Vxbo0Zv7+81UnnTNvWv3q+vvdlcew00entv10Detqea5e0arH0PDPU11t9rOG/XYO17YDACGV29t9NzFgIECBAgQIAAAQIECBAgQKB4AgIZxauZFhMgQIAAAQIECDRYoHRDsPZGZun5UvOa7UZjbf/ydrO79kZoqkNtjfJ2M7y/18hQ3yyvvdlcew00enver8Ha9qVrMm/XYO17ZKivsf6+B/J2Dda+B2r/O1R7DXS3vTf39Lq0pONZCBAgQIAAAQIECBAgQIAAgeIICGQUp1ZaSoAAAQIECBAgkAOByptmtTfiam8UNtuNxtr+9fVGY6ls3d2IrNf2dNzam815uxne32uk8vpL/av363u7xhu9Pe/XYG37Us3ydg3WvkeG+hrr7zVc+9+hRl+Dteef2v/O1bp3V5eurql0XVkIECBAgAABAgQIECBAgACBfAoIZOSzLlpFgAABAgQIECCQQ4HaG2apibU3zdLNuHTDzEKAAAECBPor0NVIGL2FPPp7DvsTIECAAAECBAgQIECAAAECQycgkDF01s5EgACBIRf4/S23hM777gtPPPFEmH32z4SvLblEWHvttcPCX/3qkLfFCQkQINAMArU3xVKfan+7uxn6qQ8ECBAgkB+B2jCgUTLyUxstIUCAAAECBAgQIECAAAECvQkIZPQmZDsBAgQKKPDRRx+FQw87PFx86aVh5plmCm1tK4UPP/woPPKXv4T/i9uOP+7Y8N111y1gz5qzyXfccWc46dRTw7jTTwtfXGih5uxki/Xq5784I9x9zz3h/PHnhWmmmabFet/83S2FMnYb3R5Gt7c3f4f1kAABAgQaLlAKZQhjNLwUGkCAAAECBAgQIECAAAECBPolIJDRLy47EyBAoBgC1153Xdht9z3C/vvsE0aNGhmmn376rOFvvvlmGPPTn4a77r4n3HnbreGzn/1sMTrU5K28+pprw+577hmuvfqqsNiiizZ5b1ujewcfemi4/vobwn2T/iCQ0QQlTwGM2ilIunquCbqqCwQIECCQY4FxHR2CgDmuj6YRIECAAAECBAgQIECAAIGuBAQyulLxHAECBAousM9++4Xf/e7m8Mf775viZvBDDz0cvr/ZZuG4Y44OP9h004L3tDmaL5DRHHWs7IVARqVGsddLv5FsWpJi11HrCRAg0MwCQoLNXF19I0CAAAECBAgQIECAAIGiCwhkFL2C2k+AAIEuBA4/4shwwUUXhfv+cG+YbbbZqvb4f//v/4Ulllo6bBbDGEcdeUS2LY2okZb111sv+1n5x3333x/+8shfwrbbblP5dLb+xJNPhkmTOsOfH/xzmH+++cOyyy4TvrnWWmGGGWaYYt933n033HvvvSEd77XXXgtLxzasttqqYeGvfnWKfdMTjz32WPjDHyaFBx9+OO7zlbDSSiuFtvj/2ukf/u///i+e/8Fw1113hxdfejGssvIqYbVVVwnzzjvvFMd98qmnwj1xdJCHHnk4LJPOv/pq3Z5/ihfXPHFh9F0oTi+S2n/X3XeHl19+OYwcOTLMNuus2Z5vvf12uCdOWdEZf7P+3Xffy9q/euxvqV2vv/56uPLKq7J9//LYo+GKuL7jDtuH+eedL3tunXXWCZ/73GfDSy/9I9x4442h9LiyGanvEyacH5ZfYfmw7DLLZJtSTVIft9xyy/CnP/8pPProo+ErX/lKVpe33norXHrpZeEba30jLDD/AuH+WIvO++4Ls846Sxg+fHj5GJXn6G49TX9z2223hyfj+eaYY46wyiorh3VjmyuX7HyXxfN9I51v/nD/Aw98cr5ZZgnDhg0Py8XrpXZ5+5134jU1Katn2rbG6qvHfdvCzDPPXN71N7+5ICz0xYVinVctP5eulccefyyE/4aw9dYjyqPCvB3rcEmcumfllVcOiy+2WHn/ZHf//Q+EP8RzPf/CC7HvS8c+rBIWXWSR8j5p5fY77gj/+te/sil+bo9Tyzz77DNhrXiNVx6r9IK/ROtU79SG6264Pjz+xJNh993GhGni/9KS3kOl6/fjjz/OPB544I8h1WyJxRcPK664Qlhh+eXL+5SOW/vzv//9bzj3vPNim5cNyy//9drN4eprrsn6X1mP/rxP+mqTap+mZdlyiy3Cn//8YPjLo38JX/lyvNa+udYUbSrqE6WpSUrtHxOnJxkTpymxECBAgACBPAiMHdcRxsZRM9Ly9BOP56FJ2kCAAAECBAgQIECAAAECBAjUCAhk1IB4SIAAgWYQuPPOu8J2O+4YVo432Y884vDwpS9+sapbjz3+ePjM7J/JbvinDVtuNSLbfuFvJlbtlx6ccOJJ4cyzzw5PxtBA5fKbCy4Ihx5+RJgl3ihfbrllw6uvvhaeevrpsNKKK4Yzfv6zqiBICh+M3Gbb7MbzIgsvHOaff77wYByp44MPPggnHHds2GD99SsPHc4997xw1LHHhk9/+tPxeCtk+6bpVkbFG+2HHHxwed904zgd96EY2lhxhRXCfPPNm93wf+WVf4YrLr+s6qb5iSedHH515plh6aWXCosuvEi8efxovGH+RDj80EPCVj/8YfmYfV1ZZfU14vEXDc8882x4+ZVXwpxzzhkuv+TibBqYV199NaTfqn/m2WezwMYsMYDw4EMPhbnnnjucP/68kAxSOGSHnXbOTvduDKv85z//ycIa0003XfbcqSeflPXpnhhiGbXtdmH8uefEsMnKVc17//33w1LLLpfd9N/1Jz/Jtl108cXhwINjn2Ig4zcXXhhmn3328P1NNg4HHXhgeO7558O3vrNOZn7+xN+EV/75z/DZBRYIKVyRLA/Yd9+w/fbbVZ2jqwfnnz8xq0/qV5rG4eFHHgn/+Mc/wqbf+1447thjyoGCdL5vr7NuNhrLby64MHOqPN/+++4Tdth++/IpXnzppbDpZpuHFFZIx00/U8Ah9eG6a64OM800U7Zv2ietTzjv3PK5ttp6ZLwGXw3PPvdcuGDi+dl1mHa+O4ZTtt1hhzD+nHNiKGN49vrU1zRFzPU33BjmmWeeOE3MIvG6uT+ksNIpJ51YFUzac6+9Q2cMrqSpZG67/fZs/4MPPKBqn+yg8Y8U/BjX8bOUx4j1/Hd4//0Psms9/C+QcevNvwupvqlfe+29T7j62mvDIjEA8oUFFwzPxXan62XLzTcPR8T37Kem+STEUTp25c/0+sW/tlT4yS4/CrvHKYhql+STAizpmkkBkNTfdA2la3DFGN6Zb775sv6+Eq/bK2JgZvHFq4MqfbVJ19pBhxwaAxmbhwsuvCir0/fitXZwvNaaZSmNjlHqT7ou00gZFgIECBAg0GiBhRdbvKoJQoNVHB4QIECAAAECBAgQIECAAIHcCAhk5KYUGkKAAIHBFfjtFVfGm6WHZKGH9Nv8q8ZRI9b+5jezm/yf+tSnqk7W30DGVVdfE/bYa6/yKBvTTjttdrw0+sXOP9olrB5HNRh72qnZc+lm8IYbb5Ld/E83xZda6mvl5/eIN7uvv+GGcO3VV5VHJrjyqqvDnnvvHdpjwGCnnXbMAh8fffRRuOzyy7Obv/vts3ccSWKH7BgP/PGPYYsfbpWFKkZstVX2XLqpvvH3Nw0zTD99uOSiC0Pqa2rDciusGNaKIzWMO/20bL/0x1FHHx2P+9tw4/XXZTepyxv6sJICGf+MgYZ99tozGyEghQbSks610Sbfi6NivBvO+MXPy6GQF/72t7Db7rvHkTReCTfF0RNKI2mk1/Q0ZcnUBjLSiAspjLPcssumU2RLKZAxawxSjN511yx8kW7Y//vf/w6HHHZ4uO7668M1V11ZbnPpdZU/Uz/W+e56ccSIFOw4LgsYpBEbjj/hxCy4c1kMpZRG6ygFMlJopz2eb4cY9iid79B4vmvT+a6M5/tfIOAXZ/wynHr66eHqK64Ii8WwS1qS17fXXTdsHeu7b6x9Wg6LQaBrYpjhvkl/yI6Xgj1fX3GleB0cGk459dQwcuutw09+vEu275lnnRWOj6GiBzonZYGB9GR6X1x8yaXh5x3jsmsiXb8p8HP8iSdm10O64Z5GqkhLCmRcefXVYcMN1o/Bl92yUVGyDb380dOUJen8l152eTjtlFPiqCLfKR/pyquuCnvvu1/YYbvtyn0tb6xY6W8gI71P0nv8sEMODpXvk03i+2T6+D65+MILQuk93B+bUiAj1erIww8PX19uuYpWNsdqbSDDtCXNUVe9IECAQDMIVI6OUeqPUTJKEn4SIECAAAECBAgQIECAAIH8CAhk5KcWWkKAAIFBF0g3mdNN9uuuvyGkm7LpxnWaMuPYo48K31hzzfL5+hvI2HHnneOICC+Hq6+8Igs8lA8UV0459bRwVgxe3HvXndkN8IfiSBjf32yzLKCx3ne/W7lrSNNTDF9l1bBNnOpj7xhsSMv2cWSPNOrEzTfdmN3sr3zB+htulI2McOnFF2VPp6ke0nO1Izv89Zlnwjtvv5OFP1IgI4U0hq+6WlguTuvxq1+eUT5k8nn44UfCCnHUgDQaR3+WFMhIN7HvuPWWLBRQem2aPuUHm28RjjnqyLB57HflcuNNN4VdR48J58SROlaP06WUlnoEMro6fymQsWqcmuO8c84unT77WQq3pJv2W4/4ZMSUqh3+9yCNQnH5b38bvhdHw5gvXkulJY1M8Z11vxuOPOywOF3KFtnTpUDGKnFkinPjKCspjFFaSiGBQw8+qHy+NP3KESkkE0Mdyyy9dGnXbGqPdN1+MU4Rk5ZL46gO+x94ULg92n/us58NaVqJrUdtk10zp5xyanjzrTfD2dE4nS+NRPGnP/8525Yep8DM8iu1hW+vvXY46cQTqtqU+rbmWt8M28dAxF577pGdqxTI+N2NN4Qvf+lL2XN9+aO7QEbp/D+M03zsv9++UxzqwDgCzC233Bruie+fSq/KHfsbyEhTi6y/0cYhhZkqRyTJ3ifxPbjU175WDi71x6YUyDjqiCPCFptXX+uV7S36erq+0k2v9NONrqJXU/sJECDQXAKVo2TsFqfUGh2n1rIQIECAAAECBAgQIECAAAEC+RIQyMhXPbSGAAECdRN47733w53xJu+pp50env7rX7PRAb79rW9l5+tPICOFG1aIN7TT1ASV04eUGp5CFmlJozCk5eyzzwnHHH98uD+OZjDHHHNkz1X+kUaZSDfb083n0rG/EG+8L9/Fb9v/+aEHw+OPPxH+/MD95QBF+5jdQgo6pN/OX321VePPr8eAxQoxuFEdsDj3vPHhmDiiw0Jf+EL45jfXykaOGD5sWJhrrrkqm9Pn9RTISEGDk044oeo1Z511djgujrSwRQxjlKYfKe2QbqRfGKd5+Mkuu8SpJnYrPV2XETJuidNjpL5WLqVAxp67/zT8OLahckmjXCy/4krZ9DFHHH5Yt2GA9Jp333sv3HnnneGpp56OoZq3s8N8HIMO50TjfeLIKTvHkU3SUgpkpJElSiNWZBviH9n54nW0/noxxBFHV0j1f+2118LIOLXGCy+8EGu5WjbtyIpxypqll1qqKviTroENN9kkmxonjfqSpgm5OE4XksIxF8apM5J/ut7S6A/rxcDOIgt/NRuNIp0jTa/y/R9sFtZcY42w4Oc/F1syOSSS2nbT76JbvP7StCdp/xTImHTffeHO227t0SS9tnLpLpBROv/ZZ/4662Pla9J6mkZlTJyGJI2i0l0ApL+BjHTc0bEGN9w4+X2yXHy/pGl+StPApH1KbeurTSmQkcJTpbBMOk6zLimQkaYssRAgQIAAgbwIpMBg/OeKIEZeCqIdBAgQIECAAAECBAgQIECgCwGBjC5QPEWAAIEiC6Tgxfobbhg2+8GmU9x0T/1K21deddWwRrwhXZpWpKdAxpFHHRUmTPxNePKxRzOWt956K5seIk3VsfNOO/VKdfSxx4YLL7ooPBhH6KidKqX2xaVjpylWvtTDaARHHHZoVZAiBTJu/v3vwwMP/DGkKTVmnmmmOMLBnmHUyK2rTvHQww/H8MM14Q9/mBSefOqpLACy5eabh/333y97TdXOvTxIgYxVV1k5nBjDJpXL0ccck3l9K47A0N0yfFhbeVSItM/UjpDxn//8J6zQNixOpTEm7BqneElLukl+4MGHhFt/f3P4woILZs+V/igFMo475ujwg003LT1d/rnS8JXDOt/+djbVSQojdLUk353itDTPxREx0sgK88wzTxZpSCGBW2+/Pewd3X+08yfXRSmQkUbr2OwHP5jicG0rrxK+E0NBR8apVUrne+/998Nv4zQyt91xe3jwwYfCv15/PXz+c58Lxx93bEgBmrRkU9Asv0J2fe/6kx+HkdtsE+aff/6sFilstN4GG2bT1Sy5xBJh2bjfHjHgsNOOn0xz87ubbw4/aR8dVh4+LI7g8pkp2pSemDuGdA6P11haUiDjvgceCLff8vtyG7MNvfzRXSCjdP7LL70kC5rUHiZdmyO33Tacf955YVi8TrpaegtkrL/RRmGuOecK4889p6rN5ffJH/+UhV4+eZ/sEd8nI7PTlNrWV5tSIOP3v7tpivBPV+32HAECBAgQIECAAAECBAgQIECAAAECBAgQaDUBgYxWq7j+EiDQEgLphnQaHeGMX/y8y/5uvuUPYzDjvWzKkbTDzvEG++NPPhFvOldPv5G2pelJ7rjzrnIgIz23znfXCwsvvHD42bix6WHVct/998fAwx/CiK22ykIT1153Xdht9z3CtVdfFRZbdNGqfdODNGLHsssuE7651lrZtm99Z52wWgyMHHboIVPsW/tEmibjhedfCGuuuUZ509/+/vdwcpy24pprrw3XXHVlSOGO1+NN/fTb7d+JYYM0zUhaUpgh3VA+4aSTw8EHHhi2GfXJTenygXpZ6S6QcdXV14Q94igRnffeUxUa6elwPQUyHnnkL2GTGJ7oKkSRAiZptIf+BjKOP/aYsOn3vz9Fk/oSyDju+BPiSBjnheuuuTp89StfKR8jBTXW/vZ3wl577DFFICNNkdNVAKQ2kJGmFpn2U9OGZZb5ZLqSNIpGGrVh/wMODP+M04mkaXBKo46kaWEWWGCBcOrJJ2UjexwUa1iaNmNYnAZnhzjtyMpxBJPkMz5OoZPW05JGZFl1jTXD6aeeGtb77rrl9ne3MtiBjNL5TznpxLDhBhtMcdo0wsehcQqQBzonhVlnnXWK7aUnllthxWzalROOP64qdJHMUghl2Wg4/txzs23Z+ySOOpJGvigt6X2Spne5Or1Prozvk8UX67eNQEZJ008CBAgQIECAAAECBAgQIECAAAECBAgQINC1gEBG1y6eJUCAQKEFjjjyyDiFw2Xht5ddGqdrWLiqLy+99I+w7nrrhS233CIcsN9+2bZfnHFGOPnU07JRBdLUH6UljTawwUYbZyNJlEbISNsOPuTQLPBw0YUXhEUXWaS0e/bz+3GqjnSONH3EDDPMkN3kTeGFNIXH0XGkhMrl9tvvCDvEwMdBBxwQtt1mVLYp3Xy/OQZDrosBjjSVSWlJowL8ZNf2sPzyX483/HfOnj7q6KPDxAsuDHfH0RQqpx55/IknsnYfFUde2HKLLbJpKNKoCL+MAZU0xUVpSVOkpFBAmurk1JNPzp5+4skn43Qrs4bPZ9NZlPac8md3gYzU9zViuGTXH/+4alqSdIS777knnD52XDjxhOOrpnjoKZCRRoP4+oorZtNLnHPWWVUN2XPvvcOVV109pIGMnXf5cUi+t8YpUUrhltSoX595Zjj+xJO6HCGjr4GMDTbeOI6iMm248vLLqkIG4ydMCEccdXQ2jcdXvvzlzOCww48Id959Vzg+jsDywxFbV03xkabnSIGjdWK458CDDgr3x3DD7LPPXrZLwZE0osaE886t6sOrMfSxy092jcN+7xq+seaa2f6DHchIB03nT+259OKLqs6far3BxpuEGWecIVxxWbVBufH/W9l2+x3Cg3EKn3vvvjt8esYZy5svvuSSbISUNApLKZBx1NHHxPfJBeGu228Lc889d3nfJ554Mp5v43DkYYdl/z1IG/pj08yBjBTgSsPApyVNU5JGKzFdScbhDwIECBAgQIAAAQIECBAgQIAAAQIECBDoh4BARj+w7EqAAIGiCKSpIraLN2zfeffd8OMYXvh6DDG8/dbb4bZ4Q/b6G28KH374YTh//HnlESueevrpsPkWW2Y3qTePU0ussOIK4bHHHos32c8KX/jCguGee/9QNULGyy+/HLYetU12/DHx5vXyyy8fHn30sTj1xtXhzrvuDkcfeUTYPAYwSsuvfv3rbCSKTTbeKGwUR++YY845wg033Bguv+KKMOccc4RL4o3pWWeZJds9HXurrUdm05vsteceYckllwxPxADA5b+9IqQpFU475eSwwfrrZ/umYMBmMXCxSAyFpFEu0qgdzzzzTPjZz34ep7y4I7uxv0SctuL9OA1GCpYkj0MPPiib+uL1N94Il8epMc741a/CIfGmfZre5OGHHwnfi/1PQZJ77rwjzBHb1t3SXSAj7X/GL38ZTokjf4wcsVX43ibfC9PPMH24I7bn12edHeaLIZMUlJl++unLh7777nvCNttvH34Y+7LGGquHWaLFKiuvXN5+4EEHh0svvzx8L948/+6662ajRFwaQwsffvhRSNNQDOUIGefG0TGOOubYsNMOO4Tvf/97MTwwY6zlDeHCiy/JRh35cpxqZs89do9TggwPpSlL+hrIKIUJNolTbuzyox+FeeebN05b8mA47Igjw9tvv50FCkpul8bAwgEHHhR2jO244qqrslBOadqT88+fGE4+7bQ4AsX6WQjm5htvrAp4pGlBdozHX2mFFcIuu/woG2mjM96AnxBf93wcSeLK314evvTFL2b+UxvIODWe/xe//FUMPe0bwz2fDwvG6WOWWHzx7Jj33HNv2DkGdpZeaqk47cqPwkILLRSej+/ZFABI1+9ZZ/46LP/1r5fr39XKlbHPe+2zb7xOhodN4nWRjnFnHMnm1ttuC+/G6zyNHlKasiQFL36Q3ifx/XHQgQfEn4uEZ56N75Of/yL+N+H2cEW8ltL0Lmnpj02zBzJGjPwkJJZcUhhj4oTxadVCgAABAgRyJZD+vkpBwtKS/r4SIixp+EmAAAECBAgQIECAAAECBBovIJDR+BpoAQECBOoi8K9//Svst/8B2Re078bRAtKSggZpBIzjjzs2LBhvElcuDz70UHaD+8mnnsrCEF/72pJhj91+Gv705z+FcTHgUDlCRnpdmnph3/33D/fd/0AWeEjPpVEl9onTdawfR+CoXdLN7nPiFAppaou0pBv5a6y2WkhTLsw222xVu6dRJvaPAYsH/vjH8rHTaBmHHXJwHPXgO1X73hunR0kjAKSRLdKSprRYZumlw1Y//GG8Ub1Red8XX3wpHHr4YeH2O+4MaVqHtCz81a9m05j8dLcxWZ9T2zaOAYq34s3/i+PoHz3dFO8pkJGOfc4554YJEyeW+5va9a211w7HxFFCKkdrSPumkRHaR4/JQiRpPU0FcuP116VN2ZJGBzkyjhBx5dVXh7feeisb5eCb3/hGOCL2Z4mllh7SQEZq3/EnnBjGn39+SO1KS5oe5/TTTg1/+uOfwimnnx4+E0d/uO2W32fhhm+vs27oayAjHSuFKX72i1+EV197LT0Ms8w8c2iLN8Pbd/1JnIZjmey59Mfjjz8RNtxkk6yWKXhxykknlUMXT8ZrYf0YwEl1Xn+978YQzynlbaUDpFDECfE1jz3+eLkfSy65RDgpTsmy6KKLlHYLUxvISNOE7LX3PnEUi4eyY/0wjkhz5OGHl497bww5HX/iieXzp+sjhSIOPujA7D1a3rGHlRSI6IjvzX/EENPMM80UVojBqCNjGGq/+L6cZppPlQMZ6RApaHHk0Ud38T7ZMgt0VJ6mrzbNHMhI4ZixHZ+MkJFsBDIqrxDrBAgQIJAnAYGMPFVDWwgQIECAAAECBAgQIECAwJQCAhlTmniGAAECTSWQpuV45tlns5v+KYCQbvz2tLz55pthmk99Ksw266w97Vbelm7Qp5vj888/X9UUI+UdalZSkOPVV18Liy22aK9tScd+7LHH43HnyX7jv+ZQVQ9T4OKVf76SjZbRU9tff/318Le//z3MP998XR7zgw8+COtvuFE4+aQTqwIAVSfrx4NXXnkl6+8iiyychVD68dIpdk21TH5p9INGL+/FUUeeiuGdFKZJgYzK6UsG2rZU9zRSxTvvvJOFFHq7ZgdyvhS+SaNSfCmO7JGCJEO9vB37mM6f3pszx/DJ1CzpmkhT9vTF6cWX4vskXpNplIzZZuv5Pd5om6mxGKzXCGQMlqTjECBAgEC9BQQy6i3s+AQIECBAgAABAgQIECBAYGACAhkD8/NqAgQIEGgigTSVyx577R3uuuuuMOneewYcoGgiGl0h0FICaej3NI1N5TK6vb3yoXUCBAgQIJALAYGMXJRBIwgQIECAAAECBAgQIECAQLcCAhnd0thAgAABAq0mkEZmuOLKK8Nqq66ai1EoWs1ffwkQIECAAAECBAgQIECAAAECBAgQIECAAAECzSQgkNFM1dQXAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIBcCAhm5KINGECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs0kIJDRTNXUFwIECBAgQIAAgQELTOrsDJMmdZaPM2xYWxjW1lZ+bIUAAQIECBAgQIAAAQIECBAgQIAAAQIECPRFQCCjL0r2IUCAAAECBAgQaBmBseM6wtiOjnJ/Uxhj4oTx5cdWCBAgQIBAXgRGjBwVUpCwtKS/r4QISxp+EiBAgAABAgQIECBAgACBxgsIZDS+BlpAgAABAgQIECCQIwGBjBwVQ1MIECBAoEcBgYweeWwkQIAAAQIECBAgQIAAAQINFxDIaHgJNIAAAQIECBAgQCBPAgIZeaqGthAgQIBATwICGT3p2EaAAAECBAgQIECAAAECBBovIJDR+BpoAQECBAgQIECAQI4E0tDvnRXDv6emjW5vz1ELNYUAAQIECHwiIJDhSiBAgAABAgQIECBAgAABAvkWEMjId320jgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECiggEBGAYumyQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC+BQQy8l0frSNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQKKCCQUcCiaTIBAgQIECBAgED9BCZ1doZJkzrLJxg2rC0Ma2srP7ZCgAABAgQIECBAgAABAgQIECBAgAABAgT6IiCQ0Rcl+xAgQIAAAQIECLSMwNhxHWFsR0e5vymMMXHC+PJjKwQIECBAIC8CI0aOCilIWFrS31dChCUNPwkQIECAAAECBAgQIECAQOMFBDIaXwMtIECAAAECBAgQyJGAQEaOiqEpBAgQINCjgEBGjzw2EiBAgAABAgQIECBAgACBhgsIZDS8BBpAgAABAgQIECCQJwGBjDxVQ1sIECBAoCcBgYyedGwjQIAAAQIECBAgQIAAAQKNFxDIaHwNtIAAAQIECBAgQCBHAmno986K4d9T00a3t+eohZpCgAABAgQ+ERDIcCUQIECAAAECBAgQIECAAIF8Cwhk5Ls+WkeAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgUUEAgo4BF02QCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAg3wICGfmuj9YRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBRQQyChg0TSZAAECBAgQIECgfgKTOjvDpEmd5RMMG9YWhrW1lR9bIUCAAAECBAgQIECAAAECBAgQIECAAAECfREQyOiLkn0IECBAgAABAgRaRmDsuI4wtqOj3N8Uxpg4YXz5sRUCBAgQIJAXgREjR4UUJCwt6e8rIcKShp8ECBAgQIAAAQIECBAgQKDxAgIZja+BFhAgQIAAAQIECORIQCAjR8XQFAIECBDoUUAgo0ceGwkQIECAAAECBAgQIECAQMMFBDIaXgINIECAAAECBAgQyJOAQEaeqqEtBAgQINCTgEBGTzq2ESBAgAABAgQIECBAgACBxgsIZDS+BlpAgAABAgQIECCQI4E09HtnxfDvqWmj29tz1EJNIUCAAAECnwgIZLgSCBAgQIAAAQIECBAgQIBAvgUEMvJdH60jQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECiggkFHAomkyAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkG8BgYx810frCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQIKCGQUsGiaTIAAAQIECBAgUD+BSZ2dYdKkzvIJhg1rC8Pa2sqPrRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4ICGT0Rck+BAgQIECAAAECLSMwdlxHGNvRUe5vCmNMnDC+/NgKAQIECBDIi0D6OysFCUvLmNHtQoQlDD8JECBAgAABAgQIECBAgEAOBAQyclAETSBAgAABAgQIEMiPgEBGfmqhJQQIECDQs8CIkaOqAhkpQGhUp57NbCVAgAABAgQIECBAgAABAkMpIJAxlNrORYAAAQIECBAgkHsBgYzcl0gDCRAgQOB/AgIZLgUCBAgQIECAAAECBAgQIJBvAYGMfNdH6wgQIECAAAECBIZYIA393lkx/Hs6/ej29iFuhdMRIECAAIHeBQQyejeyBwECBAgQIECAAAECBAgQaKSAQEYj9Z2bAAECBAgQIECAAAECBAgQIDCVAilEWLmYrqRSwzoBAgQIECBAgAABAgQIEGi8gEBG42ugBQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECTCQhkNFlBdYcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBovIBARuNroAUECBAgQIAAAQI5EkjDv0+aNHkI+GHD2oIh4HNUIE0hQIAAAQIECBAgQIAAAQIECBAgQIBAQQQEMgpSKM0kQIAAAQIECBAYGoGx4zrC2I6O8slSGGPihPHlx1YIECBAgEBeBNLfWSlIWFrGjG4XIixh+EmAAAECBAgQIECAAAECBHIgIJCRgyJoAgECBAgQIECAQH4EBDLyUwstIUCAAIGeBUaMHFUVyEgBQqM69WxmKwECBAgQIECAAAECBAgQGEoBgYyh1HYuAgQIECBAgACB3AsIZOS+RBpIgAABAv8TEMhwKRAgQIAAAQIECBAgQIAAgXwLCGTkuz5aR4AAAQIECBAgMMQCtcO/Dx/WFka3tw9xK5yOAAECBAj0LiCQ0buRPQgQIECAAAECBAgQIECAQCMFBDIaqe/cBAgQIECAAAECBAgQIECAAIGpFJjU2Vn1StOVVHF4QIAAAQIECBAgQIAAAQIEGi4gkNHwEmgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0GwCAhnNVlH9IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBouIJDR8BJoAAECBAgQIECAQN4EDAGft4poDwECBAgQIECAAAECBAgQIECAAAECBIonIJBRvJppMQECBAgQIECAQB0Fxo7rCGM7OspnGNbWFiZOGF9+bIUAAQIECORFIP2dVRkiHDO6PaS/tywECBAgQIAAAQIECBAgQIBAPgQEMvJRB60gQIAAAQIECBDIiYBARk4KoRkECBAg0KvAiJGjqgIZKUAokNErmx0IECBAgAABAgQIECBAgMCQCQhkDBm1ExEgQIAAAQIECBRBQCCjCFXSRgIECBBIAgIZrgMCBAgQIECAAAECBAgQIJBvAYGMfNdH6wgQIECAAAECBIZYoHb49+HD2sLo9vYhboXTESBAgACB3gUEMno3sgcBAgQIECBAgAABAgQIEGikgEBGI/WdmwABAgQIECBAgAABAgQIECAwlQKTOjurXmm6kioODwgQIECAAAECBAgQIECAQMMFBDIaXgINIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJpNQCCj2SqqPwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDDBQQyGl4CDSBAgAABAgQIEMibgCHg81YR7SFAgAABAgQIECBAgAABAgQIECBAgEDxBAQyilczLSZAgAABAgQIEKijwNhxHWFsR0f5DMPa2sLECePLj60QIECAAIG8CKS/sypDhGNGt4f095aFAAECBAgQIECAAAECBAgQyIeAQEY+6qAVBAgQIECAAAECOREQyMhJITSDAAECBHqnu7JhAABAAElEQVQVGDFyVFUgIwUIBTJ6ZbMDAQIECBAgQIAAAQIECBAYMgGBjCGjdiICBAgQIECAAIEiCAhkFKFK2kiAAAECSUAgw3VAgAABAgQIECBAgAABAgTyLSCQke/6aB0BAgQIECBAgMAQC9QO/z58WFsY3d4+xK1wOgIECBAg0LuAQEbvRvYgQIAAAQIECBAgQIAAAQKNFBDIaKS+cxMgQIAAAQIECBAgQIAAAQIEplJgUmdn1StNV1LF4QEBAgQIECBAgAABAgQIEGi4gEBGw0ugAQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECzCQhkNFtF9YcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBouIBARsNLoAEECBAgQIAAAQJ5EzAEfN4qoj0ECBAgQIAAAQIECBAgQIAAAQIECBAonoBARvFqpsUECBAgQIAAAQJ1FBg7riOM7egon2FYW1uYOGF8+bEVAgQIECCQF4H0d1ZliHDM6PaQ/t6yECBAgAABAgQIECBAgAABAvkQEMjIRx20ggABAgQIECBAICcCAhk5KYRmECBAgECvAiNGjqoKZKQAoUBGr2x2IECAAAECBAgQIECAAAECQyYgkDFk1E5EgAABAgQIECBQBAGBjCJUSRsJECBAIAkIZLgOCBAgQIAAAQIECBAgQIBAvgUEMvJdH60jQIAAAQIECBAYYoHa4d+HD2sLo9vbh7gVTkeAAAECBHoXEMjo3cgeBAgQIECAAAECBAgQIECgkQICGY3Ud24CBAgQIECAAAECBAgQIECAwFQKTOrsrHql6UqqODwgQIAAAQIECBAgQIAAAQINFxDIaHgJNIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoNgGBjGarqP4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDRcQyGh4CTSAAAECBAgQIEAgbwKGgM9bRbSHAAECBAgQIECAAAECBAgQIECAAAECxRMQyChezbSYAAECBAgQIECgjgJjx3WEsR0d5TMMa2sLEyeMLz+2QoAAAQIE8iKQ/s6qXMaMbq98aJ0AAQIECBAgQIAAAQIECBBosIBARoML4PQECBAgQIAAAQL5EhDIyFc9tIYAAQIEuhcYMXJUqBzVKQUIU5DQQoAAAQIECBAgQIAAAQIECORDQCAjH3XQCgIECBAgQIAAgZwICGTkpBCaQYAAAQK9Cghk9EpkBwIECBAgQIAAAQIECBAg0FABgYyG8js5AQIECBAgQIBA3gRSIKPyt42HD2sLo9sNAZ+3OmkPAQIECIQgkOEqIECAAAECBAgQIECAAAEC+RYQyMh3fbSOAAECBAgQIECAAAECBAgQINClQAoQdsb/l5a2OF2JKUtKGn4SIECAAAECBAgQIECAAIHGCwhkNL4GWkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0mYBARpMVVHcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBxgsIZDS+BlpAgAABAgQIECCQM4E0BHzlYvj3Sg3rBAgQIECAAAECBAgQIECAAAECBAgQINAXAYGMvijZhwABAgQIECBAoGUExo7rCGM7Osr9TWGMiRPGlx9bIUCAAAECeRFIf2dVLmNGt1c+tE6AAAECBAgQIECAAAECBAg0WEAgo8EFcHoCBAgQIECAAIF8CQhk5KseWkOAAAEC3QuMGDkqVI7qlAKERnXq3ssWAgQIECBAgAABAgQIECAw1AICGUMt7nwECBAgQIAAAQK5FhDIyHV5NI4AAQIEKgQEMiowrBIgQIAAAQIECBAgQIAAgRwKCGTksCiaRIAAAQIECBAg0DgBgYzG2TszAQIECPRPQCCjf172JkCAAAECBAgQIECAAAECQy0gkDHU4s5HgAABAgQIECBAgAABAgQIEBgEgTRdSWf8f2lpa2szZUkJw08CBAgQIECAAAECBAgQIJADAYGMHBRBEwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHmEhDIaK566g0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQAwGBjBwUQRMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB5hIQyGiueuoNAQIECBAgQIDAAAXGjusIYzs6ykcZ1tYWJk4YX35shQABAgQI5EUg/Z1VuYwZ3V750DoBAgQIECBAgAABAgQIECDQYAGBjAYXwOkJECBAgAABAgTyJSCQka96aA0BAgQIdC8wYuSoMKmzs7xDChCmIKGFAAECBAgQIECAAAECBAgQyIeAQEY+6qAVBAgQIECAAAECOREQyMhJITSDAAECBHoVEMjolcgOBAgQIECAAAECBAgQIECgoQICGQ3ld3ICBAgQIECAAIG8CQhk5K0i2kOAAAEC3QkIZHQn43kCBAgQIECAAAECBAgQIJAPAYGMfNRBKwgQIECAAAECBAgQIECAAAEC/RJI05V0VkxZ0hanKzFlSb8I7UyAAAECBAgQIECAAAECBOoqIJBRV14HJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFpRQCCjFauuzwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBdBQQy6srr4AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEArCghktGLV9ZkAAQIECBAgQKBbgbHjOsLYjo7y9mFtbWHihPHlx1b6J/Dxxx+H9P++LtNOO21I/7cQIECAQO8C6e+symXM6PbKh9YJECBAgAABAgQIECBAgACBBgsIZDS4AE5PgAABAgQIECCQLwGBjMGtx403/S5cfOmlfT7oNNNME2aeeeYw15xzhiWXXCKstOKK4ctf+lKfX29HAgQItJLAiJGjwqTOznKXU4AwBQktBAgQIECAAAECBAgQIECAQD4EBDLyUQetIECAAAECBAgQyImAQMbgFqK/gYyuzt620kphqy23CLPNNltXm+v+XBrh480336w6z4wzzpgFR6qe9IAAAQJDLCCQMcTgTkeAAAECBAgQIECAAAECBPopIJDRTzC7EyBAgAABAgQINLeAQMbg1ncwAhmpRQvMP384YL99wyyzzDK4DezD0Z577vlw5DHHVO2ZRu7YZeedqp7zgAABAkMtIJAx1OLOR4AAAQIECBAgQIAAAQIE+icgkNE/L3sTIECAAAECBAgQINAPgcEKZKRTLrv00mHM6PZ+nH1wdhXIGBxHRyFAYPAF0nQlnRVTlrTF6UpMWTL4zo5IgAABAgQIECBAgAABAgSmVkAgY2rlvI4AAQIECBAgQIAAgV4FugpkzDfvvGHJJZaY4rX//e9/wxv/fiM89/wLU0wRUtr58EMPCQt+/vOlh0PyUyBjSJidhAABAgQIECBAgAABAgQIECBAgEDTCQhkNF1JdYgAAQIECBAgQIBAfgS6CmQMH9YWdtphh24b+eGHH4ZLL7ss/P7W26bYZ5ONNgwbbrDBFM/X8wmBjHrqOjYBAgQIECBAgAABAgQIECBAgACB5hUQyGje2uoZAQIECBAgQIAAgYYLTE0gIzU6jZZx1LHHhhSGqFxWXXnlsP1221Y+Vfd1gYy6EzsBAQIECBAgQIAAAQIECBAgQIAAgaYUEMhoyrLqFAECBAgQIECAwNQKjB3XEcZ2dJRfPqytLUycML782Er/BKY2kJHOcuVVV4errrmm6oTLLr10GDO6veq5rh7889VXw8MPPxJef+P18Prrb4Tpp5suzDPPPGGBBeYPyy27bJhhhhm6eln23D9efrlq24svvhh+8ctfVT23zNJLhc0326zquWmnnTak6VgqlzfeeCO8/8EHlU+FeWM7povt6W5JYZSXX3mlavP0008f5pl77qrn0oPX/vWv8NFHH1U9/9kFFig//uCDD8OLL70YPv744zDzzDOHz3/uc+Vtb731Vnj7nXfKj9PK3HPNVbZJr3n6r38Nb0S/t95+O8w+++xZ/770pS+GaaaZpup1g/kgeb300kvh73//e/z/i+Gdd9+JZvNm515wwc+HhRZaqE+nG8r+pRo8/Mgj4Z///Gd47bV/ZV5zzvGZMNdcc4fktegii/TY5q6uk3QtpWuqcqm9Niu3dXWNvPf+++Hf//535W5h9tlmC7PMMkvVc7UPUu0fevjhkK799P555913Q6k/Sy65RJ+mDerqOp5h+hnC3HPPVT5dqtEr0Sztm67vOeecs7zNSt8E0t9ZlUtf/vtYub91AgQIECBAgAABAgQIECBAoL4CAhn19XV0AgQIECBAgACBggkIZAxuwQYSyLj9jjvC+PMnVjVozdVXD6NGbl31XOWDp55+OgtyPP7EE9lN3sptpfUUTFhjtdXCRhtuGGacccpgxo4/2qXb15aO0dXP2eKN7tNOPqlqU7qeHow3tiuXIw8/LHzus5+tfKpqPd3c32XX6tBJ2j+9rnY58phjqkYRSUGJM395RkiBlF+feVZ4/oUXsjBGel0Kkew2enT5EJfEaWFuuPGm8uO0su/ee2XhgbvuvjtcEQMxKShQuyww//xhk403CiutuGLtpgE9/iBOVXPhhReFO+O50w367pYUytl00+9XhUu62nco+pdq9ftbbg033Xxz+M9//tNVM7LnFvrCF8K666wThrWt1OU+5543Put35cZDDzqwKnzy+uuvh733279yl6r1OeaYI5x8wvFVz912++1hwsTfVD237aiRYfV4/Xe1pP5cfc214Y677gopLNHdkgImG8fpgxZfbLHudgmpnj9pn3y9pR3T/nvvuUf484MPhksuvawqeLRZrGkysvRPYMTIUWFSZ2f5RSlAmIKEFgIECBAgQIAAAQIECBAgQCAfAgIZ+aiDVhAgQIAAAQIECOREQCBjcAsxkEDGxZdeGtLrK5fubtqmG/g33nRTuPyKK8sBhMrXdbWeRlpo//GPq35jP+1X9EDGuNNPC8cce1x46R//qOp2XwMZzz77XEj2PS0p+LHzjjuEtpW6Dhj09Nqutj3//AvhV2eeWXWDvqv9Ss996lOfCjtut10YNqz7G8/dBTIGq3/pmvtVDL103ndfqVm9/vxuDBz8IAYPapfrb7ghXHr5b6ueHtO+a1h2mWXKz/3l0cfCKaedVn7c1crPxo0Nn55xxvKmy397Rbj2+uvLj9NKCkR0FaRIIZ6fn/HL8Le//a1q/+4epBpstumm4Tvf/laXu3QXyNhi883CccefkAU2Kl/Y3Xu7ch/rUwoIZExp4hkCBAgQIECAAAECBAgQIJAnAYGMPFVDWwgQIECAAAECBBouIJAxuCWY2kDGu++9Fw457PCqERrS9A3HHnXUFAGK1OIbbrwxXHLZ5f1ufJom4bBDDwkzffrT5dcWOZBR7kQXK30JZCy5xBLhiSef7FOoJdVjTHt7WOprS3Zxtr4/lUZi2O+AA6eY2qW3I6TgweGHHdrlVC7ptV0FMgazf9fFoMNlMfDQ3+V7cXSRDdZfv+pl9z/wwBTT4owcsVX4xpprlve75dbbwsQLLig/7mrloP33D1/+8pfKm84+99xw9z33lh+nlZOOP26KqUHeiVPXHHrEkVXvt6oX9fBgqy23DGt/c60p9ugqkDHFThVPCGRUYPRjVSCjH1h2JUCAAAECBAgQIECAAAECDRAQyGgAulMSIECAAAECBAgQaBWBqQlkpN/QT9Ms/PWZZ6qY0m/ib7HZZlXPpQfPPvdcODb+xv3HH39ctW266abLpt+Yd5554s3+9+Nv/v99ilEj0gtWWXl42CGOtlBaDjjo4KopMz76v/+b4kZ1CgPMPvvspZdkP2edddZw4P77VT031FOWVJ285kFfAhmVL0lTsCz0hQXDdNNOl7m9+tprlZuz9RlnmCEcdcThYa655ppiW1+fOD/W+tY4tUblkqaV+fbaa4cFF/x8SHV86aV/hJtvuWWKOqQwyO677Vb50vJ6V4GM8sa4MtD+pcDQiy+9VHnIMDyO2LHUkl8L8843b/jrX/8aHnr4kZCmz6lc0rVzwnHHhllmmaX8dLrmDzvyqPLjtLJhDG2kqWFKy28uuDD8/tZbSw/Dut/5Tvjb3/8W0sgZpWWn7bcPw4cPKz0MJ596Wnj0scnbZ4j1+nkcRSONcFK5dPzs5+FPcRqR2mW+eefNpk2ZLV7br772akhTAn3wwYdVu00//fThkDi9Su00PAIZVUx1e5CmK+msmLKkLU5XYsqSunE7MAECBAgQIECAAAECBAgQ6LeAQEa/ybyAAAECBAgQIECAAIG+CnQVyJh5ppnCHHPM0eUh3njjjfDe++9PsS2FJrbfdtspbiSnHdM0DpU3pdNziy7y/9m77zi5qvJ/4A81QEINTTqIgFIV3KVJFbCg0kQhJjRFhE0oofcOKgImKwJSE6MoTfSrImABBMyCgiD+6NJ7aEJCDb97BmeYmexsye7s3Mm+z+sVZu6dO/c+931uMn+cD+d8LPbac48ZZk9Iy0tcfOmEePvtykHlE7JZMpZZeun01Rnao48+FiedemrF/k+vt17ss/e3KvZ1ttGoQMaCCy4YX/jc5+KjK62UhSUWLrilgfN5M/tiqxVYSMft8rWdY9NNNikeWnidPLkjLp04sV+XmkgzMxyRBWDSa7GlpTBSf1QP8E+dOjWOPu74ePXVV4uHxpAhc8ePxs0YMEgH1PP+Uthgv9FjKoI7K664Qhx1+OEzPKMXXnxx3Hrb31JJhc9WXGGF2OXrX4uVVlyxsC/958233iqcr7Qje7PRBhvEnnvsXtpVHa7Yd59vxyP/+U82O8x1pWO2/cIXYvvtvlLaPvrY4+KZZ58tbS+91FJxYjarSHl7KAuOpEBTeUuzn6QZOjbeaKOK+3nllVdiwsSfxj/vuaf88Fj3U5+KVE956yqQkZYLSoGSpZdeKhbIgj+pDRkyT6E/y8/hPQECBAgQIECAAAECBAgQIECg2QUEMpq9B9VPgAABAgQIECBAIMcCnQUyelNumoXiG7vuUhjw7ex7KcBxyOFHVAyMDx++SBx/zDGRZlnorP31llsKoYzyzz6/zTax0447lO8qvW+2QMbCCy8cJxx7TMUMDKWbKXtTK7BQPctC2Vfi99deG1dcdXX5rlj5ox+NIw47tGJfbzbezWYgSbM43H7HHXHnnXdFCrvsNmpkp6f41TW/jt/89rcVn512ysmRZnKobvW8vxenTInDjjiy4pLLLbtsYaaI6tknUiDil5dfHp9cZ51Ye621IoVlOmsHHnxIvPbaa6WPVv/Ex+OgAw4obR982OEVM4Sk0Mqj2ewwKWBUbNXBiBQaSWGPYvvk2mtH2377FjcLrylgcePNN1fsSzPRpBlpOmtphoyTTjmlIuiRQjxnnfH9isBPrUBGmqklLXVT7dTZtewjQIAAAQIECBAgQIAAAQIECDS7gEBGs/eg+gkQIECAAAECBAjkWKCvgYyPLLlkYdmGNddcM9LyGNXtT9kSDpOypRzK23Zf/lJ8adtty3dVvE8BgDEHHFgx00Ma0E8D+521ZgtkfDNbfmWDbEaR7lpngYU0g0Ia6K81WJ5mshhz4EEVp07LlXw/W4KjP9o777wT702fHmlZj87arbfeFhdecknFR6OzgME6WdCgutXz/tLyON9pGz3DMjlpyZI0q0SaoSXNMtGbdvr3vl9YEqT4nTRDyEknHF/YrJ5BI80ikpYeefSxxyJ9r9jKZ8BIM820jdm/+FHhdZutt4qdd9qpYt/+B42N119/vbQv/T076wc/6HK2it/9/vdx5dW/Kn0nvdl7r72iNbv/YqsVyPjeaadFCk1pBAgQIECAAAECBAgQIECAAIHBICCQMRh62T0SIECAAAECBAj0WCAtMTGuvb10fGtLS0ya+OH/gV76wJseCfQ1kFG8SApmHDL2oBlmF+hs0H3JJZaoOTtG8XxPPf1UpP/Tv9jS4Pl55/yo0yBCswUyulp+pXi/6bUzu84G7Mu/k9637X9ATJs2rbR7zjnnLNiVdvThTQoGPPnUU/Hkk0/F888/F9Onv19xtueef74wm0b5zr2/+c1obfl0+a7C+3rf38WXXBp/vfXWGa6bdqRAybLZjBmrrbpqrLbaqoWlY9IsEl21iy6+JG657bbSIfPOM0+0j/thYfuxxx6PE7NZKYqtGCBKXilQUWzpGimokQIbTz/zTByTLfFS3kZ9Y0TFUjSdhSZSIGPpGsv3FM+Vlo959rnnipuF1+2/8uXY9otfLO3r7NxDhw6NcWedWTrGm74LTO7oqDhJ+s3SCBAgQIAAAQIECBAgQIAAgfwICGTkpy9UQoAAAQIECBAgkAMBgYz+7YTOAhlpKZHFFlu00wu9nw3AP/X00zPMPJAO3vQzn4lRI79R8b3zL7ggJnfcXrFvZjfSkgtpiZTq1myBjDTgnQa+u2udBRZG7PL12GLzzbv8alqqIy3ZUWxpNo0Lzju3uDlTryk8cP5PLognnnyy19/vTSCjP+/vv//9b7Sf8+N46OGHu6157izkkGbx+PrOX50hVFT88m9/97u46lfXFDcLrz/KwhUp3DF5ckecf+GFpc/WzmaMGTO6rbCdZixJM5cUW3EJl7QMzA/OOru4u/A69sAD4hMf/3hpXwpVHHXMsaXtvrzZfNNN4xsjdi2dorNAxjJZ0CMFhrT+ExgxclT2b+CHoYwUIBTK6D9fZyJAgAABAgQIECBAgAABAn0VEMjoq6DvEyBAgAABAgQIzFICAhn9252dBTLSsg7fypY3qNXSQPelEybGnf/8Z8UhaeaLU046sWLfD8ePj7vv+VfFvpndSMtDpGUiqttABzLSzB37jh5dUUb58hXlH5x06qmR6itvfQlk7LvPt2PdT32q/HQzvO/vQEYKG1w6cWLFEjIzXLSLHb0JZPT3/U3Plle59g9/iF/9+jedhoiqy5533nljl6/tHBttuGH1R9Fx++1xXhZKKW8nn3hCpNlhfnXNr+M3v/1t6aPymUxO++73KkIh+2dBjbWywMat2WwbF2azbpS36uVC/vPoo3Hyqf2z3Myn11sv9tn7W6XLCWSUKOr6RiCjrrxOToAAAQIECBAgQIAAAQIE+iwgkNFnQicgQIAAAQIECBCYlQQEMvq3N2cmkJEqSCGLFLYob2kwu/2Hlf/H/4UXX5wNPP+t/LBYZJFFYu5uloeo+ML/NvYfMzrSUhDVbaADGWlZjiOPPqaijIEKZOz3nX3iU5/8ZMW1qzf6M5Dxr3v/HWf98INlOaqv09Pt3gQy6nV/aaaJu+66K/559z3x8COPdBvOGJnNJLFZNqNEeateliR9VpzR4sfnnR93/P3vpcN3y2aK2SSbMSa1Sy6dEDffckvps5132ilSYKN6xo20nMmP28dXLMuTZjpJ/VnehgyZOxZeaOHyXT16v+Yaq8fXv/a10rECGSWKur4RyKgrr5MTIECAAAECBAgQIECAAIE+Cwhk9JnQCQgQIECAAAECBAgQqCUws4GMZ559No4+9riK086XBTLGVwUyrrr6V/Hb3/++4rhv7rFHbLDB+hX7+rLRl0DGOeeeF3//xz8qLn/I2INitVVXrdhXvtFZSGFWDWSkMEa63/K2wgrLxxabbRYfX221GDpsWPlHcUsWPJj088sq9uUhkFFe0LRp0+LBhx6Kxx57LO5/4MG47/774/333y8/pLBsyZnf/17FvqnZ90bvf0DFvuKzfNwJJ8aTTz1V+uywQw6OVT72scL2H667Ln55xZWlzzbZeOPYbdTI+Omkn8Wfb7yxtD/NtJFm3Chv77zzTnynbXRFfYsOHx7fPe3U8sNm6r1Axkyx9fpLKURYvmRJWsrGkiW9ZvQFAgQIECBAgAABAgQIECBQNwGBjLrROjEBAgQIECBAgAABAvUOZHS2LMOGWRhjryyU0VW7M5vNYIXll4+FF+5+JoC+BDJ+ftllccOf/lxRyqhvjIhNN9mkYl/5xkXZMhO3ZMtNlLdZNZBxwNiDIy1RU96OO/qoWG655cp3ld5f9otfxPV//FNpO71pVCDj9ddfL4Qt7rvv/pj25rSay/A8/vjjcfJpp88wa8bZPzgj5p9//op72f+gsZHOW2w7br9dfP5znyuEJlJ4otjKv/vPu++Oce0/Kn4UH1t55Tj80ENifLbvruyzYls7W8YkDdZXt0OPOCKmTHmpYncKZKRgRq2W+uz+Bx4oLG8z22yzdXqYQEanLHYSIECAAAECBAgQIECAAAECg0xAIGOQdbjbJUCAAAECBAgQIDCQAvUOZKTZCA48+JAoH6xOA8QHjBkTa6z+iU5v9YEHH4zv/+DMmGOOOWLzzTaNL37+8zGsaiaG8i92FshYb9114zvf3rv8sE7f35CFB36ehQjKWwpXHH/sMYXrl+9P75944ok48ZRTY/r06RUfzYqBjDRrxLf2+U7F7AwLLLBAnHXG9yvuvbgxderUODabKeLll18u7iq87r3XXtHa2lKxL21cfuWVce0frqvY319LlqSlcm772+SK2o8/5uhYdtllK65X3LjgoosKxxe302tnoYdTsuDGI//5T+mwNFPI1tnyI4cfeVRp39ChQ2PcWWeWtquXuEkhjxTYOPGUU7JZOh4vHbfVZ7eMr++8c2m7+ObKq66O3117bXGz8Jpm30gzucw+++wV+9NG6rezx40rzGyS7neH7baLtdZcY4bjBDJmILGDAAECBAgQIECAAAECBAgQGIQCAhmDsNPdMgECBAgQIECAAIGBEqh3ICPdx/kXXJBN2X97xS3NM2RIfPlL28Znt9yyIvhw77//X1x0ySXxyiuvlI5Px7btt29hiYzSzrI3aVA7DW6Xt+HDF4nDDzmksPREcX8avK6eLSDNPHDYkUdWDNyn49NsBSN23TXSeVJLgZK///0fMXHSpHjzrbcK+8r/MysGMtL9HXzY4TMELMa07Rdrr7VW+e3Hq6++GikEkfqvuqUZUZLlXHPOWdHX9QxkdBa0WWnFFWOfvfcu9WmxzrfffjtS0KJ8yZF50/I7Z581w/OS7vHW2/5W/Gp8cu21Y5NsNpUfjh9f2rfyRz8aRxx2aGn7vffei31Hj4l33323tC8FNo4+7vh47bXXSvtG7PL12GLzzUvbxTfPPvdcHHXMscXN0msKZYzYdZdYZumlS/tSKOaKK6+KG2++ubQvvels9g2BjAoiGwQIECBAgAABAgQIECBAgMAgFRDIGKQd77YJECBAgAABAgQ6Fxg3vj2b/r+99GFrS0tMmjihtO1N7wQGIpCRQg/Hn3RSpMHi6jb33HPHkksuGSl08cKLL84w+J+OXy77v/yPPPywmGuuuaq/XthO5x19wIGdfla+c+eddoptstkMqtuPzzs/7vj736t3F7YXXHDBmC8bnE+zHFTPilH+hVk1kHHeTy6IjtsrwzTpvpddZplshpPVY7755o1nnn02/vGPOzsNqpQbzZkFMs4758OlO+oZyEhLdow99LAZliGZd555Yv3W1vhINgvK0Pnmi5defiluufW2SKGH8vaJj388xh54QPmuwvvf/N//xa9+/ZvS/iWXWKIQFPrzjTeW9m284Yaxx+67lbbTm2Oy8MXTzzxT2pdmwvjF5ZdXBIEO3H//mrPGpGOvu/6G0vfL36RlfZZYfPHCUirPv/BCpIBJdfv2t74ZLZ/+dMVugYwKjrptTO7oqDh3+s3SCBAgQIAAAQIECBAgQIAAgfwICGTkpy9UQoAAAQIECBAgkAMBgYz+7YSBCGSkiu+866740Y/PrRiA7smdpJkKUhgjBR66ascef0I89fTTXR0StQIZaQD7B2edHQ89/HCX3y9+uGU2i0GagaB8xoNZNZDx+OOPx8nZ7BFploeetBRkSDNh/POee2Y4fCADGenit2ZBi4suvbTXz1wKCaXZVZZffrkZ7mHy5I44/8ILZ9hfvuOrO+4Qn9tmm/JdhWf/H3feWbGveuP0U0+JxRZdtHp3YTv5n/6971csl9LpgZ3s3PQzn4lRI78xwycCGTOQ1GXHiJGjshmCPgxlpAChUEZdqJ2UAAECBAgQIECAAAECBAjMlIBAxkyx+RIBAgQIECBAgMCsKiCQ0b89O1CBjFT1v+79d/wkG8x+/fXXe3QTH11ppfj2t741wxITnX35gQcfjDPOPKvL4ECtQEY637Rp0woD3uXLVnR2nRTG2DVbWmK/bAmK8qVLZtVARjJItuece16kWSe6asOGDYtjjjoyXnrppfjeGT+YIQgx0IGMVOvNf/1rXDrxpzPUUus+0pI2e39zrxlmkyge/59HH42TTz2tuNnp6+hseZ11sqVMyttVV/8qfvv735fvqng/xxxzxLk/ao+0rE6tlp63CRMnzrD8T63j04wyX91xx9hyixmXQUnfEcioJde/+wUy+tfT2QgQIECAAAECBAgQIECAQH8LCGT0t6jzESBAgAABAgQINLWAQEb/dt9ABjJS5S+//HL84frr49bb/hZvvPFGpzeTZsVIwYcvf2nbSAPVPW2PP/FEXP2rX8Wjjz0er7322gxf6yqQkQ5O3/ldNmielrCYmgU0ytviiy0Wn//cNrFJNttAaoMpkJHuN4UsfnLhRYVZRDpbumXFFVeIfb/97VhkkUXS4XH3Pf+K2++4vfBaDOA0IpCRaknLeNxwww3x11tuLYQQ0r7qlp6z9Vtb4guf/3ykZUhqtfTMjjnwoFofF/afctKJM5zjtux5v+Dii2t+Ly05curJJ9X8vPyD2++4I/78lxvj/gceKN9d8X6lFVeMkSN2jeWWm3GWj+KBAhlFifq+CmTU19fZCRAgQIAAAQIECBAgQIBAXwUEMvoq6PsECBAgQIAAAQKzlED51O/FGzP9e1GieV7Tch9piZA00J/+pDb//PPHYlnwYdVVVulVEKO/7/qdd96JKVlNU6a8FEOGzB0LLbRQDM+CBmn2hMHe0vIuaRaRtJTJK6+8GmlWjJVWWjFWXGGF3PtMe/PNeDpb1mbKlCmFZy718/BFhsfwRYfHR5ZcMhZYYIGm6t4XXnwxnshCSC+99HJh9pKhQ4fGgtk9rLzyyj2aVaapbraJi00hwvLfrTGj2yxZ0sT9qXQCBAgQIECAAAECBAgQmPUEBDJmvT51RwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECDBQQyGtwBLk+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjMegICGbNen7ojAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoMECAhkN7gCXJ0CAAAECBAgQyJfA5I6OGDe+vVRUa0tLjBndVtr2hgABAgQI5EUg/WaVt/SbpREgQIAAAQIECBAgQIAAAQL5ERDIyE9fqIQAAQIECBAgQCAHAimMMa69MpAxaeKEHFSmBAIECBAgUCkwYuSoKA9lpN8roYxKI1sECBAgQIAAAQIECBAgQKCRAgIZjdR3bQIECBAgQIAAgdwJCGTkrksURIAAAQI1BAQyasDYTYAAAQIECBAgQIAAAQIEciIgkJGTjlAGAQIECBAgQIBAPgQEMvLRD6ogQIAAge4FBDK6N3IEAQIECBAgQIAAAQIECBBopIBARiP1XZsAAQIECBAgQCB3AuVTvxeLM/17UcIrAQIECORJIIUIy3+3xoxus2RJnjpILQQIECBAgAABAgQIECAw6AUEMgb9IwCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6G8BgYz+FnU+AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYNALCGQM+kcAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDfAgIZ/S3qfAQIECBAgAABAk0tMLmjI8aNby/dQ2tLS4wZ3Vba9oYAAQIECORFIP1mlbf0m6URIECAAAECBAgQIECAAAEC+REQyMhPX6iEAAECBAgQIEAgBwIpjDGuvTKQMWnihBxUpgQCBAgQIFApMGLkqCgPZaTfK6GMSiNbBAgQIECAAAECBAgQIECgkQICGY3Ud20CBAgQIECAAIHcCQhk5K5LFESAAAECNQQEMmrA2E2AAAECBAgQIECAAAECBHIiIJCRk45QBgECBAgQIECAQD4EBDLy0Q+qIECAAIHuBQQyujdyBAECBAgQIECAAAECBAgQaKSAQEYj9V2bAAECBAgQIEAgdwLlU78XizP9e1HCKwECBAjkSSCFCMt/t8aMbrNkSZ46SC0ECBAgQIAAAQIECBAgMOgFBDIG/SMAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOhvAYGM/hZ1PgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDQCwhkDPpHAAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ3wICGf0t6nwECBAgQIAAAQJNLTC5oyPGjW8v3UNrS0uMGd1W2vaGAAECBAjkRSD9ZpW39JulESBAgAABAgQIECBAgAABAvkREMjIT1+ohAABAgQIECBAIAcCKYwxrr0ykDFp4oQcVKYEAgQIECBQKTBi5KgoD2Wk3yuhjEojWwQIECBAgAABAgQIECBAoJECAhmN1HdtAgQIECBAgACB3AkIZOSuSxREgAABAjUEBDJqwNhNgAABAgQIECBAgAABAgRyIiCQkZOOUAYBAgQIECBAgEA+BAQy8tEPqiBAgACB7gUEMro3cgQBAgQIECBAgAABAgQIEGikgEBGI/VdmwABAgQIECBAIHcC5VO/F4sz/XtRwisBAgQI5EkghQjLf7fGjG6zZEmeOkgtBAgQIECAAAECBAgQIDDoBQQyBv0jAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDobwGBjP4WdT4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg0AsIZAz6RwAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0N8CAhn9Lep8BAgQIECAAAECTS0wuaMjxo1vL91Da0tLjBndVtr2hgABAgQIECBAgAABAgQIECBAgAABAgQI9ERAIKMnSo4hQIAAAQIECBAYNAIpjDGuvTKQMWnihEFz/26UAAECBJpHYMTIUZGChMWWfq9SkFAjQIAAAQIECBAgQIAAAQIE8iEgkJGPflAFAQIECBAgQIBATgQEMnLSEcogQIAAgW4FBDK6JXIAAQIECBAgQIAAAQIECBBoqIBARkP5XZwAAQIECBAgQCBvAgIZeesR9RAgQIBALQGBjFoy9hMgQIAAAQIECBAgQIAAgXwICGTkox9UQYAAAQIECBAgkBOB8qnfiyWZ/r0o4ZUAAQIE8iQgkJGn3lALAQIECBAgQIAAAQIECBCYUUAgY0YTewgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECfRIQyOgTny8TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBGYUEMiY0cQeAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECfBAQy+sTnywQIECBAgAABArOawOSOjhg3vr10W60tLTFmdFtp2xsCBAgQIECAAAECBAgQIECAAAECBAgQINATAYGMnig5hgABAgQIECBAYNAIpDDGuPbKQMakiRMGzf27UQIECBBoHoERI0dFChIWW/q9SkFCjQABAgQIECBAgAABAgQIEMiHgEBGPvpBFQQIECBAgAABAjkREMjISUcogwABAgS6FRDI6JbIAQQIECBAgAABAgQIECBAoKECAhkN5XdxAgQIECBAgACBvAkIZOStR9RDgAABArUEBDJqydhPgAABAgQIECBAgAABAgTyISCQkY9+UAUBAgQIECBAgEBOBNLU7x1l07+nska3teWkOmUQIECAAIEPBQQyPrTwjgABAgQIECBAgAABAgQI5FFAICOPvaImAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoKkFBDKauvsUT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORRQCAjj72iJgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCpBQQymrr7FE+AAAECBAgQINDfApM7OmLy5I7SaVtbW6K1paW07Q0BAgQIECBAgAABAgQIECBAgAABAgQIEOiJgEBGT5QcQ4AAAQIECBAgMGgExo1vj3Ht7aX7TWGMSRMnlLa9IUCAAAECeREYMXJUpCBhsaXfKyHCooZXAgQIECBAgAABAgQIECDQeAGBjMb3gQoIECBAgAABAgRyJCCQkaPOUAoBAgQIdCkgkNEljw8JECBAgAABAgQIECBAgEDDBQQyGt4FCiBAgAABAgQIEMiTgEBGnnpDLQQIECDQlYBARlc6PiNAgAABAgQIECBAgAABAo0XEMhofB+ogAABAgQIECBAIEcCaer3jrLp31Npo9vaclShUggQIECAwAcCAhmeBAIECBAgQIAAAQIECBAgkG8BgYx894/qCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYUEMhowk5TMgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJBvAYGMfPeP6ggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEmFBDIaMJOUzIBAgQIECBAgED9BCZ3dMTkyR2lC7S2tkRrS0tp2xsCBAgQIECAAAECBAgQIECAAAECBAgQINATAYGMnig5hgABAgQIECBAYNAIjBvfHuPa20v3m8IYkyZOKG17Q4AAAQIE8iIwYuSoSEHCYku/V0KERQ2vBAgQIECAAAECBAgQIECg8QICGY3vAxUQIECAAAECBAjkSEAgI0edoRQCBAgQ6FJAIKNLHh8SIECAAAECBAgQIECAAIGGCwhkNLwLFECAAAECBAgQIJAnAYGMPPWGWggQIECgKwGBjK50fEaAAAECBAgQIECAAAECBBovIJDR+D5QAQECBAgQIECAQI4E0tTvHWXTv6fSRre15ahCpRAgQIAAgQ8EBDI8CQQIECBAgAABAgQIECBAIN8CAhn57h/VESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAk0oIJDRhJ2mZAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCDfAgIZ+e4f1REgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNKCCQ0YSdpmQCBAgQIECAAIH6CUzu6IjJkztKF2htbYnWlpbStjcECBAgQIAAAQIECBAgQIAAAQIECBAgQKAnAgIZPVFyDAECBAgQIECAwKARGDe+Pca1t5fuN4UxJk2cUNr2hgABAgQI5EVgxMhRkYKExZZ+r4QIixpeCRAgQIAAAQIECBAgQIBA4wUEMhrfByogQIAAAQIECBDIkYBARo46QykECBAg0KWAQEaXPD4kQIAAAQIECBAgQIAAAQINFxDIaHgXKIAAAQIECBAgQCBPAgIZeeoNtRAgQIBAVwICGV3p+IwAAQIECBAgQIAAAQIECDReQCCj8X2gAgIECBAgQIAAgRwJpKnfO8qmf0+ljW5ry1GFSiFAgAABAh8ICGR4EggQIECAAAECBAgQIECAQL4FBDLy3T+qI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJpQQCCjCTtNyQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC+BQQy8t0/qiNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaUEAgowk7TckECBAgQIAAAQL1E5jc0RGTJ3eULtDa2hKtLS2lbW8IECBAgAABAgQIECBAgAABAgQIECBAgEBPBAQyeqLkGAIECBAgQIAAgUEjMG58e4xrby/dbwpjTJo4obTtDQECBAgQyIvAiJGjIgUJiy39XgkRFjW8EiBAgAABAgQIECBAgACBxgsIZDS+D1RAgAABAgQIECCQIwGBjBx1hlIIECBAoEsBgYwueXxIgAABAgQIECBAgAABAgQaLiCQ0fAuUAABAgQIECBAgECeBAQy8tQbaiFAgACBrgQEMrrS8RkBAgQIECBAgAABAgQIEGi8gEBG4/tABQQIECBAgAABAjkSSFO/d5RN/55KG93WlqMKlUKAAAECBD4QEMjwJBAgQIAAAQIECBAgQIAAgXwLCGTku39UR4AAAQIECBAgQIAAAQIECBDoVCCFCMtba0tL+ab3BAgQIECAAAECBAgQIECAQIMFBDIa3AEuT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECMx6AgIZs16fuiMCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgwQICGQ3uAJcnQIAAAQIECBDIl0Ca/n3y5A+ngG9tbQlTwOerj1RDgAABAgQIECBAgAABAgQIECBAgACBZhAQyGiGXlIjAQIECBAgQIDAgAmMG98e49rbS9dLYYxJEyeUtr0hQIAAAQJ5EUi/WSlIWGxjRrcJERYxvBIgQIAAAQIECBAgQIAAgRwICGTkoBOUQIAAAQIECBAgkB8BgYz89IVKCBAgQKBrgREjR1UEMlKA0KxOXZv5lAABAgQIECBAgAABAgQIDKSAQMZAarsWAQIECBAgQIBA7gUEMnLfRQokQIAAgf8JCGR4FAgQIECAAAECBAgQIECAQL4FBDLy3T+qI0CAAAECBAgQGGCBNPV7R9n07+nyo9vaBrgKlyNAgAABAt0LCGR0b+QIAgQIECBAgAABAgQIECDQSAGBjEbquzYBAgQIECBAgAABAgQIECBAYCYFUoiwvFmupFzDewIECBAgQIAAAQIECBAg0HgBgYzG94EKCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVlMQCBjFutQt0OAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0XkAgo/F9oAICBAgQIECAAIGcCZgCPmcdohwCBAgQIECAAAECBAgQIECAAAECBAg0oYBARhN2mpIJECBAgAABAgTqJzBufHuMa28vXaC1pSUmTZxQ2vaGAAECBAjkRSD9ZpWHCMeMbov0u6URIECAAAECBAgQIECAAAEC+RAQyMhHP6iCAAECBAgQIEAgJwICGTnpCGUQIECAQLcCI0aOqghkpAChQEa3bA4gQIAAAQIECBAgQIAAAQIDJiCQMWDULkSAAAECBAgQINAMAgIZzdBLaiRAgACBJCCQ4TkgQIAAAQIECBAgQIAAAQL5FhDIyHf/qI4AAQIECBAgQGCABaqnf1+/tSVGt7UNcBUuR4AAAQIEuhcQyOjeyBEECBAgQIAAAQIECBAgQKCRAgIZjdR3bQIECBAgQIAAAQIECBAgQIDATApM7uio+KblSio4bBAgQIAAAQIECBAgQIAAgYYLCGQ0vAsUQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECMxqAgIZs1qPuh8CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg4QICGQ3vAgUQIECAAAECBAjkTcAU8HnrEfUQIECAAAECBAgQIECAAAECBAgQIECg+QQEMpqvz1RMgAABAgQIECBQR4Fx49tjXHt76QqtLS0xaeKE0rY3BAgQIEAgLwLpN6s8RDhmdFuk3y2NAAECBAgQIECAAAECBAgQyIeAQEY++kEVBAgQIECAAAECOREQyMhJRyiDAAECBLoVGDFyVEUgIwUIBTK6ZXMAAQIECBAgQIAAAQIECBAYMAGBjAGjdiECBAgQIECAAIFmEBDIaIZeUiMBAgQIJAGBDM8BAQIECBAgQIAAAQIECBDIt4BARr77R3UECBAgQIAAAQIDLFA9/fv6rS0xuq1tgKtwOQIECBAg0L2AQEb3Ro4gQIAAAQIECBAgQIAAAQKNFBDIaKS+axMgQIAAAQIECBAgQIAAAQIEZlJgckfHDN+0ZMkMJHYQIECAAAECBAgQIECAAIGGCQhkNIzehQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZVUAgY1btWfdFgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINExAIKNh9C5MgAABAgQIECCQZ4E0DfzkyR9MBd/a2hKmgM9zb6mNAAECBAgQIECAAAECBAgQIECAAAEC+RMQyMhfn6iIAAECBAgQIECgwQIjRo6KFMgotjFtbTFmdFtx0ysBAgQIEGi4wLjx7TGuvb0UGEy/U8KDDe8WBRAgQIAAAQIECBAgQIAAgQoBgYwKDhsECBAgQIAAAQIEIoqDXOUWD91/X/mm9wQIECBAoKECK6+6WsX1J02cIJBRIWKDAAECBAgQIECAAAECBAg0XkAgo/F9oAICBAgQIECAAIEcChjoymGnKIkAAQIECgKCgx4EAgQIECBAgAABAgQIECDQHAICGc3RT6okQIAAAQIECBAYYIHiYNf+2RTwo7MlSzQCBAgQIJAXgbSsVvqdKi6v5bcqLz2jDgIECBAgQIAAAQIECBAgUCkgkFHpYYsAAQIECBAgQIAAAQIECBAg0BQCxWBGWq5EI0CAAAECBAgQIECAAAECBPInIJCRvz5REQECBAgQIECAQI4F0v+RPCabNUMjQIAAAQIDLZACGK0tLQN9WdcjQIAAAQIECBAgQIAAAQIEZlJAIGMm4XyNAAECBAgQIEBg8AmMGDmqMD18GgzzfyMPvv53xwQIEGikQPE3KP3+CGU0sidcmwABAgQIECBAgAABAgQI9FxAIKPnVo4kQIAAAQIECBAYxALFgbAigVBGUcIrAQIECNRboPo3SCij3uLOT4AAAQIECBAgQIAAAQIE+kdAIKN/HJ2FAAECBAgQIEBgFheoHgzbP1u2ZHSbpUtm8W53ewQIEMiFwMqrrlZRh1BgBYcNAgQIECBAgAABAgQIECCQWwGBjNx2jcIIECBAgAABAgTyJlAMZXQ2EDZufHu0trYUSjaVfN56Tj0ECBBoDoHJHR0xeXJH4fek/Lck/caMa28v3ERnv0HNcXeqJECAAAECBAgQIECAAAECg09AIGPw9bk7JkCAAAECBAgQ6INACmWMyWbHKB8oSwNoaX+xjclmzkjHFFv5QFra19fPqwfjqq/f6M/TPT50/33ppdSq/+/uvH1eDNsUC65eDqDRn/f3M9TXZ7D6+3l7Bqv/DqR+zfszWF1f3p7B6r8D1c9A3p7R6mcgb89oeibL/x2srq/at/gMV99X2q8RIECAAAECBAgQIECAAAEC+RUQyMhv36iMAAECBAgQIECgSQQGeqCyekCueiCv0Z+nbisfaEzb1YPNefu8ug/zNhiet8Hu6sHivD2D1X8HmuEZrP47krdnsPrvSPUzkLdntPoZyNszmp7J3v47mO4h3ZdGgAABAgQIECBAgAABAgQINI+AQEbz9JVKCRAgQIAAAQIEcihQPciXSqz3QOWsONBYPRjd24HKvn6/erA5b4PheRvsrn7Gq/8e5O0ZTX8v+/qMDPT38/YMVv8dqX4G8vaM5u0ZrP47kp7J3v47l76jXVqRTQAAQABJREFUESBAgAABAgQIECBAgAABAs0lIJDRXP2lWgIECBAgQIAAgRwKpIG21NKAZGppINCSJZYsSc9BsVUPZvd2sD1vg93Vg/HVg815GwxP/TDQgYreDrZX19fbZ6Svz1hvv1/9DOTtGc3bM1j9dyQ9k509I6nu9Vs/+LdjdLb8lUaAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHAoIZOSwU5REgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINLeAQEZz95/qCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwKCGTksFOURIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDS3gEBGc/ef6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEcCghk5LBTlESAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0t4BARnP3n+oJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwSwm899578c4778S7774b099/f5a6t4G+mdmyC842++wx15xzxlxzzx2zz5b2aAMlIJAxUNKuQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKdCkyfPj1ef/31uPiSS+JPf/5L3HHHHfHKq6/G+wIZnXr1Zuccc8wRiy+2WGy++WaxxWabx0477RhzZgGN2bOghlZfAYGM+vo6OwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAh0I3DDH/8Yx51wQtx99z2RZsjQ6iMwZMiQ+OyWW8bJJ50Yq66ySn0u4qwlAYGMEoU3BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDDQAldedXUcNHZsvPDiiwN96UF5vdmyZUvWXGONuOSiC2O11VYblAYDddMCGQMl7ToECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUBJIy5Tcc8+/Ysedd46nn366tN+bgRHYcost4vJfXBZzzTVXpGVNtP4XEMjof1NnJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFuBN5+++3YY8+94uprrunmSB/XS+DiCy+Mr+381XqdftCfVyBj0D8CAAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDDwAg89/HB8ar1Px7vvvjvwF3fFgsCwoUPjmaeeNENGnZ4HgYw6wTotAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNQWGHvIIfHjc8+rfYBPBkTg2t/+X2yyySYDcq3BdhGBjMHW4+6XAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECORBYceWPxXPPPZeDSgZ3CWPa2uL0004d3Ah1unuBjDrBOi0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1BYYusCC8f7779c+wCcDIrD9V74Sk346cUCuNdguIpAx2Hrc/RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAHAvPNv0AOqlDC57bZOq664goQdRAQyKgDqlMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNcCAhld+wzUp5/bOgtkXCmQUQ9vgYx6qDonAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHQpIJDRJc+AfSiQUT9qgYz62TozAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNQQEMioATPAuwUy6gcukFE/W2cmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRoCAhk1YAZ4t0BG/cAFMupn68wECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUENAIKMGzADvFsioH7hARv1snZkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEaggIZNSAGeDdAhn1AxfIqJ+tMxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBADQGBjBowA7xbIKN+4AIZ9bN1ZgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoISCQUQNmgHcLZNQPXCCjfrbOTIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI1BAQyasAM8G6BjPqBC2TUz9aZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCGgEBGDZgB3i2QUT9wgYz62TozAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNQQEMioATPAuwUy6gcukFE/W2cmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRoCAhk1YAZ4t0BG/cAFMupn68wECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUENAIKMGzADvFsioH7hARv1snZkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEaggIZNSAGeDdAhn1AxfIqJ+tMxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGiLw/vvvR/qTWvG1ViGzzTZb4aP0Wnxf61j7CfSXQHfPZfl16vVc9rSGel2//B4H6/u8BjJSnw8bNiz9Axof/Ev6YQ/NMccc8d///jemT5/+4c4mfyeQUb8OFMion60zEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQGVCANMKc/7733XuHPtDffjJdeeilefPHF7PXlmDr1jaye2WKeeeaJRRZZOBZddNEYPnx4zJttzznnnJEGGtNApAHoAe22QXexNJCdntH0Wj3YXY0xx+yz1+W5TH9P0vXfzeroLJjxQUwpsmvPnv3dmKu6LNv9JJDXQMbQ+eaLST/9afZsVIYusscm5p57rvjOfm3xxBNP9JNC408jkFG/PhDIqJ+tMxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6i5QHFguDi5PeXFK3PzXm+MvN94Ud999dzz9zDPx5rRpMT0bWEyDicU2ezbQnYIYiy22WKyx5hrxmY02iq0+u1W2vWjMkcIZ2ecpmJGO0wj0l0B6Xt9444345eWXx/0PPNBpGKL8Wotnz+fWW28dq3/iE4VgRvlnfXmf/r7cedddccUVV8R72fvqlsWSCs/+RhttGNt+8YvVH9vuJ4G8BjLmn3/+eO7pp+LNLNSWWvqnM4V00nMz99xzxzrrrhePPPJI+miWaAIZ9etGgYz62TozAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCuAmlwOw0YvvTyy3HHHX+PK668Mm66+eZ49dVXCwPd6fP0p9iK78tnwCjOiJFehwwZEhtuuEHstMMOscEGG8QSiy8e82X/p3j58cVzeSXQW4Hi83jvv/8d2+2wY0yZMqXi+ezsfGlgvG3f78R+++4b6X1/tFRHmqHjyquuin3bRse77747w2nTM59mjdnn23vHySeeOMPndvSPQN4DGdV3mQIZKaS25jrrxMMPC2RU+9ieUUAgY0YTewgQIECAAAECBAgQIECAAAECBAgQIECAAAECuRUohipSEOOZZ5+Njo6O+Pllv4i/TZ5cCGekweXiMb29iTTQmP4MHTpfrLXmWrHTjjvGZz6zcSy77LKF2TSK4Y3entfxBJJAGsx+55134syzz47Tv/u9wvvuZOaaa67YYvPN4vjjjsueyTX7JRxUDGRcns2Osc+++3VaRzGQse8++8Rpp57SXZk+n0mBvAcyigGM4u0VtwUyiiJeuxMQyOhOyOcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwJTJ/+fvz3v68VAhgpiHH9DTeUZsRIZc5sGKP8FovBi2HDhsXG2VImu+7y9dhs081ioYUWtIRJOZT3vRJIs1I8//zzsf1OX4177723MEtFdydIAaHFFl00Tj3llEJAaK655uzuK91+LpDRLdGAHSCQMWDUXV7IkiVd8vTpQ4GMPvH5MgECBAgQIECAAAECBAgQIECAAAECBAgQIEBgYASKg8hPPPlkXHPNr+PybHmS++67L956663CzAP1qCINhs8xxxyx0korxY7bbx+7fP3rsdxyyxaWckihDY1AbwTS7Bi/vPzyOOCgsTFt2rQePbfpOUvP4be+uVccPHZsLLnEEn0OBRX/Lpkhoze9V59jBTLq49rbswpk9Fas58cLZPTcypEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYJpKVI/vPoo3HeeefHlVdfHS+88EKPBrT7o+A0KD7//PPHFz7/+Rjdtl9h6YgU1NAI9FQghSDeeOON+Nouu8ZNN99ceHbTvp62NVZfPc4+68z49HrrRVrGpC9NIKMvev37XYGM/vWc2bMJZMysXPffE8jo3sgRBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGGCRQHjx97/PE4OVu24YYb/hgvv/JKYWmS3gxo9/UG0iwF88wzT2y04QZx2KGHxnrrrhtzzz13X0/r+4NEIAWKbr3tttj1GyPj5Zdf7vXSOkOHDo0jDj8s9tpjj1hwwQX7pFb8O2WGjD4x9suXBTL6hbHPJxHI6DNhzRMIZNSk8QEBAgQIECBAgAABAgQIECBAgAABAgQIECBAoLECaeB4+vTpMWXKS3FgtlzDdddfH1OnTu3RYHaa1aL8T7qT4iIjxXkJ0vnL//TkbudNoYyNNopjjj461v3UJ0vX6Ml3HTM4BdIz9uabb8ZRxxwbl1x6aeF9byXmnHPO2GD99eO8c38cyy+3XOG56+05isenet57770QyCiKNO61aQMZa68TDz/ySOPg+vnKAhn9DFp2OoGMMgxvCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ5EkhhjKlTp8Xo/feP3/zf/xUGstO+7lqazSItKTJ3trTDUkstFausukqssPzyMXyR4dlX389mKHglHn3ssXjgwQfi6aefKZw3DVD39NxDhgyJrbfaKk4+6cTC4HgaLNcI1BJIAYh7//3/Yvc994wHHngg0mwZvW0pXJRmybjkootiq89uGemZS/tmpglkzIxafb7TrIGMtT/5qXjwoYfqg9KAswpk1A9dIKN+ts5MgAABAgQIECBAgAABAgQIECBAgAABAgQIEJhpgTRoPG3atDjn3HPj9O9+r/A+7avV0uB0CmKkZUQWW2yx2HSTTWL77baLddZeO+ZfYP6YI/usOICdzjI9C2C8/vrrcc89/4pfXXNNXHfDDTHlxRfjrbffLgQzurpWqmGhbNmI3XfbLQ488IBYdPjw0rlr1Wf/4BRIz1EK+rT/6Jw448wzC8uVdBb8Sc9menZTWCN93tnzl0JG3xixa3z/u9+N+eabr/C8z4xqOrcZMmZGrv+/06yBjI+vsWY8loXaZpUmkFG/nhTIqJ+tMxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEZlogDRj//to/xCGHHhpPPfVUvJtt12rFMMZHPvKRwuwBe+y+e6y5xhqFWTLSZ8UgRvbmg1P8L9iRBqaLA+aP/OfROP/88+N3v/99PPPss/HOO+/UulxhfxocX3rppeOoIw6Pr371qzEkG0wvXafLb/pwMAmkcMWUl16Kb+/znbjhj38sBCGqwxbpuRk2bFh86UvbxrXZM//KK690OltLChwtvvjice3vfhsrrbhiYZaMmbEUyJgZtfp8p9kCGUWFsYccEtdnIbZhQ4fF9P/9e1r8rPo1/aubZnR57bXXcjurhkBGda/137ZARv9ZOhMBAgQIECBAgAABAgQIECBAgAABAgQIECBAoF8EUhjjySefijTo98c//SnezmatqB7ELl4oDVKnwb41Vl899txjj9huu6/EAvPP36vB6g8GqKfHtDenxXXXXRfnnnd+3HnXXV0ukVIMemyz9dZx7DFHxyc+/vGYK1sipV7tgzHPLECSXaB8oYpGh0CK/VKcuyTV1uiayvugWF/5vvR+oGpMwZ4ULDrmuOPiwQcfrC6jsJ2e3w032CCOPvLIOPb44+OOv/+902VNUs1pFo1DDz44xh50YOF9pyfsZucHz/t7cfkVV8Q+++7XafgoXSvVte8++8Rpp57SzRl9PLMCzRrI6GyWl+4Mbr/j77H5llt2d1hDPhfIqB+7QEb9bJ2ZAAECBAgQIECAAAECBAgQIECAAAECBAgQIDBTAq+/8UZceumEOOuHP4ynn3665jmKg8brt7bGEYcdFhtttGFhEHlmB9vTQHUaQL8jGzg88+yz48abboo3slq6agsttFCMPfDA2GOP3WORhRfu6tCZ/iwNfqa6pmZLuKRwSjbnR8w515wx37zzFkIgabaOgW7FQf233nqrUFdaAma2LBwzZMiQmGeeeQp1zV6ckWSgi/vf9Yr9mdxSnamlmUzmzZb7mDsLz8zsc/K/0/foJc2OcXq2xMjEn04qzBDQ2ZfmzwJEh4wdGyO/MSIu++Uv4/gTTizVW318CiCl8M9vfn1NLJ4tzTMz91DsO4GMat2B3x4MgYxieOOmm2+Obb/8lYFH7sEVBTJ6gDSThwhkzCScrxEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6iXwz7vvLswUcNNNN9ccmE4D0SmIsMH662fLhhwR66/fWggBzMwAdfl9pMHqN998K/5x5z/iB2eeFX/+y1+6nKEjzSKwzjprx7gswLHWmmtGGjAvb++++27cd//98cwzz2a7i/NIfHhEqnfeLFix2qqrxfDhi5SWUEnBi7R0yv3Zdx999NF49tnn4pVXXyl4pO+k2TgWXGDBwhIWyy23XKyyysdimWwJlXSu5NJXhw8rzKrOTNKfdC8vZ8tpPPzww/HQQw9lYZln4qUscJBCK2lWk3TvKYyxwAILxBJLLB7LLrtsfOxjq8Syyywdc2dBjTmyz3tTV7pemqnk1Vdfza6fKqr0S+dKAZD11l23cN10RPrOK9nxaTaKBx54IJ548smYMuWlwmwn6fN5suMXWWSRWGqppWLVVVfJ3FeNFKpJ/dib2tK5umup5r/97W+F2TFuv+OOTmeiSOdIy+t89/TTojULFj3++OOFQetnnnmm02VLUo2pj88950fxlS9/eabqFsjorucG7vNmDWT0RqgYyLjxxhvjiwIZvaGbJY4VyJglutFNECBAgAABAgQIECBAgAABAgQIECBAgAABArOKQBrY/8kFF8Zp2awCU6ZM6XRQOt1rGvxfccUV49STT4qts2VD+nPGgzRgnWakuO76G+KUU0+Ne//9706XkCiapxDCqSefHKNGjYx5s/fFgf10ntdffyMLdpwZf7j+uuo8QeHr6dgUDjg0W57l0+utW7jfxx57PH79m1/H5I7bC8GHZ597rhBKSDbpnMWWghcp/JBmSlhhhRXiU5/8ZGaxVay91lqF5SzSuYu1FL/T29fi4P3zL7wQN914U9z015vjvvvuLwQdUhjjzTffrKgpXS+FG4p1Lb/88rH22mvFVp/9bFbX2jHffPMWSuhJXWlmiwMOODD+de+9Fdco3kM6x/Dhw+Mn559XMJg6dWrccutt2RIhv4+7774nHsvCDanG6iVv0rIfC2ezmSyfBVnWzEI0X/7SttnsKhsVwhrVgZritXr7mtxSOOS888+P07/3/XglC7IUB6bLz5Wut/tuu2UzvBwaS37kI4Va98/u+RfZTBnp++X9XfxeCuN8bput4yfnnRdpdo2eWBa/m16LfWqGjHKVxrwXyGiMe/VVzZBRLdJ/2wIZ/WfpTAQIECBAgAABAgQIECBAgAABAgQIECBAgACBPglMzwaxn8xmNDjp5FPisl/8ojCA3dmAdLrIglkQYf/9x8Q399yzMCjf20Hp7gpN100zLVyQhUPOOffceC4LRdRqaVB9i803j/Oz4xZbbNHCDBXp2HSOV197LQ4+5ND45eWXf/D1bF95S99dPgtTnHnG96OlpSWuvvrq+OmknxWCGGk2iuKgfGeD+ek86fvp3lM4Iw3OL7PMMvHZLbaIvfbaM5bKBvjT4P3M2qQASFo+5s9//nP87OeXFYIRL2TBjLez5T/ey5ZRSfdXq3/K6xo2bFgst9yysdmmm8bXv/a1WHWVVQozW5Q7dPY+zbzxle13iDS7ROE65Xb/C5ssvvjicf0fro25shDIOT8+N679wx/iyaeeKgRFigGW6hqTR/qTakwBmmWymTw+v802sf+Y0YWgRn/MMJKunQIhJ510clxx1VWdPsvp+ostumgcd+wxsesuuxT6KvX3LbfeGl/fdUQW5nm90xBHqu8jWd/+5Lxz4zMbb1y4j878au1LHqk+gYxaQgO3f7AEMtK/ejeZIWPgHqwcXUkgI0edoRQCBAgQIECAAAECBAgQIECAAAECBAgQIEBgcAukQeIbs1kYjsoGqP/5z7trYqTB9M9uuWUcf9yxscbqqxcGsmse3IcPUj2PP/5EtI0ZEzfffHMphFB9ylRPWgbj55N+Gq1ZqCKFIFJLA9+vvvpaHHTwwYUZD6qDAemYNCifZpE48fjj4p57/pUFH35eWKokBTA6Oz59p6uWzpcCEGkpjmOPOTo2zmZ+SDNWpP09bem66fqv/fe/hWVb0sD9c9nyKe/UmLGhJ+dNRgtkgZG1s+VdRu/XFptvtlm2zMiQmnWlGlIg48vbbR8dt9/eaTAhnTMFMi772c/ijB+cETf/9ZaaIYauakw2KcySQjVp6ZCPLLlkoa50/pltaVaO666/Po465tjC8imdnSeFSDbOAhUnnnBCrPupTxYOSc9cCgKNHLVbdj9/LQQnqr+b6k3Lluy5++5x8kkn9nrZkmQrkFGt2pjtZg5k1AqJdSaZjk3/hlqypDOdWXufQMas3b/ujgABAgQIECBAgAABAgQIECBAgAABAgQIEGgigTenvRmXTLg0TsxmyEhLPHTW0iB5Gow+5qgjY+9vfSsb1P9wiZDOju/LvuLAdfs55xSCCS+//HLNYEBaBuOwQw6Ogw48sLBcSLpu+n53gYx0P2m2g/TnP//5T2FpkpkNYxTvNQ3YF2ZRyIIFxxx9VOy4ww4Fp+Ln3b2mwfqnn3kmRo/ZP27KBlHT8i19rSlds1jXstksHkcdeWRsu+0XY9jQoZ3O4NHTQEZaGuVjK68c9/zrX4U60/fSn962VNuQIUPii1/4Qvzw7LMK4ZFkOLPtueefj/Ht7fHjc8+LadnSK521FALZ+1vfjEPGji0s8ZKOSbWnMMeEiRNjbDazSpoxo7qlZyb9+eQ668Sll1xcWHqlN7WmawhkVKs2ZruZAxm9FUsz7Qhk9Fat+Y8XyGj+PnQHBAgQIECAAAECBAgQIECAAAECBAgQIECAwCwi8Hy2HMZpp52ehTImxFvZshidtTTwvNZaa8Up2cwAaQmMerc0eH3ffffHyN12iwcefLDTAfJUQ5qFItXzy8t+Xgo/pO/2JJCRBtdTS8enP/3VUk0rZLNvHJLN0LHDDtsXludIwYOuWpoF4/FsqY0Dxx5c+D/ai2GMrr5TrL94THf3kOpaMguLfPe002KbrbfudKaMdI7uZshI1yu/dnfXLdZX6zWda/jw4dkMHvvFd76zTyEsUuvYrvanOv5x551xUGZ45113dfrMpGut/olPxAnZzChptpfirCrpvCn8cu+//11YtiT1RQpPdNaWWmqpOOKww+Ib3xgRQ7JAUE9bqk8go6da9T2u2QIZ6dlM/4Z8duttCs92b3TSd2v9u96b89Tj2M9l/w5ddeUV9Tj1oD+nQMagfwQAECBAgAABAgQIECBAgAABAgQIECBAgAABAnkRePjhR7IgwNj4y403djqInepMsxikGR+OzWZ+WG655epeehq8njp1amG2iKuvuabmgGIaYE8D5B233RYLLbRgISiQvttdIKOeN5BqSoOna2cBlqOOPKIQGEmzi3TVHssCACdlM5T8+je/zgIRU7sNiKSATJodJAUK0v2+nQVpUqgjDb7WasW60swW4354dqzf2loItJQfn87Vk0BG+Xf64326jzXWWD1OP+XU+MxnNu71KVPdb2YGl19+eRxw0NjC85L2lbd0/8nty1/6Upx5xhmx6KLDC/1Ufszz2Qwbp2ThpDRTRq1B7NSX22Yzenz39NOzgMsS5V/v8n2qRyCjS6IB+7BZAxlrrL1OPPLIIwPmVO8LCWTUT1ggo362zkyAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6JXA3ffcE7vvsWc8+NBDNWcFWHjhhaNt331j9Oi2mZ7BoDdFpcHrNEvEhRddHMccd1whnFHr+2n5lNtu+WthCY0UhEjfnZlARhqwLw7aDxs2LBuwXzQWzJbmSDNLpIH01157LdJsIq+//nphu6vwQ6o11bX1VlvFkUccHmv8//buO8yustwb8APREFroLYSPYCEEkKYgqFRpHjgoAlIFqQJSJPSQBEIniBCaKMVGRyx0UFGBIwEFwSO9SBEILQECKeDR730W7DgMe2dmkpnssHOv65rsttZb7rVn/nl/ed4VVqjazvbbHtnG+NLeeWWLjfO+//145dVXG96DHEdut/Hxj30sli4VODIM0HfevtX5r5brcruTXKx99h//iEmTJtUNZ2T/GX7IqiLnnnN2LLboolVIoTamtOtqICPb/EgJOuTYFitjWmD+Bao+cguQV8eOjeeee27KeLL9ekfetzTfc4/d44jDDou55prrfVU46l3T9r28Pzn/I4ccFb8sAZ569yb7yHt68OCD4lv77POBMEa2l9uc3HzLLTH4kENjzJgxbbuY8jznOnDgwFJl45j40qabdHqcOXeBjCmMTX3yYQ1krLTKqvH4E0801a47OxfI6E7N97clkPF+D68IECBAgAABAgQIECBAgAABAgQIECBAgAABAk0TuPtPf4qttvlajC2L540WzDMAMOSIw2Pbr32tqswwIwb7z7LIfscdd8S22+8Q48ePb9jlHHP0LluWXB7rr79+9CqL7nlMayAjAxirr7F6fHb11WPZZQfGEkssXs03wyEvvvhiPPLIo5Fe99xzT7z8yisNx5QfZFAhQwqHDB5cBQ36lrbbBzLeLu3edtttcfSIY+O+ss1GI/+s7JChjk022Tg23OCLMWj5QaUiyPwx+3sBjww/jBnzYtxz773x61//Oq69/voYN25cw/ayysMxw4eXce1Rqp/0njKu7L8rgYycT1bqyGogX/ziBuVx5ejff8kqjDJhwsR4+umn485SveSmEnJ46qmn6gYl2iJuUO7hSSeeGMsPWu59QZG259R7nvO/vXxX9t5n3yqYUc8xgygrr7xSnDVqVKz0qU9NmXPb9jIwkcGko4YOixtvuqntR1Oe55znnnvuKtRx6CEHR1q2v69TTm7zJMckkNEGpIlPP6yBjE+tskpkRaNWOQQyeu5OCmT0nK2WCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJdErjjf/4nNvvvLartSuotZGdjyw8aVCoCHF1VfMiF7RlxZJWDRx97LDbceJMqLNKozwwEnHfuObH1VltNWcTvSiAjF9Oz+sQyyywTu+6yS6y77jpVFYrcpiWrKtSOHE8u/P+9BAtuvfV3cdXVV8cDDzzQcGuLvC7b/uwaa8TJJ50Uq66yclU5otZePmb1iO9897tx6WWXNwyd5IL/59ZaK3bfbdeyncfapSrGvNU8244t71v+/LNsW/LCC2Pi2uuui7PPOSf+UdqvVy0i5ztoueXiJz/+0ZTKIjmebKOzgYycW58+c5QqEZvGHrvvXsIOK8fcpbJFhkdqbWXf48a9FjfffHN8r1QAyWosjb5jeU1W/xg+bGh8eYstuhT8yaolI447Pi648MLqHtXrIytw7LzTTnHM0cOrahzVINv9k+PNtn5w/gVx0imnVJU96rWVc99oww3j2BHHVL8b6dnRke0IZHSkNGM+F8iYMc4d9SKQ0ZHQtH8ukDHtdq4kQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHSrwG233x6b/tdmU21z1fI/s088/vj4/Oc/V4UXpnpyN32YC9jPPf98rL3uelV1ikbNZiBj1Bmnxw7bbTdlbF0JZGSAYPnll4+jSxBg7S98oVqszwX3qR2vvfZa3Hb7HXFWCT2MHj26Cj3UW7jPNjJAcXjZhmPXb+xSVbWotZvn31KqWWQ1hkcefbRarK99VnvM0EWGMbISQz5mZYaOjndDBW/FJZdeWipvjKgCFu3Hlu1mW0cdeWR8a9993hei6EwgI32yjQybnF4CJYOWGzjFvv34qvG89VZcWsZzwkknT7USy/zzzRcHHnBA7LPP3pVb+7bqvc655TYtXyrf4aefeaZuACXHu/jii8f53z8v1imhlqkFKLK93/z2t9X2J43uS45jySWXjGFHDYlttt66qpJRb2xt38t2BTLaijTvuUBG8+zb9iyQ0Vaje58LZHSvp9YIECBAgAABAgQIECBAgAABAgQIECBAgAABAtMs0JlAxmqrrhonnnB8FQqY2mL2NA+izoW5gP3CmDElkLFuVfWhzinVW1Ug4/QSyNi+64GMDGMsURbqzzpzVLVQ374qRqM+M2QwceLEuOHGG+OUU78Tj5ZARVanqHek17rrrFO2yjgjBgwYUJ2Sc3uzhBS+d955cfIpI6sqG/le26M2toMHHxQ77bhjtejftipG23PbPs92cnwZZhk6bHj86pprIrdcaXtkQCHbX3+99eKSn/60hDPmqqp55LWdCWTkOLJyx09LhY3cKqZ3qZrSKMSSbebPQw8/EseVUE9uBdJ+PLWx9enTJ3bZ+etx+KGHVgGK2vuNHrPdbOsnP704Dj388LrVMWpz/fznPx+XX3pJzFsqZXTk+Myzz8aJparJFVde1bACSp9SQWXbbbctYZtDY0DZ0qejI8cqkNGR0oz5XCBjxjh31ItARkdC0/65QMa027mSAAECBAgQIECAAAECBAgQIECAAAECBAgQINCtArffcUd8abPN61YWqHW04oorxHGl2sIGZfF9Rm5Z8uTf/x7rf3HDePXVV2tD+cBjBjLOPuvM2HabbaZUPuhshYwMFQw54oiy5cZuMV+pztDV443x4+O0074bF150UYwdN67u5RkIWGCBBeLKyy+LNT/72SoMkAvzObdjRhwbv/jlL+tel/PaZOONShDmhFjmvSBH3RMbvDlx0qRqq5ADDvx2w7ENHDgwfnTRhbHiCitUAY0MDXQmkJEhky9usEH8+IcXVRVFOgo45BBzK5DzL7gwRn7nO/H666/XHXXO+Stf/nKpPHFUfPzjH6t7Tts3M3gyvtyDr2y1ddxzzz11QzE5tmx35Mknxzd22XnKd6RtO+2fTyp2l156WZw0cmS1rUz7z/N1Blo+VrZYOeO7p1WBm44MBDLqKTbnPYGM5ri371Ugo71I970WyOg+Sy0RIECAAAECBAgQIECAAAECBAgQIECAAAECBKZLYPRdd8WWZUH7jTfeqCoZ1Gvs42XheeiQIbHlll+pFrfrndPd72Vo4c9/vie+vOWWkcGHRsccZbH9pz/5SWy6ycZTtt7oTCAjgxKrr756nFm2Oxm03HLTFDTJqhgPPvRQ7L3PvnH/X//a0C8DDKefdlqpdLFD5ZfX3XX33TH44EPibw88UHdqCy+8cOyz9zdj7732iqzc0dUj+3jooYdj8KGHxF/+cl/dy3PbjROOOza2/MpXqvl3NpCRoZwMOOQ2LPm8UXWMtp2+/fbbcf0NN8Qxxx4Xjz32WNuPpjzPtjbdZJM4ZvjwGDRouSnvN3qSc8ztRb6+yzeqiiUZ0Gh/ZHCiX79+8dtf31JVQ8nXHR353XvgwQfjiPKd/8Mfbqt7X3POeV+PHj4s9tht9xJMmXuqlTcEMjpSn3GfC2TMOOup9SSQMTWd6ftMIGP6/FxNgAABAgQIECBAgAABAgQIECBAgAABAgQIEOg2gfvuvz922nmXeOqppxpWyVikhAMOPOCA2Pube8Vcc83VbX1PraG3y1YUV1xxRQw+5NCqakOjc3Obi1t/8+tY6VOfqhbEc+G7M4GMrGhw8ODBccB+36oqWHRU4aBe/9nX5BI0OOigwXHFVe9ub5HvtT8yBPDNPfeMY44eXvllOOGGG2+KA75dqleMHdv+9Op1VtVYr2zX8slPfKIs/HccImjfyP+VcMK4UrXj1t/9Ph5//PH2H1evF1pooTL//eKA/ferQh859s5UyJizmF9/3bWx+mc+U5l3JpCRW4v88c47Y9jRx5SgzZ/rjqcKZGy8cRxdnJYfNKjuObU3c6xZyWKfb+1XVRnJcEY9+2xz3332juFDh1Zz7Mx9zmDHpMmT49jjjq+qn0yYMKFu2znv9ddfL04beWpV0SMDGo2OHJstSxrpzNj3BTJmrHej3gQyGslM//sCGdNvqAUCBAgQIECAAAECBAgQIECAAAECBAgQIECAQLcIPFqqFex/wIFx5+jRdbd8yE5ya48dtt8ujioVAxZfbLFu6XdqjeTi9cSJE2PIUUPjJxdfXC281zs/F8QXXHDBuP/ee6pQRb7OazsKZOR5GeQ496yzYquttiqVNWbvVJWHemPIRfYf/uhHVeWH1157rW6oJQMZX9p00/jBed+LeeedN3KB/9LLLo8hJSSQ86x35BhrP/U+78x7aVH7qXd+3759Y5edv16qPJSgSLnHeW5HgYwcU5pnxYkMi+TrzhwZmPhz2VZkWOnrf/54Z91LuhLISPeHHn44vrr1NtW2Ijn29keObf6yFc3VP7sqVllllXfDI+1Pmsrra669NkaUih5/L2Gl7K/ekRZnnnFGub+bVL8n9c7J93J8AhmNdGbs+wIZM9a7UW8CGY1kpv99gYzpN9QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBbBF4YM6ZadL68VKPIyg31jvyf/59dY4047tgR1WNnF+HrtdWZ93Lx+qmnno5ddt212gokqyvUOzLokOO65pe/mFK5I6/tKJCRVRL6LbFEnF0CGRtvtGG9pjv9XlZT+O2tt8Y3y7YlL7/8ct2F+xznGmV7lKuuuDzmKwGB119/Pb7/g/Pj1LKNSVZ5aNYxzzzzxLZf2yZOOuGEsuXGPJ0OZCxWQjm/L1uFLLVU/6YFMjLIcsaoM2PUmWc23NImv6eLLrpofLtUd5lzzj6dHmvtfuTvxmWXXxHPPvts3aBNnte7VODYZptieOIJsVAJZzT63RDIqKk2/1Ego/n3IEcgkNFz90Ego+dstUyAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6JLAm2++GT84//wY+Z3T4o033qh7bS4yZyWAo4cNi52/vlP07t277nnd9WaGHC6+5JI4esSx8UqGHMrr9keOqbYdxdHDhpftKN4dU2cCGb1KIOOTyy4bZ3z3tFhn7bXbN92l1znWe+69N3b6+s7xwgsvxD/rVFLIAMiKK64Y1/3ql1Ulj7FlK5GzShjkrHPOjclla4xmHXPPPXd8dcst49SRp0TfUrkj7TpTIWPxxReP399aAhn9+3d66N1ZISPH+cSTT8Z++x8Qo++6q2GQKAeXYZjp+b5mSKlRdYxsP7+H/fr1q8I2K6+0kkBGoszkh0DGzHGDBDJ67j4IZPScrZYJECBAgAABAgQIECBAgAABAgQIECBAgAABAl0SyIXym26+JYYdfXQ88sgjda/NRef82fIrX4lhQ4+Kjy2zTGTVjJ44cvH7xZdeikMPOyxuuPGmarE9F+DbHzme3HLjhxdeEF/cYIMqnJHndCaQkQGJT5TtNkad/t1Yd5112jfdpdcZyPjTn/4cX99ll8iKCvUW77O/lcpi/bWlksf8888f4zKQcfbZcebZ5whktNHu7JYl7wZ2Lo3jSmWPMQ3M2zTbMCTR9px6z+t979qfl9/DHPeQI4+MA/ffr3qe97v9kW3ZsqS9SnNeC2Q0x719rwIZ7UW677VARvdZaokAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMF0Cubj9+BNPxDEjRsSvrrm2CjQ0ajC3qjiqLDx/bZutY95SUSEXo7v7yC08Lrv88hh56nfi6Weeadh8LnrnNiA/vPDC6N9/yaoSQp7c2UDGIossEueWUMSXNt2kYR+d+SD9MtCy3/77x8uvvFI3kJFVGj631lpx2SUXv7tlSalEcn6pSnJKmWOjLUvStvbTmXFMyzlzzTVXVSFj5MknVfcz7Wb2Chk5xvGlqstBgwfH1T//ReR2NvleM4+8vyssv3xcUyqg5LYl+br9kWMUyGiv0pzXAhnNcW/fq0BGe5Huey2Q0X2WWiJAgAABApNvY5IAACvBSURBVAQIECBAgAABAgQIECBAgAABAgQITJdALhTntgxnlnDCad89PXILkwwZ1DuyKsaKK6wQZ44aFausvFK18NxdoYwcR/7cffefYsRxx8Wdo0c33Ioi+8xF76FDhsQ+++wdc5dgQa0qQbbx+utvxOBDDokrrryy7mJ9Xp9VDbJCxvbbbVc9n9Z55CL72eecEyePPDXGjx9f1y7H+uUttohzzjqzCj68NWFCXHbZZXHkUUNj4sSJ9airrU3WWnPNyBBMr14frLhQ96Iuvplbeay6yqqx1Ve3jD59+lRWM3sgIyu6/PHOO+PIIUfFffffX/f+dpFhuk/P796cc84ZZ585Kr761a/GR+tUj8nvpUDGdFN3SwMCGd3CON2NCGRMN2HDBgQyGtL4gAABAgQIECBAgAABAgQIECBAgAABAgQIECDQHIH/+eMfY+iw4XHPvfdGLnrXO2pBiE032STOKGGGRUuViQwbTGuYodZHbbH62X/8I04+ZWQVpMgxNAqGZJ9L/7//Fz+86KL49Gqrvq+SRGcCGdlvjnnvb+4Vh5bgRlbL6FVnm4na+Bo9Zl8ZqNhr733iuuuvb1itIcd74AH7x5GHH14t3GdVh9yOZb8DDqi2L6nXfv/+/cv5h1UVLD5aghM9ccz+XrAlx5ehgpzPzB7IyPGNOvOsOPe882Ls2LE9wdLlNmu/F2uv/YW4qlR3yXBG+9+J2nf8qp/9LPbe91vVd6V9R3lNhp723XvvOOnEE9p/7HU3CXxYAxkrlfBUVjNqlUMgo+fupEBGz9lqmQABAgQIECBAgAABAgQIECBAgAABAgQIECAwTQJZ3SErZFxQtgAZO25cwzZy0TgrK2y+2WZxclk0XnTRRatF5PYL0A0baPdBLlRn8OKpp5+Oc879Xlx8ySVVKCDfb3TMPfdcsdeee8YB++1fKkgs+r7T8rqOKmTkBTnegQMHxlmjzojVP/OZak7va6gTLzJYcdddd8eBZfuMhx9+uGG1hqzGcd6555RKFKV6QnmeYZPRd90Vgw8+JB548MG6PeWWMDvusH0MO+qoapuTuid1w5u1+5aPaTezBzL+928PxPCjj45bf/e7uqGGbiCZpibSr2/fvvGrX/w8Vlt11ep3om1DaatCRluR5j3/MAYyUmv1NdeKhx56qHlw3dyzQEY3g7ZpTiCjDYanBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGZQSBDAhkOOPSww+Ouu++uQgONQhFZTSH/J/8mG28cBw8+KJYrwYa5yrYh+V5nj2w7gxiTJk+ORx55JC686Idx5VVXxaRSceL/GmyZkove+fOZEqA44bhjY/XVV4/eJeDQ9sh2OxPIyGvmmGOO2PUbu8RhWSWjBEuyYkS239GRfWRcZMwLL8SJJ58SWfUgAy31jrTq169fXHbJxWV7kFWqShS5MP/EE0/G0SNGxDXXXls3yPHRj34kVi0L+8cec0x84fOfr8bVmbHVxpD389VXXy3hmtdK+/W3oMn5L7H44lMqOuS8ZtZARo4t3a644so45thj44UxYxpWUMntV3JuXfGquTV6zP4nl+9qbu/TqHJL9rvXnnvE8KFDp5jW2quNX4WMmkjzHmfaQMY888Rzzz5T/Y3Ivxu1I/8e5l+lA799UFz4wx/W3v7QPwpk9NwtFMjoOVstEyBAgAABAgQIECBAgAABAgQIECBAgAABAgSmSaC2YHzBhRfFqaedFi+99FK1AN6osVzszq0uVvrUp+Ibu+wSa3/hCzFgmQFVQKIzC+FZXSK3KLmrVIr40Y9/UoVA8r0cR6MjFykXWmihOPigg6ogxTxlAbN9X3l9ZwMZee38888fI0rFhW2/tk3MPffc1WJoo/5r7+eC/Guvvx4XX3xJnH3uufH88883XKTPihibb57VRE6Mpco2JHnkGDPAcfY558TI75xWd6uTHFuOZ7ddvxEHffvbscjCC3dqbLUxvvzKK3Hu986LO+64o/59LO3nti9HDTkyPrbMMlXbOa6ZNZCR5jmn3NLm/AsuaOid38k1P/vZKqzTq9d/FrVrLtP6mGGQBx98KH73+983DCtliGb5QcuXrXQujIHLLvu+72baqpAxrfrde93MGsjIrW5u/c2vY4Xll39fuC2/+/m374033oj+Sw9ouKVU9yr1fGsCGT1nLJDRc7ZaJkCAAAECBAgQIECAAAECBAgQIECAAAECBAhMs0AuGr9YghgjR54aP/7pT2PSpElTDUhkaOAjZQF8oRIW+Nxaa5VKDp+LFVZYIZYpC/zzzzdffKSEEbLqREYssu2s2vBGCTI8/fQzVTWO0XeNjt/89tYYO3ZstVid50ztmK+0+eUt/jsGl0DGJz/xifcteNeuyzY6G8jIa3IBv38JSuy7997xla98uWyBslh8tFT6aB/0yHNzYTTnkNUZfvWra+JHP/lJPProo9XcGo09AyTHjTgmtt5qq8gASe3Itm648aYYNnx4PP7EE3VDEzmGtNx7rz1jm623joXfC2XUG1u2m2PIdidMmBBXXHllnFTCC6+UEEO+1/bI6zMostGGG8b3z/te9C3bo+R7ef3MGsh4u4R1Ro8eHUOOGhr3/uUvbacz5XkuWi9eKn4MOeLw2G7bbbsUYJnSSIMnGaa45557Y+ddd42XX365smp/ava/4IILxpGHHx57lkoZvcrr2r1KW4GM9mLNeT2zBjLyb9Exw4fF/vvtVwUy8vtUO/J3OF9ff8MNsdPOu1SVWhr9zaldM7M/CmT03B0SyOg5Wy0TIECAAAECBAgQIECAAAECBAgQIECAAAECBKZLIBf+nnjyyTjs8CPit7fe2qmgRHaYi4VZbeITH/94fLz89F9yyVhkkUVinlLlIY+3JrxVVTh47rnn48m/PxmPPfpY2U5j3AfCAtXJ7f7JRe3cDuULpQrH8KFHxWplK48MFNQ7cpGyK4GMbCPbz+DEFptvHptttlmsscbqVaCk7YJo1W75H+r33HNP/Oqaa+Pmm2+O58uWJe3DDm3HlO1uvNFGcXzZXiUrJrTf0uWpp5+uKj787OqrqxBF22trz3ORdumll46dd9qpChn0W7JftdBf+7ztY47luVKt4/LLr4ifXnxx/P2pp+qOL+eV4ZZTTjoptt9u2yqUku3kHGfWQMa48l350Y9/XFUUeb2Eeuod+Z1YZ+21K++VV1qp3inT/F6GKXILmAMPGhzXXnddXdfa9/S/vrRpnDXqzPKdWlAgY5rFe+7CmTWQkTPO7+8vf3519O7du26gKH/HHy5bPP3gB+dXv9/5nasXzMj3evf+aNx7719izIsv9hzmdLQskDEdeB1cKpDRAZCPCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNEsiFvFx8vv+v/xtDhw2LP955Z8MtGtqOMRcG88gAQS749+nTJ+aaa65qC5N8PyscTJw4oVTdmFy1nwuL2Ve9xcQ8v+2Ri5NZxn/4sKGx7jrrVguNbcMSbc/N9roayMjrc9xzljEPGDAgBg5cNpb95LKx1FL9q21DJrw1IZ574fl46KGH47HHHqsWQjO4MLXxZ3uLLbpoHHnEESVI8bXKomZUG+/kyZPjpptvieNPOCEefOihuhZ5TVYZycodq622WhXwWGONNcr2J0uWMX+kNPXvmFgqmTzzzDPV9i9/uO32uPtPf4oMMOR9rOebwYVNN9kkRp1xeixaQjM1yzx3Zgxk5LgeLe4HH3Jo3Hb77Q23bMjqFHvuvnt8+8ADS+Ckb425Wx5zDFkx5sqrrorBZRyNqsfk/Vpu4MA44fjj44sbrD8lOJTXq5DRLbdiuhuZmQMZC5RQ28U//Un5O7fOlN/LthOuBcDysfZ72/bz2vPa59vvuFMVIKq9PzM9CmT03N0QyOg5Wy0TIECAAAECBAgQIECAAAECBAgQIECAAAECBKZbIBePc2uOv9x3fxxVQhl33313p0IZ091xuwZycTuDDVl1Ixe411n7C1VAot1p73uZY5+WQEatkVqfc5fKHhkoyS1Z/lmCDRMnTqzCCu+UYElHR7aR1+Y2I4cdekgMKBUu6h25aDp+/Pg4pWwR88NS/SGf1xZc652fQYqFSyWPrOax0MILla1G+lbnv/baa1W1kdyeZGpBjGwzPRdffLG47JJLYpWVV65e53jzSLuZLZBR+y7efMstscdeexWjN+uGTHIOyw8aFCedeEK1mN2ogko10Wn8J8eSQaW99903HnjggSpgUa+prD6y6zd2iSMOOyz69n03GJLXCmTU05rx783MgYzU2PqrX43zvnduFWprFLqoBS4a6eXn+bPd9jvEDTfd1Oi0pr4vkNFz/AIZPWerZQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAtwjkAvLbb78df3vgwTixbG2R25dkSGNqgYFu6fi9RnKBPbf4GFiqDZw1alSsvNKnGpbxb9tvjnt6Ahm1trL/2k+2mT951B5r57V/rI177bK9yrEjjolPrbjilCoJ7c+ttZtblxx62OHx+z/8oQp+tD+v9ro2nlykrf3kZ7XF13ystVm7pu1jXjNfCQiccvJJsfVWW8Ucc8wxZUuNPC+vndkCGTmncSVwcsyIY6stSzLU0P6omX9p003j+2Uhe955551q9YD213fl9YsvvRRnnDEqzvvBDyIrnNQ7Mgyy5pqfjeOPPS5W/8ynq1PSViCjntaMf29mD2Tk9/m2390an/70p6u/ue23OuqMWO3v9Ne22y5uuFEgozNmrXSOQEYr3U1zIUCAAAECBAgQIECAAAECBAgQIECAAAECBFpWoFpELgviTzzxRJwx6syq9H1WcciF5dqCX3dPvhY0yC1Psmz/yFNOjv5LLlmFM3KhsqMjx9yZQEYt3JDt5TX5M71Hjj0X45cv26scP2JErLvuOlNCHVNrO6tuPF6M991v/7jvvvsiX3e3by7qzjPPPHHoIQfHHrvtVlUayfG2PdJgZgtkZAjooYcfjm223S7+8Y9/1HXJeSxUtis54vDD4pulikb7ebWd4/Q+n1xCSr/5zW/ioIMPLuN5rm5z1XhKFZMhZbua3XfbtapCkicKZNTlmuFvzuyBjATJbZp+9YufV38D829BV7/Ttb8fAhkz/Os1U3QokDFT3AaDIECAAAECBAgQIECAAAECBAgQIECAAAECBAh0LJCL9Lm4N3bcuLjyqqvi0ksvi8cef7xauO+OEEP7EeRWIf37948dtt8udtl551hwgQXet61G+/Pbv84xdRTIyDDG/PPPXy3iv1y2+ehoq5D2fdR7nW3OOeecsdqqq8bQIUNirbXW7FKIJBfrH33s8TjiyCPj7j/9qRpTd/lmGGOppZaKb+65R+y4446xQJl720BKbT7Z38wWyMgqLRkGOumUU6qKLfVM3g3BDIqLLrgglisVVXJuPXXkfcrwzIhS/eJX11zTMMiTC+g7bL99DB86NJbot0TMXsYkkNFTd6Vr7X4YAhk5owylHX7YobHXHntEboOT36kMKOVjRwGN/JudP9vtULYsUSGja1+QFjhbIKMFbqIpECBAgAABAgQIECBAgAABAgQIECBAgAABArOWQC6ET5o0Kf5SKjhcceWVcefou+KZZ56pttjIheb8vN5ieUdKubDYq1evEmboE0v2WzLWWGON+No2W8dnSrn+DGfUCw5Mrc0cQ0eBjOxz6aWXjgP2+1Y8+OBDcdMtt8SLL75YLXZ2ZR61sfUuVTGW6NcvPv+5tWL/UuVi0HIDuxQiyflkv7nY+uKLL8VZ55wdv/71b+LZUhEizXNhtau2Ndf5y0LuimXblJ2/vlNsvNFG0bdsWZLe9Y7sY2YKZOS8c7uSzf97i7J1zgNVoKHeuDMIs9uuu8aIo4+uvkc9GchIowkTJ8b5559fQiIjK68cZ71jxRVWiOOOHRHrr7deVTlFIKOe0ox/78MSyEiZ/F3NkNdxpeLOOuus3aVARl6vQkYqzHqHQMasd8/NmAABAgQIECBAgAABAgQIECBAgAABAgQIEGgBgVyMrhakJ0yIu+6+O24poYH77r8vHiuVHV4plSYyUNCVIxfOFypbO3zi4x+PVcui4xc3WL8KZGRVjFrYoSvt5bk5vs4EMgYMGBCjTv9urLTSSvGzn10dN9x0Y/z1r/8br776at1tMeqNI4MYiy+xRFkwXSX+60v/Ff+9+WYx77zzdvi/1+u1VXsvF/czFPH7P9wW111/ffz5nnviqaeeqoIZObfOHGm3QDFcftCgahH3y1tsEQOXXbYKBUwtrJDtzyyBjEHLLVcFMG648cbYdffdS/BnUsOp53fosksujrXWXLNh2KThxdP4wa2/+10MHTY8/vdvf2sYFMktYg7cf//45jf3qqqxCGRMI3Y3X/ZhCmTUpp5VbpZYfPHYaacd4+s77RQDSqCsM8d2O+wY11x7bWdOneHnbLrxxvHzq382w/udFToUyJgV7rI5EiBAgAABAgQIECBAgAABAgQIECBAgAABAi0rkKGBKjhQghmPPvpo/O1vD8QjjzwSfy/Bgeeefz5eKtUm3iqfZUDjX6V6RklXVFs29CqLinPPNVcsssgi0a9UlBgwYOlY9pPLxgorLB8Dy1YT871XvaGjcvxTg+1KIOPMM06P9dZdt9oK45Eyj7vuurtaYH+8bMny3HPPVdUZcsuMdysg/Lss9n8kevfuHQsvvHD8v7IFSG6PsfLKK8Xqn1m9bLOyZPXZ9Iy9Nq+cwzvvvBMvvvRS3H///SX0cn/l/NRTT8eYYvvmm29Wtv/OygxpWyp+5LgyhLFkcf3Yxz4WKyw/KFZbbbVYrgQb5i3BgDxnamGMWt+TJk+OkaeeGk+UbTnezX+8PwQyW8wW85UtT44ePqwKGdSu6+gxDZ948sm44oory9Ysj9Y9PasBrLLyyrH11ltHvxJ0yWsuvviS+P1tt5XQQ6Owz2yxxBKLx7CyNUh+tzozx7qdd/HNvA9Xlkox9/7lvjLO8h2vc+Qi+qfLPdh6q61i0UUXrcJCd44eHRdccGH8X51r0nb2XrPHxhtuFNuXLXscPSPwYQxkTItE/i50NsQ1Le1P7zUCGdMr2Ph6gYzGNj4hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHzoBHLh/I033qjCAi+VEMGrr44tVSper4IDkydnZYPZqsBAVgyYb76+seCCC74byliiX/W6O0IMNbSuBDLOOuOMWH/99WqXViGHHPuz/3g2Xnrp5Rg79tVqXrltSLY7V1nwn7+EEbIiw+KLLxH9l1yyvJ5vuipiTOm8wZPsd2LZIuOFMWPihedfiFdefSVee+31GD9+fAmSTC4BhNmjT58+VZhlgeK66KKLlHBI/1i4jDEDAV098l6OKX1lMOO9REa7JmaLXh/pVQU/utJ+zmNyaXPsuHExqcyn3pELyGmcwZIMmHRmLOWrFXOVLUsWW2yxGRbGyLFntYtxZS7jx79ZmOpvWVIGFHPMMUd1L/IxDd4s1U9eefnl6vkHDUoko8wnt5XJ75ijZwRmlUBGz+h1X6sCGd1n2b4lgYz2Il4TIECAAAECBAgQIECAAAECBAgQIECAAAECBD7kArnYnAvo/yqPWbkhF6yzQkY+5ipzhi4+UipM5GL+7O+97mzVhq7Q5Dg6u2VJ+0BG9lPNoYw/2/lnzuGdMoesZlBeZ4WPj5ZtSnqVudTG3p1hkkbzrNnWHtP0nfeqj2SIYfZSWeKjZWxZYaJ6/V41jHw+LUca5FGm/IGj1mS23dX2c/zv/nyg2eqN9m3nuXk0uqZ2fp4zI+5D9lM7OhpbnlcbX1urd+eSDrWW/vNYOz/fmdHz+c8oWv+ZQMbMcY8FMnruPghk9JytlgkQIECAAAECBAgQIECAAAECBAgQIECAAAECs7RALnhPTyBjlsYzeQKzgIBAxsxxkwUyeu4+CGT0nK2WCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKztIBAxix9+02eQIcCAhkdEs2QEwQyeo5ZIKPnbLVMgAABAgQIECBAgAABAgQIECBAgAABAgQIEJilBQQyZunbb/IEOhQQyOiQaIacIJDRc8wCGT1nq2UCBAgQIECAAAECBAgQIECAAAECBAgQIECAwCwtIJAxS99+kyfQoYBARodEM+QEgYyeYxbI6DlbLRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEZmkBgYxZ+vabPIEOBQQyOiSaIScIZPQcs0BGz9lqmQABAgQIECBAgAABAgQIECBAgAABAgQIECAwSwsIZMzSt9/kCXQoIJDRIdEMOUEgo+eYBTJ6zlbLBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFZWkAgY5a+/SZPoEMBgYwOiWbICQIZPccskNFztlomQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECMzSAgIZs/TtN3kCHQoIZHRINENOEMjoOWaBjJ6z1TIBAgQIECBAgAABAgQIECBAgAABAgQIECBAYJYWEMiYpW+/yRPoUEAgo0OiGXKCQEbPMQtk9JytlgkQIECAAAECBAgQIECAAAECBAgQIECAAAECs7RAFch44404+JBD48qrrop83f6YffbZY8CAATHq9O/G+uut1/5jrwkQaGEBgYyZ4+YKZPTcfRDI6DlbLRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEZmmBDGC8UQIZRwwZEldf/fP4YBwjYvbZZoull146vnPqyFhn7bVnaS+TJzCrCQhkzBx3XCCj5+6DQEbP2WqZAAECBAgQIECAAAECBAgQIECAAAECBAgQIDBLC2RBjLffeTtuv/32ePTRx0og44ORjNlKIKNv376x7jrrxFL9+8/SXiZPYFYTEMiYOe74pptsHD//2c9mjsG02CgEMlrshpoOAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBmE/jXv/5Vd7uStuPMrUsynOEgQGDWERDImDnutUBGz90HgYyes9UyAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQQmLvvfB2GtRpc6u1uFNhi883j8ssu7cYWNVUTEMioSXgkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRkmsFi/JWP8+PEzrD8d1RfYY7fd4sxRZ9T/0LvTJSCQMV18LiZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBaRHYcqut4uZbfj0tl7qmGwUuuuD82G7bbbuxRU3VBAQyahIeCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGCGCTzw4IOx+mfXnGH96eiDArPNNlu89cbrH/zAO90iIJDRLYwaIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGuCEyYMCHWWX/9ePDBh7pymXO7UWDHHbaP87///W5sUVNtBQQy2mp4ToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIzROBf//pXXHvddbHHXnvFW29NmCF96uQ/Akv17x93jx4d8847T8w+++z/+cCzbhMQyOg2Sg0RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQFcEJk2aFGeMOjNOOuWUeOedd7pyqXOnQ2ChhRaqKmNsvNGGwhjT4djRpQIZHQn5nAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR6VODKq66KXXffI/7973/3aD8aj1hggQXi+muviVVWXhlHDwsIZPQwsOYJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGOBt99+O7602eZx/1//GpMnT47c0kRAo2O3js6YbbbZolevXtGnT5/YYvPN44Lzf9DRJT7vJgGBjG6C1AwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQITJtABi8yOJDHa6+9Fg88+ECMGfNiTJgwoQpl1D6bttZnzavSNIMY88wzTyzVf6lYccUVo3fvj86aGE2atUBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoCAhmte2/NjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiSgEBGk+B1S4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSugEBG695bMyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaJCCQ0SR43RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKyCQ0br31swIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJgkIZDQJXrcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA6woIZLTuvTUzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkCAhlNgtctAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LoC/x9bUHkb+LkaHQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, the initial query to the knowledge graph returned no information on some competitors’ R&D activities. Rather than failing silently, the system pivoted to an alternative source—the strategy content—and successfully located the missing information. This multi-step approach allowed it to navigate sparse data and deliver a complete response to the user." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.1. Building our Retrieval Agent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At a high level, we will build out the following structure:\n", + "
    \n", + "
  1. \n", + " User question → Planner → Orchestrator
    \n", + "

    \n", + " A planner utilising GPT 4.1 will decompose the user's question into a small sequence of proposed graph operations. This is then passed to the orchestrator to execute\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Tool calls to retrieve information from the Temporal Knowledge Graph
    \n", + "

    \n", + " Considering the user query and the plan, the Orchestrator (o4-mini) makes a series of initial tool calls to retrieve information from the knowledge graph\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Loop until done → Generate answer
    \n", + "

    \n", + " The responses to the tool calls are fed back to the Orchestrator which can then decide to either make more queries to the graph or answer the user's question\n", + "

    \n", + "
  6. \n", + "
\n" + ] + }, + { + "attachments": { + "7fe7cc38-3551-4914-af4e-bfed38648ef1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAb0CAYAAACnOcOUAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAGuqADAAQAAAABAAAG9AAAAABBU0NJSQAAAFNjcmVlbnNob3TlQRGbAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xNzgwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE3MjI8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KmGTr5wAAABxpRE9UAAAAAgAAAAAAAAN6AAAAKAAAA3oAAAN6AAERqlhHAAQAAEAASURBVHgB7N11mF3FwQfgQQMUd9cCxa3EIFhxd2ma4FBgswSHBIcQXJJFPyCQENyp4NZiARLcSgsUawmuxb8zF87l6mY3ubt75Z3ngXvsnjPzzsn+sb+dmcm+/OzTH4NCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoMYEJhN01ViPqS4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBGQNDlRSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhJAUFXTXabShMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAi6vAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI1KSDoqsluU2kCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAFBl3eAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgJgUEXTXZbSpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECAg6PIOECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1KSAoKsmu02lCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBF3eAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZoUEHTVZLepNAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgKDLO0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCTAoKumuw2lSZAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBB0eQcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqUkDQVZPdptIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCLu8AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBATQoIumqy21SaAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBA0OUdIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEkBQVdNdptKEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQICLq8AwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjUpIOiqyW5TaQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAUGXd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAmBQRdNdltKk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQICDo8g4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUpICgqya7TaUJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEXd4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBmhQQdNVkt6k0AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAoMs7QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUJMCgq6a7DaVJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQEHR5BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBGpSQNBVk92m0gQIECBAgAABAgQIECBAgAABAgQIECBAgAABAoIu7wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBNCgi6arLbVJoAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQEDQ5R0gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoSQFBV012m0oTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgIurwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECNSkg6KrJblNpAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABQZd3gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCYFBF012W0qTYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIOjyDhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSkgKCrJrtNpQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBARd3gECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGaFBB01WS3qTQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgICgyztAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQkwKCrprsNpUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQdHkHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEalJA0FWT3abSBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECgi7vAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQE0KCLpqsttUmgABAgQIECBAgAABAgQIECBAgAABAgQIECBAQNDlHSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhJAUFXTXabShMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAi6vAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI1KSDoqsluU2kCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAFBl3eAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgJgUEXTXZbSpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECAg6PIOECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1KSAoKsmu02lCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBF3eAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZoUEHTVZLepNAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgKDLO0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCTAoKumuw2lSZAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBB0eQcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqUkDQVZPdptIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKCLu8AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBATQoIumqy21SaAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBA0OUdIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEkBQVdNdptKEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQICLq8AwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjUpIOiqyW5TaQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAUGXd4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAmBQRdNdltKk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQICDo8g4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUpICgqya7TaUJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEXd4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBmhQQdNVkt6k0AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAoMs7QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUJMCgq6a7DaVJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQEHR5BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBGpSQNBVk92m0gQIECBAgAABAgQIECBAgAABAgQIECBAgAABAoIu7wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBNCgi62tlt3333Xfj000/b9a2pppoqzDDDDO36TqNdHE2vvOqq8Nprr4cFFpg/7LD99mGOOeZoNIaJbu8333wTPv/887zvTz755GHmmWfOO1aJnVLPKnXfGWecMUw55ZSlTjlGgAABAgQIECBAgAABAgQIECBAgAABAgQqIiDoaifjo489Fv7Qf+d2fiuEGHbNPvvsYaUVVwwbbrB+WGfttcM000zT7vvU4xf++9//hi232TaMHz8+27wYktx4/XVh4YUWyh6zUV7gz3/5S9j/gAPzLphrrrnCQw8+kHesEjtnnX1OOPf88yd4qzNPPz1svtmmE7zOBQQIECBAgAABAgQIECBAgAABAgQIECBAYGIFBF3tlJvYoKvwMQsusEA44bjjwmqr9S481SX7P/74Y9FzJ5tssqJjHXFg8JFHhWuuu67o1htvtFEYdvZZRccdKBbozKBrux12DOOeeqq4EgVHtt1663Dy0JMKjtqttEBX/tutdFvcjwABAgQIECBAgAABAgQIECBAgAABAu0VEHS1U6xSQVf62FNPHhq23mqrdLdLPh96+OGw86675T27W7du4flnns471lE7W2+3XXjmmWeLbr/YoouGO/76l6LjDhQLdFbQ9VkyPeKqPXqGOIXnhMp8880bHrj33gld5vwkCuyw0+/Dk2PH5t3l0IMPCnvtuWfeMTsECBAgQIAAAQIECBAgQIAAAQIECBCoRwFBVzt7tdJBV1zD6MorRoWVV1qpnTWp3OVdHXTts+9+4a577ilqUM8ePcIVIy8vOu5AsUBnBV333ndf2OuP++RVIE7LeehBB4UhJ5+cdzzu3HPXnWGhBRcsOu5A5QQEXZWzdCcCBAgQIECAAAECBAgQIECAAAECBGpPQNDVzj4rF3TNPPPMmXW4St3uww8/DN9//32pU5lja/RZPVx68cVlz3f0ia4Ouh559NHQf5ddQ+EUbOcOHxY2WH/9jm5+Xdy/s4KuISedFEZcPjLP7LerrBKuGn1F6NF7tRDf9dxy4vHHhR132CH3kO0KCwi6KgzqdgQIECBAgAABAgQIECBAgAABAgQI1JSAoKud3VUu6LrumqvDSiuuWPJucZq3l156OZx6+unh4UceKbomroV1fzKiKU711hWlq4Ou2Ob7H3ggDGtpCa/967Uwf7J+2R/32jNssvHGXcFRk8/srKBrk802Dy+/8kqe0X777BMOGLh/aGreP9x+xx155zbcYIPQMuycvGN2Kisg6Kqsp7sRIECAAAECBAgQIECAAAECBAgQIFBbAoKudvbXxARd6SN++OGHsOPv+4ax48alh7KfI5IRXX2SkV1dUaoh6OqKdtfTMzsj6Bo/fnzotXqfIraRl40IvXv1CqOuGB2OO+GEvPOzzDJLGPPIwyGGuUrHCAi6OsbVXQkQIECAAAECBAgQIECAAAECBAgQqA0BQVc7+2lSgq74qL/97e9h1z32KHrqxEzx9tFHH4UPkqni5pxjjjDjjDMW3bOtB+op6IpTRL7//vvhy6++CnPPNXeYdtpp2srQZdd98eWXmSn/Yt3nm3feslNgtlbBzgi6br3tT+HAgw/Oq0Zcn2vs449nnONIrzjiq7DcetONYemlly483Ob9r7/+Orz7n/+EqaeaOswxx+wT5dPWh9Xi+yPoamvvuo4AAQIECBAgQIAAAQIECBAgQIAAgXoUEHS1s1cnNeh67733Qu8+axQ9deiQE8N2225bdDz3wMcffxxuvvmWcOMtt4R//vOfIQYAaZn+V7/KhAlxPaSNNtygbBgQ639bEljklv++999k6sAHcw+FKaaYImy79dZ5x+LOKqusHLbeaqu84zffcmt4PAk7ckvv3r0yUw9+88034fEnnghPPjk2vPTyy+GHJMxZeJGFw+GHHpq9/LPPPw8nn3xKdj/dOPCAgWG22WZLd8t+vvb66+Haa68Ld9x5Z3jn3XdDnCoyLbPOOmvo0b17+EPf32c+0+OFnyNGXBZeTUxzy9xzzxUGNDXlHiq5Hfvh+BNOLDq3zjprh9+ts07R8Xhg3FNPZep8/4MPhjhSKi3RfZ655w4LL7xQ2GH77ZO+3DA91epnZwRdRwwaHK674Ya8eqyy8srhmquuzByLa6x179U7xAA2txyR9PXuu++We2iC22+9/Xa4+uprwq1/ui28++5/suu3xZFhiy26aGbdrx132D5MM800mX8HpfwPP/ywMMP000/wWZV4f9KHlHuXjzpycKauMUi79777wk3Jv+PYxtj30007bTJt6XzJ+7lq2H677ZIwb470dkWfQ4YODV9+8WXe8XuS+8VwN7csv/xyYaklf5N7KLN96CEHh5lmmqnouAMECBAgQIAAAQIECBAgQIAAAQIECBCoVQFBVzt7blKDrv8kI1NWX3OtoqdeMfLy0LNHj6Lj6YFLLx0RTjvzzPDtt9+mh8p+xl+Un33mGSWDnStGjw7HHp8/vVzZG5U4EcOvk4eelHfm6GOODVdefXXesV132TkMOvzwMGD/gUXrNsVfwt943XXZ6+Mv6XuuVjxt4z133RkWWnDB7HWFG3HU1jHHHpsJDQrPldpfYfnlM+tFzTPPPEWnz7/ggnDGWWfnHZ9yyinD448+EmaYYYa844U75UbpjR41sqgPYgjXcu554bzkeXEqywmVWOfBg44IK6+0UquXdkbQtWYS2r399jt59dj3j38MMZBMS6l1utZIpuS8NJmasy0lhmUXXHhhOHvY8BBDodZK/Pdy0YU/Oa648ipFlz7y97+1GhpV8v1JH17uXR735BPhu+Tf7l5/3CcTcqbXF37Gd+6A/ZvD3nvtVXgqs79qz15FQWLJC8scfDAJxeadt/j9L3O5wwQIECBAgAABAgQIECBAgAABAgQIEKh6AUFXO7toUoOu++6/P+y59x/znjr55JOHhx58oOQv5eNooYEHHhTuuvvuvO9MaCf+wvyYo44MO+24Y96lnRV0rbfuumH++eYNIy4fmff8uFOJoOvfb74Z9k5Cg3+8+mrR/Vs7EEeIXXDeuWGlFVfMuyyO5tpw403yjsWd4eecPcFRVUNOOqmonXEkWQxa4gittMTRfPsNaG416Eivzf2Mo5ZuvvGG8OvFFss9nLfd0UFX9F5n3fXynhl3Lh9xaVitd+/s8ZGjrgjHn5g/ui2OWHry8TFlRxmmX47BVgzK2vOud1911XB08p5vuvkW6W2yn60FXZV+f9KHlgu6nhzzWNhjr73b3PelAuX4DEFXKu2TAAECBAgQIECAAAECBAgQIECAAAECPwkIutr5JkxK0BVH82y17XbhxRdfzHvq5pttGs48/fS8Y+nOMcceF0ZfdVW6267POM3bqMsvyxsp1llBV2sVndSgK06HuM32OxQ5tvbM3HMx7PrLbbcWTYu4/oYbhX+99lrupZnpGwtHsOVdkOyst8GGIU5/l1u2T6ahPCmZjjK3NA88IPzlr3/NPdTm7aWWWioZBXdt2bCoo4Ouq6+5Jhx59DF59Y1h6rhkWsrcddDKrdN15RWjQgylWitnnX1OOPf881u7pF3nygVdHfX+xMqVC7ridIGffPJJu+p/6sknJ9OEbpn3HUFXHocdAgQIECBAgAABAgQIECBAgAABAgQIBEFXO1+CiQm6Pvvss/Dsc8+F0844Izz77HN5T5x55pnDjddfFxZcYIG843EnjmzZZ7/Sa0StteYaYZmllwlzzjlHZjq5R5MRI88882zRPeI0fTHUSaffiyPKRl95Zd51HyZrKhV+N44yi1POFZbVe68WdkmmJcwtpaYuzD2fbnfr1i3E8G25ZZcNV42+Ij1cNhwoN3VhqRFU8WZx5FNcnyyu4TTttNOFN954Pdx1z73JGk/vZp+Vbvxu7bXDhRfkhypnnHlWOD+ZNi+3zDnnnOHhv+WvX5Z7vtxIp4svujCsteaa2UufevrpsG0SzhWW5ZdbLjTtt29YfPHFwzSJzxv//neIo6JKBWJHDR4cdu7fr/AWmf2ODrriFJR/vf32vGfH6RSvvTo/hI1TD8YwJq4nl1sG7Ldf2L95QO6hvO2x48aFHX/ft+R0jlNPPXVYs0+fjFEMKV9Lwsinnnk6PPfc83n3KNwpF3R11PsTn18u6ErrFt//2OdLJ8HlLLPMEl5/443w0MMPlwzBYjgW2xDbn5Y4uvPzzz9LdzOfY8c9FT799NO8Y4suskhYcMHinykxPIujDRUCBAgQIECAAAECBAgQIECAAAECBAjUi4Cgq509WS7oiiHOFEk4VFh+DD+Gr776X+HhzH78hfPll14S4midUmXzrbYOL7zwQt6p+Iv+C88/L6y4wgp5x+POzbfcGg474oiitY0GHXZY2G23XYuuTw/EX7TvvOtu6W7mM7bn+SRMaEtpLeiKgdxee+4ZlvrNb7JhW+E9y4UDpYKuGKDE9bzi6LjcEkOXc846MxSuvxWnfjw9CRhLTaF48w03hGWXXSZ7mxj2bb3ddtn9dOO2W27O1D/dz/0sNUJu+l/9KoxJ1vbKDShOPe30cMmIEXl9M/fcc4d77rwjROvCctjhR4Qbbrop7/BWW24RTjvllLxj6U5HBl0xvOreq3fR2lCF63OldYnTM95x553pbuazVCiWe0EMcP705z/nHsps9+jePZxw/HEhBjeF5aabbwlDhg4tCtXS60oFXR35/sTnlnuX47kYXJ1+6ilh7bXWirvZ8uGHH4ZDk/Xs7n+gOFA9d/iwsMH662evLbWxw06/D0+OHZt36tCDD8r8u8s7aIcAAQIECBAgQIAAAQIECBAgQIAAAQJ1KCDoamenlgu62nmb8Iff/z4ceMDAMOOMM5b8arkp4EaPGhniL//LlQuSEUmnJyOTcksM0m67OT80yT3fUUFX3512Cscdmz/dXe5z0+1y4UCpoKvUGlBzzDFH+FMSRsUQsFSJQc0ee+0VHnjwb3mnd01Gpg1OgsHc0mettYtGgB1y0IFh7+T7pcpeyXpr995/f96pTTbeOBO65R1Mdj744INMAPTnv/w1PJ5M+XfSiSeEbbfZpvCyzH4MOGPQmVta68eODLriVJubbblVblUy25dfmqzPtdov63OlF5TqozjN4RPJqMMYAhaWOBophpdxSsHcEtckuzV5b3MDw9zzcfvhRx4J/XcpHeKWCrpK1a2S70+5dznWtbV/ux8loyp/t/4GRSOztkvej6EnDYlfL1sEXWVpnCBAgAABAgQIECBAgAABAgQIECBAoAEEBF3t7ORKBV1xGrp11lk7LDD//CVrMGx4SxjW0pJ3brnllg03XX993rHCnThiJY6++eGHH/JO3Xv3XSWnR4wXdUTQNcP004dHHvp7ZjrBvIqU2CkXDpQKuvr26x8eGzMm7y577L5bOPzQQ/OOFe7cedddYd+m/Knz4oiqvz9wf96lJ5x4Yrg8mTowt8S1peIaU4UlBjOrJKFj4Yi9YWefFTbeaKPCy/P2x48fn5lCbooppsg7nu589vnnYaVVfpvuZj7jyK9nnxoX4rSShaUjg65LLrk0DD311LxHxuBq7BOPh+mmnTbveNx56eWXw6abb1F0vHA6x/SCe+69N+y9z77pbvYzTosYR4JNqMTRUDfedHPRZaWCro5+f8q9y31WXy2MuOSSojrmHhg0+MhwbcG/79WTIPGyJFBsrQi6WtNxjgABAgQIECBAgAABAgQIECBAgACBehcQdLWzhysVdMXHxrDgyEFHhD/07VtUi0OS6Qbj1Gy5Ja7jtfTSS+ceKrl9/wMPhP/9L3+6xMuSX7KvnvyyvVTpiKBrpRVXDNddc3WpxxUdKxcOlAq61kjW1nrnnfw1t+I0jjG0aq189dWXRSO64vUvPPtM3oihGKLFMCS3xH56/LFHQwzvcstDDyVTPu6WP+VjHH0Upy0sNXIp97sxiIzre72chEJvvflW+OHH/GDy22+/DWeefU7uVzLbLz73bJhqqqmKjndk0LV7MvVk4Wi41qYiLLdOV6kRdLEhcc24Y447Pq9NcZq/J5MRYG0pt99xR2hq3r/o0lJBV0e/P+Xe5ROOOzbstOOORXXMPXDhRRcl6/idmXsoLLnEEuHPyRp7rRVBV2s6zhEgQIAAAQIECBAgQIAAAQIECBAgUO8Cgq529nAlg6746BiixF9kL7boonk1idOxxWnZKlVOGXpS2Gbr/Knw0nt3RNC12aabhLOStbHaUsqFA4VBVwyHll5u+aL1udryjHLX3HfP3Xmj6r7//vvMNHpxKrnc0jLsnLDhBhvkHsqsDzXissvzjq2z1lrhogsvyDuWuxOnLBx68inhlX/8oyiMzL2u3HZnB10xcFtl1e7hy6++yqtSDDLXW/d3ecdyd66+5tpMkJd7rFxoc+ZZZ4fzLsg3W2XllcM1V12Z+/Wy29Fy4003KzpfGHR1xvtT7l0ecfHFoU+f1YvqmHvg+mTNuMMHDc49FBZeaKFwd7KOW2tF0NWajnMECBAgQIAAAQIECBAgQIAAAQIECNS7gKCrnT1cLuiK6+/EX/6XKnGEy9hx48IlyRRk9z/wYNElRyTT7u2eTL+XWzbZbPMQ1+mqVDn04IPCXsnInFKlI4KuLTbfLJxx2mmlHld0rFw4UBh0xWkZf9ujZ9H3J+XADdddG1ZYfvm8WxyRhA3XJaFDbtlhu+3CkGRNrdyywUYbh3/+61+5h8LJyXpK5dbdujgZVRfXT/vuu+/yvtOenc4OumIwt1PfP7SnimWvnWyyycKjyXSWhWupHZuM5roiGdWVW+LUj3EKyLaUuMbXykkYV1gKg67OeH/Kvcu3/+XPIa451lopFXQtsvDC4a47bm/ta0HQ1SqPkwQIECBAgAABAgQIECBAgAABAgQI1LmAoKudHVwu6IrT9JULutJHxKnq1ll3vXQ3+/mH3/8+HHvM0dn9uLHt9juEp55+Ou/YpOwcdMDAsM8f/1jyFrUSdH399ddhmeVXKNmGiT1Yah2o++6/P+y5d75V4Xpeb739dlhrnfwRTXG9rRjkzDLLLEXVKRWeFV3UhgOdHXSdM2x4GH7uuW2oWdsuOfvMM8Kmm2ySd/FZyRSN555/ft6xGD7GELIt5cUXXwybbblV0aWFQVdnvD/lgq7C0LaossmBUkGXEV2lpBwjQIAAAQIECBAgQIAAAQIECBAgQIDALwKCrl8s2rQ1KUFXfEDvPmuE9957L+9ZO+2wQzjh+OPyjsU1h+LaQ7llow03DLvsnL9+VO751rbnm3fesutY1UrQFdu3as9eoXBawYMPPCCsuuqqrTW/7Lkll1yyaD2tb775JnRPnvP5F1/kfS9OMRmn34vlqquvDkcdc2xmO/1fj+7dQxzZV1ji1HpxhF4c2Zdb4rSVcX2xXj17hplmnDH3VPjm22/CqacXT/3Y2UFXqdFCeRVt506pkXFXX3NNOPLoY/LuFNc4e2rsk3nHyu3cetufwoEHH1x0ujDoihd09Psj6CrqBgcIECBAgAABAgQIECBAgAABAgQIECDQoQKCrnbyTmrQ1WettcO7776b99RSQdeQk04KIy7PD03aum5RDFTiNHFtLbUUdG22xZbhxZdeymvavslItQOTEWsTKu1xaR54QPjLX/+ad8vDDjk47LnHHpljf9xn33D3vffmnT/6yCND/37F0/ydn6w/dUayDlVumXnmmcPNN94Q5p9vvtzD2e1/vPpq2GiTTbP76UZnBl1ffPllZn2uSZlqMa13+rnA/POHuC5abnkgmc5z9732yj2U2b7ogvPDOmuvXXS88MCee+0d7nvggcLDoVTQ1dHvj6CrqBscIECAAAECBAgQIECAAAECBAgQIECAQIcKCLraydtZQdddd98d9tmvKa92cQTQ9cnol2WXXSbveO7Ol199lVmzp2eP7mGfvfcOs846a+7pktu1FHSVCgBjeHLrLTeHGaafvmT74sG43lkMp3bdZZew0447hKmmmqrstfHEn//yl7D/AQfmXZOO2Pr222/Db7v3CDEISksMFh+8794wzzzzpIeyn4OPPCpcc9112f24sdWWW4TTTjkl71juzg033hgOO2JQ7qHMdmcGXeUCqA032CDMPNNMRXUrPBCn6nz4kUcKD4d7774rLLjAAtnj8Z3t1Xu1PM94cq655gpxbavW+vXmW24NBydr3JUqpYKujn5/BF2lesIxAgQIECBAgAABAgQIECBAgAABAgQIdJyAoKudtp0VdMVRNHGaww8//DCvhjEguPrK0WHOOefMO57uHHLYYeGmm2/J7P5quukywc7uu+/WalhQKuiKodrTydRx3bp1S29d9vPoZAq/K5Op/HLLFptvFs447bTcQ2W32xMOxNFccVROYVlv3XVDXP+pVH1jkLL1NtuGV//5z8zX5ptv3rD/gAFhi803D3FdrVIlTlsYpy+M0ximJZo8Meax8Mwzz4T+u+yaHs58Lr/8cuHGgjArveDIo44OV1+bv97UGn1WD5defHF6Sd5n7PNNNt8ijB8/Pu943HnisUdDHA1WWEoFczEoeujB4pFOhd8ttz9k6NAw4rLL805PPfXUYdwTj5d0zrsw2YneG268SeHhMOSE48MO22+fd7zcGmaLLrJIZlrPGDLmlhg2XnDhheG8Cy4McbtUKRV0dfT70553ubDOlVyjq62jHAvrYJ8AAQIECBAgQIAAAQIECBAgQIAAAQK1JiDoamePdVbQFat1xplnhfOTX+YXlrh+0T5/3Dus0adPWCQJAr5IQpl/vfZa+L//uzjce//9hZeHPXffPRx26CFFx9MDT44dmxkFlu6nn3E9pTXW6JPuZj7XXGONMM000+Qd68ygKz54ux12DOOeeiqvDnEnjuxqTgKsFVdcITMl4Pjx74dnn3s2DBvekhnRVfiFSy66KKy55hqFh7P7pabEO//clvDEk0+GSy4dkb0ubsR1wv6YjKArVS5MnnPaGWcWnTpy0KCw5Rab5wVXMXQ84cQh2VCu8Eubb7ZpWH+99ZLgcoaw2mq9s6c7IujaNAnbXnr55ewz4saqv/1tuGr0FXnHWtvpkYzU+uCDD/Iu2WTjjcM5Z+V7xBF3W269TcnQKo6WW3rppTLro80+2+zhn0mA9sxzz5UMAnMfVCroiuc78v3piqBr5113C/G9yS3zzjtPaNp33zBTzsi7+eebPyyzzNK5l9kmQIAAAQIECBAgQIAAAQIECBAgQIBAzQsIutrZhZ0ZdH399ddh2+13KFqTqj1VXvzXvw433XB9UTiVe4+PP/44/LZHz9xDZbcfvO++EH+Jnls6O+h6/Y03whZbblU01V1unSa0ve3WW4eTh57U6mXXXX99OGLwkXnXzD777OGrZMrC3GkL4wV33v7XEEcflSr//Ne/MiOb4hphhWXyyScPyy6zTJg+mXYxhpX/+c9/Ci8pub/IwguHu+64PXuu0kFXDKd6rrZ6KKzzfvvsEw4YuH/2uRPaaGreP9x+xx15l8XpNB97+KGideQuS9akOzFZm65SpVzQ1ZHvT1cEXcefcEIYecXoCbK15Z2f4E1cQIAAAQIECBAgQIAAAQIECBAgQIAAgSoTEHS1s0M6M+iKVYvhx/Y77hRiGNXeMsccc4TLLr0kMxJmQt8tN8ql8HvVEHTFOsVg58CDDwnff/99YRUnuL/C8suHkZdfFuLUjq2VOIVgr9X7TPAZv15sscxaUq3dq9zUfOW+s/BCC4WjBg8Ou++1V8lLOjroKhWcxYqMvGxE6N2rV8k6lTo4KglgjkuCmMJyW7Km2lK/+U3h4XDscceHK668suh4uQOrrLxyGLh/c+i38y5Fl5QLuuKFHfX+dEXQ9be//T3susceRe0vPCDoKhSxT4AAAQIECBAgQIAAAQIECBAgQIBAPQgIutrZi50ddMXqvfPOu6F54MDw1NNPt7m2fVZfLZx+6qlhttlma9N34tRxOySBWlybqrVSLUFXrONjY8aEgQceNMEp7NL2xCnwdt9t12SawQNDXG+rLaVvv/6Z57R2bVvWQ4ojo+IUii3nnVc0Sqrw3nFqyIsuOD8TKMWQc+y4cYWXhI4OugYfeVS4pmDNsWg27oknwrTT5k9dWVS5nAPxvdpks81zjvy0Ofjww8Ouu+5SdDweiGvMHXvccUWj5gov7tWzZxh29lnhs88/D+usu17h6dBa0BUv7oj3pyuCrtiWw48YFK6/8ca4WbYIusrSOEGAAAECBAgQIECAAAECBAgQIECAQA0LCLra2XldEXTFKn733XfhmmuvTcKH68MLL7xQttZxFNfuSYCw+267FU0NV/ZLP5949913wxlnnRXGjh0X3nzrrZKBTDUFXbHacYq9kaOuCDfcdFOr0/7FKRwPP/TQVtfkKuVz+chR4YQhQ0qdyh67+YYbwrLLLpPdb23jjjvvTKbnGxqidamy4AILhHNbhmdHO8WRfDfeeFNm7bW4Nlh8D2Lp6KBr7d+tm3kHcuu48korhWuvvir30AS3Y8C3as9eRSMS10rWRrs4WbusXInh1S233BJuufW2EKca/Oijj8LUU08dok8c7bbNNluH9dZdN/P1f7/55kQFXfHLlX5/uiroim25PnkPr7n2uvDqq69mwr94LLcIunI1bBMgQIAAAQIECBAgQIAAAQIECBAgUC8Cgq4a7Mk4SuaVV/6RBDvvhvfGjw8zzjBDZuTWEkssEWIYEdd9arQSpzB8cuzY8FYS0MUQ6eNPPgmzzjJLiGtqrZxMb7fYootWFUmcFvH5518Iz7/wfLauyy67bOi+6qptHm1WVQ3q4Mp89dX/QrduU5d8tycl6EqrXWvvT1pvnwQIECBAgAABAgQIECBAgAABAgQIEGh0AUFXo78B2k+gxgUqEXTVOIHqEyBAgAABAgQIECBAgAABAgQIECBAoGEFBF0N2/UaTqA+BMqtAzahNbrqo/VaQYAAAQIECBAgQIAAAQIECBAgQIAAgcYWEHQ1dv9rPYGqEvj000+T6RzLr0FXWNnvv/s+WbfuuvDX228vPBUefejvmakri044QIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1IyDoqpuu1BACtS/w8COPhP677DrJDZlu2mnD0+PGhskmm2yS7+UGBAgQIECAAAECBAgQIECAAAECBAgQIFC9AoKu6u0bNSPQcAKVCrp6dO8eRo8a2XB+GkyAAAECBAgQIECAAAECBAgQIECAAIFGExB0NVqPay+BKhaoRNA1+eSTh+uvuSYsv/xyVdxSVSNAgAABAgQIECBAgAABAgQIECBAgACBSggIuiqh6B4ECFREYFKDrvnmmzcMOf6EsPrqq1WkPm5CgAABAgQIECBAgAABAgQIECBAgAABAtUtIOiq7v5ROwINJfDRRx+FJ8eObXebp5pyqrDQwguFBRdYIMQRXQoBAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYwgIuhqjn7WSAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB3AoKuuutSDSJAgAABAgQIECBAgAABAgQIECBAgAABAgQINIaAoKsx+lkrCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JyDoqrsu1SACBAgQIECAAAECBAgQIECAAAECBAgQIECAQGMICLoao5+1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBQdwKCrrrrUg0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSGgKCrMfpZKwkQIECAAAECBAgQIECAAAECBAgQIECAAAECdScg6Kq7LtUgAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBjCAi6GqOftZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUHcCgq6661INIkCAAAECBAgQIECAAAECBAgQIECAAAECBAg0hoCgqzH6WSsJECBAgAABAgQIECBAgAABAgQIECBAgAABAnUnIOiquy7VIAIECBAgQIAAgbYIPDZmTPayHt27Z7eHDW/JbjcPaMpux+sfe+yn7/To0T205Tu598r9Tu694gNyn+M7ITCoHYPcdzf3vc593+M7ntunvpP/b74r3eKzY8n9eZY54H8ECBAgQIAAAQIEakhA0FVDnaWqBAgQIECAAAEClRHo269/yP0F7+hRI7M3/vWSv8lux+PpL4DjL+qHtfwUgsVjbflO7nOam5qygVZ8djyXlldffindzBxP6+Y7SSDAreoMKvlvZGL+XfnOT8Fhe38elXIr15fZH0g2CBAgQIAAAQIECNSAgKCrBjpJFQkQIECAAAECBCZNIP6CN3cUSalf+KZPKPeL34n5jqArCO6SF6ve3oNK/huZmH9XvtPxQVcatqdBf/rz0ScBAgQIECBAgACBahQQdFVjr6gTAQIECBAgQIBARQRyfyGeOzIo9/j+yfSEA5JRQ2nJHWkVw7H0F73xO+kvf3smUxe29zu594r3ifdLS+7osNzn+M5PU7ylfcAtZN7Brn53OurfyMT8u/KdECbFIDe0LDWyNPfnZvrzyicBAgQIECBAgACBahMQdFVbj6gPAQIECBAgQIBARQRiKJL3C/mcKfAq8gA3IUCAQJ0IxJ+XuYGyn5110rGaQYAAAQIECBBoEAFBV4N0tGYSIECAAAECBBpRII58SdexKRy51Yge2kyAAIEJCRT+kUDuWoUT+q7zBAgQIECAAAECBLpCQNDVFeqeSYAAAQIECBAg0GECuSMT4kNi2NUjmWowHa3QYQ92YwIECNSJQBp2CbnqpEM1gwABAgQIECBQ5wKCrjrvYM0jQIAAAQIECDSSgF/ONlJvaysBAp0tUPiHBJ39fM8jQIAAAQIECBAgUEpA0FVKxTECBAgQIECAAIGaFIjrysRfxMbSbE2umuxDlSZAoPoE0mlg/Vytvr5RIwIECBAgQIAAgRAEXd4CAgQIECBAgACBuhBIR3OljbEmVyrhkwABAhMvkIZc6R2EXamETwIECBAgQIAAgWoREHRVS0+oBwECBAgQIECAwCQL5P5C9tWXX5rk+7kBAQIECITw6yV/k2WwbleWwgYBAgQIECBAgECVCAi6qqQjVIMAAQIECBAgQKByAtaRqZylOxEgQCD+EcFkk4UwIJkSViFAgAABAgQIECBQbQKCrmrrEfUhQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBok4Cgq01MLiJAgAABAgQIEKh2AaO4qr2H1I8AAQIECBAgQIAAAQIECFReQNBVeVN3JECAAAECBAgQ6GSBGHL17dc/89Qe3buHuIaMQoAAAQKVE4jTF8aS/lFB8wDTGFZO150IECBAgAABAgQmRUDQNSl6vkuAAAECBAgQIFAVAvEXsMNafvolrKCrKrpEJQgQqDOB+McEMeSKpTlZq0vQVWcdrDkECBAgQIAAgRoWEHTVcOepOgECBAgQIECAwE8Cgi5vAgECBDpWQNDVsb7uToAAAQIECBAgMPECgq6Jt/NNAgQIECBAgACBKhFIRxmk1YmjuhQCBAgQqJxA/Dk75ucRXd2Tn7F+zlbO1p0IECBAgAABAgQmTUDQNWl+vk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQINBFAoKuLoL3WAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUkTEHRNmp9vEyBAgAABAgQIVIFAnFLrscfGZGrSo4cptaqgS1SBAIE6EzBFbJ11qOYQIECAAAECBOpIQNBVR52pKQQIECBAgACBRhUYNrwlDGtpyTQ/rhszetTIRqXQbgIECHSIQN9+/UMadjU3NYXmAU0d8hw3JUCAAAECBAgQINBeAUFXe8VcT4AAAQIECBAgUHUCgq6q6xIVIkCgzgQEXXXWoZpDgAABAgQIEKgjAUFXHXWmphAgQIAAAQIEGlUgBl3pSIOeydSFA5LRBgoBAgQIVE5A0FU5S3ciQIAAAQIECBCorICgq7Ke7kaAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBJAoKuToL2GAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcoKCLoq6+luBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECnSQg6OokaI8hQIAAAQIECBDoOIG4RtewlpbMA3p07x5GjxrZcQ9zZwIECDSgQO5aiPHnbPMAayE24GugyQQIECBAgACBqhQQdFVlt6gUAQIECBAgQIBAewQEXe3Rci0BAgTaL9C3X//w2JgxmS82NzUJutpP6BsECBAgQIAAAQIdJCDo6iBYtyVAgAABAgQIEOg8AUFX51l7EgECjSkg6GrMftdqAgQIECBAgEAtCAi6aqGX1JEAAQIECBAgQKBVgXSUQXpRnFZLIUCAAIHKCcSfs2N+HtHVPfkZ6+ds5WzdiQABAgQIECBAYNIEBF2T5ufbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXSQg6OoieI8lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCYNAFB16T5+TYBAgQIECBAgEAVCMQptR57bEymJj16mFKrCrpEFQgQqDMBU8TWWYdqDgECBAgQIECgjgQEXXXUmZpCgAABAgQIEGhUgWHDW8KwlpZM8+O6MaNHjWxUCu0mQIBAhwj07dc/pGFXc1NTaB7Q1CHPcVMCBAgQIECAAAEC7RUQdLVXzPUECBAgQIAAAQJVJyDoqrouUSECBOpMQNBVZx2qOQQIECBAgACBOhIQdNVRZ2oKAQIECBAgQKBRBeIogzHJf2kZkIw2UAgQIECgcgKCrspZuhMBAgQIECBAgEBlBQRdlfV0NwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgU4SEHR1ErTHECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVFZA0FVZT3cjQIAvuXE8AABAAElEQVQAAQIECBDoIoE4fWFaenTvnm76JECAAAECBAgQIECAAAECBOpYQNBVx52raQQIECBAgACBRhEYNrwlDGtpyTQ3hlyjR41slKZrJwECBDpFIP6cTf+gIP6cbR5gLcROgfcQAgQIECBAgACBCQoIuiZI5AICBAgQIECAAIFqFxB0VXsPqR8BArUu0Ldf/2zQ1dzUJOiq9Q5VfwIECBAgQIBAHQkIuuqoMzWFAAECBAgQINCoAoKuRu157SZAoLMEBF2dJe05BAgQIECAAAEC7RUQdLVXzPUECBAgQIAAAQIECBAgQKDBBOK0hWN+XguxezJ1obUQG+wF0FwCBAgQIECAQBULCLqquHNUjQABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAoKu8jTMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJVLCDoquLOUTUCBAgQIECAAIG2CcQpteI6XbHE6bSaBzS17YuuIkCAAIE2CcSfs7nF1IW5GrYJECBAgAABAgS6UkDQ1ZX6nk2AAAECBAgQIFARgRhyDWv5JegaPWpkRe7rJgQIECDwk0Dffv1DGnY1NzX5gwIvBgECBAgQIECAQNUICLqqpitUhAABAgQIECBAYGIFBF0TK+d7BAgQaJuAoKttTq4iQIAAAQIECBDofAFBV+ebeyIBAgQIECBAgECFBeIogzE502oNSEYbKAQIECBQOQFBV+Us3YkAAQIECBAgQKCyAoKuynq6GwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCcJCLo6CdpjCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKisg6Kqsp7sRIECAAAECBAh0kUCcvjAtPbp3Tzd9EiBAgAABAgQIECBAgAABAnUsIOiq487VNAIECBAgQIBAowgMG94ShrW0ZJobQ67Ro0Y2StO1kwABAp0iEH/Opn9QEH/ONg+wFmKnwHsIAQIECBAgQIDABAUEXRMkcgEBAgQIECBAgEC1Cwi6qr2H1I8AgVoX6Nuvfzboam5qEnTVeoeqPwECBAgQIECgjgQEXXXUmZpCgAABAgQIEGhUAUFXo/a8dhMg0FkCgq7OkvYcAgQIECBAgACB9goIutor5noCBAgQIECAAAECBAgQINBgAnHawjE/r4XYPZm60FqIDfYCaC4BAgQIECBAoIoFBF1V3DmqRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUF5A0FXexhkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEqFhB0VXHnqBoBAgQIECBAgEDbBOKUWnGdrljidFrNA5ra9kVXESBAgECbBOLP2dxi6sJcDdsECBAgQIAAAQJdKSDo6kp9zyZAgAABAgQIEKiIQAy5hrX8EnSNHjWyIvd1EwIECBD4SaBvv/4hDbuam5r8QYEXgwABAgQIECBAoGoEBF1V0xUqQoAAAQIECBAgMLECgq6JlfM9AgQItE1A0NU2J1cRIECAAAECBAh0voCgq/PNPZEAAQIECBAgQKDCAnGUwZicabUGJKMNFAIECBConICgq3KW7kSAAAECBAgQIFBZAUFXZT3djQABAgQIECBAgAABAgQIECBAgAABAgQIECBAoJMEBF2dBO0xBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEClRUQdFXW090IECBAgAABAgS6SCBOX5iWHt27p5s+CRAgQIAAAQIECBAgQIAAgToWEHTVcedqGgECBAgQIECgUQSGDW8Jw1paMs2NIdfoUSMbpenaSYAAgU4RiD9n0z8oiD9nmwdYC7FT4D2EAAECBAgQIEBgggKCrgkSuYAAAQIECBAgQKDaBQRd1d5D6keAQK0L9O3XPxt0NTc1CbpqvUPVnwABAgQIECBQRwKCrjrqTE0hQIAAAQIECDSqgKCrUXteuwkQ6CwBQVdnSXsOAQIECBAgQIBAewUEXe0Vcz0BAgQIECBAgAABAgQIEGgwgTht4Zif10LsnkxdaC3EBnsBNJcAAQIECBAgUMUCgq4q7hxVI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQKC8g6Cpv4wwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAVCwi6qrhzVI0AAQIECBAgQKBtAnFKrbhOVyxxOq3mAU1t+6KrCBAgQKBNAvHnbG4xdWGuhm0CBAgQIECAAIGuFBB0daW+ZxMgQIAAAQIECFREIIZcw1p+CbpGjxpZkfu6CQECBAj8JNC3X/+Qhl3NTU3+oMCLQYAAAQIECBAgUDUCgq6q6QoVIUCAAAECBAgQmFgBQdfEyvkeAQIE2iYg6Gqbk6sIECBAgAABAgQ6X0DQ1fnmnkiAAAECBAgQIFBhgTjKYEzOtFoDktEGCgECBAhUTkDQVTlLdyJAgAABAgQIEKisgKCrsp7uRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0EkCgq5OgvYYAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBygoIuirr6W4ECBAgQIAAAQJdJBCnL0xLj+7d002fBAgQIECAAAECBAgQIECAQB0LCLrquHM1jQABAgQIECDQKALDhreEYS0tmebGkGv0qJGN0nTtJECAQKcIxJ+z6R8UxJ+zzQOshdgp8B5CgAABAgQIECAwQQFB1wSJXECAAAECBAgQIFDtAoKuau8h9SNAoNYF+vbrnw26mpuaBF213qHqT4AAAQIECBCoIwFBVx11pqYQIECAAAECBBpVQNDVqD2v3QQIdJaAoKuzpD2HAAECBAgQIECgvQKCrvaKuZ4AAQIECBAgQIAAAQIECDSYQJy2cMzPayF2T6YutBZig70AmkuAAAECBAgQqGIBQVcVd46qESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQdJW3cYYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCKBQRdVdw5qkaAAAECBAgQINA2gTilVlynK5Y4nVbzgKa2fdFVBAgQINAmgfhzNreYujBXwzYBAgQIECBAgEBXCgi6ulLfswkQIECAAAECBCoiEEOuYS2/BF2jR42syH3dhAABAgR+Eujbr39Iw67mpiZ/UODFIECAAAECBAgQqBoBQVfVdIWKECBAgAABAgQITKyAoGti5XyPAAECbRMQdLXNyVUECBAgQIAAAQKdLyDo6nxzTyRAgAABAgQIEKiwQBxlMCZnWq0ByWgDhQABAgQqJyDoqpylOxEgQIAAAQIECFRWQNBVWU93I0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6CQBQVcnQXsMAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZQUEXZX1dDcCBAgQIECAAIEuEojTF6alR/fu6aZPAgQIECBAgAABAgQIECBAoI4FBF113LmaRoAAAQIECBBoFIFhw1vCsJaWTHNjyDV61MhGabp2Eqg5gY8++ih0m2aaMN2009Zc3Ru5wvHnbPoHBfHnbPMAayE28vug7QQIECBAgACBahIQdFVTb6gLAQIECBAgQIDARAkIusqzffW//4WTTzk174LBRxwepp566rxjuTuff/55OO2MM3MPhWOOOjJMPvnkecfsEGiPwPfffx9azjsvPPvc82HKKacMa625Rthx++3bcwvXdqFA3379s0FXc1OToKsL+8KjCRAgQIAAAQIE8gUEXfke9ggQIECAAAECBGpQQNBVvtO+/PLLMGDgAXkXnDt8WJimW7e8Y7k7n3zySTjwkENzD4X/u+B8QVeeiJ0o8K/XXgv/S8LUtCyx+OKZECvdz/184sknw/kXXpQ9NNlkk4WhQ04Mc8w+e/aYjeoVEHRVb9+oGQECBAgQIECg0QUEXY3+Bmg/AQIECBAgQIBAXQsIuuq6e7u8ccccd3x46+23s/U449RTwswzz5zdz9249bbbwi23/Sn3UNg/mf5u+eWWyztmpzoF4rSFY35eC7F7MnWhtRCrs5/UigABAgQIECDQiAKCrkbsdW0mQIAAAQIECBBoGAFBV8N0dZc0tD1B1/sffBAOHzQ4/Pjjj5m6zjTTTOG0k4eGKaaYokvq7qEECBAgQIAAAQIECNSHgKCrPvpRKwgQIECAAAECBAiUFBB0lWRxsEIC7Qm64iP//e9/h78/9FCYfvoZQu/evcLss81WoZq4DQECBAgQIECAAAECjSog6GrUntduAgQIECBAgEAdCcQpteI6XbHE6bSak+nQlJ8EBF3ehI4UaG/Q1ZF1ce+OFYg/Z3OLqQtzNWwTIECAAAECBAh0pYCgqyv1PZsAAQIECBAgQKAiAjHkGtbyS9A1etTIity3Hm7S0UFXnI7uvvvvD++88054//0PMmSzzz5bWGD+BcLaa60ZZplllgkyfvvtt+HJJ8eGcU8/Hd7/4P3w+WefZ9Z5mnuuuTKjfpZcYomy93jhxRczo4TSC1ZeeeUw5xxzhNdffyP849VXw2effRbmnju5T69e6SVt/vz6m2/Co48+Gp5K6jV+/PuZ78Xp9lZYfvmwxhp9wjTduoWnn3kmvPvuu9l79urZM8Rr0jJ23Ljw3nvvpbuZILacSeG9Vv3tqmG22WbNfjd3I07/9+JLL4XHHhsT/pvc/+OPPw7T/Wq6ZITU7GGVxGCVlVcKU045Ze5XirZ/+OGH8PjjT4Snn30m03effvppmHHGGUPsv9+uskpYacUVw2STTZb3vcL23Hn3PeGTTz7JXrPpxhuHaaedJru/wgorhHnmnjuzH/v5nnvvzZ6bbrrpwhp9+mT3Czei/1Pjngpjn3oqfJC8Z7Evp59h+jDrLLMmfbBciH093bTTFn4tu//wI4+E2Ka0rLfuuplpEv/95pvJWlOPh48+/ih8//0PmVFlKydeiy6ySHqpzxICffv1D2nY1dzU5A8KShg5RIAAAQIECBAg0DUCgq6ucfdUAgQIECBAgACBCgoIuspjdmTQdf0NN4Y77rorxMCkVIlrL224/vph6622LHU6cywGVRddfEkmxCh30QrLLRf223efkms5XX3NNeGue34JT/ZPRvPF6fFuuuXW7O2WXWbpcMD++2f327IRQ7LzL7woL8TJ/d4iCy8cDjpgYBh5xegw5vHHs6eOGjQoLLzwQtn9lnPPywR46YHDDz0kLP7rX6e7eZ8X/t/Fefc6cODAsMzSS+VdE3diuHj+hRdmwryikz8fmGP22cNhhxxcNmj8z3//G84ZNjy8N358uVuEGDQOaNov85leVNie9Hi5z7333CN0X3XVzOnCdzEGkkOHnFjyq9H0iiuvCl988UXJ8/FgDBp33GH70Gf11Utec+zxJ4Q333ore+7c4cPCww8/EkZfdVX2WO5G7149w2677FIU7uVe08jbgq5G7n1tJ0CAAAECBAhUt4Cgq7r7R+0IECBAgAABAgTaIBBHGYzJmVZrQDLaQPlJoDBciEfjL/xjSFCuxBE6Bx5yaN7p/7vg/DD55JNnj917331JYHB1dr+1jfXXWzfssN12RZfEMCOGXHF00oRKDEv22mP3ohCiMOhaYIEFwltJuJF7z/YGXTHkOu2MM5PRPt+3Wq3555svfJOMOsoNizo66IoB1YknDQ1fffVVq3WLJ+edZ55M2DX99NPnXRu/e/yJQ/LqnXdBzs4MM8wQBh1+WGaUXDzcGUHXbX/6U7j51ttyatH65rrrrB122nHHoosKg64NN1g/3HHnXXnvRuGXyt2r8LpG3Bd0NWKvazMBAgQIECBAoDYEBF210U9qSYAAAQIECBAgQGCiBDoq6Bp81NEhhi5p6bPaamHZZZcJ33/3fXjuhefDw488mp7KhFMnHn9c3sigGA4dl4y4+d/XX2ev+9WvfpWMYFo6zDTjDMl0f+OT+7yQFzattcYaod8f+mavjxuFQVfuyTjtXpy+b5mllsqMTMo9V2471ufoY49Npsr7MO+SOLppkUUWDlNPNXX491tvhtdeez3vfLrTkUHXd999F04cenJ4M5l6Ly1x1Nyyidmcc84RPvn0s/Dc88+H2OdpiaPLDjnooLxgMwaMcfRYWuLIqrXXWivMkwRjb7zxeqbv4nSIaenZo3vYc/fdM7txFN/Lr7ySngpvvf12JuxLDyy00IJhismnSHfDVltuEZZO/GMpfBdLjeh65tlnk2lIz80Lo2IfLrTggpk2xn55/Y038p4Z7737LrtkprmM22kpDLrS47PPNlsy6m7hzLv1r9deKxq1t8euu4ZeyeguhQABAgQIECBAgACB2hAQdNVGP6klAQIECBAgQIAAgYkSKAwX4k0mdUTXV//7Xxiw/8BsGBFHNh13zNF59bvgov8Ljz/xRGatrRWTNa3WSUbdzDfvvNlrrhh9ZbjvgQey+3F9pAMH7p+s7/TLmkvvJGtfxZFVuessHT14cIhhSlpKBV2/WXLJ0Ktnj8waUzE8a0/5+0MPhRGX/7LGWwzLdtx++/C7pP6561XFQObiS0cUTa3XkUFX9IyuaZl2mmnCkYMH5QWIcaq/c8+/IC+M2n7bbcMG66+Xfi1ce/31mZFN6YF99t4rsyZXuh/Dq+NO+GlKwSUWXzysvNJKmfan53M/jznu+EzYlR4749RTMn2e7ud+Fr6LpYKuY5Pn5gZ5CyYB156775YZnZbeK4ZdF196aXjlH/9ID2XWMjvlpJPy+qhU0LX5ppuGzTfbNHtdXAfs4ksuDXHtsbTkBnvpMZ8ECBAgQIAAAQIECFSvgKCrevtGzQgQIECAAAECBNohEKcvTEuP7t3TzYb/LAwXIsikBl1ff/1N2K+5ORt0xVFFRxx6aGbEUwoepz/88MOPkpEzC2VDhfRcnBJw4EEH5408iutJxVClsDz22Jhw0SWXZA+vt+7vMsFTeqAw6IrPG3TYYSXX80q/09pnDNZeevnl7CXr/W6dZB2oHbL7uRuPJKPWLh4xIvdQ6MigK65F93QSsKVlqy02D5tuskm6m/386KOPwiGHH5Htnzid47FHHZk9H0dl/fWOO7L7cVrI3XbZOUw11VTZYzFEisHkhILCSgZdr7/+RjghCavS0q3b1OH4ZHRdHIFVWGKgd8SRR+UFjQOTd3K5ZFRhWgqDrqV+85tw8IEHpKezn5999llmqs50rblSAVz2YhsECBAgQIAAAQIECFSdgKCr6rpEhQgQIECAAAECBNorEAOAYS0tma/FkGv0qF9G5LT3XvV2fUcEXdFoSDKFXpz2LbcsMP/84TdLLhEWW2yx5HPJENd3KlXitHiDkpAiLXENqXWSqfNKlS+//CLcfe992VMxDIuhWFoKg65tttoybLzRRunpdn8ecPAheSPITjt5aJh11lnL3icGdjEoSUtHBl0HHXpY+Pjjj9NHhbj22TTdpsnu527cfc894cuf1/GKI9EuPO/cbPj33PMvhLPOOSf38szUhksnUyAutugiYckllsyMmstdky3v4pydSgZdf/v738NlI0dl7x6nw9xl5/7Z/cKNwsBu2623ChttuGH2ssKgq3DkWvbCZOPwQYPD+Pffzx4658wzQuHaZtmTDboRf86mf1AQf842D7AWYoO+CppNgAABAgQIEKg6AUFX1XWJChEgQIAAAQIECLRXQNBVXqyjgq44vdzw884rWssqrUkMV2Lwtf666xatdxRHTMWRUxNT5ph99nDySUOyXy0MuvbcbbfQM5m2cGJKHGm29777ZUdCTdOtW2b0W2v3OuW00/Om0OuooCuONtprn32zdWutTqXOFQZ2V119dV6AWPidOIXkiissH7bdeuuyUxHG71Qy6Lrl1tvCrX/6U7Yq222zTdhwg/Wz+4UbDz/ySLhkxGXZwzEs7fv7nbL7hUHXMUcODnEqxFKlMLgdOuTEEEd2Kb8I9O3XPxt0NTc1Cbp+obFFgAABAgQIECDQxQKCri7uAI8nQIAAAQIECBCYdAFBV3nDuAbRvk0D8i4YdtaZrU5JF9dAOvSII7LfiVMTxhFBuWtUxZNxxNCVV10VHk2mF/zxxx+z1xduLL/csmHXnXcOM844Y+ZUXN/qnGR0yMSUOJVerH9aKhl0/e/rr8N+A5rTW4dZZpklnH7Kydn9Uhst550fxj31VPbUpARdcW2t3LWiDhw4MCyz9FKZexfWLfvANm7ENdTiWmq5JfbD5aOuyBsllns+bsfAq++OOxaFlel1lQy6rrnuunDnXXent07emf5h9WRUV7ny1NNPh+Hnnpc93btXz7D7rrtm9wuDrtiXsU9LFUFXKZX8Y4KufA97BAgQIECAAAEC1SMg6KqevlATAgQIECBAgAABAh0iMGD/gdlp7OIDjhx0RFhk4YXLPuuFF18MZ5x1dvb8hAKfzz//PDz33PPh2eefC6+++s/w/gcfZL+bbsR1oPbec4/MbuFaTHPPNVf43TrrpJe2+jnVVFOGPquvnr2mkkFXvOk+SSj4TRIOxhKDvfOGDwtTTz11Zr/U/wqDnqKgqyAIO+SgAzPTOpa61/FDhoQ33vh39lRu0BUPxsAyBpexxGkFd9huu8xn5sAE/tej+6olw80YUL72+uvh2WefC7Hf33zrzRDXYMst8VnHHn1UZs2u3ONxu7D9Z5x6StkRYIWjCwvXwrr9jjvDdTfckH3EJskUlFsnU1GWK3fceVe49vrrs6c3TqYt3CaZvjAtgq5UojKfcdrCMT+vhdg9mbrQWoiVcXUXAgQIECBAgACBSRcQdE26oTsQIECAAAECBAgQqGqB4044Mfw7mWowLZtvumnYYvPN0t2iz6uvvTbcdfc92eOL//rX4fBDD8nux40YkLz19tvh5ZdfCWuu0SdMNdVU2fPv/uc/4cG//S1vdE63blOHc4cNy4RHcU2ruLZVWuJaXmedflrRiLH0fBxhNttspdfJqnTQdcTgI8N748enjw4HHTAwLL3UT6Oqsgd/3ojtOOTwI8K3336bPVUYdN1w403hL7ffnj2/2y47h9V6987upxsxBDr4sMPyQqbCoOuoY44N77z7bvqVUGqUVnqyNbN4zVfJaLyXX3klTDnlVGHZZZZOv5YJ+Z57/vlw3fU35Dlst83WyTSCG2SvSzcqGXQ98eST4fwLL0pvnawXtmgYdPhh2f3CjTiS8+lkVFpa+vX9fVhrzTXT3SDoylLYIECAAAECBAgQIFDXAoKuuu5ejSNAgAABAgQIECAQwm3Jukc3J+sfpSWGUnFkUQwSCksc1XP2sOEhrleVlh233z6st+7v0t1w3/33h1tu+1OIQU8su++yS+jdu1f2fNyIQdigI4/KhiVxdFQMumLgFUvhVHHbJCN3Nk5G8BSWuA7TiMtHhl7Julubb7ZZmH222fIuqXTQdcXoK8N9DzyQfca888wTjho8qGhUV2zfRRdfEsY8/nj22rhRGHQVTq+35BJLhEMPPijvO3GncNq+eKww6CoMzWJANbC5uSggfPuddxLfoWGhBRfKjIiKQWVa4hSIp595ZmbkWFz3K655FtejKpyW8pFHHg0XjxiRfi1slIRc2yZhV2EpDLpamx5wQiO64vmDDj0sO6IuPmvnfn8Ia/TpU/jYzBSPcarHtMT6n3LSSXmBqKAr1fFJgAABAgQIECBAoL4FBF313b9aR4AAAQIECBBoCIE4pVYc3RFLnE6reUBTQ7S7rY2Mo3sGH3103sijGAys1qtXWHzxXydTzc0SPvzwg8wIn8fGPJ633la3ZNq+U08eGqaffvrs455Npik8Owmt0jLzzDOHPXffLW9Kvlf+8Y9w6ulnZO8115xzhpNOPCH9Svj7Qw9lAqz0QKzPGsmUhOuss3aI137xxReZMOP6G2/MjnKacsopM6FT7lpTlQ664jR+J540NK1W5jPWJ4Y8MRiM0xjG0XG3JkHfSy+/nHdd3CkMugpHr8VrVll55WR01PphtllnDePff///2bv3+Mvmen/gH+R+Kx255NZx7+SWfMctQpFcK0TTTCgVvvNFl+OojlIoRRjfU2Y6MmZMKkmnC+VaKTIKkVyOFEKRQy7xezD89mePve39va7vnrXXXpfnejzqu9ban/W5PN/b94/va9Za9bvffnXtdfGjtm1o0PXXv/0txLu6YkDV2GJwtu8+e4e11lorzH/++XD3H/8YLvjWt+v9NtpMfd/k2l13OzQOh4WM0f3AA98TYq3jFh/dOGPm18PNt9zSvOZDH/hAmDSpr3nc2Bn6uMU93/GO8G8v3SEWH3m43rrrNpqG8YKu2HBWLdS8pvbdaGyN78XWtaAz1iE+FjPe+RXvOIxhY2PbYrPNQv+RRzQO6z8FXW0cC30Qf8+2bh5d2KphnwABAgQIECBAoJcCgq5e6hubAAECBAgQIEAgFYEYck0ffDnomjtndir9lqmT+CjB8+acP+ElfeiDH6yFh1u1XReDlngnT+tj9GIgEe8OWnnlf6md/2t47LHH2q7ZZae3hPcedFDzXAwpYlj2+9v+0Dw33s52tbvGDq3dPda6pR10xb6Hhi2t4423PzToiu1n19x/XvMfa4t+cWsNb4YGXfHzSy69NFx08ffjbqIt3pH26U9+snknXbzo+uvnhZnnnNN2/dJLLRVWX331+rk/33tv2x198S68E084IaxUC+aGbjO+/t/D7mprtIl3Dp79Xwv+u4znkgRdMeD8/EkntwV1jf5G+7nCCiuE42t33cV3ybVugq5WjYXfnzxlamiEXQP9/f5BwcKT6oEAAQIECBAgQCAlAUFXSpC6IUCAAAECBAgQ6J2AoCuZfQxJ4iMMWx9LONqVMaTY713vCm/dZecRmzz++OPhlC+f2nw04YiNXjq5zjprh2M//vFhj/976qmnwlfPnlG/k2ys6+Nn226zdXjfeye3BTbxfDeCrv9Xu6MpfqdGumMrjtnY4t1L8VGP9/zpT41Tw+7oih/EYDC+e+rGm25qtmvdiSFXfPxjvBvrZ7/4RfOjkYKuGIRd8K1vhSuv/lmz3Wg70f3wD3942OMeY/uf/PSn4cKLvjfapc3zcW4f+dBh4U1bbtk817oT5/zFL325LaBrfN5J0BWvjQHqV2uPJYzvehtvi+9uO+LDHwlxrUM3QddQkYU7FnQtnJ+rCRAgQIAAAQIEuicg6OqerZ4JECBAgAABAgQyEoh3GcxreazWtNrdBraRBf7853vDJT/5Sbjl1lvbHmXYaB3v3tls081q78t6e1hzjTUap0f8GYOqK6+6uv5Oq8b7ulobLr300uGtO+8cdn3bW8MyyyzT+lFzP4ZAl19xRbiqFtzEx9K1bo27xPbaY49h7wBrtOtG0BX7jvP68SWXhCtq64vrbN2WXXbZsE/tfWG71B6zePqZZ7bdlTbSHV3x2ueeey587/vfD9dc88vwzLPPNruLdyG9a999akHeNmHO+XPHDboaF9508821u7t+0hayNT5bccUV6+80e+c++4T4uMfRtng33WWXXxZu+8PtIzaJj0Xca889wsYbbTTi542Tt9z6+1qA+j/hwQcfavtOdRp0xX7j4xPj+n557bXD7g6Mny+//PL18HOvPfcM8W60kTZB10gqnZ8TdHVu50oCBAgQIECAAIHuCgi6uuurdwIECBAgQIAAAQK5FIhhy/21d03FO7PiI+XiO7hiQBLf9dR4V1PSiccQJ959Ex9XGPuLff3Lq/8lrLraqon7incq3Xff/bWw6+/193Otuuqq9bksteSSSafRlXZxbX+8557waC2Ee8Virwgrv2bl8NrXvra5rqRBV2Nyz9feoxUDvWgeH7m3Ui3oiu+y6nR7+JFHwl9r9tE9vmtt7bXWrNdxIv3FusV3hT3690fD/Bfm1x9R+Jra+7D+5dWvnkg3XWkbvxf33ntfeLT2DrkYpsbvVnyE4jprr71Qbl2ZrE4JECBAgAABAgQIEOiJgKCrJ+wGJUCAAAECBAgQIECgDAITDbrKsGZrIECAAAECBAgQIECAQJ4EBF15qoa5ECBAgAABAgQIdCwQH1/Y2Cb19TV2/STQVQFBV1d5dU6AAAECBAgQIECAAIFxBQRd4xJpQIAAAQIECBAgkHeB6WcNhumDg/VpxpBr7pzZeZ+y+ZVEQNBVkkJaxrgC8fds4x8UxN+zA9O8C3FcNA0IECBAgAABAgQyERB0ZcJsEAIECBAgQIAAgW4KCLq6qavvsQQEXWPp+KxMApOnTG0GXQP9/YKuMhXXWggQIECAAAECBRcQdBW8gKZPgAABAgQIECAQgqDLt6BXAoKuXskbN2sBQVfW4sYjQIAAAQIECBBIKiDoSiqlHQECBAgQIECAAAECBIYIPPDgg+GZZ55pnl1jjTXCUksu2Ty2Q6AsAvGxhfNeehdiX+3Rhd6FWJbKWgcBAgQIECBAoPgCgq7i19AKCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVFBB0VbLsFk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQKL6AoKv4NbQCAgQIECBAgEDlBeIjteJ7uuIWH6c1MK2/8iYACBAgkKZA/D3bunl0YauGfQIECBAgQIAAgV4KCLp6qW9sAgQIECBAgACBVARiyDV98OWga+6c2an0qxMCBAgQWCAwecrU0Ai7Bvr7/YMCXwwCBAgQIECAAIHcCAi6clMKEyFAgAABAgQIEOhUQNDVqZzrCBAgkExA0JXMSSsCBAgQIECAAIHsBQRd2ZsbkQABAgQIECBAIGWBeJfBvJbHak2r3W1gI0CAAIH0BARd6VnqiQABAgQIECBAIF0BQVe6nnojQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDISEDQlRG0YQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBNIVEHSl66k3AgQIECBAgACBHgnExxc2tkl9fY1dPwkQIECAAAECBAgQIECAAIESCwi6SlxcSyNAgAABAgQIVEVg+lmDYfrgYH25MeSaO2d2VZZunQQIEMhEIP6ebfyDgvh7dmCadyFmAm8QAgQIECBAgACBcQUEXeMSaUCAAAECBAgQIJB3AUFX3itkfgQIFF1g8pSpzaBroL9f0FX0gpo/AQIECBAgQKBEAoKuEhXTUggQIECAAAECVRUQdFW18tZNgEBWAoKurKSNQ4AAAQIECBAgMFEBQddExbQnQIAAAQIECBAgQIAAAQIVE4iPLZz30rsQ+2qPLvQuxIp9ASyXAAECBAgQIJBjAUFXjotjagQIECBAgAABAgQIECBAgAABAgQIECBAgAABAqMLCLpGt/EJAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAjgUEXTkujqkRIECAAAECBAgkE4iP1Irv6YpbfJzWwLT+ZBdqRYAAAQKJBOLv2dbNowtbNewTIECAAAECBAj0UkDQ1Ut9YxMgQIAAAQIECKQiEEOu6YMvB11z58xOpV+dECBAgMACgclTpoZG2DXQ3+8fFPhiECBAgAABAgQI5EZA0JWbUpgIAQIECBAgQIBApwKCrk7lXEeAAIFkAoKuZE5aESBAgAABAgQIZC8g6Mre3IgECBAgQIAAAQIpC8S7DOa1PFZrWu1uAxsBAgQIpCcg6ErPUk8ECBAgQIAAAQLpCgi60vXUGwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEYCgq6MoA1DgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQroCgK11PvREgQIAAAQIECPRIID6+sLFN6utr7PpJgAABAgQIECBAgAABAgQIlFhA0FXi4loaAQIECBAgQKAqAtPPGgzTBwfry40h19w5s6uydOskQIBAJgLx92zjHxTE37MD07wLMRN4gxAgQIAAAQIECIwrIOgal0gDAgQIECBAgACBvAsIuvJeIfMjQKDoApOnTG0GXQP9/YKuohfU/AkQIECAAAECJRIQdJWomJZCgAABAgQIEKiqgKCrqpW3bgIEshIQdGUlbRwCBAgQIECAAIGJCgi6JiqmPQECBAgQIECAAAECBAgQqJhAfGzhvJfehdhXe3ShdyFW7AtguQQIECBAgACBHAsIunJcHFMjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYXUDQNbqNTwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHIsIOjKcXFMjQABAgQIECBAIJlAfKRWfE9X3OLjtAam9Se7UCsCBAgQSCQQf8+2bh5d2KphnwABAgQIECBAoJcCgq5e6hubAAECBAgQIEAgFYEYck0ffDnomjtndir96oQAAQIEFghMnjI1NMKugf5+/6DAF4MAAQIECBAgQCA3AoKu3JTCRAgQIECAAAECBDoVEHR1Kuc6AgQIJBMQdCVz0ooAAQIECBAgQCB7AUFX9uZGJECAAAECBAgQSFkg3mUwr+WxWtNqdxvYCBAgQCA9AUFXepZ6IkCAAAECBAgQSFdA0JWup94IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQyEhB0ZQRtGAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXQFBF3peuqNAAECBAgQIECgRwLx8YWNbVJfX2PXTwIECBAgQIAAAQIECBAgQKDEAoKuEhfX0ggQIECAAAECVRGYftZgmD44WF9uDLnmzpldlaVbJwECBDIRiL9nG/+gIP6eHZjmXYiZwBuEAAECBAgQIEBgXAFB17hEGhAgQIAAAQIECORdQNCV9wqZHwECRReYPGVqM+ga6O8XdBW9oOZPgAABAgQIECiRgKCrRMW0FAIECBAgQIBAVQUEXVWtvHUTIJCVgKArK2njECBAgAABAgQITFRA0DVRMe0JECBAgAABAgQIECBAgEDFBOJjC+e99C7EvtqjC70LsWJfAMslQIAAAQIECORYQNCV4+KYGgECBAgQIECAAAECBAgQIECAAAECBAgQIECAwOgCgq7RbXxCgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQYwFBV46LY2oECBAgQIAAAQLJBOIjteJ7uuIWH6c1MK0/2YVaESBAgEAigfh7tnXz6MJWDfsECBAgQIAAAQK9FBB09VLf2AQIECBAgAABAqkIxJBr+uDLQdfcObNT6VcnBAgQILBAYPKUqaERdg309/sHBb4YBAgQIECAAAECuREQdOWmFCZCgAABAgQIECDQqYCgq1M51xEgQCCZgKArmZNWBAgQIECAAAEC2QsIurI3NyIBAgQIECBAgEDKAvEug3ktj9WaVrvbwEaAAAEC6QkIutKz1BMBAgQIECBAgEC6AoKudD31RoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkJGAoCsjaMMQIECAAAECBAgQIECAAAECBAgQIECAAAECBAikKyDoStdTbwQIECBAgAABAj0SiI8vbGyT+voau34SIECAAAECBAgQIECAAAECJRYQdJW4uJZGgAABAgQIEKiKwPSzBsP0wcH6cmPINXfO7Kos3ToJECCQiUD8Pdv4BwXx9+zANO9CzATeIAQIECBAgAABAuMKCLrGJdKAAAECBAgQIEAg7wKCrrxXyPwIECi6wOQpU5tB10B/v6Cr6AU1fwIECBAgQIBAiQQEXSUqpqUQIECAAAECBKoqIOiqauWtmwCBrAQEXVlJG4cAAQIECBAgQGCiAoKuiYppT4AAAQIECBAgQIAAAQIEKiYQH1s476V3IfbVHl3oXYgV+wJYLgECBAgQIEAgxwKCrhwXx9QIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRGFxB0jW7jEwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRwLCLpyXBxTI0CAAAECBAgQSCYQH6kV39MVt/g4rYFp/cku1IoAAQIEEgnE37Otm0cXtmrYJ0CAAAECBAgQ6KWAoKuX+sYmQIAAAQIECBBIRSCGXNMHXw665s6ZnUq/OiFAgACBBQKTp0wNjbBroL/fPyjwxSBAgAABAgQIEMiNgKArN6UwEQIECBAgQIAAgU4FBF2dyrmOAAECyQQEXcmctCJAgAABAgQIEMheQNCVvbkRCRAgQIAAAQIEUhaIdxnMa3ms1rTa3QY2AgQIEEhPQNCVnqWeCBAgQIAAAQIE0hUQdKXrqTcCBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGMBARdGUEbhgABAgQIECBAgAABAgQIECBAgAABAgQIECBAIF0BQVe6nnojQIAAAQIECBDokUB8fGFjm9TX19j1kwABAgQIECBAgAABAgQIECixgKCrxMW1NAIECBAgQIBAVQSmnzUYpg8O1pcbQ665c2ZXZenWSYAAgUwE4u/Zxj8oiL9nB6Z5F2Im8AYhQIAAAQIECBAYV0DQNS6RBgQIECBAgAABAnkXEHTlvULmR4BA0QUmT5naDLoG+vsFXUUvqPkTIECAAAECBEokIOgqUTEthQABAgQIECBQVQFBV1Urb90ECGQlIOjKSto4BAgQIECAAAECExUQdE1UTHsCBAgQIECAAAECBAgQIFAxgfjYwnkvvQuxr/boQu9CrNgXwHIJECBAgAABAjkWEHTluDimRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMLqAoGt0G58QIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkWEDQlePimBoBAgQIECBAgEAygfhIrfierrjFx2kNTOtPdqFWBAgQIJBIIP6ebd08urBVwz4BAgQIECBAgEAvBQRdvdQ3NgECBAgQIECAQCoCMeSaPvhy0DV3zuxU+tUJAQIECCwQmDxlamiEXQP9/f5BgS8GAQIECBAgQIBAbgQEXbkphYkQIECAAAECBAh0KiDo6lTOdQQIEEgmIOhK5qQVAQIECBAgQIBA9gKCruzNjUiAAAECBAgQIJCyQLzLYF7LY7Wm1e42sBEgQIBAegLxHxTE37Xxf+7oSs9VTwQIECBAgAABAgsvIOhaeEM9ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9EBA0NUDdEMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgsvICga+EN9UCAAAECBAgQIJADgfojta6fV5/JpEl9YVJfXw5mZQoECBAoh0D8Hev3ajlqaRUECBAgQIAAgbIJCLrKVlHrIUCAAAECBAhUVGDylKn1d8fE5Xt/TEW/BJZNgEBXBOL7uaYPDtb7jmHX3DmzuzKOTgkQIECAAAECBAh0IiDo6kTNNQQIECBAgAABArkTaP1DbJzc3Xfekbs5mhABAgSKKLDehhs1py3oalLYIUCAAAECBAgQyImAoCsnhTANAgQIECBAgACBhReIf4w9alp/vaNp/Qt+LnyveiBAgEC1BVrvmI13c3mEYbW/D1ZPgAABAgQIEMibgKArbxUxHwIECBAgQIAAgY4FvEOmYzoXEiBAYEyB+Pt1Xu1//hHBmEw+JECAAAECBAgQ6IGAoKsH6IYkQIAAAQIECBDIRiA+zjBuAy/d5ZXNqEYhQIBA8QXi789Jk/rcvVX8UloBAQIECBAgQKD0AoKu0pfYAgkQIECAAAEC1RRofWfXQO0xhsKuan4PrJoAgYkLtP7+9KjCifu5ggABAgQIECBAIFsBQVe23kYjQIAAAQIECBDISCC+r6uxxffJxD/W2ggQIEBgfIHW35+x9d133jH+RVoQIECAAAECBAgQ6JGAoKtH8IYlQIAAAQIECBDorkB8n8zkKVPrg7T+kTaev/76eR7J1V1+vRMgUBCBkX4ntt7RdVTt0a/ey1WQYpomAQIECBAgQKCiAoKuihbesgkQIECAAAECVRCIf8CdV/tf6x9pY/gVz8et9ZFcrX/YHXoHWOvdDb2+pvUxjHEdjTAvrqc10Gtdp2tq72lreXwlt1D/byBP351e/3eV5//ms5pb638j8fdJ/L0n5IoSNgIECBAgQIAAgbwLCLryXiHzI0CAAAECBAgQSE1gaMBRxD+ut/4xeuh6BF3CvvgfSxG/B0X8bzGrAKpX46T2i1dHBAgQIECAAAECBLosIOjqMrDuCRAgQIAAAQIE8iMQg6F451bc4n4R/7gu6HJ3Vvz+lu17UMT/FnsVQHXrDlN3b8X/smwECBAgQIAAAQJFFBB0FbFq5kyAAAECBAgQIJC6QAy+Wrf4R+zG1vrZaOdj29E+G+18J9e09hWvTzI317TXJg9uM2bODN+YdV6cSvjIhw4Lhxx8cH0//l/Va9q6/ujR+v1t/Wy0866JAsndWh0XXOn/CRAgQIAAAQIECBRLQNBVrHqZLQECBAgQIECAAAECJRA4d9asZtC1xeabh+lnnF6CVVkCAQIECBAgQIAAAQIEshcQdGVvbkQCBAgQIECAAAECBCouIOiq+BfA8gkQIECAAAECBAgQSE1A0JUapY4IECBAgAABAgQIECCQTEDQlcxJKwIECBAgQIAAAQIECIwnIOgaT8jnBAgQIECAAAECBAgQSFlA0JUyqO4IECBAgAABAgQIEKisgKCrsqW3cAIECBAgQIAAAQIEeiUg6OqVvHEJECBAgAABAgQIECibgKCrbBW1HgIECBAgQIAAAQIEci8g6Mp9iUyQAAECBAgQIECAAIGCCAi6ClIo0yRAgAABAgQIECBAoDwCgq7y1NJKCBAgQIAAAQIECBDorYCgq7f+RidAgAABAgQIECBAoIICgq4KFt2SCRAgQIAAAQIECBDoioCgqyusOiVAgAABAgQIECBAgMDoAoKu0W18QoAAAQIECBAgQIAAgYkICLomoqUtAQIECBAgQIAAAQIEUhAQdKWAqAsCBAgQIECAAAECBAjUBARdvgYECBAgQIAAAQIECBDIWEDQlTG44QgQIECAAAECBAgQKK2AoKu0pbUwAgQIECBAgAABAgTyKiDoymtlzIsAAQIECBAgQIAAgaIJCLqKVjHzJUCAAAECBAgQIECg8AKCrsKX0AIIECBAgAABAgQIEMiJgKArJ4UwDQIECBAgQIAAAQIEqiMg6KpOra2UAAECBAgQIECAAIHuCgi6uuurdwIECBAgQIAAAQIECAwTEHQNI3GCAAECBAgQIECAAAECHQkIujpicxEBAgQIECBAgAABAgQ6FxB0dW7nSgIECBAgQIAAAQIECLQKCLpaNewTIECAAAECBAgQIEAgAwFBVwbIhiBAgAABAgQIECBAoBICgq5KlNkiCRAgQIAAAQIECBDIk4CgK0/VMBcCBAgQIECAAAECBIosIOgqcvXMnQABAgQIECBAgACBQgoIugpZNpMmQIAAAQIECBAgQCCHAoKuHBbFlAgQIECAAAECBAgQKLeAoKvc9bU6AgQIECBAgAABAgSyExB0ZWdtJAIECBAgQIAAAQIECNQFBF2+CAQIECBAgAABAgQIEEhHQNCVjqNeCBAgQIAAAQIECBAgkFhA0JWYSkMCBAgQIECAAAECBAiMKSDoGpPHhwQIECBAgAABAgQIEEhfQNCVvqkeCRAgQIAAAQIECBCopoCgq5p1t2oCBAgQIECAAAECBHooIOjqIb6hCRAgQIAAAQIECBAolYCgq1TltBgCBAgQIECAAAECBIogIOgqQpXMkQABAgQIECBAgACBIggIuopQJXMkQIAAAQIECBAgQKBUAoKuUpXTYggQIECAAAECBAgQ6KGAoKuH+IYmQIAAAQIECBAgQKCaAoKuatbdqgkQIECAAAECBAgQSF9A0JW+qR4JECBAgAABAgQIECAwpoCga0weHxIgQIAAAQIECBAgQCCxgKArMZWGBAgQIECAAAECBAgQSEdA0JWOo14IECBAgAABAgQIECAg6PIdIECAAAECBAgQIECAQMYCgq6MwQ1HgAABAgQIECBAgEBpBQRdpS2thREgQIAAAQIECBAgkFcBQVdeK2NeBAgQIECAAAECBAgUTUDQVbSKmS8BAgQIECBAgAABAoUXEHQVvoQWQIAAAQIECBAgQIBATgQEXTkphGkQIECAAAECBAgQIFAdAUFXdWptpQQIECBAgAABAgQIdFdA0NVdX70TIECAAAECBAgQIEBgmICgaxiJEwQIECBAgAABAgQIEOhIQNDVEZuLCBAgQIAAAQIECBAg0LmAoKtzO1cSIECAAAECBAgQIECgVUDQ1aphnwABAgQIECBAgAABAhkICLoyQDYEAQIECBAgQIAAAQKVEBB0VaLMFkmAAAECBAgQIECAQJ4EBF15qoa5ECBAgAABAgQIECBQZAFBV5GrZ+4ECBAgQIAAAQIECBRSQNBVyLKZNAECBAgQIECAAAECORQQdOWwKKZEgAABAgQIECBAgEC5BQRd5a6v1REgQIAAAQIECBAgkJ2AoCs7ayMRIECAAAECBAgQIECgLiDo8kUgQIAAAQIECBAgQIBAOgKCrnQc9UKAAAECBAgQIECAAIHEAoKuxFQaEiBAgAABAgQIECBAYEwBQdeYPD4kQIAAAQIECBAgQIBA+gKCrvRN9UiAAAECBAgQIECAQDUFBF3VrLtVEyBAgAABAgQIECDQQwFBVw/xDU2AAAECBAgQIECAQKkEBF2lKqfFECBAgAABAgQIECBQBAFBVxGqZI4ECBAgQIAAAQIECBRBQNBVhCqZIwECBAgQIECAAAECpRIQdJWqnBZDgAABAgQIECBAgEAPBQRdPcQ3NAECBAgQIECAAAEC1RQQdFWz7lZNgAABAgQIECBAgED6AoKu9E31SIAAAQIECBAgQIAAgTEFBF1j8viQAAECBAgQIECAAAECiQUEXYmpNCRAgAABAgQIECBAgEA6AoKudBz1QoAAAQIECBAgQIAAAUGX7wABAgQIECBAgAABAgQyFhB0ZQxuOAIECBAgQIAAAQIESisg6CptaS2MAAECBAgQIECAAIG8Cgi68loZ8yJAgAABAgQIECBAoGgCgq6iVcx8CRAgQIAAAQIECBAovICgq/AltAACBAgQIECAAAECBHIiIOjKSSFMgwABAgQIECBAgACB6ggIuqpTayslQIAAAQIECBAgQKC7AoKu7vrqnQABAgQIECBAgAABAsMEBF3DSJwgQIAAAQIECBAgQIBARwKCro7YXESAAAECBAgQIECAAIHOBQRdndu5kgABAgQIECBAgAABAq0Cgq5WDfsECBAgQIAAAQIECBDIQEDQlQGyIQgQIECAAAECBAgQqISAoKsSZbZIAgQIECBAgAABAgTyJCDoylM1zIUAAQIECBAgQIAAgSILCLqKXD1zJ0CAAAECBAgQIECgkAKCrkKWzaQJECBAgAABAgQIEMihgKArh0UxJQIECBAgQIAAAQIEyi0g6Cp3fa2OAAECBAgQIECAAIHsBARd2VkbiQABAgQIECBAgAABAnUBQZcvAgECBAgQIECAAAECBNIREHSl46gXAgQIECBAgAABAgQIJBYQdCWm0pAAAQIECBAgQIAAAQJjCgi6xuTxIQECBAgQIECAAAECBNIXEHSlb6pHAgQIECBAgAABAgSqKSDoqmbdrZoAAQIECBAgQIAAgR4KCLp6iG9oAgQIECBAgAABAgRKJSDoKlU5LYYAAQIECBAgQIAAgSIICLqKUCVzJECAAAECBAgQIECgCAKCriJUyRwJECBAgAABAgQIECiVgKCrVOW0GAIECBAgQIAAAQIEeigg6OohvqEJECBAgAABAgQIEKimgKCrmnW3agIECBAgQIAAAQIE0hcQdKVvqkcCBAgQIECAAAECBAiMKSDoGpPHhwQIECBAgAABAgQIEEgsIOhKTKUhAQIECBAgQIAAAQIEJiZw0803h4GjjwmHHvz+cMjBBzcvHivoGu2a5sV2CBAgQIAAAQIECBAgQKApIOhqUtghQIAAAQIECBAgQ00HaAAAQABJREFUQIBAegKNwKrRY2vYNVrQNdY1jX78JECAAAECBAgQIECAAIGXBQRdL1vYI0CAAAECBAgQIECAQGoCrWFWo9NG2NX62Rabbx6mn3F6GBpyxWsa7RvX+0mAAAECBAgQIECAAAEC7QKCrnYPRwQIECBAgAABAgQIEEhNoDXQanQaw6u4fWPWefWfMeg6pHYuPuKwdRNytWrYJ0CAAAECBAgQIECAwMgCgq6RXZwlQIAAAQIECBAgQIBAKgIjhV3jdSzkGk/I5wQIECBAgAABAgQIEFggIOjyTSBAgAABAgQIECBAgECXBSYSdgm5ulwM3RMgQIAAAQIECBAgUCoBQVepymkxBAgQIECAAAECBAjkVSBJ2CXkymv1zIsAAQIECBAgQIAAgbwKCLryWhnzIkCAAAECBAgQIECgdAJjhV1CrtKV24IIECBAgAABAgQIEMhAQNCVAbIhCBAgQIAAAQIECBAg0BAYKewScjV0/CRAgAABAgQIECBAgMDEBARdE/PSmgABAgQIECBAgAABAgst0Bp2CbkWmlMHBAgQIECAAAECBAhUWEDQVeHiWzoBAgQIECBAgAABAr0TiGFX3A45+OD6T/9HgAABAgQIECBAgAABAhMXEHRN3MwVBAgQIECAAAECBRWYftZgfebXz5sX4v9sBAgQIBDCpL6+OsPAtP7mPhcCBAgQIECAAAECRREQdBWlUuZJgAABAgQIECDQsUAMuKYPLgi5Ou7EhQQIEKiAQAy9BF4VKLQlEiBAgAABAgRKJCDoKlExLYUAAQIECBAgQKBdIN61NXnK1PaTjggQIEAgkcBAf3899ErUWCMCBAgQIECAAAECPRIQdPUI3rAECBAgQIAAAQLdFRgt5Ip3K2w9acFjuvpq+41HdnV3NnonQIBA/gQaj3CdV/tHAb++fuRHugq78lc3MyJAgAABAgQIEGgXEHS1ezgiQIAAAQIECBAogcBIIddRtXfPxG1a7Q4FGwECBAgMF4i/O+OjXhsBWKOFsKsh4ScBAgQIECBAgEAeBQRdeayKOREgQIAAAQIECHQsMFrIJeDqmNSFBAhUTGCk9xoKuyr2JbBcAgQIECBAgECBBARdBSqWqRIgQIAAAQIECIwvsN6GG7U1indyCbnaSBwQIEBgXIGRwq6777xj3Os0IECAAAECBAgQIJC1gKAra3HjESBAgAABAgQIdE1g6B9mhVxdo9YxAQIVEBj6O9VdXRUouiUSIECAAAECBAooIOgqYNFMmQABAgQIECBAYGSB1ru5JvX1hblzZo/c0FkCBAgQSCQwNOxyV1ciNo0IECBAgAABAgQyFBB0ZYhtKAIECBAgQIAAge4JDP1jbAy5YthlI0CAAIGFE2j9RwTu6lo4S1cTIECAAAECBAikLyDoSt9UjwQIECBAgAABAj0QmDxlarh+3rz6yO7m6kEBDEmAQGkFhv5DAnd1lbbUFkaAAAECBAgQKKSAoKuQZTNpAgQIECBAgACBoQKtdxy4m2uojmMCBAgsnIDfsQvn52oCBAgQIECAAIHuCQi6umerZwIECBAgQIAAgYwE4p1c8Y6uxuZug4aEnwQIEEhHoDXo8vjCdEz1QoAAAQIECBAgkI6AoCsdR70QIECAAAECBAj0UEDQ1UN8QxMgUAmB1sfDCroqUXKLJECAAAECBAgURkDQVZhSmSgBAgQIECBAgMBoAq3vj/F+rtGUnCdAgEDnAoKuzu1cSYAAAQIECBAg0F0BQVd3ffVOgAABAgQIECCQgYCgKwNkQxAgUGkBQVely2/xBAgQIECAAIFcCwi6cl0ekyNAgAABAgQIEEgiIOhKoqQNAQIEOhcQdHVu50oCBAgQIECAAIHuCgi6uuurdwIECBAgQIAAgQwEBF0ZIBuCAIFKCwi6Kl1+iydAgAABAgQI5FpA0JXr8pgcAQIECBAgQIBAEgFBVxIlbQgQINC5gKCrcztXEiBAgAABAgQIdFdA0NVdX70TIECAAAECBAhkICDoygDZEAQIVFpA0FXp8ls8AQIECBAgQCDXAoKuXJfH5AgQIECAAAECBJIICLqSKGlDgACBzgUEXZ3buZIAAQIECBAgQKC7AoKu7vrqnQABAgQIECBAIAMBQVcGyIYgQKDSAoKuSpff4gkQIECAAAECuRYQdOW6PCZHgAABAgQIECCQREDQlURJGwIECHQuIOjq3M6VBAgQIECAAAEC3RUQdHXXV+8ECBAgQIAAAQIZCAi6MkA2BAEClRYQdFW6/BZPgAABAgQIEMi1gKAr1+UxOQIECBAgQIAAgSQCgq4kStoQIECgcwFBV+d2riRAgAABAgQIEOiugKCru756J0CAAAECBAgQyEBA0JUBsiEIEKi0gKCr0uW3eAIECBAgQIBArgUEXbkuj8kRIECAAAECBAgkERB0JVHShgABAp0LCLo6t3MlAQIECBAgQIBAdwUEXd311TsBAgQIECBAgEAGAoKuDJANQYBApQUEXZUuv8UTIECAAAECBHItIOjKdXlMjgABAgQIECBAIImAoCuJkjYECBDoXEDQ1bmdKwkQIECAAAECBLorIOjqrq/eCRAgQIAAAQIEMhAQdGWAbAgCBCotIOiqdPktngABAgQIECCQawFBV67LY3IECBAgQIAAAQJJBARdSZS0IUCAQOcCgq7O7VxJgAABAgQIECDQXQFBV3d99U6AAAECBAgQIJCBgKArA2RDECBQaQFBV6XLb/EECBAgQIAAgVwLCLpyXR6TI0CAAAECBAgQSCIg6EqipA0BAgQ6FxB0dW7nSgIECBAgQIAAge4KCLq666t3AgQIECBAgACBDAQEXRkgG4IAgUoLCLoqXX6LJ0CAAAECBAjkWkDQlevymBwBAgQIECBAgEASAUFXEiVtCBAg0LmAoKtzO1cSIECAAAECBAh0V0DQ1V1fvRMgQIAAAQIECGQgIOjKANkQBAhUWkDQVenyWzwBAgQIECBAINcCgq5cl8fkCBAgQIAAAQIEkggIupIoaUOAAIHOBQRdndu5kgABAgQIECBAoLsCgq7u+uqdAAECBAgQIEAgAwFBVwbIhiBAoNICgq5Kl9/iCRAgQIAAAQK5FhB05bo8JkeAAAECBAgQIJBEQNCVREkbAgQIdC4g6OrczpUECBAgQIAAAQLdFRB0dddX7wQIECBAgAABAhkICLoyQDYEAQKVFhB0Vbr8Fk+AAAECBAgQyLWAoCvX5TE5AgQIECBAgACBJAKCriRK2hAgQKBzAUFX53auJECAAAECBAgQ6K6AoKu7vnonQIAAAQIECBDIQEDQlQGyIQgQqLSAoKvS5bd4AgQIECBAgECuBQRduS6PyREgQIAAAQIECCQREHQlUdKGAAECnQsIujq3cyUBAgQIECBAgEB3BQRd3fXVOwECBAgQIECAQAYCgq4MkA1BgEClBQRdlS6/xRMgQIAAAQIEci0g6Mp1eUyOAAECBAgQIEAgiYCgK4mSNgQIEOhcQNDVuZ0rCRAgQIAAAQIEuisg6Oqur94JECBAgAABAgQyEBB0ZYBsCAIEKi0g6Kp0+S2eAAECBAgQIJBrAUFXrstjcgQIECBAgAABAkkEBF1JlLQhQIBA5wKCrs7tXEmAAAECBAgQINBdAUFXd331ToAAAQIECBAgkIGAoCsDZEMQIFBpAUFXpctv8QQIECBAgACBXAsIunJdHpMjQIAAAQIECBBIIiDoSqKkDQECBDoXEHR1budKAgQIECBAgACB7goIurrrq3cCBAgQIECAAIEMBARdGSAbggCBSgsIuipdfosnQIAAAQIECORaQNCV6/KYHAECBAgQIECAQBIBQVcSJW0IECDQuYCgq3M7VxIgQIAAAQIECHRXQNDVXV+9EyBAgAABAgQIZCAg6MoA2RAECFRaQNBV6fJbPAECBAgQIEAg1wKCrlyXx+QIECBAgAABAgSSCAi6kihpQ4AAgc4FBF2d27mSAAECBAgQIECguwKCru766p0AAQIECBAgQCADAUFXBsiGIECg0gKCrkqX3+IJECBAgAABArkWEHTlujwmR4AAAQIECBAgkERA0JVESRsCBAh0LiDo6tzOlQQIECBAgAABAt0VEHR111fvBAgQIECAAAECGQgIujJANgQBApUWEHRVuvwWT4AAAQIECBDItYCgK9flMTkCBAgQIECAAIEkAoKuJEraECBAoHMBQVfndq4kQIAAAQIECBDoroCgq7u+eidAgAABAgQIEMhAQNCVAbIhCBCotICgq9Llt3gCBAgQIECAQK4FBF25Lo/JESBAgAABAgQIJBEQdCVR0oYAAQKdCwi6OrdzJQECBAgQIECAQHcFBF3d9dU7AQIECBAgQIBABgKCrgyQDUGAQKUFBF2VLr/FEyBAgAABAgRyLSDoynV5TI4AAQIECBAgQCCJgKAriZI2BAgQ6FxA0NW5nSsJECBAgAABAgS6KyDo6q6v3gkQIECAAAECBDIQEHRlgGwIAgQqLSDoqnT5LZ4AAQIECBAgkGsBQVeuy2NyBAgQIECAAAECSQQEXUmUtCFAgEDnAoKuzu1cSYAAAQIECBAg0F0BQVd3ffVOgAABAgQIECCQgYCgKwNkQxAgUGkBQVely2/xBAgQIECAAIFcCwi6cl0ekyNAgAABAgQIEEgiIOhKoqQNAQIEOhcQdHVu50oCBAgQIECAAIHuCgi6uuurdwIECBAgQIAAgQwEBF0ZIBuCAIFKCwi6Kl1+iydAgAABAgQI5FpA0JXr8pgcAQIECBAgQIBAEgFBVxIlbQgQINC5gKCrcztXEiBAgAABAgQIdFdA0NVdX70TIECAAAECBAhkICDoygDZEAQIVFpA0FXp8ls8AQIECBAgQCDXAoKuXJfH5AgQIECAAAECBJIICLqSKGlDgACBzgUEXZ3buZIAAQIECBAgQKC7AoKu7vrqnQABAgQIECBAIAMBQVcGyIYgQKDSAoKuSpff4gkQIECAAAECuRYQdOW6PCZHgAABAgQIECCQREDQlURJGwIECHQuIOjq3M6VBAgQIECAAAEC3RUQdHXXV+8ECBAgQIAAAQIZCAi6MkA2BAEClRYQdFW6/BZPgAABAgQIEMi1gKAr1+UxOQIECBAgQIAAgSQCgq4kSsVtc8CBB4Wnn356zAUsu+yyYZVVVgmT+rYKe+6xR3jlK185rP2TTz0VDjzovc3zq6+2Wvj6zBnNYzsECIwuIOga3cYnBAgQIECAAAECvRUQdPXW3+gECBAgQIAAAQIpCAi6UkDMcRdbbPmmEEOqpNvyyy0XZpz9tdC31VZtlzzxxBPhjVv1Nc+tteaa4aorLm8e2yFAYHQBQdfoNj4hQIAAAQIECBDorYCgq7f+RidAgAABAgQIEEhBQNCVAmKOu5ho0BWXstRSS4X/mj497LjjDs2VCbqaFHYITFhA0DVhMhcQIECAAAECBAhkJCDoygjaMAQIECBAgAABAt0TEHR1zzYPPQ8NupZffvnwile8ojm1+fPnhxhiDd1im4sv+m7YeKON6h8JuoYKOSaQXEDQldxKSwIECBAgQIAAgWwFBF3ZehuNAAECBAgQIECgCwKCri6g5qjLoUHXj3/4g7DhBhu0zTA+2vCi714UTjn11PDcc881P3vP/vuHk078fP1Y0NVksUNgwgKCrgmTuYAAAQIECBAgQCAjAUFXRtCGIUCAAAECBAgQ6J6AoKt7tnnoOUnQ1Zjn184+O5x2+hmNw7D2WmuFKy+/rH4s6Gqy2CEwYQFB14TJXECAAAECBAgQIJCRgKArI2jDECBAgAABAgQIdE9A0NU92zz0PJGg68677gp77LV3c9pLLrlkuO2W39WPJxJ0xcchXn7FFeEPf7g93HHHHeGeP/0prLTSSmHttdcKW77xjWG/d7+77fGJzQFf2vnexReHRx99tHn6kIMPrre/vdbXj3704/DQXx8Kzz8/P6zx2teG3XbbNWy26abNtkN3rr3uunDbbbc1T++2225hrTXXDI888kiI49xzz59CvKNttVVXCX19feGtu+wSFltssWb70XZefPHFcN2vfx1+8IMfhj/fe294+OGHwworrlCb0xpht113DW+vzWvxxRcf8fLY/vLLL29+tmlt/pNqY993//3hhhtuCPfee19YdNFFw9FHDTTb2Cm2gKCr2PUzewIECBAgQIBAmQUEXWWurrURIECAAAECBCoiIOgqd6EnEnTFAOatu+7WBInv6br997eGRRZZpP4erzdu1df8LIZFV13xcljT+ODBBx8KH/vEJ8INv/lN49Swn/FOsRM//7mwzdZbD/ssnthz733CHXfe2fzsdzfdGL73vYvDCZ9f8BjF5gcv7bxz333Cl774xfo8h3524kknhVmz5zRPf33G2fXQbcrU94d/PvNM83xjZ6MNNwxz58wOK664YuPUsJ/3/+UvYeDoo8Ott/5+2GeNE9Hngrnnh1VWWaVxqvnzslrIdUT/tObxBw49JLxlxx3DIR/4YC3Ae75+fokllgh/uPWWZhs7xRYQdBW7fmZPgAABAgQIECizgKCrzNW1NgIECBAgQIBARQQEXeUu9ESCru9edFH4j09+qgkS75j62VVX1o+T3NEVA6C9931nePLJJ5t9jLaz/PLLhx//4Adh9dVXG9ZkaND1wQ8cGr5x7qzwwgsvDGvbOPH+Ke8L//npTzcOmz+HBl371+4mu/zKK8Pjjz/ebDN0Z/PNNguzz5sVlll66aEf1e9Oe/f+ByRa43rrrlsPu171qle19TM06IrO/3jiibY+BV1tZIU/EHQVvoQWQIAAAQIECBAorYCgq7SltTACBAgQIECAQHUEBF3lrnXSoGte7ZF58S6j1gDoHbvvHqafcXodKEnQddQxHw0/vuSSJujKK68cdtlpp7DNNluHxx57LMz95gXhf+++u/n5zm95S5hZu8Nq6DY06Gp8HgOhN7zhDSE+GvHm3/2u/vjBxmfx55dPOSXEu7tat6FBV+OzeMfW5pttGlZYYYVw++13hLv/+MfGR/WfMRD7wskntZ177rnnwrtqIdftt9/ePB/vetth++3DWmvVHof490fDNb/8Zf3ut0aDTTZ5Q5hz3nlhuWWXbZwKQ4Ou5gcv7cRHRi5Re+zhTb8d/a64odc4zreAoCvf9TE7AgQIECBAgECVBQRdVa6+tRMgQIAAAQIESiIg6CpJIUdZxtCgK74ja9lll2m2nj//hfDAAw/U3zPVPPnSzjfPnxP6ttqqfjRe0PXMM8+GYz760fDza64JMRBaeumlwpWXXRZe85rXNLuN78V681t2aj6eb/nllhsxzBkp6Jp25JFhWv+R9XdXxQ7jYwc//ol/r4dGjQH22XuvcNqXv9w4rP8cKeiKAdtpp345xLvK4hbftzVj5sxw6lcWhHrxXHzk4K9+8fO429wuufTS2iMLj2kex/lf9N0Lw7++7nXNc//4xz/qgeH18+Y1z33y2GPDobXHEza2kYKu162zTjhg//3CrrX3e8VHO9rKJSDoKlc9rYYAAQIECBAgUCYBQVeZqmktBAgQIECAAIGKCgi6yl34oUFXktXGd3J99vj/DJPf+95m8/GCrkbDJ596Klx++RW1xwzOD/vV7ooauh32oQ+Hq3/+coB0zc+uDqut1v74wqFBV3yX15zaowSHbo8++mjY9s071O/wip+N9N6woUFXvJMrPo4xhlStWwy79tpn37Z3g/3y5z8Lq666arPZ0Ll/9OijwhGHH978vLHz17/+tR7oxT7jtvHGG4cffv/ixsfD7uiKd3td+uMfDXNoXmCn8AKCrsKX0AIIECBAgAABAqUVEHSVtrQWRoAAAQIECBCojoCgq9y1nmjQFR/F98WTTw777rN3G0zSoKtxUQy87rrrrvDggw/V75hqnI/vAbv2uusah+F7tTuiNt1kk+Zx3BkadJ115hlh97e/va1N42Dnt74t3Hf//Y3DcMOvrwut78QaGnS9rxbeffYzxzfbt+4cV3s/2YW1+TW2welnhrfvtlvjsB6qPfzww83jQw85OCy7zMuPJGx+UNuZVXtcYTSI26KLLhr+cOstIdrGbegdXdtvt22Y9Y1v1D/zf+UUEHSVs65WRYAAAQIECBAog4CgqwxVtAYCBAgQIECAQMUFBF3l/gIkCbriO6FWrT2qb9tttqk9Pm//EN8rNXRLGnR97+LvhzNqAVEMuJJsSYKuH1z8vfD6179+xO7eXXtn1u9uuaX52ZWXX9b26L+hQdenjzsuHHzw+5vtW3e+fOppYcbXv948dfKJn697xBPxvWAbv2GT2p1qLzQ/n8hO651rQ4OuA/bbL5x80okT6U7bggkIugpWMNMlQIAAAQIECFRIQNBVoWJbKgECBAgQIECgrAKCrrJWdsG6hgZd8RF666+/ftuiG3catZ0ccjBe0BWDoOM/89nw7QsvHHLl2IdJgq6hjxBs7XGiQdepX/rSsLvVGv2NFXQ9/c9/hs22eGOj6YR//viHPwgbbrBB/TpB14T5Cn+BoKvwJbQAAgQIECBAgEBpBQRdpS2thREgQIAAAQIEqiMg6Cp3rYcGXa2By0RWPl7Qdf28eSH+Mb91W2/ddcOWb3xjWGKJJZqnY7u7/vd/m8dFCbrihDfdfIvwz2eeqc99scUWC5/8j/+oP5awuZgxdvbac4/wyle+st5C0DUGVEk/EnSVtLCWRYAAAQIECBAogYCgqwRFtAQCBAgQIECAQNUFBF3l/gZkFXQNvRvqiI98JHz0mKOH4R72oQ+Hq3/+8+b5IgVdu++xZ/jfu+9uzn2s0DA+unH11Vdrtm3dEXS1alRjX9BVjTpbJQECBAgQIECgiAKCriJWzZwJECBAgAABAgTaBARdbRylO8gq6Hrf1PeHX19/fdPvgrnnh63e9Kbmcdx5+OGHw267vyM8+dRTzfMXXfidsNmmmzaP486ee+8T7rjzzua5PDy6ME7m1NO+Es6eObM5rx3evH04p/ZOr0UWWaR5Lu7EO9beHd91VnunVwz73rTllm2fC7raOCpxIOiqRJktkgABAgQIECBQSAFBVyHLZtIECBAgQIAAAQKtAoKuVo3y7WcVdJ32ldPD12bMaALustNO4ZQvfqH5uL4777orHHvcceH3v7+t2SbuHPSe94S99tozrL/eeuFVr3pV/bO8Bl1/+vOfw9vfsUeI7yNrbJP6+sJRA9PC61//+jD/+efDb2+8MZx40snhvvvvbzQJJ37uhHBgbZ2NTdDVkKjOT0FXdWptpQQIECBAgACBogkIuopWMfMlQIAAAQIECBAYJiDoGkZSqhNZBV3zbrghvPd9U9rsFl100bDhBhuEp2p3cP3lgQfCiy++GJZdZpn6e67ifus2OP3M8PbddqufymvQFSf3tbPPDqedfkbr1Mfcj+8pu/iii8LSSy/VbCfoalJUZkfQVZlSWygBAgQIECBAoHACgq7ClcyECRAgQIAAAQIEhgoIuoaKlOs4q6Ar3uX0yU99Olx08cWjAi6++OIhvtfqzOlnhR9fcklbu6IEXS+88ELtjq2Twuzz57bNf6SDTTZ5Q5h+xhlhzTXWaPtY0NXGUYkDQVclymyRBAgQIECAAIFCCgi6Clk2kyZAgAABAgQIEGgVEHS1apRvP6ugqyE367zZ4YwzzwxPPf1041T958orrxzOOvOM+vuq4mP9zpw+Pfz8F9eExx9/vP55UYKuxqIuv+KKMGPm18PNv/td41TzZ1zrPnvvFT52zDEhhntDN0HXUJHyHwu6yl9jKyRAgAABAgQIFFVA0FXUypk3AQIECBAgQIBAU0DQ1aSwk5JAfCzhvffdF267bcH7uDbaaKOwztprh8UWWyylEfLTTVznPffcE/72t7+F1VZdrfauro1DDLpsBFoFBF2tGvYJECBAgAABAgTyJCDoylM1zIUAAQIECBAgQKAjAUFXR2wuIkCAQGIBQVdiKg0JECBAgAABAgQyFhB0ZQxuOAIECBAgQIAAgfQFBF3pm+qRAAECrQKCrlYN+wQIECBAgAABAnkSEHTlqRrmQoAAAQIECBAg0JGAoKsjNhcRIEAgsYCgKzGVhgQIECBAgAABAhkLCLoyBjccAQIECBAgQIBA+gKCrvRN9UiAAIFWAUFXq4Z9AgQIECBAgACBPAkIuvJUDXMhQIAAAQIECBDoSEDQ1RGbiwgQIJBYQNCVmEpDAgQIECBAgACBjAUEXRmDG44AAQIECBAgQCB9AUFX+qZ6JECAQKuAoKtVwz4BAgQIECBAgECeBARdeaqGuRAgQIAAAQIECHQkIOjqiM1FBAgQSCwg6EpMpSEBAgQIECBAgEDGAoKujMENR4AAAQIECBAgkL6AoCt9Uz0SIECgVUDQ1aphnwABAgQIECBAIE8Cgq48VcNcCBAgQIAAAQIEOhIQdHXE5iICBAgkFhB0JabSkAABAgQIECBAIGMBQVfG4IYjQIAAAQIECBBIX0DQlb6pHgkQINAqIOhq1bBPgAABAgQIECCQJwFBV56qYS4ECBAgQIAAAQIdCQi6OmJzEQECBBILCLoSU2lIgAABAgQIECCQsYCgK2NwwxEgQIAAAQIECKQvIOhK31SPBAgQaBUQdLVq2CdAgAABAgQIEMiTgKArT9UwFwIECBAgQIAAgY4EBF0dsbmIAAECiQUEXYmpNCRAgAABAgQIEMhYQNCVMbjhCBAgQIAAAQIE0hcQdKVvqkcCBAi0Cgi6WjXsEyBAgAABAgQI5ElA0JWnapgLAQIECBAgQIBARwKCro7YXESAAIHEAoKuxFQaEiBAgAABAgQIZCwg6MoY3HAECBAgQIAAAQLpCwi60jfVIwECBFoFBF2tGvYJECBAgAABAgTyJCDoylM1zIUAAQIECBAgQKAjAUFXR2ylveihhx4KDz/ySFhzjTXCSiutVNp1WhiBLAUEXVlqG4sAAQIECBAgQGAiAoKuiWhpS4AAAQIECBAgkEsBQVcuy5LZpObPnx/OO292+NGll4Q/3v3H8PQ//9kce8UVVwwbrL9+6D/iiLDddts2zw/defHFF8Oee+8z9HTb8TLLLBM223STsOmmm4Uttti8HqS1NagdvG/q+8Njjz029HTi4y023zyc+PnPJW4/VsP/+upXwyWX/qStybT+I8Pbd9ut7dxEDz57wufCDb/5TdtlJ3z2M+FNW27Zds5BuQQEXeWqp9UQIECAAAECBMokIOgqUzWthQABAgQIECBQUQFBV0ULX1v2LbfcGj51/PHh9ttvHxfhnfvuE/7zU58KK6ywwrC2Mehaf6ONh50f68RHjz4qHHH44W1Ntt5u+/D3v/+97dxEDrbdZpswe9a5E7lkxLa33faH8K799w8xBPzX170u3POnP9Xbnfi5E8KB73nPiNckOfm7W24J797/gHrT6PjEE0/U98+ZOTPsuOMOSbrQpqACgq6CFs60CRAgQIAAAQIVEBB0VaDIlkiAAAECBAgQKLuAoKvsFR55fX+85576XVjPPfdcvUG8G+rd73pnWL92B9fKK68cbr311nDjjTeGK6+6OvzlgQfqbd6x++5h+hmnD+uwNejacIMNwvbbbzeszVNPPhX+fO+94cabbgqNMQ+qhUaf/czxYbHFFqu3P2twMDz19NPDro0nvvWtb9fvNnvta1cf9a6q162zzkIFUXGcGG7FkCuGXauvvlr4+owZYY+99o4fhYUNug6a/L763VzR95STTw6HHnZYvV9BV52h1P8n6Cp1eS2OAAECBAgQIFBoAUFXoctn8gQIECBAgAABAlFA0FXN70HjD++LLLJI+PhHjwkf/MAHmoFTq8ijjz4aDjjwoHDvfffVT88655xhQVZr0HXAfvuFk086sbWLtv37//KXcNwnPxV+ff319fP//vGPhQ+9FPi0NRxysO2bdwgPP/xweHMtRDu3Nodubeec843whS99qd79f8+cEdZfb/2w4847148XJui6/IorwuFH9jf7WXfddUMMvuIm6KozlPr/Gv+9xUUO9PeHgWkLvgulXrTFESBAgAABAgQIFEJA0FWIMpkkAQIECBAgQIDAWAKCrrF0yvnZxd//n/CJY4+tLy4+kvDLp5wy5kJjOLX3vu8MTz75ZO0dW5uE7114YVv7iQRd8cJ//OMfYfc996oHV6uuumr45c9/1tbfSAdZBF333X9/7e6tvcIzzzwb9txjj3DGV04LDzzw4EIHXc8//3x4R2298RGI69UCrh//8Af1O9sEXSNVupznBF3lrKtVESBAgAABAgTKICDoKkMVrYEAAQIECBAgUHEBQVf1vgADRx8TLrn00rDUUkuFKy/7aVhllVXGRTj8iCPD5VdeGZZccslw6803hUUXXbR5zUSDrnjhfx7/mXDBt79d72PeddeGlVZaqdnfSDtZBF0HH3po+OWvrg0rrrhiuOzSS8KrX/3qVIKuud/8ZvjMCZ+rL2vG174adqndIXbDb37jjq6RCl3Sc4KukhbWsggQIECAAAECJRAQdJWgiJZAgAABAgQIEKi6gKCret+AvfbZN9x+xx1h8802C9/9zoKwaTyFr37ta+ErZ5xZb3bVFZeHtdZcs3lJJ0HXrFnnhRO/8IV6Hz/8/sVh4403bvY30k63g67Wu9xO+cLJtfeVvas+jYW9oyu+c2yXt+0a4iMgt3rTm8IFc8+v9yvoGqnK5T0n6Cpvba2MAAECBAgQIFB0AUFX0Sto/gQIECBAgAABAt7RVbHvQAylNt1ii/rj+fbdZ+9w6kvvoxqP4aabbw4zZsysNzv66KPCRhtu2Lykk6Dr1NO+Es6euaC/q6+8Iqy5xhrN/kba6WbQ9X//939h193fER5//PGw7TbbhNmzzm1OYWGDrq+cfkb46tln1/u76MLvhM023bS+L+hqEldiR9BViTJbJAECBAgQIECgkAKCrkKWzaQJECBAgAABAgRaBdzR1apR/v2HH344xNAobv1HHBGOPmpgoRfdSdD1noPeG357441h8cUXrz8K8RWveMWY8+hm0PWxT3wi/M8Pflh/lOMlP/ph291qCxN0/e1vfwu77LpbePbZZ8Pbd9stDE5fcEdcXKiga8xyl+5DQVfpSmpBBAgQIECAAIHSCAi6SlNKCyFAgAABAgQIVFdA0FWt2t//l7+EnXZ5a33Rx9RCriNrYdfCbhMNumadNzucePLJ9WGT3lXWraDrF7+4Jhx62GH1uRz7iY+Hwz74wTaOhQm6fnrZZeGqq66u93fkkUe0BWiCrjbm0h8IukpfYgskQIAAAQIECBRWQNBV2NKZOAECBAgQIECAQENA0NWQqMbPbgdd8c6lY2qPNhy6Pfnkk+HPf743fP9/vh9++atr6x+vvvpq4fzZs9sCoKHXNY67EXT985lnwu577BFimBXfEXbxdy8MQ+8sW5igqzH3kX4KukZSKe85QVd5a2tlBAgQIECAAIGiCwi6il5B8ydAgAABAgQIEPCOrop9B8YLun7y05+Gp59+ekyV7bbdNqy66qrNNq13dDVPjrPz+te/Ppwzc0ZYeeWVx2m54ONuBF0nfeEL4dxZ54XFFlssXPSd74Q3vOHfhs1F0DWMxIkOBARdHaC5hAABAgQIECBAIBMBQVcmzAYhQIAAAQIECBDopoA7urqpm7++xwu6dn7r28J9998/5sS/PuPssNNb3tJskzToWnaZZcImm2wS3rjFFuHDH/5QiMdJt7SDrltuuTXsf+CBYf78+eEDhx4Sjjv22BGnIugakcXJCQoIuiYIpjkBAgQIECBAgEBmAoKuzKgNRIAAAQIECBAg0C0BQVe3ZPPZ74MPPhR22Gmn+uSOmtYfpvX3t000/kH+oYceajsXD5559tnwyCOP1M+PFXS9deedwxGHHz7s+mWWXSb86+teFxZddNFhnyU5kWbQ9fzzz4d3vnu/cPsdd4Q111gjXPKjH4Wll15qxGkIukZkcXKCAoKuCYJpToAAAQIECBAgkJmAoCszagMRIECAAAECBAh0S0DQ1S3ZfPb7zDPPhk0237w+uQP22y+cfNKJiSb6i19cEw497LB627GCron0mWjglxqlGXR969vfDp8+/jP1nmedc07YfvvtRp2KoGtUGh9MQEDQNQEsTQkQIECAAAECBDIVEHRlym0wAgQIECBAgACBbggIurqhmu8+t9jyTeHJp54KfVttFb55/pxEk/3mBReE4z97Qr1t0YOu1u/8NltvPeZdZs/W7mT77Y031te93rrrhlVWWaXp9eVTvhhe85rXNI8nsnPDb34TDpr8vvol58ycGXbccYeJXK5twQQEXQUrmOkSIECAAAECBCokIOiqULEtlQABAgQIECBQVoHWP/pP6usLc+fMLutSreslgQMOPCjceNNNYYUVVgi/+NnVYblllx3X5qSTTw7nnrfgu1GmoGvchY/R4MrLLwtrr7XWGC1G/0jQNbpNGT8RdJWxqtZEgAABAgQIECiHgKCrHHW0CgIECBAgQIBApQUEXdUr/5zz54YTPv/5+sI/XHsc4Sc+/rExEZ588smw4867hCeeeKLeruhB169+dW345a9+NeaaGx8+Vbvz7YLaow7j9ubaIw432nCjxkfhwx86LLzyla9sHk9kR9A1Ea3itxV0Fb+GVkCAAAECBAgQKKuAoKuslbUuAgQIECBAgECFBARdFSr2S0t97LHHwi677lYPrpZYYonw1cGzwlt23HFEiPnz54fjP/PZ8O0LL2x+XvSgq7mQBDtJ39F1221/CLNmn1e7O2658P73Tw3rrL32mL0LusbkKd2Hgq7SldSCCBAgQIAAAQKlERB0laaUFkKAAAECBAgQqK6AoKuatf/JT38a+geOai7+gP32C/vt9+6w/vrrh+WXWy7EMOzOu+4Kp33l9HDTzTeHTTfdJNxyy6319oKuJlt958UXXwy7vG3XcN/999ePt9t223Deud9obzTkSNA1BKTkh4KukhfY8ggQIECAAAECBRYQdBW4eKZOgAABAgQIECCwQEDQVd1vwvlz54aTvvDF8Nxzz7UhxKDrydoj+xrbBrXw69xz/jtst8OCu74EXQ2ZBT8fffTRsPV224cYeMUtvvvst/OuD4ssssiCBiP8v6BrBJQSnxJ0lbi4lkaAAAECBAgQKLiAoKvgBTR9AgQIECBAgACBEARd1f4W3Hrr78NXzz47XP2zn4Xnn39+GMZ+73pXOO4/jq2f37JvUv2noGsYU/jI4UeEK666qv7BIQe/P3zquOOGN2o5I+hqwajArqCrAkW2RAIECBAgQIBAQQUEXQUtnGkTIECAAAECBAi8LCDoetmiynvxUYV33Hln+Otf/1a7M+mFsM4664TX1f73qle9qsosidce7+a69rrrwvLLLx823WSTxNdpWA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBMQdLVxOCBAgEDqAoKu1El1SIAAAQIECBAgkJKAoCslSN0QIECAAAECBAj0TkDQ1Tt7IxMgUA0BQVc16myVBAgQIECAAIEiCgi6ilg1cyZAgAABAgQIEGgTEHS1cTggQIBA6gKCrtRJdUiAAAECBAgQIJCSgKArJUjdECBAgAABAgQI9E5A0NU7eyMTIFANAUFXNepslQQIECBAgACBIgoIuopYNXMmQIAAAQIECBBoExB0tXE4IECAQOoCgq7USXVIgAABAgQIECCQkoCgKyVI3RAgQIAAAQIECPROQNDVO3sjEyBQDQFBVzXqbJUECBAgQIAAgSIKCLqKWDVzJkCAAAECBAgQaBO4ft68EP8I29juvvOOxq6fBAgQIJCCQGvQNXfO7DCpry+FXnVBgAABAgQIECBAYOEFBF0Lb6gHAgQIECBAgACBHAist+FGzVn4I2yTwg4BAgRSEfA7NhVGnRAgQIAAAQIECHRBQNDVBVRdEiBAgAABAgQIZC/Q+kfYgf7+MDCtP/tJGJEAAQIlFHDXbAmLakkECBAgQIAAgRIJCLpKVExLIUCAAAECBAhUWaD1PV3RweMLq/xtsHYCBNIUaH1sYXxkYbxr1kaAAAECBAgQIEAgLwKCrrxUwjwIECBAgAABAgQWWsBdXQtNqAMCBAi0CQy9m8ujYdt4HBAgQIAAAQIECORAQNCVgyKYAgECBAgQIECAQDoCQ+/q8gfZdFz1QoBANQWGhlzu5qrm98CqCRAgQIAAAQJ5FxB05b1C5keAAAECBAgQIDAhgda7uuKFwq4J8WlMgACBusDQkCue9PvUl4MAAQIECBAgQCCPAoKuPFbFnAgQIECAAAECBDoWGHpXV+zIH2c75nQhAQIVFBgp5DpqWn+Y1t9fQQ1LJkCAAAECBAgQyLuAoCvvFTI/AgQIECBAgACBCQuMFHYN1P5AO1D7Q62NAAECBEYXGOn3p5BrdC+fECBAgAABAgQI9F5A0NX7GpgBAQIECBAgQIBAFwRG+mNtHCYGXpMm9YX4rhkbAQIECIQQ7+C6/vp5Yfrg4DAOIdcwEicIECBAgAABAgRyJiDoyllBTIcAAQIECBAgQCA9gdHCrsYIwq6GhJ8ECFRVIIZco21CrtFknCdAgAABAgQIEMiTgKArT9UwFwIECBAgQIAAgdQF4h9xY+A11h9zUx9UhwQIECiwQAy44uadXAUuoqkTIECAAAECBCokIOiqULEtlQABAgQIECBQZQGBV5Wrb+0ECCQREHAlUdKGAAECBAgQIEAgbwKCrrxVxHwIECBAgAABAgS6LtC4u2veGI/s6vokDFBpgZtuvjncdPPv6gZbbL5Z2GLzzSvtYfG9E+irva/QY1x7529kAgQIECBAgACBhRcQdC28oR4IECBAgAABAgQIECAwIYFzZ80K35h1Xv2aGHJNP+P0CV2vMQECBAgQIECAAAECBAgsEBB0+SYQIECAAAECBAgQIEAgYwFBV8bghiNAgAABAgQIECBAoLQCgq7SltbCCBAgQIAAAQIECBDIq4CgK6+VMS8CBAgQIECAAAECBIomIOgqWsXMlwABAgQIECBAgACBwgsIugpfQgsgQIAAAQIECBAgQCAnAoKunBTCNAgQIECAAAECBAgQqI6AoKs6tbZSAgQIECBAgAABAgS6KyDo6q6v3gkQIECAAAECBAgQIDBMQNA1jMQJAgQIECBAgAABAgQIdCQg6OqIzUUECBAgQIAAAQIECBDoXEDQ1bmdKwkQIECAAAECBAgQINAqIOhq1bBPgAABAgQIECBAgACBDAQEXRkgG4IAAQIECBAgQIAAgUoICLoqUWaLJECAAAECBAgQIEAgTwKCrjxVw1wIECBAgAABAgQIECiygKCryNUzdwIECBAgQIAAAQIECikg6Cpk2UyaAAECBAgQIECAAIEcCgi6clgUU/r/7N0JvE3l/sfxX92bqRQihKjbLFPkGEKD0GCsSKlEKjqH5kk0zxpudZuJpKgMJckUonKUZKaRCg0kQ5S6//t/fg9rtfY++2xnn7PP3mut/Vmv13XWXuPzvJ+dda3veZ4HAQQQQAABBBBAAAEEwi1A0BXu9qV2CCCAAAIIIIAAAgggkDoBgq7UWXMnBBBAAAEEEEAAAQQQQMAKEHTxRUAAAQQQQAABBBBAAAEEkiNA0JUcR66CAAIIIIAAAggggAACCBRYgKCrwFQciAACCCCAAAIIIIAAAgjEFSDoisvDTgQQQAABBBBAAAEEEEAg+QIEXck35YoIIIAAAggggAACCCCQmQIEXZnZ7tQaAQQQQAABBBBAAAEE0ihA0JVGfG6NAAIIIIAAAggggAACoRIg6ApVc1IZBBBAAAEEEEAAAQQQCIIAQVcQWokyIoAAAggggAACCCCAQBAECLqC0EqUEQEEEEAAAQQQQAABBEIlQNAVquakMggggAACCCCAAAIIIJBGAYKuNOJzawQQQAABBBBAAAEEEMhMAYKuzGx3ao0AAggggAACCCCAAALJFyDoSr4pV0QAAQQQQAABBBBAAAEE4goQdMXlYScCCCCAAAIIIIAAAgggUGABgq4CU3EgAggggAACCCCAAAIIIJAcAYKu5DhyFQQQQAABBBBAAAEEEECAoIvvAAIIIIAAAggggAACCCCQYgGCrhSDczsEEEAAAQQQQAABBBAIrQBBV2ibloohgAACCCCAAAIIIICAXwUIuvzaMpQLAQQQQAABBBBAAAEEgiZA0BW0FqO8CCCAAAIIIIAAAgggEHgBgq7ANyEVQAABBBBAAAEEEEAAAZ8IEHT5pCEoBgIIIIAAAggggAACCGSOAEFX5rQ1NUUAAQQQQAABBBBAAIHiFSDoKl5fro4AAggggAACCCCAAAII5BEg6MpDwgYEEEAAAQQQQAABBBBAoFACBF2FYuMkBBBAAAEEEEAAAQQQQKDwAgRdhbfjTAQQQAABBBBAAAEEEEDAK0DQ5dVgHQEEEEAAAQQQQAABBBBIgQBBVwqQuQUCCCCAAAIIIIAAAghkhABBV0Y0M5VEAAEEEEAAAQQQQAABPwkQdPmpNSgLAggggAACCCCAAAIIBFmAoCvIrUfZEUAAAQQQQAABBBBAIJACBF2BbDYKjQACCCCAAAIIIIAAAj4UIOjyYaNQJAQQQAABBBBAAAEEEAi3AEFXuNuX2iGAAAIIIIAAAggggEDqBAi6UmfNnRBAAAEEEEAAAQQQQAABK0DQxRcBAQQQQAABBBBAAAEEEEiOAEFXchy5CgIIIIAAAggggAACCCBQYAGCrgJTcSACCCCAAAIIIIAAAgggEFeAoCsuDzsRQAABBBBAAAEEEEAAgeQLEHQl35QrIoAAAggggAACCCCAQGYKEHRlZq9NS4sAAEAASURBVLtTawQQQAABBBBAAAEEEEijAEFXGvG5NQIIIIAAAggggAACCIRKgKArVM1JZRBAAAEEEEAAAQQQQCAIAgRdQWglyogAAggggAACCCCAAAJBECDoCkIrUUYEEEAAAQQQQAABBBAIlQBBV6iak8oggAACCCCAAAIIIIBAGgUIutKIz60RQAABBBBAAAEEEEAgMwUIujKz3ak1AggggAACCCCAAAIIJF+AoCv5plwRAQQQQAABBBBAAAEEEIgrQNAVl4edCCCAAAIIIIAAAggggECBBQi6CkzFgQgggAACCCCAAAIIIIBAcgQIupLjyFUQQAABBBBAAAEEEEAAAYIuvgMIIIAAAggggAACCCCAQIoFCLpSDM7tEEAAAQQQQAABBBBAILQCBF2hbVoqhgACCCCAAAIIIIAAAn4VIOjya8tQLgQQQAABBBBAAAEEEAiaAEFX0FqM8iKAAAIIIIAAAggggEDgBQi6At+EVAABBBBAAAEEEEAAAQR8IkDQ5ZOGoBgIIIAAAggggAACCCCQOQIEXZnT1tQUAQQQQAABBBBAAAEEileAoKt4fbk6AggggAACCCCAAAIIIJBHgKArDwkbEEAAAQQQQAABBBBAAIFCCRB0FYqNkxBAAAEEEEAAAQQQQACBwgsQdBXejjMRQAABBBBAAAEEEEAAAa8AQZdXg3UEEEAAAQQQQAABBBBAIAUCBF0pQOYWCCCAAAIIIIAAAgggkBECBF0Z0cxUEgEEEEAAAQQQQAABBPwkQNDlp9agLAgggAACCCCAAAIIIBBkAYKuILceZUcAAQQQQAABBBBAAIFAChB0BbLZKDQCCCCAAAIIIIAAAgj4UICgy4eNQpEQQAABBBBAAAEEEEAg3AIEXeFuX2qHAAIIIIAAAggggAACqRMg6EqdNXdCAAEEEEAAAQQQQAABBKwAQRdfBAQQQAABBBBAAAEEEEAgOQIEXclx5CoIIIAAAggggAACCCCAQIEFCLoKTMWBCCCAAAIIIIAAAggggEBcAYKuuDzsRAABBBBAAAEEEEAAAQSSL0DQlXxTrogAAggggAACCCCAAAKZKUDQlZntTq0RQAABBBBAAAEEEEAgjQIEXWnE59YIIIAAAggggAACCCAQKgGCrlA1J5VBAAEEEEAAAQQQQACBIAgQdAWhlSgjAggggAACCCCAAAIIBEGAoCsIrUQZEUAAAQQQQAABBBBAIFQCBF2hak4qgwACCCCAAAIIIIAAAmkUIOhKIz63RgABBBBAAAEEEEAAgcwUIOjKzHan1ggggAACCCCAAAIIIJB8AYKu5JtyRQQQQAABBBBAAAEEEEAgrgBBV1wediKAAAIIIIAAAggggAACBRYg6CowFQcigAACCCCAAAIIIIAAAskRIOhKjiNXQQABBBBAAAEEEEAAAQQIuvgOIIAAAggggAACCCCAAAIpFiDoSjE4t0MAAQQQQAABBBBAAIHQChB0hbZpqRgCCCCAAAIIIIAAAgj4VYCgy68tQ7kQQAABBBBAAAEEEEAgaAIEXUFrMcqLAAIIIIAAAggggAACgRcg6Ap8E1IBBBBAAAEEEEAAAQQQ8IkAQZdPGoJiIIAAAggggAACCCCAQOYIEHRlTltTUwQQQAABBBBAAAEEECheAYKu4vXl6ggggAACCCCAAAIIIIBAHgGCrjwkbEAAAQQQQAABBBBAAAEECiVA0FUoNk5CAAEEEEAAAQQQQAABBAovQNBVeDvORAABBBBAAAEEEEAAAQS8AgRdXg3WEUAAAQQQQAABBBBAAIEUCBB0pQCZWyCAAAIIIIAAAggggEBGCBB0ZUQzU0kEEEAAAQQQQAABBBDwkwBBl59ag7IggAACCCCAAAIIIIBAkAUIuoLcepQdAQQQQAABBBBAAAEEfC+godYlPXtGlHNPQVescyIuwAcEEEAAAQQQQAABBBBAAAErQNDFFwEBBBBAAAEEEEAAAQQQKCaB/lddLQs/+0wa1K8vjz/2qHuXeEGXsy/6HPdkVhBAAAEEEEAAAQQQQAABBFwBgi6XghUEEEAAAQQQQAABBBBAIHkCTmDlXNEbXHn35bddz+vV8+I8vcGc6/ETAQQQQAABBBBAAAEEEEBAhKCLbwECCCCAAAIIIIAAAgggUEwC3kBLb+GEWt7tsbZ5jy2monFZBBBAAAEEEEAAAQQQQCAUAgRdoWhGKoEAAggggAACCCCAAAJ+FfCGWlpGDbYa1K8nw4aPsEWO/uwc4x3q0B7IHwgggAACCCCAAAIIIIAAAnkECLrykLABAQQQQAABBBBAAAEEEEiuQHTYFe/qTg+veMewDwEEEEAAAQQQQAABBBBAYJcAQRffBAQQQAABBBBAAAEEEEAgBQIFCbsIuVLQENwCAQQQQAABBBBAAAEEQiVA0BWq5qQyCCCAAAIIIIAAAggg4GeBeGEXIZefW46yIYAAAggggAACCCCAgF8FCLr82jKUCwEEEEAAAQQQQAABBEIpECvsIuQKZVNTKQQQQAABBBBAAAEEEEiBAEFXCpC5BQIIIIAAAggggAACCCDgFfCGXYRcXhnWEUAAAQQQQAABBBBAAIHEBAi6EvPiaAQQQAABBBBAAAEEEEAgKQIadi38bJE8/tijSbkeF0EAAQQQQAABBBBAAAEEMlGAoCsTW506p1Xg8SeetPfPnT9fsho3lv452e5nZ59uGDXyJbtd/9DterwunJO/gddGrS648CL9YRd11v26qKVjzTmRnuqDW/oNwv7ffFZWY/vfoP73p+vOf5v6/WNBIBUC+hzIzd31XNX7Oc/YVNybeyCAAAJ+E3Cex1ounsl+ax3KgwACCCCAAAIIIFAQAYKugihxDAJJFDj8qKPdq/XPzo4IurwBw5erVrrH6XbnJRzniHgNNBB4/Mld4aH+w9wbEHqtdbvzD3fO2RWe4ubf707Y/5vXcMv79533v0/3Lz5WECgGAe/f/8VweS6JAAIIhELA+/+1Q1EhKoEAAggggAACCCAQegGCrtA3MRVMp4DTK8Mbvnhfsnn/EalBlvfFL0GXSEEMvJ4EXbt+C9f7fSPsEwmiQaYFXd7/1vW/aXp5pfPJFc57e58V4awhtUIAAQSSL+D9t0ryr84VEUAAAQQQQAABBBBIngBBV/IsuRICEQL5vajWl20aajUxPRoa67Bdu4fT05Of2N0zSddzTG8vZ9Hj55v/6cI5kQZeG/Xxunk9vW6cs2uYLuc7hZsK+Pe74/3uajm932vv9937vQ7COVqPebuHjosVzvJyTVubJRkC8UIufQbr85gFAQQQyGQBfR7r/4+ItUT/IlmsY9iGAAIIIIAAAggggEC6BQi60t0C3D+UAvoPRW/vLF7YhrKZqRQCCCRZIPrvToY0TDJwBl4uVsg1YPfcmN6gOANpqDICCCCQR0Cfw84v5Xl3EnZ5NVhHAAEEEEAAAQQQ8KMAQZcfW4UyhULAeWGrL9R4mRaKJqUSCCBQzALeF2z83VnM2Blw+eiQy+m9xTM5AxqfKiKAQJEEvM9j50KEXY4EPxFAAAEEEEAAAQT8KEDQ5cdWoUyBFdB/FOo/Ap0l+rOznZ8IIIAAAvkL6LCGhBH5+7BnzwKxQi7vEJl7vgJHIIAAAgjwdynfAQQQQAABBBBAAIGgCBB0BaWlKKfvBZx/CDJMoe+bigIigEDABPTvV1367x5yLmDFp7gpFtBfMvEOH0wvhBQ3ALdDAIFQCTj/xnEqxb91HAl+IoAAAggggAACCPhJgKDLT61BWQItcPhRR7vl5x+ALgUrCCCAQKEFvC/X+Hu10IwZd6KGXBp26ULIlXHNT4URQKAYBLzPY738l6tWFsNduCQCCCCAAAIIIIAAAoUXIOgqvB1nIuAKRP/2uA6P5B3C0D2QFQQQQACBAgtEv1gj7CowXcYeyPM4Y5ueiiOAQDEK8DwuRlwujQACCCCAAAIIIJAUAYKupDByEQTE/va4/iNQF+YB4RuBAAIIJEfA6S07wAxb2NjMgcgvESTHNaxXoTdXWFuWeiGAQLoFosMuenWlu0W4PwIIIIAAAggggIBXgKDLq8E6AggggAACCPhKwDsEna8KRmF8KeAEo1o4elf7sokoFAIIBFSAoCugDUexEUAAAQQQQACBDBEg6MqQhqaaCCCAAAIIIIBAmAUYtjDMrUvdEEDADwLeXyZgOGE/tAhlQAABBBBAAAEEEHAECLocCX4iUEgBfbGWmztfsrIa2yswrFYhITkNAQQQQACBIghEB10Mq1UETE5FAAEEYgh4h4cl6IoBxCYEEEAAAQQQQACBtAkQdKWNnhuHRcA7jIeGXMzPFZaWpR4IIOAXAV6s+aUl/F0Ob9DF89jfbUXpEEAgmAI8j4PZbpQaAQQQQAABBBDIBAGCrkxoZepYrAIEXcXKy8URQAAB4cUaX4KCCPA8LogSxyCAAAKFF+B5XHg7zkQAAQQQQAABBBAoXgGCruL15eoZIKAv1vS3yHVpYoYvzMnOzoBaU0UEEEAgdQK8WEuddZDvRNAV5Naj7AggEAQBnsdBaCXKiAACCCCAAAIIZKYAQVdmtju1RgABBBBAIDACzi8TaIGZBzEwzZbyghJ0pZycGyKAQIYJEHRlWINTXQQQQAABBBBAIEACBF0BaiyKigACCCCAAAIIIBBbgKArtgtbEUAAgWQJEHQlS5LrIIAAAggggAACCCRbgKAr2aJcDwEEEEAAAQQQQCDlAgRdKSfnhgggkGECBF0Z1uBUFwEEEEAAAQQQCJAAQVeAGoui+lOAF2v+bBdKhQAC4RHQv2edJcvMhcjwhY4GP70CPI+9GqwjgAACyRcg6Eq+KVdEAAEEEEAAAQQQSI4AQVdyHLlKBgvwYi2DG5+qI4BASgR4sZYS5sDfhOdx4JuQCiCAgM8FeB77vIEoHgIIIIAAAgggkMECBF0Z3PhUPTkCvFhLjiNXQQABBPIT4MVafjJs9wrwPPZqsI4AAggkX4DncfJNuSICCCCAAAIIIIBAcgQIupLjyFUyWCB3/vyI2jOkVgQHHxBAAIEiC2iA4fxd2z8nm6ELiywazgsQdIWzXakVAgj4R4Cgyz9tQUkQQAABBBBAAAEEIgUIuiI9+IQAAggggAACCCAQQAGCrgA2GkVGAIFACRB0Baq5KCwCCCCAAAIIIJBRAgRdGdXcVBYBBBBAAAEEEAinAEFXONuVWiGAgH8ECLr80xaUBAEEEEAAAQQQQCBSgKAr0oNPCCQsoMNp5ebuGr4wK6sxQ2olLMgJCCCAAAIIFF2AoKvohlwBAQQQiCdA0BVPh30IIIAAAggggAAC6RQg6EqnPvcOhQAv1kLRjFQCAQR8LMCLNR83jo+KxvPYR41BURBAIJQCPI9D2axUCgEEEEAAAQQQCIUAQVcompFKpFOAF2vp1OfeCCCQCQK8WMuEVi56HXkeF92QKyCAAALxBHgex9NhHwIIIIAAAggggEA6BQi60qnPvUMhoC/WdPhCXZqYoQtzsrNDUS8qgQACCPhFgBdrfmkJf5eDoMvf7UPpEEAg+AI8j4PfhtQAAQQQQAABBBAIqwBBV1hblnohgAACCCAQEgHnlwm0OlmNG4ekVlQj2QIEXckW5XoIIIBApABBV6QHnxBAAAEEEEAAAQT8I0DQ5Z+2oCQIIIAAAggggAAChRQg6CokHKchgAACBRQg6CogFIchgAACCCCAAAIIpFyAoCvl5NwQAQQQQAABBBBAINkCBF3JFuV6CCCAQKQAQVekB58QQAABBBBAAAEE/CNA0OWftqAkARXgxVpAG45iI4BAYAT071lnyTJzITJ8oaPBT68Az2OvBusIIIBA8gUIupJvyhURQAABBBBAAAEEkiNA0JUcR66SwQK8WMvgxqfqCCCQEgFerKWEOfA34Xkc+CakAggg4HMBnsc+byCKhwACCCCAAAIIZLAAQVcGNz5VT44AL9aS48hVEEAAgfwEeLGWnwzbvQI8j70arCOAAALJF+B5nHxTrogAAggggAACCCCQHAGCruQ4cpUMFsidPz+i9gypFcHBBwQQQKDIAhpgOH/X9s/JZujCIouG8wIEXeFsV2qFAAL+ESDo8k9bUBIEEEAAAQQQQACBSAGCrkgPPiGAAAIIIIAAAggEUICgK4CNRpERQCBQAgRdgWouCosAAggggAACCGSUAEFXRjU3lUUAAQQQQAABBMIpQNAVznalVggg4B8Bgi7/tAUlQQABBBBAAAEEEIgUIOiK9OATAgkL6HBaubm7hi/MymrMkFoJC3ICAggggAACRRcg6Cq6IVdAAAEE4gkQdMXTYR8CCCCAAAIIIIBAOgUIutKpz71DIcCLtVA0I5VAAAEfC/BizceN46Oi8Tz2UWNQFAQQCKUAz+NQNiuVQgABBBBAAAEEQiFA0BWKZqQS6RTgxVo69bk3AghkggAv1jKhlYteR57HRTfkCggggEA8AZ7H8XTYhwACCCCAAAIIIJBOAYKudOpz71AI6Is1Hb5QlyZm6MKc7OxQ1ItKIIAAAn4R4MWaX1rC3+Ug6PJ3+1A6BBAIvgDP4+C3ITVAAAEEEEAAAQTCKkDQFdaWpV4IIIAAAgiERMD5ZQKtTlbjxiGpFdVItgBBV7JFuR4CCCAQKUDQFenBJwQQQAABBBBAAAH/CBB0+actKAkCCCCAAAIIIIBAIQUIugoJx2kIIIBAAQUIugoIxWEIIIAAAggggAACKRcg6Eo5OTdEAAEEEEAAAQQQSLYAQVeyRbkeAgggEClA0BXpwScEEEAAAQQQQAAB/wgQdPmnLShJQAV4sRbQhqPYCCAQGAH9e9ZZssxciAxf6Gjw0yvA89irwToCCCCQfAGCruSbckUEEEAAAQQQQACB5AgQdCXHkatksAAv1jK48ak6AgikRIAXaylhDvxNeB4HvgmpAAII+FyA57HPG4jiIYAAAggggAACGSxA0JXBjU/VkyPAi7XkOHIVBBBAID8BXqzlJ8N2rwDPY68G6wgggEDyBXgeJ9+UKyKAAAIIIIAAAggkR4CgKzmOXCWDBXLnz4+oPUNqRXDwAQEEECiygAYYzt+1/XOyGbqwyKLhvABBVzjblVohgIB/BAi6/NMWlAQBBBBAAAEEEEAgUoCgK9KDTwgggAACCCCAAAIBFCDoCmCjUWQEEAiUAEFXoJqLwiKAAAIIIIAAAhklQNCVUc1NZRFAAAEEEEAAgXAKEHSFs12pFQII+EeAoMs/bUFJEEAAAQQQQAABBCIFCLoiPfiEQMICOpxWbu6u4QuzshozpFbCgpyAAAIIIIBA0QUIuopuyBUQQACBeAIEXfF02IcAAggggAACCCCQTgGCrnTqc+9QCPBiLRTNSCUQQMDHArxY83Hj+KhoPI991BgUBQEEQinA8ziUzUqlEEAAAQQQQACBUAgQdIWiGalEOgV4sZZOfe6NAAKZIMCLtUxo5aLXkedx0Q25AgIIIBBPgOdxPB32IYAAAggggAACCKRTgKArnfrcOxQC+mJNhy/UpYkZujAnOzsU9aISCCCAgF8EeLHml5bwdzkIuvzdPpQOAQSCL8DzOPhtSA0QQAABBBBAAIGwChB0hbVlqRcCCCCAAAIhEXB+mUCrk9W4cUhqRTWSLUDQlWxRrocAAghEChB0RXrwCQEEEEAAAQQQQMA/AgRd/mkLSoIAAggggAACCCBQSAGCrkLCcRoCCCBQQAGCrgJCcRgCCCCAAAIIIIBAygUIulJOzg0RQAABBBBAAAEEki1A0JVsUa6HAAIIRAoQdEV68AkBBBBAAAEEEEDAPwIEXf5pC0oSUAFerAW04Sg2AggERkD/nnWWLDMXIsMXOhr89ArwPPZqsI4AAggkX4CgK/mmXBEBBBBAAAEEEEAgOQIEXclx5CoZLMCLtQxufKqOAAIpEeDFWkqYA38TnseBb0IqgAACPhfgeezzBqJ4CCCAAAIIIIBABgsQdGVw41P15AjwYi05jlwFAQQQyE+AF2v5ybDdK8Dz2KvBOgIIIJB8AZ7HyTfliggggAACCCCAAALJESDoSo4jV8lggdz58yNqz5BaERx8QAABBIosoAGG83dt/5xshi4ssmg4L0DQFc52pVYIIOAfAYIu/7QFJUEAAQQQQAABBBCIFCDoivTgEwIIIIAAAggggEAABQi6AthoFBkBBAIlQNAVqOaisAgggAACCCCAQEYJEHRlVHNTWQQQQAABBBBAIJwCBF3hbFdqhQAC/hEg6PJPW1ASBBBAAAEEEEAAgUgBgq5IDz4hkLCADqeVm7tr+MKsrMYMqZWwICcggAACCCBQdAGCrqIbcgUEEEAgngBBVzwd9iGAAAIIIIAAAgikU4CgK5363DsUArxYC0UzUgkEEPCxAC/WfNw4Pioaz2MfNQZFQQCBUArwPA5ls1IpBBBAAAEEEEAgFAIEXaFoRiqRTgFerKVTn3sjgEAmCPBiLRNaueh15HlcdEOugAACCMQT4HkcT4d9CCCAAAIIIIAAAukUIOhKpz73DoWAvljT4Qt1aWKGLszJzg5FvagEAggg4BcBXqz5pSX8XQ6CLn+3D6VDAIHgC/A8Dn4bUgMEEEAAAQQQQCCsAgRdYW1Z6oUAAggggEBIBJxfJtDqZDVuHJJaUY1kCxB0JVuU6yGAAAKRAgRdkR58QgABBBBAAAEEEPCPAEGXf9qCkiCAAAIIIIAAAggUUoCgq5BwnIYAAggUUICgq4BQHIYAAggggAACCCCQcgGCrpSTc0MEEEAAAQQQQACBZAsQdCVbNPJ6P//8s6xbv14qH3SQVK5cWfbaa6/IA/iEAAKhFyDoCn0TU0EEEEAAAQQQQCCwAgRdgW06Cu4XAV6s+aUlKAcCCIRVQP+edZYsMxciwxc6Gvz0CvA89moUfX3nzp0ydNgwmTZjhnzz9Teydds296L7likjtQ6tJa1atJQrrrhcypQu7e7zy0p2/wHyzTffuMUZ8eIwqVixovuZFQQQSFyAoCtxM85AAAEEEEAAAQQQSI0AQVdqnLlLiAV4sRbixqVqCCDgCwFerPmiGXxfCJ7HyWuimbNmyV133yPffvfdHi+qvbtuuelGOfOMM/Z4bCoPOKtDR1m5apV7y7mzZ0mVKlXcz0Fe+euvv2T+xx+7VShtgsYG9eu7n/20EqSy+snNr2XheezXlqFcCCCAAAIIIIAAAgRdfAcQKKIAL9aKCMjpCCCAwB4EeLG2ByB2WwGex8n5Ikx65x0ZcPU1CV/szttvk/O7d0/4vOI6IcxB1+bNm6Vh4yyXrlbNmjJ96hT3s59WglRWP7n5tSw8j/3aMpQLAQQQQAABBBBAgKCL7wACRRTInT8/4goMqRXBwQcEEECgyAIaYDh/1/bPyWbowiKLhvMCBF1Fb9dffvlF2p5xpmzatCniYsccfbTtMVSjRnVZt269LF6yRBYtXhxxjA5nOOntiVK9WrWI7en6QNCVLvnI+xJ0RXoE/RNBV9BbkPIjgAACCCCAAALhFSDoCm/bUjMEEEAAAQQQQCBjBAi6it7UV197rUx8e5J7oX322UcGDbxFup93nuy1117udl15a+LbMvi222Tbb7+521uc2FxeHDrU/ZzOFYKudOr/fW+Crr8twrBG0BWGVqQOCCCAAAIIIIBAOAUIusLZrtQKAQQQQAABBBDIKAGCrqI19//+9z+pf3xD+W37dvdC2f36yVUD+rufo1deGvmy3Hn33e7mvffeWxYv/FRKlSrlbkvXCkFXuuQj70vQFekR9E8EXUFvQcqPAAIIIIAAAgiEV4CgK7xtS81SJKDDaeXm7hq+MCurMUNqpcid2yCAAAIIIOAVIOjyaiS+rkMStjz5ZPdEDasWzM+VkiVLutuiV/773//Kia1Okp9//tnd9db4cXLssce6n8eNHy8bN250P1/Ss6foeQs+/VQWLVok27fvkBNNT7BYQz//+OOPpufYRDt06fr1P4iGcbVrHyt169SVOnWOMz/riIZrsZb8gq5Vn38uM2fOlNWr18j2HTvsUItt27aRenXrxrpMnm1//PGHTH53ikyfMUPWrlsrv276VQ466CA5tFYt6dy5U8x6RF9k67ZtMmbMGPl04Wfy/dq18pv5XLVqVXuNrueea+sWfc6Il0bKzp1/2M07dvwujz/5pHtI+fLl5bJLe7ufdaXHBT2kdOldgePqNWtk2rRp7v66pq7q/e1338nHH38sa9Z8ax1jhZp67uzZ78uqVatk5eerTFl/k5qHHCI1a9UULesRhx/uXtdZKUpZnWvoT22fadOm77I2TjqkZrny5eTgqgfLSa1aSrt27aTsfvt5T4lYL8p3L+JCfHAFCLpcClYQQAABBBBAAAEEfCZA0OWzBqE4wRPgxVrw2owSI4BAsAR4sRas9kpXaXkeF03+/ffnSK8+fdyLHHPMMTJxwnj3c34rF/W8RD786CN39yNDhkiH9me5n6MDp4ULPpGc/v1l7gcfusdcf+01cvlll7mf//rrL9H2fPb5520o5u6IWml9yiny8MNDROcHi16i7zt39ix55dXR+V6zc6eO8uD99+cZotF73Q8+/FCuue76iODOu1/XTznpJHnqP0/KP//5z+hd9vO7U6bIzbcMFA278ltObtVKHnvs0Yh6NWjYKO450dea98FcqVixot081YRc/bJz3EN697rEBEWt5JLel4pa61KiRAlZviRy3rVXXn1V7r3/Afn999/dc70r//jHP+ScLl3ktsGD7PnOvqKU1bnGpHfekcG33yHaIyy/Rdt94C0328At1jHR34GCfPdiXYdtfwvwPP7bgjUEEEAAAQQQQAABfwkQdPmrPShNAAV4sRbARqPICCAQKAFerAWqudJWWJ7HRaMf+fIoueOuu9yLtDntNHnqySfcz/mt3DLwVnntjTfc3Vf1z5HsK690P0eHDdrba/ny5e5+XfEGXdrbq9elfURDpYIsRx15pDz7zNO2Z5b3+Oj7tm3TRqZMneo9JM/6xRf2kEG33ppnu254e9IkG3L93//9X8z93o1nnXmmPDLkoTy9zZYsWSrnXXCBaK+wPS3aw2z0K6NE50nTpSjhUXTQVb1aNdm8ZYts3brVLUZ00HXPvffKiyNecvfHW7mk58Uy8Oab3UOKUla9yJP/+Y889viev3vODfNrt+jvwJ6+e871+Jm/AM/j/G3YgwACCCCAAAIIIJBeAYKu9Ppz9xAI6Is1Hb5QlyZm6MKc7OwQ1IoqIIAAAv4R4MWaf9rCzyUh6Cpa6wwfPkLuvu8+9yLt2raVJx//t/s5v5VBg2+TV80wfM5yZd++cvVVA5yPEh02uDvMivZ60l5B1wwYIL1797K77n/wQXlh6DDvYfa42iYgq169uixZssQOuec94PgGDeS10a96N+V7Xw15jjvuONtT7DMzdKJ32EW9wEMPPCDau8u76BB/HTp2km2//eZuLleunDRv1kwqVTzQDv0354MP3N5RelD3bt3krjvvcI/XlWirpk2aSMcO7aVChQry0bx58sYbYyN6bd1z153SrWtXe42LL+klv+2+/3//77/GYal7bR1e8pijj3Y/68rQ55+TAw44wG6LDroiDjQf9PwSJlDTHk+6fP7FF9Le1FdDR110eMhGDRvKaaeeKpUOqiQLFnxq29zpDbbXXnvJuNdfd4dcLEpZZ86aJZdd0dcOU2lvbv7QsO+42rWlZs1DZO3adbJk6dI8vcy0N14XM3Skd0n0u+c9l/XYAjyPY7uwFQEEEEAAAQQQQCD9AgRd6W8DSoAAAggggAACcQScXybQQ2LN4xPnVHZlkABBV9EaO1VBl4YiGiRpkKZBkXcOsF9++UWat2wlf/75p1uZZk2b2qEA99t3X3ebDrPYLycnIuyInhssVsiRY3qa5WRf6fa00jmgrrv+BtEgyFk0eHr4oYecj/bnbWYIvVFmGD9n0d5Ww4cNlbJlyzqb5Isvv5QLL+4pGzZscLdNGDvWhGq13c+dzj5bli5dZj9rePThnPfd4QV1ow4VqMP16ZB8LVq0kHPN8a3MXFTRiw7n17Bxlru5Vs2aMn3qFPdz9EqsoEvnFOt67jnSxvR00zm3vIsOG/jwI4+6geIlF19khgi8xXuI3HHnXTJy1Ch3262mR1dP07Mrekm0rO07dZYVK1a4l9FeWA8/9GDEXGAadl1/440y38wv5izVqh0sM6dPd9tWt0d/B+J995zr8DO+AEFXfB/2IoAAAggggAACCKRPgKArffbcGQEEEEAAAQQQQCBJAgRdRYNMVdAVPcydt9TDhr0o95oeVc6iIdGrZkjF0qVLOZvcny+bkOV2E7Y4i4ZC9917j/MxT8ihvadGjhju7ndWNm7cKM1atHR7Lx1So4a8N/3v4Et7LTVu2ky2mKH+nOXVUS/LCY0aOR/dn2++NVGuvf5693N0Xbucc64sNj3SnGXQwIFykRkuUQMYXXRYxI8+micnnNAoYs4r53jnZ6LhUXTQpaHh5ElvS9WqVZ1LxvypvcZ0TrFLTW+78uXLRxyj+zqfc467Ldrf2ZFIWaOvqe0+2QwZqb3wopdff/1VWrdtJ/rTWYaZOd1atmzhfMzzHYhuD/dAVgosQNBVYCoORAABBBBAAAEEEEixAEFXisG5HQIIIIAAAggggEDyBQi6imaaqqBLhxjUoQZjLdfdcINMePMtd9cN110rl/Xp4372rmjvr15mX93j6kj9+vXM/+rLYYce6h4S3ZvniX8/Jqe3a+fu966c0vo0t/eSbv943kdusLN6zRpp3aate7gGPj3OP9/97F3ZsmWzjBj5srtJwzANxZxlyMOPyDPPPed8tD8rV64sLZo3t3VoanqvRfeuijh494dEwiM9JTroOrF5M9MjLXJ4yFj30W0avunQjV+aHmvbt+9wD9u2bavtfeZsOMn0PHshqm66L5GyvmaGP7zl1kHOJW2PNm946e7YvfLgQ0PkuRdecDd753rTjdHfgXjfPfcirMQVIOiKy8NOBBBAAAEEEEAAgTQKEHSlEZ9bh0OAF2vhaEdqgQAC/hXQv2edJcvMhcjwhY4GP70CPI+9GomvDx/xktx9773uiQWdo+vWQYNl9Guvuefp8IAD+ue4n6PDhrmzZ0mVKlXc/d4V70t03T5q5EuF/u89+r7RQxt673v2uV1l0eLF7qYZ06a6gdO83FzpcVHeIfncg+OsRPcO27p1q1zet1/EkHvRpx98cFXpbObH6tf3iohhHb3HJRIe6XnRQVdX0xPr3nvu9l4yz7oOwXjLwFvlo9x5smPH73n2R29IRtD178efkCf+8x/30jeb4NOZu83d6FkZN3683HDTze4WDSBvv22w+zn6OxDvu+eexEpcAe9/o/3NvMT9c5ibOC4YOxFAAAEEEEAAAQRSJkDQlTJqbhRWAV6shbVlqRcCCPhFgBdrfmkJf5eD53HR2mf6jBlyRb8r3YvUr1dP3nhtjPs5v5U+l10uM2fPdnffb4YPPMcMI+gsiYQNHbt0kWXLljunyrQp74rOJVWYJZH7xgu6Zs6aJX0uv6IwRZADDjhAFszPjThXe0i9MHSoPP7kfyLmGIs4yHzQ3mlDHnxQ6tatE70roV5SenKiQdfCzz6Tftk58vPPP+e5d34bkhF03Xv//TLsxeHuLe4zYdy5nuER3R27V6K/szr320OeoS8T+Q5EX5vPsQV4Hsd2YSsCCCCAAAIIIIBA+gUIutLfBpQg4AK8WAt4A1J8BBDwvQAv1nzfRL4oIM/jojXDN6tXy2lmziNnKbvffvLpJx+780c526N/nnxqa/nu++/dzRqOaUjmLImEDZeZQOk9Eyw5y6MPPyztzzrT+Zjn55w5c6VOneOkXLlyefYlct94QVf0vFEavF104YV57hdrQ8mSJaTruefG2mVDrtzc+TL7/dny8ScLZNXnn9thAr0HV6t2sEx7990883UVd48u79+5Wp59y5SxPeuqeebK2rFjh7wxbpxb3GQEXUOHDpP7TLjnLH0vv1yuveZq52Oen9Fzul1x2WVy3bXXuMcl8h1wT2IlroD3u0GPrrhU7EQAAQQQQAABBBBIsQBBV4rBuV34BHLnz4+oFENqRXDwAQEEECiygAYYzt+1OkwSf88WmTSUFyDoKlqz/ve//5U69RvIzp073Qvdc9ed0q1rV/dz9Ep0TyHdv3DBJ6IhmbMkEjbcfsed8vIrrzinysUX9pBBt97qfvauzJ37gfTs3dsGcYf/619yWuvWcs3VV7mHJHLfeEHXxo0bJatZc/e6FSpUkNwPP8g3AFy3br3o8IP5LevXr5eP5uXaObm8c4rpfaZNny533HW3/Pnnn+7pY19/TerVret+1pXiDLq2btsmJ2Q1kb/++sveU0Ou92fNtL3TvIWIDgCTEXRNNqFezoC/27CBmXft9TGjvbeNWI8ORu+8/TY5v3t395hEvgPuSazEFSDoisvDTgQQQAABBBBAAIE0ChB0pRGfWyOAAAIIIIAAAggkR4Cgq+iOF17c04Qw89wL7b///vLs00/JCY0auducleXLl0ufK/rKjz/+6GySY445RiZOGO9+1pVEwgbtoXXJpZe655csWVKee/ppad68mbvNWel+QQ/TE+oT56NE9y5J5L7xgi69wTldu8lnixa597rWBGp9r8g7nKHOGXWzmdeqY4f2Zu6iHKnu6QGlwwFed/0Nsubbb+11zu7cWR64/z73ms7KzbcMlNfHjnU+ytDnnpNWrVq6n3UlOuiqecghovOK5bdEB5Lx5uia//HHcn6Pv3usNW3SREaOGJ7n0g88+JA8b4ZgdJZWLVvI0Oefdz66PxMp65YtW6RZi5YRQzrmF7ZG12nvvfeWWWb4TW/ImMh3wC0wK3EFCLri8rATAQQQQAABBBBAII0CBF1pxOfWCCCAAAIIIIAAAskRIOgquuPX33wj7Tt2kj/++MO92F577WWDm+MbNDDBTXVZt36dLF26zA5b5/T60YP/8Y9/yOujR+eZUyqRsOF///uftG7T1g2D9LqlSpWSKy7rI40bN5ZaNWvKt999Jy8OHyFTpv4d7Ogxc0yvo/Lly+spdknkvnsKut4wwdNNJoByFjXpZoYkvND0ONMyaZijwcsDDz0kO3b8bg/bZ599ZMK4sXLUkUfaz1u3brU9w5wec7r/lptukh4XnO/2DtNeXe07dZaffvrJuZV8OOd9Oeigg9zPurLtt9+k/vEN3W1q/8iQh9zjNKB07qsHRYdC8YKu37Zvl4YnNHZ7dGldh5tAq2nTJqJhkrb58BEj5MEhD0cMtaj2D9x3rxxU6SA57rjabtkSLWt00OdYd+zYwVp/v3atvDN5sox4aWTE/Vufcoo8Y0JZ75LId8B7Huv5CxB05W/DHgQQQAABBBBAAIH0ChB0pdefu4dAQIfT0jkWdMnKasyQWiFoU6qAAAIIIBA8AYKu5LTZCybUuN/01kl0ubxPH7n+umvznJZo2LBo8WLR3lpOIJTngjE2XNU/R7KvvDJiTyL33VPQpQFcb1O/902Ps4IuXTp3kgfvvz/i8FsHDZbRr70Wsa1SpUqiQy9u2LBBvvzqK9F7OYuGVZMmvuV8jPjZpPmJ9pyIjbs/tGxxogx74QV3VyJBl57U46KLZV5urnu+rmiQpXOGrf5mtQ3aNIDSYQ01yPIuRx5xhLzz9kTvJkmkrBoadj77HBtoRlwkzoeKFSvKmyZUrFy5csRRiXwHIk7kQ74CBF350rADAQQQQAABBBBAIM0CBF1pbgBuH3wBXqwVbxvqnCHPPv9CxNBIzh3/+c9/StMmWdL61FOdTfxEAIEQCvBiLYSNWgxV4nmcHFR97j5nhqB76pln3N5J8a5cokQJubRXL8nJvlK0l1L0UpiwQYOZG2+6WXS+qHiL/v+AwbcOjJiXyTk+kfvuKejSa27atEmy+w9w5wt07hPrZ+dOHeXO2++Q0qVLRezW3lDZOf1l+nvvRWyP9UF7ZY1743XbiynW/meefVaGPPJorF1S1KBLh1m8ot+Voj3M8lu0jpeZ8O/M9h0ielbFCroSKaveTwO/K7Nz5Kuvv87v9u52Dd+e/PfjUqfOce42ZyWR74BzDj/jC/A8ju/DXgQQQAABBBBAAIH0CRB0pc+eO4dEgBdrxduQOl/DtTfcGPESxbmjDqFzxOGHyw0xfoPcOYafCCAQfAFerAW/DVNRA57HyVVev3693PfAg/LezJkRcyY5d9GA68RmzWTgwFtE54jKbyls2LBu3Xp59N+PyZQpU2X7jh0Rly9TurTUrl3bzIOVbX7hpUnEPudDIvctSNCl19UQ8MXhw+XlUa+IDqHnXbSH0yE1asiV/fqJ9ubKb9Gwa+y4cXb4RQ10ohcN79qfdab069tXDq1VK3q3+1nLMtwM4fjqmDG299P//d//ufuKGnTphdT/qmuuEQ29vL3MdJ8O23jb4EGi34GXR42ScRMmyJIlS+1xsYKuRMqq19fl999/l6efeVbGmnnPfvjhh10bPX8eeOCB0skMZ6g9+crut59nz9+riXwH/j6LtXgCPI/j6bAPAQQQQAABBBBAIJ0CBF3p1OfeoRDQF2s6fKEuTczQhTnZ2aGolx8qoS9WPlnwqTxjJmLXRV8i7V+2rOwwLz+cIY3223df0YnK98vnJYcf6kEZEECgaAK8WCuaX6acTdBVPC2tz2INPb42vWt0fq4qlavIoYcdKtUOPtjOy1U8d/37qhpyLVmyRNav/8EGKbVrH2uH+tNfdknXoibLli03Ydf3dn6uww47TI455hjR/09S0EWv8c3q1bJu7TrrWrJkKalevZoNtypUqFDQyxT7cdqrbsWKFbJmzRo5xASaxxx9tGhvs1QtGuCp9dp1a22vunLlysnB5rt3nAk6dW4yltQKJPo81qC0Qf36qS0kd0MAAQQQQAABBBDISAGCroxsdiqNQDAE9OXGK6++KjNnv28LrL/lrBOor/p8lSz4dKHdVqpkSelthkw6vgH/iA5Gq1JKBBIXcH6ZQM/Matw47gW0t8XCzxbJ44/FHtIr7snsDLQAQVegm4/CI4BAAAQSCbr0eTzM9DrU5zFhVwAalyIigAACCCCAAAIBFyDoCngDUnwEwiygQ90MNnNc/PDjj7aaOkTOLTfdKCtXrnInc99nn3/Kya1Okm5dzw0zBXVDAIECCDgv1fRQfalG2FUAtBAdQtAVosakKggg4EuBggZd3uexVoSwy5fNSaEQQAABBBBAAIFQCRB0hao5qQwC4RLYsGGD3HjLQFspHbbwwAMryH133y1rvv1W7r73Prt97711ToxDZJCZI4QFAQQyVyD6pZpK8GIts74PBF2Z1d7UFgEEUi9QkKCL53Hq24U7IoAAAggggAACCJgpb7Zv3fI/IBBAoPACvFgrvF28M3Xuig8+/FBeHPGSPUzn4shqfIJcaoYp1AnKb751kGzZssXu23ffMnL7oEESPaeFXmPbb7/JBx984F6jYsVKdphDvcbSZcts7zA9pnSpUlKjRnU5/vjjpdwBB8Qrmvz555/y7bffybzcXFn/w3ozP8cW2WeffaTyQQfJUUcdKY0aNswzZ9j27dtFJ51ft26dvfb+ZfeXI488QipWrGg///LLL7Ji5UrZunVrxL3LlC5j50KpUb263b7F7P/yyy/lp59+sp+1zkcccYSUN3NWRC/bdF4Nc83Fu+c2+eOPP6SMsdJrHd/geDvHSYkS+0SfJnre5198EXmPww+3ddSQUeuufvXr17NzieS5QNQGnVNtmbHW4FKXsmaetWPNXCbly5ePOnLX5POLFi+283DoTp17rU6dOnJAjPlANm/ebOfH++qrr+Wnn3+Wv/76S8qVO0CqVasmzZo2LdD8Mfod+dKc//HHH5v5P9bZ+5YsVVIOrHCgNKhXT45veLz9buQpqNmwctXnZs6S1XbOGN1f3/Qg0u+AGmkbbdmy1cxlU1maNWsa63S2JSCgf886S5aZCzF6+EJeqjk6mf2T53Fmtz+1RwCB4hfYU9DF87j424A7IIAAAggggAACCMQWIOiK7cJWBAoswIu1AlMldKDOz/WiGdf/w3nz7Hk6P9f553WTVi1bys6dO+WFYcMi5um6sMcF0iQrK+IeGmJoeHHbHXe616hz3HHS4/zuNkDToCt60eDovK5dpeHxDaJ32c8bN26U8RPelHnz57sBh/dA7Xl2UKVKcuYZp0vzZs3cXb9s2iRTp06TaTNm2G0HV60qHTu0t6GYbliydKmMGPmyG/A4J+5vQqHTWreWM05vZzd99fXXMsHcf7kJsHSpZ0KgLl06S3UT7jiLDvmo4dbEtyfZ0MXZ7v2pE7g3NwHMmaef7oZtzv61a9eZOk6QhYsW2U1HH3WUNG2SZa65VD5duNDWW8+/8PzzpUWLE53T8v25wZiNfPllEywut8doWS8w5x55xOF5zlGn518YaoM23akTzve+pKfUqlkz4thZs2fLpMnvigaEsRYNRk80/p06dpQDDtg/1iHWeuSoUbJs+QobksU66EDzfRiQk23LoW3rXd4YN06mTpsu6q3LlX2vkPXr18uEtyaKfn91Oa72sXL1gAF2nT8KLxDvxRov1QrvGrYzeR6HrUWpDwII+E2A57HfWoTyIIAAAggggAACCDgCBF2OBD8RKKQAL9YKCbeH0zQ8uPHmW2TTr7/aI0uYHlODBg40gUNVG0q8N3OWjHn9dbtPQzANbS7q0SPiqtFBl4YflSpVNL1uKtsgKOJgz4dKppfVRRf2sL2OPJtls+lBNmXKFJliwo09LRUPPFDOOuMMNwj6zfTomjNnjrw+dpw9Ve9xeru2NrjTcn78ySfy/NBhbkDiXF/rdpIJ97qbkE+X5StWyBvmGtprSBcN97qee47b40kDlo9MODj+zTdNkLPLzh4Y449d125hynG67QnlHBIddO27776iwZb2StNeU7qkM+jSsO21N8bKz6YX156WZk2ayDlndzFhV2QvPe1d9viT/5F1JphS/3iL9srSsKuSCTC9YVd00KU95TRYdUIuvSZBVzzZgu/L78UaIVfBDTPhSJ7HmdDK1BEBBNIpwPM4nfrcGwEEEEAAAQQQQCCeAEFXPB32IVAAgVzTs8e7RA+p5d3HesEFdIi/Qbff4Z6gwdH9995jgwYNJr5ZvVruue9+u1/Dh6pVqsidt98WEUREB13uxczKPiZAqlGjhunNdKD8asK0b1avsUMS6jF6PQ0t+mdfGTG83rfffSdP/OcptxeRDqfX1AQptWrVtMPULVq8yPYOcu5z1JFHSp9Le9thBTUg0jDrhWEv2t0avLQ+5WTTU+t00SEF58ydK6+Oec3u095LGq5orzFdNMzSHmulSpaUhZ8tsgGfE/KcctJJcl63rjZ40mN1qMIJb75lh0nUz7roEIGHmjLut+9+8vOGn+Xb776X38xwjbqUKFHClqNNmzZS1gwTqEt00GU3ev7QkEv9zj/vPGne/O9ea55DIlaT3aNLe3xp2LXTDCGpS/26de0wiloXHcZQ3Zz6aVvmXNlPah97rGiwp4uGqE8984ztYeYEdxqCanvp90gDvRWrVto2dUKwQ8x3RcMubTcn7IoOuuzFd/+hx+j9dIhG/R6xFE1AAwzn79r+ph3071lCrqKZhvFsgq4wtip1QgABPwnECrp4HvuphSgLAggggAACCCCQuQIEXZnb9tQcAd8KaLigPbZeGT3allFDiMYnNJI+vXu7Zd6xY4edp8uZ00p7Hd184w02qHAOihV0aQChvbouvOACt8eWBh9fmDmVhr04XDbuHgpPh6zTXlQNzLxLumgvHZ2T6ZHHHrM9gEqaUKVRo4bSq2dPu1//+H7tWnnl1dGiwwvq0IQnNGokOp+QXksXHU7w6Wefs0Mvli5dWlqZYf/OPeccG7RNN0MaTp4yVbSuOhfZ4f/6l4wc9Yo9r17dOtLNDKeo8z/py/5R5h4a5JQy84q1McMa6hCIuvzxx04zlN40eXPiRLeXUn0zz1Snjh1scKfHqIkOITjx7bdtOXVblSqVpVOHjqa8DfVjzKBL59Wqa4Z91PocduihouUv6JLMoEuHrXz40cfcIE97WemQgc4cZlqmsWZIwVnvz7HhnwZNOtzlYYcdasM53a/DRA43c7/9aub40qWkCRA1xFJzDfF00bBLh85cbI51wrBOHTpIu7Zt7FxlekysoEvDMh3mUb83Or8YS/EIxHqpVjx34qpBEtD5BZ1ngoaho0a+FKTiU1YEEEDA9wLRQVfZsvvJMPP/l1gQQAABBBDwi4D+W/ySnhfb4jjvc/xSNsqBAALFK0DQVby+XB0BBAohoKHSU888a3ovfWbP1vDhgu7n2cDCudwfOk+X9uzZfYyGFd1MaNSqVUvnEBvqeOfo0h0aiHU2wc/JpieUd9HgbM7cD9zhEDWkaH3KKdL+rDPtYRoQrfr8cxnyyKP2uhqY1ax5iFzaq5cbrmkgor3D9Gdl0yPL6fnj3EfPf9EELNobS3v7NDGh0SUXXyzrf/hBJk16Rz7KzZUyZcrIya1aySGH1JCXzJxdOuShzmXVpXNnOeLww+V9M/yhBmBqpD21zmjbVk4xPcN0Wb1mjUyc+LZ8tnix/Xyg6QXX/kwzfOKJeefRmvHee/KWOXabCcy0nHrc6e3a2R5e0T26tKwdzjpLTjUepUqVtNdO5I9kBl1/ml5cGnRpMKmLBoM9L7rQznWm3wFd9GW3zvWlwaCzze7Y/cfIl0dZa+1Jp0ub01qbdj5LykSFd5tNEHb7XXebnl1b7HHVqh0sN99wgxvyRQdd+n246frrraE9gT+KRUD/Xuh/1dXFcm0uGmwBgq5gtx+lRwAB/wt4g66W5he2vvjyK/8XmhIigAACCGSsQC8TeF3i+eXkjIWg4ghkiABBV4Y0NNUsPgHtYZObu2uIOe3twtCFRbfWHlZXXXud7VWjV9Nh8gbfqvNzHexeXMOk92bONMHUG3abhjEnNGwol/bu5R4Tq0dXRTM31uCBt9jAyz3QrOg9V65aZXps/dtu3sfMCdbA9Ia6/LI+7mHaY+u551+w8zA5GzVI0aEGtSfP4SaIOvTQWnkCE+dYDaJeHTNGvtz9UqDh8Q3k8j59zFCC39l5t/T+FUzvr3ZtTjO9rKrI6Ndek3Xr1kv1atVsEFO3znEyc9YsOz+VXlPnK2t/5pmmt9sJ9hZLli6T8RMmuPN36fCHRx91lOxvhliMXtb/sN4Ed1+4IU6LE5vba2k4Fh106XXO7tJFjm+wq3db9LX29DmZQZfeS4MqHZ7w999/d2+todYRJhDUMPCoI4+SCgdWkH+YECzW8sBDQ2yPMGcuLa17uQPK5Qkm9dz3586RzZu3uOHmI0Mekv1N7zZdooMu7fF15hmn2/DNHsAfxSZAj65iow30hQm6At18FB4BBAIg4A26+mdnCz26AtBoFBEBBBDIcAHCrgz/AlD9jBIg6Mqo5qayxSHAnCDJV/36m2/c+bf06tqjq3nTphFBhIZY2mtn6bJltgDaK0nn8brnrjvd4eeigy49Roe4u23QrXkKrceu+fZbueuee+0+vacOe3dV/xz3WO1FtmjRIhk95jXZvLuXj7tz90rp0qVsuHTKyaeY84+O2L1u/Xo7f9aCTz+12+uYoQC1S70GS6NefUV++OFH0V5DHc5qbwKv8ja0Wr5ipV1vZ+bQ0hB12vTp8vY7k+35OtSeDkt4zNG77vPxJwtk7PhxpsfYhoj7FuRDIxMSaq8tvX900KVDFXbu1NEd6rEg1/Mek+yg66effrLDWq5YucodVtB7P21nDb5atWwhJzZvbnvJOfs13Bps5n7TXnSFWe64bbBUM4Gr3iM66Opleuc1Nd/TvffeqzCX5pw4AtEv1nSyqRBnAAARRklEQVSerlhh1+OPPRrnKuwKu8CcOXPl8SeftNVk6MKwtzb1QwCBdAgU9HmsLxXr7x7+Ox3l5J4IIIAAApkroFMQOKMDqYIOX8i/EzP3+0DNM0uAoCuz2pvaFoMAQVdyUTVwmvzuFBPYjE/4wjos4dUD+suhtWrZc6ODLg2vjjziCLnumrzDnhUk6NKLalDy3fffyzhTvmXLV9iePvZmUX/ob7i2aH6iGQ6wrRu0/GLm/3rXzMM1w/RE00V7W/U4/3wTuqyXoWZ+MO2hpOHVueecbXucTXrHDGc4L1dKm7m4Tjn5ZBvcTJ4yxfTqmm3P16Ds7C6d3fmptGfh62Z+qk0mAEx0qVe3rnRof5btnZbOoGvDhg3ywrAX3aEJtRdf70t62nJ566TDDqrlzNmz3Tl5vPudde3l1b1rN6lRo7rtaaVzfN1+513yownLCrPcdMP18q/DDrPXIugqjGDhzon1Yk2vFB128Y+YwvmG5Syex2FpSeqBAAJ+FSjo81jLry8VmRvFry1JuRBAAIFwC0T/O3HOrF3vYMJda2qHAAIEXXwHECiigL5Y0+ELddE5l3LMMB4shRfQwEmHD1y+YkXCF9FhBHX4OJ1zSZfiCLqcQulQhxs2bJSlS5fKshXLZfXqNXl6eZU74ABpfeqpNuzS83Q+rNkmmBk34U17Ge0p1aVzJ3OdDTL8pZF2m4ZXF5zfXXToxOmm99ZkE+Zo76ETmzez15o8+V07bJ8erEMWdut6rhl27wB7rv7W0rjxE0R7jumiQyrWr1fXhGb72c/x/tAhCw87tJYZgqZs0nt0bdy4UV4yww06ve8OrlpVelxwvh3uMbpM2pvv5VdekTVrvrW78gu6nPO2m7nVvvjiC9MOy2SV+fnjjz/m6eVV57jacvGFF9o5zfS8O8y8WxpW6vdD5/g664wz7NA7InvuiaXDTepQkPToclogNT/ze7Gmd4/+RwxhV2raxI93IejyY6tQJgQQCJNAIs9jrTdhV5han7oggAACwRJocdLJboEZvtClYAWBUAsQdIW6eakcAsET0B43A665Rnbu/DPhwmuPrXp168iVffvac4sj6NKeRDrE4ebNm+1vqercYLpoub/6+mvb28oZmlBDFJ3nq+8Vl9tg5M8//5T58z+WYSNG2HOqm2EU25gg7JdNv8iEtybabY1PaCS9zGSpWvbZ779v5ul63W5vePzx0rRJE7ttiQnXdDmpZUvpfl43ccqgQ/lNeOtNdw4wHXpRhzbUHkjRy++mHv8zvdNKmd5iGtp4l2T36NL51LSX1icLFth6ld1vP+nd6xLRUC96+fCjj+SttyeZ4Rd/trtiBV1qo8Mzfvnll3KU6RWnwzw6ddBhEueb4Hna9BmyZetWew0NDQcP1DneqtrP/37iCROkrnQDMe0FqMM/6vcnetHecQeYIFHbMnqhR1e0SPF9dn6ZQO8Qax5Ewq7isw/SlQm6gtRalBUBBIIoEC/o0vpEP491G2GXKrAggAACCKRaoP9VV7tDGBJ0pVqf+yGQHgGCrvS4c1cEEMhHYMXKlTLkkb/n2alQvrxk9+sX82gNPH76+Sd59vkX3P0VKlSQe+68Q0qUKJHUHl1bzJxc02fMMEPlvS/bt2+XKpUry3ndupmwprZ7b1353PQqeva55+VXE4TpomHOlX2vsD209PNnixbLM88+K3+a8EfnkdKX9nrtWSbU0jK3MHNKnd/9PD1U5plhC4ePHCkakGloVbfOcaLzcGmgVtIc27r1qdKlUyd7rP6hPacmTZ5swrA5dpuGWKedeorpUdZOtLebs2hvtPfM8Ik6BKIO5djaHKOhm7MkO+jS644dN97WUe106dShvZx00kmioZezbNu2zQ7hqD2/dIhIXaKDLu219vakd2yPLK1H+zPPlFNPOdn2RHOuo9+LJ596yvQgW27DLA3Bbr3lZql5yCE2EJs6bZqd5+w308NOFzW44rI+NtByrqE/fzC9wx5+9DEpX66cHdYxOgwj6PJqpX89+uUaPbvS3yapLgFBV6rFuR8CCGSawJ6CLvWIfh7rNsIuVWBBAAEEEEilAEFXKrW5FwL+ECDo8kc7UAoEENgtMH7CBBtC6EcNKJqYIOjS3r3y9fnNBCe3Dr7NhkV6kM7TpcHSUUcemdSgS4fI++CDD9weVtqL6ojDD5eu554jh9SoYcunIc7cDz6U1954w95bw6gsM5ylDpvnLNrravhLI+ywh+VNiKfhiQYuixYvlgPMkHgaOp1x+un2cN026tXRNsCqVaum/MsMdag9kdb/8IOUM+HL6W3b2OEMnWvrzzlz58rrY8fZa+rn0qVLS8MGDcz8Xi2lcpXKssPUQ3uVvT9njvxshkzUpYYJuTqaIR8b1K9nPxdH0DXX2E0ywy7+tHtuLC1XyxObS6NGjWQ/E3atN8MtTp02Xb786iu3p5UWJjro0qENh494SdauW2fLqkHZ2Z07ywmmJ5wGe7poj7vnTPipQZUuB5rw81ozL5sGi7roUJEaYP20u9eYbtNhJM80Qxgecfi/9KN8s3q1Dee+X7vWDd26mbbWudKcHnQEXZbKV39Ev1zjxZqvmqfYC0PQVezE3AABBDJcoCBBlxJFP4/5TfoM/+JQfQQQQCANAgRdaUDnlgikWYCgK80NwO2DL8CLteS24T333S8aZuiiw8X1MPNVaUiT36JD8A0dNkw+XfiZPUR7Lp3Rrq2cZXr6aM8eDURuu+NOu0+HptPeO9eZ0CN60WM1ILnrnnvdY7UX1VX9c9xDdf9TTz8jOjyes2gvrEoVK9pASeeH2mp6JTmLznulZTmpVStnk63b6DGv2V5ZGphoMKc9k7Q3U2XTS+wsE3I1a9bUHq+9w94woZX24NJgqLQJcnSeLx0msWrVKnZuqSZZWe61dWXTpl/lnXcn295aWqc9LWri9PrSwEmX4gi6dAhArffCRYtsffMrlzMEoVP26KBLtw81wyAuWLjQOuh19BwN/ipVqii//rrZBoNq6ixZu+cy0yEInUWHhdT5zNSzIIv24Lv+2mvNff6+BkFXQeSSc4z+PessGh7HGr7Q2e+8XCPkckQy5yfP48xpa2qKAALpESho0KWlc57HhFzpaSvuigACCGS6AEFXpn8DqH8mChB0ZWKrU+ekCvBiLXmc2iNqwDXXuj1oNIS5ffAgObjqrrmVYt1Jh/XTYfhee2Os3a3nHG3mbbrmqgFJD7p0rqlVn39u/uE+Qjb9+mus4rjbNJhqZubU0h5fTg8g3anB24Q333SDOfcEs1KrZk3p0rmT1D72WLv5u++/l7cmTox5rM671dEM/+cc673OOnOPd0zvqfmffBI3VNJQsHnTptK2TRupWPFA9xLFEXTpxbWH1egxY2TZ8hVuG7s3NSsHHVTJDsX43sxZdghI3RcddOk2DQVHmCEdlyxdZod11G35LdUOPlguN8MS6nfICdH0WA3MJpq5wKZOn257ueV3vm7XHnu9Lukp1atVi7gGQVc8teTuS+TFWnLvzNWCJMDzOEitVXxl1R7C2mNXeyvrcMYsCCCQPIFEn8c65LQOJcyCAAIIIIBAqgUIulItzv0QSL8AQVf624ASBFyAF2vJa8CFny2ycys5VyxneuAMefCBiHDB2ef81LmctAfYfQ886GwSPe+uO263vaCS2aNLb6A9hXTowPfemykfL1hg5+tyb2xWNGjT3lannXKqHU7POzeWHqe9wd6dMsX2uPKep+s6jGH3bl2lmglUdIl37HG1j7VD9h1i5p2KtWjPsgVmPq+Zs2fLOvPSz5nzSo/V4K1qlSp2mMQTzNCB0WUsrqBL763tMX36DNsjy5kjSwOoQ2vVks6dOtq6P//CC6JDPOoSK+jS7c4QjO/NmmXbw9uDS/eXMiFeUxM0nta6te3ppb0DYy0auk2dNlVWrvo8YshEPXb/smVFfXRYx333LZPndIKuPCTFtiHRF2vFVhAu7GsBnse+bp5iK5z+/T/CDGn79uR35KsvvxId0thZtCev9uTWuT6bN2/mbM7zU3/54awOHfNs924oU6aM1KtbR+rWrScNGtS3QZp3v673uOhi07N6U/TmAn/WQODuu3b1Qi/wSQU4UIcNvqxvX/lz55/u0RoCjhwx3P1cmBX95Z9rrr0u4tSjjjpSHhkyJGIbH8IjwPM4PG1JTRBAAIGwCxB0hb2FqR8CeQUIuvKasAWBhARy58+POD7ekFoRB/Ih0AL6Umz79h3y408/2pdaGrzsb+bYqlSpklQ0Qxbus88+vqifDnOoc3HpsIr6gqvCgRVs7yYdMjGdi3rpy8D/mqBy/7L7m3m69rUhYaJl0l52GzZstKHgr79ukhIlSsqBpo461KC+lPT24op37Y0mgFz/w49m6MNNUtYEXNoTQOdQK+j58a7NvqILaIDh/F3bPyc77tCFRb8bVwiqAEFXUFuu8OVevHiJDBw8WFasWLHHi+gvUwwaONA+q6MP1mf6EUcfE7057mftOd7PhEfepUnzE+08kN5tiaw3M72sXxr+YiKnFOjYftk55pc6pkkZ09t8fxP+/WB+YUf//8pHc+cU6Pz8Drr0sstk1uz37S/M6PPy999/l7p16si4N17P7xS2B1yAoCvgDUjxEUAAgQwSIOjKoMamqgjsFiDo4quAAAIIIIAAAgggEHgBgq7AN2FCFdD5K7UXlg5hrIv2hjq7S2c5wvTg0hBnyZIl8umnn8oM0wP7+7Vr7TFnmHkwdf6+6MUbdB115JFy4onNow+RbVu3yeo1a8xwwgvde3bv1k1uv22w+4saTzz5ZL5zP44ePcb2NqtW7WBp17ZtnuvrBu3dfJ65ZjIXDbg06NJFg77ly5fL2PHjixx0ffjRR3JRz0vsdQfedJNoD+uP5s0j6LIi4f2DoCu8bUvNEEAAgbAJEHSFrUWpDwJ7FiDo2rMRRyCAAAIIIIAAAgj4XICgy+cNlOTiOS/ctSfRdddcLZf27u0GTt5baY/drud1lzXffms3Dx86NE+Q5Q26up5zjtx7z93eS0Ss6/yZN98yUObl5trtN1x3rVzWp0/EMbE+NGvRUnQIwRYmRHvRlCEViw5j3Pb0M+x969WtK6+PGW3LXtSgS706djnbhmY6f+XUdydL7z6XEXSlolHTfA/nvzstRv/sbNFe1iwIIIAAAgj4UYCgy4+tQpkQKF4Bgq7i9eXqGSCgw2nl5u4avjArqzFDamVAm1NFBBBAAAH/CRB0+a9NiqtE4ye8KdffeKO9vA5J+NADD8S9lYZTHTp1lq1bt5o5tszQeq9HDq2XSNClN9q8ebOcflZ7GyBVMXNezp09K+79dWc6gq7Bt90ur4webefmfHP8ONHeajfedHORe3R5/XU+rg7tz5ILL+5J0LXHb0HwDyDoCn4bUgMEEEAgUwQIujKlpaknAn8LEHT9bcEaAoUS4MVaodg4CQEEECiwAC/WCkyV0QfyPM6c5tcXF+9MniylSpWSGVOnSGUzL+Oelr79rpRpM2bY+aSWfLZQ9t57b/eURIMuPXHQ4Nvk1TFj7DXmf/ShVKhQwb1erJVUB12fLFgg3S/oIVq3fldcIddcfZUtVlGDrj/++ENOa9dO1q1bL7VrHysTxo6181kSdMVq9fBt43kcvjalRggggEBYBQi6wtqy1AuB/AUIuvK3YQ8CBRLgxVqBmDgIAQQQKLQAL9YKTZdRJ/I8zpzmbt+xk6xYuVLq16snb7y2K2zaU+2fevppeeSxf9vD3ps+TQ6pUcM9pTBB1/DhI+Tu++6z15g4Ybwcc8wx7vViraQy6Nq5c6eokc5jpvN+TZr4lpQoUcIWq6hB13PPPy8PDnnYXmvkiOHStEkTu07QFavVw7eN53H42pQaIYAAAmEVIOgKa8tSLwTyF/h/AAAA//+5X5kaAABAAElEQVTs3QW8FNX7x/HHwG5F7G7FH9a9tqhgoaKChRImihdEsVskDBAFxEIJxe7uwgAMsPtvd4sd+D9nLjPs7t3duzEze+Izr5dszZw55/2sd+6d78Rsv03/+T9hQgCBigWGjxgpk6dMCZbftL5Oejc0VNwWCyKAAAIINBU4oGu36OdsH/Uztk9vfs42VeIdvT0ePnJkAFFfVycTrhkPioMC//33n6y/wQby++9/yB4dd5ch559f0iinTpsml19+RTBv375Hy1prrhktp9tcfa21g9f7dO4sgwYOiD4r9GTI0Avlsisa23v80Udk+eWWKzRr8P7mW20tX3/9tWy15RYy5qqris5b7YcXDx8hIy65RGabbbbg/4O6TTaJmjzxpJPl1ttvl5YtW8pzT0+M3i/lyQ8//CDbtWsv03/5Rdpus7WMnjl+vWzX7j3kuUmTZP3WreW2W24upTnmsVCA7bGFRaPLCCCAgKcCffoeI/r3Pz0d3KO7HNSjR/CcfxBAwF2B2Qi63C0uI0MAAQQQQMAFgfBgAj0WHWAwIZBPgKArn4p77+mwSIdGemro1Uv6Ht2n6kFWEnTtu38XefGll6RFixby6rSpMueccxbtR1pB1zvvvisd99xL/v77b9lvn31kwDn9s/pVTdA1YOBAGTv+Gpl99tnl7jvvkDXXWCNqm6AronD6CUGX0+VlcAgggIBTAgRdTpWTwSBQkgBBV0lMzIQAAggggAACCCBgsgBBl8nVia9vn3z6qWy7fbugwWNUyHWUCruqncoNusaOGy8DBg0KVlvqWWVpBF0zZswQHcDpo5f1GVsP3X+fLLjgglk8lQZdf/75p5wzYGAQoOmA6+CDD8pql6Ari8PZFwRdzpaWgSGAAALOCRB0OVdSBoRAswIEXc0SMQMCCCCAAAIIIICA6QIEXaZXKJ7+JR107bTjjnKMurRh7jR9+nT58MOP5A51JtPTzzwbfLzMMkvLtePHywrLL587e5PXaQRd106YIGf1PydY98jhF4seS+5UadCV207ua4KuXBE3XxN0uVlXRoUAAgi4KEDQ5WJVGRMCxQUIuor78CkCzQqwY61ZImZAAAEEqhLQP2fDqV7dC5HLF4YaPGYKsD3O1HD3eXNB1wMPPii//vprUYAtNt9cllpqqWiezDO6ojebebLOOuvIVVdcHpw51cyswcdJB11ffvml7LRLB/lFjb399tvLpaMuydstgq68LLxZogBBV4lQzIYAAgggUHMBgq6al4AOIJC6AEFX6uSs0DUBdqy5VlHGgwACpgmwY820ipjZH7bHZtYl7l41F3Rt1669fPzJJ0VXe+Xll8m2bdtG85QadM0/33zSunVr2XCDDaRnz8NFvy51KjXo+u677+T7H34o2uwC888vSy+9dNY8RxzZSx557DFZcIEF5IH77pVWrVplfR6+IOgKJXisRIDtcSVqLIMAAgggUAsBgq5aqLNOBGorQNBVW3/W7oAAO9YcKCJDQAABowXYsWZ0eYzpHNtjY0qRaEc+//wL2XrbbYN1HN27QXo3NGStT/+8+OKLL7Le0y9+/+MP+eabb4L3iwVd7bbbTnodeWST5eebfz5ZZeWVZfbZZ2/yWSlvlBp0nX/BELli9OiiTeaesXX/Aw9I76P7Bsv0P+tM6bL//gWXJ+gqSMMHJQiwPS4BiVkQQAABBIwQIOgyogx0AoFUBQi6UuVmZS4KTJ4yJWtYXFIri4MXCCCAQNUCOsAIf9b2UTu2+TlbNamTDRB0OVnWJoP6/fc/pHWbNsH7+3TuLIMGDmgyT743nnpqohx82GHBR8WCrnLazLeeQu8lGXRttuVWQYinzzS78frrZLbZZivUDSHoKkjDByUIEHSVgMQsCCCAAAJGCBB0GVEGOoFAqgIEXalyszIEEEAAAQQQQACBJAQIupJQNbPNDTbaWKb/8ovUbbKJXHftNSV18rrrr5czzjo7mNfkoEuP61f1X7FpnnnmkUUWWSSaZbU11wqeL7fssrLiiitG7+d78s677wahWIsWLQK/cJ7NN9tUeh5+ePiy7Meu3XvIc5Mmyfrq0o633XJz2cuzgB0CBF121IleIoAAAgiIEHTxLUDAPwGCLv9qzogRQAABBBBAAAHnBAi6nCtpwQHts9/+8tLUqbLQQgvJU088LvqeVc1NAwcNkjHjxgezmRx0NTeOfJ+HQVe+z0p9r+Puu8nQCy4odfYm8xF0NSFx8g2CLifLyqAQQAABJwUIupwsK4NCoKgAQVdRHj5EoHkBfTmtyZMbL19YX1/HJbWaJ2MOBBBAAAEEYhcg6Iqd1NgGr7l2gpx9zjlB/3qqyxEef1y/on2dPn26bLPd9vLzzz8H87kWdJ13fukB1VMTJ8rb77wj8807rxzQpUvktu6668iuHTpEr8t9QtBVrpid8xN02Vk3eo0AAgj4KEDQ5WPVGbPvAgRdvn8DGH/VAuxYq5qQBhBAAIGiAuxYK8rDhzMF2B7781X44YcfZPsddgyCq7nmmktGjRwhbbfZJi/Av//+K2eceZbcePPN0eeuBV3RwEp4Uso9uv766y+57rrr5Zlnn5Udd9xBOnfq1GzLBF3NEjkxA9tjJ8rIIBBAAAEvBAi6vCgzg0QgS4CgK4uDFwiUL8COtfLNWAIBBBAoR4Ada+Vo+Tsv22O/av/Agw9KQ5+jo0Hv07mzdO7cSVZffXVZcIEFRIdh+syloRcOk6nTpsn667eWV155NZifoOt2admypTz39MTIL/PJ7XfcKcefeGL01o3XXycbbbhh9DrfE4KufCruvcf22L2aMiIEEEDAVQGCLlcry7gQKCxA0FXYhk8QKElA71jTly/U06bq0oW9GxpKWo6ZEEAAAQRKE2DHWmlOvs9F0OXfN+DaCRNk4OBz5e+//84avA66pv/yS/TeGir8GnPVaNli68azvgi6igddZ/c/R65RtuF02imnSI/u3cKXeR8JuvKyOPcm22PnSsqAEEAAAWcFCLqcLS0DQ6CgAEFXQRo+QAABBBBAAAETBMKDCXRf6uvqTOgSfTBQgKDLwKKk0KVXX31NRl12mTz+xBPyzz//NFlj5732kpNPajw7aaO6+uBzgq7iQdcrr74q++y3f+A577zzyKMPPSRLLrlkE9vMNwi6MjXcfU7Q5W5tGRkCCCDgmgBBl2sVZTwINC9A0NW8EXMggAACCCCAAAIIGC5A0GV4gRLunr5U4Vtvvy1ffvmV/PffDFlppZVkZfXfoosumvCa3Wz+22+/lSnPPy9bbbVVcClIN0fJqMoVIOgqV4z5EUAAAQRqJUDQVSt51otA7QQIumpnz5oRQAABBBBAAAEEYhIg6IoJkmYQQACBAgIEXQVgeBsBBBBAwDgBgi7jSkKHEEhcgKArcWJW4LoAO9ZcrzDjQwCBWgvon7PhVK/uhcjlC0MNHjMF2B5navAcAQQQiF+AoCt+U1pEAAEEEEhGgKArGVdaRcBkAYIuk6tD36wQYMeaFWWikwggYLEAO9YsLl6KXWd7nCI2q0IAAS8F2B57WXYGjQACCFgpQNBlZdnoNAJVCRB0VcXHwgiIsGONbwECCCCQrAA71pL1daV1tseuVJJxIICAqQJsj02tDP1CAAEEEMgVIOjKFeE1Au4LEHS5X2NGmLDA5ClTstbAJbWyOHiBAAIIVC2gA4zwZ22f3g1curBqUTcbIOhys66MCgEEzBEg6DKnFvQEAQQQQKC4AEFXcR8+RcBFAYIuF6vKmBBAAAEEEEAAAc8ECLo8KzjDRQCB1AUIulInZ4UIIIAAAhUKEHRVCMdiCFgsQNBlcfHoOgIIIIAAAggggECjAEEX3wQEEEAgWQGCrmR9aR0BBBBAID4Bgq74LGkJAVsECLpsqRT9NFZAX05r8uTGyxfW19dxSS1jK0XHEEAAAQRcFiDocrm6jA0BBEwQIOgyoQr0AQEEEECgFAGCrlKUmAcBtwQIutyqJ6OpgQA71mqAzioRQMArAXaseVXuigfL9rhiOhZEAAEEShJge1wSEzMhgAACCBggQNBlQBHoAgIpCxB0pQzO6twTYMeaezVlRAggYJYAO9bMqoepvWF7bGpl6BcCCLgiwPbYlUoyDgQQQMB9AYIu92vMCBHIFSDoyhXhNQJlCugda/ryhXraVF26sHdDQ5ktMDsCCCCAQDEBdqwV0+GzUICgK5TgEQEEEEhGgO1xMq60igACCCAQvwBBV/ymtIiA6QIEXaZXiP4hgAACCCDguUB4MIFmqK+r81yD4RcSIOgqJMP7CCCAQDwCBF3xONIKAggggEDyAgRdyRuzBgRMEyDoMq0i9AcBBBBAAAEEEECgbAGCrrLJWAABBBAoS4CgqywuZkYAAQQQqKEAQVcN8Vk1AjUSIOiqETyrRQABBBBAAAEEEIhPgKArPktaQgABBPIJEHTlU+E9BBBAAAETBQi6TKwKfUIgWQGCrmR9ad0DAXaseVBkhogAAjUV0D9nw6le3QuRyxeGGjxmCrA9ztTgOQIIIBC/AEFX/Ka0iAACCCCQjABBVzKutIqAyQIEXSZXh75ZIcCONSvKRCcRQMBiAXasWVy8FLvO9jhFbFaFAAJeCrA99rLsDBoBBBCwUoCgy8qy0WkEqhIg6KqKj4UREGHHGt8CBBBAIFkBdqwl6+tK62yPXakk40AAAVMF2B6bWhn6hQACCCCQK0DQlSvCawTcFyDocr/GjDBhgclTpmStgUtqZXHwAgEEEKhaQAcY4c/aPr0buHRh1aJuNkDQ5WZdGRUCCJgjQNBlTi3oCQIIIIBAcQGCruI+fIqAiwIEXS5WlTEhgAACCCCAAAKeCRB0eVZwhosAAqkLEHSlTs4KEUAAAQQqFCDoqhCOxRCwWICgy+Li0XUEEEAAAQQQQACBRgGCLr4JCCCAQLICBF3J+tI6AggggEB8AgRd8VnSEgK2CBB02VIp+mmsgL6c1uTJjZcvrK+v45JaxlaKjiGAAAIIuCxA0OVydRkbAgiYIEDQZUIV6AMCCCCAQCkCBF2lKDEPAm4JEHS5VU9GUwMBdqzVAJ1VIoCAVwLsWPOq3BUPlu1xxXQsiAACCJQkwPa4JCZmQgABBBAwQICgy4Ai0AUEUhYg6EoZnNW5J8CONfdqyogQQMAsAXasmVUPU3vD9tjUytAvBBBwRYDtsSuVZBwIIICA+wIEXe7XmBEikCtA0JUrwmsEyhTQO9b05Qv1tKm6dGHvhoYyW2B2BBBAAIFiAuxYK6bDZ6EAQVcowSMCCCCQjADb42RcaRUBBBBAIH4Bgq74TWkRAdMFCLpMrxD9QwABBBBAAAEEEGhWgKCrWSJmQAABBKoSIOiqio+FEUAAAQRSFCDoShGbVSFgiABBlyGFoBsIIIAAAggggAAClQsQdFVux5IIIIBAKQIEXaUoMQ8CCCCAgAkCBF0mVIE+IJCuAEFXut6sDQEEEEAAAQQQQCABAYKuBFBpEgEEEMgQIOjKwOApAggggIDRAgRdRpeHziGQiABBVyKsNOqTADvWfKo2Y0UAgVoI6J+z4b0Q6+vqpE9v7oVYizqYvk62x6ZXiP4hgIDtAgRdtleQ/iOAAAL+CBB0+VNrRopAKEDQFUrwiECFAuxYqxCOxRBAAIESBdixViKU57OxPfb8C8DwEUAgcQG2x4kTswIEEEAAgZgECLpigqQZBCwSIOiyqFh01UwBdqyZWRd6hQAC7giwY82dWiY5ErbHSerSNgIIICDC9phvAQIIIICALQIEXbZUin4iEJ8AQVd8lrTkqUB4Oa1w+PqyWkwIIIAAAvEJ6J+zU9R/eqpTP2P5ORufrUstEXS5VE3GggACJgoQdJlYFfqEAAIIIJBPgKArnwrvIeC2AEGX2/VldAgggAACCCCAgBcCBF1elJlBIoBADQUIumqIz6oRQAABBMoSIOgqi4uZEXBCgKDLiTIyCAQQQAABBBBAwG8Bgi6/68/oEUAgeQGCruSNWQMCCCCAQDwCBF3xONIKAjYJEHTZVC36aqSAvqTW5MmNl9Sqr+eSWkYWiU4hgIDVAlwi1urypdZ5gq7UqFkRAgh4KkDQ5WnhGTYCCCBgoQBBl4VFo8sIVClA0FUlIIsjwI41vgMIIIBAsgLsWEvW15XW2R67UknGgQACpgqwPTa1MvQLAQQQQCBXgKArV4TXCLgvQNDlfo0ZYcIC7FhLGJjmEUDAewF2rHn/FSgJgO1xSUzMhAACCFQswPa4YjoWRAABBBBIWYCgK2VwVoeAAQIEXQYUgS7YLaB3rIWX1dpUXbqwd0OD3QOi9wgggIBhAuxYM6wghnaHoMvQwtAtBBBwRoDtsTOlZCAIIICA8wIEXc6XmAEi0ESAoKsJCW8ggAACCCCAAAII2CZA0GVbxegvAgjYJkDQZVvF6C8CCCDgrwBBl7+1Z+T+ChB0+Vt7Ro4AAggggAACCDgjQNDlTCkZCAIIGCpA0GVoYegWAggggEATAYKuJiS8gYDzAgRdzpeYASKAAAIIIIAAAu4LEHS5X2NGiAACtRUg6KqtP2tHAAEEEChdgKCrdCvmRMAVAYIuVyrJOGomwI61mtGzYgQQ8ERA/5wN74VYX1cnfXpzL0RPSl/WMNkel8XFzAgggEDZAgRdZZOxAAIIIIBAjQQIumoEz2oRqKEAQVcN8Vm1GwLsWHOjjowCAQTMFWDHmrm1MalnbI9NqgZ9QQABFwXYHrtYVcaEAAIIuClA0OVmXRkVAsUECLqK6fAZAiUIsGOtBCRmQQABBKoQYMdaFXgeLcr22KNiM1QEEKiJANvjmrCzUgQQQACBCgQIuipAYxEELBcg6LK8gHS/9gLh5bTCnujLajEhgAACCMQnoH/OTlH/6alO/Yzl52x8ti61RNDlUjUZCwIImChA0GViVegTAggggEA+AYKufCq8h4DbAgRdbteX0SGAAAIIIIAAAl4IEHR5UWYGiQACNRQg6KohPqtGAAEEEChLgKCrLC5mRsAJAYIuJ8rIIBBAAAEEEEAAAb8FCLr8rj+jRwCB5AUIupI3Zg0IIIAAAvEIEHTF40grCNgkQNBlU7Xoq5EC+pJakyc3XlKrvp5LahlZJDqFAAJWC3CJWKvLl1rnCbpSo2ZFCCDgqQBBl6eFZ9gIIICAhQIEXRYWjS4jUKUAQVeVgCyOADvW+A4ggAACyQqwYy1ZX1daZ3vsSiUZBwIImCrA9tjUytAvBBBAAIFcAYKuXBFeI+C+AEGX+zVmhAkLsGMtYWCaRwAB7wXYseb9V6AkALbHJTExEwIIIFCxANvjiulYEAEEEEAgZQGCrpTBWR0CBggQdBlQBLpgt4C+pNYU9V849W5oCJ/yiAACCCAQgwA71mJA9KAJgi4PiswQEUCgpgJsj2vKz8oRQAABBMoQIOgqA4tZEXBEgKDLkUIyDAQQQAABBBBAwGcBgi6fq8/YEUAgDQGCrjSUWQcCCCCAQBwCBF1xKNIGAnYJEHTZVS96iwACCCCAAAIIIJBHgKArDwpvIYAAAjEKEHTFiElTCCCAAAKJChB0JcpL4wgYKUDQZWRZ6JRtAvryheFUX1cXPuURAQQQQAABBFISIOhKCZrVIICAtwIEXd6WnoEjgAAC1gkQdFlXMjqMQNUCBF1VE9KA7wLsWPP9G8D4EUAgaQH9czY8oEAfTNCnN/dCTNrcxvbZHttYNfqMAAI2CRB02VQt+ooAAgj4LUDQ5Xf9Gb2fAgRdftadUccowI61GDFpCgEEEMgjwI61PCi81USA7XETEt5AAAEEYhVgexwrJ40hgAACCCQoQNCVIC5NI2CoAEGXoYWhW/YIsGPNnlrRUwQQsFOAHWt21i3tXrM9Tluc9SGAgG8CbI99qzjjRQABBOwVIOiyt3b0HIFKBQi6KpVjOQQQQAABBBBIRUBftnCK+m/S5CnBZQu5F2Iq7NathKDLupLRYQQQsEyAoMuygtFdBBBAwGMBgi6Pi8/QvRUg6PK29AwcAQQQQAABBBBwR0AHononbDi99/Zb4VMeEUAAAQRiECDoigGRJhBAAAEEUhEg6EqFmZUgYJQAQZdR5aAzCCCAAAIIIIAAApUIEHRVosYyCCCAQOkCq625VjTzhGvGC2dYRxw8QQABBBAwTICgy7CC0B0EUhAg6EoBmVW4L6Avl6Sn4SNHCn/0uV9vRogAAukJ6PAinNihFkrwWEggcydsn4aG4FKXheblfQQQQACB0gVyDybgb57S7ZgTAQQQQCB9AYKu9M1ZIwK1FiDoqnUFWL8TAuxYc6KMDAIBBAwUyLxMkg669I41JgQKCWR+Xwi6CinxPgIIIFC+QObPV700l4ct35AlEEAAAQTSEyDoSs+aNSFgigBBlymVoB9WC+gzuvTZXOHEH36hBI8IIIBA5QIcPV65na9L5m6PCbt8/SYwbgQQiFMgd3t8dO8G6a3OmmVCAAEEEEDAVAGCLlMrQ78QSE6AoCs5W1r2TECf1cUffZ4VneEigEDiAmFwwdlciVM7swLOsnamlAwEAQQMEeBsLkMKQTcQQAABBEoWIOgqmYoZEXBGgKDLmVIyEAQQQAABBBBAAIEwHA0lOKsrlOARAQQQKF8g92cqB/aVb8gSCCCAAALpCxB0pW/OGhGotQBBV60rwPqdFAgv78HONSfLy6AQQCBhAb1Trb6+TvRZXEwIVCKQe/YB2+NKFFkGAQR8F8gNubQHl2j3/VvB+BFAAAE7BAi67KgTvUQgTgGCrjg1aQsBJRCGXCEGO9dCCR4RQACB5gUyd6pNuGY8YVfzZMxRQICwqwAMbyOAAAIlCGRuj8PZ2S6HEjwigAACCJguQNBleoXoHwLxCxB0xW9Ki54L5AZdXN7D8y8Ew0cAgbIEMu+vxH25yqJj5jwCuWGXnoUDUPJA8RYCCCAwUyBfwKU/IuTiK4IAAgggYJMAQZdN1aKvCMQjQNAVjyOtIJAlEIZduTtp9Q43Pen3+/RuiJbRf1CGU+blunQ7kydPCT9iGSVRa7fM9WfWJ7NuumCZNWWZ7Lrh1njmZ/j/di2+O5k10N/XzO9o5nc3s29JLaPb1esPL1MY7mDL/fmp+8mEQCUC+cIu3Y7+joXfu0raZRkEEEDAJYFgO6+2yfkmQq58KryHAAIIIGCyAEGXydWhbwgkI0DQlYwrrSIQXMJQM4Q70fQfj2HQpd/PvL595k64zCPNWabppSBr4ZZ5hknmH/rhDvmwzvqzcGIZEQzMMrDlZ4v+f2jEyJHSu2HWwQDh/1c8IlCpQOZ2ttI2WA4BBBDwTUBfmaKOgwJ8KzvjRQABBJwQIOhyoowMAoGyBAi6yuJiZgQqF8jdyVaLwCazD7bs9DYh7COwMSuwyT3Th/qUVh9b/p+v/KcsSyJQXEBvT/QBCvqRCQEEEECgsACXXi9swycIIIAAAnYIEHTZUSd6iUCcAgRdcWrSFgJFBMIda+FlwTLP/snc8ZZ5Ca9wp1zYLMs03h8g9EjLTQeE4ZRZn8z1b1pfl3UGCstI1hmMuDVeHjA8w7MW353MGpj0s0X/v6MnzuAKf8rwmIaA/n9givpvUsblgdNYL+tAIFdg6rRp0VsbtGkTPecJAmkLsD1OW5z1IYAAAggkKUDQlaQubSNgpgBBl5l1oVcIIIAAAggggAACCCDgsMCYsWPl6rHjghHqkGv4RcMcHi1DQwABBBBAAAEE0hMg6ErPmjUhYIoAQZcplaAfCCCAAAIIIIAAAggg4I0AQZc3pWagCCCAAAIIIJCyAEFXyuCsDgEDBAi6DCgCXUAAAQQQQAABBBBAAAG/BAi6/Ko3o0UAAQQQQACB9AQIutKzZk0ImCJA0GVKJegHAggggAACCCCAAAIIeCNA0OVNqRkoAggggAACCKQsQNCVMjirQ8AAAYIuA4pAFxBAAAEEEEAAAQQQQMAvAYIuv+rNaBFAAAEEEEAgPQGCrvSsWRMCpggQdJlSCfqBAAIIIIAAAggggAAC3ggQdHlTagaKAAIIIIAAAikLEHSlDM7qEDBAgKDLgCLQBQQQQAABBBBAAAEEEPBLgKDLr3ozWgQQQAABBBBIT4CgKz1r1oSAKQIEXaZUgn4ggAACCCCAAAIIIICANwIEXd6UmoEigAACCCCAQMoCBF0pg7M6BAwQIOgyoAh0AQEEEEAAAQQQQAABBPwSIOjyq96MFgEEEEAAAQTSEyDoSs+aNSFgigBBlymVoB8IIIAAAggggAACCCDgjQBBlzelZqAIIIAAAgggkLIAQVfK4KwOAQMECLoMKAJdQAABBBBAAAEEEEAAAb8ECLr8qjejRQABBBBAAIH0BAi60rNmTQiYIkDQZUol6AcCCCCAAAIIIIAAAgh4I0DQ5U2pGSgCCCCAAAIIpCxA0JUyOKtDwAABgi4DikAXEEAAAQQQQAABBBBAwC8Bgi6/6s1oEUAAAQQQQCA9AYKu9KxZEwKmCBB0mVIJ+oEAAggggAACCCCAAALeCBB0eVNqBooAAggggAACKQsQdKUMzuoQMECAoMuAItAFBBBAAAEEEEAAAQQQ8EuAoMuvejNaBBBAAAEEEEhPgKArPWvWhIApAgRdplSCfiCAAAIIIIAAAggggIA3AgRd3pSagSKAAAIIIIBAygIEXSmDszoEDBAg6DKgCHQBAQQQQAABBBBAAAEE/BIg6PKr3owWAQQQQAABBNITIOhKz5o1IWCKAEGXKZWgHwgggAACCCCAAAIIIOCNAEGXN6VmoAgggAACCCCQsgBBV8rgrA4BAwQIugwoAl1AAAEEEEAAAQQQQAABvwQIuvyqN6NFAAEEEEAAgfQECLrSs2ZNCJgiQNBlSiXoBwIIIIAAAggggAACCHgjQNDlTakZKAIIIIAAAgikLEDQlTI4q0PAAAGCLgOKQBcQQAABBBBAAAEEEEDALwGCLr/qzWgRQAABBBBAID0Bgq70rFkTAqYIEHSZUgn6gQACCCCAAAIIIIAAAt4IEHR5U2oGigACCCCAAAIpCxB0pQzO6hAwQICgy4Ai0AUEEEAAAQQQQAABBBDwS4Cgy696M1oEEEAAAQQQSE+AoCs9a9aEgCkCBF2mVIJ+IIAAAggggAACCCCAgDcCBF3elJqBIoAAAggggEDKAgRdKYOzOgQMECDoMqAIdAEBBBBAAAEEEEAAAQT8EiDo8qvejBYBBBBAAAEE0hMg6ErPmjUhYIoAQZcplaAfCCCAAAIIIIAAAggg4I0AQZc3pWagCCCAAAIIIJCyAEFXyuCsDgEDBAi6DCgCXUAAAQQQQAABBBBAAAG/BAi6/Ko3o0UAAQQQQACB9AQIutKzZk0ImCJA0GVKJegHAggggAACCCCAAAIIeCNA0OVNqRkoAggggAACCKQsQNCVMjirQ8AAAYIuA4pAFxBAAAEEEEAAAQQQQMAvAYIuv+rNaBFAAAEEEEAgPQGCrvSsWRMCpggQdJlSCfqBAAIIIIAAAggggAAC3ggQdHlTagaKAAIIIIAAAikLEHSlDM7qEDBAgKDLgCLQBQQQQAABBBBAAAEEEPBLgKDLr3ozWgQQQAABBBBIT4CgKz1r1oSAKQIEXaZUgn4ggAACCCCAAAIIIICANwIEXd6UmoEigAACCCCAQMoCBF0pg7M6BAwQIOgyoAh0AQEEEEAAAQQQQAABBPwSIOjyq96MFgEEEEAAAQTSEyDoSs+aNSFgigBBlymVoB8IIIAAAggggAACCCDgjQBBlzelZqAIIIAAAgggkLIAQVfK4KwOAQMECLoMKAJdQAABBBBAAAEEEEAAAb8EMnfAbNCmjQy/aJhfAIwWAQQQQAABBBBISCDz96yDe3SXg3r0SGhNNIsAAqYIEHSZUgn6gQACCCCAAAIIIIAAAt4IbNV226yxTnzi8azXvEAAAQQQQAABBBCoTICgqzI3lkLAZgGCLpurR98RQAABBBBAAAEEEEDAOoHMyxaGnddndR2kjjjWj0wIIIAAAggggAAClQsQdFVux5II2CpA0GVr5eg3AggggAACCHgpoHeQ62nqtJeDR/5BAAG7BKZOm1a0wwRdRXn4EAGjBQirjS4PnUMAAY8ECLo8KjZDRWCmAEEXXwUEEEAAAQQQQMACgXxngFjQbbqIAAJFBMJQq7nwq0gTfIQAAgYKcD8YA4tClxBAwCsBgi6vys1gEQgECLr4IiCAAAIIIIAAAoYL6J3g+o81JgQQcEcgc0c4QbY7dWUkCIQCmf+Ph+/xiAACCCCQjgBBVzrOrAUBkwQIukyqBn1BAAEEEEAAAQTyCGT+oaY/1jvPmBBAwE6BNuoeXOGZXLkjCM/smtbM5Q1zl+M1AgjUXkBfUjj8fzjszcQnHg+f8ogAAgggkKJA5t9PHHiQIjyrQqCGAgRdNcRn1QgggAACCCCAQHMCuWdz8Ydac2J8jgACCCCAQG0E2GbXxp21IoAAArkCBF25IrxGwH0Bgi73a8wIEUAAAQQQQMBigcxLmumzQIZfNMzi0dB1BBBAAAEE3BbI3G5zcIrbtWZ0CCBgrgBBl7m1oWcIJCVA0JWULO0igAACCCCAAAIxCGT+kUbQFQMoTSCAAAIIIJCgQGbQxXY7QWiaRgABBIoIZP4NxUEHRaD4CAGHBAi6HComQ0EAAQQQQAAB9wT4I829mjIiBBBAAAF3BQi63K0tI0MAAXsE+BvKnlrRUwTiEiDoikuSdhBAAAEEEEAAgQQE+CMtAVSaRAABBBBAICEBgq6EYGkWAQQQKEOAv6HKwGJWBBwRIOhypJAMAwEEEEAAAQTcFOCPNDfryqgQQAABBNwUIOhys66MCgEE7BLgbyi76kVvEYhDgKArDkXaQAABBBBAAAEEEhLgj7SEYGkWAQQQQACBBAQIuhJApUkEEECgTAH+hioTjNkRcECAoMuBIjIEBBBAAAEEEHBXgD/S3K0tI0MAAQQQcE+AoMu9mjIiBBCwT4C/oeyrGT1GoFoBgq5qBVkeAQQQQAABBBBIUIA/0hLEpWkEEEAAAQRiFiDoihmU5hBAAIEKBPgbqgI0FkHAcgGCLssLSPcRQAABBBBAwG0B/khzu76MDgEEEEDALQGCLrfqyWgQQMBOAf6GsrNu9BqBagQIuqrRY1kEEEAAAQQQQCBhAf5ISxiY5hFAAAEEEIhRgKArRkyaQgABBCoU4G+oCuFYDAGLBQi6LC4eXUcAAQQQQAAB9wX4I839GjNCBBBAAAF3BAi63KklI0EAAXsF+BvK3trRcwQqFSDoqlSO5RBAAAEEEEAAgRQE+CMtBWRWgQACCCCAQEwCBF0xQdIMAgggUIUAf0NVgceiCFgqQNBlaeHoNgIIIIAAAgj4IcAfaX7UmVEigAACCLghQNDlRh0ZBQII2C3A31B214/eI1CJAEFXJWosgwACCCCAAAIIpCTAH2kpQbMaBBBAAAEEYhAg6IoBkSYQQACBKgX4G6pKQBZHwEIBgi4Li0aXEUAAAQQQQMAfAf5I86fWjBQBBBBAwH4Bgi77a8gIEEDAfgH+hrK/howAgXIFCLrKFWN+BBBAAAEEEEAgRQH+SEsRm1UhgAACCCBQpQBBV5WALI4AAgjEIMDfUDEg0gQClgkQdFlWMLqLAAIIIIAAAn4J8EeaX/VmtAgggAACdgsQdNldP3qPAAJuCPA3lBt1ZBQIlCNA0FWOFvMigAACCCCAAAIpC/BHWsrgrA4BBBBAAIEqBAi6qsBjUQQQQCAmAf6GigmSZhCwSICgy6Ji0VUEEEAAAQQQ8E+AP9L8qzkjRgABBBCwV4Cgy97a0XMEEHBHgL+h3KklI0GgVAGCrlKlmA8BBBBAAAEEEKiBAH+k1QCdVSKAAAIIIFChAEFXhXAshgACCMQowN9QMWLSFAKWCBB0WVIouokAAggggAACfgrwR5qfdWfUCCCAAAJ2ChB02Vk3eo0AAm4J8DeUW/VkNAiUIkDQVYoS8yCAAAIIIIAAAjUS4I+0GsGzWgQQQAABBCoQIOiqAI1FEEAAgZgF+BsqZlCaQ8ACAYIuC4pEFxFAAAEEEEDAXwH+SPO39owcAQQQQMA+AYIu+2pGjxFAwD0B/oZyr6aMCIHmBAi6mhPicwQQQAABBBBAoIYC/JFWQ3xWjQACCCCAQJkCBF1lgjE7AgggkIAAf0MlgEqTCBguQNBleIHoHgIIIIAAAgj4IzB12jTZoE2brAE390davmWyGuAFAggggAACCKQmQNCVGjUrQgABBAoKNPc3VMEF+QABBKwVIOiytnR0HAEEEEAAAQRcEgh3jB3co7sc1KNHNLRif6QVWiZamCcIIIAAAgggkIiAPtBEb6Nzt9vhtlmvVB+8MvyiYdH6Cy0TzcATBBBAAIFYBIr9DRXLCmgEAQSMEyDoMq4kdAgBBBBAAAEEfBPI3Cmmx56506zQH2nFlvHNj/EigAACCCCQpkAYWIXrzNxuZ26fM4OuYsuE7fCIAAIIIBCPQKG/oeJpnVYQQMBEAYIuE6tCnxBAAAEEEEDAK4HMnWLhwMOdZvn+SMs3vz5iPPeyh2FbPCKAAAIIIIBAfAK5oZVuOdxuZ26jw6Cr2Pzx9YqWEEAAAQRCgXx/Q4Wf8YgAAm4KEHS5WVdGhQACCCCAAAKWCWTuGAu7rneaTZ32svpvWvCWfq2nq8eOCx7Dfwi5QgkeEUAAAQQQSEegUHil1x5up3XQdZDadusdrplTGIplvsdzBBBAAIH4BAi64rOkJQRsESDosqVS9BMBBBBAAAEEnBfIF3ZlDlrvMAtDr/B9Qq5QgkcEEEAAAQTSFcgXdjXXA0Ku5oT4HAEEEKhegKCrekNaQMA2AYIu2ypGfxFAAAEEEEDAaYHmwq7MwRNyZWrwHAEEEEAAgfQFygm7CLnSrw9rRAABPwUIuvysO6P2W4Cgy+/6M3oEEEAAAQQQMFCglLCLkMvAwtElBBBAAAEvBUoJuwi5vPxqMGgEEKiRAEFXjeBZLQI1FCDoqiE+q0YAAQQQQAABBAoJFAu7CLkKqfE+AggggAACtREoFnYRctWmJqwVAQT8FSDo8rf2jNxfAYIuf2vPyBFAAAEEEEDAcIF8YRchl+FFo3sIIIAAAt4K5Au7CLm8/TowcAQQqKEAQVcN8Vk1AjUSIOiqETyrRQABBBBAAAEEShHIDLsIuUoRYx4EEEAAAQRqJ5AZdhFy1a4OrBkBBPwWIOjyu/6M3k8Bgi4/686oEUAAAQTKEJg8ZUoZczMrAvELjBk7TjZo8z9p06ZN/I3TIgJlCNTX1ZUxN7MiUDsBtt21s2fNItOmTZOp016Wg3p0hwOBmgqw3a4pPyuvoQBBVw3xWTUCNRIg6KoRPKtFAAEEEDBbYPiIkaJ3krGjzOw60TsEEEhfQO8069O7Qdh5lr49aywsoLfbeho+svGx8Jx8ggACCPglEG6v2Xb7VXffR0vQ5fs3gPH7KEDQ5WPVGTMCCCCAQEEBvaOMnWQFefgAAQQQyBLo09AQhF5Zb/ICgRQF2G6niM2qEEDAegEOVrG+hAygRAGCrhKhmA0BhwQIuhwqJkNBAAEEEKhcgB1llduxJAIIIEDgxXcgbQF9xvUBXbulvVrWhwACCDghwHbbiTIyiCICBF1FcPgIAUcFCLocLSzDQgABBBAoXaBQyPX3HAsGjfw729wyQ/3HhAACCPgsMPt/fwbDbzFjuswxo/F5pgc7zTI1eJ6kQKGQi+12kuq0jQACtgmw3batYvQ3TgGCrjg1aQsBOwQIuuyoE71EAAEEEEhIIF/IpXeU/T37QgmtkWYRQAAB+wX0zrN8gRdhl/21NX0E+UKuMOBi22169egfAgjUUqDFjJ+lxb/Ts7rAdjuLgxcOCRB0OVRMhoJAiQIEXSVCMRsCCCCAgHsC+UKuP+ZcgrO33Cs1I0IAgYQE2GmWECzN5hUoFHIRcOXl4k0EEECgiYA+UGWef77Nep+wK4uDF44IEHQ5UkiGgUAZAgRdZWAxKwIIIICAOwL5dpYRcrlTX0aCAALpCeQLu957+630OsCavBFYbc21ssbKGdhZHLxAAAEEShIg7CqJiZksFyDosryAdB+BCgQIuipAYxEEEEAAAfsF9A3sddgVToRcoQSPCCCAQPkCuWEXR4eXb8gSxQVyD1Ah5CruxacIIIBAMYF8YRcHqRQT4zPbBAi6bKsY/UWgegGCruoNaQEBBBBAwDKB3J1lhFyWFZDuIoCAkQK5YRc7zIwsk7WdyjxA5d/Z55Y/51jC2rHQcQQQQMAEgdztNgepmFAV+hCXAEFXXJK0g4A9AgRd9tSKniKAAAIIxCSQubNMN/lbi2VjaplmEEAAAb8F5vv7swiAHWYRBU+qFOAAlSoBWRwBBBAoIMB2uwAMb1svQNBlfQkZAAJlCxB0lU3GAggggAACtgtk3uODSx/ZXk36jwACJgnkHh3OWV0mVcfevmQeoMLZXPbWkZ4jgIB5Amy3zasJPYpHgKArHkdaQcAmAYIum6pFXxFAAAEEqhbgqPCqCWkAAQQQKCiQe88Pgq6CVHxQhkDmASpcbrgMOGZFAAEEShDgrK4SkJjFOgGCLutKRocRqFqAoKtqQhpAAAEEELBJIDfo4rKFNlWPviKAgA0CmTvMJlwzXurr6mzoNn00VCB3u03QZWih6BYCCFgrMPe/38ocM/4M+s9lh60tIx3PESDoygHhJQIeCBB0eVBkhogAAgggMEtg+IiRMnzkyOANLn80y4VnCCCAQFwC7DCLS5J2tEBu0MUBKnwvEEAAgXgFMi9fSNAVry2t1U6AoKt29qwZgVoJEHTVSp71IoAAAgjURICgqybsrBQBBDwSIOjyqNgpDJWgKwVkVoEAAl4LZAZd+ixsfTY2EwK2CxB02V5B+o9A+QIEXeWbsQQCCCCAgMUCBF0WF4+uI4CAFQIEXVaUyZpOEnRZUyo6igAClgoQdFlaOLpdVICgqygPHyLgpABBl5NlZVAIIIAAAoUECLoKyfA+AgggEI8AQVc8jrTSKEDQxTcBAQQQSFaAoCtZX1qvjQBBV23cWSsCtRQg6KqlPutGAAEEEEhdgKArdXJWiAACngkQdHlW8ISHS9CVMDDNI4CA9wIEXd5/BZwEIOhysqwMCoGiAgRdRXn4EAEEEEDANQGCLtcqyngQQMA0AYIu0ypid38IuuyuH71HAAHzBQi6zK8RPSxfgKCrfDOWQMB2AYIu2ytI/xFAAAEEyhIg6CqLi5kRQACBsgUIusomY4EiAgRdRXD4CAEEEIhBgKArBkSaME6AoMu4ktAhBBIXIOhKnJgVIIAAAgiYJEDQZVI16AsCCLgoQNDlYlVrNyaCrtrZs2YEEPBDgKDLjzr7NkqCLt8qzngRECHo4luAAAIIIOCVAEGXV+VmsAggUAMBgq4aoDu8SoIuh4vL0BBAwAgBgi4jykAnYhYg6IoZlOYQsECAoMuCItFFBBBAAIH4BAi64rOkJQQQQCCfAEFXPhXeq1SAoKtSOZZDAAEEShMg6CrNibnsEiDosqte9BaBOAQIuuJQpA0EEEAAAWsECLqsKRUdRQABSwUIuiwtnKHdJugytDB0CwEEnBEg6HKmlAwkQ4CgKwODpwh4IkDQ5UmhGSYCCCCAQKMAQRffBAQQQCBZAYKuZH19a52gy7eKM14EEEhbgKArbXHWl4YAQVcayqwDAbMECLrMqge9QQABBBBIWICgK2FgmkcAAe8FCLq8/wrECkDQFSsnjSGAAAJNBAi6mpDwhgMCBF0OFJEhIFCmAEFXmWDMjgACCCBgtwBBl931o/cIIGC+AEGX+TWyqYcEXTZVi74igICNAgRdNlaNPjcnQNDVnBCfI+CeAEGXezVlRAgggAACRQQIuorg8BECCCAQgwBBVwyINBEJEHRFFDxBAAEEEhEg6EqElUZrLEDQVeMCsHoEaiBA0FUDdFaJAAIIIFA7AYKu2tmzZgQQ8EOAoMuPOqc1SoKutKRZDwII+CpA0OVr5d0eN0GX2/VldAjkEyDoyqfCewgggAACzgoQdDlbWgaGAAKGCBB0GVIIR7pB0OVIIRkGAggYK0DQZWxp6FgVAgRdVeCxKAKWChB0WVo4uo0AAgggUJkAQVdlbiyFAAIIlCpA0FWqFPOVIkDQVYoS8yCAAAKVCxB0VW7HkuYKEHSZWxt6hkBSAgRdScnSLgIIIICAkQIEXUaWhU4hgIBDAgRdDhXTgKEQdBlQBLqAAAJOCxB0OV1ebwdH0OVt6Rm4xwIEXR4Xn6EjgAACPgoQdPlYdcaMAAJpChB0pant/roIutyvMSNEAIHaChB01daftScjQNCVjCutImCyAEGXydWhbwgggAACsQsQdMVOSoMIIIBAlgBBVxYHL6oUIOiqEpDFEUAAgWYECLqaAeJjKwUIuqwsG51GoCoBgq6q+FgYAQQQQMA2AYIu2ypGfxFAwDYBgi7bKmZ2fwm6zK4PvUMAAfsFCLrsryEjaCpA0NXUhHcQcF2AoMv1CjM+BBBAAIEsAYKuLA5eIIAAArELEHTFTup1gwRdXpefwSOAQAoCBF0pILOK1AUIulInZ4UI1FyAoKvmJaADCCCAAAJpChB0panNuhBAwEcBgi4fq57cmAm6krOlZQQQQEALEHTxPXBRgKDLxaoyJgSKCxB0FffhUwQQQAABxwQIuhwrKMNBAAHjBAi6jCuJ1R0i6LK6fHQeAQQsECDosqBIdLFsAYKusslYAAHrBQi6rC8hA0AAAQQQKEeAoKscLeZFAAEEyhcg6CrfjCUKCxB0FbbhEwQQQCAOAYKuOBRpwzQBgi7TKkJ/EEhegKAreWPWgAACCCBgkABBl0HFoCsIIOCkAEGXk2Wt2aAIumpGz4oRQMATAYIuTwrt2TAJujwrOMNFQAkQdPE1QAABBBDwSoCgy6tyM1gEEKiBAEFXDdAdXiVBl8PFZWgIIGCEAEGXEWWgEzELEHTFDEpzCFggQNBlQZHoIgIIIIBAfAIEXfFZ0hICCCCQT4CgK58K71UqQNBVqRzLIYAAAqUJEHSV5sRcdgkQdNlVL3qLQBwCBF1xKNIGAggggIA1AgRd1pSKjiKAgKUCBF2WFs7QbhN0GVoYuoUAAs4IEHQ5U0oGkiFA0JWBwVMEPBEg6PKk0AwTAQQQQKBRgKCLbwICCCCQrABBV7K+vrVO0OVbxRkvAgikLUDQlbY460tDgKArDWXWgYBZAgRdZtWD3iCAAAIIJCxA0JUwMM0jgID3AgRd3n8FYgUg6IqVk8YQQACBJgIEXU1IeMMBAYIuB4rIEBAoU4Cgq0wwZkcAAQQQsFuAoMvu+tF7BBAwX4Cgy/wa2dRDgi6bqkVfEUDARgGCLhurRp+bEyDoak6IzxFwT4Cgy72aMiIEEEAAgSICBF1FcPgIAQQQiEGAoCsGRJqIBAi6IgqeIIAAAokIEHQlwkqjNRYg6KpxAVg9AjUQIOiqATqrRAABBBConQBBV+3sWTMCCPghQNDlR53TGiVBV1rSrAcBBHwVIOjytfJuj5ugy+36MjoE8gkQdOVT4T0EEEAAAWcFCLqcLS0DQwABQwQIugwphCPdIOhypJAMAwEEjBUg6DK2NHSsCgGCrirwWBQBSwUIuiwtHN1GAAEEEKhMgKCrMjeWQgABBEoVIOgqVYr5ShEg6CpFiXkQQACBygUIuiq3Y0lzBQi6zK0NPUMgKQGCrqRkaRcBBBBAwEgBgi4jy0KnEEDAIQGCLoeKacBQCLoMKAJdQAABpwUIupwur7eDI+jytvQM3GMBgi6Pi8/QEUAAAR8FCLp8rDpjRgCBNAUIutLUdn9dBF3u15gRIoBAbQUIumrrz9qTESDoSsaVVhEwWYCgy+Tq0DcEEEAAgdgFCLpiJ6VBBBBAIEuAoCuLgxdVChB0VQnI4ggggEAzAgRdzQDxsZUCBF1Wlo1OI1CVAEFXVXwsjAACCCBgmwBBl20Vo78IIGCbAEGXbRUzu78EXWbXh94hgID9AgRd9teQETQVIOhqasI7CLguQNDleoUZHwIIIIBAlgBBVxYHLxBAAIHYBQi6Yif1ukGCLq/Lz+ARQCAFAYKuFJBZReoCBF2pk7NCBGouQNBV8xLQAQQQQACBNAUIutLUZl0IIOCjAEGXj1VPbswEXcnZ0jICCCCgBQi6+B64KEDQ5WJVGRMCxQUIuor78CkCCCCAgGMCBF2OFZThIICAcQIEXcaVxOoOEXRZXT46jwACFggQdFlQJLpYtgBBV9lkLICA9QIEXdaXkAEggAACCJQjQNBVjhbzIoAAAuULEHSVb8YShQUIugrb8AkCCCAQhwBBVxyKtGGaAEGXaRWhPwgkL0DQlbwxa0AAAQQQMEiAoMugYtAVBBBwUoCgy8my1mxQBF01o2fFCCDgiQBBlyeF9myYBF2eFZzhIqAECLr4GiCAAAIIeCVA0OVVuRksAgjUQICgqwboDq+SoMvh4jI0BBAwQoCgy4gy0ImYBQi6YgalOQQsECDosqBIdBEBBBBAID4Bgq74LGkJAQQQyCdA0JVPhfcqFSDoqlSO5RBAAIHSBAi6SnNiLrsECLrsqhe9RSAOAYKuOBRpAwEEEEDAGgGCLmtKRUcRQMBSAYIuSwtnaLcJugwtDN1CAAFnBAi6nCklA8kQIOjKwOApAp4IEHR5UmiGiQACCCDQKEDQxTcBAQQQSFaAoCtZX99aJ+jyreKMFwEE0hYg6EpbnPWlIUDQlYYy60DALAGCLrPqQW8QQAABBBIWIOhKGJjmEUDAewGCLu+/ArECEHTFykljCCCAQBMBgq4mJLzhgABBlwNFZAgIlClA0FUmGLMjgAACCNgtQNBld/3oPQIImC9A0GV+jWzqIUGXTdWirwggYKMAQZeNVaPPzQkQdDUnxOcIuCdA0OVeTRkRAggggEARAYKuIjh8hAACCMQgQNAVAyJNRAIEXREFTxBAAIFEBAi6EmGl0RoLEHTVuACsHoEaCBB01QCdVSKAAAII1E6AoKt29qwZAQT8ECDo8qPOaY2SoCstadaDAAK+ChB0+Vp5t8dN0OV2fRkdAvkECLryqfAeAggggICzAgRdzpaWgSGAgCECBF2GFMKRbhB0OVJIhoEAAsYKEHQZWxo6VoUAQVcVeCyKgKUCBF2WFo5uI4AAAghUJkDQVZkbSyGAAAKlChB0lSrFfKUIEHSVosQ8CCCAQOUCBF2V27GkuQIEXebWhp4hkJQAQVdSsrSLAAIIIGCkAEGXkWWhUwgg4JAAQZdDxTRgKARdBhSBLiCAgNMCBF1Ol9fbwRF0eVt6Bu6xAEGXx8Vn6AgggICPAgRdPladMSOAQJoCBF1paru/LoIu92vMCBFAoLYCBF219WftyQgQdCXjSqsImCxA0GVydegbAggggEDsAgRdsZPSIAIIIJAlQNCVxcGLKgUIuqoEZHEEEECgGQGCrmaA+NhKAYIuK8tGpxGoSoCgqyo+FkYAAQQQsE2AoMu2itFfBBCwTYCgy7aKmd1fgi6z60PvEEDAfgGCLvtryAiaChB0NTXhHQRcFyDocr3CjA8BBBBAIEuAoCuLgxcIIIBA7AIEXbGTet0gQZfX5WfwCCCQggBBVwrIrCJ1AYKu1MlZIQI1FyDoqnkJ6AACCCCAQJoCBF1parMuBBDwUYCgy8eqJzdmgq7kbGkZAQQQ0AIEXXwPXBQg6HKxqowJgeICBF3FffgUAQQQQMAxAYIuxwrKcBBAwDgBgi7jSmJ1hwi6rC4fnUcAAQsECLosKBJdLFuAoKtsMhZAwHoBgi7rS8gAEEAAAQTKESDoKkeLeRFAAIHyBQi6yjdjicICBF2FbfgEAQQQiEOAoCsORdowTYCgy7SK0B8Ekhcg6EremDUggAACCBgkQNBlUDHoCgIIOClA0OVkWWs2KIKumtGzYgQQESIKGAAAQABJREFU8ESAoMuTQns2TIIuzwrOcBFQAgRdfA0QQAABBLwSIOjyqtwMFgEEaiBA0FUDdIdXSdDlcHEZGgIIGCFA0GVEGehEzAIEXTGD0hwCFggQdFlQJLqIAAIIIBCfAEFXfJa0hAACCOQTIOjKp8J7lQoQdFUqx3IIIIBAaQIEXaU5MZddAgRddtWL3iIQhwBBVxyKtIEAAgggYI0AQZc1paKjCCBgqQBBl6WFM7TbBF2GFoZuIYCAMwIEXc6UkoFkCBB0ZWDwFAFPBAi6PCk0w0QAAQQQaBQg6OKbgAACCCQrQNCVrK9vrRN0+VZxxosAAmkLEHSlLc760hAg6EpDmXUgYJYAQZdZ9aA3CCCAAAIJCxB0JQxM8wgg4L0AQZf3X4FYAQi6YuWkMQQQQKCJAEFXExLecECAoMuBIjIEBMoUIOgqE4zZEUAAAQTsFiDosrt+9B4BBMwXIOgyv0Y29ZCgy6Zq0VcEELBRgKDLxqrR5+YECLqaE+JzBNwTIOhyr6aMCAEEEECgiABBVxEcPkIAAQRiECDoigGRJiIBgq6IgicIIIBAIgIEXYmw0miNBQi6alwAVo9ADQQIumqAzioRQAABBGonQNBVO3vWjAACfggQdPlR57RGSdCVljTrQQABXwUIunytvNvjJuhyu76MDoF8AgRd+VR4DwEEEEDAWQGCLmdLy8AQQMAQAYIuQwrhSDcIuhwpJMNAAAFjBQi6jC0NHatCgKCrCjwWRcBSAYIuSwtHtxFAAAEEKhMg6KrMjaUQQACBUgUIukqVYr5SBAi6SlFiHgQQQKByAYKuyu1Y0lwBgi5za0PPEEhKgKArKVnaRQABBBAwUoCgy8iy0CkEEHBIgKDLoWIaMBSCLgOKQBcQQMBpAYIup8vr7eAIurwtPQP3WICgy+PiM3QEEEDARwGCLh+rzpgRQCBNAYKuNLXdXxdBl/s1ZoQIIFBbAYKu2vqz9mQECLqScaVVBEwWIOgyuTr0DQEEEEAgdgGCrthJaRABBBDIEiDoyuLgRZUCBF1VArI4Aggg0IwAQVczQHxspQBBl5Vlo9MIVCVA0FUVHwsjgAACCNgmQNBlW8Xor+kCc7VoIUu1WkLmn29e+eqbb+Wnn36Rf2fMML3b9C9BAYKuBHE9bJqgy8OiM2QEShBYqlVL+fXX32T6L7+WMDezFBMg6Cqmw2e2ChB02Vo5+o1A5QIEXZXbsSQCCCCAgIUCBF3JFW222WaTO665WBaYf76SV/LPP//KC9Nek1MHjih5GWYsX2CrzTaSbvvuJqusuFyw8L0PPyXX33a/fPHlN+U3ppZYcYVlpOs+u0rbzTeRlZZfRuaddx6ZTb3/33//yXff/yTvffCxjL/5Hnn0yUnN7oBaeKEFpE3rtdV/a0qbddeUZZZaUuacc46gX5eOuVHufXii/P77H2X1c+g5x0nrtVeXOeZobCdz4TsfeFwuGX2D/Pvvv5lv8zxGAYKuGDFpSgi6Gr8ErdddQy4acEJV34g77n9MRlxxXVVt2LjwAzdeJi3mmjPo+u9//Cm77n9UVcO4/MIzZLWVV8jbxm33Pqq2Mdfn/czkN68YdqasutLyURf3PfR4+fa7H6LXJj1pMeecMmbEOdJ2i43lr7//kfE33S1nnTfKpC5a1xeCLutKRodLECDoKgGJWRBwTICgy7GCMhwEEEAAgeICBF3Ffar5dPbZZ5O3nrur7KDriWdfkG69Tqlm1YkuO586U2lFFeYsvujCwXp+nv6rfPDxpzJdPdoyddhhGzn2yK6y9uorB12+7rb7ZITaEffRx5+XNYT5VYi53147yeEHdpLlll0qCLeKNfDksy/KkFHj5JXX35a/1c6o3Gn1VVeSof37SZv11pQ584RSZw25VCbcfF9wxHbusoVeL7DA/DLp/mtksZn1yp3vjXf+T3bZt5faOfZ37ke8jkmAoCsmSJoJBAi6Gr8Im23yP7l1zIVVfSvGXH+HlweWfPDS/TL3XHMFdr+pAydW26RDxY4LLji/vPH0HepAitnztvH62+9L+06H5/3M5Dcfue1KWWeNVaIubrj9fvLlV5UdDBM1ktCTXdpvLaNVMBdO+iCbzXbuKh9/+kX4Fo9lChB0lQnG7FYIEHRZUSY6iUCsAgRdsXLSGAIIIICA6QIEXclVyNWgay214+eUvodKu63rA7wXX3lTzr7gMnlh6mvJYcbcchxBlz476swTjpB9O+4kCy5Q+ll7X33znRzer7+8OO0NmZFxScP6jdaXc08/WlZfZUXR3518UyVB17Zb1cnlQ06PAtdvvv1edEA3nzrrTE96h9hG7fY3dgdePgfb3iPosq1iZveXoKuxPgRdlX9P4wy6dthuCxk7vH/Uma/VNk4fYJG5jWm9dSf5/oefonlseGJT0HVsr25yXK/uWawHqgOmHntqctZ7vChdgKCrdCvmtEeAoMueWtFTBOISIOiKS5J2EEAAAQSsECDoSq5M+YKun6er+zUVuUScvnTh01OmyVEnDEyuY1W2TNDVCLj7Tm3luKN6qMs1zbq00Z9//S1TX31TXlZnbE1X98lYbuklZbON/ifLLt0quvygXvreRyZK/yGXyyczj7aea64WMuHSwVK/8fpZZ3K98/5H8ujEyfKZuqTijBn/ypQXX5N31Xt//9P0bLBCZT35mEPlMHXG2TxzNx69f9aQy6T1WqtKx523i9bVcNJgueO+x7KCt0Lt8X75AgRd5ZuxRGEBgq5Gm403WE/GjZgVsGSKLbzQguqAgVlnGOl7Fv2T5+fmBHU276ALR2cu6sXzOIOuAaf2loP33yNyO3ngcKnfcD3ZQ21jwqnncQPkbnWZXJsmm4Ku5ZZpJZMeuDb6zuuwcWN1AMs/RX7ftKkWtegrQVct1Fln0gIEXUkL0z4C5gkQdJlXE3qEAAIIIJCgAEFXcri5QZe+NFz7zkeooOLD5FaaQssEXSLLqABr6Nn9RN/ra3Z1LzY96VBq8MVXyZPq0pN/qHuehNPCCy8oRx9+gOy3x46yyMILBW/rs6hO6D9MhUuPB5chrNuwtQwbcLysvMKywef6nik6fHpMhVx//vlX2FRFj3deO1w2XH9tmWPmTt8OXRpkrdVWlkGn9VGXrmoRtHn97ffLCWcNKxrCVrRyFgoECLr4IsQpQNDVvOZLj94oS7VaIppR/9ybqs4+ZmoUiDPoevLuMbJ6xv252u5xiNSpEPL8M4+JuCfceo8cf+aw6LUNT2wKurTnuuo+nPurSyl//+NPctPtD8qnn39lA7OxfSToMrY0dKwKAYKuKvBYFAFLBQi6LC0c3UYAAQQQqEyAoKsyt1KWIugqRak281R76cL2224uJx99iAqMVgoG8Otvv0vf0y+Qhx97Nu+9rvS9UEaed7K022azKFy65e6H5NzhY+TzL76W3XfeVs7o11OWWapl0N6dDz4hZ51/qXz11bdVAbVsubg8ecfoKGD7Qe0A23SnrrLE4ovKI7deIfPOM3fQ/seffSlbdehe1pliVXXMs4UJujwreMLDJehqHpigq7hRXEFXKxUmTlWhYjh9/8OP0nrrzrLKSsvLRBWAhdNH6uzlzXY6MHxpxaNtQZcVqBZ1kqDLomLR1ZIFCLpKpmJGBJwRIOhyppQMBAEEEECgFAGCrlKUKpsnzqBrTnU/qNVWXVG22WIjdXP0VWUNdR8nfbm7Dz7+TF5/6z257Z5H5aNPPm+2o/pSTvoo913abylb12+knqtgRZ2Q9Ka6Wfw0dbm9l9QR72+9/YH8+dess4gWVPfa2PB/a8s6a64atN+q5WKy3Zb10SX7PlNBzSNPTRIdlujpp5+mywsvvyHvvPdh8Hp11e+2W24SXCZPn8mkb0w/8dkXg89y/1lbrWPzujYyV4s5g4+mvfqWTHrhleA+Urnz6rOq6tWZUBusv5ass/oqssgiC8l33/8o737wkTzw6LPyvLpnWKGzoaoNunp06Si9DtpXXZqwVdCt2+59VIaOGi8ffPRpbjej1/o+Jmce1zM6a2vyS6/JcWcOkfc/+EQFXW1nBl1LBvOPvfFOuXDUNfLtdz9Ey+sneszttt5U3WNr3uD99z/8RJ5SlplnkGUu0GHHrWVY/+Oj+3M9+PizcuTxA4L5n7v/GllhuaVltplnpG2+Szf5SH2f/stsgOexCBB0xcJIIzMFCLqa/yqUE3RtuemG0nqd1aNG73t4YrA9bb3uGlK/0XqyxGKLyv99+KncdMeD0Tzhk8UXW0T27riDbLHJBurnc0uZW10iVh+88Oqb78o1N90jH6qfqYWmfdRZvnr5cBo9/tbgYAO9Hdyzw7ayTKslg0vefvL5l3LvQxNFbw9LmZZeakk5cJ9dpH6D9YODJ77/8edg23T3Q0/JQ489EzQRV9DVabd2MmLwyVG37nn4KTn8mLOD1y8/cbO0XGKx6LO6HbrkPctImx18wJ7RfPo+krfc9XCwbdp2q01k2y3rpJU6aEOf6azroA8S+ezzr6P5Cz2ZY47ZRW9311e11b+/rKrCN/07wofqd6Xn1fb3xtsfKHpwR3NB147bbymrrNh4Frbug/49oNDBKfogl9VXXSHq6l3qMo75xqD7vJu6LHJ7Nf/yyy4lLdVBKd+o3wM+Ub9f3fXgk/Kw2oZn3tszbDDX8KeffpHrbr03/DjrUbfbY/+OsuaqK8ly6rn+vewzdfbXq2+9K+NuuJv7dc7UIujK+trwwhEBgi5HCskwEChDgKCrDCxmRQABBBCwX4CgK7kaxhV0zTfvvHLwgXvIsUd0i+6zlNvrH3/6WcbccKdcfNmEvGcU6fkXUZfQO2DvXaWvuoze/PM1BiW57fz+xx/y0BPPqbOJLpOvvm48m0jvCDn68C5yQKcOubPnff1/H30mw6+cEO0U3HPX7dVl/o4L+q53qIy/+W45uf/FeZc9cO8OcsZxR6pgprF/l469Mbh/yr8zZkTzzznnHLKdCnuO6Xmg/E/tiMw3/aEu9/fQE8/KiNHXy+tvvtdklmqDLn3fq27KUt8HRk8XXXGtXD3hjibBVOaK11x95WCH4Hrq/lh6+vyrb6TbUafJGyqo3EAFiSMGnaR2mi0XfKaDwoYTB8nHM+/hFbyp/tmifgMZqXYqtlpy8eCtu9VOxZPOHiY/qB2Z+aYBpzTIAZ07qLPIGu/P1X/oFXL1tbcF35GLBp4gnXZtJ3OoEFVP+lKK191yr9qJRtSVz7Ka9wi6qtFj2VwBgq5ckaavywm6+p98lBx6wF5RI117nRoEXyc09Ijee+KZF6RLzxOj1/rJ4T06y6l9D5MWczYemJH1oXqht3fnjrhaRlxxXe5HwevcIGX1TTrI3nvuKINO6ZN3/pvuekiOOfX8vAd+hAvogzDOPqFXwT49/vTz0qPhNHlnyt3RduG33/+Q1dS6K5mGqe3Ivh13jBY9ZdBwGXvdncHrS4ecJh132jb6rN8ZQ+V6dU+03GmhhRaQt55tXEZ/9srr78ou+/cSvfxuO2yTO3sQ9JzY/yKZoLZXhSZ9UMgl550SHAxTaJ4PVOB1wlkXyjOTp+adJbc+G26/X1YINGbkANmx7WbRsh27Hh0cYBO9kfEk12Lfw46Xic+9lDGHBGfBXXvpIFlp+WWy3s988b46mKa7+r3h/9RBLplTrqEO8zbfuWvmLMHzU449VI7svq/a7s+6f13mTPqeXpdcfYOcd/HVmW97+Zygy8uyOz9ogi7nS8wAEWgiQNDVhIQ3EEAAAQRcFiDoSq66cQRdCy44v5x5/BHSZa9dmu2oDrtGXHWDXHr1rMsIhQstqY6GPu6o7nKgCj2am/75599gZ83p540KQhiTgi599lGXTrsEY9FHeDc36XtPXXz5hCaBUbVBl965t9cu20uLmWeenTp4pNysjvb/5dffCnZJH7k/Vu0Y20jdL0tP+qjsjt36yovTXg9uIH/JBacGO83mmXvu4DO9s+mysTdnhVjlBl0P33KFrL3GytEN6nc/sE9w1p5e9/577SyDTz9anT3XIujPXQ8+IUedMFDdp2tWqBh8wD9VCxB0VU1IAxkCBF0ZGAWeVhN06bOk9RlA4dmuehW5Qdfg0/tI9307Flh79tsnDxwu466fFeSEn+YGKZeOvUl6dusc/bwO58t8vOq62+X0QSMz34qe9zpkPzntmMOi14WeTHvt7eAsJ32Gt56qCbpefPQGWVqfGT5zarvHoeps7g+CV1332U3OO6Nv+JHccf9j0uv4gdHr8EluSPP5l1/LFHVG9h47bxfO0uRRb8N6HjdAnen2ZJPP9BlLD99yuSy04AJNPst94+fpv8h2ex0WnIWX+1lufZIMuvTveg/cdJmsXCTkCvunLw/ZoUvvrLP4cw3zBV06BC0UooZth4+Xj79FzlaXT/Z5Iujyufrujp2gy93aMjIECgkQdBWS4X0EEEAAAScFCLqSK2tu0KWP7tZH4/6pLr9TaPrp519kv8NPlH/++Se41F/dRq3lxtEXyBwzd0jpS/c898LL8vgzU2T69N9ly03byJ5qZ1B4Vs6HH38uPfqoo7Xf+yhahb704L577qSO8j4ya8edbuud//tYvlA7lfSlEFdUO1jCo3z1GVR6x97hx54tC6jl91GXZtpJXQJIT/Op+zotq46WDnci6ftTfaou1RSGPHon1Y0q9HnsqcnB/HGe0bWeugTR8b16SPu2mwZt/62c3nn/I3lUXTpRn0m2ljprSvczPCJa78AbMOxKuebGu7ICnGqDrosHnxTshGuhzi7Tkz6K/eY7H5ZfiwRd+tKK4y8ZKBv/b51gGf3P7uoI8BenvaaO0Jfg0kzHqTMIOqrLFi0w/3zBPPoSTm+qS0DqEFPv2FtSXQZqQxWU6TBMT/qsML3T8i91qcmHnpgk9z/ytLpcY+P3S9fz/hsuybg/18+y2S5d5Wf1HdOTvoeK3hkY3qdLX9Jpw+33lb///if4nH/iEyDois+SlkQIupr/FlQTdGW2rn/u/qV+Jj416UXpoc6k0ZPeflx54RmZs8n/qUsUPj/11eCysOutvUZ0QIOeSW/7jzppkNxx72NZy+QGKeGHn6jLyL2sLiWsL1msD4zIvPyfnqf3yYPl1rsfCWcPHtddZzW5//pRwTKZH7yoLkf8xtvviT4zfEO17ckXpFQadOltyNP3jI1WF96fS49XT6utsoI8ddeY6HO9jVl/m85NzkjLDWmiBdQTHTq+pbaBi6vLR9ZtsJ4aR+O2T8/z199/yza7H5wV+Oj3c8+e0tvRh558Vp56bppqZ6EgoFxTXVI5nB5Wvz90V2fx5U659Uky6NL36bzsgsbvl+6HDqrG3HCHvPv+x9JmvbWk8+7tZZUVlo26qC+TqM/6Dqdcw3xB11OqVqupmoXTdersuscmPq8ut9lC2m6xiey9W/vwo+D3ja2Vbe6ZY9EMHjwh6PKgyB4OkaDLw6IzZO8FCLq8/woAgAACCPglQNCVXL1zg65S1vT9Dz/JBtvtE4QN+p4LndSOB32JPh0s6SBplDri+6JLr4ma0mcJnXXikdKpQ7vgva/VDp1zhl6etRNM72waO7x/EGzomfTOoWenTJN+Zw5VIdc3wXJzqUvbbavuo6WPvtZhip7eU5fGGahCogcffSZ4Hf6z1hqryCl9D1X3iqoP3tI70s6+4DJ5QR2BnW+KM+jS9+/qc1gXqVP35ppH+dx+32PBvbEyd8Yc1r2z9FXzLLrIwkF3Lh13k4y66sbg3hxh/0wMusK+badcB53aJ7g/x2zhmyU8ht+NMHDU938ZcHLv6DKQ+pKUvdT9ufROzXCa9OAEWX6ZVlEA2n7vnuosvveb7IgM5+exMgGCrsrcWCq/AEFXfpfMd6sNup5R28hb735YHlD3RPox59KwT6jwZg21XQ2nsSqQOH3wJU0OprhcXXovPGvqR3XvyjZt9w62v+FyuUGKfn/oZeNlmLo/ow7Y9DTfvPPIiHNPlp3V/aDC6dZ7HpHeJw0OXwaPw889STrvOiuo0Pd31OFa5uXx9IEsh3brJGcc2zP6ma8XrjTo6q7u8zRYbavC6V51Kd3DZt6fK3zvlSdvkSXUfabCads9D5W33/0gfBk85oY0+s1f1XbqKBXkhPcU0+8tp7ZVN6gDfzIDn9zLIc6rgrBRF5wu226xcXC28m+//ymbd+gqX3/9nW4imHRwqM9E00Ginqb/8qusuenuwfPMf3Lrk2TQdbq6f+eRPfaJVn+ocrxPeYaTvvTxI+oMbT1NfulVufeRp2SMulxyOOUa5gZd+uCZtyfdFdX9LXXW3Xbq7LvM6bKhp8vuO7ZVl63+LggGr1Lth/dazZzPl+cEXb5U2q9xEnT5VW9Gi4AWIOjie4AAAggg4JUAQVdy5a426Ap7pi+Pt4E6qrtend01/oa7RJ/1FU46oGrXtl5GX3hW8Jb+7KrrbpMhI8cFr+dRZ1/t3G5LueTcU4LX+kytl1Qw1bNff3WvicZ7cAUfqH/0DrWO6qjiof2PC97SZ3zpSw0dp+6rER6hrT+oZdCl1693HK6kjmzebOPW6gy5z2TS8y/rt6OpfuP1Rd9bZbON/xe8d9u9j8hF6vKF76mz18LJ1KArvI9az66dsnYOhv0u9pgbdA09p5/s1aG9ug9Li2CxAcOukNHXqPtz/fV31MzFg09U86j7dM08Y/DsoZfJlWNvkRkzj8iPZuRJVQIEXVXxsXCOAEFXDkiel9UEXS+//o7s1qVB9P2KcqfW6r6QD94465JuOsCq3/GAICzJnXdI/2PVZYdnXS64R+/T5SEVnIVTbpDytLpX1D6HNG5/w3n0oz6gZdrjN0dnXOeGGHo7/9rE27POdjro6DPVQSpPZzYTPc/tV6VB1+iLzpJd2m0VtZt5f67wzTA8CV+fecEouXLcreHL4DE3pNFvnj9yrFx02ayDesIFdm6/lVw17KzwpeizkvTvKLmTPpN9p+23CLZtN9z+QO7HMn7UoOhgHf3hRu32D85uz5wxtz5JBl2n9jtMjjpov2j1+nevY067QJ2h/Vf0nj7A5+33P5Sf1Hcud8o1zP2O6ADwvSn3RkGXPht+N3Up41fUGeHhpAPApZdqKa+q73/m73zh5749EnT5VnE/xkvQ5UedGSUCmQIEXZkaPEcAAQQQcF6AoCu5EucLun5WRw7PKHIPpB/UJer0pXj0pQtzJ30vpRVXWEZWWXE50Tst9DT7bLPLyisuK/2O7Ba81pcRvEUdhX7yORcHrxdVl8s75MC95NgjGm9K/vP0X0Xft6rQvRfWVvcl0ffy+urrb2Xqq2+qUOwtdemaT7N2etQ66AoGpv7Rl2vUO2ZWW3l5WWzRhVUA1nj+kz77bTd1VPL6a68ezKrPZBo6ary8+sY74aLBpaeOPbKrrK2OktaT3lk2YvT18pG69GMpUxKXLtSXGhylLl20vro8Yxg86eDy2eenybff/xAc4b/Uki1lq003DEJJ3U+9M2vSiy8HO8OefPZFefzp54Pn2uJJddaB/q6E95np2O1oeWnaG6LDznDS9zvT9+lqMeecwVuPPj1FeqhLOGXOE87LY+UCBF2V27FkUwGCrqYmue9UE3QNHn6VjLjiutwmg9ddOnWQIWcfG32mQ7FHJk6KXmc+WW+t1YP7LobvXXj5eBkyovEgFP1ebpBy2LH9895zSs/73APXyorLLa2fBtO6W+4Z3b9x1ZVXkIl3z7pE4EeffiGb7XRgOGuTx9z5Kwm69AEnrz99uyy80Kz7YOU7W6vbvrvLuWobE06PqEsad+vVeOBN+F5uSKPfX2+rvUSf4Z47Lb3UkvLiI9dHb+c7Myn6UD3RgZc+G2rZpVtG20L9+f577hxsS8N5d97vKHn5tbfCl8Fjbn2SDLq2UWegXX/5eVnr12e1PfnM86LPmtdnGL7+5rtZZw1mzpxrmBt06Xnvvm5k1iU19XtvvPN/we8YU156XZ3pPzWvuZ7Px4mgy8equz9mgi73a8wIEcgVIOjKFeE1AggggIDTAgRdyZU3N+jSlwxs3/kIdc+FD0teqd6ZtLIKKwae2ls2abOeup/SXEWXzQ26WrZcTI5XwdWBnXcNlvtCncV1wSVj5Ybb7i/aTrEPax10Lbnk4tJ1n13lQHWk/JJqfGGQU6jPyQRdJ868R1djQFTKPbp06DjukkHqHl1rR13dXR1R/cK014P7ZF065HTZZvONgzOw9FlX+uyq29R9WHQ4GR5dvUX9BjJy8MnSShno6W51aaOTzh4W7fAMG157zVXklquGqss3LhS8pZe/5Z6Hg3t5hfPoxyUWXzw4qj0M1vT3R+9gzDyKPHN+nlcmQNBVmRtL5Rcg6MrvkvluNUFXg7os4G3q8oD5pn4N3aXfEY0HluT7vNh7+iCTfqcPiWbJDVLa731EEGZEM2Q8uef6S2TD1mtF72y2c9fo3lRbqoMfblKX9AunfGFS+Jl+1Ac2vP/ifdGl+yoJunLPbNPbmOtvvy/aVoXra7nE4rLDNpuFL+UXtY1ZZ7OOWWfL5YY009Vlmtes3y1aJvOJvqTzBy/O+v1Fn5mu7y2ZO+2t7it6QsNBwWWfcz/L97rWQZfu0zmnNMghXfbM173gvZ+n/6IuKficDLjwyqxLMeoPcw3zBV3rrLWajBtxTkETXUMdfF2mLpGdew+4gp1y+AOCLoeL6/HQCLo8Lj5D91aAoMvb0jNwBBBAwE8Bgq7k6l5t0KUvWbjVZhvJReccX/Jl7HKDrqVaLSGnHnOYdNq1XTDQjz/7Us44d5S6fNIzFQ88yaBLH/195vFHBMGP7uClY2+UQReOjs4wWledpXXsEQfKDm03jy7j1NxAkgi6zji+Z3BJqoUWnD9Y/QWjxso4dVnJ779vegR62L9VVl5ORp2vztiaeaaZvodKlyNPltfeeFc22WBduWjgibLyzJvN33DHAzL44qvkm2++DxcPHksNuvS9U07te1h0f66sRpp5sUe3vjJF3QOEKT4Bgq74LGlJ3aNnyhQ5oOussOW3FsvCkiOQVNCVey+lnNUWfXnfIxPl0L5nRfPkBl25ZwxFM6onxYKudipIGn/JgGh2fVBDn5POjV7ne/LWc3fKQgs2no1VSdDV65D95DT1u0Ulk75k3ovqAI9wKiWkCedtLujS9yE778y+WZeMDJct9ph00HXVxWdn3Wdt38OOz7p/Wtg3fY/OoWf1iw5mCd/PfNSB16mDRmSFUaUa6jPcBp7WW/baZfvo/nGZbYfPH5s4Rfqedr7o31N8nQi6fK282+Mm6HK7vowOgXwCBF35VHgPAQQQQMBZAYKu5EpbbdCl79ek7yOx8f/WCTqpj7b9Qd2bQd+I/Muvvgnem01dom5JdcT0LjNvVJ8bdOmbwDcctp8cfmDnYP7vvv9RLh13s4y66oa8A9c7QfT9r75Q7RfawVF20NVhe3Wpp35BeKXHcO0t9wSXVpwx47+sPuijzA/v0TkIaMIPMoMufeP4XofuJ8epyzTOOfNSe3q8+gjkd//vo+gspEXVZQw3ar2OLL9sq6CZJIKuQ7t1kiO77y1Lt2oZrENf+vBidamrT9QlowpN+tJE55zUEFxqUc+jLwvZ97TzgnuHdem8izrzroe0atl4ptbAi66Ua266R37OuB+bXqbUoOvSIacFO9X05S7LnYZcOl6GqUs96loxxSNA0BWPI600ChB0Nf9NSCro6nnQ3nJmvyOiDuizpx57enL0utiTjz75Qh5XAUI4xRV0tVFnet2nzvgKpxdefkN2P6B3+LLJ4yLqTN831GUHw6mSoOv6K8+XbdSBOJVM+qzyYZfOuv9WqSGNXldzQdem6t6ct429MKtb76j7c74w7VX1O8Ks+1NuvkkbWXO1laL5Kgm6rh7eX3babouojc4H91OX/5sWvc588uBNl0vrdVaL3ioUdOkZ9Jn866t7wW2/Tb1sVb+h6EtgzjfzctVhA/+qS2Bv3+kweee9D4O3yjHUC+izvbfdsk6226pONm6zrqyw7FJBO5n/6PuE9Tp+YOZbXj0n6PKq3N4MlqDLm1IzUAQiAYKuiIInCCCAAAI+CBB0JVflaoIufTk+fc+mp+66Ogh1dOjw/kefSof9j5Lp6lJ24TTXXHNJu7b1MvrCs4K3coMuvfPjwL13jY68/v2PP+XeR57Ke7S3Do/abrmJXDH0DHU5QJEPPvpM7njgMbli7K3yx59/hquUcoOu7bfZVAac3BDdX+T2+x6V0waNbHK5vWXUvbWOPryLdN171iWLMoOuFZZfWvR9tfbZfcegL599+bVcMHKs3HTHg1Hf9JP6jddXlyzqIZupHV56SiLo2qX91nJC74NkjVVWCNbxjTrq+ehTz5OJ6j5Z+e5vpXdc6aPM99h5O5l/vnmDZe68/3EZOOxK+fTzr+SIg/ZRN6LfVxZfbJHgs8vH3ywjR98gOpjMnEoJunS4NfGesbLcMq2avaxjZtvhcx2k7tX9GIKuECSGR4KuGBBpIhIg6IooCj5JKujqsMM2cuWFZ0TrvVddPvawY86OXmc+0ffSnHvuueXHH3/OfDt6HlfQ1UqduT310RujdvXlATdut1+TAyXCGXZQ4cxYFdKEU7lBl/69481n74jOvA7bKfVx0ouvBNuYcP5yQprmgq5Tjj1UGg7eP2xaLr5ygpx38dXR6/CJPoionTp7KpwqCbpOPuYQ6X1Il7AJOeb08+XG27N/H9Ef6vG99OhNWWFVvqBrQXWGuP69Rf++9ZT6XSKc5plnbtlmi03kjON6ysrq98JwGqB+fwgPWirFUP9eqe9Xtnnd/+Tam+7NupSxvm/bgXt3kJ7dGg+K0uv47fc/ZfW6Dt7+LkDQFX7TeHRJgKDLpWoyFgRKEyDoKs2JuRBAAAEEHBEg6EqukNUEXfqyhdttvamMUZe70dOff/0l+rJHR50wKKvDi6mzl05VO3b233OX4H0ddN2q7i1yUv+Lgtf6Mj4bqaN1b1RHX8+tdk7p6fMvv5Hzg4DogeB1+M/y6oje43v3kM67tg/e+unn6XLtrffKwKFXhrMEj7lB10uvvilnX3CZPP/Sa1nzhS/+t95acnKfg2XrzRuP/n7ljXdkyCXj5JEnJ4WzBEcw775TWznlmENluaUbz8TSH2YGXZts2Dq439iW6j5VetI3Z79AtTNF7TQLp9nVjpzuXTpKn0O7RGdHPazWM2TUOHn19XfC2UTvrNSh2dpqp4+e9BlZI0ZfLx99/Hk0T7Enq6mA64Izj5X6jVpHsz09earoM7H0pQj10dbhNOecc8iB++ymdojtF50Bpj/TO6km3HyvaOe91KUlT1VjD88Q+/SLr+TgPmfKG2+/LzNmzGqrlKBL1/sadRmrRRZuvD+XDssOP66/6Pue5JuWXHwx9T3rL/o7pyd9L7l1tthDfvvtj3yz814FAgRdFaCxSEEBgq6CNNEHSQVdOox4+YlbZB51ryg96Z/1nQ46Nu/lXocNPEF2abdVcM+jK8fdEtyfKuqgehJX0KXbfOKuMdGBF/r1jXc+IMecOuu+Xfo9PS2gDrR45PbRWWfwlBt0bV7XRm65emhjg+rf4DK8vU6OXuc+aaXuBXnNqFlnBultzNqbd5TfVZCip1JCmrDN5oKum1W/tlD9C6d8l+LV9/mcqLz0GezhtIs6iGjaq2+FL4PH5urTvu1mMm7krEtGPvfCy9Kpx7FZbegXZ6jLMR+hzgDPnDKDLl2Tm1S/W6vLGuvf2T5SZ4ZvsUu3rG2/XrbTbu1khLpHZzhdMuaG6Pez5gz15YyP79VNFlu08WAafWDOzXc+FDYVPOog7Jn7xstKM8M0fYDVairoCuuUNbMHLwi6PCiyh0Mk6PKw6AzZewGCLu+/AgAggAACfgkQdCVX72qCLr3DYYXllpaJd4+JLtOnzxo67Jiz1CV4XldH2IraYbGwHNFjbzlSnQmkAx49/fvvv/LWux8GgYsOS957/2NZVp3ZM0Dd5HxHdV+rcNI7pm6860F1GaXnRd+3a9WVlpPOu7eXjjttG92g/pU335UTzx4mL7/2drhY8LjGaivLKUcfIjtsu1nw+qtvvpPb1FlaDz8+Kdgx86MKbj765PPoUoLLqQDtqEP2le777B7Mr4ObV1QYNPaGO+X5qa/LPPPMJTu321L232PnJjdJzwy6tMcxRx4o+3bcKWhn+i+/ypXX3Br895O6xN+8884ju+3YVnqps6PWWHXFYB79zydqfBNUkPWousTUx2oHkj4jrtqgS7d70AF7SK8e+2b1+etvv1dnkD2rxvWGCpZ+VZ+1kh3UGW0bqctPzqf6F05Tpr4m/c4YKu9/8HHw1tJLtZRrLx0cBW/6TR2APfbM8/LgY8/I19/8ENi2Xnd1OebwA4Pa63nuVmcTnKRq9EPGGQNHHryvuo9Z1+jMsQfV/dgaThwsOgQtNE1+cILoOjV+i0S6HHGSPPH084Vm5/0yBQi6ygRj9qICBF1FeYIPkwq6dOMXDz5J9t6t8YAQ/frX3/+Qoepgivsenihffv2dLKN+nh/adS85eP899MfBpLezW+92UNZZNM0FKeGy+rHYPbr05/rn/unHHq6fRtOTz70YXCLwTXV53/nmn1c2abOenNGvpzrbd8loHv2k3KDrhD4HSV+1HQqnux58Qo7od074Mu/jtMdvkiVbNl6aV8+wf88T5clnXgjmbS6kyWywuaDrpL6HBAe6hMs89ORz0vfU86Oz6vQZTRcPOFFdGnD1cJbgUV9S+da7H5V33v8w2p42Vx99BvarT92a1Y4+w2/UmJuCM7X1WfkHqMsS79ux8Sz0zBkzgy79fm59r7vtXjlj8KigNvrz/2fvPsBkKcq2ARcqgiRFQKJgAEQlHUGQHAUVJAiCKOGQEQ9ZDICCJMn5V5B0yCJZRPlEkSBRlBxUBEkKgghKlODfNdDDzGya3e2e6XD3dcmk7uqq+511z8yzVR1ndR1/+HeSf0+88e+u+Nz23zwgXHzZlfHuiGFhnK1/9vEHNfaN/3kieZ9+7VsHti21uORiCzeWfYz//ozbAw8/FpZNAre6boKuula+2uMWdFW7vkZHYDABQddgKp4jQIAAgcoKCLryK+14gq7Yq3iNrtP+3wHJl1Mfb3YyhkRxhs5TTz+bLG04eyM8iUvlvfzyf9uClPj4imtvCtskF75/e3JtqwkLf7Sx3FJ6Dahmg0PceSa5FthZyWyuA488acCyNTEQ2SG5VlbrEoOtzVyVfHn17f2PboRd8fk4o+mzqyzXWHZnzmR5wqG2+NfD8apQ8UuWNHBpDboGu0ZXbCv29Z//ejbMkPylfQz/YgoY/8o+/mV0HHu63fT7O8PBx54SbrzljkyCrhisHfzdncLnV1uxcd2Q9Dwj3T73/Ithu933Ty5Ef0t45ZVXm7tvsfG6YaetvxJmSa6r1u02WNA1OZnNtdLSn2zO0Iozx04+88Jm8DhY20d//5thvTVWbV6c/oeTfxL2O+yEwXb13BgEBF1jQHPIkAKCriFpmi/kGXTF6xtdeeFJYdZkZlC32857HTJgmd2RgpTWtjuDkKU+u0nzd2zcLwZAvzj3B2GB5A9RRruNNui69OzjwmLJvynS7dsHHBNOO+eS9OGgtz84dM/G0r3pi62/Y7IMumJYc9FpR6anadzGfzfd++cHGzO43v/mkr4xnJwmCY/SUCc9YKtkGcqfJ2FV3LqpzyH77BI2Xn/N9PBBbxv/tkn+XRKXME63zqBrnTVWDj84eM/05cZtnIX9xzevwbVIcs2ueB3TdIvLCi73+Ynh78kSznEbyTD+e+jXF53cNusv9uuvyR//xD8A+siH5gmzJUtgtm6nnHNx2OuAY1ufqtV9QVetyl2bwQq6alNqAyXQFBB0NSncIUCAAIE6CAi68qvyeIOuuJTcckstHo498BvJhcOTAGeQ7T/PvRDOuejn4dobb20soZPO7GoNuuJh8UuwFZZevDGzq3VpwEGaDHGG1vHJNaJOPuPC8Oqrrw3YJX7ZEq/xcfj3dk3CpekGvN4ZdMUd4vnXXWOVsMfOW4WZ37wOVeuB//3vK+G8S3/ZWLJn203Wb16rqjXoivsv+LH5wm5f3TR8Opkl1fqlUWtbl/7y6sZfiselEJdf6o3lEuPrWQddsc04Wy6GfnEm3LtnmD4+Nez2YHKdtbjc4hVX3TDoDKsvJEsT7ZkYpUsYDttY8mJn0DXdtNOEq5PrurUeH5du+v3td7ctp9jZ7pfXW6MR2qXB4F333h9W32C7ASFn53Eedycg6OrOyV7dCQi6RnbKM+iKZ18wmRF06lH7ts3oHaxXr7z6ajjw6JPCCaeeN+DlboKU9KCRgq64X7zO0jknHDxgxlbaRrz993+eC1vtsm844bA9m/+uGE3QFZf7u+e6ixt/SJK2u+I6W4Y/vRnIpM913m6SLN978Hd3bj59VzJjfLUvbtd4PFJI0zwouTPSjK4Y6By2727Nmd+tx6b349KJK6+7ddh90maN393p8/F2tEFXPN8JyXVN4xKVQ23fO/z48KG552z746DOoCseu32yvPFeu2w9VDPN52NAtU0yg+6y5N866daNYVyy8eLTjmouTZgeO9jt7clSz+tutnN4Kbmua103QVddK1/tcQu6ql1foyMwmICgazAVzxEgQIBAZQUEXfmVdrxBV+xZ/BIlLrVz+L5fDwsn129o/evjuHRf/IvbI39wRrJs31Rhsy+t3fiL6Y/MO0+yPNIrzRld6Qhjf+ZOZoF9bYsvhc+uvGxz+bv4evziJIZmt9x2VzgjuW5UXC5vuG3a5JoSKy23ZGPpxAXm/UDbbLLBgq7Y1jTJMaskF3/fPlliaaEF5m0GVXGG2nmXXhFOPuuisPQnF2ksrRSXBIpbZ9AVn4vh0jabrtf4IivO4kq3OIvr8mSZvqOOPzNZvvHBEK+fsdmX1goTkmuExf3yCLriuWNN4jVLvpZ8SbVkch2xdyV/Jd65xTGec9EvwilnX5IsGfTUsAHSgh+bPwnoPtFY7nDCgh9JZni9t+1Lxda2O4Ou5ZJg74TD9mpen+uZZ/8dll1zYng6mfE23PbhD74/XJlctyX9i/H4F/ALLb9ecwmn4Y712sgCgq6RjezRvYCga2SrvIOu2IN3J7Ouv5lc13K95LqWrdd7iq/FMOXu5BqLe+x/bLL8b/u1n+Lrccs66IptvieZbbb37ts2/i2QXpczPh+3eO2nGOTcnYRMd1x9fpj5zdnDowm6Oq9L9a9nng0LLrfesL/T4rnjdS2vSa6LlW7xd8yCye+YZ5Jld7sJadLjRgq60v223GTdpDZbNq5Jlj4Xb/+R/CHP1rvumywvfFdjeejdJ00MKy+7RBL6vXFNy9EGXbHNdybXP/12smTil9f7XJg++WOTdHv8iafCQcks8ngtrIOS2d+ts+AHC7ricSsss3jy76oNwgotf6STthdv43XAjvjhGeG65JqgrVu3hnGccfb45huulfwb8I1/Z7W2E4PQk86+MPzotAvCv5Mloeu8CbrqXP3qjl3QVd3aGhmBoQQEXUPJeJ4AAQIEKikg6CpHWeNMrfil2sc+8uHGbJ0Hk2snxCVtnkvCrrFsceZPbGu2WWdpLBN4758fCH996LHGl3NjaW80x8QwJS4xONNM72kEcvGaJmMZx7TJNUc+OM9cjb9OjtefiuHWk08+HV5NrlPWr23qqaYKk4/br20mWfzi7Irkul2tyxT2q3/O2x8BQVd/3Kt6VkFXsSobr5+0cPIHCnPMPkt455RTJgHXA+HPye/nGHb1a4uB14SFFghzJL/jX3jppWR5usfDH26/Z8RAql/9zeO88Y9Q4nWyFkpqE7d7kuDxrw8/Ouzs5vH0I9Y+/iHO9Mkf1sTlAGOIl24H771zV0FXuv+syTKCH5hrjsbsvPhvpkf//o+k7481rv2V7jOe2xjOxT9wmXO294XZkple/0wCy0f+9nh44IFHmtcFG0/7VThW0FWFKhpDp4Cgq1PEYwLVFxB0Vb/GRkiAAAECLQKCrhYMdwlkIHDyMfuG1ZLZZG9/83ocE3f4TrgyuV7aYMtAZnA6TZRAQNBVgiKVqIuCrhIVS1cJJAKd1/IaakYXrOIICLqKUws9yU5A0JWdpZYIlEVA0FWWSuknAQIECGQiIOjKhFEjBJoCxxz0rfD51VYI6bJRcfmqO+75U7j/wYfDhT+7srF0YXNnd2ohIOiqRZl7NkhBV8+onYjAiALzz/vBEK+pOtQWlzM+7Hu7hfmT5RvTbYOtdg+/vfEP6UO3BRQQdBWwKLo0bgFB17gJNUCgdAKCrtKVTIcJECBAYDwCgq7x6DmWwECBnbbbOGy50TrN65+ke9x53/1h5z0PDvcmy1rZ6iUg6KpXvfMeraArb2HtE+he4JZfnRPmSJYAHM229Oc2bSxFOJpj7NtbAUFXb72drTcCgq7eODsLgSIJCLqKVA19IUCAAIHcBQRduRM7Qc0EZk2ud3Ho3ruGFZZevO2vvAVdNXsjtAxX0NWC4e64BQRd4ybUAIHMBEYbdN2d/NHL6ht8Nbz++uuZ9UFD2QsIurI31WL/BQRd/a+BHhDotYCgq9fizkeAAAECfRUQdPWV38krKjDdtNOElZZbIkxYeIEwfXJ/iimmaFxM/tyLLg9/f/zJio7asIYSEHQNJeP5sQgIusai5hgC+QiMJuiKIdd2ux8Q/pIsZWwrtoCgq9j10buxCQi6xubmKAJlFhB0lbl6+k6AAAECoxYQdI2azAEECBAYlYCga1Rcdh5BQNA1ApCXCfRQYKGPz9+8Judwp/37E/8If/v7k+F///vfcLt5rSACgq6CFEI3MhUQdGXKqTECpRAQdJWiTDpJgAABAlkJCLqyktQOAQIEBhcQdA3u4tmxCQi6xubmKAIECHQrIOjqVsp+ZRIQdJWpWvpKIBsBQVc2jlohQIAAgZIICLpKUijdJECgtAKCrtKWrpAdF3QVsiw6RYBAhQQEXRUqpqE0BQRdTQp3CNRGQNBVm1IbKAECBAhEAUGX9wEBAgTyFRB05etbt9YFXXWruPESINBrAUFXr8WdrxcCgq5eKDsHgWIJCLqKVQ+9IUCAAIGcBQRdOQNrngCB2gsIumr/FsgUQNCVKafGCBAgMEBA0DWAxBMVEBB0VaCIhkBglAKCrlGC2Z0AAQIEyi0g6Cp3/fSeAIHiCwi6il+jMvVQ0FWmaukrAQJlFBB0lbFq+jySgKBrJCGvE6iegKCrejU1IgIECBAYRkDQNQyOlwgQIJCBgKArA0RNNAUEXU0KdwgQIJCLgKArF1aN9llA0NXnAjg9gT4ICLr6gO6UBAgQINA/AUFX/+ydmQCBeggIuupR516NUtDVK2nnIUCgrgKCrrpWvtrjFnRVu75GR2AwAUHXYCqeI0CAAIHKCgi6KltaAyNAoCACgq6CFKIi3RB0VaSQhkGAQGEFBF2FLY2OjUNA0DUOPIcSKKmAoKukhdNtAgQIEBibgKBrbG6OIkCAQLcCgq5upezXjYCgqxsl+xAgQGDsAoKusds5srgCgq7i1kbPCOQlIOjKS1a7BAgQIFBIAUFXIcuiUwQIVEhA0FWhYhZgKIKuAhRBFwgQqLSAoKvS5a3t4ARdtS29gddYQNBV4+IbOgECBOooIOiqY9WNmQCBXgoIunqpXf1zCbqqX2MjJECgvwKCrv76O3s+AoKufFy1SqDIAoKuIldH3wgQIEAgcwFBV+akGiRAgECbgKCrjcODcQoIusYJ6HACBAiMICDoGgHIy6UUEHSVsmw6TWBcAoKucfE5mAABAgTKJiDoKlvF9JcAgbIJCLrKVrFi91fQVez66B0BAuUXEHSVv4ZGMFBA0DXQxDMEqi4g6Kp6hY2PAAECBNoEBF1tHB4QIEAgcwFBV+aktW5Q0FXr8hs8AQI9EBB09QDZKXouIOjqObkTEui7gKCr7yXQAQIECBDopYCgq5fazkWAQB0FBF11rHp+YxZ05WerZQIECEQBQZf3QRUFBF1VrKoxERheQNA1vI9XCRAgQKBiAoKuihXUcAgQKJyAoKtwJSl1hwRdpS6fzhMgUAIBQVcJiqSLoxYQdI2azAEESi8g6Cp9CQ2AAAECBEYjIOgajZZ9CRAgMHoBQdfozRwxtICga2gbrxAgQCALAUFXForaKJqAoKtoFdEfAvkLCLryN3YGAgQIECiQgKCrQMXQFQIEKikg6KpkWfs2KEFX3+idmACBmggIumpS6JoNU9BVs4IbLoFEQNDlbUCAAAECtRIQdNWq3AZLgEAfBARdfUCv8CkFXRUurqERIFAIAUFXIcqgExkLCLoyBtUcgRIICLpKUCRdJECAAIHsBARd2VlqiQABAoMJCLoGU/HcWAUEXWOVcxwBAgS6ExB0dedkr3IJCLrKVS+9JZCFgKArC0VtECBAgEBpBARdpSmVjhIgUFIBQVdJC1fQbgu6CloY3SJAoDICgq7KlNJAWgQEXS0Y7hKoiYCgqyaFNkwCBAgQeENA0OWdQIAAgXwFBF35+tatdUFX3SpuvAQI9FpA0NVrcefrhYCgqxfKzkGgWAKCrmLVQ28IECBAIGcBQVfOwJonQKD2AoKu2r8FMgUQdGXKqTECBAgMEBB0DSDxRAUEBF0VKKIhEBilgKBrlGB2J0CAAIFyCwi6yl0/vSdAoPgCgq7i16hMPRR0lala+kqAQBkFBF1lrJo+jyQg6BpJyOsEqicg6KpeTY2IAAECBIYREHQNg+MlAgQIZCAg6MoAURNNAUFXk8IdAgQI5CIg6MqFVaN9FhB09bkATk+gDwKCrj6gOyUBAgQI9E9A0NU/e2cmQKAeAoKuetS5V6MUdPVK2nkIEKirgKCrrpWv9rgFXdWur9ERGExA0DWYiucIECBAoLICgq7KltbACBAoiICgqyCFqEg3BF0VKaRhECBQWAFBV2FLo2PjEBB0jQPPoQRKKiDoKmnhdJsAAQIExiYg6Bqbm6MIECDQrYCgq1sp+3UjIOjqRsk+BAgQGLuAoGvsdo4sroCgq7i10TMCeQkIuvKS1S4BAgQIFFJA0FXIsugUAQIVEhB0VaiYBRiKoKsARdAFAgQqLSDoqnR5azs4QVdtS2/gNRYQdNW4+IZOgACBOgoIuupYdWMmQKCXAoKuXmpX/1yCrurX2AgJEOivgKCrv/7Ono+AoCsfV60SKLKAoKvI1dE3AgQIEMhcQNCVOakGCRAg0CYg6Grj8GCcAoKucQI6nAABAiMICLpGAPJyKQUEXaUsm04TGJeAoGtcfA4mQIAAgbIJCLrKVjH9JUCgbAKCrrJVrNj9FXQVuz56R4BA+QUEXeWvoREMFBB0DTTxDIGqCwi6ql5h4yNAgACBNgFBVxuHBwQIEMhcQNCVOWmtGxR01br8Bk+AQA8EBF09QHaKngsIunpO7oQE+i4g6Op7CXSAAAECBHopIOjqpbZzESBQRwFBVx2rnt+YBV352WqZAAECUUDQ5X1QRQFBVxWrakwEhhcQdA3v41UCBAgQqJiAoKtiBTUcAgQKJyDoKlxJSt0hQVepy6fzBAiUQEDQVYIi6eKoBQRdoyZzAIHSCwi6Sl9CAyBAgACB0QgIukajZV8CBAiMXkDQNXozRwwtIOga2sYrBAgQyEJA0JWFojaKJiDoKlpF9IdA/gKCrvyNnYEAAQIECiQg6CpQMXSFAIFKCgi6KlnWvg1K0NU3eicmQKAmAoKumhS6ZsMUdNWs4IZLIBEQdHkbECBAgECtBARdtSq3wRIg0AcBQVcf0Ct8SkFXhYtraAQIFEJA0FWIMuhExgKCroxBNUegBAKCrhIUSRcJECBAIDsBQVd2lloiQIDAYAKCrsFUPDdWAUHXWOUcR4AAge4EBF3dOdmrXAKCrnLVS+RglVAAAEAASURBVG8JZCEg6MpCURsECBAgUBoBQVdpSqWjBAiUVEDQVdLCFbTbgq6CFka3CBCojICgqzKlNJAWAUFXC4a7BGoiIOiqSaENkwABAgTeEBB0eScQIEAgXwFBV76+dWtd0FW3ihsvAQK9FhB09Vrc+XohIOjqhbJzECiWgKCrWPXQGwIECBDIWUDQlTOw5gkQqL2AoKv2b4FMAQRdmXJqjAABAgMEBF0DSDxRAQFBVwWKaAgERikg6BolmN0JECBAoNwCgq5y10/vCRAovoCgq/g1KlMPBV1lqpa+EiBQRgFBVxmrps8jCQi6RhLyOoHqCQi6qldTIyJAgACBYQQEXcPgeIkAAQIZCAi6MkDURFNA0NWkcIcAAQK5CAi6cmHVaJ8FBF19LoDTE+iDgKCrD+hOSYAAAQL9ExB09c/emQkQqIeAoKsede7VKAVdvZJ2HgIE6iog6Kpr5as9bkFXtetrdAQGExB0DabiOQIECBCorICgq7KlNTACBAoiIOgqSCEq0g1BV0UKaRgECBRWQNBV2NLo2DgEBF3jwHMogZIKCLpKWjjdJkCAAIGxCQi6xubmKAIECHQrIOjqVsp+3QgIurpRsg8BAgTGLiDoGrudI4srIOgqbm30jEBeAoKuvGS1S4AAAQKFFBB0FbIsOkWAQIUEBF0VKmYBhiLoKkARdIEAgUoLCLoqXd7aDk7QVdvSG3iNBQRdNS6+oRMgQKCOAoKuOlbdmAkQ6KWAoKuX2tU/l6Cr+jU2QgIE+isg6Oqvv7PnIyDoysdVqwSKLCDoKnJ19I0AAQIEMhcQdGVOqkECBAi0CQi62jg8GKeAoGucgA4nQIDACAKCrhGAvFxKAUFXKcum0wTGJSDoGhefgwkQIECgbAKCrrJVTH8JECibgKCrbBUrdn8FXcWuj94RIFB+AUFX+WtoBAMFBF0DTTxDoOoCgq6qV9j4CBAgQKBNQNDVxuEBAQIEMhcQdGVOWusGBV21Lr/BEyDQAwFBVw+QnaLnAoKunpM7IYG+Cwi6+l4CHSBAgACBXgoIunqp7VwECNRRQNBVx6rnN2ZBV362WiZAgEAUEHR5H1RRQNBVxaoaE4HhBQRdw/t4lQABAgQqJiDoqlhBDYcAgcIJCLoKV5JSd0jQVery6TwBAiUQEHSVoEi6OGoBQdeoyRxAoPQCgq7Sl9AACBAgQGA0AoKu0WjZlwABAqMXEHSN3swRQwsIuoa28QoBAgSyEBB0ZaGojaIJCLqKVhH9IZC/gKArf2NnIECAAIECCQi6ClQMXSFAoJICgq5KlrVvgxJ09Y3eiQkQqImAoKsmha7ZMAVdNSu44RJIBARd3gYECBAgUCsBQVetym2wBAj0QUDQ1Qf0Cp9S0FXh4hoaAQKFEBB0FaIMOpGxgKArY1DNESiBgKCrBEXSRQIECBDITkDQlZ2llggQIDCYgKBrMBXPjVVA0DVWOccRIECgOwFBV3dO9iqXgKCrXPXSWwJZCAi6slDUBgECBAiURkDQVZpS6SgBAiUVEHSVtHAF7bagq6CF0S0CBCojIOiqTCkNpEVA0NWC4S6BmggIumpSaMMkQIAAgTcEBF3eCQQIEMhXQNCVr2/dWhd01a3ixkuAQK8FBF29Fne+XggIunqh7BwEiiUg6CpWPfSGAAECBHIWEHTlDKx5AgRqLyDoqv1bIFMAQVemnBojQIDAAAFB1wAST1RAQNBVgSIaAoFRCgi6RglmdwIECBAot4Cgq9z103sCBIovIOgqfo3K1ENBV5mqpa8ECJRRQNBVxqrp80gCgq6RhLxOoHoCgq7q1dSICBAgQGAYAUHXMDheIkCAQAYCgq4MEDXRFBB0NSncIUCAQC4Cgq5cWDXaZwFBV58L4PQE+iAg6OoDulMSIECAQP8EBF39s3dmAgTqISDoqkedezVKQVevpJ2HAIG6Cgi66lr5ao9b0FXt+hodgcEEBF2DqXiOAAECBCorIOiqbGkNjACBgggIugpSiIp0Q9BVkUIaBgEChRUQdBW2NDo2DgFB1zjwHEqgpAKCrpIWTrcJECBAYGwCgq6xuTmKAAEC3QoIurqVsl83AoKubpTsQ4AAgbELCLrGbufI4goIuopbGz0jkJeAoCsvWe0SIECAQCEFBF2FLItOESBQIQFBV4WKWYChCLoKUARdIECg0gKCrkqXt7aDE3TVtvQGXmMBQVeNi2/oBAgQqKOAoKuOVTdmAgR6KSDo6qV29c8l6Kp+jY2QAIH+Cgi6+uvv7PkICLrycdUqgSILCLqKXB19I0CAAIHMBQRdmZNqkAABAm0Cgq42Dg/GKSDoGiegwwkQIDCCgKBrBCAvl1JA0FXKsuk0gXEJCLrGxedgAgQIECibgKCrbBXTXwIEyiYg6CpbxYrdX0FXseujdwQIlF9A0FX+GhrBQAFB10ATzxCouoCgq+oVNj4CBAgQaBMQdLVxeECAAIHMBQRdmZPWukFBV63Lb/AECPRAQNDVA2Sn6LmAoKvn5E5IoO8Cgq6+l0AHCBAgQKCXAoKuXmo7FwECdRQQdNWx6vmNWdCVn62WCRAgEAVaf28vucQS4awzTgdDoPQCgq7Sl9AACIxaQNA1ajIHECBAgECZBVqDrjiOF6acs8zD0XcCBAgUTmCaVx5r9il+WRa/NLMRGKuAoGusco4jQIBAdwKtQdeOkyaFHXeY1N2B9iJQYAFBV4GLo2sEchIQdOUEq1kCBAgQKKaAL8yKWRe9IkCgGgJv+9/LYepXn2oO5v4/3te87w6BsQrM+5EFmoe+8vbpwytvm6H52B0CBAgQGJ+AP1AZn5+jiykg6CpmXfSKQJ4Cgq48dbVNgAABAoUU8IVZIcuiUwQIVEDAdT4qUMQCDuErm2wa4h+qxE3QVcAC6RIBAqUV6PwDFTOxS1tKHe8QEHR1gHhIoAYCgq4aFNkQCRAgQKBdwPKF7R4eESBAICuB1r8Kd52PrFS14/e29wABAgTyEWhdttDv7XyMtdofAUFXf9ydlUA/BQRd/dR3bgIECBDoi0Dn8oX+OrwvZXBSAgQqJtA6mysOzV+FV6zAfR6O2dh9LoDTEyBQOQGzuSpXUgNqERB0tWC4S6AmAoKumhTaMAkQIECgXaDzr8NfesfM4fUppmrfySMCBAgQ6Eqg88syfxXeFZudRiHQ+XvbH6mMAs+uBAgQ6BDwe7sDxMPKCQi6KldSAyIwooCga0QiOxAgQIBAFQU6vzCLYxR2VbHSxkSAQN4CnV+WxfOZzZW3ej3bb53VFQWEXfV8Hxg1AQLjE/B7e3x+ji6HgKCrHHXSSwJZCgi6stTUFgECBAiUSkDYVapy6SwBAgUUGOzLsp12mBR2mDSpgL3VpbILdC49HMcj7Cp7VfWfAIFeCvi93Utt5+qngKCrn/rOTaA/AoKu/rg7KwECBAgURGCwsMuXZgUpjm4QIFBogc5rcsXOCrkKXbJKdG6wsOu1t00VXnnb9JYgrkSFDYIAgbwE/N7OS1a7RRQQdBWxKvpEIF8BQVe+vlonQIAAgRIIDBZ2xW774qwExdNFAgR6KhC/JIvblK/9Z8B5hVwDSDyRk8BgYVc8Vfp7O9533c2oYCNAoO4CcQbX25P/+b1d93dC/cYv6KpfzY2YgKDLe4AAAQIECCQCQ4VdcAgQIEBgZAEh18hG9shWYKiwK9uzaI0AAQLVFPB7u5p1Naq3BARdb1m4R6AuAoKuulTaOAkQIEBgRIH4pVkMvOKtjQABAgRGFvBF2chG9shXwB+q5OurdQIEqiXg93a16mk0QwsIuoa28QqBqgoIuqpaWeMiQIAAgTELpIFXbEDoNWZGBxIgUFGBJZdYInxqySXCDpMmVXSEhlVGgfQPVfzeLmP19JkAgTwF/N7OU1fbRRUQdBW1MvpFID8BQVd+tlomQIAAgYoI+NKsIoUs6TBOnXxauPW22xq9n7DoomHziZuVdCS6XQWB+GWZjUDRBfzeLnqFqt2/25Lf2ackv7vj5vd2tWtdhtH5vV2GKuljHgKCrjxUtUmg2AKCrmLXR+8IECBAgACBmgv4kFbzN4DhEyBAgECpBE6dPLkt6DrmqCNL1X+dJUCAQBUEfIaqQhWNgcDoBARdo/OyNwECBAgQIECgpwI+pPWU28kIECBAgMC4BARd4+JzMAECBDIR8BkqE0aNECiVgKCrVOXSWQIECBAgQKBuAj6k1a3ixkuAAAECZRYQdJW5evpOgEBVBHyGqkoljYNA9wKCru6t7EmAAAECBAgQ6LmAD2k9J3dCAgQIECAwZgFB15jpHEiAAIHMBHyGyoxSQwRKIyDoKk2pdJQAAQIECBCoo4APaXWsujETIECAQFkFBF1lrZx+EyBQJQGfoapUTWMh0J2AoKs7J3sRIECAAAECBPoi4ENaX9idlAABAgQIjElA0DUmNgcRIEAgUwGfoTLl1BiBUggIukpRJp0kQIAAAQIE6irgQ1pdK2/cBAgQIFBGAUFXGaumzwQIVE3AZ6iqVdR4CIwsIOga2cgeBAgQIECAAIG+CfiQ1jd6JyZAgAABAqMWEHSNmswBBAgQyFzAZ6jMSTVIoPACgq7Cl0gHCRAgQIAAgToL+JBW5+obOwECBAiUTUDQVbaK6S8BAlUU8BmqilU1JgLDCwi6hvfxKgECBAgQIECgrwI+pPWV38kJECBAgMCoBARdo+KyMwECBHIR8BkqF1aNEii0gKCr0OXROQIECBAgQKDuAj6k1f0dYPwECBAgUCYBQVeZqqWvBAhUVcBnqKpW1rgIDC0g6BraxisECBAgQIAAgb4L+JDW9xLoAAECBAgQ6FpA0NU1lR0JECCQm4DPULnRaphAYQUEXYUtjY4RIECAAAECBELwIc27gAABAgQIlEdA0FWeWukpAQLVFfAZqrq1NTICQwkIuoaS8TwBAgQIECBAoAACPqQVoAi6QIAAAQIEuhQQdHUJZTcCBAjkKOAzVI64miZQUAFBV0ELo1sECBAgQIAAgSjgQ5r3AQECBAgQKI+AoKs8tdJTAgSqK+AzVHVra2QEhhIQdA0l43kCBAgQIECAQAEEfEgrQBF0gQABAgQIdCkg6OoSym4ECBDIUcBnqBxxNU2goAKCroIWRrcIECBAgAABAlHAhzTvAwIECBAgUB4BQVd5aqWnBAhUV8BnqOrW1sgIDCUg6BpKxvMECBAgQIAAgQII+JBWgCLoAgECBAgQ6FJA0NUllN0IECCQo4DPUDniappAQQUEXQUtjG4RIECAAAECBKKAD2neBwQIECBAoDwCgq7y1EpPCRCoroDPUNWtrZERGEpA0DWUjOcJECBAgAABAgUQ8CGtAEXQBQIECBAg0KWAoKtLKLsRIEAgRwGfoXLE1TSBggoIugpaGN0iQIAAAQIECEQBH9K8DwgQIECAQHkEBF3lqZWeEiBQXQGfoapbWyMjMJSAoGsoGc8TIECAAAECBAog4ENaAYqgCwQIECBAoEsBQVeXUHYjQIBAjgI+Q+WIq2kCBRUQdBW0MLpFgAABAgQIEIgCPqR5HxAgQIAAgfIICLrKUys9JUCgugI+Q1W3tkZGYCgBQddQMp4nQIAAAQIECBRAwIe0AhRBFwgQIECAQJcCgq4uoexGgACBHAV8hsoRV9MECiog6CpoYXSLAAECBAgQIBAFfEjzPiBAgAABAuUREHSVp1Z6SoBAdQV8hqpubY2MwFACgq6hZDxPgAABAgQIECiAgA9pBSiCLhAgQIAAgS4FBF1dQtmNAAECOQr4DJUjrqYJFFRA0FXQwugWAQIECBAgQCAK+JDmfUCAAAECBMojIOgqT630lACB6gr4DFXd2hoZgaEEBF1DyXieAAECBAgQIFAAAR/SClAEXSBAgAABAl0KCLq6hLIbAQIEchTwGSpHXE0TKKiAoKughdEtAgQIECBAgEAU8CHN+4AAAQIECJRHQNBVnlrpKQEC1RXwGaq6tTUyAkMJCLqGkvE8AQIECBAgQKAAAj6kFaAIukCAAAECBLoUEHR1CWU3AgQI5CjgM1SOuJomUFABQVdBC6NbBAgQIECAAIEo4EOa9wEBAgQIECiPgKCrPLXSUwIEqivgM1R1a2tkBIYSEHQNJeN5AgQIECBAgEABBHxIK0ARdIEAAQIECHQpIOjqEspuBAgQyFHAZ6gccTVNoKACgq6CFka3CBAgQIAAAQJRwIc07wMCBAgQIFAeAUFXeWqlpwQIVFfAZ6jq1tbICAwlIOgaSsbzBAgQIECAAIECCPiQVoAi6AIBAgQIEOhSQNDVJZTdCBAgkKOAz1A54mqaQEEFBF0FLYxuESBAgAABAgSiQOsXZltM3CxsPnEiGAIECBAgQKCgAq2/tycsumg45qgjC9pT3SJAgEB1BQRd1a2tkREYSkDQNZSM5wkQIECAAAECBRBo/cIsdufaq35TgF7pAgECBAgQIDCYQOuXq4KuwYQ8R4AAgfwFWv+/2B8L5u/tDASKICDoKkIV9IEAAQIECBAgMITArbfd1rhOV/qyD2qphFsCBAgQIFAsgc7f2XE2Vwy7bAQIECDQWwFBV2+9nY1AEQQEXUWogj4QIECAAAECBIYRWG7FldpejV+aTVh0kbbnPCBAoBwCizZ+fgf/4jvO4LQRIFBOgVtvuz3EoKt1Mwu7VcN9AgQI9E5A0NU7a2ciUBQBQVdRKqEfBAgQIECAAIEhBDr/QnyI3TxNgECJBFqXNOtcorREw9BVAgSGEDADewgYTxMgQKAHAoKuHiA7BYGCCQi6ClYQ3SFAgAABAgQIDCYg7BpMxXMEyi2QLmnWOQuk3KPSewIEhFzeAwQIEOivgKCrv/7OTqAfAoKufqg7JwECBAgQIEBgjALxC/FTJ582xqMdRoBAvwVGCrXS8Kvf/XR+AgRGJ5AuKbz5xImjO9DeBAgQIJC5gKArc1INEii8gKCr8CXSQQIECBAgQIAAAQIEqiQw2FKFZoBUqcLGQoAAAQIECPRTQNDVT33nJtAfAUFXf9ydlQABAgQIECBAgACBGgsst+JKbaO/9qrftD32gAABAgQIECBAYGwCgq6xuTmKQJkFBF1lrp6+EyBAgAABAgQIECBQSoHWWV1xucJjjjqylOPQaQIECBAgQIBA0QQEXUWriP4QyF9A0JW/sTMQIECAAAECBAgQIECgTUDQ1cbhAQECBAgQIEAgMwFBV2aUGiJQGgFBV2lKpaMECBAgQIAAAQIECFRFQNBVlUoaBwECBAgQIFA0AUFX0SqiPwTyFxB05W/sDAQIECBAgAABAgQIEGgTEHS1cXhAgAABAgQIEMhMQNCVGaWGCJRGQNBVmlLpKAECBAgQIECAAAECVREQdFWlksZBgAABAgQIFE1A0FW0iugPgfwFBF35GzsDAQIECBAgQIAAAQIE2gQEXW0cHhAgQIAAAQIEMhMQdGVGqSECpREQdJWmVDpKgAABAgQIECBAgEBVBARdVamkcRAgQIAAAQJFExB0Fa0i+kMgfwFBV/7GzkCAAAECBAgQIECAAIE2AUFXG4cHBAgQIECAAIHMBARdmVFqiEBpBARdpSmVjhIgQIAAAQIECBAgUBUBQVdVKmkcBAgQIECAQNEEBF1Fq4j+EMhfQNCVv7EzECBAgAABAgQIECBAoE1A0NXG4QEBAgQIECBAIDMBQVdmlBoiUBoBQVdpSqWjBAgQIECAAAECBAhURUDQVZVKGgcBAgQIECBQNAFBV9Eqoj8E8hcQdOVv7AwECBAgQIAAAQIECBBoExB0tXF4QIAAAQIECBDITEDQlRmlhgiURkDQVZpS6SgBAgQIECBAgAABAlUREHRVpZLGQYAAAQIECBRNQNBVtIroD4H8BQRd+Rs7AwECBAgQIECAAAECBNoEBF1tHB4QIECAAAECBDITEHRlRqkhAqUREHSVplQ6SoAAAQIECBAgQIBAVQQEXVWppHEQIECAAAECRRMQdBWtIvpDIH8BQVf+xs5AgAABAgQIECBAgACBNgFBVxuHBwQIECBAgACBzAQEXZlRaohAaQQEXaUplY4SIECAAAECBAgQIFAVAUFXVSppHAQIECBAgEDRBARdRauI/hDIX0DQlb+xMxAgQIAAAQIECBAgQKBNQNDVxuEBAQIECBAgQCAzAUFXZpQaIlAaAUFXaUqlowQIECBAgAABAgQIVEVA0FWVShoHAQIECBAgUDQBQVfRKqI/BPIXEHTlb+wMBAgQIECAAAECBAgQaBMQdLVxeECAAAECBAgQyExA0JUZpYYIlEZA0FWaUukoAQIECBAgQIAAAQJVERB0VaWSxkGAAAECBAgUTUDQVbSK6A+B/AUEXfkbOwMBAgQIECBAgAABAgTaBARdbRweECBAgAABAgQyExB0ZUapIQKlERB0laZUOkqAAAECBAgQIECAQFUEBF1VqaRxECBAgAABAkUTEHQVrSL6QyB/AUFX/sbOQIAAAQIECBAgQIAAgTYBQVcbhwcECBAgQIAAgcwEBF2ZUWqIQGkEBF2lKZWOEiBAgAABAgQIECBQFQFBV1UqaRwECBAgQIBA0QQEXUWriP4QyF9A0JW/sTMQIECAAAECBAgQIFBTgVtvuy3EL1uOOerIMGHRRZsKwwVd6TFbTNwsbD5xYvMYdwgQIECAAAECBEYWEHSNbGQPAlUTEHRVraLGQ4AAAQIECBAgQIBAIQTSwCrtTGvYNVTQ1XmMsCvVc0uAAAECBAgQ6E5A0NWdk70IVElA0FWlahoLAQIECBAgQIAAAQKFEWgNs9JOpWFX62txpld8vjPkiscIulI5twQIECBAgACB7gQEXd052YtAlQQEXVWqprEQIECAAAECBAgQIFAogdZAK+1YDLVuS5Y0PGXyaY2nYtC1ebJMYfxSpnUTcrVquE+AAAECBAgQ6E5A0NWdk70IVElA0FWlahoLAQIECBAgQIAAAQKFExgs7IrhVpzBNdQm5BpKxvMECBAgQIAAgeEFBF3D+3iVQBUFBF1VrKoxESBAgAABAgQIECBQKIHBwq6hOijkGkrG8wQIECBAgACBkQUEXSMb2YNA1QQEXVWrqPEQIECAAAECBAgQIFBIgW7CLiFXIUunUwQIECBAgECJBARdJSqWrhLISEDQlRGkZggQIECAAAECBAgQIDCSwHBhl5BrJD2vEyBAgAABAgRGFhB0jWxkDwJVExB0Va2ixkOAAAECBAgQIECAQKEFBgu7hFyFLpnOESBAgAABAiUSEHSVqFi6SiAjAUFXRpCaIUCAAAECBAgQIECAQLcCrWGXkKtbNfsRIECAAAECBEYWEHSNbGQPAlUTEHRVraLGQ4AAAQIECBAgQIBAKQRi2BW3zSdObNz6DwECBAgQIECAwPgFBF3jN9QCgbIJCLrKVjH9JUCAAAECBAgQGLPAMcce1zj2pptvDvF/NgIECBAIYckllmgw7LjDpOZ9LgQIECBAoKwCgq6yVk6/CYxdQNA1djtHEiBAgAABAgQIlEQgDbiOOe6NoKsk3dZNAgQI9Fwghl4Cr56zOyEBAgQIZCgg6MoQU1MESiIg6CpJoXSTAAECBAgQIEBg9AJx1tZXNtl09Ac6ggABAjUXEHjV/A1g+AQIECixgKCrxMXTdQJjFBB0jRHOYQQIECBAgAABAsUWGC7k2ilZnituS7y5XFexR6J3BAgQyFfg5uSPAm68afAlXc8643TLGebLr3UCBAgQyFhA0JUxqOYIlEBA0FWCIukiAQIECBAgQIDA6ASGCrliwLXDpDdCrtG1aG8CBAhUXyD+f2dc6jXetm7CrlYN9wkQIECg6AKCrqJXSP8IZC8g6MreVIsECBAgQIAAAQJ9FBgs5BJw9bEgTk2AQOkEYtjVeU1DYVfpyqjDBAgQqK2AoKu2pTfwGgsIumpcfEMnQIAAAQIECFRRYN6PLNA2LCFXG4cHBAgQ6EpgsLDr/j/e19WxdiJAgAABAv0UEHT1U9+5CfRHQNDVH3dnJUCAAAECBAgQyEGg84tZIVcOyJokQKA2Ap3/n7pjsvTrjm9e47A2CAZKgAABAqUTEHSVrmQ6TGDcAoKucRNqgAABAgQIECBAoCgCrbO5llxiiRCX2rIRIECAwNgFOsMus7rGbulIAgQIEOiNgKCrN87OQqBIAoKuIlVDXwgQIECAAAECBMYs0HltLteTGTOlAwkQINAm0PpHBGZ1tdF4QIAAAQIFFBB0FbAoukQgZwFBV87AmidAgAABAgQIEOiNwFc22TTEsCtuZnP1xtxZCBCoh4BZXfWos1ESIECgKgKCrqpU0jgIdC8g6Oreyp4ECBAgQIAAAQIFFmidcWA2V4ELpWsECJRSwP/HlrJsOk2AAIFaCgi6all2g665gKCr5m8AwydAgAABAgQIVEGgc9lC15CpQlWNgQCBIgm0Bl2WLyxSZfSFAAECBDoFBF2dIh4TqL6AoKv6NTZCAgQIECBAgEDlBQRdlS+xARIg0GeB1uVhBV19LobTEyBAgMCwAoKuYXm8SKCSAoKuSpbVoAgQIECAAAEC9RJovX6M63PVq/ZGS4BAbwQEXb1xdhYCBAgQGL+AoGv8hlogUDYBQVfZKqa/BAgQIECAAAECAwQEXQNIPEGAAIFMBQRdmXJqjAABAgRyFBB05YiraQIFFRB0FbQwukWAAAECBAgQINC9gKCreyt7EiBAYCwCgq6xqDmGAAECBPohIOjqh7pzEuivgKCrv/7OToAAAQIECBAgkIGAoCsDRE0QIEBgGAFB1zA4XiJAgACBQgkIugpVDp0h0BMBQVdPmJ2EAAECBAgQIEAgTwFBV5662iZAgEAIgi7vAgIECBAoi4CgqyyV0k8C2QkIurKz1BIBAgQIECBAgECfBARdfYJ3WgIEaiMg6KpNqQ2UAAECpRcQdJW+hAZAYNQCgq5RkzmAAAECBAgQIECgaAKCrqJVRH8IEKiagKCrahU1HgIECFRXQNBV3doaGYGhBARdQ8l4ngABAgQIECBAoDQCgq7SlEpHCRAoqYCgq6SF020CBAjUUEDQVcOiG3LtBQRdtX8LACBAgAABAgQIlF9A0FX+GhoBAQLFFhB0Fbs+ekeAAAECbwkIut6ycI9AXQQEXXWptHESIECAAAECBCosIOiqcHENjQCBQggIugpRBp0gQIAAgS4EBF1dINmFQMUEBF0VK6jhECBAgAABAgTqKCDoqmPVjZkAgV4KCLp6qe1cBAgQIDAeAUHXePQcS6CcAoKuctZNrwkQIECAAAECBFoEBF0tGO4SIEAgBwFBVw6omiRAgACBXAQEXbmwapRAoQUEXYUuj84RIECAAAECBAh0IyDo6kbJPgQIEBi7gKBr7HaOJECAAIHeCgi6euvtbASKICDoKkIV9IEAAQIECBAgQGBcAoKucfE5mAABAiMKCLpGJLIDAQIECBREQNBVkELoBoEeCgi6eojtVAQIECBAgAABAvkICLrycdUqAQIEUgFBVyrhlgABAgSKLiDoKnqF9I9A9gKCruxNtUiAAAECBAgQINBjAUFXj8GdjgCB2gkIumpXcgMmQIBAaQUEXaUtnY4TGLOAoGvMdA4kQIAAAQIECBAoioCgqyiV0A8CBKoqIOiqamWNiwABAtUTEHRVr6ZGRGAkAUHXSEJeJ0CAAAECBAgQKLyAoKvwJdJBAgRKLiDoKnkBdZ8AAQI1EhB01ajYhkrgTQFBl7cCAQIECBAgQIBA6QUEXaUvoQEQIFBwAUFXwQukewQIECDQFBB0NSncIVAbAUFXbUptoAQIECBAgACB6goIuqpbWyMjQKAYAoKuYtRBLwgQIEBgZAFB18hG9iBQNQFBV9UqajwECBAgQIAAgRoKCLpqWHRDJkCgpwKCrp5yOxkBAgQIjENA0DUOPIcSKKmAoKukhdNtAgQIECBAgACBtwQEXW9ZuEeAAIE8BARdeahqkwABAgTyEBB05aGqTQLFFhB0Fbs+ekeAAAECBAgQINCFgKCrCyS7ECBAYBwCgq5x4DmUAAECBHoqIOjqKbeTESiEgKCrEGXQCQIECBAgQIAAgfEICLrGo+dYAgQIjCwg6BrZyB4ECBAgUAwBQVcx6qAXBHopIOjqpbZzESBAgAABAgQI5CIg6MqFVaMECBBoCgi6mhTuECBAgEDBBQRdBS+Q7hHIQUDQlQOqJgkQIECAAAECBHorIOjqrbezESBQPwFBV/1qbsQECBAoq4Cgq6yV028CYxcQdI3dzpEECBAgQIAAAQIFERB0FaQQukGAQGUFBF2VLa2BESBAoHICgq7KldSACIwoIOgakcgOBAgQIECAAAECRRcQdBW9QvpHgEDZBQRdZa+g/hMgQKA+AoKu+tTaSAmkAoKuVMItAQIECBAgQIBAaQUEXaUtnY4TIFASAUFXSQqlmwQIECAQBF3eBATqJyDoql/NjZgAAQIECBAgUDkBQVflSmpABAgUTEDQVbCC6A4BAgQIDCkg6BqSxgsEKisg6KpsaQ2MAAECBAgQIFAfAUFXfWptpAQI9EdA0NUfd2clQIAAgdELCLpGb+YIAmUXEHSVvYL6T4AAAQIECBAgEARd3gQECBDIV0DQla+v1gkQIEAgOwFBV3aWWiJQFgFBV1kqpZ8ECBAgQIAAAQJDCgi6hqTxAgECBDIREHRlwqgRAgQIEOiBgKCrB8hOQaBgAoKughVEdwgQIECAAAECBEYvIOgavZkjCBAgMBoBQddotOxLgAABAv0UEHT1U9+5CfRHQNDVH3dnJUCAAAECBAgQyFBA0JUhpqYIECAwiICgaxAUTxEgQIBAIQUEXYUsi04RyFVA0JUrr8YJECBAgAABAgR6ISDo6oWycxAgUGcBQVedq2/sBAgQKJeAoKtc9dJbAlkICLqyUNQGAQIECBAgQIBAXwUEXX3ld3ICBGogIOiqQZENkQABAhUREHRVpJCGQWAUAoKuUWDZlQABAgQIECBAoJgCgq5i1kWvCBCojoCgqzq1NBICBAhUXUDQVfUKGx+BgQKCroEmniFAgAABAgQIECiZgKCrZAXTXQIESicg6CpdyXSYAAECtRUQdNW29AZeYwFBV42Lb+gECBAgQIAAgaoICLqqUknjIECgqAKCrqJWRr8IECBAoFNA0NUp4jGB6gsIuqpfYyMkQIAAAQIECFReQNBV+RIbIAECfRYQdPW5AE5PgAABAl0LCLq6prIjgcoICLoqU0oDIUCAAAECBAjUV0DQVd/aGzkBAr0REHT1xtlZCBAgQGD8AoKu8RtqgUDZBARdZauY/hIgQIAAAQIECAwQEHQNIPEEAQIEMhUQdGXKqTECBAgQyFFA0JUjrqYJFFRA0FXQwugWAQIECBAgQIBA9wKCru6t7EmAAIGxCAi6xqLmGAIECBDoh4Cgqx/qzkmgvwKCrv76OzsBAgQIECBAgEAGAoKuDBA1QYAAgWEEBF3D4HiJAAECBAolIOgqVDl0hkBPBARdPWF2EgIECBAgQIAAgTwFBF156mqbAAECIQi6vAsIECBAoCwCgq6yVEo/CWQnIOjKzlJLBAgQIECAAAECfRIQdPUJ3mkJEKiNgKCrNqU2UAIECJReQNBV+hIaAIFRCwi6Rk3mAAIECBAgQIAAgaIJCLqKVhH9IUCgagKCrqpV1HgIECBQXQFBV3Vra2QEhhIQdA0l43kCBAgQIECAAIHSCAi6SlMqHSVAoKQCgq6SFk63CRAgUEMBQVcNi27ItRcQdNX+LQCAAAECBAgQIFB+AUFX+WtoBAQIFFtA0FXs+ugdAQIECLwlIOh6y8I9AnUREHTVpdLGSYAAAQIECBCosICgq8LFNTQCBAohIOgqRBl0ggABAgS6EBB0dYFkFwIVExB0VayghkOAAAECBAgQqKOAoKuOVTdmAgR6KSDo6qW2cxEgQIDAeAQEXePRcyyBcgoIuspZN70mQIAAAQIECBBoERB0tWC4S4AAgRwEBF05oGqSAAECBHIREHTlwqpRAoUWEHQVujw6R4AAAQIECBAg0I2AoKsbJfsQIEBg7AKCrrHbOZIAAQIEeisg6Oqtt7MRKIKAoKsIVdAHAgQIECBAgACBcQkIusbF52ACBAiMKCDoGpHIDgQIECBQEAFBV0EKoRsEeigg6OohtlMRIECAAAECBAjkIyDoysdVqwQIEEgFBF2phFsCBAgQKLqAoKvoFdI/AtkLCLqyN9UiAQIECBAgQIBAjwUEXT0GdzoCBGonIOiqXckNmAABAqUVEHSVtnQ6TmDMAoKuMdM5kAABAgQIECBAoCgCgq6iVEI/CBCoqoCgq6qVNS4CBAhUT0DQVb2aGhGBkQQEXSMJeZ0AAQIECBAgQKDwAlkHXXfeeVf41h57jGvca67xufDV7bYbVxsO7r/ApB13Cg8++GCzI6edekqYeeaZm49HujPe40dqv+qv/+jEE8MlP720Oczdv75bWHGFFZqP+3Xnu3vvE37/hz80T3/kEYeH+eebr/m4incEXVWsqjERIECgmgKCrmrW1agIDCcg6BpOx2sECBAgQIAAAQKlEMg66Lrp5ptD/FJ3PNsmX/lK2Pu73xlPE44tgMCaa60d7vvjH5s9+e3VV4XZZput+XikO+M9fqT2q/76/gccECaffkZzmIcdckhYZ+21mo/7dWeLrbYK11z72+bpLzr//LDQQgs2H1fxjqCrilU1JgIECFRTQNBVzboaFYHhBARdw+l4jQABAgQIECBAoBQCgq5SlKmUnRxvUDXe40uJlmGnBV0ZYo6zKUHXOAEdToAAAQI9ExB09YzaiQgURkDQVZhS6AgBAgQIECBAgMBYBbIOuuKSZNtt/7VBu/Pss8+G119/vfna9NNNF94x5ZTNx+mdDdZfP8Rl1mzlFhhvUDXe48utN/7eC7rGb5hVC4KurCS1Q4AAAQJ5Cwi68hbWPoHiCQi6ilcTPSJAgAABAgQIEBilQNZB13CnX2b5FcITTzzR3OX8n5wbFl1kkeZjd6olMN6garzHV0tz9KMRdI3eLK8jBF15yWqXAAECBLIWEHRlLao9AsUXEHQVv0Z6SIAAAQIECBAgMIKAoGsEIC+PWWC8QdV4jx9zxytyoKCrOIUUdBWnFnpCgAABAsMLCLqG9/EqgSoKCLqqWFVjIkCAAAECBAjUTKDoQdf//ve/cMONN4af/vTS8NeHHgr/+Mc/wgzvniHMNedcYfXVVgufWX21MOUgyx/GMl5/ww3h7rvvblZ09dVXD3O///3h3nvvDTfddHO44647k8dzh09+cvGw2Cc+EaaeeurGvnF5xSt/85twzTXXhqf/9a8w74c/HBZfbLGw+OKLNfdpNvrmnQsvuij885//bD69+cSJ4R3veEe47rrrw3kXXBAeePDB8J9//zu8733vCwsvvFDYcIMNGu02DxjmzpNPPhl+9rPLGuN5PJkR9/zzz4dZZpklzDPP3OGzn/lMWG7ZZRvnGqqJwfr22muvhbjM5O233x5eeOHFsOyyy4Qll1iirYm4zxW/+lW45557w3333dcYw3vf+97GeaPX+uutN+x5xxtUdXP83Xffk7hc39bvD37wg2HVVVZpPPfyyy+H0884o/n6zDPPEtZdZ+0Q31exvtdce0144h9Phne9a+rwwQ98IKy91tphzjnnaO4/3J3x1OXUUyeHV197tdH81FO/K2yy8Veap4rtXnzJJc3HrXc2+OIXw7vf/e7mU6eccmp47fXXGo/f9a53hY2/8lY7owm6xvNz1uxMcuf5F14IlyR9jz8/jzzyaONnc5555glLfPKTYaMvbRje+c53hi222ipx/23zsIvOPz8stNCCzcetd1548cXkZ/+n4Ve//nV49NHHGkufzjrrrGGVlVcOX/zi+mHaaaZpnOsvf/lL87B11l678fPRfKLlTnw//OLy/2u099jfHgvP/OuZxs9krP26664z4Geg5dBx3RV0jYvPwQQIECDQQwFBVw+xnYpAQQQEXQUphG4QIECAAAECBAiMXaDIQdcjjz4adtx553DnnXcNOcAYXJ1z1pkhfvnduXV+0X/iCceHhx9+JOx3wAGdu4aFF1oonHnG6WGaJCzYc6/vhHPPO2/gPklAddopp4Tpp59+wGudocztt/4hnHPOOeGgQw4dsG98Yooppgjbbr112HWXncPb3va2Qfd59dVXw7HH/b9w/I9+FGLoNNQWDQ495OBGWDfYPp19u/X3t4Qddtwx/DYJ4dJt9912Ddtus036MPztb38Pu+2+e/jdLbc0n+u8M8/cc4f999s3LPWpT3W+1Hjced7fXn1VmG222Qbdd7AnRzo+hocbfGmj8MwzzzQPf/9cc4Ufn31W8/3w7yRc/MQn3wrwFlzw4+HCpLY77bJrEnhc3jwuvRNrse8+e4cvbbhh+tSA2yzqstIqq4b4/o7b29/+9nDPnXc0buPjy//v/8KkHXeKdwdsp516Slhm6aUbz//nuefChMUWb+7zsY99LPz0ogubjzvf/4cdckhYZ+21mq+nd8b7c5a2E98rO+y0c3jqqafSp9puY23OSkLHvb77na6Crthe/LItBn+DbfFnNnrs9d29w2U//3lzl6GCs+uuvz7s+vXd2wLp5kFv3ll5xRXDD/7fccMGuJ3HdPNY0NWNkn0IECBAoAgCgq4iVEEfCPRWQNDVW29nI0CAAAECBAgQyEGgqEFXDDHW++IG4T//+c+Io44zrmLYNeOMM7bt2/lF/weSmSVxVthQWwxs4j7nnHvuULuEGJScfeaZjUCsdafOUObTq67amA3Vus9g9zdMZugcsP9+A16KwdaWSRDWGkYN2KnliRiWHHXE4Y0ZXi1PN+529i0GIvfcc0/bbq1BVww+1lpn3a7sY+h3WTLjZo45Zm9rLz7oPG+WQVcMP9ZPwqjHHvtb87wx7IwhVwxU0q0z6Jp99tkbgeDPLrss3WXAbQy7jj7yiEEts6rL5ltuGa797XXNc1+fzCyLs/3i9oMf/jAccdTRzdda7+z9ne80Z3/9+f77w2fXWLP5cpzdd+zRRzUfd77/Bwu6svg5iye85fe/DxtvulmIIeBwW6xNnKXVOvtxsGDqpptvDpttvsWI7X1k/vnDi0l7Dz/ySPO0g7UX6x1Drjhbc6RtzTXWCEccduiQAfRIxw/2uqBrMBXPESBAgEARBQRdRayKPhHIV0DQla+v1gkQIECAAAECBHogUMSg65VXXglfSEKuuMRgusVlAJdPluibe+73hyef+mcSEvw2xBAj3eLSZ2ecdlqYbtpp06dC5xf98YW4RN1yyy73xtJ1114b4lJmnVucbRVDr/e9b5bwm6uuDs8++2zbLqeceGJYfvnl2p7rDHXSF2N48YkJE8LMM80U7k+WV4uBQGcY8IPjjg2rffrT6SGN24OS2TcnnXxK23MxVIqzWGaa6b1JWw80fOKSc+kWZ6NdcP55Yb55502fatwO1bf4YnSNIdmuO+0Uttxyi8b+cbZT6wyZuEziKiutFJZa6lPhX8lSjmedfU6IIUu6xVkwP0pmy3VunefNKuiKM5m+/JWNw73JcorpNlPie/aZZ4QPf+hD6VON286gq/XFj370o2H++eYNTz/9dKMuL774UvPluBzm5T+/LMRZa61bVnXZ53v7hjPPPrvZdJxlFpe0jFucSXdJslRn3FZNluh7Llmq8sabbmo83iRZmnDvZEZU3OKymJtt8UbN4uOvbrtt2G3XXeLdxtb5/u8MurL6OYvLFX42CYfiLMDWLS4HuMgiC4epp5o63JP8LN9x552tLzfvdwZTsb6f+dwa4Ylkmc7WLdY2GsX2Yu1vS5bdHGzrbC+GYGutvU7DMd3/Pe95T2Nm3CwzzxQeeujhcO1117X9XG6UhKj77fu9dPdx3wq6xk2oAQIECBDokYCgq0fQTkOgQAKCrgIVQ1cIECBAgAABAgTGJlDEoOvnv/hFY8mydETTTzddI8D5UHLtpXSL4dP2k3YIceZHuu3xzW+GLbbYPH04IOiKM3UuveTiEGeBxC1+oR5nxDz++OPNY+Kd7x+wf/ji+us3nouh1NeS8/w6ueZQuk3afvuw8047pg8bt52hTnxy0+S6S7sns0hiuJZucSbVzrvu1rjeVfrchEUXDeed++P0YWO2y7IrrBhiEJFucZZJXFJvhhlmSJ8KN//ud0ko8o3w97+/FTDEpelioNG6dfYtBnnxOlWfSa5ZFpfBm2qqqZq7x7Bnl113DVcnIWA8f+z7r3/5y+Zso7hjnE213IorNYOBWJ+4HGLn1nneLIKuGGhtsdXWjeu2peeLJmcly05+dIEF0qeat4MFXfG6TocdekiIs+7S7dHHHgsTkxlErTP+Dkxm2sVrYqVbnIWUVV0mTz4t7P/976dNh9awc93kvZcu17lbsrTls0mgm4aeSy+1VDh98qmN4y648MLwzW/v0Wzj4O8fGNb7wheaj0cKurL6OTsvucbWt/fcq3ne+HO257e/3Zh5Fu+n29VXXxN2+8Y32paajK91BlNnJQHg3kkQmG4xiN0nCfficpLxvZtuQy1F2Nne3vt8L5x1zjnpYWGRhRcOk085uW0J0hjcbrLZxLZlFy9Orq0XZ3BmsQm6slDUBgECBAj0QkDQ1Qtl5yBQLAFBV7HqoTcECBAgQIAAAQJjEChi0LX1NtuG31x9dXM0u+68U9j+q19tPk7vxIAqBi7prKY4Q+fSiy9KXx4QdC32iU+Ec895axZN3PHAgw4Kp5w6uXlMDHZ+d+ONYeqp3wqnOq+ZFMOheG2g1q0z1FlyiSXCmaef1vbFfLr/3Xffk8xY+2Lbdbeu/NUVIV5rK24nJzO5vt8SVi3wkY+Eiy+8YNDrBsWgL36Jnm7vfOc7w03XX9f2JX5n3zafuFkjiEiPGew2hoBXXPGrZKm318L66603YJfOGl171W9CXBawdes873iDrniOgw89LLQuOxhn8J1+2uTGTLfWc6f3Bwu6dklCyq8lYWXn1lnnDZLA6cAk9Ey3LOtyZRKcbrPdW+/p1iUJF5nwiRBnScXtuGOObiwhmQZJ8Rpn0TFunUscxuU7P7n4W9fsGino6qzhWH/O4pKF6Yyz2K+Jm24S9tpzz3h3wBZnqsUZa61bZzAVr7v2h1tvbe6yXXLtuK8n15AbbPvlFVc0Au/W11rbi0H1Ekst3Tb7s9MpPbazb938nKTHjnQr6BpJyOsECBAgUBQBQVdRKqEfBHonIOjqnbUzESBAgAABAgQI5CRQxKBr6eWWD//4xz+aI95i84lh2mneWpKw+UJyZ3KyXGEMZeIWZ4/cc+cdzUCo84v+1utQNQ5I/hOX6ItL9aVbXKLvhON/mD5s3MYZUzFQS7c4cyjODGvdOkOdE5Ol/FZaccXWXdrud16j6aQfnRBWXGGFxj6tS9fFJw49+ODGDKy2BloefGH9L7YtC3f+T84Niy6ySHOPzr795MfnNJZTbO4wzJ1o+6c//amxLF0aKMbdz09mu1x/ww3NIy9MlkyMyyq2bp3nHW/QFa/FFpd/TLcYRp5y0olhiU9+Mn1qwO1gQdfNN1wf3vve9w7Yt7POcebfZZf+tLlflnWJ44jL86Xbtsn12Hb/+m6N5fqWWf6N90F8LZ7/uaQGG2705XTXcPutf0h+HqYJ3917n3D2j9+aCXjDb68NcZnJdOt8/3cuXZjVz9mnllm2bSbUYKFn2qd427l/azAVX198yU+1zfq68brfhplnnjm+NOgWZ9m1zspsbS/O0Ft1tdWbx8Xr+G385bcsmy8kd/7972fDaWec2XwqhoYxFMtiE3RloagNAgQIEOiFgKCrF8rOQaBYAoKuYtVDbwgQIECAAAECBMYgULSg67XXXgsfXXChZCbR62MYTQitX7KP9EV/PEFn0PWVjTYK30uWCGzdOgOQboKuX1/xywHXd2pts7Nv+yfXA4pLs8Xtyxtv0liWMN2/9Yv79LnW229861vhwoveCt6OPfqo8NnPfKa5y1gCp9jeUclsos7rLjUb7bjTi6Cr9ZTxGlo/+uEPw3LLLdv69ID7nUHXUMssxgPj9do+vvBbAeGss84arrvmrZmFWdblv//9b1hwkUWb7/N0yckYHm46cfPGOOKSfXfedmt4PrlG1yc/tVRzbOmSettsu1248qqrGs/H67PdkezbunW+x1qDrqx+zuKMqfjzmoagMYCLQdxwW2voE/drfX931iAuS/mH3721POlg7U5MrlP22+R6ZenW2l6caRZnnI1lizMs40zLLLbWMe84aVLYcYdJWTSrDQIECBAgkLmAoCtzUg0SKLyAoKvwJdJBAgQIECBAgACBkQSKFnTFJdvi0m1j3eIMmPQaXMN90Z+2n1fQ9fubbwrvfve709MMuD32uOPC0cce13x+r+SaRhOTJQXjtnZynaW4vGG6tS5rmD7XentAcq2nU5NrPqVb57WaRhN0xQAkzhQ697zz0ua6uu110BVnc5168kltS/UN1tHOoGu48KIzZOkMurKuy/LJ7ME0SPzUkks2lro886yzwj777tcYSmtfW2c5HX7ooWHttT4f1lr3CyFe8y1ucXnLn/30ksb99D/Dvf+z+jl7LgnhFv3EYukpQ+vSis0nO+589WuTwhW/+lXz2dZgKl4jbqHkmnXpFmdyxRldw21bJUsbXpVc/yvdWtv7TRIEbp0EgmPZ4s9v/DnOYhN0ZaGoDQIECBDohYCgqxfKzkGgWAKCrmLVQ28IECBAgAABAgTGIFC0oCsOYeFFJ4QXXnyxMZo4q2WPZMZSXJawm+3za64R3vOe9zR2He6L/rStvIKuwYKf9Jzx9uvf+Ea4+JK3lsU74rDDwlqfX7OxS+e1kyaffHJYdtllWg9vu986sye+cOpJJ7XNdBpN0NV5za/YXlwyMF7fLF7/K93ifn/685/Th2Gw8Y7mvM2GWu50Hj/TTDOFf/7zn8094uyss888I8Rrsw21ZRl0ZV2XTTabGG5IrgcXtw/MM0/41S//L+y3//7N5fNWSpayPDFZ0jJucenC3//hjZlSX0uuV7dLct26JZdepumx+mqrhf937DGNfdP/jPT+z+rnLM5Me+mllxqnjT+ndyQzulqvcZf2J71d4/NrhT8my2GmW2swFZ+bsNjizeVI4+M4oyvO7BpqW3nVT4eHH3mk+XJre3feeVdYN7nWWrp98AMfCJtuskn6cNjbqaZ6Z9gguZZeFpugKwtFbRAgQIBALwQEXb1Qdg4CxRIQdBWrHnpDgAABAgQIECAwBoEiBl2fXWPN8Of772+OpnWWVvPJN+/EGTFzzDF759ONxyN90R93yivo2uOb3wxbbPHGEnSdnYvLva3+2c+Fhx5+uPlSDGzSa03t8719w5lnn918bbtkxsrXd9u1+bj1TgwE4xf9Tz31VPPpy39+WSOcSp/oDIyGu1bWoYcdHk448cT00LD9dtuFXXfZufk4vdMZ+vQi6Ioz2/bc6zvNcCj2Jc74Ofecs4dcJjLLoCvrunznu3uHc849t0H6rndNnSxTeFtoXYZvy+T98+3kfRS3PfbcK/zk/PMb9z+z+urhyMMPCx9baOHmkoHbbLVV+MbuX2+8nv5npPd/Vj9nq3x6tbb38mmnnhKWWXrptBttt/F9uvxKK4e4dGO6tQZT8bnPr7NuuPfee9OXw1577BEmbrZp83Hrnd/dcktjqc906cT4Wmt7MRiNgWC6xWuz3XT9dWGKKaZIn2q7He7/T9p2HOUDQdcowexOgAABAn0TEHT1jd6JCfRNQNDVN3onJkCAAAECBAgQyEqgiEHXYYcfEY7/0Y+aQ1w+uQ7TyUn40vnldJxRtF4y42Kh5BpBMYxZfLG3llCLB4/0RX/cJ6+gK842+vnPLg2zzz4whDv+hBPCYUccGU/f2OK+NyZfvk811VSNx9dGMUe1AABAAElEQVRe+9uweRJcpFucSXXRBec3l2RMn4+3nWOMM4Ou+L/L26xGE3TF6xnF6xql2zlnnTlgecB//OMfjaDuP889l+4WLjjvJ2GRhRduPo53RnPetgPffDDY8dMmVl9KZje1zgiaa845G2FXXGqwc8sy6Mq6LieffEr4/iGHNLt86y2/C59LZjvFa8LF7YD99g0bbrBB437rvnFpzhOO/2FYceVVGq917ps+2fneaL1GV9wnq5+zvff5XjjrnHPS0zZC1osvvGDArK4YRsUvz35x+eXNfeOd1mAqPv7h8ceHw488Kt5tbPH6Y3G8S33qU+lTjdsHHnwwbLX1Nm2zueILne2tv8GG4bbbb28eu1vy/xVfTQLczu3Ciy4K304Cxbgs5I477BDi+yqrTdCVlaR2CBAgQCBvAUFX3sLaJ1A8AUFX8WqiRwQIECBAgAABAqMUKGLQ9eBf/xo+87k1QrxeVLotucQSYacddwgf+9jHwmvJjKi4jNv+BxzY9iX3/vt+L3xpww3TQwaEQJ1f9Mcd8wq6YttxCcWv77pLWGaZZUJcdu8v9/8lnJEERxdedHF8ubltlPR5v6Tv6RYDgVVXW71tlkyc8bPD174Wln2zrfuTtk49bXLbtYni8a3X+krbGywwitdSGmw7PAngfpgEcem2SnIdqYMP+n5zOcgYMH0zuZ7YXXfdne7SuI1j+Hyy9OJ8884bZpxxxsZzozlvW2NvPhjq+CeeeCKsl4QXjz/+ePOw+eebL8RQrvO6aFkGXVnXJV6nKl6vKt3O/8m54Ysbfqk5S6s1ZLzyN78J22z31cauMRCN1yf78sZvLcF31hmnh/gz0rqNFHRl9XN2x513hi+s377EXwxc4wyzCcn1tuIyhvckM7SOPubYcPPvftfaxcb9zmAqBqmfXv0zIV5HrHX79CqrhEUXXSRM9c6pwr333Rcuveyytplh6b6d7Z1/wQXhW3vsmb7cCIE3TALyTTbZuLFk5LPPPht+ecUV4eDk2mfxGmFxm3LKKUMM69Lr/TUPHuMdQdcY4RxGgAABAj0XEHT1nNwJCfRdQNDV9xLoAAECBAgQIECAwHgFihh0xTF1zuoYaZzxOlIXJV9ox0Ao3Ub6oj/ul2fQlfZjuNu49N5lP72kEYS17nf7HXeEjb6y8aBf5Lfu13o/Bh1x2bh3vOMdrU+PamZVDCJaA5TYULzuUvzC/7lkBtejjz3WCGKmnWaaxnXUWpeMi/sed8zRIS6tF7ehgqrGi138Z7jjY+AWZ3a1ziqLM8rOOP20EGcApVuWQVdsM8u6xDHE61Wl28ILLRRiaJRuN99wfYhL7cXtrw891Ag/09c69x1sOcpu3v9Z/JzFPrUurZj2sdvbzmAqHnfJTy8Nu+2++4hNTDfttOG1119rBlTxgM724nt0y623DtckMyW73b6w7jrhkIMO6nb3EfcTdI1IZAcCBAgQKIiAoKsghdANAj0UEHT1ENupCBAgQIAAAQIE8hEoatD1+uuvN2ZknX7mWSMOfKGFFgzHHHVUeP9cc7Xt280X/XkFXYcefHDY/8ADQ5wtMtQ2wwwzhON/8P+a1+bq3C/OMvnmt77dFuZ07pM+jiFXDJnS2VTp8/F2uMCodb94P86ii6HFBckybkNtcbZLvG5anKET/Vq3XgVd8ZxxicXNt9wqvPLKK80uLLvM0uHEZEZa7GPcsg66YptZ1eWll14KCy06oTmDK7adbnFm2u9vfmsJyViXBRdZtG2s6b5xhtddt9/WtlxlfK2b938WP2fxXPFacdsmM85uuPHG+HDQLS49+t299grXXHNN+M3VVzf36Qym0hfOS65Jts+++4WXX345fartNoZcZ55+ejjiqCPbQqzB2vvXv/4VJu24U7jp5pvb2hjswbrrrB32TZZjbA3NB9tvNM8JukajZV8CBAgQ6KeAoKuf+s5NoD8Cgq7+uDsrAQIECBAgQIBAhgJFDbrSIcbl3U740Ylt19hJX5tlllka19PZbZddmsFG+lq87eaL/ryCrjjD5l/PPBP2+d6+jWUWW/sVZ0itvOKKYY89vh3mfv/7W18acD9er+nIo48Ov/zlFeG5558f8HpcKvDLG20UvvLljRozrwbskDwxmqArPX7yaaeHo5Lzdp4zmh979FGN66E9/MgjSdh1TLj6mmvDM8lY49bLoCue76eX/qwx86d1ZlmcUXZMEn5E5zyCrnjeLOoS21lm+RVCXIqxc/vEhAnhJz9+67pX8fXPrrFm+PP993fuGuKyjfF6cJ1bN+//9Jjx/JylbcQw7oTk2nqTTz8jPP300+nTjdvpp58+fGfPPUOcKbXTLru2BaSDBVPpwXEm21lnnRWu+NWvw9+TpSpjTePPTLweX1zK9H3ve1/YIrmeXetsraHai/07dfLkcOZZZzdmJqbniLcxhIvtfm377Rt9bH0ti/uCriwUtUGAAAECvRAQdPVC2TkIFEtA0FWseugNAQIECBAgQIDAGAR6GXSNoXvNQx56+OHwwAMPNEKB2WebPblW10dDDF2Ksg0XJv0l6fdDyRf28dpDsc8fT64zNtQ1soYaT5z9E5e1e/zxJ8ILLzzfaGfuueduXBNrqGPG+3wMj6L73Xff3WhqgQUWaFzT6O1vf/t4m67M8f2oS554WfycxRl2f7j11vDoo482ujrr+2YNiy++WONaXePp+6vJtfliINX5/us26ErPHd/Xd999TxJ2PdqYcfmhD30ofPSjHw1xhlhem6ArL1ntEiBAgEDWAoKurEW1R6D4AoKu4tdIDwkQIECAAAECBEYQKEvQNcIw+v7ycEFX3zunAwQqLLD5lluGa397XXOEQ83oau7QhzuCrj6gOyUBAgQIjElA0DUmNgcRKLWAoKvU5dN5AgQIECBAgACBKCDoyuZ9IOjKxlErBFKBx5OlCjuXQExfS2+f/fe/G0shtu538QUXhAUX/Hi6SyFuBV2FKINOECBAgEAXAoKuLpDsQqBiAoKuihXUcAgQIECAAAECdRQQdGVTdUFXNo5aIZAK7Lf//uG0M85MH3Z9+7sbbwgzzjhj1/v3YkdBVy+UnYMAAQIEshAQdGWhqA0C5RIQdJWrXnpLgAABAgQIECAwiICgaxCUMTwl6BoDmkMIDCMwlqDrk4svHs45a/Th2DDdyOQlQVcmjBohQIAAgR4ICLp6gOwUBAomIOgqWEF0hwABAgQIECBAYPQCgq7Rmw12hKBrMBXPERi7wGiDrgmLLhqOPOLwMNecc479pDkdKejKCVazBAgQIJC5wHIrrtRs85ijjgzx96uNAIFqCwi6ql1foyNAgAABAgQI1EJA0JVNme+9997wwosvNhtbeKGFwpRTTtl87A4BAqMTePiRR8KTTz454kFTTDFFmGP22cNss8024r792kHQ1S955yVAgACB0QicOnlyOGXyac1Drr3qN8377hAgUF0BQVd1a2tkBAgQIECAAIHaCAi6alNqAyVAoE8CrUHX8sstG5Zbdtk+9cRpCRAgQIDA4AK33nZ7uPW225ovxplccUaXjQCB6gsIuqpfYyMkQIAAAQIECFReQNBV+RIbIAECfRZoDbqmn376MN100/W5R05PgAABAgSGF7Bs4fA+XiVQJQFBV5WqaSwECBAgQIAAgZoKCLpqWnjDJkCgZwKCrp5ROxEBAgQIZCAg5MoAURMESiQg6CpRsXSVAAECBAgQIEBgcAFB1+AuniVAgEBWAp1Bl6ULs5LVDgECBAhkJTBh0UUaTW0+cWJWTWqHAIGSCAi6SlIo3SRAgAABAgQIEBhaQNA1tI1XCBAgkIVAa9C146RJYccdJmXRrDYIECBAgAABAgQIjFtA0DVuQg0QIECAAAECBAj0W0DQ1e8KOD8BAlUXEHRVvcLGR4AAAQIECBAor4Cgq7y103MCBAgQIECAAIE3BQRd3goECBDIV0DQla+v1gkQIECAAAECBMYuIOgau50jCRAgQIAAAQIECiIg6CpIIXSDAIHKCgi6KltaAyNAgAABAgQIlF5A0FX6EhoAAQIECBAgQICAoMt7gAABAvkKCLry9dU6AQIECBAgQIDA2AUEXWO3cyQBAgQIECBAgEBBBARdBSmEbhAgUFkBQVdlS2tgBAgQIECAAIHSCwi6Sl9CAyBAgAABAgQIEBB0eQ8QIEAgXwFBV76+WidAgAABAgQIEBi7gKBr7HaOJECAAAECBAgQKIiAoKsghdCNwgq88MIL4evf+EZ46KGHG3183/tmCQd//6AQb20EuhEQdHWjZB8CBAgQIECAAIF+CAi6+qHunAQIECBAgAABApkKCLoy5dRYBQWee/75sMGGXwp/+vOfG6ObY/bZwzlnnxXmnGOOCo7WkPIQEHTloapNAgQIECBAgACBLAQEXVkoaoMAAQIECBAgQKCvAoKuvvI7eQkEBF0lKFLBuyjoKniBdI8AAQIECBAgUGMBQVeNi2/oBAgQIECAAIGqCAi6qlJJ48hLQNCVl2x92hV01afWRkqAAAECBAgQKJuAoKtsFdNfAgQIECBAgACBAQKCrgEkniDQJiDoauPwYAwCgq4xoDmEAAECBAgQIECgJwKCrp4wOwkBAgQIECBAgECeAoKuPHW1XQUBQVcVqtjfMQi6+uvv7AQIECBAgAABAkMLCLqGtvEKAQIECBAgQIBASQQEXSUpVB+6+frrr4c77rwznH/+BeHeP94XnvnXM+G9731vWHDBj4cNN9ggzD/ffOGxv/0tXH755Y3eTTnllGH++ecPSy+1VLO3Tz31VPj1lVeGf//7343n5pprrrDqKquEp//1r/CHP/wh/OUvfwkzzPDusMzSS4cPf/hDzeP++9//hj/9+c/hhhtuCPfd98fwwIMPhtf/93qYe673hwkTFg0rr7xy+MA88zT3b73z6quvhuuvvyH88U9/bDw9/XTTh6WXWTrMNeec4aabbw6XXfbzcM+994b//Oc/yXhmDBMWnRDWWuvzYb555w1xDJ3bcEFXbO+WW36f9O+B8LYp3hbmmWfusOaaa4Z55p47TDHFFJ1NeVxTAUFXTQtv2AQIECBAgACBEggIukpQJF0kQIAAAQIECBAYXkDQNbxPXV997rnnwr777R8uvPjiQQlmmWWW8J099wjTTjtt2HLrbRr7TDfddGH9L3wh7JU8n2533nVX2HHnXcIjjzzSeGrZZZYJ226zdTjw+weFe++7r/HcRxdYIOyy005JeLVS4/GTTz4Zzj7nx+H0M84Iz74ZkKXtpbcxtNpi4sSw7rrrhOmnnz59unH70ksvNfr+k/PPbzyO+35nzz3DQw8/FE6ZfFp4/PHH2/aPD6aeeqqwbTKOL395ozBTEua1boMFXZNPPSUcf8IJ4bKf/yK8/PLLrbuHt73tbWGvPb4dvvLlL4e3v/3tba95UE8BQVc9627UBAgQIECAAIEyCAi6ylAlfSRAgAABAgQIEBhWQNA1LE8tX3zllVca4dX1yWyq4bYYci280ELhhhtvbOzWTdAV93nvjDOGh98MvuKBrUHXo489Fk488aRw9o9/HP73v/8Nd/ow26yzhp123CGsl4RrMVxKt86gK/Yzhl1PJrPLnn766XS3QW+3327bsNmmm4aZZpqp+Xpn0DXtNNOEBZJw7q677x4QcqUHxf4cdsjBYc011mjrW/q623oJCLrqVW+jJUCAAAECBAiUSUDQVaZq6SsBAgQIECBAgMCgAoKuQVlq+2RcrvDEk04Ohx5+eNMgLsEXw6JPLr5YmGP2ORrLFd52++3hmWeeae4T73QTdLUeENt9xzveET760QXCjpMmheWXWy6ZIfXz8L1kJlna9nve8+6w2IRPNJZDnHrqqcOVV10Vrrv++hDDrLitsPzyYccdJoVFFl642XRn0NV8Ibkz+2yzhY997GPNsO3ue+4JcfZaur0rOcfhhx0aVlxhhfDOd76z8XRn0JXuG2/jcofzzz9fsgzic+HW225rtJUGdHEZxJ9dcknbkoytx7pfHwFBV31qbaQECBAgQIAAgbIJCLrKVjH9JUCAAAECBAgQGCAg6BpAUusn4rWxVlhp5cbspwgRl95bZumlwv777hvmmGOOhs3ryUyrxx59NBx0yCHh/355RdOr26Br9tlnD+sk18RaddVVw8eT0CmGXXGL1/GK18/60UknhUeS9uPMr6232jJsteWWzetdPfDAg+HY444Ll152WeOYD3/oQ2GXnXcOn1l9tcbj+J/Bgq44jg3WXz9svfVWYe73v7+57y2//304+NBDwx133Blee+21xvPrrLVW2GWXncOcb453sKDrXe96V2N5wrWTfWMAF7e//f3v4avbf62xJGMMDOO23/f2CV/acMNm/xtP+k/tBARdtSu5ARMgQIAAAQIESiMg6CpNqXSUAAECBAgQIEBgKAFB11Ay9Xz+mmuvDVtstXVj8HHG1eyzzxYuTK51NXPLUn7xxThrKS4zuM2224U/339/Y/9ugq655porbL/ddmGDL67fOGaw/zz/wgtJ8HRHeOKJJ8InJkwIc889d3O3GCCddPIp4ehjj20sG/ied7877LbrLmGjL32puc9gQdenV10lWeZwx7DARz7S3C+986tf/zocetjh4S8PPNB4Ko71xB+dEBZacMHG48GCrs032yzsMOlrYYYZZkibadz++sorw8677hpefPGNGWfxmmUHHrC/5QvblOr3QNBVv5obMQECBAgQIECgLAKCrrJUSj8JECBAgAABAgSGFBB0DUlTyxdOO/2MsN8BBzTGPmUy02qTjTcOe3z7W4NaxCX/Tj/jzHDEUUc1Xu8m6JowYdFw0IEHhjgTa6TtxRdfbFzL65Hkel4vvPBic/d47bBfXH55eP755xuzwXbfbdew5RZbNF8fLOg6IJmRtt56X2jOHmvunNyJ4dl2yUysq66+unE/vnb65FPDp5ZcshFQDRZ0XXDeTxpBWOu1weJxMZxb7bOfa/QtPp5/vvnCz356iaArYtR4E3TVuPiGToAAAQIECBAouICgq+AF0j0CBAgQIECAAIGRBQRdIxvVaY9DDzssnHDiSY0hx2tUfWfPPdpmS7VavPzyy+GKX/26MYMpPt9N0LXUpz4VjkmCsRlnfE9rU837cVnEW2+9NRx/wo/CTTfdFF5Iwq7htrjs4UhBV5x1deD++yXLG64+ZFPf3XufcPFPf5oEai809jnqiCNCnAU21VRThc6ga9ppp2lce+v9LUsgpg3HpR+X/P/s3QWcVFX/x/GDgYn5iAkWj9gtCCioYAvYioQoYtKgIiqomJiEPrZIiC0Wio2CnYTd+be7Ff+/79Ez3p2Z3Z2ZO7tzZ/dzfeHOzt583907957viVat3ff/jPu1YuPG7rEZjxB0BaB6+pWgq56eeA4bAQQQQAABBBAoAwGCrjI4SewiAggggAACCCCAQNUCBF1V+9S3n559zih35dVX+8NWyHPqiBFuX2sJlW1S0PXQw4+4vv37+x/HDbrUEuu+++93F40e41tyZdtm+nu5BF0rrbiiO/WUEa79DjukL576/pxR57obb7rJfWvjhGkadfZZbtdddnEaiys96FrFxhibct3k1BheqZXYC4KuqAavgwBBV5DgKwIIIIAAAggggEDSBAi6knZG2B8EEEAAAQQQQACBvAUIuvImq9MLXH31Ne7Mc87xx7jwwgu7Qw/paS2mBmc9ZgVA1103xY2yVmCa4gZdr7z6qhszZqy738bM0qRuARuvsILb0MbKUlilMcM0vfb66+4lG8NLQVsuQZeO45yzznSdOnb0y2f73+Ahx7p7pk/3QZV+ftkll7i2bbd1WpagK5sY7+UjQNCVjxbzIoAAAggggAACCNSmAEFXbWqzLQQQQAABBBBAAIEaESDoqhHWsl3p9Pvud8f07ev3X8FSs7XXdjffeINbYoklMo5J41H17T/APW9dDWqKG3RpjKxTR57uNCaXJrXAOv7YY91aa63pvw//u9y6Vrxw9Gj3+++/5xR0abkB/fq6bl27uWWWWTqsJvX1iy++cP0GDHRPP/OMf2/BBRd0kydOcFtsvrkP1wi6UlS8KFCAoKtAOBZDAAEEEEAAAQQQqHEBgq4aJ2YDCCCAAAIIIIAAAjUtQNBV08Lltf4frZVWm7bt3A//jDG1sI2B1blTJzf85JPc4osvnjqYr7/+2o0dd7GbMGlS6r04QddfNjbXbVOnuqHDTnTz5893C1nY1PWgg9wJQ4/3YVbYyPvvf+DGXjzO5r3dv6VQ6jhrcdar16FhFqcuEE+zwOzGm29OvafxtEbYMbRr2zbVMkw/1HZHWyuy66ZMcV/ZMWnaeKON3DnWdeF/mzXz3xN0eQb+F0OAoCsGHosigAACCCCAAAII1KgAQVeN8rJyBBBAAAEEEEAAgdoQIOiqDeXy2YZCpjPPOtuNnzAhtdPqQlBB0U4d2tu4VKu69z/8wD366GPuzbfeSs2jF3GCLi0/Y8aj7tTTT3fvv/++vnWbbLyx69vnGLdNmzY+7HrvvffdVTZ+2G233+5+/vlnP4/+t2OHDm6vPTunujjUOFnpQZfmW3mllSw86+J22nFHt+xyy7kPP/jQTZw8yT3wwIPuu++/1yx+6nvMMa57925uuWWX9d8TdP0Dw5eCBQi6CqZjQQQQQAABBBBAAIEaFiDoqmFgVo8AAggggAACCCBQ8wIEXTVvXG5bULCz3/4HuDfefLPKXVdrqqWXXtp99dVXfr64QderNkbX6LHj3P0PPJDarraxgo3Ttfjii7lPP/3MqcVZw4YN/c8VaEWngf37WcuuXmqmlTXois5b2ev111/PxvM6y6237rqpWQi6UhS8KFCAoKtAOBZDAAEEEEAAAQQQqHEBgq4aJ2YDCCCAAAIIIIAAAjUtQNBV08Llt3515/fxJ5+4gYMGp8bfSj8KdWO4z157ui233NL1HzjI/zhu0KUuB++dPt1dNHqM+/Cjj9I36b9XsHZE797+9SWXXprqYlFvVBZ0LbXUUq7j7ru7ufPmuZdmz/bLZvvfaqut5k4bMcK1arW1W3jhhVOzEHSlKHhRoABBV4FwLIYAAggggAACCCBQ4wIEXTVOzAYQQAABBBBAAAEEalqAoKumhct3/Qqe7rzrLnfLrbe5V6y1lboL/M9//uNbO6kLwDatW7sHH3rI9Rsw0B9k3KBLK/nzzz/dU08/7cfNeuHFF/14XUFwxcaNXc+DD3ZdDjzAaYyw2++4w91x513uPevqUMtVFnQtb90UjjztVLfiiiu6Sy+7zM2c9XiFrg8XXWQR165dO9fnmKNd83XWceqqMToRdEU1eF2IAEFXIWosgwACCCCAAAIIIFAbAgRdtaHMNhBAAAEEEEAAAQRqVICgq0Z568zK1crrjz/+qNDS6ddff6026CoUQGOFffnlV+61119z3377nWtira3WXHMN16hRo2pXqYAuOkZXCLo0NpcCMbUWe/edd92XX33pll5qabfeeuu5xis2dgtZN4lMCNSEAEFXTaiyTgQQQAABBBBAAIFiCBB0FUORdSCAAAIIIIAAAgiUVICgq6T8Zb1xBV0PPPhglV0XluIAqwq6SrE/bBMBgi5+BxBAAAEEEEAAAQSSKkDQldQzw34hgAACCCCAAAII5CxA0JUzVb2aUa23Xn/99UqP+S/7yQ8//OBuuvlmN/X2O/x86rpwv332dicOG1bpcrXxA4Ku2lBmG/kIEHTlo8W8CCCAAAIIIIAAArUpQNBVm9psCwEEEEAAAQQQQKBGBAi6aoS17Ff66aefujZt2+V1HMsuu6zr3auXO7z3YXktV+yZCbqKLcr64goQdMUVZHkEEEAAAQQQQACBmhIg6KopWdaLAAIIIIAAAgggUGsCBF21Rl1WGyok6Fq9aVN34QXnu4032qikx0rQVVJ+Np5FgKArCwpvIYAAAggggAACCCRCgKArEaeBnUAAAQQQQAABBBCII0DQFUev7i6bT9DVoEEDt8oqq7hBAwa4zp06lhyFoKvkp4AdSBMg6EoD4VsEEEAAAQQQQACBxAgQdCXmVLAjCCCAAAIIIIAAAoUKEHQVKle3l/vtt9/cnLlzqz1IhVxLLbWUa9qkiWvYsGG189fGDPPnz3fvf/CB+/LLL/3mFlpoIafWZssss0xtbJ5tIJAhQNCVQcIbCCCAAAIIIIAAAgkRIOhKyIlgNxBAAAEEEEAAAQQKFyDoKtyOJRFAAIFcBAi6clFiHgQQQAABBBBAAIFSCBB0lUKdbSKAAAIIIIAAAggUVYCgq6icrAwBBBDIECDoyiDhDQQQQAABBBBAAIGECBB0JeREsBsIIIAAAggggAAChQsQdBVux5IIIIBALgIEXbkoMQ8CCCCAAAIIIIBAKQQIukqhzjYRQAABBBBAAAEEiipA0FVUTlaGAAIIZAgQdGWQ8AYCCCCAAAIIIIBAQgQIuhJyItgNBBBAAAEEEEAAgcIFCLoKt2NJBBBAIBcBgq5clJgHAQQQQAABBBBAoBQCBF2lUGebCCCAAAIIIIAAAkUVIOgqKicrQwABBDIECLoySHgDAQQQQAABBBBAICECBF0JORHsBgIIIIAAAggggEDhAgRdhduxJAIIIJCLAEFXLkrMgwACCCCAAAIIIFAKAYKuUqizTQQQQAABBBBAAIGiChB0FZWTlSGAAAIZAgRdGSS8gQACCCCAAAIIIJAQAYKuhJwIdgMBBBBAAAEEEECgcAGCrsLtWBIBBBDIRYCgKxcl5kEAAQQQQAABBBAohQBBVynU2SYCCCCAAAIIIIBAUQUIuorKycoQQACBDAGCrgwS3kAAAQQQQAABBBBIiABBV0JOBLuBAAIIIIAAAgggULgAQVfhdiyJAAII5CJA0JWLEvMggAACCCCAAAIIlEKAoKsU6mwTAQQQQAABBBBAoKgCBF1F5WRlCCCAQIYAQVcGCW8ggAACCCCAAAIIJESAoCshJ4LdQAABBBBAAAEEEChcgKCrcDuWRAABBHIRIOjKRYl5EEAAAQQQQAABBEohQNBVCnW2iQACCCCAAAIIIFBUAYKuonKyMgQQQCBDgKArg4Q3EEAAAQQQQAABBBIiQNCVkBPBbiCAAAIIIIAAAggULkDQVbgdSyKAAAK5CBB05aLEPAgggAACCCCAAAKlECDoKoU620QAAQQQQAABBBAoqgBBV1E5WRkCCCCQIUDQlUHCGwgggAACCCCAAAIJESDoSsiJYDcQQAABBBBAAAEEChcg6CrcjiURQACBXAQIunJRYh4EEEAAAQQQQACBUggQdJVCnW0igAACCCCAAAIIFFWAoKuonKwMAQQQyBAg6Mog4Q0EEEAAAQQQQACBhAgQdCXkRLAbCCCAAAIIIIAAAoULEHQVbseSCCCAQC4CBF25KDEPAggggAACCCCAQCkECLpKoc42EUAAAQQQQAABBIoqQNBVVE5WhgACCGQIEHRlkPAGAggggAACCCCAQEIECLoSciLYDQQQQAABBBBAAIHCBQi6CrdjSQQQQCAXAYKuXJSYBwEEEEAAAQQQQKAUAgRdpVBnmwgggAACCCCAAAJFFSDoKionK0MAAQQyBAi6Mkh4AwEEEEAAAQQQQCAhAgRdCTkR7AYCCCCAAAIIIIBA4QIEXYXbsSQCCCCQiwBBVy5KzIMAAggggAACCCBQCgGCrlKos00EEEAAAQQQQACBogoQdBWVk5UhgAACGQIEXRkkvIEAAggggAACCCCQEAGCroScCHYDAQQQQAABBBBAoHABgq7C7VgSAQQQyEWAoCsXJeZBAAEEEEAAAQQQKIUAQVcp1NkmAggggAACCCCAQFEFCLqKysnKEEAAgQwBgq4MEt5AAAEEEEAAAQQQSIgAQVdCTgS7gQACCCCAAAIIIFC4AEFX4XYsiQACCOQiQNCVixLzIIAAAggggAACCJRCgKCrFOpsEwEEEEAAAQQQQKCoAgRdReVkZQgggECGAEFXBglvIIAAAggggAACCCREgKArISeC3UAAAQQQQAABBBAoXICgq3A7lkQAAQRyESDoykWJeRBAAAEEEEAAAQRKIUDQVQp1tokAAggggAACCCBQVAGCrqJysjIEEEAgQ4CgK4OENxBAAAEEEEAAAQQSIkDQlZATwW4ggAACCCCAAAIIFC5A0FW4HUsigAACuQgQdOWixDwIIIAAAggggAACpRAg6CqFOttEAAEEEEAAAQQQKKoAQVdROVkZAgggkCFA0JVBwhsIIIAAAggggAACCREg6ErIiWA3EEAAAQQQQAABBAoXIOgq3I4lEUAAgVwECLpyUWIeBBBAAAEEEEAAgVIIEHSVQp1tIoAAAggggAACCBRVgKCrqJysDAEEEMgQIOjKIOENBBBAAAEEEEAAgYQIEHQl5ESwGwgggAACCCCAAAKFCxB0FW7HkggggEAuAgRduSgxDwIIIIAAAggggEApBAi6SqHONhFAAAEEEEAAAQSKKkDQVVROVoYAAghkCBB0ZZDwBgIIIIAAAggggEBCBAi6EnIi2A0EEEAAAQQQQACBwgUIugq3Y0kEEEAgFwGCrlyUmAcBBBBAAAEEEECgFAIEXaVQZ5sIIIAAAggggAACRRUg6CoqJytDAAEEMgQIujJIeAMBBBBAAAEEEEAgIQIEXQk5EewGAggggAACCCCAQOECBF2F27EkAgggkIsAQVcuSsyDAAIIIIAAAgggUAoBgq5SqLNNBBBAAAEEEEAAgaIKEHQVlZOVIYAAAhkCBF0ZJLyBAAIIIIAAAgggkBABgq6EnAh2AwEEEEAAAQQQQKBwAYKuwu1YEgEEEMhFgKArFyXmQQABBBBAAAEEECiFAEFXKdTZJgIIIIAAAggggEBRBQi6isrJyhBAAIEMAYKuDBLeQAABBBBAAAEEEEiIAEFXQk4Eu4EAAggggAACCCBQuABBV+F2LIkAAgjkIkDQlYsS8yCAAAIIIIAAAgiUQoCgqxTqbBMBBBBAAAEEEECgqAIEXUXlZGUIIIBAhgBBVwYJbyCAAAIIIIAAAggkRICgKyEngt1AAAEEEEAAAQQQKFyAoKtwO5ZEAAEEchEg6MpFiXkQQAABBBBAAAEESiFA0FUKdbaJAAIIIIAAAgggUFQBgq6icrIyBBBAIEOAoCuDhDcQQAABBBBAAAEEEiJA0JWQE8FuIIAAAggggAACCBQuQNBVuB1LIoAAArkIEHTlosQ8CCCAAAIIIIAAAqUQIOgqhTrbRAABBBBAAAEEECiqAEFXUTlZGQIIIJAhQNCVQcIbCCCAAAIIIIAAAgkRIOhKyIlgNxBAAAEEEEAAAQQKFyDoKtyOJRFAAIFcBAi6clFiHgQQQAABBBBAAIFSCBB0lUKdbSKAAAIIIIAAAggUVYCgq6icrAwBBBDIECDoyiDhDQQQQAABBBBAAIGECBB0JeREsBsIIIAAAggggAAChQsQdBVux5IIIIBALgIEXbkoMQ8CCCCAAAIIIIBAKQQIukqhzjYRQAABBBBAAAEEiipA0FVUTlaGAAIIZAgQdGWQ8AYCCCCAAAIIIIBAQgQIuhJyItgNBBBAAAEEEEAAgcIFnnr6aadC2DC9+dqr4SVfEUAAAQSKIBANuiZPnOBatmhRhLWyCgQQQAABBBBAAAEE4gsQdMU3ZA0IIIAAAggggAACCRBo1nzd1F5QCJui4AUCCCBQFAGusUVhZCUIIIAAAggggAACNSBA0FUDqKwSAQQQQAABBBBAoPYFooWw/fr0cf369qn9nWCLCCCAQB0UoNVsHTypHBICCCCAAAIIIFCHBAi66tDJ5FAQQAABBBBAAIH6LBAdp0sOdF9Yn38bOHYEECimQLTbQnVZqFazTAgggAACCCCAAAIIJEWAoCspZ4L9QAABBBBAAAEEEIgtQKuu2ISsAAEEEKggkN6ai65hK/DwDQIIIIAAAggggEACBAi6EnAS2AUEEEAAAQQQQACB4gikt+qiQLY4rqwFAQTqrwCtuervuefIEUAAAQQQQACBchEg6CqXM8V+IoAAAggggAACCFQrkN7yQAsQdlXLxgwIIIBAVoFoyKUZuJ5mZeJNBBBAAAEEEEAAgRILEHSV+ASweQQQQAABBBBAAIHiCqS36tLaKZwtrjFrQwCBui+QHnL179vH9e3Tp+4fOEeIAAIIIIAAAgggUHYCBF1ld8rYYQQQQAABBBBAAIHqBAi7qhPi5wgggEB2gWzXT0Ku7Fa8iwACCCCAAAIIIJAMAYKuZJwH9gIBBBBAAAEEEECgyALZCmtbtmjh/L+Wf38t8iZZHQIIIFC2AtmumToYQq6yPaXsOAIIIIAAAgggUG8ECLrqzanmQBFAAAEEEEAAgfonUFnBbZBQ6MWEAAII1GcBjW1Y2UTIVZkM7yOAAAIIIIAAAggkSYCgK0lng31BAAEEEEAAAQQQKLqACnEVeFVVmFv0jbJCBBBAoIwFFHBpYkyuMj6J7DoCCCCAAAIIIFCPBAi66tHJ5lARQAABBBBAAIH6LEDgVZ/PPseOAAK5CBBw5aLEPAgggAACCCCAAAJJEyDoStoZYX8QQAABBBBAAAEEalwgtO56uoouu2p8J9gAAgggkBCBFv+MX5iQ3WE3EEAAAQQQQAABBBDIS4CgKy8uZkYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiKAEFXUs4E+4EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCXAEFXXlzMjAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkBQBgq6knAn2AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIC8Bgq68uJgZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgKQIEXUk5E+wHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXgIEXXlxMTMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSBAi6knIm2A8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG8BAi68uJiZgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaQIEHQl5UywHwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnkJEHTlxcXMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACSREg6ErKmWA/EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE8hIg6MqLi5kRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSSIkDQlZQzwX4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkJUDQlRcXMyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCRFgKArKWeC/UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhLgKArLy5mRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSIoAQVdSzgT7gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkJcAQVdeXMyMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQFAGCrqScCfYDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLwGCrry4mBkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCApAgRdSTkT7AcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBeAgRdeXExMwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIECLqScibYDwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbwECLry4mJmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpAgQdCXlTLAfCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACeQkQdOXFxcwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJJESDoSsqZYD8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTyEiDoyouLmRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJIiQNCVlDPBfiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOQlQNCVFxczI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJEWAoCspZ4L9QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyEuAoCsvLmZGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIigBBV1LOBPuBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQlwBBV15czIwAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAUAYKupJwJ9gMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAvAYKuvLiYGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICkCBF1JORPsBwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQF4CBF15cTEzAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUgQIupJyJtgPBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBvAQIuvLiYmYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGkCBB0JeVMsB8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ5CRB05cXFzAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkkRIOhKyplgPxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBPISIOjKi4uZEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEkiJA0JWUM8F+IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5CVA0JUXFzMjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkRYCgKylngv1AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIS4CgKy8uZkYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiKAEFXUs4E+4EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCXAEFXXlzMjAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkBQBgq6knAn2AwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIC8Bgq68uJgZAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgKQIEXUk5E+wHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXgIEXXlxMTMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBSBAi6knIm2A8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG8BAi68uJiZgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaQIEHQl5UywHwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnkJEHTlxcXMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACSREg6ErKmWA/EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE8hIg6MqLi5kRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSSIkDQlZQzwX4ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkJUDQlRcXMyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCRFgKArKWeC/UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhLgKArLy5mRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSIoAQVdSzgT7gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkJcAQVdeXMyMAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQFAGCrqScCfYDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLwGCrry4mBkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCApAgRdSTkT7AcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBeAgRdeXExMwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFIECLqScibYDwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbwECLry4mJmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpAgQdCXlTLAfCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACeQkQdOXFxcwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJJESDoSsqZYD8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTyEiDoyouLmRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJIiQNAV40yMGTsutXTLli1cyxYt/PdPPf20e+qpp1M/69e3T+p1LstE16UFo8tE1xXdTlKW0T6FKXiE7/mKAAIIVCdw3iXXVjdLvf556602da232qReG3DwCCCAAAIIIIAAAggggAACCCCAAAIIRAUIuqIaeb5u1nzd1BL9+vRxIYRS2NO1e4/Uz9587dXUa70fwqDoMgqzxoz7OzhTQDR54oTUMtHt6P0QICVxGQV80eOQSdjf1AHxAgEEEIgIPP7MS+7xZ150F1zy73Uv8mNepgm0sqBL/4YcfXDaT/gWAQQQQAABBBBAAAEEEEAAAQQQQACB+idA0JXjOQ+tqkKYpcUqC63qc9AlpxDkySgazOl7JgQQQCAqoJBr30MGRd/idY4Cg47uQdiVoxWzIYBA3RNQC+An7DNE/5gyBUKlCFoCZ9rwDgIIIIAAAggggED5Cfzxxx/u2+++c0888YQbOuxE984777i//vqr/A6kyHvcsGFD38jk9JGnuc023dQtsMAC/l+RN1MWqyPoyuE0RVtOpbfCCqFOtOWS3gvBmFYfbZ0VDYKiy0Tf39q6QexrLcTCFG0dlvRloi26CLnCGeQrAghUJrDKhu0zfqTCOabsAukFuoRd2Z14FwEE6rbAPlZBIv16WLePON7R3XzNBXR7G4+QpRFAAAEEEEAAAQRKLHDN+PFu2Ikn+bCrxLuSyM03aNDANW3a1E2ZPMltukn9LFcj6MrhVzPadaBmJ8CpHk1hH10WVu/EHAjUZwHVxo92V0hoU/1vQ7YWcB/PfbD6BZkDAQQQqCMChFyFnUg+KwpzYykEEEAAAQQQQACB0gtccOFF7qThw0u/I2WwB0s1auReeO5Zt/LKK5fB3hZ3Fwm6cvAMLbT0lZArB7C0WUJrtWjLtrRZ+BYBBOqhQLSwUq24brEa50zVC6SHXQSE1ZsxBwII1A2B9Otf3Tiq2jkKPitqx5mtIIAAAggggAACCBRX4P0PPnAbbryJU9eFTLkJLLPMMu7dt9506tawPk0EXXmcbVop5YFls8or2u3im6+9mt8KmBsBBOq0QLTbQrpVyu9UR1vDUXiZnx1zI4BA+QpEr33lexSl23NadZXOni0jgAACCCCAAAII5C+gMbjW+u867tNPP81/4Xq+xBG9e7sLLzi/XikQdNWr0137Bxvt9pHWcLXvzxYRSKpAeq18Ct/yO1PRwl5aw+Vnx9wIIFC+AtGWwOV7FKXbcz5rS2fPlhFAAAEEEEAAAQTyF3j//Q/cehtu6BR4MeUnsOYaa7h5s2c71yC/5cp5boKucj57ZbDvBF1lcJLYRQRKIEDQFQ+doCueH0sjgEB5ChB0xTtvBF3x/FgaAQQQQAABBBBAoHYFHpkxw+22R8fa3Wgd2Zq6Lfzq88/cAgssUEeOqPrDIOiqxkhd76kLPk39+vRx/fr2qWYJfowAAgggUJ0AQVd1QlX/nKCrah9+igACdVOAoCveeSXoiufH0ggggAACCCCAAAK1K3DHnXe6Aw/qWrsbrSNba9Cggfv+66/dAgsSdNWRUxr/MAi64huyBgQQQCBdgKArXSS/7wm68vNibgQQqBsCBF3xziNBVzw/lkYAAQQQQAABBBCoXYGpt9/uDurWvXY3Woe29sM33xB01aHzGftQCLpiE7ICBBBAIEOAoCuDJK83CLry4mJmBBCoIwIEXfFOJEFXPD+WRgABBBBAAAEEEKhdAYKueN4EXfH86tzSodtCHVjLFi3q3PHV9AEpKAyTun3EMGjwFYH6LUDQFe/8E3TF82NpBBAoTwGCrnjnjaArnh9LI4AAAggggAACCNSuAEFXPG+Crnh+LI1ABYFmzddNfT954gSCrpQGLxCo3wIEXfHOP0FXPD+WRgCB8hQg6Ip33gi64vmxNAIIIIAAAggggEDtChB0xfMm6Irnx9IIVBAg6KrAwTcIIPCPAEFXvF8Fgq54fiyNAALlKUDQFe+8EXTF82NpBBBAAAEEEEAAgdoVIOiK503QFc+vzi09Zuy41DG1bNmCFkkpjdxejB33r18L6/qRrgtzc2MuBOq6AEFXvDNM0BXPj6URQKA8BQi64p03gq54fiyNAAIIIIAAAgggULsCBF3xvAm64vnVuaU1xlQYp6tfnz5O40wxIYAAAgjEEyDoiudH0BXPj6URQKA8BQi64p03gq54fiyNAAIIIIAAAgggULsCBF3xvAm64vnVuaUJuurcKeWAEEAgAQIEXfFOAkFXPD+WRgCB8hQg6Ip33gi64vmxNAIIIIAAAggggEDtChB0xfMm6IrnV+eWVteFqRZd1pqLrvfyO8XBTkthl58dcyNQlwUIuuKdXYKueH4sjQAC5SlA0BXvvBF0xfNjaQQQQAABBBBAAIHaFSDoiudN0BXPj6URqCDQrPm6qe8nT5xA2JXS4AUC9VuAoCve+SfoiufH0gggUJ4CBF3xzhtBVzw/lkYAAQQQQAABBBCoXQGCrnjeBF3x/FgagQoCBF0VOPgGAQT+ESDoiverQNAVz4+lEUCgPAUIuuKdN4KueH4sjQACCCCAAAIIIFC7AgRd8bwJuuL5sTQCFQQIuipw8A0CCPwjQNAV71eBoCueH0sjgEB5ChB0xTtvBF3x/FgaAQQQQAABBBBAoHYFCLrieRN0xfOrc0t37d7j3zG6+vRx/WycLiYEEEAAgXgCBF3x/Ai64vmxNAIIlKcAQVe880bQFc+PpRFAAAEEyktg/vz57vfff3c//fyz+/mnn9z3P/zgfvzxR/frr7/6A1l44YXdEkss4RotuaRbfPHF/T+9t+CCC5bXgbK3BQv89ttv/vdBvyt/VbKWRRdZxMX9vfjrr7/cn3/+6X8Xta3o1MC+abDAAv73byF+96I0/nUpg64F7Lzsv+++/tyFHdO5/M2uK3fedZfT66RPBF1JP0O1vH8EXbUMzuYQQKBeCBB0xTvNBF3x/FgaAQTKU4CgK955I+iK58fSCCCAAALJF1CI8Mcff/iC6J8t4HrjjTfck08+6ea9/Ir75JNP3A8Wdin8UvH0wgst5MOFxo0bu3WbN3ctWmzlNlh/A9doqUauoQVeCyn0soJupropoJDirbffdo88MsPpd8VVEnWts846rk3r1m5JC0QLnRRyfWy/f9OmTXMK16KTwpRGjRq5XXbZxTVeYYXoj3htAqUMuhaya8R3X3/lfvnlF6fzNF8Xjr/m2/XkZbfdDu0rBGBJPVkEXUk9MyXaL4KuEsGzWQQQqNMCBF3xTi9BVzw/lkYAgfIUIOiKd94IGB4pcQAAQABJREFUuuL5sTQCCCCAQPIFvvv+e/e2hRcPPPCgu9tChddef90HXwoafKsdtcCwfyqvbtCggf+nAmz9W2ihBV3TJk3dTjvt6HbeaScLvdZ3yy67bPIPmj3MW0Ah168WOF111dXuzLPPsvDzj0rX0dyCrovHjXUbb7RRpfNU9wO1InzmmWfdwYce6r6339HopDClSZPV3BWXXRZrG9F11qXXSQi6op66jjz/wotu+/YEXVGXpLxu8NP33+n6zlSJwFNPP536ScsWLVKveZGbgILCMKnbRwyDBl8RqN8CBF3xzj9BVzw/lkYAgfIUIOiKd94IuuL5sTQCCCCAQDIFVPD866+/uTffetO3/nj44Ufs9Vu+9ZYChny6F2vYsKHvzrBp0yauTavWrnPnTm6zTTd1iy22GF0aJvP0F7RX+p35+ONP3KAhQ3wgWtXvyHLLLeeGDBro+tpwNgpEFZDmO6lF0JNPPeW6dO3mvv322wqLq1vEpk2buonjx7tNN92kws/4JhktuvT7onOviaAr2b+VBF3JPj9lv3fNmq+bOobJEycQdKU0eIFA/RYg6Ip3/gm64vmxNAIIlKcAQVe880bQFc+PpRFAAAEEkiegbgo19tbzzz3vRp5xhnvduir85ptvirKjGr9rjTXWcIMG9HcdrPXG0ksv7RSEMZW/gH5v7rv/ATdw8GD3wQcfVHlAanG1Y4cO7tL/XeKWsxZ+hYzhRtBVJXGVP0xCiy6CripPUaJ+SNCVqNNR93aGoKvunVOOCIFiCBB0xVMk6Irnx9IIIFCeAgRd8c4bQVc8P5ZGAAEEEEiewBdffOGuv+FGN2bsWPfZ55//Pf6WuicswqSWOwo1NDZT7169XPdu3VyzZmsXYc2sotQCP//8i+vVu7eFXfe7n376qdrdad58HXf2mWe5bbfdxi1urfvynQi68hX7d36Crn8tCnnFGF2FqNXhZcaMHZc6upYtW9AiKaWR24ux4/71a2FdP9J1YW5uzIVAXRcg6Ip3hgm64vmxNAIIlKcAQVe880bQFc+PpRFAAAEEkiPw+++/u6+t5dbo0WPcLbfdZt3Qfew0DldVXdAVuvfqsmz55Zdzu+y8ixvQv59ba8013SKLLFLo6liuxAIKnebOe9l17d499XtT3S5prLbuXbu64487tqBx2wi6qhOu/OcEXZXb5PITgq5clOrRPBpjKozT1c/6Y9U4U0wIIIAAAvEECLri+RF0xfNjaQQQKE8Bgq54542gK54fSyOAAAIIJENAgdYXX37prp0wwV162eXus88+8+PmZNs7tcrSGEiLLrqob4mjsbYWsu81/Wnd1/1soYda9CiI+O2336oMypZffnm3z957uSHW3V3jFVagG8Ns4GXw3pdffeWuuuoqd9GYsTl3c6lgs9naa7ubbrjBrbbaqk7dGeYzEXTlo1Vx3mQGXS+47dt38OF6xb1N3ncEXck7JyXdI4KukvKzcQQQqKMCBF3xTixBVzw/lkYAgfIUIOiKd94IuuL5sTQCCCCAQDIEfrRgaurU291xQ4e6b7/9ttqQa00bZ6t169Zuk403dk2aNLGxtpZyDey/73/43n380cduzty57omnnnKvvPJKtWHX4osvZq26+rvehx3mVmzcOBkg7EVeAvNeftkNOfY436hBAVT6pHA0W8tAhaVjR1/kOnfu7Ja08dvymQi68tGqOG8Sg64XXnzRbbdDe4KuiqcqEd8xRlc1p0FdF6ZadFlrLrreqwYs7cfBTm9jl4bDtwjUYwGCrngnn6Arnh9LI4BAeQoQdMU7bwRd8fxYGgEEEECg9AIKIB56+GF37HHHu9ffeMMHEumhhIKKhg0burXWWssdbN3T7bhjB7fsMsu6xRZb1LfuamBdETawQ5k/f777w1p1KYT49tvv3JNPPekuv/Iq9+qrr/pWXunr1dFrzK6VV1rJnTRsmDvgwANcQ2sdpu0xlYeAWu1Nv+8+d+RRR7vvvv++QlChc7uEBVgbbLCBmz17tvvxxx8rHJRacW3Tpo275OJxbo3VV6/ws+q+IeiqTqjynycx6Hr7nXfcHp06ud9/+93Nr2RMQF0WFKj/Zt2sfmktUEs10aKrVPJst04KNGu+buq4Jk+cQNiV0uAFAvVbgKAr3vkn6Irnx9IIIFCeAgRd8c4bQVc8P5ZGAAEEECitgEKpzz//3A09YZi7+557fBiVvkchrFAg0fuwXm6rLbdyyyyztNM4W1VN6g5RLcXmzJnjLr/iSvfwI4/41mIaCyx9UuDRfocd3JlnnO67s1PXiHEnlZX/9dd8H77ZSx/EaZ8VotV0kKZAT6Gf/mnSdsO2/Ru18L+wfe1L2La+Fnv6/PMv3BlnneWuuPLKjFZbjRo1cjtsv73bfrvt3HkXXOA+/PDDCpvX/qxkIeeos89ye1qrrnz2j6CrAmVe3yQt6Ao7H/5ewvfZvmqe5194wan1V6kmgq5SybPdOilQbkGX+nl+/PHH3corr2w3RFtmPSf64P3ean48MuNRt/xyy7k2bVpnnY83EUCgcgGCrsptcvlJOQdds+3hUd2CvPLKq/5hav3113Prr7++29BqzuXzsJCLE/MggEDdEiDoinc+yyHo+sAKlZ5//oW8DnTnnXb0Y6/ktVDMmWfYc8A31l3WHrvv5mv3x1xdURefO3eee+vtt13rVlu7FWwMmTAleZ/DPvIVAQQQqEpALWzuuvtud+rI0927776bMasCoSWXXNLtvNNO7qQTh7k111jDt+DKmLGKNxR4ffzJJ+7Ci0a7m26+2X1l4zlla9nV2LotPOqII1yfY472rYCiq9Q6sgVkf4dWC9g+LeTDqxDuaH79++nnn/2YUWp1pPBs6aWX9uOK6bWekxTiFeN5Scfjt2mF8Pr6q7Vo++677y3o+9Hvlwwb2T+NS7XAAgvadv/edq6Bm45dx5bupuV1DAoK9TPNo+3/Yf9+tpBRn6u//PKrfaYvYuHkMv7YNX847ly3Hz0X6a8ff+IJ17f/AP88mv6zNddcw5195lluDfu9GTxkiJtlZYPRY9D2dS4UoJ4yfIRTN5a57hNBV7p27t8nNejK5Qj0tzxr1uNud2v9VaqJoKtU8my3TgqUW9D1pPXL3P3gnm6nDh3cxePGZj0n+jB+7fXX3Z577+P7eL7x+ilZ50vim6++9pobO26cb4Ldt09ft8XmmxVlN997/333lNktu+yyrtXWW/uby6KsOIErefe999zMmTNd06ZN3RZbbOGWWHzxCnupWmZDrRuDF198yQ0/+SS3dcuWDFJbQejvbwi6sqDk8VY5Bl2//vqrO+nk4e6222/PeqSqOXfh+eeV/PqhbksmTZ5kf+Oru4577J51X3kTgSQIjL92gvv111/cEYcfnoTdqZV9IOiKx1wOQddtNubKsccfn9eBznp0hltxxRXzWibuzB333MsXks2b/ZIvCIy7vmIur5rq14y/1l19xRWubdttU6tO8j6ndpIXCCCAQKUCf1lrri/cEdbl3KOPPZbRmiuEEDvtuKM7feRpbnV7Xlf3hbkGEWGzCjYU1Hz+xRf27HKyu3vaPe6HH34IP0591bq1jTtun+pWXWUVH97ohwpuVO4yYcJE++4v++/fSQFP0yZNXc+De7iFbfkfrAL1G2++ZcfzqFNlhDfefNP9bGGX9sF6PfP7v7qFLi222sp1sBZkzddt7lb4z39S2/p3zbm/0v5pG+++975V8p7lu4HU/iroUlmXJoVpCtnWs+21a9vOxjdrZce6ugV6i/vQqbKthfBq0uTJvvvHP/9Zn+ZXF24LLrSgDyG33WYbb/z+Bx9YCDDL3Tv9PveyjZv1vTn7Y7dAaSlrXbWeVYjcbZddrHJ5G7faqquZR7xuInV8J1tAddU119jxfpdxGJ07dXTnnH22+48ZDx8xwl07YYKVnf1UYT79PrWx8d7OO3eUW7d585zLegi6KjDm9U05B10qH5w5c5bbrWPHvI65mDMTdBVTsw6sq2v3Hv+O0dWnj+tn43Qx1V2Buh50PfjQQ67/wEG+dsyhPXu6Qw/pWZSTqRvNCy66yK1tfWAPGTTIt4gryooTuBL1B36G1fJRwcFRRx7pGkdqymp333rrbbv5PspuHN9zR9vPex16iL9JTOChlHSXCLri8Zdb0KUHlu4HH2z93j/tNtt0E7f7brv5AaGXsQcoPVhdbQ8bM62mk/rRv/mG691SSy0VDyjG0gru2++4k9uuXTt35eWXxVgTiyJQswLbtNvOutT5xs2xwZDry0TQFe9Ml0PQpTEP1LtCdFJh1AVWs3755Zd3fa3mfPq09957+1rf6e/X5PdJDo0IumryzLNuBBAolYBa+jz73LOuy0FdfcsfBTbRSa1+9Cxx+mmn+jBFLW/yDbnC+vTson/PPPusG3biSfYM81SFlj2aT+vWM8upFogccMD+bul/nl9UsP3gQw+7Q3r1ylhG4dimm2ziLr/sUt8i7e67p/mg6QMLfH6w1mqqGBi2rW0ocNJxLLbYYr7coUWLrZyCvNYWtKh3IbW4ynXSetViSoHSfTZGlXooet+eexQuabsKgTSPJh2bPLW/atnVxAK9thZO7bzzTn78qmWttVU2Wy3/xx9/usOsEpbKnqLnyFZpx9LQDRzQ3+23zz5umnU9eeddd7u58+b50En7EJ1f29fx6Xlx00039V0FqgW3AjjtV76TwsuPPv7Y9Tz0UN9yXOcpTHLW2FxDjzvOKpD19t7T7rnXt+pSGJc+rbzySjbv8e6gg7pkVHxOnzd8T9AVJPL/StCVv1l0CYKuqAavHUFX/folqOtB18f2wX7HnXda14s/uP3338/XQCrGGSboqqh4zfjxvvD+EAsT/9usWZW1niouWX++I+iKd67LLej65P/+z21rhfLrr7eeu+WmG/0DW1RAtf36DxhgAwPfb626zvddQUV/XpuvCbpqU5ttxREg6IqjVz+XLYegK9uZ+T/7DNHvu7qgun/6vdlmqfX3CLpqnZwNIoBAPRdQF4LnnHueu+zyy526A4tOCl0UigweONAd3vuwCt22RufL9/UPP/xoYcxd1tVdf+tS75dUi6ewHgVQO1pvQBqra6011/Rv//77H/ZMM90d0OWgVHAU5ldAs/HGG7vjjz3Wjbv4Yvf0M8/49YaAKcxX2VeFXhojat999rYKtYf6lmS5hF0KddTt4623TXVXXX21D5cU/OS6XfmqNZqe5Q7rdahTBRONZ7WQhVHR6e+g6w9fjnrv9OkWev0bJmkdods/NXO74aab3Ndff10h3IquK/pa21bL7cMPO8x1797Nh375duGoMrC7p93thp9yio299VF09X6/1l57bXfBeef6yo76obpSHnrCCW7q7XdkOC1u531r6x74WrNUr0a57AtBVwXyvL5JctAVWkFmOyD9XtB1YTaZmn2vwU/ffxdtSVuzWyvDtRN0leFJi7HLdT3oikFT5aIEXVXy8MMsAgRdWVDyeKvcgi71b3+C1YY86ojD3WBr9Zltuu/++93R1qXqfvvu686yh8VSTQRdpZJnu/kKEHTlK8b8BF3F+x0g6CqeJWtCAAEEchF4/fU33GE2JtaL1pI9GqBoWQUhq626qrt96m2+UoS+L8akQmx1J9i3X3/33PPP+y7/outVcNOs2druwvPOT3UVW1XQpVZKCmwUTqkSh8KPXMMmbVdhUWjp1HGPPXzrKI1zrPcrm7R+dcOogHDipMnus88+890G5rPdsG0dr/a/Z48e7nBr+eRDnsi2qwq6tI5w/D/ZeFwa9z7aiqyy/Q/b1rLa3knDTnBdDjww7+7uNe6autG/e9o0v+3o9hRY7rP3Xm7E8OE+PNTPNF7a3TYeXO8jjszwUoChfZlsXRtuZd1KLrbYotHVZX1N0JWVJac3kxx05XIAD1uvULt36pzLrDUyDy26aoSVldZXgfo2Rpc+2PWBfccdd7qXZs92X3/zjVvRBindYovN3W677lrpQNm6UVOz8SeffMrNnjPH1yhRs/TNNtvM37BFf3/UpPv1N95wb9oN14Ybbuj7Ln7BxoP67LNP7SarmQ083So6e4XXqjHzgt0YqvbOVltu6Zaz5u6a1IT7KetSbMUVG/sxtt6zbvdmPPqo++ijj62bmOX8WFTrrbtu6mZCNySvvPpqarDwt956yze5X/4/y/u+o5daamm3oH34a/823nij1D5oOa3z2eeecy+88IK/sdloow3dlrYvTZs0yWjloWbis2fPsVpLK7rVV1/dG7366mt2U7GMXyZ0Gyjz5219zz77nO8yUONmbb755lYbp63TILGVTd9a0/05c+e6Z5551r3/wft2U7OqNYvfxG1pY2+pSXy4YdSApTJRM/w33njd9yGtG1r1Lb3kko386rfZpo0/Bt2AKfj70GoA7bLzzinj6D58+eWXqf3VDe761ve0xvvSTeqii2beJKmVyxdffO72328/3d26e++919fCmm/dNWxiXR+0aNEiowvF6PaS+JqgK95ZKbegS9eTXr0Pt25EdnQXj80+/uH//d+nVmO/nfvvf//r7rnrzhTQ9Tfc4K8N+1jNwWyTHtym3zvdrWm1KNu0aZ0xyyMzZriHrPuQjz/52Lq2Wtyptt4B++/vrythZtWmfO211+3bv/yA02MvvsS3xjyoSxc/ix4d9Te63nrrhkX8V/39PmHX7aefftr9ajVLW2y1pX/YUTeu6ZO6JFHf+xtvsrGvDamKFbr26EFc+72J1e7U9UPXSV2XnnzySV/LUZ8D2267bUHdculBVsf2rHW78sUXXzpdb9X1h67/VdU8DMs9Z9dqLbe5jeeo41ctzmwFBxoU/Bv7vOvWtav78KOPfLdjr1mXlBtuuJFdJ9v4fu7loc+gJ+y4nreCgtVWa+JaWU3I5uusk07lu4nRtX4X6x5lBesedt68l83KjsOWU1ch6hdfD5XpYyRGV6TPVTnq2PUZuYotp88aXd/V7376pM/F62+40f9eqGau9vV2q8GpbmjVLY2W29LOr2pwVjap6xftp86taoqqm07t50b2WahzG50K2Z4+E/U7FCZ1GayH5mFDh4a3XJMmq6VqooY3tYy6j9HfwGL2N9DM/w3s52sEh3nK5StdF8Y7U3U96Mr37z6qqYJMXfPUTZX+XnWd1DVDrciyTYUGXeH6qntWfX5tnMN1WbWBNX7J3Hlz3dtvv233fI39/fW+1vVTtmtyIV0XavzhW2+7ze61P3C6v2zatInr1LGT/9zIdvy8hwACCNS2gO7nj+7b18oTPspoBaTWRXt27uTOPP10381tMfftC7tWX/y//7krrrjSfWX3h9FJ99MqNzjfxmvS84XKD6oKuvTzcA+ea8gT3V70tYIWdWN4go1rufrqTSvtxvDTTz9zEyZOcJfZ/utY0lvDhXXqsy/cr6oLwcr2T63SdH9+jA3XcFCXAyuUt1QXdOn4QxmL1p/vJDt1/Xj2WWf654GwrurWo/vuOXPnuS72rKLnN30fpnAOL7/0f/4eWl0YapKByt0OtVZkei5ROVx0WtzKnHpY6zK1zstlnFCCrqhefq+TFnTpd/f5519w29szY7S7zfyOqvbmJuiqPWu2VA8E6lPQpYudCsRUmKsCTd0A6ANP3QVqUgHhuLFjUjVEwun/1sYduPbaa50KVjWpdo8KVX+2wquVrVn6kMGDXOdOnfzP9D8VJk65/gY3xQp/22+//d8FglagqII4NWGPFnilFvrnhcbCueDCC30Yd/JJJ/l90o9UCD38lFOtIG9zt6sN9nmmDcCpB90wqeaOQpvBgwb64E03R+Ntn0dZzaXKJi2jMar69jnGz/KL3RhMmTLFahJd4b6woGcxC3TUnFQf+MtYH89q6aGaObphCNP9Dzzgxo672K1jBaGq9aMASfNr7Jz+dpOrQls98I8eM9Y9YIV4umFRbZzfbf9+s9cqOJaHgsb0SQUZZ519ji8I1Q2Z9jfc0MlhmDVTV/CkG5/jTxjm+5DWoK2VTRecd57daHbwQVW//gPcg1Zr48brp3jj6A2Yjmn4iFN84YbWrd8T3TRpHzbbbFM3xgouV7Lfm+gyB3Xr7oMxDbY+YNBgP25g9MZwySWXdFdfeYUVqm5aYbnK9jUJ7xN0xTsL5RZ06Xq2xVYt/EGfdsoIu1btkwGg68p99z9g4fESqYJ6/V1suvkWbslGS7pZdp3KNqlSwT777e/23nNPN+qcs1Oz/N0d4kArHJzu32uy2mo+xPrRriX6ex9z0YW+qxH98DR7KJ4wcVJq2WwvTjxhqFN3pGG6wUKRk6xPfu2jAmqF+1q3pqHHHWvdevQKs/qv+ts/6pg+fnyZV+xh6YEHH/TXl/C3LJOzzzzDnTpypK9tqetD+NnmFnZdZX/j6iM/10ndrAyxvuPDzbc+W8IDmgLH863rl0UXzezX/7apU/01T9vWPixi1yidP01bt2xhYwpclhH2qMBXwdakCdfaw2Bv/wAd9n1Je1i8wa6F2v7e++7n++APx6aH6fNGjXId99i9wmGFQtopkye5Rx6ZYQ/mV/gHb30+qGKDplVXXcVNsVqpq6yycoVl9Y3m6XHIIW7OnLn+ZwqndAw6VyoU1rlXwUB0Uki12RZb+soeGsBcv1P6vI1OGnB6wvhrslZgmGsPzxqHTuvRcem6rMoUmnZs396NHTO6QoF0IdubbuMpHNO3X3SXMl7rvuAye1DXpHPQb0BufwMZK0roGwRd8U5MXQ66Cvm7l6auCxqY/vobb/S4ui/T305oLaAumjRmR/pUSNClsUiG2LqyXZd1TVKXSekVnlRBrE//fqnrmSqpqfsuTeomS9dJjV0WncI19Gq7dmpM2TBVts/jr53gtIwstH5dwz7//HO/WG/7LDvePtOYEEAAgVILTLL7vuPtGV3lJ+E+M+yTyk2G2b26KoYq9CrmpC7/Hn7kETdoyLG+Mmv6unXN1LhgR1vwo2eMqoKu9GX1zK/ldZ+sf7pPVVlQ+BxSGYqekcLnRvryuv73OvQQ1+foo/31W/fYYdI1XcvecONNbuQZZ7hPrMLT/PkVO/TS/upzR/fYy1lwpvKrBgs08K2+vvzyK9+CTWUgKmfR+sKk/Vzdxu067dRTbezlXf1x61g0jz4/1TNWeteFYdnwVfuqbS9qx72wffZq0nFrWyr70XrSz7Pm0flVmdWll1zsy1Kix6yfZ5s0Npm6bBxhZV7p65S7KqXdevNNGYb6LDzfys/0nJj+XKD7BVUGP98+u1ttvXW15TAEXdnOTG7vJTHoUsX97doTdOV2Bmt3LrourF3vere1+hR06QZIAdEdd97lultNEQU8+uD+/PMv7INxorvaxm1qa7Xy9YEcJj2UX2fhz7hL/ue2adPGNz3XmE5qGaDa/BeNGeO+/uprd+yQIakxa0LQpQ9chTobb7SRv7lQ6ynVUl9l5cxCv7C9KoMuC190M6HWDuut29wdeMCBfv3PPPuM9Ut8uwVqz7mOu+9u+zLY11rSQ/Zn/zwEq3a+msGvZgXJB/fo7vdDNzr/sRsv7ZNusG60G6xL7YH7v83Wtn6ze7strPB6AbuJUk17NaN/+ZVXfJ/LB9jYYTouTSHo0s9Uo7aDFRZuvXVLf1OlmzDtr27a7p52j9urc2erUdTFrbX2Wv4GdKLdjEyzlk8qYDzSQrSmdiMWJrVeO9sKV995913Xo1s317HjHk6F4J9a64cpU653t9nxqrWYagptsP76dlP4ifvOzpVuilRb/4orr/LhmW6kVZNK06qrrGKF8Y3cAnbclQVd9z/woO8T2max/sMHuR122N4PWqvxi660dd50yy0+GBsz+iLfEjCEXT7oMmO1DNBN7gAr8FAIp9rHat11nQWf2u7U224t2rhrwaqmvhJ0xZMtt6BLR6sBfY+34FmBg1rxqFBPBXB6sMhWI13L6GGp0KArdIWov5UrbMBn1TzUNUMtnFQhQcHUjIcf8gWEn376aaqGpv7eDz/yKKvNv4UbfvLJ2g174GxgtRVXSAUcCoOOG3qCv/6OGH6yPwb9vapG/EgLzZ60a4y61ehpwUeYQtCl73fs0N6H6bpGPmSh+AUXXuTUZaJaEHz73be+Nqr2W61f/3fppW7W40+4bgcd5E4ZMTysrsqvIaxSDdPhVqmhlV03da3S/o27+BILFO/37020CgvRKSynsF3b2toe2lQpQZU3VOlA18ZsYVcoPFUQN9Ie9HWtVr/2qtwwwT4bNJbAwvZAvPdee9pnRA//mXCXDb49yioI6Jo2c8YjFcZSCIW0W7ds6SuQnGLGakGrB1E9cF5qYZvWq+v29ddNrlCTNFrY3eWAA9wRdv1XVzYKIR+zyhKnjjzdt9ZKD7tC8KTWxSpw0LZ79jzYPlNXsVZoT7jbraW2ujrR7+7dd94RZfMtnLv1ONg/bI84+STXfocd/AO/Wu/Ke+Lkyb6yyOgLL/Dr1sKFbE/LqLVwmA7pdZgP9W6+8Ybwlg/Y5KIp/M5tsMH67kozS/8bUMHAo//8DaRWkPAXBF3xTlBdDboK/bvXZ0wIudRq8+QTT3TNm//dynTeyy+7U08b6XtayBZ2hevevNkv+WtTdWfmtqm3+wJaVUwbYZ8t4br8ul2XVdlN12Vdd1RhIDp1ttbMatV6hN0777ffvm4N6+FANcyvuWa8v29UjxG6nkWncA3NJejSc0WLVq3tGBq6G+2avZ5VzNP0llUkO+roY9zb77zjVMt9BwvRmRBAAIFSCowZO86NsGBFZQvR0EX71NwqI406+yxfphLKEoq1r9qerokH2phbev7ONg0aOMANtZZV6m1AvcBUNkZX+rJ6BtL9WVu7z1U5h8piFmm4iPvm2298bxOPzZzpK7zqnjLbpHtWPU9cc9VVvqcE3SuHSYGR9vc4268Zjz6WEZbp2UXlN7vusrPbyyoMqtyjkX1GWVGFv2/W55PufdXa991338sIiLRtLXfG6SN9GZS+zzXo0j2owjX1/LBjhx192cZiiy/mdJxqXX2rfWa+YZ91sk+ftN+q6DHJytjWtc/s6DGnzxu+nztvnu9+Us+B6b878u/Xp4874vDe/j46LKOvCtxmzprlBlplY5UdRSfth1p/nWrPTL2t1Vdlz7NhGYKuIJH/1yQGXepRanuCrvxPZi0sQdBVDbI+TJ+yLok0tbTuwfr17VPNEvw4KhDs9J78kj7FGaPrO6tZdKQ9EKobP9Ve14NomBSgKPxQN4BnWjCzjBU+6gNWhY577fP3Q+s1V11ZoRshhSr+A9mWW9VqrKtAUjcPIehSl0V6KP+fBWdaXy5TdUHXjz/96EO6ftZaSh/cYVJTbQ2Wqqb6uonTdqOTWlppf9Rd1xAbf2fltLBNNxT6W1Lt9v79+vpC0Ojy6q5xtIV6RuL/xtQcXVMIutTEXjW09rCgLTrNevxxd+FFo31BtVp4qQvAMKlrxdPPONMCqu98Qa8KkDX5oMhuVLTPx6q1nAVk0VYScj//ggv94KgDbF/3tJ+rZn6YVCh9xpln+QL6o6zFWug+MfxcX7MFXbrR7GStHtRN5LXXXO0LyHU+o9PZ55zjJl03xVq3HeFrZoVavQq61Cf4Otal2xQr1FULieh09TXXWHB3rlNhsFrFRc9ddL4kvSboinc2yjHo0hErtFbBv2pF6m9Ck65f7dvvYK169vAPp/7Nf/6n62ShQdcl/7vUX5dGnnKK62LdakSnUdaa6YGHHnQjrVZfS2ulFJ2qG6NLFRHU8kf7Nv2eab7L0ujyqvWov3V1i/HCc393Taifh9BBoYuWiz6UKWA/2fZT1wSFKOpaLkx6yNt1j46+a9p7774rvF3pV7lutuVWPmhRv/HR66IW+sOCpd4W9M206+dNN1zvu//Q++G4VLPzPtu/9C44dLwnnnSyu9HGWztp2DAL8XpoMT+FAl+11gvdPeoHup5u0247XytU1++LLqjYCrivfb7dY2G9CmlVWBumUEir/u6nWcu0ENyEn+urzuHlV17pDj2kZ4WWzGPHjXOj7fPmEAupTrRav+mTzu+uu+/hK6I89/RTqetlCJ40/yF2bCfaMaZPhx1+uHvEugG87957/AN2+HkYz3WUVXZRmJc+qQWHBrK+Ycp1Vsnj7xbGcbYX1i/bb60gZI51SZxtUkh6voWo6edF8/q/AWtVeNqpp/jC9WzLJ/E9gq54Z6WuBl2F/t3rOUV/vxtuuIG7xVp0pd+XqXLEHjamwpt2b3/n7VN9ze1wBsJ1L5egS+vZ1D43FPhPtu6j1rfCxOike1NdXx6bOcspuA73wbo/PsAKVtVi/7pJE6OL+JB76zbb+EpjL9k9YrRGe7iG5hJ0qaBm/wO7+GtwemCmbk+HWvh3hBXgKfhnQgABBEopcPY5o9zpZ56ZEbhon3SdvPCCC6xHl40q3GMXY391jVaPNB3t80CVIHRPnD6pMoIqiakyQ65Bl+bVMA/9+/ZzqpSkZ6KGFlSpFEY9U/xmrbnUxa16N7jy6qvcG69b8PPP81PYvp779dnVySrunm1lFKuttmr4ka9Upcphl1ilapVHRSd9ZqxlZTeDrWynvVVQU2suPZuEz0Hdw+vZ4Dsrv1EFvnPPP8+Gnngx49hVmVj3meqBSMvLRp95VbXo0jZ07If3Psz38qEKw4tYxTody5+2rJ6lVP509rmjfJfd2pd0cz2nDD/pRBtXa2+/ruixpb/W8lfYM8Pp5pMtMNSQF+p6Ut27qyeL6KRjUflbj5493eNPPJkRvMlRvSqpy0xV7It+FkfXo9cEXekiuX9P0JW7VbY56bowm0o9fi8UXohAKT9BV93+ZYgTdGmwyostDLrWWhKpFrla3YT+fbOp6YNO3RCpdrlagA0c0D9jNvXjr1r0CjlGW0GgWnuFoOtKa3p9wH77uuOsT+Bcp+qCLtXoOWHo8b5GTXSdCqjUrcld0+62EObIjIK86oIu1YQfY4WPO2y3netzzDHWImyp6Or9jdyFVhinMUTktvNOO/mfh6BLNw3621MLh/RJ+6abIlmHGzPNoxuaoVZQOXPW43bjMTLVFdo7VjP1RKtJu/DCDa3W1XEVCi3CujWOmQrjdaOs4Ei1fMJUaNCl2rhH2rFvv107N8i6klpmmcxwUmPCqABWN7zqVqyRddemKQRd51q3bCoMTq8tpJq9nTrv6YPAc0edkyq4DfucxK8EXfHOSrkGXeGo1eXI/dZN4eMWtsyw0Dl08dblwAN8MK2wRZMeagoNutQ9aZeu3fzf+OVW4K+xnXKZqgu6wnr3tQcrtfrMNun6MdrGIlOBpbpQ1RSCrn322sudYzVOo9Nnn33uWluLXwU6Dz/4QPRH3qDDTjv7FlIvz5md8fdfYWb7JhRa7m+fD3royjY9+OBD7kwL1o8+8gj/gKh51HrswIO6+vcGDRyYbTHfr78KVtWV7bgxo1PzhALfRyw8VJAXndRaQl3tZguB9Nkw2D7D1Md/9DMwFNJWFlZp/frM3bJFS6vJ2dx3NRK2efAhh/pWe8889WRGpYAwzymnnmaVCq7zoWIYIywET/o8UQCmB/D0Sd2WqJtLdTEZut8MBdgaj1MBWPRzKCwffmeOGzLYt2jW+4VuL6xTX6sLusI5VbcqapGRXgkluq5yeU3QFe9M1dWgq9C/+xAGj7ea8BprNdukMF6hvFphde/WNTVLuO7lEnTpvnI/6ylh/33tunxGJddluwc+86yzreurI1PXZW1M14pf7HoXvRcNO9HLClZVS/9Rq4QV7cY1XENzCbrUpW2LrVv5e3GFaeopggkBBBBIosCZ1sWqwops01Y2jurY0aP9faG6lCvmpHIFXYt3s+f0F196KSN00bYOO/RQd6oFPhqSobqgS/eaCoXU2496QlBrNFWE0PvZJo37PtMqQqgMQ70shK7Iw7xabhULi1RWoMBJ3yuc+z/rsWJf64pbZUDRZVSWsLTd555l97MqWwjjtof1pX9Vzzb3W6tj3bN/Zb0N6d43TCqD2c7KN66ynntC5eHqgi51Pahu1M+1HnYUsIXnvrBOPf+py8Y7raekYRZmaYwxHU90krN65lEl7KrGZNdy6rawv32O32ljCoeKlmFd+l1ReY+6LVfQmO0+Xvuj3jcusmcfdeeYPikw1HORxhBOP5bovARdUY38XhN05eeVPjdBV7pIPf+eoKt+/QLECbp0A6TmzMfamChz5s71wYtasemBUc3Q1T1X9KZLNyx6wJ40+TrfEipboZpuEj797FP3l/WlHLovDEHXdddfb30xH+UHPc31LFUXdKmGqT7kl7f++aOTavNMtv1UTRh139LLbuSiU1VBl24MLreBTy+xAVx1E1LZjYi6C1NNqcFWwKpBPXWDFoIu1dBSU3LdwKVPumFQYZ4KEt+zJvV+jBzbpiYdr7pJG2U3xeomUJPWqRuV1q1auV52LFV19egXSPtfoUGXxvM5z7qb7G+B+d5771VhLLLoJtRFzWd2MzftrjtT3SKGoGvqrbf4brPSawrpd0KFzxtttKHvdqaym+Todkr9mqAr3hko96ArevS6zmmcQHUR9bFdBw7u3t2dbA81muIEXboma+zB6y1k0d+E/j423XgT18Kuy+p+Tw9I2abqgi6NM3ju+ef7Fpah69L09ai2oFoARMf1CkHXEVZ7Udfz6KSgbwsLbXStUyur6CSD3a0GqVp2vTJ3TrVBl6632j+FMarlmOt06WWX+z7oVUiwy85/VzZIX1b7su122/uHzSdmPpb6cSjwnfvSi76lVOoH9uJ0a8U8fsJEd419fmy77TbRH/nKHhpzSuM56kE1TKGQ9lwL4/bas3N4O+PrbtbSTd1qvWDXf7X+0u/S5taaTZU2dA2tbLrp5pvdCSeeVKGlUwieVLFi5oxHsi6qsQb69OtfYX/DGHGqWRptyR1dgbpdUUF3dPysQrcXXW91QZf+BjQWgYJG/zdg9yGbbrLxP38DLSv9G4huI2mvCbrinZG6GHTF+bvXAPOPPjbTPWPdk1Z2PX/fChV3sG6V0rsIDNe9XIIu3T+fYxWYzrHKEflcl3W29Xesa4/GAdRzxh+R2vxzrWWBunN94L7pFa4/4RqaS9ClbeiaOMIqAOhapTFX1HODxrdtZffK2VrUahkmBBBAoLYFVBlA1zfdj6ZPW9h1S2Ndb2A9vETLXNLnK+R7XYe/+eZbt3vHjr4722zb19i86sIul6BLYcia1vWeKoF1sF4t0p/ts+2jhsmYOGmS781G3YOnTwrO1KpMZTkKslQh7KGHHrbu2nunxrcNy6i3GlVa02eS7ntzKTvQWPSqKDbtnnvcDxb6hUnLqiKV7rvVnaCCIn0uV9WiawOrvKwWVOoiveE/lRvD+qJf1e3iCcNO9D2BpI+VrmNQl4sjTzsto3eN6DpUVvT008+4IVbBWZ+j0Un7rqBNYWO0u/noPOG17veP6dPXVygM74WvCu702X7+uef655HwfvpXgq50kdy/J+jK3SrbnARd2VTq8Xvq0uLpf7ouVOFYOXS/l6TTpe7qwlQOreGet+bYB9g4TyqMuvR/l4Rdr/BVNzrqfksD1WsMl0kTJlT4uT7477jzTvtAnuGetcI3FWbp5mWNNVZ3J9qYLu3atfXzqxm6btbus1ZdqgWiPoorm/TwrcI+tXSqyaBr88038zdc6TVR9OA72Wq/qwA136BLH+gXW3P5q6x7PYVK6QNmpx/zgdYaTk3vdZNUXdD1sXUDOO6SS/wYXaqlpCDMd+P4T2WoDz/8yM23Wjy6iQxB14033eT+ZwW6e++5p+t6UJdqazCl71+hQZdaeFw9/hqrETzcn8dFF10kfdX++x49D/Gh3UNWa2qllWwwWLsBC0GXCl+z1ehVIXnL1m0IurKK1s03yyno0sOgul5SmK1u+bKF+jpL6tZzux3a+/Hu1DJIk5atrkXXU/bw0tXCMf1Nj7KajOmT+lW/x8YH01dtQ5MeAI864nB3jA3cnN5Csrqg6xR7oFIFBbUE0kNWpZNdhzpZzc+uXQ/ys4Sg60gL7YcMHlxhsWIGXaeOHOn3Ty0U2rRpXWE7VX2j45psXadOsm5y07tzDMvpfHQ05zfeeNPNfuH5VNcwVRX4xgm6rrLxG8NnZtiH6FddG9U1rlrBqTBWrWK3spYJLWw8w/RuvqLLhXMRDdhC8KQWtbfa50S2Sa2w04O5EH6pNcXKK1U+RqbWp+59Q2uOQrcX3a/qgq4w76xZj/uCiZmP29/AR//+DRxpXaX1OSbzbyAsl8SvBF3xzkpdDLri/N0rLFelhKpay2r8L3UHu/lmm7kbrWvyMFV13QvzhK+n2XVZ4wpea70x5HNd1rH1s14AnrBxe/UsoZ4dFoncP2rMFHWdHjfo0n6qQHGqjYmiiid6HWrP69ljpHVxWl2N/3CsfEUAAQRqSkCVVXWfm94qR9vT+FLnWXiiMjuNL1vMSdtTucLe1ipXQ09km/pazy0nnTjMPxtU16JLzw/qtq+vVYBVjwC5TAqPPvzoI3fssce5e6zyg8qkopM+I3bbdRc3xiqsrWBjpH/99TfuPOvKURUt0kMihVvHW+sszV/ls0xkA+qN46abbnYX2vpVHhWd9Pkw1sYY1/jLKtOqLugKrZtVSSxbC6qwbg1foa7oVd4TDdf0c22nXdu21irsnArdiYdlw1c9Y2nce42xrjHmo5O2vYlVALvi0stsfMp1oz/KeK3P4/Ot0vJFo8dk2OtZUpXsbrvlZrfmGmtUGrQSdGWw5vwGQVfOVFlnJOjKysKbCBQm0Kz5vx8Y6pM+6UGhBpvcfKsWNgjoWu7uOyoONh8ENL6Jun0aaAWV3Q46yI8dFX6mGw59gIXQSh/y6lZu+vT7/GD0ev/Kyy/zTer14KxCRQ1Sr36NNXh9LlNNBl0aO0QFxekFvyHoukxBl7XmUtgVnapq0aX5JtnDvbpa7Nmjh8unj//qgq5rrTvFK2y9W1qt0yOswG4dK3he0G7yNKlf62NtXBTV1I226FKhqAJGDfTa1wr41rCbkfRJNabUGkytz1a2G8GoR6FBl45l+IhTrNubbr7FWmU3le2tQGHRRRb1hbRLW/N5TSHoevyxR7MGhSHo0hgTN1lLv1xqZaUfc21/T4uueOLlFnRp/A919XHLTTdW2i2SQpRQ6Djr0Rn+70/vKbjQ77Rq3Gebbrn1Vnf8CcOyBl16KIr+ranVqPq5Hz/hWt/3e7QrubDu6oIuDcis7WnAaw3AnOsUwpWaDrr0IDDEWhardexR1jVhtkldeLxk50PdKoaWbeG4TrdajQfsv3+2xf4OHm2cGdX4v2Pqbal5qirwjRN0pY8FltrgPy/atG3nWyBEfzcUlmr8Al0vK5uuuupqd5Z1l3LpJRenxowMwZNM9HuabQpBl8ZRHDzo7+4dFRy1s8/vbF1SZltHeK/Q7YXl9TWXoEvbCV3JaBm1Nnxkhv0N2OenxrLM9jeg+ZI6EXTFOzN1MeiSSKF/98dbBbRb7JqeHhRFlefMmev2ssLN9K5Uq7ruRZfXa43Rp7H6NBaKxnfNNule7sUX7bpshW7huny5dQU16rzz3e677eafFcJ9YVg+9DySvv/5tuhKv078/PMvFq494Qs177ex/Nq13dZ3SxW2y1cEEECgFAIal1ot8nV/r2eE6NSkSRM/XrXG/I3e+0fnKfS1giJVgD/qmD7uvffey1iNQib1RjGgXz8fclQVdPlWRBYMqeKEenIIY3JnrDTtDR2vypbOtc8EhU0qt0o3UC9Coy2MUWW8Tz75P9fPPnMete5to90WarWqRL3tNtv4SrULL/R3d/Fpm8v4VuVBekZSxUFtOzrps2nI4EE2bu4hvtJxVUGXrAb27++Hy1hsscWqLLdQRQ495+mc63V0UrmajkEtw1RpPNuk/VBvIV2sa3ZVVI866Dyo5Z/G8z3kkJ5u2Up6+gjrVdj5gH0eqsKb7qVDZZDwc5kOGzrUV6QOn+HhZ+ErQVeQyP8rQVf+ZtElCLqiGrxGIKZAuQVdullQS63XrabO9HumuVXTxhoRhz4gNYj7Tbfc4s464wx7+NzVf9DNtgfhI+zhNdQsidL9YMGJQhndnKnvfXX9pw9LdZWofv8PtEJFjReVPikMUzPplVZcyTVrtrb/cTkGXbopGD1mrFOQ1q9fX99EPHqsv9tNyIvWrZNuNlQbKwRLVQVdChXVJZNqNGnchD12363CjZKa9CtYmm1+6v4qtOj6ymrjDB5yrNP4Z2qmrhq66dNNN99irdAucZvZzzRuTFO7cQ5ToUGXWrN0sdYHGmz1ogvOz9oyS90vHmW1wXbs0MGpgDeM8UbQFfT5GgTKLeg6ecQI60LwRhufboC/BobjiH7VNXGrllu7JZZcws2yGuWadE3udVhv95g9VGUbN0k/72sPS/daZYJoiy5dH3bv2Ml3h6rQLL0LE3UDqO4A1bWsxtGKTtUFXeHnuvbrYTLbpBrxeuCJjnVSW0GXWq21234H18oedida66xs03nWteGl1gWjWrUNHjTIzxKOa7t27XyFjGzLzbIx1TQWjvrEH37ySalZqirwjRN0tbIuTSZeOz61negLjXuorl47WMgUbYF97PHHu9usVYLCqjA+WnQ5vVYLQ41l9vQTj6e6K4sTPClwWnDBBdx91p2Luo5Jn9Ri5E1rIaGarnrA1xRne2H9VQVd+ttQcKzW4wr9Mv4GbH/0N6JulSsL9sJ2kvSVoCve2airQVehf/c32738UOsW6fhjh7je1o1htkktCC6xrsY1/oa6egpTVde9ME/4+vHHn7i21lvE1i1bWk8QlV2XL7Dr8uVOLS1VYKip+8E9fWsuPZOoRWh0UqFj623b+pr1cYIujaN4/Y03+pasG220YXQTviLBjrvs4sdH0biH0dC8wox8gwACCNSCwF02xlJ/q8ilMZt0rx+ddN99yMEHu8F2/awutIgul8trlb+oNwd1Da7uYqOTAhMFNudZBaqDe3T35RG///6Hdc893d9v6n4sOqkV0dprr+XUe4v2WcvnM91621SrOKGyjM8zDDSeuW/VZj0bqLJ1HwtlZs+Z46/l+Wwj33nVdV8vC7kGWrD2n+WXr7RFl45V5Twnn3iiL2OpqjWX9kGBps75wMFDUuM5h33LJehS5eVp1quHylfSwzndj8v/hinX+aBsITsv1U0y1TPt88+/UCE003Lan+2s56YzbCzfMP5v+voIutJFcv+eoCt3q2xzEnRlU6nH76nmRnRKeouk6L4m4bVqGoZJXRcm3U83ImqSrDFYWlsB2xhrgh2tPamaGw9Yay7dYOkD/fbbbk2N8fSlNYVWoZGVzLoJVjC3zn//Gw7d10BRM2d1adivb1/fokc/VL//KsTVh54GL93BHoLD9Msvv1r3hw+746y2qW5aLrOuFNXlV5KDrtWbru5ruUeDIR3P22+/48aMG+eesdZUGmtrfwv2Fo0UBuoGZNzFF1trpeW8z1ZbbukZqgq6NMP51hx/knWpqP6ou1rrOp0TTaq9o+4SJ0+Z4m/sNDBrh/btUzeSatGloFLnWDdkzax1V5jUzH+QjZ+jv331s9zexvaKFhCGoEuFFX3td3ola3KfPvWz8PJBGxhcNbXWX2+91HYPP+JIX2B/jIWd6gc6WtvsUxssVmO/aHy3C84714ddoQtJgq50Yb4vp6BLZ2uejSOy9777+UJ+jRnSqtXWFU6irq3qiuS6Kde7/azm/FlnnJ76ubr9VJcTh/bs6Y63B7voQ5GuqYMsuNYUDbp0Ldff8Z133e2GWw3LHta1YXR68smnXDf7G9RYXendz4bAJ9vPtA6te4/Ona1CxBt+0Oc97XV0UkWJfewat+CCC9lD7H2p7p5qK+jS/ikAevnlV9zhVnB7nBXgRqf/+79P3c428LRaPT1iXf6p2xBNWk7hn/b/NHuIO8i6do1OCtB6WsglH423Fe1+q6oC3zhBl7Z/ktW0TG8JrK5HDrFjU9ilFmjq8jZMoSvBdW1g72uuujKjUkEYK0dj0Fx/3eSwWKzgKRxjF9uPEcNPTlXW0MrVMkJd3agrsOg4ZcUKumTx4nPPVvicCgelluf6G1CBggpfopMq2nTrcbC/L1OL+3KZCLrinam6GnQV+nevFpm7We1/Xf8m2d9BtHKCpNULQM9De/ka9w9aoaUKxcJU1XUvzBP92mkvXZdfdr1tHBd9lkUn3QPutMuuTmPizrCue8N1WWOT6H41/TqnZc8Zda67wrqo1aRugaMFa/m06NI4lidZ2LWrBVqqiBX9jFUrs+3ad/DPKS89/1zW64zfAf6HAAII1ILAS7NfsrKTw32Io+f96KSKRhtssL49f1/vn89DxaLoPIW+1r3vCVYJ9f4HHnQKT6KTght1W6fn91AZoqqgS/upcoQbrJxiqaX+LruIrq+612qVf9TRxzhV6k0P+9S9rXrnabvttlbZd4616BpoPVi8mrWrx+q2k8/PVaZxUJcD3QlW2Uw94lTWoiu0ohphleVUJlbdOYobdOm8DbGuHvUMpsoh0SmEburGUWU9uQSOqvCu+2618Eu312enhpi4ZNxYX44T/SwN2yXoChL5fyXoyt8sugRBV1SD134QxRB29bM+dMthnClOWzwBfQgOtW6p7rjrLt/ySK1rdPOi1lVz5s6xmpVP+YJLPQy2tkGaw6SH06lTp1otj1N8k211Uae+fnUzpCbe99473a1oH6RXXHapU9+9mlS4q2BjwMBB7ptvv3HbW61wtTD69bdfrWuhR/3g9Rrc82Tr71ktxTQlMeiaO2+eG2tBlgb6VPd5a625lq95uv322zl1I6BJ3ZZpzDa1WtL4Kdu2aeP++PMPK0R41tes10Ck/a25/z5775UqJKwu6Jp+3/1u7MXj3Beff+Fat25lN41b+8KKB6zwVoUXCik1cHdju+nouMfu9m8PP+CqzqVa5d1pNYTUL7bGo1mn2X/9OVDopsFW1WLh0EN6+ps1fwD//O+tt992/W28hLffecdtv912PpzTwKudO3VKFYBUFnTpxmjAoMHeQC0NtjGDFVb4j9MYC7dbV5nqVu0Ea9nXxbp5i47hRdAVPQO8lkC5BV3aZ4XEutZpcGQ9gKm7juWWW9Z3raG/df1tKdS/1FpTany6MH1uf989LORSUKA+5zVeyIorNra/o+ecWhj1OfooN9quLdGgS8u+bes7wLqqUJ/q6mJQ19AlrbXY888/b39vd/quLM6wAZv332+/sCn/VZ8BW7fZxldQUMGfBilWTc1oq1vtk8YF03VgB7vOtbEx8hZZpKG/bs+ycZB+++13P8BzNASrraBLB6E+7XtYKKXQarPNNrVQv5X/HHvH9neKFWrqAW2kjbmiUDE6qXZodwsAdS50fdqmTWt7CF/ar0ddh+jzTGNM7bvPPtHFbNyuvdwr1iXIPCuASG/RFEKgaMgTFg5dAUbHytLPQiGtugi8xlql6XNxe2tptqx19fKWtY66wcbQ0vX04O7drKuYf1uWhfWOH3+tO90GK9dngD5TVPFE3YyoK1vd061vLYcn2piJ0YoscYInPdDr2q7CdgVs+rxp3HhFP8brw1YgofOhltsaIDxMcbYX1tH78COc1q/W0tquJrUaD4Xk+v1U67W//wY6+7+BRks2cs/pb8AKxvU5eebpIzP+BsL6k/iVoCveWamrQZdUCvm713LPPvfc35XOrABrT7uX0zh98+f/ZT0qvGQV1O7ylZImjh/vC1A1f5iquu6FeaJfdQ3SOKwa30Wff3qGaNJkNV8ZrLLr8gx7FjjMroOqyNVx992duqVS+HSPPVOoJ4ROHTv6a7pCLvVsELpFDNdQVSxpa90OhinbPiuM13Vf9+m61u637z5+zNtXX3nVTbv3Xt+zRMFP/F4AACnRSURBVOdOHX3lr7AeviKAAAKlEFBlrROs8o6621ZPENFJoYl6Q7nQWl3tbtfDpa2CcDEm3TOrLOdIC5fUmis9YFPXg+qBQAGTeqbRVF3Qpeu/KluFSrr57OdjM2e6w488yn1gFabTw5Zo0PXSS7N95WwNx5Bulc/2cplXQVeXAw+w7giH+rKV6oOuk325ak0GXarAospex9k+fWRjm6V3NajjUriVS8AVNdB69S990noUbqlbxgH9+6XKhaLzEXRFNfJ7TdCVn1f63ARd6SL1/PvQ97kYCLrqzy+DPgjV9/G0aff42jLhw0w3T//f3n3AWVbVeQI/3TQ9ElalG2FpUBplp1sQgSYoqENwdsFxPx8RUMkg7vhRbFqSnxXJIhKGZNPI6GAiKaIwoyAzOwqYkDBKHgwoQaLQgdSMxD3/C7d89Sq89+pWV9Xt+z3avHTT+Z5XVe/d3z3nREARQ4q0X/UZOn/+87P5RNe/pnPyhJYxVFFZomdOfKk9JPceiqvIW0vM+RVX2pyRh0a5KX/JLMcfjitLttxi8/Sp3Cuh/NAU603EoCs+AMZJ3JjkM7p0h987cvAUwVXr0IARiH3rWxcXJ+Zi6MBwXXHFKdnyrcVQLe/KX8Zbu413Crpi/Th5HhOUxpX95Ye9GN4lQumYhytOfMTJ1LfmdoueDaVlXCH0jfPOK05iRM+6+AAYH1DWycNV7rfvPsXJg9Yrd1vb7Ov5xGvMrxbrRV3jqqzogVKGekMFXbGNODkbvfvi5GRcwRvHHB+K4iTFnrkHxftyj4rWkCvWEXSFgtIqUMegK44/enYd/7kTiqvaI/AqS4TRMbzokfnq9fb3fyyzcOGi4ovtDTmkiKFgo6y77rpFb60YBz2GnG0PumKZOKEYY9nHUILl7/F4fnoOTGL+quhZOVj59iXfyT17v1z0XorXIxCJoRNby5/yl93PHv+5IjiJIKEsM/OFDBGgtfdgHsugK45l0aLF6ZgcZl2fL0CI3ztR4gtlfAmO34XlxRPFCy3/eblexxcXIZTrxdWq8bszfjfGBQPtZbCTp+UyVYKuOEn7qpVelWJorQjfyjJjxlrpfbkHdfxNHeoL6rdzGHZRvqr3znyytvxyG1daxpCOxx59dNFDutxe3FYNnuJL/cm5F3DM4Rl/G8oS78/4/LhPDuVaS9X9xbZi+MWTTj6luC23ffn3/qUv9Irn4mfg1PwzcE3bz0BMHH5APoHe3luu3M5EvRV0VWuZ5TnoCplef+5LzQh/47PZzbfcXPTCjOdXycMQzZmzafpU7hkZ4Xh7Ge73Xvuy5eP4W3H0sccVfzfK3699v5fz5/1t8rBH7SU+58boDvH5vyxrrz0jzxN5UjFqwAFzDyy2F3Mn/nv+DhKll6Arlo/w7LTTz0iX5gv24kRcWeK7SMw/eMRnDi96tZXPuyVAgMB4CDy99Ol05ZX/lns0HVBcONf62T6OJz6vbpbPtUTvqjhXE79fh/qc2M3xx/bvv/+BdESeJiEu+GrfX2wjwqpPfPzj6YB84V0M2xdluKArzgvNyhcn/b88JG18v+j1+C6/4gf5wsGD08OvnEcodvjKf2IkmRi6MM5NxJxUMbz77bffMSDoCqe4MC3mNu91/637K++vnM+R7ZpHkzgs/71cffXhhy6Mvysx7UScq1lWQVe0U5yfOuHzJ6azzzmnqP9gbVce/2jexrmvL/3jOX3nnFq3Lehq1ejtvqCrN6/2pQVd7SINfyzoavgbIFc/vljGlTDT8weX6LkzWDfkdqU4qfbHP96fHnr4oeLDQ8z1FQFKpw8S0R06eiDFH8EYTi+ujlkeS/SYiBOB0TsgXOKEWyeb4RzCO+bAeujhh4sPjK/PPfCiB0a35eV1H8lXsK5V9Bjppo273fZwy4XBn/IY43/91/+j+JBcxWC4/UzE16698Za064dfnoMijq+uJ9/Gy7auQVfpFQFvBBfl+z8CiG5K/KxHj8vo2RVDuUaJeQyHCrrKbcaV9DF8RfTmjOFG18u/y+OL1miVuLAheu28efbsfr2ERmv7VbcTxxcGG+Yec6vmL6PdlugRFFevxoUCK+UrVseqtJ+kjS+nMXTiPXffk96w7hv6zZvY6ZgiGL0995yO3tFxIngsSlzI8bvf3VW8z+LvykQofT8DTzyZe5evWXyeGc2fgbGqo6CrmnRT/taO9Oc+Auu4IGOFySsUozIsy8+Dvfxejt+B8Znx3jwCwDq5F1gMER4nKke7hFvs49HHHi0+m6+XL9wYSY+D0T4u2yNAgEAIxPeH+L6/Sx6N4Te/+e2AeZLiu3TMlfTh/fYtLhaOURlG+ns89vVMPiezII9aM3/B2UXv+PZWiKAmetHHdAVvyXOe/tUr3y2GC7riGFfP32OuvOLy4uKzcqqC9m0P9jj+FsQoOjENQ1ww1R7exPQPp592ajH/anzv+US+ECKG4G0fti8+m+6+224pzpn0sv/BjimemzJlxWLesbiwO3q4jXePrriAOUYCiWEL2y92HKoOo/V8nNeKOd5jXur2czuCrpErC7pGbhdrCrqq+VmbQD+B9WfN7nscc0C0X+He96I7BAg0SkDQVa256x50Vat9/7W7Cbr6r+HRRBdoD7om+vE6vrETEHRVs25K0FVNydoECBAgMFEFYvSbGEUmRnSJ0VHaS4RPEeDsu88+6SP7fzhFz/pew5y4sO7xvJ/LLvvnYp7xe/KFyIMN/xc9snbOvV5PyMNAvzr37Cp7KA0XdMXxxgUEMST6vnkY9AhGuilxTHFR3eFHHFn0Lms/nghVYsqNs+Z/Ia2Vp8t4NC97VB7B4NJch9aeurGvuPgrpkv4uzxn72hcWB31DuO4ACPuj3fQFb25Lv72JblH1+eLC+W68R2tZSLsjGkxzssjAEXQ2npRiqBr5MqCrpHbxZqCrmp+1ibQT0DQ1Y/DAwIEXhEQdFV7Kwi6/uJ3/gUXpOPyEIIf/MCueb6hz/3lBfdqKyDoqm3TLfMDF3RVIxZ0VfOzNgECBAiMr0D0TooesQfnYfKuv/6GAb2V4ugiXIiRH2KY8r333LPoQRU9jcogaqgaRC+u2H4M5xpTH3w2D7e+cOFjxfQU7etET7GNci+uGCowhksse3PFcp2Crhg2cNM8xN1JOYjZZJONU8xVPlyJ41q69Jk81+xP0+Gf+UzRW6l9+djmXnvskf7hlJOLYQkjELzgwovSsZ/9bDGKTuvyYRPzix979FFpjdwjLYYw7FRi5KEn8sgYEbi9lOex7CuTUloxe0foV4Y64xl0hdXjjz+R9tt//2Iu56VLl/YdatyJQDCGJl6x4sgeETSGSdS1vWddjCBxWh4+c5u/2SbPG7dy3/4FXX0UPd8Z76BrSf49EKX8HRLtHgH4llttPSBI7rlyY7CCoGsMkO2iOQKCrua0tZoS6EVA0NWL1sBlmxZ0XXjRRenEPBfRwPJS35fP+Weemd6z4w4DF/FM7QQEXbVrsjE7YEFXNWpBVzU/axMgQIDA+ApEqBBhxle++tU8N+qpxfQFgx1RnJCOYQzju8GeOQDaequtisflier2dWK7EUTcdPPN6aJvfjNdeullRbAT+2ovEZZET6hPzjuwmJN85TxlQuswdZ2Crlg2ho/ef7/90qF57vcYVn2o44p9R/gWc24detin0k15ftb/ygFLa4ntxXCInz32mLRP7smWs6eiB1qss9P7dy56d7XWI0K61VZ7bfpiHpLx3dtv13HKh7CJOV9PPPnk9Mf78tzm+SR/WWJf0SvtlPzaG9ebWQwVOZ5BV9j8Ks+7+aHd9yjmKG4NocIp6r73XnummevO7NdmZX26vY0h1X9w5ZXF+y/q21oi9Nt9tw/lOZE/VbRt+Zqgq5To/XY8g654z9xy06/6DRsdP0/xM/u2rd+Rbrvttt4rNMZrCLrGGHyi727+WQuKCX7jOGPYvZg0Uele4Pobbuhb2LCFfRTuEGi8gKCr2lugaUHXNT/+cfrOdy8dFC2uYNx2m22KL7LllYSDLujJ2ghcetll6aqrr0kH5CtxN9hgg9octwNd9gKCrmrGgq5qftYmQIAAgYkh8GCen/tLX/pyMYRhBEHR06i9xInomJt2xowZxTy1f/Oud6Y5czZL03MwUwxnmFOa53PPnBim8NY85+9PfvLTdGs+aR1zIsa8voNtM8KS+O7xnh13TEcfdWQxz1Z7SNUp6IrjjO2skeco3nbbbdOBc+fm+dnfWIRn5baiz9QLOUBZknuXXXfddensL56TbvyP/yjCuNbQKrYV67xj663TgrPmF8cTz0XAs2jx4nTwIYcWvdOiPmWJfcc6b8lz9x7+6f+btt/u5bArTui3lthGGMT8yF+YP7/4LvZsDpJezM+XJcLEt7/tbekr5/5TMXxjbHs8g65H8jy5p51+evp6HjrwqaeeLg+zuI12mz1rVvrCmWf0OfVboIcHf8pzGJ98yinpX773/RRDJbaWCDHflNvzG1/9Wv4e8+a+EFPQ1arU2/3xDLriPT0/v2diONT2cw3RpjvtvEv65a9+mQPp54asVPwctf/cDrnwMnhB0LUMUOu8yT333qcv6JqX/wAJuurcmo6dAIGJIiDoqtYSTQu6qmlZmwCB5UVA0FWtJQVd1fysTYAAAQITQyDClHvvuy8dfcyx6eprrkkxVN9QJ5LjRHUEWzFk32tzb5u111k7z580rQibljy+JD1w/wNp8ZIlRbgVw9ENt51VcnC20UZvySe+v1D0YFop9+ZqL90EXbFOhE3F9vIQiLvuskseznCTYv6uGErw2RzALVq0qAjf4gKwCJsi0GvtoRTbKIZpzHN+nXbqqXnOrR2L9eP5KEtzAPPDH/4wz9V1TPr9H/4woF4R/MzKwc/HPvrRtMUWmxdzSk3NzxU9wrJvhGP3ZeMvn3tu+tnPfl4cz8tbfvm/4fqGPEzfccccXQyFGNuL4xuvoCv2fcONNxY9326/447Cq/V4Y7626N132CGHpDXXXKP1pZ7vP/XUU+nfs+2BnzwoLcnvndb3TLhEuyzI86W9f6ed+uZBE3T1zNy3wngGXXEQ7/2796RLLr64aOf4uS1LtHs8jvd863ugfL28/cjf/32eW++y8uGY3wq6xpx8Yu9Q0DWx28fRESBQTwFBV7V2E3RV87M2AQL1FBB0VWs3QVc1P2sTIECAwMQRiODn7jxPzuGfOSLF6A8RJCzLEj2eYpSi6Mm15RZbpJj3a7DSbdDVum4EI9OnT0/rrL120WMs5gmLXmtxO9wJ9P+WQ64dd9ghnXjCCbnn2lqtmyzWix5hxxx7XJ6v68JiTql+C+QHEcpEPTbZeOOi99GMtWakSZMnpYWPLSzmQothAKNnWHvvtjLM2SvPgXZM9oihE+OE/3gGXRE2RE+uw484Ms9ptnRAKPiG178+nXnGGSl69kVPtColerX9Kfce2+UDH0i3335HMVRk+/ai199peQ63mTNnFi8JutqFun883kFX/Oxfd+3P05tnz+7roVce/XA/n7FMvC/32GvvYqjLcp2xvhV0jbX4BN9fDL13wyvD722Z/6gZfq+3BouhH8uiN1wp4ZYAAUFXtfeAoKuan7UJEKingKCrWrsJuqr5WZsAAQIEJo5AnGB+PobWy2HXKXm+ru9ffnkRcLSHMlWPOAKc6BEWQ/Qdc/RR6a0bbVSEQ609O1r3MZKgK4Kj2F4EXtGjKoKUcriz9l5c5b4ioNo4B1Snn/oPxQn49uAt1gujO+74z3TIYYcVvZ1im+3bi/3GcHtTcx2n5H9RYtjEmIur7OHWvk4sP2fOpunEz51Q3BbHnesQy41Hj66oZwwnGKHnJd/5zoBwsDze715ySTHEYvswjaVpL7fRq2vB2V9MZ59zTlq4cOGAVddaa6100udPSB/YddfiNUHXAKKunxjvoCsONHpfPvrwQ8X7O97v3Zb4edg9B8JX/ODKblcZ9eUEXaNOaoNNFlh/1uy+6l94/nmCwj4Ndwg0W0DQVa39BV3V/KxNgEA9BQRd1dpN0FXNz9oECBAgMPEEIoy5Nw/t943zzk9XXHllevDBB9PTTz89INAZyZHH0IQxl9Z2222bPv6xj+XhCtcrTngPt63hgq4IlWKIv7iN446T4L2WCGki1Np0k03SIQcflN69/fYvB2Q5aBqsPJUt7shD+R13/PHp5ptuTk/kIQk79UIZbDvxXARy0YtsozzcYszvtcXmm/cbLnG8gq4IPH/205+leQcfnO66664Bhx+95Q6aNy8dfNAnB/TIGbBwl0/8OfcojB5vhxx6WLolz/HWXuK988Hc4+uUk07K75mVi6EUr7v++hx67FX01GtdPoLUGAby/K9/PW2yycatL7mfBSZC0BUNESF39Owqf37i57hTEXR1Ehr91yctffKJv8wkOPrbt8WGCwi6Gv4GUH0CQwgIuoaA6fJpQVeXUBYjQGC5EhB0VWtOQVc1P2sTIECAwMQUiBPPEW5ddfXVReD182uvLYKkTr2iBqtNzJE1OYdJET7Eie1999k7vfe9702r5TmeuukJNFzQFducmYey2zSHGVddfU0xv9NgvawGO64ImWL/MezeVm9/ezrs0EPS5pttVgRngy3f+lz0Jro99+w6PQ/d96OrriqGeSxtWpcb6n6c0A+XCOm222679MkDD0ybbTZnwL7HI+haL4ePMYzlQXnurUsv++dibrH2emw2Z046e8FZRUAXjqNRXnjhxbR48aJ0xJFHpYu+9a0BwzvGPsJo/pln5mEhN0gv5feooGtk8hMl6IqjXzkHmL+88Ya07rrrFu+7+NkYKvCK5+Nnb+9999Wja2RNP6K1BF0d2GLowtZi6MJWjc73Y46zssTQhfxKDbcEmi0g6KrW/oKuan7WJkCgngKCrmrtJuiq5mdtAgQIEJi4AhF2xUnlxYuXpB//5Cfpmzl8+M1vf5sezUPaRRDSPvxee03KICnmm5qZT2LvussuKeZZet3rVk/ROydOWncTkgwXdBVD6G26afrSP56TrrjiB+mCiy5Kd999d98Qge3HVD6OfUfAFT3Kdtll57TH7run6dOmFUFTN8cUNjEU4aJFi9L3vvf9dOE3L0q/v+v3Re+uCLyGK7Hv6MUVJrvvtlvaeef3p9VzD6moS7zWWsYj6FpnnXXSPblH3/t2en+6/4EHBgRO4RO9uT512KHptTmsHK0SdQ3Xr3z1a+n4PEfa4jyXWTxuLWuuuWY6LAdwe++1Z+El6GrV6f7+RAq64qgjcI6Q+X/nAHy33T6U1p4xY8jKxHtij732St/7/uVDLrOsXzB04bIWrtn2I6gpw655c+cm80zVrAEdLgECE1JA0FWtWQRd1fysTYBAPQUEXdXaTdBVzc/aBAgQIDDxBWKosAi8Hnr44XTbbbflf7en3//hD+nBhx5Mjz22ML/2TB4y8OVwJ05Y/1UObKbl4GbGWv89zcy9rTbcYMO06aabFCevI1yKXli9lOGCrugRFcP9XXLxt4pjuPPOO1P0PvvPfHvvffemRQsXpf/KQxrGyfHJkyflIOtV6XU5eIveI2/ZcMO01VZvT7NmzSp6l7WHTN0cY9jE3FK/yyHXjTfemHt53ZHuyXOcPfKnR4r5zeLYo0yZskJa6VV52MY11sgm6xYmW265RZqd9x1zFQ1nEsFZzF116223phdzr6e+kjtSTVlhShGU7bjDDh1Dwxja8Ve/uimdf8EF6ZlnnunbTNyJkG327Flprzz3UYRXN99yS7Hck0882W+5mPAs5lPaL/eo2XKLLYY97v4rdv/ozl//Ov3TuecWvfNeerH/gGkrrbxSit5kERCGWbgvWLBgQH3ifbj66tPz8Jgfz239hu533pAlJ1rQ1Qt7BK2dQvZetjeSZQVdI1FbjtcRdC3HjatqBAiMm4Cgqxq9oKuan7UJEKingKCrWrsJuqr5WZsAAQIE6iUQJ5ijN1f0ZFqUe9w8/vjjRc+bGOYwzzhVzHW12mqvTa95zWvStNVWSzGXUzmH1khr2jHoyoHLd799cdFLquwB9ehjj+UQ7rG0eNHitHjJkqKH19SpKxbHMy333IoeVHFsEdp004Orm2OPQCo8Hn0073dJ3m/uCfdknr8rpZdy77FV0rRpqxUhUoRdr3n1q3sKiWK7EdjlM/wthzIpH3tKq6y6alolB4idSoR90XZPPvlUDv769zqblHuSTc3B0ap5W+ERwebSHIa9mOvUr+TXIhB8de6RFu26LMpzzz1XhIdx2x5oTJo0OU1ZcUrhF8cRyzz++BMD6/PKccb7cLgQcVkcfx22WeegayL4CromQitMoGMQdE2gxnAoBAgsNwKCrmpNKeiq5mdtAgTqKSDoqtZugq5qftYmQIAAgfoJRPgQoUn8i/vlv6ImOWCIoGTyK0FDhBFVg6Regq44hsiCIsjpO8byyXwbgc5oHltsurWU+2y1idfDoPwXvY3K+63rDnc/thelX86VH+fN9rStsq0G205svzyubpeLdUa7lPuO7Q51nGXvu3LZIZfLwVj0QlP6Cwi6+nv0+kjQ1auY5QkMI7D+rNl9r154/nnm6OrTcIdAswUEXdXaX9BVzc/aBAjUU0DQVa3dBF3V/KxNgAABAgQ6CfQadHXantcJNF1A0FXtHSDoquZnbQL9BARd/Tg8IEDgFQFBV7W3gqCrmp+1CRCop4Cgq1q7Cbqq+VmbAAECBAh0EhB0dRLyOoHeBARdvXm1Ly3oahfxmEAFAUFXBTyrEliOBQRd1RpX0FXNz9oECNRTQNBVrd0EXdX8rE2AAAECBDoJCLo6CXmdQG8Cgq7evNqXFnS1izT88fyzFqTrb7ihUHjbllumeQfObbhIb9Uv7WKt8FMIECAQAoKuau8DQVc1P2sTIFBPAUFXtXYTdFXzszYBAgQIEOgkIOjqJOR1Ar0JCLp682pfWtDVLtLwx3vuvU9f0DVv7lxBV8PfD6pPgMDoCAi6qjkKuqr5WZsAgXoKCLqqtZugq5qftQkQIECAQCcBQVcnIa8T6E1A0NWbV/vSgq52kYY/FnQ1/A2g+gQILBMBQVc1VkFXNT9rEyBQTwFBV7V2E3RV87M2AQIECBDoJCDo6iTkdQK9CQi6evNqX1rQ1S7S8Mcx9N4NrwxduGUees/we729IWLox7IY9rGUcEuAgKCr2ntA0FXNz9oECNRTQNBVrd0EXdX8rE2AAAECBDoJCLo6CXmdQG8Cgq7evNqXFnS1i3hMoILA+rNm96194fnnCQr7NNwh0GwBQVe19hd0VfOzNgEC9RQQdFVrN0FXNT9rEyBAgACBTgLPP/98+uGPfpT2/fD+6aWXXuq3+NSpU9Nmc+akODe26qqr9nvNAwIEBhcQdA3u0u2zgq5upSxHoAsBQVcXSBYh0EABQVe1Rhd0VfOzNgEC9RQQdFVrN0FXNT9rEyBAgACBTgIvvPBCuuXWW1OMbvRS/l/8vywrrrhietOb3pgOmjcvrbTSSuXTbgkQGEZA0DUMThcvCbq6QGrSIjF0YWsxdGGrRuf7McdZWWLoQn6lhlsCzRYQdFVrf0FXNT9rEyBQTwFBV7V2E3RV87M2AQIECBDoJBC9uJ577rn09NNPD1h00qRJacqUKWnllVdOkydPHvC6JwgQGCgg6Bpo0sszgq5etBqwbAQ1Zdg1b+7cZJ6pBjS6KhIgsMwFBF3ViAVd1fysTYBAPQUEXdXaTdBVzc/aBAgQIECAAAECYytw+RVXpA/utvvY7nQ52VsE6k8sWpQmr9CcYH3S0iefaOlIu5y05ChWQ9A1ipg2RYAAgVcEBF3V3gqCrmp+1iZAoJ4Cgq5q7SboquZnbQIECBAgQIAAgbEVuPYXv0h/+792GNudLid7W2WVldMjDz2UJufepE0pgq4OLS3o6gDkZQIECIxAQNA1ArSWVQRdLRjuEiDQGIHW332NqfQoVlTQNYqYNkWAAAECBAgQILDMBRblHkmvn7leimFBld4ENtxgg3Tjddel1JycKwm6OrxHYthC80p1QBri5bAr5+gKQ3N0DQHlaQINFZjxlnf31fyQA/ZJhx2wb99jd4YXaO3VsNUWG6fvfu304VfwKgECBJYDAUHXyBvR34qR21mTAAECBAgQIEBg/AS2/9v/ma67/vrxO4Ca7vnkEz+fDszTMDWpCLqa1NpjXNfW3nARdF14/nljfAR2R4DARBZoDWsEXd23VHtvuO/kkGvrHHYpBAgQaIJA60USTajvaNXR39nRkrQdAgQIECBAgACBsRRYunRpWn/W7LRkyZKx3G2t9/Wud74zXXnF5Snm6WpSEXT10NplD6UIbPTy6gw3/6wFaf6CBcWCzDp7WYJA0wTar8yPq80Pzb26hDZDvxMGM9Oba2gvrxAgsPwJtP8eXP5quGxqZNjCZeNqqwQIECBAgAABAste4Kqrr0477/qB9Oyzzy77ndV8D7NnzUrXXfvzNHXq1JrXpPfDF3R1aVaGXOXirT2UWnsuzctdAmOIvijt69z1m1+XqxdD+sXrUZa3dVpDrQi7op56c/U1vTsECLQItPbqanna3S4FXKHfJZTFCBBYrgSEXb01p56/vXlZmgABAgQIECBAYOIJ3PnrX6dPzD3QMIZDNM2UKVPSR//PR9Lhn/50mj59+hBLLd9PC7q6bN/W3kmxSmuYI+hKQwZ3XfJajACBBgsIu0bW+EKukblZiwCB5UMghnE97YvfWD4qswxqEb2ko5j/chng2iQBAgQIECBAgMCYC7zw4otphTwU34v59vQzzkg333xLeuaZZ9JLY34kE2eHMTThtGnT0ru33y596IMfnDgHNk5HIujqAT56JkXgFaW1h5Kgq3/QFT6tvdfisUKAAIHhBOLq/F/kk5bxTxleIAKuKE5eDu/kVQIECBAgQIAAAQIECBAgQIAAgWYICLpGoZ3LIQhjU+1zdw312lDPxzaGem2o5yfaOnE87Q7xnEKAAIFOAnGFvjK0gPnLhrbxCgECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXkDQVfsmVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMFBF3NbHe1JkCAAAECBAgQIECAAAECBAgQIECAAAECBAjUXuD/Ayo4kyW+eVdRAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.1. Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade openai" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.2. (Re-)Initialise OpenAI Client" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from openai import AsyncOpenAI\n", + "\n", + "client = AsyncOpenAI()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.3. (Re-)Load our Temporal Knowledge Graph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cb_functions import build_graph, load_db_from_hf\n", + "\n", + "conn = load_db_from_hf()\n", + "G = build_graph(conn)\n", + "\n", + "print(G.number_of_nodes(), \"nodes,\", G.number_of_edges(), \"edges\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.4. Planner\n", + "Planning steps are incorporated in many modern LLM applications. \n", + "\n", + "The explicit inclusion of a planning step improves overall performance by having the system consider the full scope of the problem before acting.\n", + "\n", + "In this implementation, the plan remains static. In longer-horizon agentic pipelines, however, it's common to include mechanisms for replanning or updating the plan as the system progresses. \n", + "\n", + "Broadly, planners take two forms:\n", + "
    \n", + "
  1. \n", + " Task-orientated (used in this cookbook)
    \n", + "

    \n", + " The planner outlines the concrete subtasks the downstream agentic blocks should execute. The tasks are phrased in an action-orientated sense such as \"1. Extract information on R&D activities of Company IJK between 2018–2020.\" These planners are typically preferred when the goal is mostly deterministic and the primary risk is skipping or duplicating work.\n", + "

    \n", + "

    \n", + " Example tasks where this approach is useful:\n", + "

    \n", + "
      \n", + "
    • Law: \"Extract and tabulate termination-notice periods from every master service agreement executed in FY24\"
    • \n", + "
    • Finance: \"Fetch every 10-K filed by S&P 500 banks for FY24, extract tier-1 capital and liquidity coverage ratios, and output a ranked table of institutions by capital adequacy\"
    • \n", + "
    • Automotive: \"Compile warranty-claim counts by component for Model XYZ vehicles sold in Europe since the new emissions regulation came into force\"
    • \n", + "
    • Manufacturing: \"Analyse downtime logs from each CNC machine for Q1 2025, classify the root-cause codes, and generate a Pareto chart of the top five failure drivers\"
    • \n", + "
    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Hypothesis-orientated
    \n", + "

    \n", + " The plan is framed as a set of hypotheses the system can confirm, reject, or refine in response to the user's question. Each step represents a testable claim, optionally paired with suggested actions. This approach excels in open-ended research tasks where new information can significantly reshape the solution space.\n", + "

    \n", + "

    \n", + " Example tasks where this approach is useful:\n", + "

    \n", + "
      \n", + "
    • Law: \"Does the supplied evidence satisfy all four prongs of the fair-use doctrine? Evaluate each prong against relevant case law\"
    • \n", + "
    • Pharmaceuticals: \"What emerging mRNA delivery methods could be used to target the IRS1 gene to treat obesity?\"
    • \n", + "
    • Finance: \"Is Bank Alpha facing a liquidity risk? Compare its LCR trend, interbank borrowing costs, and deposit-outflow and anything else you find that is interesting\"
    • \n", + "
    \n", + "
  4. \n", + "
\n", + "\n", + "\n", + "#### Prompting our planner\n", + "We will define two prompts (one `system` and one `user`) for the initial planner. \n", + "\n", + "The most notable characteristic of our system prompt below is the use of 'persona-based' prompting. We prompt the LLM giving it a persona of an internal company expert. This helps to frame the tone of the model's response to the behaviour that we want - a direct, action-orientated task list that is fit for the financial industry. \n", + "\n", + "This is then extended in the user prompt, where we prepend the `user_question` with information on this specific situation and how the planner should handle it. \n", + "\n", + "In production settings you can super-charge this template by dynamically enriching the prompt before each call. You can inject information on the user's profile —sector, role, preferred writing style, prior conversation context—so the planner tailors its actions to their environment. You can also perform a quick “question-building” loop: have the assistant propose clarifying questions, gather the answers, and merge them back into the prompt so the planner starts with a well-scoped, information-rich request rather than a vague one. \n", + "\n", + "Another flow that can work well is to allow users to view the plan and optionally edit it before it is executed. This is particularly effective when your AI system is acting in more of an assistant role. Giving domain experts such as lawyers or pharmaceutical researchers the flexibility to steer and incorporate their ideas and research directions deeper into the system often has the dual benefit of improving both system performance and end user satisfaction." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async def initial_planner(user_question: str) -> str:\n", + " \"\"\"Return an initial plan for answering the user's question.\"\"\"\n", + " initial_planner_system_prompt = (\n", + " \"You work for the leading financial firm, ABC Incorporated, one of the largest financial firms in the world. \"\n", + " \"Due to your long and esteemed tenure at the firm, various equity research teams will often come to you \"\n", + " \"for guidance on research tasks they are performing. Your expertise is particularly strong in the area of \"\n", + " \"ABC Incorporated's proprietary knowledge base of earnings call transcripts. This contains details that have been \"\n", + " \"extracted from the earnings call transcripts of various companies with labelling for when these statements are, or \"\n", + " \"were, valid. You are an expert at providing instructions to teams on how to use this knowledge graph to answer \"\n", + " \"their research queries. \\n\"\n", + " \"The teams will have access to the following tools to help them retrieve information from the knowledge graph: \\n\"\n", + " \"1. `factual_qa`: Queries the knowledge graph for time-bounded factual relationships involving a given entity and predicate. \\n\"\n", + " \"2. `trend_analysis`: Wraps the factual_qa tool with a specialised agent to perform in-depth trend analysis \\n\"\n", + " \"It shoudld also be noted that the trend_analysis tool can accept multiple predicate arguments as a list. \\n \"\n", + " \"You may recommend that multiple calls are made to the tools with different e.g., predicates if this is useful. \\n \"\n", + " \"Your recommendation should explain to the team how to retrieve the information from the database through these \"\n", + " \"tools only. \"\n", + " )\n", + "\n", + " initial_planner_user_prompt = (\n", + " \"Your top equity research team has came to you with a research question they are trying to find the answer to. \"\n", + " \"You should use your deep financial expertise to succinctly detail a step-by-step plan for retrieving \"\n", + " \"this information from the the company's knowledge base of earnings call transcripts extracts. \"\n", + " \"You should produce a concise set of individual research tasks required to thoroughly address the team's query. \"\n", + " \"These tasks should cover all of the key points of the team's research task without overcomplicating it. \\n\\n\"\n", + " \"The question the team has is: \\n\\n\"\n", + " f\"{user_question} \\n\\n\"\n", + " \"Return your answer under a heading 'Research tasks' with no filler language, only the plan.\"\n", + " )\n", + "\n", + " input_messages = [\n", + " {\"role\":\"system\", \"content\": initial_planner_system_prompt},\n", + " {\"role\":\"user\", \"content\": initial_planner_user_prompt}\n", + " ]\n", + "\n", + " initial_plan = await client.responses.create(\n", + " model=\"gpt-4.1\",\n", + " input=input_messages\n", + " )\n", + "\n", + " return initial_plan.output_text" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plan = await initial_planner(\"How can we find out how AMD's research priorties have changed in the last 4 years?\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(plan)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.5. Function calling\n", + "[OpenAI function calling](https://platform.openai.com/docs/guides/function-calling?api-mode=responses) (otherwise known as tools) enable models to perform specific external actions by calling predefined functions. Some of the tools provided on the OpenAI platform include:\n", + "- **Code interpreter**: Executes code for data analysis, math, plotting, and file manipulation\n", + "- **Web search**: Include data from the internet in model response generation\n", + "- **File search**: Search the contents of uploaded files for context\n", + "- **Image generation**: Generate or edit images using GPT image\n", + "- **Remote MCP servers**: Give the model access to new capabilities via Model Context Protocol (MCP) servers\n", + "\n", + "Other cookbooks cover how to build tools for use with LLMs. In this example, we’ll develop several tools designed to efficiently explore the temporal knowledge graph and help answer the user’s question.\n", + "\n", + "There are several schools of thought on tool design, and the best choice depends on the application at hand." + ] + }, + { + "attachments": { + "150d9cc4-9989-4e8e-bfcf-f1223a7959ee.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACggAAAfSCAYAAABQoufIAAAKqmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU+kSgP97bzoJLQEBKaE36S2AlEAooUivNkISIJQYA0HBjiyuwIoiIoJlRVcFFFxUQNaCiGJhEbCAii7IoqKuiwVRUXkXOITdfee9d97cM+f/Mnf+mfnv+eecCQAUGkckSoXlAUgTZohDfTzo0TGxdPwIgNCHCihAicNNFzGDgwMAKrPr3+XDPdQXldtmU7H+/f1/FQUeP50LABSMcjwvnZuG8mlUR7kicQYAyGHUrrsqQzTF11CmidECUe6f4sQZHp3i+GnGYKZ9wkM9UVYBgEDmcMSJAJD1UDs9k5uIxiGzULYU8gRClNHfwDUtbQUPZTQvMEJ9RChPxWfE/yVO4t9ixktjcjiJUp45y7QQWIJ0USon6//8HP9b0lIlszkMUCUniX1D0RWtC+pLWeEvZWH8oqBZFvCm/ac5SeIbMcvcdM/YWeZxWP7SvamLAmY5QeDNlsbJYIfPMj/dK2yWxStCpbkSxJ7MWeaI5/JKUiKk9iQ+Wxo/Oyk8apYzBZGLZjk9Jcx/zsdTahdLQqX184U+HnN5vaVnT0v/y3kFbOnejKRwX+nZOXP184XMuZjp0dLaeHyW15xPhNRflOEhzSVKDZb681N9pPb0zDDp3gz0Qs7tDZZ+w2SOX/AsAxbwAgHoQwcRwBo4oGoDQoBXBn/11B0FnitEWWJBYlIGnYl2GZ/OFnLNF9CtLa3tAJjq2Zkr8a5vuhchZcKcLTcHgIWTKNyaswWiWr8TvT5r5mz6aF3yaE9c+Z0rEWfO2KbaCWABCcgBGlAFmkAXGAEztDZ74Azc0Yr9QBAIBzFgGeCCJJAGxGAVWAs2gTxQALaDXaAcHACHwDFwAtSDRnAOXAJXwU3QBe6Ch2AADIOXYBR8ABMQBOEhCkSFVCEtSB8yhawhBuQKeUEBUCgUA8VBiZAQkkBroc1QAVQMlUMHoSroZ+gsdAm6DnVD96FBaAR6C32GEZgM02AN2AC2gBkwE/aHw+GlcCK8Es6Gc+FtcBlcCR+HG+BL8E34LjwAv4THEIDIIMqINmKGMBBPJAiJRRIQMbIeyUdKkUqkFmlG2pHbyADyCvmEwWGoGDrGDOOM8cVEYLiYlZj1mEJMOeYYpgHThrmNGcSMYr5hKVh1rCnWCcvGRmMTsauwedhS7BHsGewV7F3sMPYDDodTxhniHHC+uBhcMm4NrhC3D1eHa8F144ZwY3g8XhVvinfBB+E5+Ax8Hn4P/jj+Ir4HP4z/SJAhaBGsCd6EWIKQkEMoJVQTLhB6CM8IE0R5oj7RiRhE5BGziEXEw8Rm4i3iMHGCpEAyJLmQwknJpE2kMlIt6Qqpn/RORkZGR8ZRJkRGILNRpkzmpMw1mUGZT2RFsgnZk7yELCFvIx8lt5Dvk99RKBQDijsllpJB2UapolymPKZ8lKXKmsuyZXmyG2QrZBtke2RfyxHl9OWYcsvksuVK5U7J3ZJ7JU+UN5D3lOfIr5evkD8r3ys/pkBVsFIIUkhTKFSoVriu8FwRr2ig6KXIU8xVPKR4WXGIilB1qZ5ULnUz9TD1CnWYhqMZ0ti0ZFoB7QStkzaqpKhkqxSptFqpQum80oAyomygzFZOVS5Srle+p/x5nsY85jz+vK3zauf1zBtXma/irsJXyVepU7mr8lmVruqlmqK6Q7VR9ZEaRs1ELURtldp+tStqr+bT5jvP587Pn18//4E6rG6iHqq+Rv2Qeof6mIamho+GSGOPxmWNV5rKmu6ayZolmhc0R7SoWq5aAq0SrYtaL+hKdCY9lV5Gb6OPaqtr+2pLtA9qd2pP6BjqROjk6NTpPNIl6TJ0E3RLdFt1R/W09AL11urV6D3QJ+oz9JP0d+u3648bGBpEGWwxaDR4bqhiyDbMNqwx7DeiGLkZrTSqNLpjjDNmGKcY7zPuMoFN7EySTCpMbpnCpvamAtN9pt0LsAscFwgXVC7oNSObMc0yzWrMBs2VzQPMc8wbzV9b6FnEWuywaLf4ZmlnmWp52PKhlaKVn1WOVbPVW2sTa651hfUdG4qNt80GmyabN7amtnzb/bZ9dlS7QLstdq12X+0d7MX2tfYjDnoOcQ57HXoZNEYwo5BxzRHr6OG4wfGc4ycne6cMp3qnP53NnFOcq52fLzRcyF94eOGQi44Lx+Wgy4Ar3TXO9UfXATdtN45bpdsTd113nvsR92dMY2Yy8zjztYelh9jjjMe4p5PnOs8WFsLyYeWzOr0UvSK8yr0ee+t4J3rXeI/62Pms8Wnxxfr6++7w7WVrsLnsKvaon4PfOr82f7J/mH+5/5MAkwBxQHMgHOgXuDOwf5H+IuGixiAQxA7aGfQo2DB4ZfAvIbiQ4JCKkKehVqFrQ9vDqGHLw6rDPoR7hBeFP4wwipBEtEbKRS6JrIocj2JFFUcNRFtEr4u+GaMWI4hpisXHRsYeiR1b7LV41+LhJXZL8pbcW2q4dPXS68vUlqUuO79cbjln+ak4bFxUXHXcF04Qp5IzFs+O3xs/yvXk7ua+5LnzSngjfBd+Mf9ZgktCccLzRJfEnYkjSW5JpUmvBJ6CcsGbZN/kA8njKUEpR1MmU6NS69IIaXFpZ4WKwhRh2wrNFatXdItMRXmigZVOK3etHBX7i4+kQ+lL05syaOhw1CExknwnGcx0zazI/LgqctWp1Qqrhas7skyytmY9y/bO/mkNZg13Teta7bWb1g6uY647uB5aH7++dYPuhtwNwxt9Nh7bRNqUsunXHMuc4pz3m6M2N+dq5G7MHfrO57uaPNk8cV7vFuctB77HfC/4vnOrzdY9W7/l8/JvFFgWlBZ8KeQW3vjB6oeyHya3JWzrLLIv2r8dt124/d4Otx3HihWKs4uHdgbubCihl+SXvN+1fNf1UtvSA7tJuyW7B8oCypr26O3ZvudLeVL53QqPirq96nu37h3fx9vXs999f+0BjQMFBz7/KPix76DPwYZKg8rSQ7hDmYeeHo483P4T46eqI2pHCo58PSo8OnAs9FhblUNVVbV6dVENXCOpGTm+5HjXCdaJplqz2oN1ynUFJ8FJyckXP8f9fK/ev771FONU7Wn903vPUM/kN0ANWQ2jjUmNA00xTd1n/c62Njs3n/nF/Jej57TPVZxXOl90gXQh98LkxeyLYy2illeXEi8NtS5vfXg5+vKdtpC2ziv+V65d9b56uZ3ZfvGay7Vz152un73BuNF40/5mQ4ddx5lf7X4902nf2XDL4VZTl2NXc/fC7gs9bj2XbrNuX73DvnPz7qK73fci7vX1Lukd6OP1Pb+fev/Ng8wHEw839mP78x/JPyp9rP648jfj3+oG7AfOD7IGO56EPXk4xB16+Xv671+Gc59SnpY+03pW9dz6+bkR75GuF4tfDL8UvZx4lfeHwh97Xxu9Pv2n+58do9Gjw2/EbybfFr5TfXf0ve371rHgsccf0j5MjOd/VP147BPjU/vnqM/PJlZ9wX8p+2r8tfmb/7f+ybTJSRFHzJkeBRBU4YQEAN4eBYASAwC1CwDS4pmZelqgmf8B0wT+E8/M3dNiD8CJFgCC3QFgtcywPmqWc5+xhbsD2MZGqrPz7/SsPiXyxwHwyGJZ+gUMIS/BP2Vmjv9L3f9cgTTq39Z/AdMCBiIBY4fBAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAKCKADAAQAAAABAAAH0gAAAABBU0NJSQAAAFNjcmVlbnNob3RFuS5wAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yMDAyPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjI1Njg8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KBppA/AAAABxpRE9UAAAAAgAAAAAAAAPpAAAAKAAAA+kAAAPpAAGyxOyeiVsAAEAASURBVHgB7N0FmFzV3Qfgf3FLsZDgLUVTvBSXAEGDhODu7q7FAsGdCO7WYkESHIoluDvtV6DEIECx4vDdM+2mye7cOzOb3c1m8p7nCTNzz7ly3nN3Zp5nfpzzq39/+cUvoRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1JfArAcG6Gk+dIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECJQEBQTcCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoQwEBwTocVF0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQICgu4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQhwICgnU4qLpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEBN0DBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgDgUEBOtwUHWJAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgICLoHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAHQoICNbhoOoSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQEHQPECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBOhQQEKzDQdUlAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAgIOgeIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSggIFiHg6pLBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAQNA9QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lBAQLAOB1WXCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAgKB7gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1KGAgGAdDqouESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAUH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEMBAcE6HFRdIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECAoLuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUIcCAoJ1OKi6RIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBATdAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoA4FBATrcFB1iQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQICAi6BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB0KCAjW4aDqEgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEBB0DxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgToUEBCsw0HVJQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgICDoHiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUoICBYh4OqSwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQEDQPUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpQQECwDgdVlwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgICge4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNShgIBgHQ6qLhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQFB9wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhDAQHBOhxUXSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgKC7gECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCHAgKCdTioukSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAQE3QMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAOBQQE63BQdYkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAgIugcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAdCggI1uGg6hIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBAQdA8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE6FBAQrMNB1SUCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICAg6B4gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1KCAgWIeDqksECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQEBA0D1AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqUEBAsA4HVZcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgICAoHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUoYCAYB0Oqi4RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEBQfcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoQwEBwTocVF0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQICgu4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQhwICgnU4qLpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEBN0DBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgDgUEBOtwUHWJAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgICLoHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAHQoICNbhoOoSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQEHQPECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBOhQQEKzDQdUlAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAgIOgeIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSggIFiHg6pLBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAQNA9QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lBAQLAOB1WXCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAgKB7gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1KGAgGAdDqouESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAUH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEMBAcE6HFRdIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECAoLuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUIcCAoJ1OKi6RIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBATdAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoA4FBATrcFB1iQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQICAi6BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB0KCAjW4aDqEgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEBB0DxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgToUEBCsw0HVJQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgICDoHiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUoICBYh4OqSwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQEDQPUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpQQECwDgdVlwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgICge4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNShgIBgHQ6qLhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQFB9wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhDAQHBOhxUXSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgKC7gECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCHAgKCdTioukSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAQE3QMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAOBQQE63BQdYkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAgIugcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAdCggI1uGg6hIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBAQdA8QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE6FBAQrMNB1SUCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICAg6B4gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1KCAgWIeDqksECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQEBA0D1AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqUEBAsA4HVZcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgICAoHuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUoYCAYB0Oqi4RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEBQfcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoQwEBwTocVF0iQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQICgu4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQhwICgnU4qLpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQEBN0DBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgDgUEBOtwUHWJAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgICLoHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAHQoICNbhoOoSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQEHQPECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBOhQQEKzDQdUlAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAgIOgeIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSggIFiHg6pLBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAQNA9QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lBAQLAOB1WXCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAgKB7gAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1KGAgGAdDqouESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAUH3AAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEMBAcE6HFRdIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECAoLuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUIcCAoJ1OKi6RIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBATdAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoA4FBATrcFB1iQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQICAi6BwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB0KCAjW4aDqEgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEBCcAO6Bjz/+OEaNGjVer3TKqaaK380zT5Nr+PTTT2PkyJFNtjdsmHPOOaNDhw4NLz0SIECAAIF2LzBs2PD4/PN/5V7nJJNOGgsusEBuvYr6FHj7nXfi559+Ktu5yaeYIuabd96ydTYSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgfAoICI5P/SrPfc6550W/iy6qsnXrNFtkkYVjwK23Njn41ddcGyf17t1ke8OG8889J9br3r3hpUcCBAgQINAuBR5//Ino069fvJOFwL786qvCa0zB9xefe7awjcr6E/jD0svEF198UbZj8/7ud3HfPYPK1tlIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8SkgIDg+9as8t4BglVCaESBAgACBGgW+//77+NNxx8Vttw+oek8Bwaqp6qqhgGBdDafOECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEJhoBAQEJ4ChFhCcAAbJJRKYQAQ+++yzSIGovNK5c+e8KtsJ1KXAeedfUJo5sJbOtXVA8Kuvv46vC2Y1nHHGGWOKbIlbpXUFBARb19fRCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoHQEBwdZxbdGjCgi2KKeDEZioBbbdfod46umncw3eePUVQaNcHRX1JvDOu+/Ghhv1jB9//LGmrrV1QLBP375x3gUX5l7jlZddFiuvvFJuvYqWERAQbBlHRyFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoG0FBATb1rtZZxMQbBabnQgQKCMgIFgGxaaJVuCCC/vEBX361Nx/AcGayepiBwHBuhhGnSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAw0QkICE4AQy4gOAEMkkskMIEICAhOIAPlMttEYN/9D4h777uv5nMJCNZMVhc7CAjWxTDqBAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGJTkBAcAIYcgHBCWCQXCKBCURAQHACGSiX2SYC3dffINIyw3ml22qrxZZbbhEzzDDDWE0mnXTSWGzRRcfa1povLDHcmrrVH1tAsHorLQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaD8CAoLtZyxyr2TEiBHx0ccf59aXq9h+hx3jq6+/LldV2nb6qafE/PPPn1vfuGKqqaaKBcq0v/qaa+Ok3r0bNx/9+vxzz4n1uncf/doTAgTGr4CA4Pj1d/b2JbDq6t3iw6FDy17UJJNMEoMffyw6duxYtr4tNwoItqV2/rkEBPNt1BAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0H4FBATb79iM05UV/YidDnzbLTe3yOxHAoLjNEx2JtDmAgKCbU7uhO1YoCggOMsss8SQJx5vF1cvINguhiGKvlvN+7vfxX33DGofF+oqCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMIaAgOAYGPX0tOhH7NRPAcF6Gm19IVC9gIBg9VZa1r+AgGD9j3FL9rDou5WAYEtKOxYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAi0pICDYkprt6FhFP2KnyxQQbEeD5VIItKGAgGAbYjtVuxcQEGz3Q9SuLrDou5WAYLsaKhdDgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMAYAgKCY2DU09OiH7FTP9tTQPDf33wTP/34Y3To0KHNh+D777+PESNHxvDhw2PYsOHx+eefR+fOnWL22WeP2WebLTp27Bi/+tWv2vy6ajnhTz/9FCNHfhQfDv0whg4dFl988UXMOmvnmGP2OWLOOeeIGWaYoZbDtWjbdG3/eO+9+Pjjj7N/o+LTTz6J6bPrSdc115xzRqdOnWKSSSZp0XPmHay9jfW3335buvdGjBiR3X8j4vN//atk0ylb1rTjLB1L919r/E0ICObdIeNve7oXfsz+Vqabdtpxuogvv/oqpph88phyyinH6ThtuXN6jxg1alSM/OijSH8L6b1s8skny97DZo3O2ftDepxxxhlb7ZIEBKun/eyzz0rvWSOzz8w0Vt9//0Pp83K27LMyjVX6vJx00kmrP2ALtGzr+6fou1VLBAS/++67GJZ9Hxn64dDSZ/rPP/9c+iyfbfbZYo455ohpp5mmBdQcggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBiU1AQLBOR7zoR+zU5fEZEHxy8OC4666749nnnouhw4bFj1k4MJUUjkk/gM8999yxUY8NY41u3VolbJB+gL/3vvvjLzffHM88+2z88ssvpfOX+0+6pg032CC23nqrWGjBBcs1GS/bvvnm2/jzX/4SN9x4Y3zwz3+ONix3MdNMPXV07do1dtl5p1hi8cXLNam4LZ3njTfeLNtusskmixOOP26sunRNt9xya9xy223xURb8ySspILjl5pvHlltsXgoL5rVr7vb2NtYpwHX//ffH7QPuiKefeabw3kvByaX/+MdYd521Y+211opZsuBgNSX9Xd1xx525TR965JFSYDOvwWabbFL4d7f++uvFcssuW3b3IU89FQMHDipblzbuscfupWBoQ4NXXn01Hnzwoex9YGh8+umnoz2mnGLKuPii/g3NRj9WOv7mm20Wiy226Oj21T65M3s/eiYbj7yyz957RQpB5ZUUmLqwT9+86lhrzTVjlVVWHl2f+npr9rdx96BB8WEWBErB5FTS+03nzp1jmaWXLr3ndFloodH7lHuS3r9uuPGmeP3117Ng3chIYetUZpppppJzunfS+1f6O2tPJYW6nnrq6Rhw5x3xwAMPxldff114eclkg+y+67HhhlHJpPGBbr7llnj55Vcabx79+u6BA3PPP9VUU8VG2TnzytTTTB3HHHVUXnVN2z/JwtPnnnd+7j6vvfF6vPba67n1q3ZdJWbtPGtu/SKLLJy9z26RW59X8dbbb5feT+7KnFIosKik8Npaa60ZPTbYMJZffrnC95Gi41Sqa8v7p/G1FH23am5AMP3tXnbFFXF39t6ZwrJF30nS33b6frTDdttn35dmb3x5XhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCsgIBgWZYJf2PRj9ipd+MjIJhCY6eeelo88NBDVQGnQM4uO+4YO+ywfYvM4pdm6Tr3/PPj5iy4lmbZq7X8caml4qADD4hll1mm1l1brP2XX34Z1153XVx59TWRZnOqtfxhySVjt113iTXXWKOmXffed7+4/4EHyu4zxRRTxBuv/i+Ac+1118cpp50WP/zwQ9n25TamkGEKAB137LHRYbrpyjWpaVt7G+sUCDv19NPjnnvvi3RttZYUFtwqC/cceughFX1ScPSYY8cObNZ6vqL2Jxx3bGy7zTZlm1x9zbVxUu/eZevSxlv+8udSSDWFofY74MBSQLdc4xRqfeWlF5tUXXPtddHr5JObbG/YcN45Z8f6663X8LLqxxNO7BXX3XBDbvu7BtweXbp0ya1PIar1N+yRW3/YIQfHHrvvXqpPwcDjTjgxUni1UknBwjNOP63JzIJpRs699tk3Xnr55UqHKIW0dth+uzjskEOymfkmr9i+NRukYNcll14a12TvEakPzSkLLrBA7LfvPrHO2mtXtfvBhx4aKQDaGiXNzvrc00+1yKHfe//9WGOt6vrUnBMmrz4X5AcQGx/zvizIfMGFfeLtd95pXFXV6xRo3n7bbbLPm10jvb+3RBkf90/j6y76blVrQPD9Dz6ISy65NG4bMKCmz8t0TWmmxjSme+y2a/z+979vfJleEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYCwBAcGxOOrnRdGP2KmXbR0QHDxkSOy6+x7ZkoTf14ycfgRPIZkUGmpuScvc7rvf/s0OOzScNwUdjjz88NgxCy22dfm/f/wjdthp59JyyON67t2z0Mbhhx1a9WGqDQge86dj48/ZzIzNLb+bZ57o17dPzDfvvM09RGlJ4/Y01o8++lgccfTRpZmhmt2p/+6Ylls96cQTYrVVV809VHsPCKYZ4Lqvv0GkcExeqdeAYN9+/bKQ8gV53S67PQXirrnqyph55plL9em9bPsdd6r5fWDhhX8fl1500XibTTAF4A459LB4+ZX/hYnLdrjKjT036lFVoFhA8D+g1QYE02yOJ510ctx6++1VjkRxs8UWXTTOPuvMmOe3vy1uWKF2fN0/jS+r6LtVLQHBFLg/8OBDmvWdaMxrSgH9FIxOYWKFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECeQICgnkyE/j2oh+xU9faMiCYZq3rsfEmpSVEm8ualve98YbrK86eVu749953Xxx51NG5y0iW26fSto17bhQn9+oV6cf5tihptq31shnK0kx0LVXSjHQnnnB8pNnpKpVqAoJXXXV1nHzqqZUOVbE+LbN6YTbT48orr1SxbeMG7Wmsf/755zjp5N5x7fXXN77McXr9q1/9Kk47pXdssvHGZY/TngOCF55/Xrz11tvRt3/T5YPH7Ey9BQTTss1LLrlE/Om44yPdF7WW1bNA6CUXX1SaZWzjzTaPN998s9ZDlNov9Yc/xPXXXtNiM7pVexFpSe3jTzhh9BLI1e5XqV1aYvXCbFneomWlBQT/o1hNQDAtYbzv/vvHh0OHVqKvqX7qqaeKE48/Pjbu2bOm/Roaj8/7p+EaGh6LvltVGxB8/PEnYtc99og0I2JLlDSb4GmnnBIpNKsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgnICAYDmVOthW9CN26l5bBQQ7deoUP/74Y4sE29KP32dmy7TWUtJsVVtstXXpGmrZr5q222y1VSlgV03bcW1TFNAbl2Nvly0Ve3y2ZGylUun8aTnJFF5sqcDDr3/96xh0152RZsyrtrS3sT7n3POiXzZjW2uUFAg5/9xzyi6z2p4DgtVa1FtAsNp+F7VL739ffvFlPPjww0XNKtbtsdtucVi2VHVblSefHBw7Z+dsqfeGxtedZla847Zbc98rBAT/I1YpIDhy5MjYaJNNm730c+Nxafw6BdEvu/jiWGWVlRtXFb4e3/dP44sr+m5VTUDw63//O9bNlkEfNmx440OP0+sUHE+fCd3XXXecjmNnAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqU0BAsD7HNYp+xE5dbquAYEvz9rng/LKhqHLn+fKrr2LDHhvFPz/8sFx1i2y77JKLY9WuXVvkWHkHSUuKrrn2OnnVo7enMObss80W00wzTWn50TQL1A8//DC6vtyTFDS7/9574jdzz12uevS2SgHB0Q1b8MmyyywT1159VVUzHLa3sU7LR+6TLWn9yy+/tKDI2IeafPLJS3/HacneMYuA4HpjclT1/IQTe8V1N9yQ2/auAbdHly5dcuvfevvtWD+b4XNCKGk2t8FPPNGs2Vhr7d8H//xn9MxCZ59//nmtu9bUPs0geON118WUU07ZZD8Bwf+QFAUEv//++9hqm21bbPnnJoPw3w0p+D0gC3POPddceU3G2t4e7p+xLih7UfTdqpqA4E1//nNpJtHGxx3zdQr7JaPOnTuXPkOGDR+WfaaPqDj7aNonfZ5PNtlkYx7OcwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECISAYJ3eBEU/Yqcuj8+A4GxZiO33WahpoexfCib84x//iBSwqWZZw/QD+MMPPlDVqB1w0MExcNCgim2XXGKJWGThheM3v/lNzDDDDDF06IeRQnmPP/FkfPLJJ4X7d+zYsTTT3UwzzVTYblwq+2ez0J2dzUaXV1JA7ITjj4u0fOiY5csvv4wUFuvbr3+kAF1e2TRbqva0U0/Jqy5tb05AcMEFFogFF8z+ZY+dOnUujfPb2Ti/ni2POmLEiMLzNVQeefhhsesuuzS8zH1sT2Od7p2e2ZLaX339de71NlSkJapXWH65UkAzBTy//PKrGPnRyNK9N2rUqIZmuY8rLL98XHPVlWPV33f//dGnb7+xto354oMPPog0i1VeSct5p4BKXtlzj91jve7dy1Zffc21cVLv3mXratlYzzMIppDU8sstFwtlfxsdputQeq8ZPGRI6bEWoxQCWn65ZbO/sQVjjtnniKHDhsYrr7wazzz7bMXD9D6pV2yx+eYV241Lg/TevvGmm5Xe2ysdJ91vc805Z6kvC8w/f3zz7Tfx7rvvZvu+U/WMdptvummc0vvkJqc6+5xz46+PPtpke8OGv/3977lB6mQ8/3zzNTRt8pjGMi3Z3BIlzSi3x1575R5qVPZZlJaazyvps3HabHn2vLLiiivEkYcfXrb62Gzp6xuz4Fo1JX3mpff0BRaYP6adZtp4Jxun9L6egvjVLJ+d9k3fP8qFOcc8f3u5f8a8pvS86LtVNQHBHXfeOZ7IZtXMK+m99ZCDD2oSokxhySuuuLIwyJyOmWZZttRwnq7tBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCZeAQHBOh37oh+xU5fHR0AwBUDOP/fcSLM9NS5pprUUZjv9jDMLw2xpv5v/fFOkUF9Ref31N6JHFnwrKimocNQRR8RKK61YtlkKeF1yyaVxxVVXxbffflu2Tdq40447xDFHHZVbP64VBx58SNw9cGDZw6SQxeN/fSSKAoopMLTzrrvl9iGFsR7LjpHCkXmlloBgGueTe/WKFEgpV9JSo9dkQbJzzj8vvvkm3zXtm5YufuLRv0aa6TCvtLexPvKoo+OW227Lu9zS9qmmmioO2n//2HTTTWL66adv0jYZDbrn3jjy6KPju+++a1I/5oZLLuofq6+22pibCp9vu/0O8dTTT+e2eePVVyIFF5tTagkIpnu3Z48eWVB4wfjtb34bM3eceXQwMQXG0t9n43LNtddFr5ObhsAa2p13ztmxfrZ8Z62lrWYQTIHOs888o3Rfj3mNaRn2i7LlV8+74MIxN+c+n2OO2ePcs8+OPyy5ZJM2Dz70UBx2+BGF76MpoJhm52zNcvuAO+Kw7P21Ullu2WVLwb4UcCtXnn/hhUh/Uyl4W1TSPfPQA/c3CVYV7ZPqVl29W244Pb3/DHni8UqHaJP6Pn37Ft4fV152Way88ko1X0sK5q++xpoVw33pfb33ySdlgebly55j+PDh2cx4x8Wjj1X2Oj0LpG9S4fO5vd4/Rd+tqgkILr/SyrlBz/Td6JYsqJmWY84rl19+RZx6xhl51bHE4ovHLX+pLuyZexAVBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUnYCAYN0N6X86VPQjdmrR1gHBNVZfPc484/To0KFDoXiaJWfd9dYvDEVtu/XWpRnzig50cjaL2VVZCC2vpPDRzdmP6CkcV6k88OCDkQJyecvFVhNiq3SOovpttts+nn7mmbJNUqDgtptvLls35sYzzzo7Lr700tGb0jistmrXWKNbtyxUsnLF5UarDQhumc1KdkwWakvLmFYqacapAw46qDTrWVHbK7LrXmWVlXObtKexTjM1rrDSSoXBxxS0uah/v7IBuMadTEG+3ffYM/79zTeNq0a/TiGxv9x04+jXlZ60h4DghhusH4cdckik2URrKRNyQDDN9HnH7bcVhn/22nufeCAL+BWVFN586P77Cu2uve76OPGkk3IPkwKGjz78cG59S1RstsWW8eJLL+UeKvXjuD8dU5rJsGjGynSAFJI957zz4vJsBrWisvuuu8bhhx1a1KRJ3cQeEEwzLPbPwqlFJX3mHp7N5lrN5+Vttw+I4088ofA9cLFFs8+tbBbBotJe75+i71aVAoIp+N1lkUVzw5i7ZbPlHpE5VyqbbLb5WMtBp7/n9B2rW/Z5vszSS1tiuBKgegIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIToYCAYJ0OetGP2KnLbRkQTLPbPfLQg9lyhNNUpX3BhX3igj59ctvO89vfxgP33Ztbn2bjSrP0fPbZZ2XbdJhuurhjwO01zTTVOGDX+MCVQmyN29fyeucs9PLY40+U3SUF/Z57+qnCGfbSjmkZzV12263ZIYJqAoJdunSJ27PQR1qWs9qSAqHd198gd3bDdJwN1l+vNFtauWO2t7GuFGBLoahbs2Bqsqq2vPDii7HVNttGCpeUK2m2qacHPxkzzjhjueom28Z3QLBrFva87JJLRs8W2OQCCzZU8m3PMwhenvW5a9dVCnoX8cqrr5aW5S1qVM2MpWmp16WWXiZ3FsHJJ5880kyRlYJ5RddRVJeWjF9/wx5FTeLA/feLfffZp7BN48pdd989Wy74scabR79OnzVPPvZopP5VWybmgGB6/1yp66pRtJx5c2abvOzyy+O0bDbgonJnFpb9/e9/X7ZJe75/ir5bVQoIpv/JYNEllsz9vOuWzQR7cTYjbKVy4003xU3ZjMtrZoHAFApM4WOFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECRQICgkU6E3Bd0Y/YqVttGRD8U7b87o7ZMrzVlrSc75J/XDp++OGHsrukWYxeeenFsnVp40PZzFh77LV3bv1WW2wRJ/U6Mbe+XMXHH39cCh2Wq0vbemy4QbZ0aHEgIm/fStt7ZTOBXZPNCJZX0mxsvU86uapZ+/KOUWl7pYBgWgI4LY246KKLVDpUk/qLs+DUmWef02R7w4a0HO/zzzwdaUnaxqW9jfUGG/WMN998s/Fljn59yEEHxl577jn6dbVPdthp53hy8ODc5meefnr03Kg4kNWw8/gMCKbllO8bNDA6duzYcDk1PU6oAcGZZ565FOKs1Nk0A+WSS/2xsNnAu+6savbJjTfbrHB2zmefGlJ1qLTwgspU9j7llLjy6mvK1PxnUwpS3X3nHTUF+dKeadbRNMNs0ZLvfS44P9ZZe+3cczeumJgDgml23L322bcxyejXKdCc7rcUyq+lpOBhj54bx9vvvJO72/bbbhPHHXts2fr2fP8UfbeqFBBMnV1vgw1zXVJg95gjj4ztt9+ucKbRsmg2EiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEBAQLAAZ0KuKvoRO/WrrQKCKRjz2CMPlw13FfmuufY68Y/33stt8uLzz+Uui3v+BRfGhX375u579RVXxIorrpBbn1dR9MP+b+aeOx564P68Xcdp+w033hjHnVAcaPz1r38dG2UhxeWWWy6WXGKJSMset2SpFBDcpGfPOP20U5t1yhQmWX3NNWPYsOG5+yfbZNy4tKexTrNDpeUjU3/KlTSzYprdLP1N1Fr+nM0Wdcyxx421W5o5cL555420XOdGWThwuWWXHas+78X4DAhWO0NW3rVPqAHBJRZfPG7JZo6splR6707h6GqWet3vgAPjnnvzZ1p97JFHYvbZa1viuZrrT22233GnGDxkSG7zamZTzNv5nHPPi34XXZRXHQfst2/st29+6K3xjhNzQLBf//7Z0s3nNyYZ/bo5SzY37JwCzSnYnFeWXWaZuP7a8iHS9nz/FP19VhMQ3P/Ag2LQPffksZS2zz3XXLFRjx6x9NJ/zEL3i8Z0005b2F4lAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKgkICFYSmkDri37ETl1qq4DgSlkQ76oskFdrqbSU5H33DIr0Y3y5cvQxf4q/3HJLuarStvnnm6/ikrzldh46dGjukp1plrvXXn6p3G7jvO2rr7+O1ddYMz799NOqj5VCaEtmoaTll18+Cw0uW9WMY0UHrxQQPPH442KbrbcuOkRh3Z7ZjI8PZjM/5pUUJEmBksalPY11pVkmV1l5pbjisssad6Gq12m57B4bbxwL/37hWGLxxWKxxRaLRRZZJDckW3TQ8RkQ3DNbIvbQQw4uurzCugk1IFi0THbjDi+z/Aq5f+vVzkSYjnngwYfE3QMHNj786NetGRBcY62147333x99rsZPigLejds2fv1otsTwLtl9lFc222STOPWU3nnVTbZPzAHBP2Wh47RUbV65uH+/6Lb66nnVhdv//c03sfiSf4gUnC5XUgju4QcfKFcV7fn+KfpuVU1A8KWXX45NN9+ibL/LbUyzCs4155yx1FJ/iBWy94YVll8uOnfuXK6pbQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMgVEBDMpZmwK4p+xE49a6uAYHOW803Xd+xxx8eN2ZK1eeWuOwZEl4UWKlu9y267xaOPPV62rjU3vvDsM5Fm8muNcv0NN8TxJ/Zq9qHTkq7LZ0HBFbLA4Kpdu9Y8w2ClgOC1V1+VHX+5Zl/fGWeeFZcUhOfOPfvsSCGrxqU9jfUrr74aG2+6WeNLHP165512jKOz5SPHdxmfAcEzTjstNu65UbMJJtSA4NZbbhm9Tjyhqn4XBQRrmal0fAYEF1l8idxlgNPspkOeaP778wf//GcpMJ2HWWsofWIOCFZ6/7z/3nvid/PMk0ddcftKXVeNESNGlG2Xli9+/ZWXIwXgGpf2fP8UfbeqJiCY+lppds/GHo1fpzFJn+XLZ2HBVVZeJaaeeqrGTbwmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAWAICgmNx1M+Loh+xUy/bKiB4+KGHxO5ZYK/Wcny2pO712dK6eaUoIFi0FHDe8Vpi+8C77hznmfryriPNwpRCdJdefnlek6q3p2BGmmVrj2wWrmqXGK0UEExL547LrEa33HprHHn0Mbl9OOrww2OXXXZuUt+exvre++6Lffc/oMk1Nmw4+ogjYuedd2p4Od4ex2dA8Pxzz4n1undvdt8FBKtfynx8BQTTbJdLL7d87hgXLS2bu9MYFT/99FOkANkPP/wwxtb/Pa02pNWwx8QcEOy+/gbxzrvvNlCM9ZiWRE+z4qbH5pZKSwU/9eQTkcLrY5b2fv8Ufbeq9t5LswKnWXOfevrpMbverOczzTRT7Jp9rmyzzTYx7TTTNOsYdiJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoP4FBATrdIyLfsROXW6rgODZZ54ZPTbcoGblcQkILr/SypGWe23rct01V8dyyy7bqqe96upr4uwsZPXNN9+O83lSUPD0U08tOzNf44MXBQRTgOSt119rvEtNr4c89VRst8OOufvstcceccjBBzWpb09jfeNNN8Wxx5/Q5BobNpx5+unRc6MeDS/H26OAYFP6E7LZOa/LZunMK3cNuD26dOmSVx1vvf12rL9h/thOTDMI/v3//i/WXjc/BLpJz55x+mmn5lpWU5GWXE8zCZYrM844Yzz71JByVWW3TcwBweVWXClGjRpV1mXOOeaIvz78UNm6ajdWWgJ+0N13xQLzzz/W4dr7/VP03aragGDq8Pfff1+aKfm2AQNyl2EeC6bCi1lnnTUuu+TiWGjBBSu0VE2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwMQoICBYp6Ne9CN26nJbBQSbO2PYuAQEi8IjrTnc47rMbrXXlsKPF1zYJ2657bbcWbSqPVZa3vGIww6NXXfZpXCXooBg2vHlF18Yp9mL7rv//thnv/1zr+HA/feLfffZp0l9exrr2wfcEYdlswTmlV4nHB9bb7VVXnWbbRcQbEp9wEEHx8BBg5pW/HeLgGAuTZOKoUOHRdfVV2+yvWHDmt26Rf9+fRteNutxqWWWjc8//7zsvrPNNls8/tdHytaV2zgxBwSL+t6hQ4d48blny5FVvS29p6f39rzy8IMPxNxzzTVWdXu/f4q+W9USEGzo9OuvvxFnnn1WPPHk4IZNzX6cbtpp46L+/Vr9f1Ro9gXakQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8SYgIDje6Fv3xEU/Yqcz13NAcOttt4tnns0PNozLkolFo3bVFZe36Q/zaZnCwYMHx6OPPhZ/feyxGDlyZNHl5dZNOumkcWc2Q9qCCyyQ26ZSQHBAtkTwIossnLt/pYqLLr44zjrn3Nxmp5x8Umy+2WZN6tvTWKflIlP4Lq/ss9decdCB+UsQ5+3X0tsFBJuKbrzpZvHKq682rfjvFgHBXJomFT/++GP8ftHF4ueff25SlzY0J0Q15oEqLUH7hyWXjL/clL88/ZjHSs+LQnKzzDJLDHni8ca7jJfXffr2jfMuuDD33FdedlmsvPJKufXlKrbcept47vnny1WVtpVbAji3cZmKoiWMUzj99VdejjST7Zilvd8/Rd+txuXe/uijj+LR7HP8r9nn+ZNPPhnp8705ZfbZZ4sH7r03ppxyyubsbh8CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpUQECwTge26Efs1OV6DggedMghcdfdA3NHdvDjj0WnTp1y6yfUijffeisLCz4aL7zwYryZLXk6fPjwqrvSdZWV4/JLL81tXykgeM5ZZ8WGG6yfu3+lisOPPDJuu31AbrPLL7kkunZdpUl9exrr9z/4ILqtuVaTa2zYsHHPjeKM005reFnz48WZwayzzhZ/XGqpmGOO2Wvev2GHCTkgeN3118cJvU5q6EqTx+bO0rj0cstHCp7lFQHBPJny21dYeZVIgadyJQW0X3v5pWhuUDsF2lKwLa+s1717pJlrqy0Tc0Dw4EMPjTvvujuX6obrro1lll46t76o4qeffopFl1iytJRuuXYdO3aMFEAsV9rz/VP03WpcAoJjOqSQZLrPU/j/1ddei/TZnjdj5pj7NTw//NBDYvfddmt46ZEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIhIFinN0HRj9ipy/UcEDz9jDPj0ssvzx3ZPhecH+usvXZufb1UjBgxIp597vkYlC2d+tAjj+TO6JX6m2ZzeuXFF2Pqqacq2/1KAcF99947Djwgf4ngsgcdY+Omm28RL7388hhbxn561x0DostCC429MXvVnsb6u+++i4UXW7zJNTZsmHnmmePJxx5tVjDq008/jeVWXGn0GKZlVJf+41LZvz/GUllgcP755iuNYcO5ih4n5IBgWgY4LQecV3beacc4Ogub1lK+/PLLWPKPxSEoAcFaRCM22WzzePmVV3J3uv/ee+J388yTW19U8ee//CWOOfa43Ca77rJzHHn44bn1jSsm5oDgmWedHRcXBMNP7nVibLnFFo3Jqnr93vvvxxpr5X/OLrroInH7LbeUPVZ7vn+Kvlu1VECwMcovv/wS7/7tb/FsNjPyzdlsva+99nrjJmO9XmzRRUvf8cba6AUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAhO1gIBgnQ5/0Y/Yqcv1HBC88aab4tjjT8gd2Z122D6OOfro3Pq8ig+HDo0vv/giunTpktekVbd/88232eyAL8SQp56KwUOGxDZbbxWbbLxxVed8K5tRcMedd4lRo0blth941525ywxXCgjOOuusce+ggTHdtNPmHj+vIgWJNttiy9Hht3Ltnnv6qZhhhhmaVLW3sU4hviLjyy65OFbt2rVJPyptuPW22+KIo/Lv2Y16bBhnnXFGpcOU6ifkgGCl2ePW7NYt+vfrW5VDQ6P+F10UZ597XsPLso8CgmVZcjfuf+BBMeiee3LrN83et0479ZTc+ryKH374ITbosVH87e9/z2sSxx97bGy3bf4Mg413nJgDgjfceGMcd8KJjUlGv04hzvS5MPnkk4/eVu2To4/5U/wlJwCYjpFC+imsX6605/un6LtVLQHBFPpOy9IPGfJU6TP98ssujd/MPXc5jibb7rjzrkiz7qZZGsuV6aefPp5/5ulyVbYRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDCRCgjQbgZnAABAAElEQVQI1unAF/2InbpczwHBFNBaqeuqkZbpK1fSLHm33nxzLDD//OWqy25LwZTNt9qqNHNP93XXLc2WN89vf1u2bUtufPGll+LJJ5/MAoFPRXqerqOhrLH66nFR/34NLys+VgqZ9e/bJ9ZcY42yx6kUEEw7bZ+Fco7Lwjm1lDRGPTfZtLSEYt5+iyyycAzIZk0qV9rbWB+fhW2uz0I3eSXN9Hf7rbfEVFOVn6mx3H7ffvtt9Oi5cfz9//6vXHVp24XnnxfrrrNObv2YFRNyQPCfH34Yq3Urf4+mPnaYbrp48P77Is3WWE1JsweustrqkR6LioBgkU7TukozPaY9rr/2mlh2mWWa7lywpV///nHOeeVDZWm3SSedNP760IORZtistkzMAcGRI0eW7v+8oFkyPHD//WLfffaplrPU7tnnnoutt90u0sx3eaVoWfr2fP8UfbcqCgimz7rHHn+8FAZMocC333lnLJ8/HXVU7LjjDnlcTbYfdsQRcfuAO5psb9jw4nPPRocOHRpeeiRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYCIXEBCs0xug6Efs1OV6Dgim/u2x516lZXXT83JlvnnnjduyoNY0U09drrrJtt6nnBJXXn3N6O0piLJJz56x37771BRGGX2AKp/ss9/+cd/995dtPdlkk8Udt9+WO+tf452ez2Yf3GKrrRtvHv26aHa7agKCk0wySVx3zdWxzNLFy7WOPmH2pJrZ2477059i++22HXO3sZ63p7FOMzWuv2GPsa6v8Yt035x6Su9IXtWUE07sFdfdcENu02mnmSaeHjK46tBhpYDgq1kQNW+p6dyL+G/F1ddcGyf17p3b7Pxzz4n1unfPra9UkUI2y66wYnz++ee5TTfbZJOSb26D/1ak8FKyLQp0NhxDQLBBorrHFGROIe1PPvkkd4c0O91NN1wfM800U26bMSvSsqpbbL11pKW880q31VaLiy/qn1dddnu9BAQvv+SS6Np1lbJ9LNq41z77xgMPPpjbZIoppoibrr8+Flts0dw2Y1Z89tlnsdU22xbO8jjjjDOWlltPxy5X2vP9U/TdqlJAcMVVuub+Tcw5xxylWXirDY9X+ux8+cUXIn02KAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEgCAoJ1eh8U/YidulzvAcH7H3ggUqitqCy66CLRK1uKOD0Wldtuvz1bzu+osk1SwCEt9XvA/vs3a3ndsgcdY+ODDz0Ue+6dP3tTuvaL+/WLTp06jbFX+aeVAgVplr40W1+5Uk1AMO2XQot77LZb7LP3XpEX/kjtPv744zjxpJPj3vvuSy9zSzrekCcejxQoySvtbaw33XyLeOnll/Mut7R9heWXj3POOjM6duyY2y7Nanf2OecWhgPTzrXO3FgpIHj1lVfEiiuskHtdRRWtHRBM5z72uOPjxj//OfcyfvWrX8VBB+wfu+26a+7SqCnElGbg+uujj+UeZ8wKAcExNap7ftbZ58RFWWitqKS/6xQA3mD99XKbpbBYv/4XRf+LL86dFbZh5+aE5OolILj3nnvGwQcd2EBR9ePjjz8RO2V/K0Wl4X193332zv2bSvvfPXBg9Dq5d6Tlc4vKbrvsEkccflhRk2iv90/Rd6uigGDqbO9TT40rr7o6t99p6e1eJ55Q+NnZsPMOO+0cTw4e3PByrMcUDEwBQYUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQINAgKCDRJ19lj0I3bqar0HBNNMY2uts2588M9/Fo5smsVt8003jW7dVo95s1kF0yw+abnF4SNGxN///ve4+JJL47nnny88xuKLLRZ/vvGGUjiusGEzKlM/lltxpfjXv/6Vu/f0008fJ2WhgrT0cV5JM0Ttf+BBYy1RPGbbNGvRM08NyZ1RsdqAYMMxU1Bim2y2rwUXXKA0w+EMM8wQQ4cOi3f/9m68/vrrcfmVV8UXX3zR0Dz3cZ21144+F5yfW58q2ttY33X3wDjokEMKrzlVTjnllLH2WmuWxm2uueaKTrPMEh9lwcn33nuvdO9dfe11ubNNNRw8uT6ULamb7oFqy777H1AYzJx99tlio2wWxM6dm4ZO55pzrlhllZVzT9UWAcG0fGmaoaxSScs5p/Du77J7Md2PX371Vbz55lvx1ltvxR133RUjsr/xaouAYLVS/2v34dChpffg77///n8bc56lQOqKKyyfvVcsGAssMH98ky2r/XY2G+fbb79TmkH13b/9LWfP/21OS77fd8+gqmfmbNhzQgkIXnvd9Vmo+qSGy27yON2002ZBy/VjoYUWbFKXwtqbZZ9z5UqaSXOd7usVLmHesF+aeXfttdYqnWOBBRYofV6888672XK5b8fgIUPiiSfLB9Ya9k+P6VruHTQw5s7e84pKe71/ir5bVQoIvv76G9EjCwEWlQUz17POOD26dOlStln6vLvgwj7R76KLytanjWkW3xuuuza3XgUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAhOfgIBgnY550Y/Yqcv1HhBMfUxLUm625Za5objUpnFJoa00Y9XPP//cuKrs6xTKuPOOARXDDmV3rnLjib1OimuzJR4rlYUX/n0sMP/8kUIcc845Z6QZ6EaO/CgefPjhLBj1ZuHuKfTR98ILctvUGhBsfKDkWrQ0aOP26fWvf/3rGHTXnTHrrLOWqx5rW3sb6zQ73e0D7hjrGlvjRa8Tjo+tt9qqpkOfd/4F0SebdbI5Za0114x+fS7M3bUtAoIp0LRRtoxwCtu0VREQbJ70rbfdFkccdXTzdq5hr7Qk9s3ZrJILLdg0HFfpMBNKQHDIU0/FdjvsWKk7ZevTe+kLzz5Tti5tfPudd2KzbObTf3/zTW6blqo4tffJuWHFxudoj/dP0XerSgHB1L/u628Q77z7buOujvV68sknjz8suWTpszwFnGeZpWM26+6oGDpsaDZL46D46KOPxmrf+EWalXP77SqHqBvv5zUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUrICBYp2Nb9CN26vLEEBBM/bzq6mvi5FNOSU9bpZx5+unRc6MerXLshoOmmc7SjGn//PDDhk0t+piWZE0zIKZAQl4Z14Bg3nGLtqeZA9MMgtWW9jTWKQy5RTaDYgoutlZJNhecd27NM6YNHDQoDjjo4GZdVnsICKYLTzPKbbTxJjWHTst1Ot3/qaTgYV4REMyTqby9Vzbr3TXZ7HetWc4/95xYr3v3Zp1iQgkIjho1qjSbbHM6WSkgmI6ZlntPs4u2ZtkmCzOfmIWaaynt7f4p+m5VTUAwzbS42x57tsh7VznHWbKZaO/PZtLs0KFDuWrbCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCYSAUEBOt04It+xE5dnlgCgqmvhx5+eAy44870tEXLTjtsH8cc3fqzY6WLTsstppDg8OHDW7QP6WDbbbNNHH/csYXHrRQQ3HP33ePpZ56JF196qfA41VZutcUWcVKvE6ttPrpdexrrYcOGx6ZZPyrN9jT64mt4svJKK8Yl2RKTaaapWsu32fKtaRarSstvlztuewkIpmu76qqr4+RTTy13mVVv6zDddHHXnXfEPffcE6efeVbufgKCuTQVK9KSqDvvultpCdqKjZvRYO8994yDDzqwGXv+Z5cJJSCYrjYtXZ6WMK+1VBMQTMc8/4IL48K+fWs9fFXtl1t22bjqistjsskmq6p9Q6P2dv8UfbeqJiCY+vXoo4/FnvvsU9Psxg0elR5rDdZXOp56AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqQ0BAsD7GsUkvin7ETo0npoBg6m+aXe60M86IFDZoiXLg/vvFvtkP/G1ZUqBry623adHAWY8NN4jTs5BVpdBGpYDgU08+EWkZ4c233Ko0u1tzXdJsbvvuvXfsv9++0TCzW63Hak9j/dlnn8Uxxx4X9z/wQK3dyG2/Zrducc7ZZ0daVrW5Jc1itf2OO9W8e3sKCKaLv+KKK+P0s86Kn376qea+pHv+nLPOjO7rrhuXXnaZgGDNgtXvkN53+2eB1r79L2qx9+Dpp58+ep/Uq6ZZRstd8YQUEPz0009jrXW7x7/+9a9yXcndVm1AMB3gvvvvL71n1XqOvJNPOumkkUKc++y9V8XPmbxjtKf7p+i7VbUBwdTPhx5+OPbZb/8W+3tIn5cnZEH/bbKZaxUCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0FhAQbCxSJ6+LfsROXZzYAoKpzy+/8koccOBBpdn40uvmlLnnmiuOP/bY6Np1lebsPs77pGWG+/btF3fefXd8//33zT7ebLPNFnvstmtsnS35OMkkk1Q8TjUBwY4dO0aaNS/NjPTGG29UPGbjBmk2t7OzwNbqq63WuKrm1+1trG+59dY46eTe8fW//11zXxp2mHnmmeO4Px3T7KVUG47T8JhmIut18smRQozVlvYWEEzX/dhjj8dBhx4an3/+ebXdiGmnmSZbnvm80X/HAoJV041Tw1defTUOOfSw+Md7743TcVZZeaU4LVs6vlOnTuN0nLTzhBQQTNf7+utvxOFHHhlvv/NOellVqSUgmA748ccfx1HHHBN/zWa6G5fy29/8pvSevvhii43LYUbv2x7un6LvVrUEBFOnnnn22ejbr388OXjw6D4250nyPeiAA2KlbGZZhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUEBATLqdTBtqIfsVP3JsaAYOp3mokozdxz8y23xGOPPxE///xz2lyxzD/ffNFzox6x4w47xBRTTFGxfWs3GDVqVFx3/Q1x/Y031hTw+s3cc8eee+ye9WWjmmZzqjYgmPr9yy+/xB133hXnnHduKTBYySKFFbfecovYfLPNIoXgWqq0t7FOM3INHDQobh9wR7z08stVd7PLQgtls9ytUwpzplnTWrKkGckuvezyeD0LdL7z7ruR7qui0h4Dgul6v/nm2+yeu6P0N/HW22/ndmGmmWbK7rUts1m2topZZplldDsBwdEUrf4k/V3+9dFHS+8RDz/ySHz33XdVnXPGGWeM9bt3jw2zWU+XXGKJqvapptGEFhBMfUqG1157XWlZ9/R3m4Lj6X03r9QaEGw4TnqfuvPOO+PuQfdEeq+opqTPxxTyTrPTrtq1a7OWQS86z/i+f4q+W9UaEGzoZwp7ptlQ7xo4sKbg/7LLLBN777VnrLjCCg2H8kiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGyAgKCZVlsnBgERowYUQqqpFnvho8YXgqzffLJJzFdNpNdxyyolmbEm3vuuaJbtqRr+uG/PZZvv/02Xnjxxezah5Wuf+jQoTFs+PBS0CuF7eacY46Yc845Yo455iw9/mHJJSMt+VhrqSUg2HDsFPx59LHH4rnnn4+//e1v2bKYn8fXX38dKegz11zZ9WTXtOiii0TXVVZp1jU1nKeax/Y21u9/8EE8ms3ONTwbqxEjR8SIESNLQc8ZZpihdN91mqVjyWe11VeLeX7722q6qM1/BT7M/gbS38HQocOyv4OPS/dbp1k6RafOnUp/x+0h4Guw/iPw5VdfxcMPPxLvv/9+jBw5cvTfwuRTTB6zdZ41OnfunP3rFF26dImVVlyxplAz45YTSKG8J58cHG++9Wbpvao0Vh+NjO+/+z5mnTUbo05pnDrHb7IZA7t1Wz3SbLBtUert/knfP1597bXS53l6/xo2fFjpfSx9bs4226wxx+wNn+dzxLzzzhsLLrBAWzA7BwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSAgIFgHg6gLBFpboDkBwda+JscnQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBYQECw2EctAQKZgICg24AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAhCcgIDjhjZkrJtDmAgKCbU7uhAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTGWUBAcJwJHYBA/QsICNb/GOshAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA/QkICNbfmOoRgRYXEBBscVIHJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDqAgKCrU7sBAQmfAEBwQl/DPWAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg4hMQEJz4xlyPCdQsICBYM5kdCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECIx3AQHB8T4ELoBA+xcQEGz/Y+QKCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQWEBBsLOI1AQJNBAQEm5DYQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDdCwgItvshcoEExr+AgOD4HwNXQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBWAQHBWsW0JzARCggIToSDrssECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQITvICA4AQ/hDpAoPUFnn/hhRgxYkTuidbo1i2mnHLK3HoVBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0vYCAYNubOyMBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh1AQHBVid2AgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0PYCAoJtb+6MBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg1QUEBFud2AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDbCwgItr25MxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVYXEBBsdWInIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECbS8gINj25s5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRaXUBAsNWJnYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLS9gIBg25s7IwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaHUBAcFWJ3YCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ9gICgm1v7owECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDVBQQEW53YCQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNsLCAi2vbkzEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBVhcQEGx1YicgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtLyAg2PbmzkiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFpdQECw1YmdgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItL2AgGDbmzsjAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBodQEBwVYndgICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIND2AgKCbW/ujAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoNUFBARbndgJCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA2wsICLa9uTMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFWFxAQbHViJyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAm0vICDY9ubOSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWl1AQLDViZ2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0vYCAYNubOyMBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh1AQHBVid2AgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0PYCAoJtb+6MBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg1QUEBFud2AkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDbCwgItr25MxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVYXEBBsdWInIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECbS8gINj25s5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRaXUBAsNWJnYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLS9gIBg25s7IwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaHUBAcFWJ3YCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ9gICgm1v7owECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDVBQQEW53YCQgQIECAAAECBAgQIECAAAECBAgQIECAwP+zd9fhVpVp/8Bv6S4BxdYRYxQERx27dcbAwkYETBRQSlFsSlBpKRMDA1ux4x0DndExwG7FRlG6wd9ay/f4m5dB4BzZ2xOffY3X4ey91hOf58wf+9rffd8ECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAzgUEBHNObAICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJB/AQHB/JubkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5FxAQDDnxCYgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL5FxAQzL+5GQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4FBARzTmwCAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQfwEBwfybm5EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECORcQEAw58QmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC+RcQEMy/uRkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOBQQEc05sAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkH8BAcH8m5uRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvkXEBDMv7kZCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgd8hsHTp0pg5a1Z8+OGHUbdOndhggw2iUqVKv2PEsnfrokWLYsoXX8S0adNis8aNo1atWlGuXLmyB2HHBAgQKOUCAoKl/IBtjwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlDaBH3/8Me677/544KGHol7dunFWp07RtGmTKF++fKyxxhqlbbs52c/UqVNj0OAh8c6778bBBx0ULY84ItZcs15O5jIoAQIECPxxAgKCf5y9mQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFCCKSVA6fPmBF33XV3jB4zJj77/POs6t1uu+4al1x8UTTZeuuoUKFCIUYsu5d+993UuKx3r7j7nntjnUaN4vTTTotjjj4q6iQVGVUSLLt/F3ZOgEDpExAQLH1nakcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDUCfz8889ZOPC+e++LoVcPj48//iTS59JH5aS98A477BBDBg2Mxkm73DTgppLgiv8EFixYEP9+9dUYcMWV8Y9nn42NN9ooOnY4M45s2TILCfJbsZ9XCRAgUFIEBARLyklZJwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKKMCaeXAWbNnJ22F74sBV14V33zzTSaxdOmSJAhYLgsKppUDmzZpEiNHXB2bb7aZkOBK/lbScGUaEnz5lVfiyquuihdfeikaNmgY53TrFi1bHhE1a9ZUSXAlhl4mQIBASRAQECwJp2SNBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgjAqkQbY5c+bEgw8+FJf26hXffvddbL/ddlGvXr146Z//jAb162fVAx+aMCHmz5sXW2+9VVybtB/edNNNhQRX4W8mDQn+6+WXo3//AfHCiy/GWmutFRdfeEEcduihUaNGDZUYV8HQJQQIECjOAgKCxfl0rI0AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECJRhgbRyYBpgm/DwI3F2ly4xLwkAbtu8efQ877yYNHlSDLt6RFL1rkHceP118fgTT0Tfy/tHes/WW20V14weHZtv/kslwTJMuNKtpwHM1Oyll/4Zvfr0iVf+/e+oWrVqDE6qCrZocXBUqVJFJcGVKrqAAAECxVdAQLD4no2VESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBMitQEA585NFHo0vXbjE7aTHcrFmzuLBnz9hxxx3jmmuvjWHDh0eDJCB489gbY5NNNokhQ4fF4KFDY/78+VmVwSuvGBBbbL55VKpUqcw6rurGFy9eHC9MnBh9+10er772WlSvXj0GXnllHHzQgUKCq4roOgIECBRDAQHBYngolkSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBMqyQFrVbnbSVvixxx7PKgemVQSbbbNNnNejR+y9156xZMmSGDlq9C8BwYYN45axY5OWwn/Knr96xIgYMmx4FijcKQkSXnLRRUmwcJuoWLFiWSZd6d4LKgk++9xz0X/AFVlIsHLlyjF44MA48MADokYSGFxjjTVWOo4LCBAgQKB4CQgIFq/zsBoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCmBdLKgbNmzYqHJkyInhdcGHPmzk3CgU2zcOCee+yRBf0WLVoUI0aOygKCDZOA4M03jY3NGjfOWuXOTdoQjxlzTVZhcNq0abHnnntE927dYpskYFg1aZfrsWKBRUklweefez4uHzAgXnv99ahWrVr069M7DmnRImrWrKnd8Ir5vEqAAIFiJyAgWOyOxIIIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDZFEir2E2fPj0eeODB6N23b3z/ww+xw/bbZeHAvfbcMwunpVXsfisgmKqlAcOZScBwbFJVcFQSFMxCgkmwsGvnzrHddn/Rbnglf1oFlQSf+9+Q4L9efjnq1asbF11wQRx+2GFRp04dlQRXYuhlAgQIFCcBAcHidBrWQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEyqhAGuxLw4F333NvDB0+PL755pvYtnmzuOD8nrHrrrtEhQoVfg2mrSggmAbcfk4Mf0jChePGjYsbx94UX3/9dey7777RqWOHZMzmUbVq1VKtnFqm/6WP1KOwj/SetI3zCxNfjMv798/aDa+zTqPofNZZceSRR0bdJCRYrly5wg7regIECBD4AwQEBP8AdFMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/1fgpzQcePfdSdvgq+PzKVNil513jvPP65H9LF++/P+5eEUBwYIL05BbGhK8ddxtcc1118b3U79P2g3vGeee0z0LCaaBw9L6SAOR/3711fhx2o+x9OdfgoJF2WsaMnzpn/+Ke+69NxYnrYc32nDDJGTZMY4++qgsJFiUMd1DgAABAvkVEBDMr7fZCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeUIvPjiS3FZ717x2utvxI477BDnJEG+nXbaKSok4cC0rfB/PlY1IJje8+2338ad48fHjTfdlFQl/DY6dTgzOnTokAXclh33P+coif9Oq/598cUXcfMtt8SDD02IGTNm/K5tLP3fSoI//vhjVlGwYsWKsd1fto3LLr00C27+rsHdTIAAAQJ5ERAQzAuzSQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEVCUx+880YNWp0LF6yOE5s3Tr+moQEK1WqtNxbViUgWHBjQSXBtHXxY48/Hoce0iKObNkyatas+V/Bw4J7SuLPdJ9TknDgqFGj4q5krz/99FM0bNAgqteoUcTtJK2Jk/+lVQQ/+fTTrIJgeh5pZcc+SZCz2TbbFHFctxEgQIBAPgUEBPOpbS4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBguQLz58+Pr5LWuOXLlY+1114rKleu/JsBvsIGBNMJ08Dcd1OnRoP69aNu3bqxbNvi5S6qhDyZVg5M7QYNGhz33X9/FuY7pMUvQcjadWoXaRdp4HDJ4iUx7vbb4qabb4ly5cpF0yZN4uKLLoydk5BgtapVizSumwgQIEAgvwICgvn1NhsBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDwOwUKExD8nVMV69vTEF/63/fffx8XX3JpTHjkkSwc2PLww6NLl86x0YYbRtoWuLCPLByYhA5vu/326NOvX0yd+n00btw4rrj88iQcuFNW2bG0tWcurJHrCRAgUFIEBARLyklZJwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJAJCAj+8oeQVg6cOXNmdDrr7Hj8ySezMODhhx0aPc45J9Zdd92s6l9hg3wF4cBbbx0X/QYMSMKBU2OD9dePa0aPjubNmwkH+v8gAQIESpiAgGAJOzDLJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECZV2grAcE0xDf0qVLs3Bgm3bt4oWJL/4SDjz00OjTp3fUrVOnSC2U03EXL14cd945PnonlQO//fbbaNCgfoy/446svXDalrmwgcOy/rdq/wQIEPijBQQE/+gTMD8BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQKIGyHhBMKwd++dVX0anTWfHcCy9EtWrVouURh0evSy+L2rVrZSG+wgb50nDgggULYvxdd8WAK6+Mr7/+JtZLqhDecvNNsfVWW2WBw8KOWahDdTEBAgQI5ERAQDAnrAYlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEciVQVgOCaYgv3fvHn3wS5/e8IKkc+EJUrlwljjqyZRIOvDRq1KiRtRUurHs67qxZs+KhhybEoCFD4pNPP43NGjeOwQMHxvY7bB8VVA4sLKnrCRAgUGwEBASLzVFYCAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILAqAmU1IJjue9LkydGnb78kHDgxqieVA1sdf3z07Hl+VKtatejhwNmz48EHHozBQ4fGZ599FltuuWX06dUrdt55p6x1scqBq/JX6RoCBAgUTwEBweJ5LlZFgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI/IZAGpQbNXp0DBk6LKuaN/bGG2Kbpk2zgFxpDbPNmzcvXnv99Rg4aFC88MLEqFO3bpyQhAO7de0SVX9HOHD69Onx8COPxIiRo+L9Dz6I5s2axbnndI/ddtstqlapkrUr/o1j8DQBAgQIlAABAcEScEiWSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPx/gcWLF8ftd9wR/a+4IqZO/T46nHFGtD/99GjYsEGRquj9/5GL578WLFgQE198MQlEDo0XX/pnrLnmmnHqySfFaaedFjWqVy/SngvaCj/40EMxdNjw+CRpW9wsCQd279Y19tpzz6R1cWXhwOL552BVBAgQKJSAgGChuFxMgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI/NECS5cuzQJtw4ZfHffef38WkDvlpHbRsUOHqFOnThZs+z2VBNMKhWm1vnfeeSeaN28eW26xRRaYy/e+0xDf3Llzs3Dg1SNGJuHAl2K99daLk9q2yVoL102qCKb7LMpeZ8+ZE48++mgMHjI03n///dhuu+2iU8eOseceu0f1JHRYlDHz7WM+AgQIEFi5gIDgyo1cQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBRDgTffeiupfjcsJjz8cJQvXyHaJxX1zjqrU9SqWfN3Bdymz5gRV101MG5LqhTukATnevQ4N5o0aRIVypfPm0IaDpw/f0H849l/ZCG+V197LdZbd904o337OPqoo6Ju3V+CkEVd0FdffRXdz+0RTz71ZNKeeZvo0vns2GfvvbN2xUUd030ECBAgUPwEBASL35lYEQECBEq9wONPPJm9kUnfYOy7zz6lfr82SIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkBuBtNXwe++9H1dceWU89sQTWbjt5HZtk7Bb56wKXrly5Yo08fz58+PO8eNj4OAh8c0332TBuYsvujA2a9w4KlSoUKQxC3NTQeXA//nHL+HA1994Izbd9E/R/tTT4pBDWkS9evWKXDmwYB1pCHL8+Lvi3Xffjb///W+xy847R40aNQpe9pMAAQIESomAgGApOUjbIECAQEkRmDR5cuyx196xcOHCqFatWvzjmadj6622KinLt04CBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFiJpC2G373vffi0ksviyeffjrqJW13Tz3llOjUqWNUTz6PKkqr3DSgN23atLjhxrFxzbXXxoyZM2OvPfeIq5IgYlrFr6htfVeFLp17wYKF8XTyOVqfvv3i/Q/ej0023iTOSvZzyCGHRO1atYq0p2XnXrJkScxM9pW2MK7foEFUrlRp2Uv8ToAAAQKlQEBAsBQcoi0QIECgpAj8+9VXo91JJ8fHn3zy65L/tMkmcdPYG2Pb5s1/fc4/CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKyqQBqoS8Nun3z6aXTu0jX++a9/Rf369SOtJNipU6eoUrlyFLaSYDpm+vj+hx/i2iQgeN0NN8Ts2XNij913i6uTlsYNGjRMWhoXrTrhivaVzrto0aJ47PHH45LLesVnn32WVS3smlRETKv81VpN4cCCNRTssyghyoIx/CRAgACB4i0gIFi8z8fqCBAgUGoEJk2aFC0OOzx+SN5EpW8w0jcbBT/XXmuteOC+e6NJkyalZr82QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkF+BNCQ45Ysv4tTTTo+0cMXaa68VZ5zePk477dQsJFiUEFxanTCtsnfFVVfFjWNvysJ7aUhwzOjRWaXCwgYPVySyNPn8bGmyh0cfezy6dusWPyQVDDfeaKO4oGfPOPCAv0eVKlVWS+XAFa3BawQIECBQ+gQEBEvfmdoRAQIEip3Aq6++Fq1at87ekNWsWTOqVa0a302dmr0pmzNnbsyaNSvWX2+9uPWWm2P77bYrduu3IAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeIvkBaoWJIE+r6Y8kWcmFQPfOutt2OttRpGl7PPjnZt20aFChWKVEkwHXfevHlx0cWXxM233poVwth/v/1ixPBhUadO39Av6AAAQABJREFUnUKPuTzJdI7FSTjw/vvvj7M6d8nm23CDDWJA/8tj7732iooVKwoHLg/OcwQIECCwUgEBwZUSuYAAAQIEfo/ApMmT49jjjo/Pp0yJ6tWrx8Arr4ghQ4fFe++/H02TioFntm8f3Xv0SEqyz46NNtww7rj9tuz53zOnewkQIECAAAECBAgQIECAAAECBAgQIECAAAECBMquwKLFi+O9d9+NDp3OislvvhkbbrhBdO/aNVoecURUTQpZFLWS4Pz586NLUtnvnnvvS9oLl49DWhwcl/ftG3Xr1s1+L6p4WqUwHfuee++N83teEHPmzIn1k3DgoKuujL323DMLIBZlzUVdj/sIECBAoHQJCAiWrvO0GwIECBQrgddefz0OO/yIrPx59WrV4pabb47999s3tvvrX+O9996PbZo2jYkvPB+PP/54nNimbcyZOzfWrFcv7k/aDf9l222L1V4shgABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGQIZNX4kpBg2ma4x/nnx9tvvxNpNb5zz+mehPpaFCkkmI6Z/jc3qSTYtWu3uP/BB7OKhEcf2TIZ95xo1KhRkYKH6Zhpt63bbr8jBiSFNqZPnxEbJW2Fhw0ZHDvtuGMWPBQOLBl/d1ZJgACB4iogIFhcT8a6CBAgUMIF3nzrrWh1Quv46OOPI20rfOWA/nFCq1bZN5y23X77XwOCL018IdJvRY0bd1ucc955MXPmzGi86aYx7pZbYuuttyrhCpZPgAABAgQIECBAgAABAgQIECBAgAABAgQIECDwRwmkVflemDgx+vTrF5MnvxlbbrlFdOvSNfZLClrUSDpfFTZ4VxAS/Omnn6LHeefHI489lrX+Pf64Y6PjmWfG2muvvcqVBNOx0sf3P/wQ48ePj+EjRsb3338fW/35z3FF8rna9tttJxz4R/3hmJcAAQKlTEBAsJQdqO0QIECgOAikpdp333OvWLhwYVSuXDluTSoHHnTgAb8ubdmAYMELEx5+OE44sU12X8WKFeP5Z/+h3XABjp8ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKFEkhDeOnnVU8+9VRcceVV8fY778SWW2wRPc49J/bdZ5+oUqVKoUOC6QKWLFkSX3/zTfTq3TsefOihJGxYI1qf0CpOPvnkWH+99VZpjWkBjTQQeMut4+Ka666LadOmxXZ/+Uv07nVZ1mmrXLlyRVrbKk3uIgIECBAoUwICgmXquG2WAAECuRd4Y9KkaNOuXXz44UdRq1atGDzwqjj6qKOTbziV+3Xy3woIpm+Exo+/K7p07x4zZsyIxo03jbE33BDNmzX79V7/IECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAYgdmzZ8djjz8Rw4YPj7fefjuaN28W3bt2jT332KNIIcE0eJiGBD9OOmkNSIKHjz/+eFRPKhK2bdMm2pzYeoWVBAuqEH755VdJW+Hb4uYkIDh16tTYfbfdshbI2zZvnlUlLGx1w9QjHXvRokUxL2mDXK1atWycwji5lgABAgRKp4CAYOk8V7siQIDAHyKQVg7cd/+/Rfomq1KlSnHdNWPiyJYt/2stvxUQLLhw/F13xamnt8/ewNROQoZPJOXZmzTZuuBlPwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAisskAanEtDc2m1vyFDh8X7H3yQFai4oOf5WUiwqNX6Fi1eHO+9914MGjw4GXtCNGzQINq1bRsntj4hCwkub4FpwYyvvv46brxxbNx8yy0xY+bM2HuvvaJb1y7ZmtIuW0V5pHucM2dOPPM//xNvJyHIPXbfI3beeaeiDOUeAgQIEChlAgKCpexAbYcAAQJ/lMCrr72WVA48KT755JOscuDokSOixcEHJ5UDy//XklYWEEzfGD00YUK0P+PM7E3RJhtvHGNvvCErq/5fg3mCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwCoIpB2sJjz8cAwZNiw++ujj2H677SINCe6y887ZZ1qFrdpXULFv8uQ3Y+jwYfHUU09H3bp147RTT4lWrVrFmvXqRRo+TB/ptelnYF98+WVcd931cdfdd8f06dPjgL//Pc4884xo2qRJVs1wFbbxX5ek486dOzfSIhzXJGN/k7Q/7tThzOjerdt/XesJAgQIECh7AgKCZe/M7ZgAAQKrXWDS5MlxeMsj49tvv42qVarEsCFDkjc9x//mPCsLCBbceMutt0bnrt2yb3Sts06juDd5o5S+OfIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUFiBNKSXdsK67/77s9bAX331VaQtffv16RPbb799EuZbIwobEkzXsGDhwpg0aVIMHDQ4nnzqqWjUqFGccfrp0TqpJFirZs1szLQlcRrcG371iLhj/PhYMH9+Fg7s2LFDbNO0aVSoUKGw28muLwgp3jh2bFw9clQU7CkNPu61555FGtNNBAgQIFC6BAQES9d52g0BAgTyLpBWDjz2+FbZm42aNWoklf5ujL/tv9+v34Za3oJWNSCYftvpsccfj3YnnxKzZs2KddZZJ24fd2v2ba7ljes5AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAisSSAN1aSXBtN1w7z5944dp07IuVr17XZZ9BlWUdsPpmAuTkGD6udlVVw2MFyZOjDXrrxldO3eOVscfHxUrVYrvp06Nfv37x4QJD2eBwhYHHxQdO3SIzTfbLCpXrryiJf/ma+lnaem8I0eNjuuuvz6+S+ZIA4/n9+gRf/3rDlG9evXfvNcLBAgQIFB2BAQEy85Z2ykBAgRWu0BaLv24pDz6p599FjWScOBVVwyI1iecsNJvVq1qQDBdcPqG6uZbbolze5wXs5JvdG2ctBtOQ4IqCa724zQgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBMCKSfP6WVBO+55944/4ILYsGCBVkFwf79+kXTpk2ydsNFgZifjPPG62/EJZddFi+/8ko0bNAgep53Xvz973+LCy66KB5++JFs2IOTcGC3rl2j8aabFnmugnDg4CFD45prr43pSeixWbNtok+vXrFd0jq5chJK9CBAgAABAqmAgKC/AwIECBAoksDrb7wRB7U4JKZPnx7VqlWLW2++KakcuP9Kw4HpZIUJCKbXp2/SHn3s8TixTZuYO29e1K5dOx5+6MHsG1Dp6x4ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECiOQBuzmzp2bhQS7nXtudutfd9gh+vXtE0223jr7zKuw7YbTz7QWLVoUr776WvRIWvy+9dbbUSOp4rdpEgR86+23o3y5cnFIixbRM3kt7ZxVsYhthdO1z09aFA+44sq46eabY8bMmVlxjauHDYvNNt8sKlWsuEqf2RXGy7UECBAgUHIFBARL7tlZOQECBP4wgTffeitOaH1ifPjRR1GrZs2kcuAVcfzxx62wrfB/LrawAcH03vSNzm233R7nJCXR0zc5jRtvmoQSb87eoP3n2P5NgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYFUE0kBfWj3wpptvySr8/fzz0thj9z3i8n59Y9M//anI1f0K2g2fdnr7+OTTT7OwXtpG+NBDWsTlfftGg6SyYNrKuLCPdL3pf3OSYOOAAVdkXbhmJp+bbbXVVnHLTWNjww03LPKaC7sW1xMgQIBAyREQECw5Z2WlBAgQKBYC6TeddtxllyywVykpTZ5WDjz4oIMKtbaiBAQLJnhowoQ44cQ22bevKiTfqnrxhedj6+RNjwcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBwgoUVOO77vrro0/ffrE0CeDtv9++cUnSErhx48ZFCvKlVQS//PLLODUJCP7zX//KPlerX79+DBk0MA74+9+jSpUqRarwt2TJkkgDgVdceVXcMm5czEs6b23bvFkSDrzp19BhYaseFtbL9QQIECBQ8gQEBEvemVkxAQIE/jCBtK1w23Yn/VI5sFatGDp4UBzZsmWhv4n0ewKC6Zu0u++5J87u0jVmzJgRjZOS7DfecL12w3/YX4WJCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIlWyCtyvfT9OkxevSYGDV6dMxL2vcecfhh0b1bt9h4o42iYtKyd1Ue6TiLFy+ODz78MC686OJ4YeILScCwfFSrWjX7XGuTTTbJWhjvvttuUSmpKFhujTVWZdisamD6Gdm3330XI0aOjHFJ1620PfKuSVGPwUnocP311iv053WrNLGLCBAgQKBUCAgIlopjtAkCBAjkXmDy5DfjbwcemL15SSsHjhk1Ko45+qgiTfx7AoIFE95x553R/swOkZZor1evXjwy4aFo2qRJwct+EiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEFhlgTSA9/0PPyQhwdFx3Q03ZJ9BHdXyyDirU8f40yq2G56ftCt+++23s0qEzz3/fNSqWTOOPebo2HHHneKSyy6Nzz77PJpsvXVcfNGFscvOO0e1atVWaX1p6PCrr75KwotjssqBPydr3WuvPaPXpZfGRkmAMW1XrHLgKlG6iAABAmVSQECwTB67TRMgQKBwAq++9lqc2KZtfPrZZ1GrVs24dsyYOPCAA4r8TaTVERBM36Q9/MgjWWn2tJR6+u2tsTfeGNtv95fCbc7VBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECZV4grf73c6LwxZQvYvSY0XHn+LtiTlKl78QTTojTTz8tNtxgg9+sJJi2JV6QVB1MP1MbPHhIPD9xYtSpXTvanHhidOxwZqTFNx597LEsODjliy+yzljnntM9CwlWTtoN/1YlwYKKhOlndNddd33cedddsSQJC6Ztirt17RKbJp22KlSoUObPDgABAgQIrFhAQHDFPl4lQIBAmReYNHlyHHnU0fHV119n5c/TMuWtkzdCv+exOgKCBfPffMst0bX7OVkZ9fWS8ul3j79TJcECHD8JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQKJZAWqfjs889jZNJNKw0JLlmyJFq3ahVnnNE+Nlh//axa37IDpu1+X37llRg6dFj847nnYt111ol2bdvESe3aRZ06dbLL02seePDBGJQECD/86KPYbdddkxbGXeOvO+wQVZMWxMt7LFq0KD759NMYM+aauO2O26Ny0pb44AMPio4dO8Tmm2223LUsbxzPESBAgEDZFhAQLNvnb/cECBBYocAHH3wYBxx0UHzz7bdRo0aNuCmp0Pe3/ff73W82VmdA8JdKgo/GSaecEnPmzIlGjdaOJx59NCv1vsLNeZEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAMgJZJcGkIuD7H3yQVBIck4T6HorFSVCvbZs2cUb702Pttdf+tctW+jnVvHnzYuKLL8bVI0bEP//1cqzTqFGcfFK7OPbYY2PNevV+/VwtvTbtinXf/ffH8BEj48svv8wqCHY5++zYYYfts/BfQZvggsqBaZBw5MhRcd8DD0SlihXjsMMOjdNOPTUaqxy4zKn5lQABAgRWJCAguCIdrxEgQKCMCzz40IQ4LvlGVI3q1ePKAQOidesTouCNye+hWZ0BwXQd6RuqsWNvivMuuCALCd515x1ZC+Tfs0b3EiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlF2B9POnDz78MKsKeH9S+S9t5dsm+aysa5cuUbdu3ewzs7Qq4HPPvxBDhw3LQoKNG28ap558SrRseUQ0qF9/uXjTpk2Lu++5N0Yl4cPPktbB++2zT3Tv3i2aN2uWtSJOb0qrFqbhwIGDBmeBwpo1a8SRLVvGKSefHJs1brxaPq9b7uI8SYAAAQKlUkBAsFQeq00RIEBg9QgsXrw4/vHss7HuuuvGFptvvtrebKzugGC62/SbVO+8+258+823scceu2dv0laPglEIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKmkD62VMaEnz33fdiyNCh8chjj2WfP7U9sXV0SUKCFZPA4LNJO+E0xDf5zTdjk403jvannxaHtGgR9f6jcuCybumYaUgwbV885pprYur338ceu+8W5/XoEVtvtVX2edzHn3wSvXv3iaefeSaqJYU8jjvmmDgpqUq40YYb/lq9cNlx/U6AAAECBH5LQEDwt2Q8T4AAAQI5E8hFQDBnizUwAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAmRVIq/l98MGH0btv33jiySejWrVqcfyxx8Rf/vKXGDxkaLz9zjux+WabxdmdOsUBB/w9CweuCtZ3U6fGuHG3xbXXXZeFBPfde++49JJLYtHiRXHxJZcmlQmfjxo1asRJ7drGSW3bxfrrr7fainmsyvpcQ4AAAQKlR0BAsPScpZ0QIECgxAgICJaYo7JQAgQIECBAgAABAgQIECBAgAABAgQIECBAgECZFkgrCaYhwY8++jh6Xnhh1n2rSpXKUbtW7UhDfpv+6U9xTtIieP/994+aSaCvXLlyq+RVUEnwuutviOtvvDFmzZoVO2y/XUyfPiPrmlW1atXoeOYZ0bZt26xdcfny5VdpXBcRIECAAIFlBQQElxXxOwECBAjkXEBAMOfEJiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEFhNAmlIcPHixfHZ55/HMcceF+9/8EGkz22YtPzt0+uy2H+//aJmzZpFmu37pMXw0OHD46abbo4ZM2dmbY0rVqwYF13QM9q2aRN169ZVObBIsm4iQIAAgQIBAcECCT8JECBAIG8CAoJ5ozYRAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA7xRIw4ALFy6M8XfdFd3OOTfmzJmTjbjmmmtGhzPOiE4dO2Sth4syzYIFC7J2wt2TcT/86KMsDLhZ0rL40YcnxJr16kWFChUEBIsC6x4CBAgQ+FVAQPBXCv8gQIAAgXwJCAjmS9o8BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECv0cgbQWchgNvv+OO6NWnT0z/aXrUql07C+999vln0bDhWtH5rE5Ztb9KlSqteovhtHVxUpXwpX/+My659LKYNGlSJEnArJ1x2qa4xUEHxZDBg6JOnTpZQHCN5DUPAgQIECBQFAEBwaKouYcAAQIEfpeAgODv4nMzAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAngRmzJgRt91+ewwaPCR++OGH2GSTTeLq4cOyioFnd+6SBfs22GCD6HL22dHyyJZRs0aNVVrZ3HnzYuLEiXF5/wHx6muvRYMGDaJbly7x4ksvxeNPPBFJD+M4/PDDovdll0X9+vVXOXi4SpO7iAABAgTKlICAYJk6bpslQIBA8RAQECwe52AVBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECyxdYsmRJ/PTTT1k4cNToMfF9Eg7885ZbxKCBA6Np06bxc1JZMA329bzgwnjr7bdj4402iq6dO8fBBx8U1atX/81AX1qRcO7cufHsc89locM3ksqBjdZeO3qce04c0qJFLEqqCp5zbo945NFHo2LFinHs0UdF52TcdRo1Uklw+UflWQIECBBYiYCA4EqAvEyAAAECq19AQHD1mxqRAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg9Ql88803Me622+P6G2+I776bGjvt+Ne49JJLotk220SFChWyiRYsWBATX3wx+va7PAsLbr3VVtE5qST4t7/tH7Vq1lzuYmbOmhVPP/1MDBs+PLtn8803iy5nnZ0FC2sm9/ycVA6c9uOP0aPHefHIY49FpSQkeEKr46PDmWdGoyQkmLYf9iBAgAABAoUREBAsjJZrCRAgQGC1CAgIrhZGgxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKxmgbRy4C/hwNti7E03x0/Tp8fOO+2UVfhr3qxZVtVvjTXWyGZdmoT55ietgp9+5n9i4OBB8fZbb8dWW/05uiQV//bZe++sDXFBoC+tHDh79uysffDwq0fEO+++G5s1bhydOnSIAw88INJwYMG16RqmTJkSfS+/PCZMeDhq1qqVhQTbtW0b6627rkqCq/nMDUeAAIHSLiAgWNpP2P4IECBQDAUEBIvhoVgSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCMC6TV+7788sskGHhT3Drutvhh2rT42/77ZVUB08qBlSpVWq5QGvx76umnY/CQofH6G2/E9tttF926do299twjqlatmt0ze86ceOCBB+LqkSPjnXfezSoRdkzCgen4tZIA4LKPNFD4wYcfxoArrkjaDT8WNWvUiJPatYs0JLj22mtlIcFl7/E7AQIECBBYnoCA4PJUPEeAAAECORUQEMwpr8EJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQKKZBW7fvq66/juuuuj9vvuCPmJpUB991n76y17zZNm2bhwILKgcsOnYb55iQBwDTIl7YOfv/996N582Zx3rk9Ypdddo507PF33RUjR42Ozz7/PJpsvXV07HBm7LfvvlG9evVfKwcuO+7ChQuzSoPDhg2Phx5+OBo2bBjt2pwYrY5vJSS4LJbfCRAgQOA3BQQEf5PGCwQIECCQKwEBwVzJGpcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCwAmnlwLSt8OChQ+Pue+6NuUnY7+CDD4pOHTvGn7fc8jcrBy47z4wZM+LRxx6LgYMGZ9X/dth++zj/vB5ZxcBrrr02vvjiiyQ42Dy6d+sau+++e9RIwoEreyxevDjemDQpqU44JJ544slYc80148wz2icth1tF3bp1VRJcGaDXCRAgQCAEBP0RECBAgEDeBQQE805uQgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeUIpNX9vv/+h+h3+eVxf9ICeGkSFjzogAOSCn8dYostNo8KFSqscggvrSQ4a9asmDDh4bjiqquydsWbbb55/PDDD/HTjz/GNkmb4p7nnxc77bhjVKlS5TcrBy67zPnz58fkyW/+EhJ86qlotPbaSUjwjDj+uGOjdu3aq7y+Zcf1OwECBAiUDQEBwbJxznZJgACBYiUgIFisjsNiCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJlTiCtGpj+9+NPP8W5PXrEY48/EUuTsOAhh7SIc7p3j4032igLBxYWJh0zrSR41913R+8+feOHadOyAF/TJk1i4FVXxrZJBcE0HFjYx6JFi+Lfr74a/fsPiBcmTow169ePC847L44++qhsvN9qf1zYeVxPgAABAqVPQECw9J2pHREgQKDYCwgIFvsjskACBAgQIECAAAECBAgQIECAAAECBAgQIECAQKkWSKv9fTd1anTu3CX+59lns2p+hx16SPRMQnfrrLtulC9XrkiV+dKA4PTp06N3375x67jbYk7Srjh9/GmTTWLsjTdEk623LlRVwv88hPkLFsTrr78el/XqHf96+eWon7Qb7t3rsmh5xBFFHvM/x/dvAgQIECidAgKCpfNc7YoAAQLFWkBAsFgfj8URIECAAAECBAgQIECAAAECBAgQIECAAAECBEqtQBrgS8OBU5Nw4JkdO8bzL0zM9pqG7Pr16R116tSJ8uXLF2n/v7QYnh0Drrwixt12e1ZJcJ1GjeLLr76KihUrxl932CEGDbwqGm+6aRZILGzVv3TtaUvkl19+Jc5Jqh6+8+67UaN69RgzelTsv99+2boLO2aRNuomAgQIEChRAgKCJeq4LJYAAQKlQ0BAsHSco10QIECAAAECBAgQIECAAAECBAgQIECAAAECBEqaQBri++zzz6NL165Jq94Xk+X/HMcdc2xcMaD/r616ixKyS8N7aTvhgQMHxa233RazZ8+OHf/617gmCe/de9990ffy/lm4b/fddourkgDhRhtuWOQWxmlIMK0g2Omss+OTTz+NqlWrxo3XXxf77L23SoIl7Q/SegkQIJAHAQHBPCCbggABAgT+r4CA4P/18BsBAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDuBRYuXBgfffxxXHTxJfHsc89FpUqVknDgMdGnd6+oXLlyVtWvKKtYvHhx1q54xIgRcfOtt8bChYtil513joFJEHD99dePRYsWxfCrR8SQYcOykODf/7Z/XNCzZ9Z2OK1WWNhAYkEVxH8krZG7dOseU6ZMibXWWiuGDx0au+26axJ0rFzoMYuyb/cQIECAQMkQEBAsGedklQQIEChVAgKCpeo4bYYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUCIEJk2eHL379I00WFe9WrVo17ZNnHvOOVnlwHLlyhVpD2k1v8+TgN6YMddklQMXJ2HA/fffPy668ILYZOONs7a/aaBvxsyZMXz48Lj+xrExZ86cOOLww6J7t26x8UYbZe2HCzt5QbvhZ/7nf6JrEhJM2xin8/Xr2yf23GOPLPBY2OBhYdfgegIECBAoGQICgiXjnKySAAECpUpAQLBUHafNECBAgAABAgQIECBAgAABAgQIECBAgAABAgRKhMCgwUNiaBLSq5a05G19Qqs4o337qF27dlZtryhhurQy4GeffRbXXn993HLruKhYoULst9++0a1Ll9h8882zioQF4y5ZsjSmfj81RowYGbeMGxdp1cEjjzgizjzzjN9VSTANKD7y6KNx6WW9stbJW2+1VVx4Qc/YZZddshBkiTgYiyRAgACBnAoICOaU1+AECBAgsDwBAcHlqXiOAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAglwKPPvZ4PPDAA9G8ebM46sgjo06dOkVuK5wG8z766OMYNXp03DF+fFRIWgUfeugh0bFDh9isceOscuCye0mr/k354osYOXJUjL/77pg7d24WVDwzCSpusMEGUSEJGBb2UVBJ8P5kX/0u75+FBLdt3jypjNg99th996ySYGHHdD0BAgQIlC4BAcHSdZ52Q4AAgRIhICBYIo7JIgkQIECAAAECBAgQIECAAAECBAgQIECAAAECpUpg4cKFMWvWrKhevXpUqlw51kh2V1Dhb1U3WhDI+/DDD2PkqNFZ0C8d75CDD45TTz0lttxiixVWJEyDhZ98+mnWkviue+7Jpj3u2GOi/Wmnx/rrr/d/qg4WZk1p2PD++x/IKiR+/MknsdOOO0aXzmfHTjvtlFVMXNWxXEeAAAECpU9AQLD0nakdESBAoNgLCAgW+yOyQAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeUIpAHB9z/4IAZccUU8NOHhqFatWhxz9FFx+qmnxSabbLxKFQkLxhg5alQW6luydGm0a3NiUn2wYzRs2GCVxlh2aemYs+fMiXvvvTcGDxkaX371VRYS7N6ta+ychAQrVqy47C1+J0CAAIEyIiAgWEYO2jYJECBQnAQEBIvTaVgLAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAygTSAN7SJMj3zrvvxuX9+8cTTz4VNWvUiFbHHx9t27aJTTbeeIWVA5cdf/HixfFBUoXw6qtHxIMTHkoCfJWi1XHHRdcunbPWx2llw6JUN/zxp5+SkOB9MXrMmJgyZUrWZrhr1y7xl2231W542UPwOwECBMqIgIBgGTlo2yRAgEBxEhAQLE6nYS0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIrEvglHPhzvPnWm3HJpZfF8y+8EFWrVIlTTzklTjnl5FinUaMiV/17551346pBg+LRxx6LSpUqJpUE28Z5Pc7NwnzlypVb0bKW+1q61p+SkOAdd46Pq0eMiB+mTYvddt01LrygZzTZukmUL1+u0MHD5U7kSQIECBAoMQICgiXmqCyUAAECpUdAQLD0nKWdECBAgAABAgQIECBAgAABAgQIECBAgAABAgRKs0BB5cBX/v3v6NW7T/zr5ZejQoUK0a1Ll2jd+oRYq2HDQlUOXNZq0aJF8dHHH0fvPn3iqaefiapVq0bbE09MQoI9kpBgpUIHD9P1po8ffvghbrv9jrjm2mtj6vffx5577BG9Lrs0Gm+6abb+ZdfhdwIECBAovQICgqX3bO2MAAECxVZAQLDYHo2FESBAgAABAgQIECBAgAABAgQIECBAgAABAgQI/K9AGrZbkrQVfjkJBV56Wa949bXXkjBgxMUXXhStTzghaQVce7VU41uyZEkWEjw3CQU+/8LEqF69epxx+unRLWkNXLFSEhJMJy3kI22HPGPGjCQgeF2MSUKCs2fPjt132zWGDB6cVTwsSgvjQi7B5QQIECBQTAQEBIvJQVgGAQIEypKAgGBZOm17JUCAAAECBAgQIECAAAECBAgQIECAAAECBAiUPIE0HJj+99zzz2eVAydNnhzlk5a//S/vF8ccfXRW6a8oLYCXJ5EFEZOQ4JdffhknnXJqvP7GG1G7du3ocEb7OPuss7KKf4WdKx0zfaQhwWHDh8cNY2+KWTNnxl577RnXXXNN1KxZK2s3vLz1eI4AAQIESpeAgGDpOk+7IUCAQIkQEBAsEcdkkQQIECBAgAABAgQIECBAgAABAgQIECBAgACBYi9QEIRLK+Ktrkc65uLFi2Piiy/GZb16x2uvvx7VqlWLAf36xdFHH5W0/q28WioHLrvetJLg119/HUcefUy8/8EHseaaayatjDvHySedFJWSSoJF2WNaSXDevHlZBcRxt9+e/XvfvfeOG66/LttTGjwsyrjLrt3vBAgQIFB8BQQEi+/ZWBkBAgRKrcDOu+4Wb0yaFDtsv33845mnS+0+bYwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCB3AmmgbsGCBZGG3NIAXWGr7C1vZWk4cOHChfGPZ5+Ny/v3j0mT34x6devGZZdeEocfdthqrRy47Pzp3Gmgb8qUKdG6Tdt45913Y62GDbNWw62OPz6qVKlS6DBfOmb6X9pi+OJLLo3xd90Vc5PAYLqXAUk1xPr1668Wt2X34ncCBAgQKD4CAoLF5yyshAABAmVGIC3Fnr6huqBnz9h1l13KzL5tlAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYPUIpMHAd997L5588snYdNNNY9999k3a5tb4XYOnQbo5c+fGs0k4cOCgwVnlwA3WXz+6d+sahx16aDJ+zUIH9IqyoLR64ZtvvRVdunaLyW++GZtssnGc36NHtGjRIipVrFiUIbPg4cykxXCP88+PBx58KAsNHnVky+h53nmx1lprJe2GyxdpXDcRIECAQPEXEBAs/mdkhQQIECiVAum3n1bHt7hKJY5NESBAgAABAgQIECBAgAABAgQIECBAgAABAgQI/KbAokWL4tXXXouBAwfFs0lhip132jGGDh4cG2644W/es7IX0nDg3CQc+ORTT8dVgwbGO++8GxtvvFF07dw5DkmCeTVq1MhLODBdZ7qWNCT48iuvxEUXXxIffvRRHHfM0XF+Eu6rW6dOekmRHunncz9Nn56M0zMeeOihLBTY6rjjolOnjrH+euvlbX9FWrybCBAgQKDIAgKCRaZzIwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJBPgXnz58ekSZNi2LDh8cRTT8XaSfW7M9q3j1bHHxd1ihieS4Nzc+bMicefeCKGJuO+/c47seWWW0SHM86Igw48MGrVqvWHhOfmJa2AX/n3v+OpJLS4UxKC3GfvvbNWykX1ToOH6V6n/fhjXHjRxTHh4YejctKaufUJJySGp2eVBBX4KKqu+wgQIFB8BQQEi+/ZWBkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDwvwIFlQOHDBkaTz3zTNSvXz9OO+XkaN26ddRfc80ihfjS0Nz8+Qvi/gfuz9oKf/Lpp/HnP28ZnTp0iIMPOjiqVatapHFX16Gl60sfa6yxxuoaMgsJfvnll9Gvf/+46+57Yt11140LklbDLVseERUqVFht8xiIAAECBIqHgIBg8TgHqyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR+Q2DBggXxRlI5cOjQYVnlwHUaNYq2bU6MY489NhqtvXZ2V2FDdGk1vXTcO+68M64eMTI+nzIlmjZpEh2TcOB+++4TNWvW/I3VlOyn09DhkiVL4vU33ogT27aL+UmlwrOSNsPpvitWrFiyN2f1BAgQIPBfAgKC/0XiCQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA4CBS0xZ00eXL0u/zy+Mezz2XVAk895ZQ4oVWraNiwQZGq6/1SOXB+jL3pphg+YkR88823sU3TptG9W7fYd5+9o0qVKsVh+zldw8cffxytWp8Y3333XXTq2CH5r6OAYE7FDU6AAIE/RkBA8I9xNysBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwEoHFSaW7t99+Oy69rFc8/8ILWSDw5HYnxfHHHRtr/47KgXPnzo3RY66J6264IaZOnRrNttkmLuh5fuy0005RNQkHFrYa4Uq2USxfFhAslsdiUQQIEFjtAgKCq53UgAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDvEfilcuDPkYbYzu7SOV5+5d9Rp06dOOP007PWwvXWXDPKrbFGoadIx501e3aMHDkqbhg7Nque16zZNtG/b7/4y1+2jUqVKhV6zJJ6g4BgST056yZAgEDhBAQEC+flagIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCDHAkuSyoEffvhhnNGhY0xO2gvXrFUrOnXokIQD20TdenUjjQYWtsrf0qVLY9asWTFk6LC4ddy4mPbjj1lb4eHDhsZmjRtn7XULO2aOGXI6vIBgTnkNToAAgWIjICBYbI7CQggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNkW+KVy4NL4+JNP4rTT28fkNydH5UqVo2tSRfCM9u2jWrVqUa5cuUIhpWP+nNwxY/r0GDpseNx8660xbdq02GnHHWPk1cNjgw02iAoVKhRqzNJwsYBgaThFeyBAgMDKBQQEV27kCgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAPAmmVvw/SyoFndohJkyZlwb4Lzj8/zurUMQvxFTYcmC45HXN6Eg4cPHRo3HDjjTF37rzYdZddYsTwYbHuuutmgcOyVDmw4BgFBAsk/CRAgEDpFhAQLN3na3cECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBECCxatCje/+CDOLfHefHSP/8ZaZvh9qedFp07nx0VyleINcqtkbUWLuxmps+YEbfcckvcMPamJBw4N/bdZ5/o06tXbLzxRqWqcmBaKXHBggUxf/78qFKlSlSuXHmFbZgLExBMx07PIx176dKfk0qOVUuVXWH/plxPgACBkiQgIFiSTstaCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAKRX48KOP4sKLLo6nnn4qCaItiIoVK8ZWW/05ypcr/0vQbY2ibXzmzFnx1ZdfZoG2/ffbL87rcW40bty4VFUOTAN88+bNi8efeCLuf+DBaHHwQfH3v/0tqlev/pshwcIEBBcvXhzp9Wl75jTIeXoS3PzTJpsU7UDcRYAAAQJ5FRAQzCu3yQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHlCTz9zDPRq3efeCNpLZwG0tJ2wmnArXz5/w0ILu+mVXru56SiXtXYL6kc2LFjh9h8s81KXfW7NCD4448/xaDBg2LMtddl4b1OHTrEQQcdGHXq1FluSHBVAoJZ5cCkRfOHSdvnK664MiY88kj8ecst4+KLLox99t57lfRdRIAAAQJ/rICA4B/rb3YCBAgQIECAAAECBAgQIPD/2LvXWFuuuzDgkzgoKRKREuelQD+0VECVVDdAr4SvkEpeRUIJEk1AJQ9fTIiSnCQtub4JBCohRFtKQi6QUFeFNJeYUvrBVh8U9UGcUCg2yFHtJE5U8wEVPhicJw+B8nLaPcfZ95y7z1p7z3vW43ck656z98yatX7/8cz+z/xnbQIECBAgQIAAAQIECBAgQIAAAQIbgU984hPNL/ziLzZXN18F/CcPP9x8xeMe1zz/+c/bFPR9/XGx4FCkxzzmMc0znvGM5oUvfEHzt772a4PFckPbTmm9dma///U7v3NcZPnhD3948xXKf6P5x//ojc13vvjFzROf+MQz4+5SIPilTXHg/3nwwean3va25j/8x//UPO2pT20u3vzK5jWvec3x7ymNX18IECBAICygQDDs4lUCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgQYFHHnmk+fimSPAXNzPgvff225tPfupTzbdvvhL4zW++vPmq4Wc1j9vMJDjkpy0Q3FTHbb6q+LGjCg2HbHvpdf7yL/+y+Z+/9dvNz73znc29H/zg8WyJr3vtazZfOfyiMzMJ7isQPJ45cBOPj37sY83b3v725r/+t//ePGkzE+ErX/mK5jWvfnXztKc97Xhmx6XHZ3sECBAg0F9AgWB/M2sQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECMwi0hWkPb2YPfM/Vq82/+te/0PzZn/1Z86Lv+I7m1lsvNd/4nOcUX+A3BelnP/vZ5v0f+MDm64Z/tvnf99336EyCb3xD8w++67uOv7L5uGBys6F9BYJf2sThvs26V678TPNrv/7rzRO/6qua125mDfyBV31/8/SnP/3MbIRT9FsbBAgQIDCPgALBeVy1SoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAwQaGcS/OQnP3n8VcPv+vmfbz6/+ercFzzvec2lS286LhJ83Oarh/3EBdoiy3Ymwd/67XYmwXc1H9zMJPg3N1+t/Iaj1zUvfclLm6/8yr92XOAXKxD84he/2Nx3//3Nz/zszzXve9/7msd9xVc0b3z965tbbvm+5qlPeYqZA+P03iFAgECSAgoEkwyLThEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXoF2iK3tkjw3/7KrzT/4m1vb9q/n//c5zZvetMPNn/3m7/ZTIIHdo3W63Of+1zzgd/8zebtP/2O5v4Pfaj561/zNc2tmyLLl33v9x4X+f3BH/xB8/JX3nw8Y+Mb3/D65g2bIsC2GLAtKPzZn3tn87677jouJHzL5cvNza98ZfOUp9xo5sAD7t4mQIBAigIKBFOMij4RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKBdoCt/a/z/zpnza/sikS/Km3/3TTzmz33G/7e82lN72p+aZv/MbGTIKHd5B2JsG77/nd5p/+83/WfOQjDzTPfOYzm8ubIsGXv+xlzf/9wz9sXnnzxWsFgq977WubBz760eZnNl9N/P5NYeENN9zQvHnz1c6veMUrmic/6UnHxYHbryc+vGVLECBAgEAqAgoEU4mEfhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLXCXzpS19qPvOZzzT/7ld/dVPk9pPH7z33276tubwpXGuLBNuCNUVr15Fd90dbZPn5z39+UyR4T/PWH/nR5sEHH2xu3HxN8D9561ubb7npW5qL33dL8/DHH958/fBR863f+q3NO9/1rub97/9A8/82rbz1h36oefnLX9bc+OQnm7HxOlV/ECBAIC8BBYJ5xUtvCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBANQLbmQQ//elPb4oE//1mJsG3N5/97Gebv/+CFzRvecubm7/z7GebSfDA3rAtErzv/vub17zuqPnDzcyBT90UCX7Pd3938z9+4zeaP3n44eZ5m69v/qu/+qvm/R/4QPOExz9+U4B5a/OKTXHgk59846Y4UBHmAWJvEyBAIGkBBYJJh0fnCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXYmwT/dfN3w7b/8y81P/tTbmi984QvNt7/whc2P/uiPNH/7G77heIY7MwnG95O2SPCRRx5pPvyRjzTf8w+/t/nkJz5xPEtga9baPm7zdcKPbP59whOe0Lzl8q3N91282Dxp87XCj33sY+ONeocAAQIEshBQIJhFmHSSAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUK7CdSfBTm5kEf+mX3tv8y9tuaz69+erh73zRi5q3vvWHm6//uq8zk+CB3WNbJPjRj32secXNF5s/+qM/ar74xS8er9UWCj5581XCr3/da5vvv+WW5sYbb/T1zQc8vU2AAIFcBBQI5hIp/SRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApULtLPdffJTn2re/e53N+/+N+9p/uIv/mLzVbgvb374h3+oefrTnla5zuHhb4sE7/3gB5sffNOl5sHf//2mfe3Jm9kCX/X9tzSvfvWrm6fc+JTmhhvMHHhY0xIECBDIQ0CBYB5x0ksCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgI9AWtD388Y8373nP1eY//5dfa579rGc1P/5jP9Z89Vd/NZ8OAq3fFzYzB/7e7/5e8+M/8RPNn//5nzff+eIXNz/wqlc1T3/6045nDuzQjEUIECBAIBMBBYKZBEo3CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUcFHnnkS5uvGP50c9999zXPeMYzjr9i+PGPfzyejgJtkeDnPve55sEHf7/54z/54+abv+mbjr9i+IYbbujYgsUIECBAIBcBBYK5REo/CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgesE2kK39ucxj3nMda/7o5sAv25OliJAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEcwltBBkAAEAASURBVI6evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDOAgoEc46evhMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiAAsEIjJcJECBA4KzA3fd+6PjFu++9/9qb93z5tWsvnPpl33unFgv+etP5c8HXty+27184/5ztn5vf9y9/bUG/ECBAgAABAgQIECBAoGIBeV3FwTd0AgQIECBAgAABAgQ6C/TNndqGh94X63JPrG3ffbFWwQ8BAgQIDBFQIDhEzToECBAoTGBfkjM0mVmT6HQipZBwzUjYNgECBAgQIECAAAECSwnI65aSth0CBAgQIECAAAECBHIWCOVO7Xi298O2/+Yyxt17Ym2/FRLmEj39JECAwHICCgSXs7YlAgQILC4QSnK2ic3238U7ldAGt0nT9l8JU0LB0RUCBAgQIECAAAECBI4F5HXxHWGby7VLbH+X18W9vEOAAAECBAgQIECgdAH5UzzC25ypXWL7u/wp7uUdAgQIlCagQLC0iBoPAQJVCrQJz/Zrf6/cdnuVBnMNepsk3Xp08XgTvsp4LmntEiBAgAABAgQIEKhbQF43X/zldfPZapkAAQIECBAgQIDAGgI/fdt7jzfbToZhQoxpIyB/mtZTawQIEEhFQIFgKpHQDwIECHQUOH3TKKfEZ5tQ7BtmLkncdiyKBvdF03sECBAgQIAAAQIECMQE5HUxmeVel9ctZ21LBAgQIECAAAECBMYI5FgMuM03Do07p/ti7Zi2Mw6aTONQZL1PgACB9AQUCKYXEz0iQIDANYFUbhptE5ntv20H10oCWpPtz3bWxNMJ1Onft8st8e/WRtHgEtq2QYAAAQIECBAgQCAfAXnd2VjJ686aeIUAAQIECBAgQIAAgWbzbVmPfmNWe69nrfs9bRy293y2/7avuS/WKpz8tDbtf62LgsETF78RIEAgVQEFgqlGRr8IEKhOYJv0tANfKvHZJjbbf9ttr5XgtNue8ieFG05bV0WDU0ZWWwQIECBAgAABAgTSFZDXTRsbed20nlojQIAAAQIECBAgkJLA6fzpym23L9K17X2b7b/tRku9L3a6wPL073NBb03bfxUNzqWsXQIECAwXUCA43M6aBAgQGCUw95To7Qfw7YfxbUdLSXK245ni36VvOG1jomhwiuhpgwABAgQIECBAgMB6AqdvZs3xkNc2d9j+245UTheO9xp5XRsX8QjHw6sECBAgQIAAAQIEdgVO509zFANu86btv+32fV7fjcKjf+/mT6eLB0//Hl6736vbeGzzJzMN9vOzNAECBKYUUCA4paa2CBAgEBGYuxjw0tHNx1tukx0friNBGPHyNnHdJkbbf0c0ed2qbWIkObqOxB8ECBAgQIAAAQIEkhOQ1yUXkl4dktf14rIwAQIECBAgQIAAgVECc+ZP23sqbQfdFxsVpuDK2wLCd9z23uP357gn1jZsIo0gvxcJECAwm4ACwdloNUyAQO0C2+Rn6iehFAOmsWfNeXOpTW7bxEixZxqx1gsCBAgQIECAAIF6BeR1Zcf+dF43x00veV3Z+4/RESBAgAABAgQInAjM9dlaMeCJ8Zq/zVk02Ma4/ZE/rRlh2yZAoAYBBYI1RNkYCRBYTGDqm0enE5/Lm4IxP+kKbJOju++9v2lvLE11c2lbLNiOXMFguvHXMwIECBAgQIAAgXIE2rxuys/0HvLKZ9+Q1+UTKz0lQIAAAQIECBBYX2DOe2JmBlw/vod6sM2fppxpULHgIXXvEyBAYLiAAsHhdtYkQIBA0374naogTDFgeTvUNjmach8x5Xp5+4kRESBAgAABAgQIrCsgr1vXP/Wtb/O6qW56eQgs9YjrHwECBAgQIECAwD6BqYoCT98TUwy4Tzyv9+bKn0ygkdd+oLcECKQpoEAwzbjoFQECCQtsbx6N+erg04mPmQETDvYMXZsqOWr3ofbHlOszBEmTBAgQIECAAAECxQtMcVNLXlf8bhIdoLwuSuMNAgQIECBAgACBAgWmyJ/MrF7gjtFxSNv7qttv3tr+23H1a4u1ObhJNK5x+IUAAQK9BRQI9iazAgECNQqMTX62N448BVXj3nN4zKdvLo1NjDxFddjbEgQIECBAgAABAnUKjM3rtje0PORV5/5zaNRj8zoPgR0S9j4BAgQIECBAgMCSAm3+1N6vGHrPQv60ZLTy21abP42ZpV2xYH4x12MCBNYXUCC4fgz0gACBRAXcPEo0MBV0a5sYDU28t4mRYsEKdhZDJECAAAECBAgQ2Csgr9vL480ZBeR1M+JqmgABAgQIECBAYHKB9vPr3ffe34z59qy2KNBEGZOHpvgGt7lTO9Ah98U8bFX8LmKABAhMJKBAcCJIzRAgUIaAJ6LKiGNJo9gmRkOSotZhWyzY/q5gsFXwQ4AAAQIECBAgULqAvK70COc3PnldfjHTYwIECBAgQIBADQJjH6hq7z+0/5llvYa9ZZkxtrlT+9POLjjkvphiwWXiZCsECOQpoEAwz7jpNQECEwpMcfPIE1ETBkRTUYHtTaV2gaGJUZsc2V+jxN4gQIAAAQIECBDIVKDN68x0kWnwKuv2FHndrUcXj9U8BFbZzmO4BAgQIECAAIEJBMYWBfrq4AmCoInOAtv8acg9sXYj7T2xNn+SO3UmtyABAgULKBAsOLiGRoBAXGBMAtR+mFRkFbf1zjICUzxFJSlaJla2QoAAAQIECBAgMI/AFHmdmS7miY1Wuwm0eV37NW7tza4hN7zc7OrmbCkCBAgQIECAAIGmGfNQlaJAe1AKAmOKBd3bTSGC+kCAwNoCCgTXjoDtEyCwqMDQBEjys2iYbKynwJhiQTeUemJbnAABAgQIECBAYHUBed3qIdCBGQTkdTOgapIAAQIECBAgULnAmIeq2vtivo2o8h0o4eFviwXbLvZ92Mp9sYQDq2sECMwqoEBwVl6NEyCQisCQG0iKAlOJnn70FdgmRpKivnKWJ0CAAAECBAgQSFWg/YzbzrTW92uE5XWpRlS/DgnI6w4JeZ8AAQIECBAgQCAm0N4T6ztLtRnWYppeT11gmzu1/exzX0yhYOqR1T8CBKYWUCA4taj2CBBIRmDIk1FuHiUTPh2ZSGCbGEmKJgLVDAECBAgQIECAwKICQ/M6M10sGiYbm1lAXjczsOYJECBAgAABAoUI9J0swz2xQgJvGNcE2typ/XnHl4tkr71x4BfFggeAvE2AQBECCgSLCKNBECBwWkACdFrD7wROBPreVNo+MXj56OJJI34jQIAAAQIECBAgsICAvG4BZJvIUmBIXnfrJqe7cP5cluPVaQIECBAgQIAAgf0CQx+qct1/v6t3yxCQP5URR6MgQGAaAQWC0zhqhQCBlQXaD3h9v26qfTJKArRy4Gx+FYEh/794emqVUNkoAQIECBAgQKAqATe2qgq3wY4UkNeNBLQ6AQIECBAgQCBzAQ9VZR5A3V9UQKHgotw2RoBAogIKBBMNjG4RINBNoE2A2q9O7fr1qWZE6+ZqqXoEJEX1xNpICRAgQIAAAQKpCvTN63wNVqqR1K+1BOR1a8nbLgECBAgQIEBgeYEhhYEmy1g+TraYpkDf3KkdhQk00oylXhEg0F9AgWB/M2sQIJCAwJAE6ML55/hKnQRipwtpCgxJitobs/6/SjOeekWAAAECBAgQyEFAXpdDlPQxJ4G+eZ2HKHOKrr4SIECAAAECNQu0uVP7c+W22zsz+BatzlQWrFRgSP5069FF95or3V8Mm0AJAgoES4iiMRCoREACVEmgDXN1gfb/tb4zc0qKVg+bDhAgQIAAAQIEshCQ12URJp3MXKC90XX3vffL6zKPo+4TIECAAAECBNr8qW9RYKtmxkD7DoHuAgoFu1tZkgCBvAUUCOYdP70nUIWABKiKMBtkggKSogSDoksECBAgQIAAgUwF5HWZBk63sxeQ12UfQgMgQIAAAQIEKhPYPuzRtzBQUWBlO4rhTi4w5P89Xz88eRg0SIDAjAIKBGfE1TQBAuMEhtxAkgCNM7c2gZBA3xtKbRu+viAk6TUCBAgQIECAQH0C8rr6Ym7EaQr0zevc6EozjnpFgAABAgQIlC3QJ39qP6+1/7kvVvY+YXTrCMif1nG3VQIE5hVQIDivr9YJEBgg0CcBaptXiDQA2SoEBgr0SYrcUBqIbDUCBAgQIECAQAECffI6N7YKCLghZCXQ/v95z+ZriNv/Dv3I6w4JeZ8AAQIECBAgMF6gT/7U3hNrfxQGjnfXAoFDAn3uibVtyZ8OiXqfAIE1BRQIrqlv2wQIXCfQ5wK1BOg6On8QWFygT1IkIVo8PDZIgAABAgQIEFhNwI2t1ehtmEBvAXldbzIrECBAgAABAgQmFeibPykKnJRfYwQ6C7S509333t/5QSuT23SmtSABAgsKKBBcENumCBAIC2w/VF257fbwAqde9YHqFIZfCSQg4IZSAkHQBQIECBAgQIBAAgLtja32R16XQDB0gUBPAXldTzCLEyBAgAABAgRGCnQtDDRZxkhoqxOYQaBP/uS+9gwB0CQBAoMFFAgOprMiAQJTCPRJgjwZNYW4NgjMJ9A1KTKj4Hwx0DIBAgQIECBAYA0Bed0a6rZJYB6Brv8/t3ndnVevzNMJrRIgQIAAAQIEChXo+llLUVGhO4BhFSXgnlhR4TQYAlUIKBCsIswGSSA9AUlQejHRIwJTCfj/eypJ7RAgQIAAAQIE0hbwuS/t+OgdgTEC/v8eo2ddAgQIECBAgMD1Au1nq3s2X1Ha/rfvx4yB+3S8RyBNAYWCacZFrwgQOCugQPCsiVcIEJhRwAXmGXE1TSAxAf+/JxYQ3SFAgAABAgQITCTgc95EkJohkLhA1xtd7TDMcpN4MHWPAAECBAgQWEWg/Tx19733N1duu/3g9n2eOkhkAQJJC3TNn3zLVtJh1DkCRQsoECw6vAZHIB0BN5DSiYWeEFhSQEK0pLZtESBAgAABAgTmFZDXzeurdQKpCsjrUo2MfhEgQIAAAQIpC8ifUo6OvhGYT0D+NJ+tlgkQGCegQHCcn7UJEDgg0CcBapu6fHTxQIveJkAgRwEJUY5R02cCBAgQIECAwKMCffI6OZ29hkC5AvK6cmNrZAQIECBAgMB0AvKn6Sy1RCBnAceCnKOn7wTKFFAgWGZcjYrA6gLth572x7Tpq4dCBwgkJeCGUlLh0BkCBAgQIECAwF6Brnld+1VY7Y/iwL2c3iRQjIC8rphQGggBAgQIECAwoYBioAkxNUWgIAHHhoKCaSgEMhdQIJh5AHWfQIoCPuikGBV9IpCWgBtKacVDbwgQIECAAAECuwLyul0RfxMgsCvQ5nUvveXS7stn/r7p/Lnm1s03RlzY/OuHAAECBAgQIFCagNyptIgaD4HpBdwTm95UiwQI9BdQINjfzBoECEQEJEERGC8TIBAVcNyI0niDAAECBAgQILCKgM9nq7DbKIGsBRw3sg6fzhMgQIAAAQIDBfp8Bmo3Ycb1gdBWI1CQgELBgoJpKAQyFFAgmGHQdJlAagJ9kiAJUGrR0x8CaQg4jqQRB70gQIAAAQIE6hXweaze2Bs5gakEXrKZTfCezayCh37aryV3feiQkvcJECBAgACBVAXaAp+7772/uXLb7Xu72M6i3P7nc89eJm8SqFJAoWCVYTdoAqsLKBBcPQQ6QCBfga4fXlz4zTfGek5gSYGuxxRfT7VkVGyLAAECBAgQKF1AYWDpETY+AssKyOuW9bY1AgQIECBAYFkB+dOy3rZGoHSBrvmTe+2l7wnGR2AZAQWCyzjbCoHiBLokQe2HlQvnn7P571xx4zcgAgTmE5AQzWerZQIECBAgQIDAaYGueZ0ZL06r+Z0AgS4C8rouSpYhQIAAAQIEchHw2SaXSOkngTwFulyfMXlGnrHVawIpCSgQTCka+kIgA4EuSVBbGNj+uImUQUB1kUDCAl2ONxKihAOoawQIECBAgECyAu3nrJduvgp034+8bp+O9wgQ6Cogr+sqZTkCBAgQIEAgVYEuhTtm90o1evpFIC8Bx5u84qW3BHITUCCYW8T0l8CKAj6UrIhv0wQqFuhyQ8kFmIp3EEMnQIAAAQIEegnI63pxWZgAgYkEuhYme9h0InDNECBAgAABAqMFXJceTagBAgQGCHQ59pg8YwCsVQgQaBQI2gkIEDgo0OWDiOKcg4wWIEBgpMChm9kSopHAVidAgAABAgSKFpDXFR1egyOQjYC8LptQ6SgBAgQIEKha4NBnlhbHfbGqdxGDJzC7gOs4sxPbAIHqBBQIVhdyAybQT0AS1M/L0gQIzCsgIZrXV+sECBAgQIBAmQLyujLjalQEchVo87ouX3NuNsFcI6zfBAgQIEAgb4FD+ZPCwLzjq/cEchM4dEwyeUZuEdVfAusJKBBcz96WCSQvcOgDhyQo+RDqIIFiBQ4dnyRExYbewAgQIECAAIEeAh6u6IFlUQIEFhd4yS2Xmns2xYKxH3ldTMbrBAgQIECAwBwCh645t9t0X2wOeW0SIHBIwPWdQ0LeJ0Cgi4ACwS5KliFQmYAkqLKAGy6BTAXMOpFp4HSbAAECBAgQWERAXrcIs40QIDBSQF43EtDqBAgQIECAwCQCh/InhYGTMGuEAIGRAoeOVR6yGglsdQKFCygQLDzAhkegr8ChDxaSoL6ilidAYG4Bs07MLax9AgQIECBAICcBT5XnFC19JUBgK9Alr7vz6pXt4v4lQIAAAQIECEwicOieWLsR98UmodYIAQITCXjIaiJIzRCoUECBYIVBN2QCIQFJUEjFawQI5CIgIcolUvpJgAABAgQIzCkgr5tTV9sECMwt0CWvu2NTJHjh/Lm5u6J9AgQIECBAoAKBQ/mTwsAKdgJDJJCxQJeHrG49uih/yjjGuk5gagEFglOLao9AhgKSoAyDpssECAQFJERBFi8SIECAAAECFQjI6yoIsiESqECgyyyo7ddmmU2wgp3BEAkQIECAwEwCh3KndrOKA2fC1ywBApMKdHnIyvFsUnKNEchaQIFg1uHTeQLjBCRB4/ysTYBAmgJdEiKzTqQZO70iQIAAAQIE+gvI6/qbWYMAgfQFuhzb5HXpx1EPCRAgQIBAagKHPmMopEktYvpDgEAXAZNndFGyDAECCgTtAwQqFZAEVRp4wyZQkUCXhMisExXtEIZKgAABAgQKFJDXFRhUQyJA4JqA2QSvUfiFAAECBAgQGClwKHdqm1ccOBLZ6gQIrCpg8oxV+W2cQBYCCgSzCJNOEphOQBI0naWWCBBIX6DLMc+sE+nHUQ8JECBAgACB6wW6fMZxc+t6M38RIJCvQJdjnrwu3/jqOQECBAgQmFvg0GcJudPcEdA+AQJLCpg8Y0lt2yKQl4ACwbzipbcERglIgkbxWZkAgUwFzDqRaeB0mwABAgQIEAgKyOuCLF4kQKBwgS55nZv7he8EhkeAAAECBHoKHMqd2uZ8fuiJanECBLIQ6HL885BVFqHUSQKTCigQnJRTYwTSFHARNc246BUBAssKHEqIbjp/rrn16GJzYfOvHwIECBAgQIBAagJdvirGza3UoqY/BAhMLdAlr7vz6pWpN6s9AgQIECBAIDOBQ58Z5E6ZBVR3CRDoLaA+oDeZFQgUL6BAsPgQG2DtApKg2vcA4ydA4LRAl4TIU1OnxfxOgAABAgQIpCAgr0shCvpAgEAqAvK6VCKhHwQIECBAIE0B+VOacdErAgTWEXBMXMfdVgmkKKBAMMWo6BOBiQSc8CeC1AwBAsUJOD4WF1IDIkCAAAECxQr43FJsaA2MAIGRAo6PIwGtToAAAQIEChR4yS2Xmnvu/VBwZGYNDLJ4kQCBCgQOPWTVfsOWmdgr2BEMsXoBBYLV7wIAShXYd5HUSb7UqBsXAQJ9BA4lRC4Y9dG0LAECBAgQIDCHgLxuDlVtEiBQkoC8rqRoGgsBAgQIEBgu0H4meOmmODD241pvTMbrBAjUJLDvOlPr4Bu2atobjLVGAQWCNUbdmIsX8IRU8SE2QAIEJhTYd8xUUD0htKYIECBAgACBXgL7PqO4udWL0sIECFQgsO+YKa+rYAcwRAIECBCoWuBQwYv8qerdw+AJENgRUFC9A+JPAhUJKBCsKNiGWr6AE3r5MTZCAgTmEdh3Eam9mXTr0cXmwuZfPwQIECBAgACBuQXkdXMLa58AgVIF5HWlRta4CBAgQIBAXGDf+b9dy2xYcTvvECBQr0B77ekdt73XV7LXuwsYeaUCCgQrDbxhlydwKAnyhFR5MTciAgSmFTh0HHUxaVpvrREgQIAAAQJnBQ59HpHXnTXzCgECBE4LHDqOyutOa/mdAAECBAjkLbDvvC93yju2ek+AwDICZmJfxtlWCKQioEAwlUjoB4ERAvuSoLZZFz9H4FqVAIGqBMzYU1W4DZYAAQIECCQlIK9LKhw6Q4BAxgLyuoyDp+sECBAgQKCjwL6iFsWBHREtRoAAgY3AvutRvmHLLkKgLAEFgmXF02gqFDh00r7z6pUKVQyZAAEC4wRcYBrnZ20CBAgQIECgn8C+vM7NrX6WliZAgEAr4Cuz7AcECBAgQKBMAQ8ClBlXoyJAYF2Bfdel2p6ZjGjd+Ng6gakEFAhOJakdAisIKGBZAd0mCRCoRmBfQtQ+NaUAu5pdwUAJECBAgMCsAvK6WXk1ToBA5QL7jrHyusp3DsMnQIAAgewE9l2vbQfj4arsQqrDBAgkJKAAO6Fg6AqBmQQUCM4Eq1kCcwo4Qc+pq20CBAicCBy66OSpqRMrvxEgQIAAAQL9BOR1/bwsTYAAgaEC+/I6X5k1VNV6BAgQIEBgWYFD53MPcy8bD1sjQKBMgfZa1Ttue29zz+bf0I9C7JCK1wjkI6BAMJ9Y6SmBY4F9SVC7gBOzHYUAAQLTCrh5P62n1ggQIECAAIGmkdfZCwgQILCswKHjroe/lo2HrREgQIAAgT4C+87j7on1kbQsAQIEugmYib2bk6UI5CagQDC3iOlv1QL7kiBPPFe9axg8AQIzC3hqamZgzRMgQIAAgYoEDuV1Zr6oaGcwVAIEFhXw8Nei3DZGgAABAgRGC7gmO5pQAwQIEBgscOj61a1HF5sL588Nbt+KBAgsL6BAcHlzWyQwSGDfSdgTUoNIrUSAAIHeAvuemnIs7s1pBQIECBAgUJ2AvK66kBswAQIJCsjrEgyKLhEgQIAAgR2BfblTu6hrsTtg/iRAgMAMAoeOxWZinwFdkwRmFFAgOCOupglMJeDC5VSS2iFAgMB4gX0Jkdlcx/tqgQABAgQIlChg5osSo2pMBAjkLHAorzOba87R1XcCBAgQyF1g33m6HZuClNwjrP8ECOQkYCb2nKKlrwT2CygQ3O/jXQKrCjjhrspv4wQIEIgKuEgVpfEGAQIECBAgsCNw6HODmS92wPxJgACBhQQOHZ8VHywUCJshQIAAAQKnBPadn9uHsxXxn8LyKwECBBYUMKHRgtg2RWAmAQWCM8FqlsBYgX1JUNu2m0hjha1PgACBcQKKuMf5WZsAAQIECNQgcCivU3xSw15gjAQIpCwgr0s5OvpGgAABArUJKD6pLeLGS4BAbgL7rnMp4s4tmvpbo4ACwRqjbszJCzi5Jh8iHSRAgMCxQHsz6R23vbe5Z/Nv6Ecxd0jFawQIECBAoA4BeV0dcTZKAgTyF5DX5R9DIyBAgACB/AUUB+YfQyMgQKAOAde76oizUZYpoECwzLgaVcYC+06qCk0yDqyuEyBQtIALWEWH1+AIECBAgEBvAXldbzIrECBAYHUBed3qIdABAgQIEKhUwDm40sAbNgEC2Qrsm4ndTILZhlXHKxBQIFhBkA0xHwE3kfKJlZ4SIEBgV8AxfFfE3wQIECBAoE4BnwnqjLtREyBQhoBjeBlxNAoCBAgQyEdgX3HgHVevNBfOn8tnMHpKgACBigT2zcSuSLCiHcFQsxJQIJhVuHS2ZAEXIEuOrrERIFCLgGN5LZE2TgIECBAgEBbwWSDs4lUCBAjkJOBYnlO09JUAAQIEchaIFQcqLMk5qvpOgEBtAo7ltUXceHMWUCCYc/T0vRgBFx6LCaWBECBAoHFMtxMQIECAAIE6BXwGqDPuRk2AQJkCjullxtWoCBAgQCAdAQUl6cRCTwgQIDBWwDF9rKD1CSwjoEBwGWdbIRAVcMExSuMNAgQIZCvg2J5t6HScAAECBAgMEnDuH8RmJQIECCQt4NiedHh0jgABAgQyFlBIknHwdJ0AAQIRAcf2CIyXCSQkoEAwoWDoSn0CLjTWF3MjJkCgHgHH+HpibaQECBAgULeAc37d8Td6AgTKFnCMLzu+RkeAAAECywsoIFne3BYJECCwlIBj/FLStkNgmIACwWFu1iIwWsAFxtGEGiBAgEDyAo71yYdIBwkQIECAwCgB5/pRfFYmQIBAFgKO9VmESScJECBAIAMBhSMZBEkXCRAgMFLAsX4koNUJzCigQHBGXE0TiAm4sBiT8ToBAgTKE3DMLy+mRkSAAAECBFoB53j7AQECBOoRcMyvJ9ZGSoAAAQLzCCgYmcdVqwQIEEhRwDE/xajoE4GmUSBoLyCwsIALiguD2xwBAgQSEHDsTyAIukCAAAECBCYUcG6fEFNTBAgQyETAsT+TQOkmAQIECCQnoFAkuZDoEAECBGYXcOyfndgGCPQWUCDYm8wKBIYLuJA43M6aBAgQyF3AOSD3COo/AQIECBB4VMA53Z5AgACBegWcA+qNvZETIECAwDABBSLD3KxFgACBEgScA0qIojGUJKBAsKRoGkvSAi4gJh0enSNAgMAiAs4FizDbCAECBAgQmE3AuXw2Wg0TIEAgGwHngmxCpaMECBAgsLKAwpCVA2DzBAgQSEDAuSCBIOgCgS8LKBC0KxBYQMCFwwWQbYIAAQKZCDgnZBIo3SRAgAABAjsCzuE7IP4kQIBAxQLOCRUH39AJECBAoJOAgpBOTBYiQIBAFQLOCVWE2SAzEFAgmEGQdDFvARcM846f3hMgQGAOAeeGOVS1SYAAAQIE5hNw7p7PVssECBDIVcC5IdfI6TcBAgQIzC2gEGRuYe0TIEAgPwHnhvxipsflCSgQLC+mRpSQgAuFCQVDVwgQIJCYgHNEYgHRHQIECBAgEBFwzo7AeJkAAQIEGucIOwEBAgQIELheQAHI9R7+IkCAAIETAeeIEwu/EVhDQIHgGuq2WYWAC4RVhNkgCRAgMErAuWIUn5UJECBAgMDsAs7VsxPbAAECBLIXcK7IPoQGQIAAAQITCSj8mAhSMwQIEChYwLmi4OAaWvICCgSTD5EO5ijgwmCOUdNnAgQIrCPgnLGOu60SIECAAIFDAs7Rh4S8T4AAAQJbAeeMrYR/CRAgQKBWAQUftUbeuAkQINBfwDmjv5k1CEwhoEBwCkVtEDgl4ILgKQy/EiBAgEAnAeeOTkwWIkCAAAECiwk4Ny9GbUMECBAoRsC5o5hQGggBAgQI9BRQ6NETzOIECBAg0Dh32AkILC+gQHB5c1ssWODuez/UvPSWS8ERXjq6ubl8dDH4nhcJECBAgICbSfYBAgQIECCQhoC8Lo046AUBAgRyFNiX191x9Upz4fy5HIelzwQIECBAICqgwCNK4w0CBAgQOCAQO4eoqzgA520CAwUUCA6EsxqBXQE3kXZF/E2AAAECfQX23Ux66IG7+jZneQIECBAgQKCngLyuJ5jFCRAgQOCMgLzuDIkXCBAgQKBQgdg576ZNQfydm8J4PwQIECBA4JCAIsFDQt4nMJ2AAsHpLLVUuYCTV+U7gOETIEBgIgEX1iaC1AwBAgQIEBggIK8bgGYVAgQIEDgjIK87Q+IFAgQIEChMwLmusIAaDgECBFYUcD1uRXybrkpAgWBV4TbYuQSctOaS1S4BAgTqFIhdYDOtep37g1ETIECAwDIC8rplnG2FAAECtQjI62qJtHESIECgPoF9M6/fsZk58MJmBkE/BAgQIECgj8Azn/384OLOK0EWLxIYJKBAcBCblQicCMQu9plC/cTIbwQIECDQXyB2flEk2N/SGgQIECBA4JCA8+4hIe8TIECAwBAB55chatYhQIAAgZQFFAemHB19I0CAQL4C+84vDz1wV74D03MCCQkoEEwoGLqSn0DsIp/iwPxiqccECBBIUcBMRilGRZ8IECBAoDQBeV1pETUeAgQIpCUgr0srHnpDgAABAuMEnNfG+VmbAAECBOICrtHFbbxDYAoBBYJTKGqjSoF9Veymuq1ylzBoAgQIzCJgWvVZWDVKgAABAgSOBWJ5nYe+7CAECBAgMJVA7FzTtu8a4lTK2iFAgACBJQQUBy6hbBsECBCoWyBWJOjbtereL4x+GgEFgtM4aqUyARf2Kgu44RIgQGBFgX3nHNOqrxgYmyZAgACB7AX2nWMVbGQfXgMgQIBAUgKxm1xtJ+V1SYVKZwgQIEAgIhA7l3m4KgLmZQIECBAYLBA75ygSHExqRQLHAgoE7QgEBgh4SmoAmlUIECBAYLBALBlyAW4wqRUJECBAgEAjr7MTECBAgMCSArG8zk2uJaNgWwQIECAwRCB2DnNtcoimdQgQIECgi4Drdl2ULEOgn4ACwX5elibQxBIhF/PsHAQIECAwp4Dzz5y62iZAgACB2gRcZKwt4sZLgACBNATkdWnEQS8IECBAoLuAmde7W1mSAAECBKYVeOaznx9s0Dd/BFm8SOCggALBg0QWIHAiELuI5ympEyO/ESBAgMB8ArHzkCL1+cy1TIAAAQLlCTiflhdTIyJAgEBOAorUc4qWvhIgQICA4gz7AAECBAisJRC7htf256EH7lqrW7ZLIFsBBYLZhk7HlxaInYAUBy4dCdsjQIBA3QJuJtUdf6MnQIAAgXEC8rpxftYmQIAAgWkEYsUWHv6axlcrBAgQIDCNgOuQ0zhqhQABAgSGC7iWN9zOmgR2BRQI7or4m0BAwBTqARQvESBAgMAqAs5Jq7DbKAECBAgUILDvHOqp4wICbAgECBDISGDfOcnXZWUUSF0lQIBAwQKxggzF7AUH3dAIECCQqIBzUqKB0a3sBBQIZhcyHV5DIPaUlAt2a0TDNgkQIEAglgy1Mgoc7B8ECBAgQOCsgEKMsyZeIUCAAIF1BWJ5nW8rWTcutk6AAAECTeMcZS8gQIAAgdQEYucmheupRUp/UhZQIJhydPQtCYFYcaCTTRLh0QkCBAhUKxBLhtxMqnaXMHACBAgQ2CMgr9uD4y0CBAgQWE0glte57rhaSGyYAAEC1QvEHq5yzbH6XQMAAQIEVhd45rOfH+yD/CnI4kUCZwQUCJ4h8QKBEwEX6U4s/EaAAAEC6Qk4T6UXEz0iQIAAgfQEFAemFxM9IkCAAIETAXndiYXfCBAgQGBdgVhxYNsr36i1bmxsnQABAgSaxnnKXkBgnIACwXF+1i5YIHZxzlNSBQfd0AgQIJChgKKHDIOmywQIECCwmIC8bjFqGyJAgACBEQLyuhF4ViVAgACByQRi5yPFgZMRa4gAAQIERgrErvW1zT70wF0jW7c6gbIFFAiWHV+jGygQqz5XHDgQ1GoECBAgMKuAadVn5dU4AQIECGQqELtgKK/LNKC6TYAAgcIFYnmdoozCA294BAgQSEQgVhzoaxsTCZBuECBAgMA1Adf8rlH4hUAvAQWCvbgsXINArDiwHbsLcjXsAcZIgACB/AScu/KLmR4TIECAwLwCzo3z+mqdAAECBKYX2HfuMhPG9N5aJECAAIETgVihheLAEyO/ESBAgEBaAs5dacVDb/IQUCCYR5z0ckGB2FNSigMXDIJNESBAgEBvgVgyZJak3pRWIECAAIECBMzCVEAQDYEAAQIVCsjrKgy6IRMgQGBlAeeelQNg8wQIECAwWCBW16HAfTCpFQsXUCBYeIANr5+Ak0g/L0sTIECAQFoCsQt6kqG04qQ3BAgQIDCvgLxuXl+tEyBAgMC8AvK6eX21ToAAAQInAmavPbHwGwECBAjkKRB7SNh9sTzjqdfzCigQnNdX6xkJuPiWUbB0lQABAgSiAs5nURpvECBAgEAFAs6DFQTZEAkQIFCBgPNZBUE2RAIECCQgEHu4yjdqJRAcXSBAgACBTgKK3TsxWYjAsYACQTsCgY1A7MThaxntHgQIECCQo0Ds4t5DD9yV43D0mQABAgQIdBKQ13VishABAgQIZCIgr8skULpJgACBTAUUo2caON0mQIAAgTMCzmlnSLxAICigQDDI4sXaBGIX3DwlVdueYLwECBAoRyA0rbop1cuJr5EQIECAwFmBWF6nQP6slVcIECBAIH2BWOG7vC792OkhAQIEUhdwjkk9QvpHgAABAn0FFAn2FbN8jQIKBGuMujFfJ+BkcR2HPwgQIECgEAHnt0ICaRgECBAg0Ekgdt7z0FcnPgsRIECAQKICsfObIsFEA6ZbBAgQyEQg9HCVb9TKJHi6SYAAAQJRgdD5rV3Yw8NRMm9UJqBAsLKAG+71ArGnpCRC1zv5iwABAgTyFIjdTJIM5RlPvSZAgACBsIC8LuziVQIECBAoQ0BeV0YcjYIAAQKpCMTOKx6uSiVC+kGAAAECQwVi1wg9YDVU1HqlCSgQLC2ixtNLQBV5Ly4LEyBAgECGAr5qOMOg6TIBAgQI9BKQ1/XisjABAgQIZCggr8swaLpMgACBBAUUTiQYFF0iQIAAgUkFYoXwigQnZdZYpgIKBDMNnG6PF4idHDwlNd5WCwQIECCQjkDsfCcZSidGekKAAAECwwVi5zl53XBTaxIgQIBAegKx8528Lr1Y6REBAgRSFgg9XOUbtVKOmL4RIECAwBCB0Pmubce3aw3RtE5JAgoES4qmsXQWiD0lJRHqTGhBAgQIEMhIIHYzSTKUURB1lQABAgTOCMTyOsUSZ6i8QIAAAQIFCMjrCgiiIRAgQGBFgdh5xMNVKwbFpgkQIEBgFgHXDGdh1WgBAgoECwiiIfQXUDXe38waBAgQIJC3QOgrqRTG5x1TvSdAgEDtAqG8zrmt9r3C+AkQIFC2QCivUxhfdsyNjgABAlMIKJSYQlEbBAgQIJCTQKwwXv6UUxT1dWoBBYJTi2oveYHYycBTUsmHTgcJECBAYIRA7PwnGRqBalUCBAgQWE0gdl6T160WEhsmQIAAgQUEYuc/ed0C+DZBgACBjAVCBeYerso4oLpOgAABAp0EQg8Xtyv6dq1OfBYqUECBYIFBNaS4QOwpKYlQ3Mw7BAgQIFCOQOxmkmKKcmJsJAQIEKhBIJbXKY6oIfrGSIAAAQKxvM5NLvsGAQIECIQEYsURrgeGtLxGgAABAiUJuIZYUjSNZQoBBYJTKGojG4FYIuQCWjYh1FECBAgQGCngieGRgFYnQIAAgdUFQnmdh75WD4sOECBAgMCCAqG8TqH8ggGwKQIECGQioDAik0DpJgECBAjMJhB7wEr+NBu5hhMWUCCYcHB0bVqB2MHfU1LTOmuNAAECBNIWiJ0PJUNpx03vCBAgQOBRgdh5TF5nDyFAgACBmgRi50N5XU17gbESIEDgsECooNzDVYfdLEGAAAECZQmEHjZuR2gSqbLibDSHBRQIHjayRAECnpIqIIiGQIAAAQKTCcRuJimumIxYQwQIECAwg4C8bgZUTRIgQIBAtgKxvM5NrmxDquMECBCYVCBWDOH636TMGiNAgACBTARCRfMesMokeLo5mYACwckoNZSyQCgR8pRUyhHTNwIECBCYWyCUDDk3zq2ufQIECBAYIyCvG6NnXQIECBAoUSCU17nJVWKkjYkAAQL9BDxc1c/L0gQIECBQvkDsASv5U/mxN8ITAQWCJxZ+K1QgdrD3lFShATcsAgQIEOgkEDs/SoY68VmIAAECBBYWiJ235HULB8LmCBAgQCApgdj5UV6XVJh0hgABAosLhArIPRi8eBhskAABAgQSE4jlT2ZhTyxQujObgALB2Wg1nIKAp6RSiII+ECBAgECqArFkSLFFqhHTLwIECNQpIK+rM+5GTYAAAQLdBOR13ZwsRYAAgVoEQjOvt2N3va+WPcA4CRAgQGCfQKiI3gNW+8S8V5KAAsGSomksZwRCiZCnpM4weYEAAQIEKhYIJUPOlRXvEIZOgACBBAXkdQkGRZcIECBAICkBeV1S4dAZAgQIrCYQKxpX+LBaSGyYAAECBBITcK5MLCC6s6iAAsFFuW1sSYHYwd1TUktGwbYIECBAIHWB2PnShcPUI6d/BAgQqEMgVBzYjlxeV0f8jZIAAQIEugnI67o5WYoAAQIlC8RmXvcgcMlRNzYCBAgQGCIQy5981fAQTevkJKBAMKdo6WtngVgipNihM6EFCRAgQKAigVgy5LxZ0U5gqAQIEEhQQF6XYFB0iQABAgSSFYjldYrqkw2ZjhEgQGBSAQ9XTcqpMQIECBAoXCA0C7t7YoUH3fAaBYJ2giIFQomQp6SKDLVBESBAgMBEAqFkqG3aE1MTAWuGAAECBHoLhM5N8rrejFYgQIAAgYoEnDsrCrahEiBA4JRArEhcocMpJL8SIECAAIFTAs6dpzD8Wo2AAsFqQl3PQGMHc0/L1rMPGCkBAgQI9BeInT9dSOxvaQ0CBAgQGC8QeuirbVVeN95WCwQIECBQroC8rtzYGhkBAgT2CSgQ36fjPQIECBAgEBaI5U8mzgh7eTV/AQWC+cfQCE4J+AqqUxh+JUCAAAECPQUkQz3BLE6AAAECswjI62Zh1SgBAgQIVCIgr6sk0IZJgACBLwvEHq5S3GAXIUCAAAEChwVCRfYmzjjsZok8BRQI5hk3vY4IhBIhX0EVwfIyAQIECBAICEiGAiheIkCAAIFFBeR1i3LbGAECBAgUKCCvKzCohkSAAIGAQOzhKjOvB7C8RIAAAQIEAgIesAqgeKlYAQWCxYa2voFJhOqLuRETIECAwPQCsWTIhcXprbVIgAABAmcF5HVnTbxCgAABAgT6CsTyOrNJ9ZW0PAECBNIW8HBV2vHROwIECBDIQyCUP5lFMI/Y6WU/AQWC/bwsnbCARCjh4OgaAQIECGQlIBnKKlw6S4AAgaIE5HVFhdNgCBAgQGBFAXndivg2TYAAgQUEPFy1ALJNECBAgEAVAqHcqR24IsEqwl/VIBUIVhXucgcrESo3tkZGgAABAssLSIaWN7dFAgQIEGgaeZ29gAABAgQITCcgr5vOUksECBBIUcDDVSlGRZ8IECBAIFeBUP6kQDDXaOp3TECBYEzG61kJSISyCpfOEiBAgEAGApKhDIKkiwQIEChMQF5XWEANhwABAgRWF5DXrR4CHSBAgMAsAh6umoVVowQIECBQucAzn/38MwKKBM+QeCFjAQWCGQdP1x8VkAjZEwgQIECAwDwCkqF5XLVKgAABAmcFQgUM7VIPPXDX2YW9QoAAAQIECHQSiF03dZOrE5+FCBAgkKyAh6uSDY2OESBAgEDGAq5PZhw8Xe8koECwE5OFUhYIJUIucqUcMX0jQIAAgVwEJEO5REo/CRAgkL+AovT8Y2gEBAgQIJCmgLwuzbjoFQECBIYKxIq/77h6pblw/tzQZq1HgAABAgQIbARco7QblCygQLDk6FYwNhe4KgiyIRIgQIDAqgKSoVX5bZwAAQJVCMjrqgizQRIgQIDAigLyuhXxbZoAAQITC5g0Y2JQzREgQIAAgVMCrlOewvBrcQIKBIsLaV0DcnGrrngbLQECBAgsLyAZWt7cFgkQIFCTgNkvaoq2sRIgQIDAWgLyurXkbZcAAQLTCjieT+upNQIECBAgEBJQgxJS8VoJAgoES4hipWMIJUI3baZPv3MzjbofAgQIECBAYDoBydB0lloiQIAAgesFQrNfyOuuN/IXAQIECBCYQkBeN4WiNggQILCugGP5uv62ToAAAQJ1CITqUNqRP/TAXXUAGGWxAgoEiw1t2QMzy0TZ8TU6AgQIEEhLQDKUVjz0hgABAqUIyOtKiaRxECBAgEAOAvK6HKKkjwQIEIgLhI7jHq6Ke3mHAAECBAiMEVCUP0bPuqkKKBBMNTL6tVfALBN7ebxJgAABAgQmF5AMTU6qQQIECFQvIK+rfhcAQIAAAQILC8jrFga3OQIECEwk4OGqiSA1Q4AAAQIEOgqECvPbVc0i2BHQYkkKKBBMMiw6tU9AIrRPx3sECBAgQGAeAcnQPK5aJUCAQK0C8rpaI2/cBAgQILCmgLxuTX3bJkCAwHABD1cNt7MmAQIECBAYKhDKny4d3dxcPro4tEnrEVhVQIHgqvw2PkRAIjREzToECBAgQGC8gGRovKEWCBAgQOBRAXmdPYEAAQIECKwjYBbBddxtlQABAkMFPFw1VM56BAgQIEBgnEDonljboiLBca7WXk9AgeB69rY8QEAiNADNKgQIECBAYCIBydBEkJohQIBA5QLyusp3AMMnQIAAgVUFYnndHVevNBfOn1u1bzZOgAABAmcFPFx11sQrBAgQIEBgKYFQ/qRAcCl925laQIHg1KLam1VAIjQrr8YJECBAgMBBAcnQQSILECBAgMABAXndASBvEyBAgACBmQXkdTMDa54AAQITCXi4aiJIzRAgQIAAgYECsXOxIsGBoFZbVUCB4Kr8Nt5HIHbw9XRrH0XLEiBAgACB8QK+kmq8oRYIECBQq4C8rtbIGzcBAgQIpCQQKhBs++cmV0pR0hcCBAg0jYer7AUECBAgQGB9gVj+9NADd63fOT0g0ENAgWAPLIuuKxBKhFy0Wjcmtk6AAAECdQpIhuqMu1ETIEBgCgFF5lMoaoMAAQIECIwXCOV1rrWOd9UCAQIEphLwcNVUktohQIAAAQLjBVzTHG+ohfUFFAiuHwM96CAQumDVrqYquwOeRQgQIECAwAwCkqEZUDVJgACBwgXkdYUH2PAIECBAIDsBeV12IdNhAgQqEjBpRkXBNlQCBAgQSF7Adc3kQ6SDHQQUCHZAssj6Ai5WrR8DPSBAgAABAqcFJEOnNfxOgAABAl0E5HVdlCxDgAABAgSWE5DXLWdtSwQIEOgj4PjcR8uyBAgQIEBgGQHXNpdxtpX5BBQIzmer5YkEQonQTefPNXdevTLRFjRDgAABAgQIDBGQDA1Rsw4BAgTqFAjNfiGvq3NfMGoCBAgQSEtAXpdWPPSGAAECrYBjs/2AAAECBAikJxCqW2l76Vsv04uVHoUFFAiGXbyaiMDd936oeektl8705o5NceCFTZGgHwIECBAgQGA9AcnQeva2TIAAgZwE5HU5RUtfCRAgQKA2AXldbRE3XgIEUhcIHZc9XJV61PSPAAECBGoRUMRfS6TLHKcCwTLjWsyoJELFhNJACBAgQKBQAclQoYE1LAIECEwoYPbACTE1RYAAAQIEZhCQ182AqkkCBAgMFAgdk02aMRDTagQIECBAYGKBUP1KuwmzCE4MrblZBBQIzsKq0akEQjeSJEJT6WqHAAECBAiMF5AMjTfUAgECBEoXcIOr9AgbHwECBAjkLiCvyz2C+k+AQCkCodnXzR5YSnSNgwABAgRKEQhd67x0dHNz+ehiKUM0jkIFFAgWGtgShiURKiGKxkCAAAECNQhIhmqIsjESIEBgmIC8bpibtQgQIECAwNIC8rqlxW2PAAECZwVMmnHWxCsECBAgQCA1AQ9YpRYR/ekqoECwq5TlFheQCC1OboMECBAgQGCQQCgZ8rTUIEorESBAoDgBeV1xITUgAgQIEChUQF5XaGANiwCBbARCD1e1nfeVhdmEUEcJECBAoCIBD1hVFOyChqpAsKBgljQUiVBJ0TQWAgQIEKhBIJQMuYBZQ+SNkQABAnEBeV3cxjsECBAgQCBFAXldilHRJwIEahEIPVzl64Vrib5xEiBAgEBuAh6wyi1i+tsKKBC0HyQpIBFKMiw6RYAAAQIEogKSoSiNNwgQIFCtgLyu2tAbOAECBAhkKiCvyzRwuk2AQPYCsYer7rh6pblw/lz24zMAAgQIECBQooAHrEqMatljUiBYdnyzHV3oYCoRyjacOk6AAAECFQjELmSaRbCC4BsiAQIEAgKx84K8LoDlJQIECBAgkIhAqECw7Zq8LpEA6QYBAsUKhI6/Zg8sNtwGRoAAAQKFCITO35eObm4uH10sZISGUZqAAsHSIlrAeEI3kiRCBQTWEAgQIECgeAHJUPEhNkACBAh0FgidE+R1nfksSIAAAQIEVhMIPbjtJtdq4bBhAgQqEQgdez1cVUnwDZMAAQIEshUIXf9sB+MBq2xDWnzHFQgWH+L8Bhj6GiqJUH5x1GMCBAgQqE9AMlRfzI2YAAECMQE3uGIyXidAgAABAmkLhPI6Rf5px0zvCBDIW8CkGXnHT+8JECBAoG6B0DVQD1jVvU+kPHoFgilHp8K+SYQqDLohEyBAgEBRApKhosJpMAQIEBgkIK8bxGYlAgQIECCQjIC8LplQ6AgBAhUImDSjgiAbIgECBAgUK+ABq2JDW+TAFAgWGdZ8BxVKhFRY5xtPPSdAgACB+gRCyZBzeX37gRETIFC3QCivMyt83fuE0RMgQIBAXgLyurzipbcECOQrEHq4qh2NrybMN6Z6ToAAAQL1CXjAqr6Y5zpiBYK5Rq7AfkuECgyqIREgQIBAlQKhZMiFzSp3BYMmQKBCAXldhUE3ZAIECBAoUkBeV2RYDYoAgcQEQg9X+Vr3xIKkOwQIECBA4ICAB6wOAHk7GQEFgsmEQkckQvYBAgQIECBQhoBkqIw4GgUBAgSGCMjrhqhZhwABAgQIpCcgr0svJnpEgEB5AqFibLOvlxdnIyJAgACB8gVC53QTZ5Qf99xGqEAwt4gV3N/QQVMiVHDADY0AAQIEihUI3UhqBysZKjbkBkaAAIFrAvK6axR+IUCAAAECWQvI67IOn84TIJCBQOg4a/bADAKniwQIECBAICAQOq9fOrq5uXx0MbC0lwisI6BAcB13W90RCH0NlURoB8mfBAgQIEAgI4HQDFKSoYwCqKsECBAYIBC6ECavGwBpFQIECBAgkIhAqPBfXpdIcHSDAIHsBULXzkyakX1YDYAAAQIEKhUIXRdtKUycUekOkeiwFQgmGpjauiURqi3ixkuAAAECpQtIhkqPsPERIEDgrIC87qyJVwgQIECAQM4CobxOgWDOEdV3AgRSETBpRiqR0A8CBAgQIDCdgAesprPU0jwCCgTncdVqD4FQItSurpq6B6JFCRAgQIBAggKSoQSDoksECBCYSSCU15k9cCZszRIgQIAAgQUFQnmdGa4WDIBNESBQpEDo4SoF2EWG2qAIECBAoCIBD1hVFOxMh6pAMNPAldRtiVBJ0TQWAgQIECBwIiAZOrHwGwECBEoXCOV1igdKj7rxESBAgEANAvK6GqJsjAQILCkQeriq3b5JM5aMgm0RIECAAIF5BDxgNY+rVqcRUCA4jaNWBgrEEiE3kgaCWo0AAQIECCQmEEqGXPBMLEi6Q4AAgZECsbzO8X4krNUJECBAgEACAs7zCQRBFwgQKEog9HCV2deLCrHBECBAgEDFAh6wqjj4GQxdgWAGQSq5ixKhkqNrbAQIECBAoGkkQ/YCAgQIlC8grys/xkZIgAABAnULyOvqjr/REyAwrUDoYVqTZkxrrDUCBAgQILCWgAes1pK33S4CCgS7KFlmNgGJ0Gy0GiZAgAABAkkIhG4ktR0zq1QS4dEJAgQITCIgr5svjsb4AABAAElEQVSEUSMECBAgQCBZAXldsqHRMQIEMhMIFQ2YPTCzIOouAQIECBA4IBDKny4d3dxcPrp4YE1vE5hXQIHgvL5a3yMgEdqD4y0CBAgQIFCQQKhwRDJUUIANhQCBqgXkdVWH3+AJECBAoCIBeV1FwTZUAgRmEwjNvm72wNm4NUyAAAECBFYRCBUIth0xccYq4bDRUwIKBE9h+HVZAYnQst62RoAAAQIE1hIIJUOejl4rGrZLgACBaQXkddN6ao0AAQIECKQqEMrrPPiVarT0iwCBFAU8XJViVPSJAAECBAjMI+ABq3lctTpOQIHgOD9rDxQIJUJtU6qmB4JajQABAgQIJC4QSoY8IZ140HSPAAECBwRCeZ0C8ANo3iZAgAABAhkLhPI613MzDqiuEyCwqEDo4SqF1ouGwMYIECBAgMBiAh6wWozahnoIKBDsgWXR6QRCiZAbSdP5aokAAQIECKQmIBlKLSL6Q4AAgfECobzODa7xrlogQIAAAQKpCsjrUo2MfhEgkLpA6OGqts8enk09cvpHgAABAgSGC3jAaridNecRUCA4j6tWDwiEDoYSoQNo3iZAgAABApkLhM7/ZpvIPKi6T4BA1QKO61WH3+AJECBAoEKBUIFgyyCvq3BnMGQCBHoJhAoETZrRi9DCBAgQIEAgO4FQ/uTh6uzCWFSHFQgWFc48BiMRyiNOekmAAAECBKYWCM005QGBqZW1R4AAgWUE5HXLONsKAQIECBBITcADAqlFRH8IEMhBwDWxHKKkjwQIECBAYFqBUIGgBwSmNdZaPwEFgv28LD2BgERoAkRNECBAgACBDAVCyZCnpTIMpC4TIEBgIyCvsxsQIECAAIE6BeR1dcbdqAkQGCeguHqcn7UJECBAgECuAj4D5Bq5MvutQLDMuCY9KjeSkg6PzhEgQIAAgdkEQrNNtRvzdVSzkWuYAAECswmELm6ZFXY2bg0TIECAAIFkBEJ5nVkwkgmPjhAgkKCA42aCQdElAgQIECCwkIAHrBaCtplOAgoEOzFZaCoBidBUktohQIAAAQJ5CoQKShQI5hlLvSZAoF4BeV29sTdyAgQIECDQCsjr7AcECBDoLmDSjO5WliRAgAABAqUJKBAsLaJ5j0eBYN7xy673biRlFzIdJkCAAAECkwpIhibl1BgBAgRWEXCDaxV2GyVAgAABAskIyOuSCYWOECCQgYCi6gyCpIsECBAgQGBGAZ8FZsTVdC8BBYK9uCw8VsCNpLGC1idAgAABAnkLeFgg7/jpPQECBFoBeZ39gAABAgQI1C2gQLDu+Bs9AQLdBVwH625lSQIECBAgUKqA/KnUyOY3LgWC+cUs2x6HEqF2ML5WMNuQ6jgBAgQIEBgk4GmpQWxWIkCAQBICobzupvPnmjuvXkmifzpBgAABAgQILCMgr1vG2VYIEMhbwMNVecdP7wkQIECAwBQCCgSnUNTGFAIKBKdQ1EYnATeSOjFZiAABAgQIFC8gGSo+xAZIgEDBAvK6goNraAQIECBAoIeAvK4HlkUJEKhWQIFgtaE3cAIECBAgcJ2AB6yu4/DHSgIKBFeCr3GzEqEao27MBAgQIEDgrIAbSWdNvEKAAIFcBOR1uURKPwkQIECAwLwC8rp5fbVOgED+Ah6uyj+GRkCAAAECBKYScE11KkntjBFQIDhGz7q9BFRF9+KyMAECBAgQKFrA54Kiw2twBAgUKhC6wdUO9aEH7ip0xIZFgAABAgQI7BOQ1+3T8R4BArULhAoBbjp/rrnz6pXaaYyfAAECBAhUJ+ABq+pCnuSAFQgmGZbyOhW6kSQRKi/ORkSAAAECBLoKSIa6SlmOAAEC6QjI69KJhZ4QIECAAIEUBELFL5eObm4uH11MoXv6QIAAgVUFQsfIOzbFgRc2RYJ+CBAgQIAAgboEQtdVWwEPXte1H6w9WgWCa0egku1LhCoJtGESIECAAIGOAgoEO0JZjAABAgkJyOsSCoauECBAgACBBATkdQkEQRcIEEhSIFQEYNKMJEOlUwQIECBAYDGB0AzsHh5YjN+GNgIKBO0GiwiEDnaqoRehtxECBAgQIJCsgM8HyYZGxwgQIBAUcNwOsniRAAECBAhULeDzQdXhN3gCBCICCgQjMF4mQIAAAQIVC3jAquLgJzJ0BYKJBKLkbkiESo6usREgQIAAgeECoZmofB3VcE9rEiBAYE4Bed2cutomQIAAAQL5CoTyOrNg5BtPPSdAYBoBx8ZpHLVCgAABAgRKEnB9taRo5jkWBYJ5xi2rXkuEsgqXzhIgQIAAgcUEPC21GLUNESBAYLSAvG40oQYIECBAgECRAvK6IsNqUAQIjBQwu+pIQKsTIECAAIFCBXxGKDSwmQxLgWAmgcq5m24k5Rw9fSdAgAABAvMKSIbm9dU6AQIEphJwvJ5KUjsECBAgQKAsAbNglBVPoyFAYLyA4+J4Qy0QIECAAIFSBTxgVWpk8xiXAsE84pRtLyVC2YZOxwkQIECAwCICHiRYhNlGCBAgMEpAXjeKz8oECBAgQKB4AQ8SFB9iAyRAoIeAa109sCxKgAABAgQqE1AgWFnAExuuAsHEAlJad0KJ0KWjm5vLRxdLG6rxECBAgAABAgMEJEMD0KxCgACBhQVCed0dV680F86fW7gnNkeAAAECBAikKCCvSzEq+kSAwFoCiqbXkrddAgQIECCQh4DPCnnEqcReKhAsMaoJjcmNpISCoSsECBAgQCBBAbNSJRgUXSJAgMCOgLxuB8SfBAgQIECAwHUCoQLBmzYPEty5eaDADwECBGoScJ2rpmgbKwECBAgQGCYQyp9MsjXM0lr9BBQI9vOydA8BiVAPLIsSIECAAIGKBTwtVXHwDZ0AgeQF5HXJh0gHCRAgQIBAEgLyuiTCoBMECKws4OGqlQNg8wQIECBAIAMBBYIZBKnQLioQLDSwKQzLjaQUoqAPBAgQIEAgfQHJUPox0kMCBOoVCN3g8kRrvfuDkRMgQIAAgZiAvC4m43UCBGoSUCxdU7SNlQABAgQIDBfwmWG4nTWHCygQHG5nzQMCoRtJd2y+VuLC5usl/BAgQIAAAQIEtgKhG0m+jmqr418CBAisKyCvW9ff1gkQIECAQC4CobzOQwW5RE8/CRCYQsCkGVMoaoMAAQIECNQhELrmKn+qI/ZrjlKB4Jr6BW87lAi1w33ogbsKHrWhESBAgAABAkMFPC01VM56BAgQmE8glNcp4J7PW8sECBAgQCB3AXld7hHUfwIExgiEbvSbNGOMqHUJECBAgEC5Ah6wKje2KY9MgWDK0cm4b24kZRw8XSdAgAABAisISIZWQLdJAgQIHBCQ1x0A8jYBAgQIECBwnYC87joOfxAgUJmAAsHKAm64BAgQIEBgpIAHrEYCWr23gALB3mRW6CIgEeqiZBkCBAgQIEBgK+BG0lbCvwQIEEhHQF6XTiz0hAABAgQI5CAgr8shSvpIgMAcAh6umkNVmwQIECBAoGyBUIGg2YfLjvnao1MguHYECt1+6EaSrxcuNNiGRYAAAQIEJhLYTYZ8jeVEsJohQIDAQIHd43LbjLxuIKbVCBAgQIBAJQK7nx/kdZUE3jAJVC6gQLDyHcDwCRAgQIDAAAEPWA1As8ooAQWCo/isHBNwISgm43UCBAgQIEAgJuABg5iM1wkQILC8gBtcy5vbIgECBAgQKEFg97pwOyYPGJQQWWMgQGCfQOialhmA9ol5jwABAgQIEFAgaB9YWkCB4NLiFWzPjaQKgmyIBAgQIEBgBoFQMuRi6gzQmiRAgEAHAXldBySLECBAgAABAmcEFMmcIfECAQIVCDj2VRBkQyRAgAABAjMI7D5gZQb2GZA1eU1AgeA1Cr9MJeDm/lSS2iFAgAABAnUJhD5DXDq6ubl8dLEuCKMlQIBAAgKhY7Ki7QQCowsECBAgQCBxgdBnCHld4kHTPQIERgvs3txvGzR76mhWDRAgQIAAgeIFfIYoPsRJDVCBYFLhKKMznpQqI45GQYAAAQIElhYIzVblRtLSUbA9AgQIPCogr7MnECBAgAABAkME5HVD1KxDgEDOAqHjntl/co6ovhMgQIAAgeUEXINdztqWmkaBoL1gcoHQQcyTUpMza5AAAQIECBQp4GmpIsNqUAQIZCjgeJxh0HSZAAECBAgkIrD7OUKhTCKB0Q0CBGYRCBUIeuB1FmqNEiBAgACB4gTMwF5cSJMekALBpMOTZ+dcAMozbnpNgAABAgRSEPCgQQpR0AcCBGoXCN3gcmO/9r3C+AkQIECAQHeB3evD7ZoeIO/uZ0kCBPISCF3LuuPqlebC+XN5DURvCRAgQIAAgcUFFAguTl71BhUIVh3+6QfvRtL0plokQIAAAQI1CYSSIRdVa9oDjJUAgRQE5HUpREEfCBAgQIBAvgLyunxjp+cECPQXUCDY38waBAgQIECAwInA7gNWHtQ+sfHbtAIKBKf1rL41F3+q3wUAECBAgACBUQKhzxK+lmUUqZUJECDQW8ANrt5kViBAgAABAgROCcjrTmH4lQCB4gV2b+q3AzZravFhN0ACBAgQIDCZgM8Sk1Fq6ICAAsEDQN7uJ+BGUj8vSxMgQIAAAQLXC4RmrVIgeL2RvwgQIDC3gLxubmHtEyBAgACBsgXkdWXH1+gIEDgRCB3vzPpz4uM3AgQIECBA4LBA6AEr36x12M0S/QUUCPY3s8YeAdXNe3C8RYAAAQIECHQS8HmiE5OFCBAgMJuA4/BstBomQIAAAQLVCOx+nlAwU03oDZRAVQKhAkEPula1CxgsAQIECBAYLRAqEPR5YjSrBgICCgQDKF4aJhBKhFz4GWZpLQIECBAgULNAaOYqX81S8x5h7AQILCkgr1tS27YIECBAgEC5ArsFgu1I5XXlxtvICNQqELqGZcafWvcG4yZAgAABAsMEQtdjFQgOs7TWfgEFgvt9vNtDIHTgUiDYA9CiBAgQIECAwLGAp6XsCAQIEFhPIJTXuSC1XjxsmQABAgQI5CoQyusUzeQaTf0mQCAmoEAwJuN1AgQIECBAoI/A7gNW6mz66Fm2q4ACwa5Sljso4KLPQSILECBAgAABAh0EQp8pFKd0gLMIAQIEJhBwg2sCRE0QIECAAAECjbzOTkCAQA0CbubXEGVjJECAAAEC8wvsfqZot2gG9vnda9uCAsHaIj7jeN1ImhFX0wQIECBAoCKB0OxVnpaqaAcwVAIEVhWQ163Kb+MECBAgQKAYgVBe58GvYsJrIAQIbARCxznXr+waBAgQIECAwBCB0ANWZmAfImmdfQIKBPfpeK+XgKrmXlwWJkCAAAECBPYI+FyxB8dbBAgQmFHA8XdGXE0TIECAAIHKBHyuqCzghkugMoFQgaBC6Mp2AsMlQIAAAQITCYQKBH2umAhXM9cEFAheo/DLGIFQIuRJqTGi1iVAgAABAnULhGawMp163fuE0RMgML+AvG5+Y1sgQIAAAQI1CSgQrCnaxkqgPoHQtSsz/dS3HxgxAQIECBCYQiB0XVaB4BSy2jgtoEDwtIbfBwuEDlgKBAdzWpEAAQIECFQv4Gmp6ncBAAQIrCAQyutciFohEDZJgAABAgQKEQjldYpnCgmuYRAg0IQKBD3cascgQIAAAQIEhgrsPmCl3maopPViAgoEYzJe7yUQSoRc7OlFaGECBAgQIEDglEDoRpIilVNAfiVAgMAMAvK6GVA1SYAAAQIEKhaQ11UcfEMnUIGAm/gVBNkQCRAgQIDAggK7ny3aTXv4YMEAVLApBYIVBHmJIbqRtISybRAgQIAAgXoEQrNYeVqqnvgbKQEC6wiE8joXodaJha0SIECAAIESBEJ5nQe/SoisMRAgEDq+uW5lvyBAgAABAgTGCIQesDIp1xhR6+4KKBDcFfH3IAHVzIPYrESAAAECBAjsEfD5Yg+OtwgQIDCDwO5x1w2uGZA1SYAAAQIEKhPY/XzRDt8DCJXtBIZLoECBUIGgAugCA21IBAgQIEBgQYFQgaDPFwsGoIJNKRCsIMhzDzGUCLmRNLe69gkQIECAQPkCZrIqP8ZGSIBAOgLyunRioScECBAgQKAkAXldSdE0FgIEtgKhY5sZfrY6/iVAgAABAgSGCISuzyoQHCJpnZiAAsGYjNc7CzhQdaayIAECBAgQINBDwNNSPbAsSoAAgZEC8rqRgFYnQIAAAQIEggKhvE4RTZDKiwQIZCQQKhA0O2pGAdRVAgQIECCQqIAZ2BMNTCHdUiBYSCDXHEYoEXKRZ82I2DYBAgQIEChDIHQjydNSZcTWKAgQSE9AXpdeTPSIAAECBAiUICCvKyGKxkCAwK7A7s1736q1K+RvAgQIECBAYIhA6BqthxCGSFonJKBAMKTitV4CoYOUAsFehBYmQIAAAQIEAgKh2axccA1AeYkAAQITCITyOhefJoDVBAECBAgQqFwglNd58KvyncLwCWQuEDquuV6VeVB1nwABAgQIJCIQesBK7U0iwSmgGwoECwji2kPYfVKq7Y8bSWtHxfYJECBAgEAZAj5nlBFHoyBAIH2B3eOtG1zpx0wPCRAgQIBALgK7nzPafrt+nEv09JMAgV0BN+53RfxNgAABAgQITCUQ+pzhAaupdLWjQNA+MErAk1Kj+KxMgAABAgQIHBAwo9UBIG8TIEBgAgF53QSImiBAgAABAgSiAvK6KI03CBDIUCB0TDOzT4aB1GUCBAgQIJCgQOg6rQLBBAOVaZcUCGYauFS6HTpAmWkilejoBwECBAgQyF8g9LSUi675x9UICBBISyCU17nwlFaM9IYAAQIECOQsoJgm5+jpOwECuwKOabsi/iZAgAABAgSmFNidgV39zZS6dbelQLDu+I8evRtJowk1QIAAAQIECOwRUCC4B8dbBAgQmEhAXjcRpGYIECBAgACBoIC8LsjiRQIEMhUIFQj62vRMg6nbBAgQIEAgQQEFggkGpZAuKRAsJJBrDSN0ccdME2tFw3YJECBAgEB5Aj5rlBdTIyJAID2B0LHWbK3pxUmPCBAgQIBArgKhzxquIecaTf0mQGD3pn0rokDQfkGAAAECBAhMJeCzxlSS2tkVUCC4K+LvXgKhiztuJPUitDABAgQIECCwR8CsVntwvEWAAIGJBEIzYMjrJsLVDAECBAgQINCEriErELRjECCQq8DuTXtf+5drJPWbAAECBAikKRC6VuthhDRjlVuvFAjmFrHE+hs6OLmRlFiQdIcAAQIECGQsoEAw4+DpOgEC2QjI67IJlY4SIECAAIEsBeR1WYZNpwkQiAgoEIzAeJkAAQIECBCYRCB0rVaB4CS01TeiQLD6XWAcQOjgpEBwnKm1CRAgQIAAgesFXHi93sNfBAgQmFoglNe56DS1svYIECBAgEC9AgoE6429kRMoTSB0PDODYGlRNh4CBAgQILCuQGgGdjU468aklK0rECwlkiuNw42kleBtlgABAgQIVCSgQLCiYBsqAQKrCOweZ9tOKBBcJRQ2SoAAAQIEihXY/byhoKbYUBsYgaIFQgWCvjK96JAbHAECBAgQWFxAgeDi5NVsUIFgNaGeZ6C7F3barbiRNI+1VgkQIECAQK0CPm/UGnnjJkBgKYHd46wb9kvJ2w4BAgQIEKhHwOeNemJtpARKFgjdsFcgWHLEjY0AAQIECCwv4PPG8ua1bFGBYC2RnmmcLuzMBKtZAgQIECBA4JqAGYuvUfiFAAECswjI62Zh1SgBAgQIECBwSmD380b7lgfNTwH5lQCBLARCN+x95V8WodNJAgQIECCQjYAZi7MJVXYdVSCYXcjS6XDowGSmiXTioycECBAgQKAUAQWCpUTSOAgQSFFAXpdiVPSJAAECBAiUJyCvKy+mRkSgRoHQsUyBYI17gjETIECAAIH5BELXa81YPJ93TS0rEKwp2hOPNXRgUiA4MbLmCBAgQIAAgcbT2XYCAgQIzCcQyutccJrPW8sECBAgQKBWAUU1tUbeuAmUJeBYVlY8jYYAAQIECKQqsDsDuzqcVCOVV78UCOYVr6R660ZSUuHQGQIECBAgUKyAAsFiQ2tgBAgkICCvSyAIukCAAAECBCoQkNdVEGRDJFCBQKhA0NelVxB4QyRAgAABAgsLKBBcGLySzSkQrCTQcwzTRZ05VLVJgAABAgQI7AqEPnOY3WpXyd8ECBAYJhA6xvqKrGGW1iJAgAABAgTiAqHPHPK6uJd3CBBIU2D3Zn3bSwWCacZKrwgQIECAQM4CPnPkHL10+65AMN3YJN+z0EUdN5KSD5sOEiBAgACB7ATMbpVdyHSYAIGMBEIzYMjrMgqgrhIgQIAAgUwEQteSFQhmEjzdJEDgmsDuzXpf93eNxi8ECBAgQIDAhAKha7YeSpgQuNKmFAhWGvgphh06KLmRNIWsNggQIECAAIHTAgoET2v4nQABAtMKyOum9dQaAQIECBAgEBaQ14VdvEqAQD4CoeOYAsF84qenBAgQIEAgJwHXbP8/e/cBNkV1NXD8RCP2z8SuxN5QFDSKCijYe6OoWCgCNgQpYouIFbuoiSVWwApIEXvDxF6wIipqrBGwm2gsMTF+cwZn2HfeO1tndufO/c/zJO+WKff+zrLumXvmjk3RsqetFAjaE6vMtdT0pUTVcubCRIMQQAABBBDIhQBXaOcijHQCAQQyKEBel8Gg0CQEEEAAAQRyKGAqrGEGwRwGmi4hkGMB0/cYBYI5DjhdQwABBBBAoIECphnYmayrgQHJyaEpEMxJIBvRDQaSGqHOMRFAAAEEEHBTgAJBN+NOrxFAIH2B6PerHpELv9J35wgIIIAAAgi4KBD93UFhjYufAvqMgL0CpgJBCp3tjSctRwABBBBAIMsCpgJBfndkOWJ2tI0CQTvilMlWRk/oaCMZSMpkqGgUAggggAAC1gvwu8P6ENIBBBDIqED0+5WB+owGimYhgAACCCCQA4Ho7w7tEueTcxBYuoCAIwKmgXpm8nEk+HQTAQQQQACBOguYfndQIFjnIOTwcBQI5jCo9epS9IQOA0n1kuc4CCCAAAIIuCfAzMXuxZweI4BAfQTI6+rjzFEQQAABBBBAQCT6u0NNKBDkk4EAArYImAbqKRC0JXq0EwEEEEAAAbsEmLnYrnjZ0loKBG2JVMbaafpCokAwY0GiOQgggAACCORIgALBHAWTriCAQGYEyOsyEwoaggACCCCAgBMC5HVOhJlOIpBbAdN3GAWCuQ03HUMAAQQQQKChAqbztswg2NCQ5OLgFAjmIoz17wRfSPU354gIIIAAAgi4LMBV2i5Hn74jgEBaAuR1acmyXwQQQAABBBAwCVBcY1LhNQQQsEXA9B3GLKi2RI92IoAAAgggYJ9AdAZ2JuyyL4ZZazEFglmLiCXtYSDJkkDRTAQQQAABBHIiQIFgTgJJNxBAIFMCpu9WrkTNVIhoDAIIIIAAArkSMP32YPatXIWYziCQawEKBHMdXjqHAAIIIIBA5gQoEMxcSKxvEAWC1oewMR3gZE5j3DkqAggggAACrgqYfntQxOLqp4F+I4BAUgKm71YG6ZPSZT8IIIAAAgggEBUw/fYgr4sq8RwBBLIqEB2k13Yyg2BWo0W7EEAAAQQQsF+A3x72xzBrPaBAMGsRsaQ9ppM5DCRZEjyaiQACCCCAgIUCzF5sYdBoMgIIZF7ANAMGeV3mw0YDEUAAAQQQsFbAdE6ZAkFrw0nDEXBOIDpIz23+nPsI0GEEEEAAAQTqKmA6d8vFCXUNQe4ORoFg7kJanw6ZvowYSKqPPUdBAAEEEEDARQEKBF2MOn1GAIG0BUx5HSeZ0lZn/wgggAACCLgrQF7nbuzpOQK2C5i+vygQtD2qtB8BBBBAAIFsC5jO3VKTk+2YZb11FAhmPUIZbZ/py4iBpIwGi2YhgAACCCCQEwGu1M5JIOkGAghkRoC8LjOhoCEIIIAAAgg4IUCBjRNhppMI5FKA769chpVOIYAAAgggkGkB0wzsFAhmOmSZbxwFgpkPUTYbyEBSNuNCq9wReObZZ+XLL7+sqcNt27SVli1XrWkfLm583/33y88//+x3vWOHDrLMMsu4yECfEWiIAAWCDWHnoAggkGOB6PeqdpULv/IT8K+++kr++uhj8sSTT8i8eR/L559/Lj/++KMst9xyssLyy0vbtm1kxx13lPXXWy8/naYnCCCQW4Fnn3tOvvjiC79/rVq1krXXWiu3fc17x6K/P5iBK+8Rp38I5EPAVCDILdLzEVtXe8EYkz2R1/GoN996Sz788EP573//26Th6667Ljl9ExGeIJAvAQoE8xXPLPSGAsEsRMHCNkRP5GgXGEiyMJA02VqBgw45VGY8/3xN7b/oggtkv333CfehScZjjz0ud9w5TTb0TrZ379ZNll122fB9HswX2GCj1vLTTz/5T6bcfru0abMJNAggUCeB6O8PBpLqBM9hEEAgtwJ8r+YztN98841c9sc/ys233tZs8MDU49atN5LTTj1Vfr/ZZqa3nXzt++9/kLvvuVse9fKjHXfYQfbcY3dp0aKFkxZ0GoGsCPTqc5g89fTTfnNOOuF46d+vX1aaRjsqFOD3R4VgrI4AApkQoEAwE2GgEQkKpDHGlGDz2NUvAnqh34CBg+TFl14ymgweNFAGDRxofI8XEUDAfgFTgSAXKNgf10b2gALBRupbfOzoiRztCgWCFgeUplsnkEbypifa9YR7sOzkDYT9+aorg6f8/UWAAkE+Cgg0ToDfH42z58gIIJBPgej3KoXX9sf5/Q8+EM0VPvvss4o686tf/UqO6N9fjh9+XEXb5XXlSy69TK646qqweyNOPln69OkdPrfxwaeffio9e/cJmz7p9omy9FJLhc95UL6A5s2ffPKJv8HIESOkY8cO5W/MmlULUCBYNV3mNuT3R+ZCQoMQQKAMAQboy0BiFasE0hhjsgrAksYef+KJMvWOabGtpUAwloY3EMiFAL8/chHGTHWCAsFMhcOexkRP5GjLKRC0J3601H6BwuRthRVWkHXXWafiTh115BGit8gNlhNPOlkmT50aPJVf//rXMuPZZxg0CkXmP6BAMALCUwTqKMDvjzpicygEEHBCIPq9SoGg3WHXmQW6HXCAzJkzN+zIKqusIn169pTWG7eWVVddVVossoi8/fbf5C3v9kQvvfKK3P/AA+G6+mDYkMEy4Oijm7zm4pPtdthRPpozJ+z6JptsLFMnTQqf2/hAPxedvYvAguWF556VZZZZJnjK3woECj8fV/zpj7LrLrtUsDWrVitAgWC1ctnbjt8f2YsJLUIAgdICDNCXNmINuwTSGGOyS8CO1rbfZtvwAkCd/b/LPvvKIi0WCRvfZpM2ovkqCwII5FOA3x/5jGsje0WBYCP1LT42J3IsDh5Nz4VAYfKmtwnW2wXXutx6220y8vQzwt1o0eH9994TPufBfAEKBPkkINA4gW6HDZOnZ7zSpAFcoNCEgycIIIBARQLkdRVxZX7lc847T24YMzZsp84IOGzoEP/Cn/DFyAMtEDzp5D/Iv779NnznnrvulA3WXz987uKDY4cMlXvvuy/s+sE9esiZZ5wePrfxAQWCyUWNAsHkLCvZEwWClWhle93o7w9tLXldtmNG6xBAQMQ0QD9pzGjp0K4tPAhYKZDGGJOVEBlv9LobtApbeNO4sdJ+663D5zxAAIH8CzzljYd198bFChduMVyoweNKBSgQrFSM9X2B6IkcZprgg4FAfQXSSN50UHDkaafJAw8+JGuusYacMHy4dO7cqb4ds+BoFAhaECSamFsBCgRzG1o6hgACDRIgr2sQfAqH/e7776V9h47y7Xff+Xvffbfd5I+XXiJ66+BSy7vvvSfdDzhQvv76a3/VLvvtKxeef36pzXL9/pveDItnnT1KZjz/vHRov7Wc7uVJa6y+utV9pkAwufBRIJicZSV7okCwEq1srxv9/aGtpUAw2zGjdQggQIEgn4H8CaQxxpQ/pcb3qLBA8M6pU2SjjTZqfKNoAQII1E2AAsG6UTtzIAoEnQl1sh2NnsihQDBZX/aGQCmBNJO377//QRZffLFSTXD2fQoEnQ09Hc+AAAWCGQgCTUAAgVwJkNflJ5xvvPGG7L1fl7BDN44d4xW2tQ+fl3pw8ehL5Kqrr/ZXW3TRRWXWKy+XVVxYar+2v5+n3IgCweQ+jRQIJmdZyZ4oEKxEK9vrRn9/aGspEMx2zGgdAghQIMhnIH8CaY4x5U+rcT2iQLBx9hwZgSwIUCCYhSjkqw0UCOYrnnXrTfREDgWCdaPnQAj4AiRvjfsgUCDYOHuOjAAFgnwGEEAAgWQFyOuS9Wzk3h548EE5ZtCxYRNeen6GLL300uHzUg+efe45OaRnr3C1p594XFZYYYXwOQ/sF6BAMLkYUiCYnGUle6JAsBKtbK9LXpft+NA6BBAwC3CLYbMLr9orwBiTHbGjQNCOONFKBNISoEAwLVl390uBoLuxr6nnDCTVxMfGCNQs4GLy9tlnn8ncefNknve/pZZcSlZeZWX5XcuWsthitc92+N///lc+mjNH5nw0R777/jtZc801/dssL7LIIs1iRYFgMxJeQKBuAgwk1Y2aAyGAgAMCphNMXPhlb+AfffQx6XfEEWEHpk6aJJtssnH4vNSDD//+d9lhp53D1SZNnCCbtm0bPi/1QG9PPMf7Pa2/1/W2xqus7P1W/93vKipSLHUMff8f//iH/Ovbb2WlFVcU02/16D5+/PFH+dTLI5ZeailZZpllom9n+vlPP/0kn3zyqcyZO0e++OILWX755f38Z0Wv7wsttFDFbXe1QFA/M9r3eR/P881WXGFFWXXVVXzPihF/2cC1AsG0/31rjq/5uH7OW67aUtZaey0v51+yWXgoEGxGYu0L5HXWho6GI+C0AAWCToc/l523aYwp7bGheR9/LHPnzpUvv/xSll12WVlllVW836WrysILL9zw2CdZIPjVV1/542vaX11WXmllr68r+31ueEcLGvDtd9/5sVhuueVkicUXL3jH/FBzZ/2MaLx0m2ryZfOeeRWBxguYzt8OG9BLhg/o3fjG0QIrBSgQtDJsjW80BYKNjwEtcFsgreStvzeo+IWXBOly8oknypbt2jWB/u777+XYwYPDdVZZeRW57JLRZQ3O6Y4e+ctf5E9XXBHus8cBB8iB3v/ilm+++UYmT54i4ydOlL+9806z1TQ52GP33eWgg3pI2zZtmr1f6oW5c+fJrbfdJhO9AVRN/goXTSbW8goFj/RM9tt3n/AWaxQIFirxGIH6CjCQVF9vjoYAAvkWMJ1gokDQ3pjrb+Xd9tgz7MCgY46RwccOCp+XeqAn09tvs224Wjm3KNaLbB586CEZP2GiPP3MM/Lzzz+H2+sDPSm/7TYdZf/u3WXXXXYJf083WSnypDAfOXfUKGm1wQby7nvvyVV//rPc/8ADorf81UX3ve4660jvXj2lW9eu8utf/zrckxYQ3nzzzXLbhAneIM+8sF06o+Jee+whRx55hF9oF25gePCxN2By9MCB4Tu33HRTWQMT4QY1PNBjXz9mjEzwXDX/ii5a7Njz0EOlT+9exoGcb/71L+nVp090M/nx3z/Km2+9Fb6+4YYbem7NB7z23Wtv6dOn6YnmQo+FF1pYtIBUF43Jiy+9JDNnvhoW4J14/PF+jhYc6JNPPpGjvM9jsNw0bpyx+Ct4P/q36/77hzG88Pzz/bhH14k+18/JXXffJZO8XFLbZ1o223RT6bLfvnKAt//Cz0/huoOHDpMP//5h4Uv+49mz35T//Oc//uPVV1tNlvlN8+LTddZeWy664IIm2xbmw2uusYZccvHFTd4v9uT111+XU0aO9FdZbNHF5LZbbjau/vD06XLFVVf5723apq2cNvJU0c/Efffd58fplVdfla+//qf//m033+IXS5p2lMa/78Lj6KCf5vqaj5ty/ZVWWkm6e/+2jzrySFl88fkXBVIgWCho92PyOrvjR+sRcFWAAkFXI5/fftdjjCnI6V56+WV54okn5JWZM+Wdd96V//38P9ll553llJNPjgVOe2xIL5IbP36CTJoypdnYkDZKL8zq1qWL9DjwQGnZctXYdibxRlwOp/t+9dVZ4SHWW3ddWeyX38bhi96D/n37yp5ermtaND++++675fZJk31/0zpt2mzi//bee++9/YvrTOsUvlZLfqj7ufSyP8qjjz/m7/LQgw/2c3o1uOaaa/146PmJYNE7GxzgnVPoe1ifJhf96fmHaXfeJWNvHCdvvDFbtEhQF72QsPO220rfvoc1G98M9slfBGwSMJ2/pUDQpghmr60UCGYvJla0iAJBK8JEI3MskFbytk3n7UR/3Oty9VVXyo477NBMUQf/+vTtF/7g7nnIIf6gQ7MVIy9owrVvl66iiZ0uW2y+udzs/XiPG4x5/oUXZNDgIf6VP5FdNXuqs5Qc0b+/DB0yOHZ/0Y10MOukk//gz0ASfS/6/PebbSZ/uuxS0UEKCgSjOjxHoH4CDCTVz5ojIYBA/gVMJ5goELQ37v/73/9k5113kw8+nF/MpCfRr/jTH0V/x5az6KDBFVdcGa7ao8eBssbqq4fPow+06GvgsYNFB3rKWTp32tYvlvrtb39bdPXCfGTi+Nvk//7v/+TgQ3saB2yCHR3co4ececbp/lMtatJc5Zlnnw3ebvZ3ZW92Q81DtEArbonOqPjSC8+XNVASt79yX5/+yCP+raK1H6UWLZq68k+Xy7bbbtNkVZ0xb4uttm7yWiVP+nkDKXqxWOFS6KH52+zXZskVV14pl3gDO9HlvHNGSfdu3cKX//7RR7L9jjuFzyu9/fV6rTYMCwTLmRnztddel8FDh8r7H3wQHrPYgw1btZKLLrxANlh//War7bn3Pk2KKputUOSFjTduLXdMntxkjcne4OOJXg6qix73rml3NHm/2JPnZszw/y3oOnqh3MyXzYWPt3sXv518ygh/V9t07CDXXXONHO4V2T3+xJPNdv/Iww+JFjhGl7T+fQfH0ULVYwYOKitGOnvLRRecL1ttuaVX+HqYPPX00/5uTjrheOnfr1+wS/5aJkBeZ1nAaC4CCPgCFAjyQcibQD3GmDSn+/e//y2H9esv0RxHL9bRC4BMS9pjQ3qRylmjzgkv+jG1IXhtySWWkFFnnyV77bnggrzgvaT+1prDjRwxQnr1PLRZc2Z6Fwcd642x6Wzd5Sw60/pll1wiejFVsaWW/FD3O/yEE+SOaXf6hzhu6BDp1auX9OrdJ7aAUVfU/EovcAouHhp9yaVypXchYdyihYI6prfTjjvGrcLrCFghYDp/S4GgFaHLbCMpEMxsaLLbMNMXEQNJ2Y0XLcunQD2St7gCQRW9/vob5NyC2RBGX3SR7LP3XrHYemuv/b2BOx2s0UWvvpo2ZbLowKVp0eTgpD/8oUnSuP5668m63hVSOpCnCdM7774rM1+dGc4iovvZvnNnuebqP5ecnWTs2HFy9rnnNjm0Dj7qIM0G668nLRZdVN7yBi1mv/mWfPrpp/56eos1naVh47abhsWRU26/XfTqKhYEEKiPAANJ9XHmKAgg4IaAKa/jBJPdsS8sDNKeaCHXsQOPkZ49eyZa3KbFPT29k/eFM3DrhTStvRnp1l5nbdFixXe93+qzvN/+n3/+eYiqsy5ogZfesiluKSwQPNabwU9nAdTZA3Qb/a2+wgrLy3vvvS9vzJ4tmmMEywgvd9AZ9f7gFUbp7OA6G7jO4Lael0P84M3Cp20uHBTRfESLBNdea61gF03+Fg546Bv1KBCcNes1OejQQ8L8Rmc83NebwWF9Lz/5zW9+41l+IbO9ft99zz3hzII6ODL2hhtk89//Pmx/rYNLpQoE1VY/V6biQG1EIwsEH3jwQRky7LgmA30646IWl+nn79tvv/OLWnVWysIZL3WdCd7gpeachYvtBYJa9Niq1Qb+zBqF/QoemwoE0/z3rcfVwd6+3gBx4eyYi3r593rrrSut1t/AP1eg8XnzzTf9gmf9PtHbg0+bOsX/902BYBA9u/+S19kdP1qPgKsCpu+uSWNGS4d2bV0lod+WC9RjjEknddCcLpg0opAsrkAw7bGhkaedLreOHx82RfPmjVu39vNHvThlztw5/tiTztxXmDOcePxwOdzrTxpLrTmcqUBQ88bhJ5zYZIxNix01R9aZ+nXSjdneb+633367ySQa6nHeOef4d9WK62thvlxpfqj7LCwQ1HHFTz75VJ597jn/Qqj1vRxmrbXW9G6F/LG8/sYb3uznX+sm/qJ3Jrj8j5f5+Y3uQxfN8zSPWMy7iErPQ+i5gmDRvugd0HQ7FgRsFTCdv6Uux9ZoZqPdFAhmIw5WtYIvIqvCRWNzKlCP5K1YgaCy6ux+991/vy+sMxhMun1iswGVgH/EqSP92wTrc71y59abb4q9Cuntv/1NunTrLj/88IO/uRYEjjjlD7KdV/wXXbR47zyvUPHOu+4O3zr+uGH+bYHDFyIPdJYT9QuuWNMk4WhvRoVjBhxtnH1wytSp/tVkmsTqbYz1qqsgMaRAMILLUwRSFuBkbMrA7B4BBJwSMOV1FAja/xE448yz5KZbbmnSEf393bFDe/+keOdOnfwCnCYrVPBEb93axZsdLrglqBZWDR40SA71Ctv0d3Xhor/nr73uOrn62uvC3/Y6k6DOaKaDEaalsEBQ39e2azGaDsQU7l9nhzvhxJPC28fqoES7LbbwZw7UoqgLzjtPWrfeKDyE/n6f6F3co7NEBHlG+623lpvGjQ3XKXxQOOChr9ejQFAL23QQR5eNNtpIbvEKGLVIMLpoXtL/iCPlhRdf9N9aa8015aEH5udl0XULn8+ZM1c6F8wQ/8Jzzza5RVPhutHHUQ99X+NxyEE9ZNddd/ULLZfyPgu6aMw0HsFSrxkE9QKyrl4eqbeu1UU/YzqId7B3yyrNVwsXHWQa7w1UXnjx6DC309ky7vVuvbXUkksWrmp8vN0OO4YFpzpTZ7kDTvWeQTBovF4MN/Doo6Vdu3ay5ppr+DHS97Qwr/DfYtr/vv/5z3/KXvvu5w32zQuaJrt5n58zThspyy23XPha8ODlV16RE0862R+g1ZkOdabToDCZGQQDJTv/mvK6ubOm29kZWo0AAs4ImL67KBB0Jvy57Gg9xpgCOM0De3kzw6+z7jqy/C+/+zRn0NyhcEl7bKjw97get2OHDv7Yk966N7rMnPmqnH7mmf54kL6n7b3lphv9O2NF103z+bobtAp3f6d30YzmiqUWdezq3ZZXf9/rormb5tVHHH54k7xa39MLcm4YM0ZGX3pZeBHeYostJpO98T7TLOu6TS35oW5fWCCoz3XRQsHTTj21SY6qtx0+77zzZYKXyweL5v16q+olvGLH00ee2mxmR515Xc8VBBcIan731JNPNMsJg/3xF4GsC5jO31IgmPWoZbt9FAhmOz6ZbB1fRJkMC41yTKAweVt++eX9q5sqIdBbRumU3NGlcECuVIGgDrx03/8A0WRDF519Y8rkSc0GVKbeMU2OL7hF1VlnnC4HebMJxi1779dF3vCuDNIlbp/RbS/yBnb+7A006qLJznRv5gi9cii6aLKz0y67+gmMvqcDmlqsuKE320mxRW+xdGiv3vLe++83WY0CwSYcPEEgdQFOxqZOzAEQQMAhAVNeR4Gg/R8ALYS78aabZbR3W6CgUCraK70ARwdodvGuot9i882bFHNF140+H+XNJDBm3I3+yzpocPuE8f7MftH1Cp8/9tjj0u+II8JCrIsvvFD23WfvwlXCx4X5iL5YLHf44osvZJfd9xAtOgoWnaH8wfvvi50x8Zprr5ULLrrYX10Lox71bumrhWHRJTrgUY8CQb0NrxbT6XK9l9t07twp2qzwuQ6UaJFa0HcdqNJZ8ootSRYI6uCYzsCogzOllnoVCO7Tpau8/vr8Geu1TcU+O0Gbp0y9w7sd7ynhDPGDBw2UQd7MlaUWmwoEdXZPHUg0FeBF+5n2v++TvNsrT/Jusxws0dkmg9cL/+ot6Y47/gS5/4EHCl8WCgSbcFj3xJTXUSBoXRhpMALOCZi+uygQdO5jkKsO12OMScH0FrJHH3VUWXZpjg19/PHHsstuu4czWWtBmt4Zq9jy008/ySE9e/mzYOt6mkvrxVmFF9kU2z6J96opENzbuygnmElPZ6O/aeyYkmNgb3kzCfY+rK8/g7+2W2dXv+euO419jebLleSHuu9ogeCee+zhz/Sn70UXPcdxsFdcOuP558O31F8LGNtsYr67l04ScuBBB/vFj7qR3spaZ6xkQcBGAdP5WwoEbYxkdtpMgWB2YmFNS0xfRAwkWRM+GpoTgcLkrZoujRtzg391VHTbwgG5UgWCuq0WzOksDTpApYte/a9TfAeL3p6o+wEHhFcq7e/NNnLuOaOCt5v91dsN9Tj4EP/1UlcpFW6sswEecNBBold16TLk2EEy8JhjClfxHz/55FPSu2/f8HW9IqmnN9tJOcvTzzzj30qtcF0KBAs1eIxA+gIXXTlORl85vyghOBonYwMJ/iKAAAKVCZDXVeZl29o607bOjqC3Z9KZ1eIWLRraZaedZD/vZHnhbWpN6+vsA+07dgxvP3TuqLNlf29WgnKWUeeeK2PGjvNX3XqrrfziMtN2hfmIzoxwh3cB0kILLWRa1X/t7FGjZOyNN4Xvlzrxr8VGbTb7fVgQdoNXMNjJK5aMLtEBj7QLBPVCplatNw4HMO6+c5p/26douwqfnzLiVH/GwXbttpDe3qDVtttuU/h2s8dJFgj26dXTm2njlGbHML1QjwLBF196SQ7ocVB4+OCW0+ELRR5cPPoSuerqq/019AKyGc8+02xWjejmNhUIXnn5n2SXnXeOdqHZ87T/fes5g/Ydtwln8IyeO2jWoIIXvvrqK9lp193Cglh9iwLBAiALH1JkY2HQaDICCIjpu4viZj4YNgvUY4xJZ3XXMRQtICu1pD02dOVVV/mz5Gk71ll7bZk6ZXJZs8rNnTtP9tx773AMTCec2NKbmbteS6UFgoWO2sZzzj5LDth//7Kaq+cPglv36gZ6UZjm79Elmi9Xkh/qvgoLBHUc8JGHHix6p4MHH3pIBgwcFDaj1DijrqgFgsGs+0d6MyceP/y4cHseIGCbwKob79ikyRQINuHgSYUCFAhWCMbqIgwk8SlAoPEC9UjeyikQVInp3qwbRw04JpwRZMTJJ0ufPr39gcMuXbuFs+61abOJjPdud9aiRYtYwD+cMkImTprkv1/JgIFuoLeIGjHyNH/bNVZfXaZ7SUV0GTZ8eHg7Yp1BUZPTYgOO0e0Lb/ul71EgGBXiOQLpCphOxlIgmK45e0cAgfwKkNflN7bRns2a9ZpM8wrOHnp4enibneg6egW+3nJIL7KJmw2hcLBACwuffuLxsn9Lv/vee/5sDXpc3f/jf/2LrLzyytFmSGGBYP9+fb0ioBOarVP4QmEOoK9rm3QWwWKLziiutyjWJW4Gs+iAR9oFgtqWwqKzoYOPlWMGDNCXYxctuFrcG0wpvPVy7MreG0kWCI69/nrZZpuOxQ4XvlePAsHCmek079Q8rdxFC2h39WaiDJZyBvwKY5XlWwxrrvvqyy/5txIO+hf3N+1/3xMmTpRTTh3pH15v+fzwgw8UHQSMtjP6b50CwaiQXc9NeR1FNnbFkNYi4KKA6buLc1IufhLy0+d6jDEdfeSRctywoWWhpT02tOPOu8gHH37ot0VvTXvoIeVNHKEbFI4LHegV243yiu7qtVRaIFiYG7Vt00YmTZwQm+Ob+lD4udBZ9/QivOgSzZcryQ91X4UFgptssrFM/WVMMHqc4Hnh+QR97dLRFze7tXCwbvB3hJd7jPdyEF3i+hGsy18Esi5AgWDWI2RX+ygQtCtemWitaSCJSuVMhIZGOCRQ+CNdr1bq1fPQinqvt4Iy3WKocECu3AJBPfAll14mV3hXYOmiA1RXXXG5N2PJ1PA2QMsuu6xM867IWmWV5rfv8jf65f8KB+tKzf5RuJ0+nv3mm7LXPgumCX/91ZnNihF32Gnn8PbCg7zBz8HeTIOVLNPuvMu7vdHx4SYUCIYUPECgLgKcjK0LMwdBAAFHBEx5HTPD5z/4WiT2xJNPyMNeseCTTz8tP/74Y5NOb9+5s4y++CJZeumlm7yuTwpPsHfv2lXOO/ecZuvEvaC3Bdpiq63DGcDiBhAK85FRZ50pB3qzkRdb7rn3Xhk8dJi/is7+poV8pZau3oBOMPN43G1oowMe9SgQLMyptIiy5yEHy97eTBWbtm1b0YBOXP+TLBDUWzO3bLlq3KGavF6PAsGdvdnldHZ7XSqZJd7fwPu/Y4cMlaWWXFK0uHD77bYTvS1vscWWAsHftWwpf31kerGuhO+l/e+7cMBXz2FoIWYlyyeffCIdO3UON6FAMKSw8oEpr6NA0MpQ0mgEnBIwfXdRIOjURyB3na3HGNMF550nXbvsV5ZdmmNDOsN+h207he147C9/kVVXLT5WFa7sPRjnzVp/ljd7vS6bbbqp3D5hvP+4Hv9XaYFgoeOJxw+Xw/v3r6iZY72Z/8/27gCgS1w+Ec2XK8kPdb+FBYLl3Or5888/l6292ciDZZp3twSdnbLYcv4FF8q13oVtuhS7hXGxffAeAlkQMJ2/pS4nC5Gxtw0UCNobu4a1nC+ihtFzYARCgcLkbb9995GLLrggfK+WB4UDcpUUCOotsQ73rgZ79LHHmx1eCwbH3nC9cSry6MqbeMmV3tpIl6223FKWXGKJ6Cqxz//38//kr48+Fr7/yMMPyeqrrRY+1wet27QVva2YLpdcfLHsvdee/uNy/+/VV2dJl4LbqFEgWK4c6yGQjAAnY5NxZC8IIICACpjyOgoE3fpsfPvdd3L//ffLOeedHxbuqUCbTbwZ2CY1n4Gt/xFHhL+3N1h/fWm5ankFYoHqjBdekG+++cZ/GjdzX6X5SGGBYNws4sHxg79JFgg++eRTMvzEE4Ndl/y7XadOcu458weWoiv/69tvZcjQoaFx8L7OtNhpm21kfc/895ttJjoTeiWzoAf7SbJAsJKCyXoUCBbmkeNvvUW22HzzoNup/LWlQFBv033n1CllGaT977uvNzD52ONP+G056MAD5awzzyirXYUrtfVuD67fW7pQIFgoY99jU15HgaB9caTFCLgmcNGV42T0lTc26TYFgk04eGKZQNbGmAp/0yc9NjTz1Vela/f5t9nV8SrNrypZvvjyS3ll5kx/E50EQ2fEjy5/uvxyuXX8hOjLsc+HDRks+xeMNcWtWGmB4MZtN5Uffpg/xlbJGF9w/Ee9MbZ+Xu6vyyKLLCI6EUf0LgPRAsFK8kPdb2GB4GHe3chO8e5KVmyJFgg++dijJS/qokCwmCjv2SRgOn9LgaBNEcxeWykQzF5MrGgRU5laESYamWOBrCVvSv3111/Lvl26ig4AFS6nnHSSHHZYn8KXjI91+9+329L4XjUvThx/mz+AFmz7z3/+UzbfcqvgqT9QogMmlSw6aLfp7xcMNlEgWIke6yJQuwADSbUbsgcEEEAgEDCdYKJAMNCx669erPP662+EjV5jzTVEZ9Mrd/nss8/kBO83++NPPBluct01V8t23myChYvO1q2zdiexHDd0iBx91FHNdmVbgeAj3swTRxx1dLN+xL2wy847y5WX/ynubdGZFq+/4Qa5aPQl8t///te4ns7uuPVWW3nx6STdvJkcG3GL4UoGgNIuEIzmkX+Z/rCs9rvfGe2SejGPBYJp//vec+995M233vJDMMIbAOzjDQRWuuzrfd5fe+11fzMKBCvVy9b65HXZigetQQCB8gQoECzPibXsEcjSGFP0N32titGxoQcfekgGDKzsblJxbdD8a/Zrs5q9fY43W+INY8Y2ez3uk/VruwAAQABJREFUhVNPOUV69+oZ93b4eiUFgtExsAfvv0/WXmutcF/lPIgW/z3j3YFg+eWXb7JpdJ1K8kPdEQWCTTh5gkBRAdP5WwoEi5LxZgkBCgRLAPG2WYACQbMLryJQL4EsJW9Bn3VgcR+vQFD/Fi7l3sr3iy++kK06dAw31UHNXy20UPi80gfXX3uNP917sF30KqP77rlb1lt33eDtsv7qLdh0FkIduNOFAsGy2FgJgcQEGEhKjJIdIYAAAsYZBDnBZOcHQ2fU0pm1guWqKy6XnXfaKXha1t+PP/5YtDgvWHp4t/Y927vFb+Gy2x57yt/eecd/aYnFF5dfe7MJVLsc4xUH9uvXt9nmrhcIBiA64PLI9EfkL48+Ks/NmCH/+c9/grea/NVb4p7v3f6pnLzGxhkEv/v+e2mz6WZhn6dOmiSbbLJx+FwfRPNInc1DZ/VIc2lEgWDhTB7672/myy8Zu3i7Z3TyKSP89yqZQTDtf9+77r6HvPPuu367zjhtpBxy8MHG9hd7cf8De8hLL7/sr0KBYDGp7L9HXpf9GNFCBBBoLkCBYHMTXrFbIEtjTNHf9EmPDd17331y7JChfsB0NvalKrigLhrlhRdeWGY883T0ZW9m/sYXCEYd//rIdP82wc0aW+SFTz75RDp2WnCxoGm2PgoEiwDyFgIJC5gKBLnAO2Fkx3ZHgaBjAU+quxQIJiXJfhCoTiBLyZv2QGe3OPjQnvLiS80HKXT6cZ3KfIftty/aWZ35ZKNN2oQzZdwxebJ/+6yiG1XwZnT/OnOHzuBRyaIzHujMB8FCgWAgwV8E6iPAQFJ9nDkKAgi4IWA6wUSBoL2xL7wdU7kzeEd728W7vdGrr86fCaFjhw4ybswNTVbp1ecweerp+QMhf/Buq9u372FN3k/iiW0FgpoH/fDvf5fd9V97g0mLLbZY2evriloA+vrrr8ub3uyNL7z4ojzz7HNNLspq0aKFXHbJ6JJFoTYWCOqMlTqzXbCYCgT14i3NI4Miysm3T5S2bdoEm6TytxEFguNuvEnOGjX/9tRpFAim/e+7Z+8+8vQzz/jx6OPNlDLCmzGl0mWLrbaWf/zjH/5mFAhWqpet9cnrshUPWoMAAuUJUCBYnhNr2SOQpTGm6NhN0mNDz7/wgvQ4+BA/OFp8+OLzM5rdNrfWyOnkEj/GXNhl2vdiiy5a1mzwlcwgGHUce/31ss02CyblMLUj+tozzz4rh/aaP9u3FlPqLYajs9ZTIBhV4zkC6QmYzt9SIJietwt7pkDQhSin0EcKBFNAZZcIVCCQpeRNm336GWfKzbfe6vdgEW8mEZ29b/KUKTLtzrv81zTpmjplsqy5xhr+87j/67zDDqIDV7qcfeYZ0uPAA+NWrer1bbfbXubNm+dvO3zYUDnqyCMr2s/9DzwgA48dHG5DgWBIwQME6iLAQFJdmDkIAgg4JEBel59g77Lb7vLue+/5Hdq/Wzc595z5hUSV9HDkaafLrePH+5vozHT6W7dw0dsQT5l6h//SXnvuKZeOvrjw7UQe21YgmEinC3ait4RaYoklRHOquEUHfR5//AkZecbpYe606qqryCPebbOiAzeF+2hUgaDOMN9+m23Dpjz84AMl88Jg5QcefFCOGXRs8FRMBYL65vY77iR6K2NdLjz/fOmy34KiQv/FEv83YeJEv8CwrTdb/IYbtirqqLuqtkDw7nvukSHDjvNbs+KKK8pTjz9WomUL3j7r7LNl3E03+y+kUSCY9r/v472i4ql3TPPbv603SDnGG6ysZNHCQC0QDBYKBAMJO/+S19kZN1qNgOsCFAi6/gnIX/+zNsaU5tjQR3Pm+L/hgyhWc+vdYNt6/62kQFDbVuhY7m2MC/t06223ycjTz/BfistZKBAsFOMxAukKUCCYrq+Le6dA0MWoJ9BnBpISQGQXCNQgkKXkTQcJdTAhWILbBX3//Q/Sbf/95a233/bfWn+99eT2iRNkSW/AK245+piB8tDDD/tvd+/aVc4795y4VZu9/tNPP8l33uwaSy+9dLP3ghf6H3GE/PXR+YMw23XuJNddc03wVll/R3m37xozdly4LgWCIQUPEKiLAANJdWHmIAgg4JAAeV1+gl34O7d1641kmnexTqXLAT0OCmcE33233eRPl13aZBdjx90oZ58z//f56qutJo88/FCT90s90QKf3/zmN0VXc7VA8PwLLpRH/vIXv8jzuquvls5erlJqee/992XnXXcLV7vvnruL3mq4UQWC0VksrvdysHL6px0774IL5LrrF8xkGVcgOGDgIHnQK5DUpXOnbb0L1q71H5fzf9o+LWDU23HpMsq7tfaB3i22iy3VFgjq7aJ15v1g0dsEa7FfOUvhDJ9pFAim/e/72uuuk/MvvMjv6rLLLit6u7Ny+64bPTx9uhw14JiQigLBkMLKB9HfH9qJubOmW9kXGo0AAu4IUCDoTqxd6WmWxpjUPM2xIZ35XX/zf/XVV354K72o6Jt//UsW92aCL3ZBVlqfm0oLBI886miZ7uWWuuy8005y1RWXV9Q0vRWz3pJZl7gxNAoEKyJlZQRqEqBAsCY+NjYIUCBoQOGl0gLREznciqq0GWsgkKRAVpK31157XQ446CD59y+31dpn771k9EXzT/prf3UWk67dusu/vv3W775poLHQRYsDNRHURWfNmDLpdtmwVavCVWIfX3LpZXLjTTfJoYccIof16S066BBd7rzrbhk2fHj48nXXXO0lOZ3D58UevPPuu/7trYJbV+m6FAgWE+M9BJIXoEAweVP2iAACbguQ1+Un/jozl87QFSwXnHeudO3SJXha8u8nn3wiO+6yq/zwww/+ugMHDJAhgxfM3KYvfvnll9Jh206igyu6nHn6aXKwlwuUszz55FPSz7tYZ4/dd/Nn8daLh0yLqwWCp4w4VSb8MmPjwT16yJne7IDlLFt33EY+//xzf9Ubx46RDu3bx27WqAJBbVDhDH+DBw2UQQPn53yxjfXe0EGn3ffcK8w1dd24AkEtrjzCGwjTZWHvNs43eAWCHTt28J+X+r/CbbWA9YlH/1ryNtDVFgjOnTtPOm2/fdikW266UbbacsvwedyDaB6bRoFg2v++P/74Y6/vO4gWZOrSv19fOemEE+K63OR1vV3bHnvtLe9/8EH4OgWCIYWVD6K/P7QTFAhaGUoajYBTAhQIOhVuJzqblTGmADvtsaFR3sVuY7yL3nTRC97uunNa0cksgnbpxBS9+hzmzd4+x8tlj/Dz7BYtWgRvp/630gLB6Czs4264oezcaMbzz4t+LoLlsktGy5577BE8Df9SIBhS8ACB1AUoEEyd2LkDUCDoXMiT6XD0RA4Fgsm4shcEyhXIQvKmM4Ds683yF9wSeL1115XJXkFfdBaA++6/XwYNHhJ2rdiJfB1s1NsA622odNlg/fVl6uRJUirheuKJJ6Xv4YeHgw3HHH20DB2y4FbAwcF1wLO9N4imV3zp0rLlqnLXHXfI//3f/wWrGP9qu3of1leefe65Ju9TINiEgycIpC5AgWDqxBwAAQQcEyCvy0/AtYBGi+u0yEcXnbV72h1Ty7qVq/7W1fzipZdf9rfVWRGme7d21d/K0WXgsYPl/gce8F9efPHF5K5p00oe49NPP5W99+sSztDWbost5LZb5t8qNbp/VwsEH/VmOdcCSl30Qql7775L1lpzTf953P99/fXXsvmWW8nPP//sr/L0E4/LCiusELe6n7fp7aaC5YXnnpVlllkmeFr0b60DQDpD4rW/3FJW88X7vFvtmj5fQSP0M3mUV6QazP4evB5XIKiDdp132FG0CE0X/WzqbPGliu+0uHKvffcLiywHHHWUDBu6IHcNjhv9W22BoO6nqzfL/syZr/q73HDDDb2ix9uLzkSi/6b1348W8QZLGgWCuu+0/30f1q+fPO7l7rro98zE8bdJm0028Z8X+7/Rl1wqV/75z01WKXZeocmKPMmkQPT3hzaSAsFMhopGIYBAgQAFggUYPMyFQBbGmAoh0x4bevOtt/wJIIL8qYc3a/jZ3uzhpZbob9FSF2aV2l+l71daIKiOmlcHF5JpXjn59oklx8B0zKzHQQeLOuny29/+Vp587FHj2Fyt+eFw70KhO6bd6R9HJ/s45eST/cdx/6d90YvjgkXbtdJKKwVPjX8Lc1AtctRiRxYEbBSgQNDGqGW7zRQIZjs+mW1d9EQOBYKZDRUNy6lAo5M3HYDp2/9wefKpp3xhHYCc4hXyrbP22kbxwquzdEaHMddfFzu7xeOPP+EX+wWJms4ucoY3O4kOJJqWV2bOlMOPPCocDNX175gy2Zi46PbR2VVWXHFFOfvMM2SHgpkcCo/zxhtveLdQPlnemD1b1l1nHfngww8lmEWQAsFCKR4jkL5A9PeHHpGBpPTdOQICCORXIPq9Sl5nd6ynTJ3q/24NerHUkkvK4f37SV/vQhctmDItOkPAhRddHN5aWNc5oHt3OWfU2abVRYv99txn3/DWTFpgpoU63bt1k1/96lfNttGCrcFDh8kLL77ov7eYd1umu72ZGtZcY41m6+oLrhYIan6hF0oFgzg6GHP+uefE5ig6C9uQYceFt35aeeWV/ZnvjKi/vKgFZh07LZg9XYuzfr/ZZsU2Cd+rdQBIZ5bXGeB0sEoXnSVeB+PatmkTHiN4MPvNN73ZME8SzcO0eEwHqIIZ6+MKBHXbp55+Wvr07RdeNKY56jVX/zm2SFA/k6eOPE3eevtt/9D6b0QLYzU/LLXsuPMufl6o6x3nFRQe7RUWlrvcPmmSnHzKiHD13XbdVUb84WTRGEYXLcYdefoZfq6rxY7BBWtpFQim/e/7b++8I12874rvv58/U+miiy4qOqNkv759/Zkfo/3X2z6fdsaZflHy8ssv73/HBBcTUiAY1bLrOb8/7IoXrUUAgfkCpgLBYQN6yfABvSFCwEqBRo8xmdDSHhu6ePQlctXVV4eH3tEbExp56qnGi5d0fEpz7JP+cEp4UdaB3sU+o84+K9y+Hg8qLRDUNukFaP2PPDJst+Y4540aJZ06bWts8tPPPCMnekV6OuN5sFx91ZWyY8EFZsHr+rfW/JACwUJNHiNQXIACweI+vFu5AAWClZuxhScQPZGjKAzQ89FAoH4CjU7edBDxau+2TcESN9V48L4OBGmbg1lJdMBr2pQpsuqqqwSrNPkbvSpLBxs7bbuNtN6otazrzVTYosUi8tFHH8mMGc/LdO92UsGy9FJLyU3jxsnGG7cOXjL+LUxAghV0wEW322D9DWTRRVvIW2+9LW96g1N/fewxfyBLB2zu8QYzd91jz3DgjgLBQI+/CNRHgN8f9XHmKAgg4I5A9HuVAkH7Yx/9Ha09WnbZZaWtV2i15lprymq/W02+/vqf8ve/fyRarKMX2xQuW7Zr51/Mo4U7cYsONhzpze4WFHvpeq1bbyRbehf06G91LeTRWcbf8gq7pnozDAbFXQsttJCc5d0690Bvpoa4xdUCQfV47bXX5dBevcLZzvW1vffaUzQm63gXKmk+ogVcs70Ll2659TZ5+29/01X8RV0P8m5NXGzRAa5NNt0svI20Fmtu3Lp1k8Ksrbfa0nj731oHgLRd1153nZx/4UVhEzXH077pBV4rr7yS/5nUi7Jee/11/7Olg1gP3HuP7LTrbuHsk8UKBHXHV3mzzF3szTZXuGgR4g7bb+flni294sGf5L333pfZb86WRx97PBww08/mlZf/SXbaccfCTWMf9+3fXx7zLmzTRbfVz/8Siy8Rrq8z1F91xeXh88IHGofDvcG6wtkRtTixY/sO/r/RZbxttWhx9uw3wxhv17mTnOTdQnw3LxfVJa0CQd13mv++df/RAkl9Te9GoBcEbrDB+n6B5rvvvusXhqqx3rlAZxvUWUfHereEu+fee3UTvzC5vzcjIYudAvz+sDNutBoB1wUoEHT9E5C//jd6jClONJrTJjk2pDms3i74uRkzwsPrb3HNAzQv0bzr22+/8/LZj+SBhx72L1oKVtTfrBMnjBcdg6rnUk2BoLYv6qivbbH55rLRhq1kfe/OXeqqOfvsN9/yPYIJO3S9w73f2Sd6FwLGLbXmh4Xjc8wgGKfM6wjMF+D3B5+EpAUoEExa1JH9RU/kaLcpEHQk+HQzEwKNTN50FgO99VCw9O55qJw6YsEMCMHr0b86e8g+XbqGM/1pMd6EW2/1ivHMg4/jJ0yQM88eJXq7tHIW3d8fL71UVl9ttZKrayJ40ejRct31N5RcV1dYZZVVvFtUXe3f8linMg9m9qBAsCw+VkIgMYHo7w8KWRKjZUcIIOCoAN+r+Qu8ntS/xfuNrTMj6C2CKln223cfOW3kyLIGPHT2tWOHDG1y29Nix1puueVk9IUXSseOHYqt5uwMggGKzhB3+BFHynfffx+8VPJvOQMqwU7O9maNGHvjTcHTZn/jbr1U6wCQHkg/mxd4BYLX3XBDWJjXrAG/vKC3Sh7jzTrfaoMNZKsOHcsuENTNdcb4004/vWzDpZdeWs7xZgHZfbfd4prT7PUHH3pIBgwc1Oz14AUtkn3myfkFhMFrhX/19tBDhg0LiwwL34s+1kG8a72ZED/xikPrUSCox0/r33fQtzvvultGeDO1lPM5b9GihVxw3rmy1557+rORUiAYKNr9l98fdseP1iPgqgAD9K5GPr/9buQYUynVNMeGdLzpLG/c6TZv/KncRXPlM884w79Qp9xtklqv2gJBPb46njXqnPCivVJt0t/eOrv5wQcdVHTVWvNDCgSL8vImAk0E+P3RhIMnCQhQIJgAoou76HbYMHl6xitNuk6BYBMOniCQqkCjkjedZaRb9/3l2+++8/u3adu2Mv7WW/wr+svpsN6S+LB+/cPbPnXv2lXO826dFbfo7aTGjBnr3zorbvBAbx11wAH7y/HHHRd7W+G4/T/mzRpx7fXXyzPPPmscpNLixX322kuGebeN0kEqXSgQjNPkdQTSF2AgKX1jjoAAAm4JRL9Xtffkdfn4DOjtZK++5hp/1gN9HLfo792O7dtLv359Y2/FGrftV199JWPGjpNJ3szgOrOdaVl44YWl87bb+reTLefWrS7PIBj46YxpWuR54823hIVxwXuFf3X2vSMPP1w6e7PLlbvoYNjlV1wpd99zj8yZO1d++umnJpumWSAYHEhvX3Wdl4M98eRTzY6vt8Xev3s30ZnhVlppJX+TSgsEdaP3P/hArvcuBtN+xhXK6swfu+6yiwwdMjg8VtDGcv7eMe1Ovx/vvf9+swG3UgWCun8tmJwwcaLcctv4JjOTBMfW2fZ7H9pTDj30EP+iOs3F61UgqG1I49930Df9q/35s3d7t3vvu994UaDOaLKNV1A8dPAQadNmE39TvV05BYKFivY+jv7+4MIve2NJyxFwSYBb/LkUbTf62qgxpnJ10x4b0pmzb/JmqdZZq//3v/8Zm6U57JBjB8kB3q2FG7XUUiCobdaZ58d6ebv+jv7Xt98au6FjbHvsvrv06dPbnyTDuFLBixQIFmDwEIGUBUwFgpPGjJYO7dqmfGR2n1cBCgTzGtmU+0WBYMrA7B4BBJoIaOLywvMvyLyP58ncufP893TQZfXVV5P2W28dOwthk50UefLBhx/KzJmv+lPHf/PNv/zbGultrnTQTW+HzIIAAtkQYCApG3GgFQggkB8B8rr8xDKuJ1qENGvWa/KOd8vOLz7/XD7/4gtZaqklRWf0W2XlVaTdlu1qngVBi8x0xrGPPvpI5s2bJ999970s593WeMWVVpSOHTrwezouOCVe12K+2W++6bvOmTPHu9XqP/1CtpYtV5U111xT1ll77RJ7yPbbWoD27nvv+cWlSy+1tKzk5V+/a/k70Vt8JbX88MMPMmPG814x5Bzvs/mxv9uVvM9lS+92w1t5t1PW2yxnYfnIi+/f//53/3a6ektwvZ3071q2bHL750a1M+1/31oQq7d4m+vdlvzTzz7zbon+W+9zvrLoHQLW8j7nLPkTMBXYUCCYvzjTIwTyKGD6/ho2oJcMH9A7j92lTwhkRiDtsSG989XMV1/18wW9uG6JJRb38+VWrVqJTpChF67kYfn+e82NZvhjbEFupGNgSZ0XyIMRfUAgiwIUCGYxKna3iQJBu+PXsNabBpKoVm5YODgwAggggAACuRcwnYhlICn3YaeDCCCQsoApr2MGwZTR2T0CCCCAAAIOC5DXORx8uo6A5QJ8f1keQJqPAAIIIICAhQKmc7fU5FgYyAw1mQLBDAXDpqZQrWxTtGgrAggggAAC9guYTsRypbb9caUHCCDQWAHyusb6c3QEEEAAAQRcEyCvcy3i9BeBfAlwZ4t8xZPeIIAAAgggkHUBU4EgF3dnPWrZbh8FgtmOT2ZbZxpIYpA+s+GiYQgggAACCFgvwECS9SGkAwggkEEBU17HVagZDBRNQgABBBBAICcC/PbISSDpBgKOCkQLBJWBQXpHPwx0GwEEEEAAgToIUCBYB2THDkGBoGMBT6q7ppM5FAgmpct+EEAAAQQQQCAqYPrtQRFLVInnCCCAQGUCpu9W8rrKDFkbAQQQQAABBMoXMP32IK8r3481EUCgsQIUCDbWn6MjgAACCCDgmkD0t0f7dm1l8pjRrjHQ3wQFKBBMENOlXTGLj0vRpq8IIIAAAgg0XoCBpMbHgBYggED+BEzfrRQI5i/O9AgBBBBAAIGsCJhmwKBAMCvRoR0IIFBKwPQdxgyCpdR4HwEEEEAAAQSqFaBAsFo5tosToEAwTobXiwpQIFiUhzcRQAABBBBAIGEB00lYBpISRmZ3CCDgnAB5nXMhp8MIIIAAAgg0VMCU11Fc09CQcHAEEKhAwPQdxrmpCgBZFQEEEEAAAQTKFjCdt2UGwbL5WDFGgALBGBheLi1AxXJpI9ZAAAEEEEAAgWQETCdhGUhKxpa9IICAuwKcaHI39vQcAQQQQACBRgiQ1zVCnWMigEBSAqYZ2CkQTEqX/SCAAAIIIIBAoYDpvC13fikU4nE1AhQIVqPGNr4ABYJ8EBBAAAEEEECgXgIMJNVLmuMggIBrAuR1rkWc/iKAAAIIINA4gejvDm0JF341Lh4cGQEEKhMwFQgyUF+ZIWsjgAACCCCAQHkCFAiW58RalQlQIFiZF2sXCHBCpwCDhwgggAACCCCQqkD0dwdTqafKzc4RQMAhgej3q3adgXqHPgB0FQEEEEAAgToKRH93kNfVEZ9DIYBAzQIUCNZMyA4QQAABBBBAoEwB0+8OZi4uE4/VYgUoEIyl4Y1SAszkU0qI9xFAAAEEEEAgKQEGkpKSZD8IIIBAUwHyuqYePEMAAQQQQACBdARMM2BQIJiONXtFAIF0BEzfY8wgmI41e0UAAQQQQMB1AQoEXf8EpNN/CgTTcXVir6aBJKqWnQg9nUQAAQQQQKCuAqYTsAwk1TUEHAwBBHIsYMrrmEEwxwGnawgggAACCDRIgLyuQfAcFgEEEhPgeywxSnaEAAIIIIAAAiUETOdsqcUpgcbbJQUoECxJxApxAlQtx8nwOgIIIIAAAggkKWA6AcsV2kkKsy8EEHBZgLzO5ejTdwQQQAABBOonQF5XP2uOhAAC6Qlwh4v0bNkzAggggAACCCwQMBUIclH3Ah8eVSdAgWB1bmzlCZgGkhis56OBAAIIIIAAAkkLMJCUtCj7QwABBBYImPI6rkZd4MMjBBBAAAEEEEhGgN8cyTiyFwQQaKxAtEBQW8NgfWNjwtERQAABBBDIowAFgnmMauP7RIFg42NgbQtMJ3UoELQ2nDQcAQQQQACBzAqYfnNQvJLZcNEwBBCwTMD0HUteZ1kQaS4CCCCAAAIWCJh+c5DXWRA4mogAAk0EGKxvwsETBBBAAAEEEEhJIHpRQvt2bWXymNEpHY3duiJAgaArkU6hn8zmkwIqu0QAAQQQQACBZgKmk68MJDVj4gUEEECgKgHyuqrY2AgBBBBAAAEEKhQgr6sQjNURQCCTAqbvMmYQzGSoaBQCCCCAAAJWC1AgaHX4Mtt4CgQzG5rsN8w0kETlcvbjRgsRQAABBBCwTcB08pUCQduiSHsRQCCrAqa8jhkEsxot2oUAAggggIC9Aqa8jqIae+NJyxFwVYDZUF2NPP1GAAEEEECgfgKm87XU4dTPP89HokAwz9GtQ9+oXK4DModAAAEEEEDAcQEGkhz/ANB9BBBIXYC8LnViDoAAAggggIDzAuR1zn8EAEAgFwIUCOYijHQCAQQQQACBTAuYCgS5oDvTIbOmcRQIWhOqbDY0OpCkreTKz2zGilYhgAACCCBgqwC/N2yNHO1GAAFbBKLfs1yRakvkaCcCCCCAAAL2CPB7w55Y0VIEEIgXMBUIMmAf78U7CCCAAAIIIFC5AAWClZuxRXkCFAiW58RaMQLREzu6GgWCMVi8jAACCCCAAAJVCUR/b1C4UhUjGyGAAAKxAtHvWV2RvC6WizcQQAABBBBAoAqB6O8N8roqENkEAQQaLkCBYMNDQAMQQAABBBDIvYDp98akMaOlQ7u2ue87HUxXgALBdH1zv3duDZH7ENNBBBBAAAEEGi7AQFLDQ0ADEEAg5wLkdTkPMN1DAAEEEECgwQKmGTAoEGxwUDg8AghUJWD6PmMGwaoo2QgBBBBAAAEEYgQoEIyB4eWaBSgQrJnQ7R3w5eR2/Ok9AggggAACaQuYTrwykJS2OvtHAAHXBCgQdC3i9BcBBBBAAIH6CpjyOgpq6hsDjoYAAskImL7POE+VjC17QQABBBBAAIH5AqZztcwgyKcjCQEKBJNQdHgfFAg6HHy6jgACCCCAQB0ETCdeGUiqAzyHQAABpwTI65wKN51FAAEEEECg7gLkdXUn54AIIJCiAHe6SBGXXSOAAAIIIICAmAoE586ajgwCNQtQIFgzods7MA0kMWjv9meC3iOAAAIIIJCkAANJSWqyLwQQQMAsYMrruCrVbMWrCCCAAAIIIFC5AL81KjdjCwQQyK5AtEBQW8qgfXbjRcsQQAABBBCwTYDfGrZFzJ72UiBoT6wy2VLTyR0KBDMZKhqFAAIIIICAlQKm3xoUrVgZShqNAAIZFjB915LXZThgNA0BBBBAAAHLBEy/NcjrLAsizUUAgVCAWX1CCh4ggAACCCCAQAoC0QLB9u3ayuQxo1M4Ert0TYACQdcinnB/mdUnYVB2hwACCCCAAAJNBEwnXRlIakLEEwQQQKBmAfK6mgnZAQIIIIAAAggUESCvK4LDWwggYJ2A6TuNGQStCyMNRgABBBBAILMCFAhmNjTWN4wCQetD2NgOmAaSqGBubEw4OgIIIIAAAnkSMJ10pUAwTxGmLwggkAUBU17HDIJZiAxtQAABBBBAIB8CpryOYpp8xJZeIOCiALOiuhh1+owAAggggEB9BEznaam/qY+9C0ehQNCFKKfcx2gFsx6OEzwpo7N7BBBAAAEEHBFgIMmRQNNNBBBouEA0r+PEU8NDQgMQQAABBBDIjUD0d4Z2jPPHuQkvHUHAOQFTgSAXWDn3MaDDCCCAAAIIpCJgKhDkd0Yq1E7ulAJBJ8OebKcZuE/Wk70hgAACCCCAwAKB6EASBSsLbHiEAAIIJCkQ/b7VfTNwn6Qw+0IAAQQQQMBNAdMAF3mdm58Feo1AXgQoEMxLJOkHAggggAAC2RMw1d5wV63sxcnWFlEgaGvkMtRuUzLEl1SGAkRTEEAAAQQQsFSAgSRLA0ezEUDASgHyOivDRqMRQAABBBDIvAB5XeZDRAMRQKAKgegFVhQ+V4HIJggggAACCCDQTIACwWYkvJCgAAWCCWK6uivTQBLTnLr6aaDfCCCAAAIIJCdg+o3BRQjJ+bInBBBAoFDA9J1LXlcoxGMEEEAAAQQQqEaAAa5q1NgGAQSyLhAtENT2MgN71qNG+xBAAAEEEMi+AL8xsh8jm1tIgaDN0ctI201XgTKQlJHg0AwEEEAAAQQsFmAgyeLg0XQEELBOgLzOupDRYAQQQAABBKwQIK+zIkw0EgEEKhTgu61CMFZHAAEEEEAAgZICpvOzzFJcko0VKhCgQLACLFaNF6CSOd6GdxBAAAEEEECgOgHTyVauxq7Okq0QQACBcgSieR0noMpRYx0EEEAAAQQQKCYQ/X2h65LXFRPjPQQQsEGAGdhtiBJtRAABBBBAwC4BU4EgE3PZFcOst5YCwaxHyJL2MYBvSaBoJgIIIIAAApYImBIhClUsCR7NRAABawUYwLc2dDQcAQQQQACBTAqQ12UyLDQKAQQSEKBAMAFEdoEAAggggAACTQRMNTeTxoyWDu3aNlmPJwhUK0CBYLVybNdEgGSoCQdPEEAAAQQQQKBGAQaSagRkcwQQQKAKAVNex0moKiDZBAEEEEAAAQR8AVNexwwYfDgQQCAvAtELrLiwNS+RpR8IIIAAAgg0RoACwca4u3RUCgRdinaKfTUNJHGyJ0Vwdo0AAggggEDOBUy/LShSyXnQ6R4CCDRcwPTdS17X8LDQAAQQQAABBKwVYIDL2tDRcAQQKEMgWiCom3AL9TLgWAUBBBBAAAEEjAL8tjCy8GKCAhQIJojp8q5MV4NytZTLnwj6jgACCCCAQG0CDCTV5sfWCCCAQDUCpryOAsFqJNkGAQQQQAABBFSAvI7PAQII5FnAdIEVF7fmOeL0DQEEEEAAgfQETOdlqbdJz9vVPVMg6GrkU+g3Fc0poLJLBBBAAAEEHBXgd4WjgafbCCDQcIHo9y8nohoeEhqAAAIIIICAtQLR3xXaEWbXsjacNBwBBCICpgJBLrCKIPEUAQQQQAABBMoSMBUI8ruiLDpWqkCAAsEKsFi1uIDpilBO+BQ3410EEEAAAQQQaC5gSoQoUGnuxCsIIIBAGgIM5Kehyj4RQAABBBBwT4C8zr2Y02MEXBMwfc8xkO/ap4D+IoAAAgggkIyAqdaGmYmTsWUvCwQoEFxgwaMaBbhaqkZANkcAAQQQQAABX8B0gpUCQT4cCCCAQH0ETHkdJ6PqY89REEAAAQQQyJOAKa+jcCZPEaYvCCCgAtELrDh/xecCAQQQQAABBKoRMBUIMhlXNZJsU0yAAsFiOrxXkYBpIImTPhURsjICCCCAAAIIeAKm3xQUp/DRQAABBOojYPoOJq+rjz1HQQABBBBAIE8CpgEu8ro8RZi+IICACkQLBPU1BvNVgQUBBBBAAAEEKhGI/qbgooNK9Fi3XAEKBMuVYr2SAqarQvniKsnGCggggAACCCAQEWAgKQLCUwQQQKCOAqa8jgLBOgaAQyGAAAIIIJATAVNeR9FMToJLNxBAIBQwXWBFMXTIwwMEEEAAAQQQKEPAdD6WOpsy4FilYgEKBCsmY4NiAtHKZl2XEz/FxHgPAQQQQAABBKIC/J6IivAcAQQQqK8A38P19eZoCCCAAAII5FEg+nuCAa48Rpk+IYCAqUCQC6z4XCCAAAIIIIBAJQKmAkF+T1QiyLrlClAgWK4U65UlwJWhZTGxEgIIIIAAAgjECJgSIQaSYrB4GQEEEEhJgLwuJVh2iwACCCCAgCMC5HWOBJpuIoCAmL7vGNDng4EAAggggAAClQiYzsUyI3ElgqxbrgAFguVKsV5ZAlwtVRYTKyGAAAIIIIBAjAAnVmNgeBkBBBCoo4Apr+OkVB0DwKEQQAABBBCwXIC8zvIA0nwEEKhIIDpjqm7MnbUqImRlBBBAAAEEnBYwFQjyW8Lpj0RqnadAMDVaN3dsGkjiaik3Pwv0GgEEEEAAgWoETIkQRSnVSLINAgggUL0AeV31dmyJAAIIIIAAAiLkdXwKEEDAJQHTdx6D+i59AugrAggggAACtQlELzbgrlq1ebJ1vAAFgvE2vFOFgOnqUL7AqoBkEwQQQAABBBwVMJ1UpUDQ0Q8D3UYAgYYJmPI6LvxqWDg4MAIIIIAAAtYJmPI6imWsCyMNRgCBMgVMF1hxLqtMPFZDAAEEEEDAcQHTeVjqaxz/UKTYfQoEU8R1ddfRCmd14ASQq58G+o0AAggggEBlAvyOqMyLtRFAAIG0BPg+TkuW/SKAAAIIIJB/gejvCAa48h9zeoiAywKmAkEusHL5E0HfEUAAAQQQKF/A9DuCCw3K92PNygQoEKzMi7XLEDBdIcqXWBlwrIIAAggggIDjAlwp5fgHgO4jgECmBEx5HRd+ZSpENAYBBBBAAIFMCpDXZTIsNAoBBFIUMH3vUSCYIji7RgABBBBAIEcCpnOw1NbkKMAZ6woFghkLSB6aY6pyJhnKQ2TpAwIIIIAAAukKcEI1XV/2jgACCFQiYMrrODlViSDrIoAAAggg4KaA6TcE54bd/CzQawRcEojOnKp95wIrlz4B9BUBBBBAAIHqBEwFgvyGqM6SrUoLUCBY2og1KhTgJFCFYKyOAAIIIIAAAr6AKRGiGIUPBwIIINAYAfK6xrhzVAQQQAABBGwXIK+zPYK0HwEEqhEwffcxuF+NJNsggAACCCDglkD0IoP27drK5DGj3UKgt3UToECwbtRuHYgvMrfiTW8RQAABBBBIQsB0MpUCwSRk2QcCCCBQuQCzulZuxhYIIIAAAgggIGLK6yiS4ZOBAAJ5FzBdYMU5rbxHnf4hgAACCCBQm4Dp/CsFgrWZsnVxAQoEi/vwbpUC0QJB3Q0ngqrEZDMEEEAAAQQcEeD3gyOBppsIIGCNAN/L1oSKhiKAAAIIIJAZgejvBwa4MhMaGoIAAikKmAoEub16iuDsGgEEEEAAgRwImH4/cIFBDgKb4S5QIJjh4NjcNNOVonyZ2RxR2o4AAggggEC6Alwpla4ve0cAAQSqESCvq0aNbRBAAAEEEHBXgLzO3djTcwRcF+D7z/VPAP1HAAEEEECgcgHOvVZuxha1CVAgWJsfW8cImKqduVoqBouXEUAAAQQQQMB4GyouLuCDgQACCDRWgLyusf4cHQEEEEAAAdsEGOCyLWK0FwEEkhSIzqCq++bOWkkKsy8EEEAAAQTyJcBvh3zF04beUCBoQ5QsbKPpaintBsmQhcGkyQgggAACCNRBgIGkOiBzCAQQQKBCAVNex20CK0RkdQQQQAABBBwSMA1wceGXQx8AuoqA4wJcYOX4B4DuI4AAAgggUIEA510rwGLVxAQoEEyMkh1FBTghFBXhOQIIIIAAAgiYBEiETCq8hgACCGRDwJTXceFXNmJDKxBAAAEEEMiSAHldlqJBWxBAoBECFAg2Qp1jIoAAAgggYKcAk2bYGTfbW02BoO0RzHD7SYYyHByahgACCCCAQIYEGEjKUDBoCgIIIBARIK+LgPAUAQQQQAABBIwCDHAZWXgRAQQcE+ACK8cCTncRQAABBBCoUoDfDFXCsVlNAhQI1sTHxsUEGOwvpsN7CCCAAAIIIBAIMJAUSPAXAQQQyJ4ABYLZiwktQgABBBBAIIsC5HVZjAptQgCBeguQP9VbnOMhgAACCCBgnwB1NPbFLC8tpkAwL5HMaD+ofM5oYGgWAggggAACGREwJULaNG5fmZEA0QwEEEDAEyCv42OAAAIIIIAAAsUETHld+3ZtZfKY0cU24z0EEEAgdwIUCOYupHQIAQQQQACBxAW4uCpxUnZYpgAFgmVCsVp1AiRD1bmxFQIIIIAAAq4IMJDkSqTpJwII2CxAXmdz9Gg7AggggAAC6QuQ16VvzBEQQMAeAS6wsidWtBQBBBBAAIFGCFAg2Ah1jqkCFAjyOUhVgIGkVHnZOQIIIIAAAtYLkAhZH0I6gAACDgiQ1zkQZLqIAAIIIIBADQLkdTXgsSkCCOROgO/E3IWUDiGAAAIIIJCYABdXJUbJjqoQoECwCjQ2qUyAq6Uq82JtBBBAAAEEXBLgd4JL0aavCCBgswDf1zZHj7YjgAACCCCQnoBpgEuPNnfW9PQOyp4RQACBDAtwgVWGg0PTEEAAAQQQaLCA6UKCYQN6yfABvRvcMg7vggAFgi5EucF9JBlqcAA4PAIIIIAAAhkVMA0ktW/XViaPGZ3RFtMsBBBAwF0BTl65G3t6jgACCCCAQDEB8rpiOryHAAIuCpi+F9WBwmkXPw30GQEEEEAAgaYCpnOsk7wxsQ7e2BgLAmkLUCCYtjD7FwoE+RAggAACCCCAgEmARMikwmsIIIBANgXI67IZF1qFAAIIIIBAowXI6xodAY6PAAJZFDDNwM7gfxYjRZsQQAABBBCon4DpIgImzaifP0cSoUCQT0FdBEzJEFdL1YWegyCAAAIIIJBZAX4fZDY0NAwBBBAwCvC9bWThRQQQQAABBJwW4PeB0+Gn8wggECPABVYxMLyMAAIIIICAwwIUCDoc/Ix0nQLBjAQi780wXUnKvdTzHnX6hwACCCCAQLwAiVC8De8ggAACWRUw5XXMgpHVaNEuBBBAAAEE0hcgr0vfmCMggICdAnw/2hk3Wo0AAggggECaApxbTVOXfZcjQIFgOUqsU7MAV0vVTMgOEEAAAQQQyJUAiVCuwklnEEDAEQHyOkcCTTcRQAABBBAoU4C8rkwoVkMAAScFmGHVybDTaQQQQAABBIwCposHdEXuumnk4sWUBCgQTAmW3TYXIBlqbsIrCCCAAAIIuCpg+l3ALFSufhroNwII2CJgOpHVvl1bmTxmtC1doJ0IIIAAAgggkKCAKa9jgCtBYHaFAAJWC3CBldXho/EIIIAAAggkKsB51UQ52VmVAhQIVgnHZpULcEVp5WZsgQACCCCAQB4FSITyGFX6hAACrghQCOBKpOknAggggAACxQXI64r78C4CCCBAgSCfAQQQQAABBBAIBKiVCST420gBCgQbqe/YsUmGHAs43UUAAQQQQCBGwJQIDRvQS4YP6B2zBS8jgAACCGRFgLwuK5GgHQgggAACCDRWwJTXMSt8Y2PC0RFAIHsCXGCVvZjQIgQQQAABBBohwG+CRqhzzKgABYJREZ6nJsBVpanRsmMEEEAAAQSsEmAgyapw0VgEEECgiYCpQJDbDDch4gkCCCCAAAJOCJgGuCgQdCL0dBIBBCoQMOVPXCRbASCrIoAAAgggkAMB6mRyEMScdIECwZwE0pZumE4czZ013Zbm004EEEAAAQQQqFGARKhGQDZHAAEEMiBAXpeBINAEBBBAAAEEGihAXtdAfA6NAAJWCVAgaFW4aCwCCCCAAAKpCDBpRiqs7LQKAQoEq0Bjk+oFSIaqt2NLBBBAAAEE8iDAQFIeokgfEEDAdQHyOtc/AfQfAQQQQMB1AdMAFzNiuf6poP8IIBAnwAVWcTK8jgACCCCAgBsC/BZwI8429JICQRuilKM2mgaSuB1VjgJMVxBAAAEEECghYBpI4jZUJdB4GwEEEMiYgCmvoyggY0GiOQgggAACCKQoQF6XIi67RgCB3AmYvjPJn3IXZjqEAAIIIICAUYBJM4wsvNggAQoEGwTv8mGpkHY5+vQdAQQQQMBlAVMipB5zZ013mYW+I4AAAlYKkNdZGTYajQACCCCAQM0CpryOC8BrZmUHCCCQYwEusMpxcOkaAggggAACJQRMFwowaUYJNN5OTYACwdRo2XGcAMlQnAyvI4AAAgggkG8BBpLyHV96hwACbgmQ17kVb3qLAAIIIIBAIEBeF0jwFwEEEChfgAusyrdiTQQQQAABBPIkQIFgnqJpf18oELQ/htb1gIEk60JGgxFAAAEEEEhEgEQoEUZ2ggACCGRCgLwuE2GgEQgggAACCNRdgLyu7uQcEAEEciDAd2cOgkgXEEAAAQQQqFCAi6sqBGP11AUoEEydmAOYBLhayqTCawgggAACCORbgP/+5zu+9A4BBNwT4HvdvZjTYwQQQAABtwVMA1wqMnfWdLdh6D0CCCBQQoALrEoA8TYCCCCAAAI5FDBdINC+XVuZPGZ0DntLl2wQoEDQhijlsI0kQzkMKl1CAAEEEECgiIBpIIlEqAgYbyGAAAIWCJhOcg0b0EuGD+htQetpIgIIIIAAAghUKmA6p0teV6ki6yOAgIsCpvNi6kCBtYufBvqMAAIIIOCKgOni6klecWAHr0iQBYFGCFAg2Ah1jimmk0nKQjLEhwMBBBBAAIF8CpiKSEiE8hlreoUAAu4ImPI6igTciT89RQABBBBwT4ABLvdiTo8RQCA5AdN3KBdYJefLnhBAAAEEEMiSgOniAM6bZilCbraFAkE3456JXpMMZSIMNAIBBBBAAIHUBUiEUifmAAgggEDDBMjrGkbPgRFAAAEEEKirAHldXbk5GAII5FCAC6xyGFS6hAACCCCAQIwAk2bEwPByQwUoEGwov9sHNyVDXC3l9meC3iOAAAII5FPAlAjx3/x8xppeIYCAewLkde7FnB4jgAACCLgpYMrrmBXezc8CvUYAgeoFuMCqeju2RAABBBBAwBYB08VV2nbupmlLBPPbTgoE8xtbK3pmSob4YrQidDQSAQQQQACBsgRIhMpiYiUEEEDAagHyOqvDR+MRQAABBBAoKUBeV5KIFRBAAIGyBLjAqiwmVkIAAQQQQMBqAdPFVdxe2OqQ5qbxFAjmJpR2doRkyM640WoEEEAAAQTKFSARKleK9RBAAAF7Bcjr7I0dLUcAAQQQQKAcAfK6cpRYBwEEEChPgAusynNiLQQQQAABBGwVMP23ntnXbY1mvtpNgWC+4mldb0wDSdoJZhG0LpQ0GAEEEEAAAaMAiZCRhRcRQACBXAmQ1+UqnHQGAQQQQACBZgLkdc1IeAEBBBCoWsCUPw0b0EuGD+hd9T7ZEAEEEEAAAQSyIWD67zyzB2YjNrRChAJBPgUNFzBdgUoy1PCw0AAEEEAAAQRqFjDdhopEqGZWdoAAAghkUsBUOEBel8lQ0SgEEEAAAQQqEmCAqyIuVkYAAQRKCpi+V3UjJs4oSccKCCCAAAIIZF7AVPvC7IGZD5szDaRA0JlQZ7ejJEPZjQ0tQwABBBBAoBYBEqFa9NgWAQQQsEvAlNdRIGhXDGktAggggAACJgHyOpMKryGAAAK1CXCBVW1+bI0AAggggEAWBZg0I4tRoU2FAhQIFmrwuGECJEMNo+fACCCAAAIIpCJgSoT0QFwNnQo3O0UAAQQyIWDK67hCNhOhoREIIIAAAghUJWDK65gVvipKNkIAAQSaCHCBVRMOniCAAAIIIJALAdPFVVxAnYvQ5qYTFAjmJpR2d4RkyO740XoEEEAAAQSiAiRCURGeI4AAAvkXIK/Lf4zpIQIIIICAWwKmvI7if7c+A/QWAQTSE+ACq/Rs2TMCCCCAAAL1FjBdXKVtYNKMekeC4xUToECwmA7v1VXAlAzxhVnXEHAwBBBAAAEEEhGIS4QYSEqEl50ggAACmRWI+/4nr8tsyGgYAggggAACsQL8dz2WhjcQQACBRAS4wCoRRnaCAAIIIIBAJgRMF1cx+3omQkMjCgQoECzA4GFjBUiGGuvP0RFAAAEEEEhKgEQoKUn2gwACCNgnQF5nX8xoMQIIIIAAAiYB8jqTCq8hgAACyQlQiJ2cJXtCAAEEEECg0QKmybCYNKPRUeH4UQEKBKMiPG+YgGkgSRvDbBMNCwkHRgABBBBAoCoBEqGq2NgIAQQQyIUAeV0uwkgnEEAAAQQQEPI6PgQIIIBA+gKm/GnYgF4yfEDv9A/OERBAAAEEEEAgEQFT0T+zByZCy04SFqBAMGFQdlebgOnEE8lQbaZsjQACCCCAQD0FSITqqc2xEEAAgWwKkNdlMy60CgEEEEAAgXIFyOvKlWI9BBBAoDYBU4Gg7pGJM2pzZWsEEEAAAQTqKWCafZ3ZA+sZAY5VrgAFguVKsV5dBEzJENXVdaHnIAgggAACCCQiQCKUCCM7QQABBKwWMOV1XPhldUhpPAIIIICAYwLkdY4FnO4igEBDBbjAqqH8HBwBBBBAAIGaBEwXV+kOKfaviZWNUxKgQDAlWHZbvYApGaLCunpPtkQAAQQQQKBeAiRC9ZLmOAgggED2BUx5HSfGsh83WogAAggggIApr+MCbj4XCCCAQHoCXGCVni17RgABBBBAIG0B08VVXCidtjr7r1aAAsFq5dguNQGSodRo2TECCCCAAAKpCpgSIQaSUiVn5wgggEBmBcjrMhsaGoYAAggggEBRAVNexwBXUTLeRAABBGoW4AKrmgnZAQIIIIAAAnUXMF1cpY1g8qu6h4IDlilAgWCZUKxWXwGSofp6czQEEEAAAQRqFSARqlWQ7RFAAIF8CZgKBLWHzCKYrzjTGwQQQACBfAmQ1+UrnvQGAQTsETDlTxRn2xM/WooAAggg4KaA6eIqJs1w87NgS68pELQlUo61k2TIsYDTXQQQQAAB6wVM/+0mEbI+rHQAAQQQqEnAdJKMQa6aSNkYAQQQQACBVAVM/+0mr0uVnJ0jgAACvoDpvJq+wQVWfEAQQAABBBDIroBp0itmD8xuvGiZCAWCfAoyKUAylMmw0CgEEEAAAQRiBUiEYml4AwEEEHBWgLzO2dDTcQQQQAABSwXI6ywNHM1GAIFcCJiKtLnAKhehpRMIIIAAAjkUMM2+zsVVOQx0zrpEgWDOApqn7phOSJEM5SnC9AUBBBBAIC8CJEJ5iST9QAABBJIXIK9L3pQ9IoAAAgggkIYAeV0aquwTAQQQKF+AC6zKt2JNBBBAAAEEGi1gKuxn9sBGR4XjlxKgQLCUEO83TMCUDFEg2LBwcGAEEEAAAQRiBUiEYml4AwEEEHBegLzO+Y8AAAgggAAClgiQ11kSKJqJAAK5FuACq1yHl84hgAACCOREwHRxlXZt7qzpOekh3cirAAWCeY1sTvplSoaovM5JcOkGAggggEAuBEiEchFGOoEAAgikKmDK6zhhlio5O0cAAQQQQKAiAfK6irhYGQEEEEhNgAusUqNlxwgggAACCCQmYLq4itsLJ8bLjlIUoEAwRVx2XbsAyVDthuwBAQQQQACBNAVIhNLUZd8IIIBAPgTI6/IRR3qBAAIIIJBfAfK6/MaWniGAgH0CpgusuLuWfXGkxQgggAAC+RSIu7iKSa7yGe+89YoCwbxFNGf9ifuCJRnKWaDpDgIIIICAlQJx/50mEbIynDQaAQQQSE3AVCCoByOvS42cHSOAAAIIIFC2AHld2VSsiAACCNRFwJQ/kTvVhZ6DIIAAAgggUFKAi6tKErFChgUoEMxwcGjafAGSIT4JCCCAAAIIZFOARCibcaFVCCCAQBYFyOuyGBXahAACCCCAgAh5HZ8CBBBAIHsCzCKYvZjQIgQQQAABBLi4is+A7QIUCNoeQUfaTzLkSKDpJgIIIICANQIkQtaEioYigAACmRAwFQhqw5gJIxPhoREIIIAAAo4KxOV1c2dNd1SEbiOAAALZEIjLn/h+zkZ8aAUCCCCAgJsCXFzlZtzz1GsKBPMUzRz3hWQox8GlawgggAACVgqYEiGKPKwMJY1GAAEE6iZgyuvat2srk8eMrlsbOBACCCCAAAIILBDgouwFFjxCAAEEsibAd3TWIkJ7EEAAAQRcFoi7uGqSd16zg3d+kwUBGwQoELQhSrTRFyAZ4oOAAAIIIIBANgRMBR7aMq5izkZ8aAUCCCCQZQHyuixHh7YhgAACCLgkQF7nUrTpKwII2CjA97SNUaPNCCCAAAJ5FWDSjLxG1q1+USDoVryt7i3JkNXho/EIIIAAAjkSoLgjR8GkKwgggECdBcjr6gzO4RBAAAEEEIgRIK+LgeFlBBBAIEMCfFdnKBg0BQEEEEDAWQHOZzob+tx1nALB3IU03x0iGcp3fOkdAggggED2BUiEsh8jWogAAghkXYC8LusRon0IIIAAAnkXMM1+0d67LdZk7/ZYLAgggAAC2RHgPFx2YkFLEEAAAQTcFeBcpruxz1vPKRDMW0Rz3h+SoZwHmO4hgAACCGRa4KkZr0j3w4Y1a+MkbxCpgzeYxIIAAggggO6kjf8AADJISURBVEA5AuR15SixDgIIIIAAAukIkNel48peEUAAgbQEKEpIS5b9IoAAAgggUFrAdB6Ti6tKu7FGNgUoEMxmXGhVEQGSoSI4vIUAAggggECKAswykSIuu0YAAQQcEyCvcyzgdBcBBBBAIDMC5HWZCQUNQQABBMoSMBUm6IZzZ00va3tWQgABBBBAAIHqBLi4qjo3tsquAAWC2Y0NLYsRIBmKgeFlBBBAAAEEUhQgEUoRl10jgAACDgqQ1zkYdLqMAAIIINBwAfK6hoeABiCAAAJVCZiKu4cN6CXDB/Suan9shAACCCCAAAKlBUz//WX2wNJurJFdAQoEsxsbWlZEwDSYRDJUBIy3EEAAAQQQqFGARKhGQDZHAAEEEGgmwCyCzUh4AQEEEEAAgVQFyOtS5WXnCCCAQGoCpjExPRjjYqmRs2MEEEAAAccFuLjK8Q9ATrtPgWBOA5v3bpEM5T3C9A8BBBBAIEsCJEJZigZtQQABBPIjEJfXcaus/MSYniCAAAIIZEeAvC47saAlCCCAQDUCpvyJAsFqJNkGAQQQQACB0gJcXFXaiDXsE6BA0L6Y0eJfBEiG+CgggAACCCBQHwESofo4cxQEEEDARQHyOhejTp8RQAABBBohQF7XCHWOiQACCCQnEFfoTZFgcsbsCQEEEEAAARWI+2/upDGjpUO7tiAhYK0ABYLWho6GqwC3pOJzgAACCCCAQLoCJELp+rJ3BBBAwHUBU4GgmjDI5fong/4jgAACCCQpQF6XpCb7QgABBBonYMqf2nuFCpO9ggUWBBBAAAEEEEhGgIurknFkL9kToEAwezGhRRUImJIh3ZxbUlWAyKoIIIAAAggUESARKoLDWwgggAACiQiY8joKBBOhZScIIIAAAgj4Aqa8jv/W8uFAAAEE7BRg4gw740arEUAAAQTsEODiKjviRCurE6BAsDo3tsqQAMlQhoJBUxBAAAEEciVgKtjQDlKIn6sw0xkEEEAgEwLkdZkIA41AAAEEEMihAHldDoNKlxBAwGkBvtedDj+dRwABBBBIWYCLq1IGZvcNFaBAsKH8HDwJAZKhJBTZBwIIIIAAAs0FKNZobsIrCCCAAALpCJDXpePKXhFAAAEEECCv4zOAAAII5E+A7/b8xZQeIYAAAgg0XoDzk42PAS1IV4ACwXR92XudBEiG6gTNYRBAAAEEnBEgEXIm1HQUAQQQyIwAeV1mQkFDEEAAAQRyImDK69q3ayuTx4zOSQ/pBgIIIOCmgOn7XSW464ebnwd6jQACCCCQjADnJpNxZC/ZFaBAMLuxoWUVCJAMVYDFqggggAACCJQQeGrGK9L9sGHN1ho2oJcMH9C72eu8gAACCCCAQBIC5HVJKLIPBBBAAAEE5gvE5XWTvOLADl6RIAsCCCCAgN0CFDHYHT9ajwACCCCQLQHTeUkurspWjGhN7QIUCNZuyB4yIkAylJFA0AwEEEAAAesFunnFgU97RYKFC4lQoQaPEUAAAQTSEiCvS0uW/SKAAAIIuCZAXudaxOkvAgi4JmAqZFADZhF07ZNAfxFAAAEEahXg4qpaBdneFgEKBG2JFO0sKUAyVJKIFRBAAAEEECgpQCJUkogVEEAAAQRSFCCvSxGXXSOAAAIIOCNAXudMqOkoAgg4LsAFVo5/AOg+AggggEAiAlxclQgjO7FAgAJBC4JEE8sXMH15czvE8v1YEwEEEEAAAdN/S5k9kM8FAggggEA9BRjkqqc2x0IAAQQQyKMAeV0eo0qfEEAAgeYCcRdYcTv55la8ggACCCCAgEmAi6tMKryWVwEKBPMaWUf7FZcMUSTo6AeCbiOAAAIIVCRAIlQRFysjgAACCKQkQF6XEiy7RQABBBBwQiDuv6MUizgRfjqJAAIOCpi+97nY18EPAl1GAAEEEKhKgIurqmJjI0sFKBC0NHA0O17AlAzp2nNnTY/fiHcQQAABBBBAQEwzNnFCkQ8GAggggEAjBMjrGqHOMRFAAAEEbBeIu+iLvM72yNJ+BBBAIF4gLndi4ox4M95BAAEEEEBABeL+G8rFVXw+8ipAgWBeI+twv+JOhJEMOfyhoOsIIIAAAiUFTFdJ6UYkQiXpWAEBBBBAIAUB8roUUNklAggggEDuBeLyOi6czn3o6SACCDguQIGD4x8Auo8AAgggULEA5x4rJmODHAhQIJiDINKF5gJxyRBFgs2teAUBBBBAAAESIT4DCCCAAAJZFCCvy2JUaBMCCCCAQFYF4v67yUVfWY0Y7UIAAQSSFeDOIMl6sjcEEEAAgXwLmC6uYub1fMec3olQIMinILcCcSfFuGI2tyGnYwgggAACVQjEFQeSCFWBySYIIIAAAokLmE7W6UHI6xKnZocIIIAAAhYLkNdZHDyajgACCCQkEDcmxsQZCQGzGwQQQACB3AjE/TeTi6tyE2I6EiNAgWAMDC/nQ8B0xRTJUD5iSy8QQAABBJIRiCu8IBFKxpe9IIAAAgjUJhBX8EBeV5srWyOAAAII5EsgLq+joD5fcaY3CCCAQCmBuIIH8qdScryPAAIIIOCKAOcaXYk0/TQJUCBoUuG13AiQDOUmlHQEAQQQQCAFAf47mQIqu0QAAQQQSFyA/14lTsoOEUAAAQRyJBD330ku+spRkOkKAgggUIGAaeIM3Zyi8QoQWRUBBBBAILcCpouruKNWbsNNxyICFAhGQHiaP4G4k2QkQ/mLNT1CAAEEEChfIO4qKRKh8g1ZEwEEEECgfgKmk3d6dPK6+sWAIyGAAAIIZE+AvC57MaFFCCCAQKMF4sbEmEWw0ZHh+AgggAACjRaI+28kF1c1OjIcv14CFAjWS5rjNFTAdMUUyVBDQ8LBEUAAAQQaLBBXaEEi1ODAcHgEEEAAAaNAXAEEeZ2RixcRQAABBBwRiMvrKKB35ANANxFAAIEYgbgCCPKnGDBeRgABBBDIvQDnFnMfYjpYhgAFgmUgsYr9AiRD9seQHiCAAAIIJCfAfxeTs2RPCCCAAAL1E+C/X/Wz5kgIIIAAAtkXiPvvIhd9ZT92tBABBBCohwBF5PVQ5hgIIIAAArYImP67yB21bIke7UxKgALBpCTZT+YF4k6acUVt5kNHAxFAAAEEEhSIu0qKRChBZHaFAAIIIJCaAHnd/7N390hy21gAgOccPoOr5ETBTuoj7Mar2lShtdewQqeq3dg6glM7UOKt8hl8jh3YbpVGapDgD4gH4OsqW5qZbuDhe1SzH/nIqUZrYAIECBDoSEBd11GyhEqAAIFGArl9hbsINkqIaQkQIECgmUDueKKLq5qlxMSNBDQINoI3bRsBv2q4jbtZCRAgQCCOwL2rpFJ0Gubj5EgkBAgQILAsoK5b9vFTAgQIEBhf4F5d56Kv8fNuhQQIENgqkGuI0CS4VdLzCRAgQKBXAQ3zvWZO3DUENAjWUDVmWAHFUNjUCIwAAQIELhDI7QddJXUBvikIECBA4DSB3P7MSa7TiA1EgAABAoEFcvtBdV3gpAmNAAECDQXuNZWncFws3DAppiZAgACBywTu7QddXHUZv4mCCWgQDJYQ4dQXyB1EUwzVtzcDAQIECLQTyF0lpRBqlxMzEyBAgMB+AXXdfjuvJECAAIF+BXJ1nSb5fnMqcgIECNQWsO+oLWx8AgQIEIgqkDt+6OKqqBkTV20BDYK1hY0fUsCvpAqZFkERIECAQEWBe1dJpek0yFdENzQBAgQIVBVQ11XlNTgBAgQIBBS4V9e56CtgooREgACBYAK5BgkN5sESJRwCBAgQOE1Ag/xplAYaSECD4EDJtJRyAcVQuZVnEiBAgED/Arn9nquk+s+tFRAgQGBmgdz+zUmumbcKaydAgMC4Arn9nrpu3JxbGQECBM4UuNdknsZ38fCZysYiQIAAgSgC9y4sdnFVlOyIo5WABsFW8uZtLuCgWvMUCIAAAQIELhDIXSWlELoA3xQECBAgUF0gV9c5yVWd3gQECBAgcKFArq7TFH9hEkxFgACBzgXsSzpPoPAJECBAoFgg1xTv4qpiQk8cVECD4KCJtawyAZ3jZU6eRYAAAQL9CuQKIY0T/eZU5AQIECDwXOBeXadh4rmRrwgQIECgb4F7dZ2LvvrOqegJECDQQiB3gZX6qUU2zEmAAAECNQQ0xNdQNeYoAhoER8mkdewSUAztYvMiAgQIEOhEILefc5VUJwkUJgECBAgUCeT2d05yFfF5EgECBAgEF8jt59R1wRMnPAIECAQVuNd0nkJ1MXHQhAmLAAECBDYJ3LuQ2MVVmwg9eWABDYIDJ9fSygQcZCtz8iwCBAgQ6EvAVVJ95Uu0BAgQIHBMIFfXOcl1zNWrCRAgQKCtgLqurb/ZCRAgMKrAveYJF1iNmm3rIkCAwDwCuSZ4F1fNsw1Y6bKABsFlHz+dROBeMaSTfJLkWyYBAgQGFbhXCNm3DZpsyyJAgACBPwTu1XVOctk4CBAgQKBnAXVdz9kTOwECBOIK5C6wUj/FzZnICBAgQGBZwMVVyz5+SiAJaBC0HRB4ElAM2QwIECBAYCSB3H7NVVIjZdlaCBAgQOBzgdz+z0muz6V8TYAAAQI9COT2a+q6HrInRgIECMQXsJ+JnyMREiBAgECZQK450E0zyvw8ax4BDYLz5NpKVwRyxZCTSStwfkyAAAECoQTsz0KlQzAECBAgcLGA/eDF4KYjQIAAgSoC9mdVWA1KgAABAp8J3LsLu2aKz5B8SYAAAQLhBe7deT0F7eKq8KkT4MUCGgQvBjddbIF7xVCKWJNg7LyJjgABAgT+FHCVlC2BAAECBAg8POTqOgcFbR0ECBAg0IOAuq6HLImRAAECYwhoSB8jj1ZBgACBmQVyzYH6O2beKqw9J6BBMCfj+1MK5A7AJQwnk6bcJCyaAAEC3QjYh3WTKoESIECAQGWB3EmuNO3vv/1UeXbDEyBAgACB/QLquv12XkmAAAEC+wRy9ZPGin2eXkWAAAEC1wnYh11nbaYxBDQIjpFHqzhRILcjcVv1E5ENRYAAAQKnC7hK6nRSAxIgQIBAxwLquo6TJ3QCBAhMLJCr61y4PPFGYekECBC4QCC3/9EkeAG+KQgQIEBgl4Bjf7vYvGhyAQ2Ck28Aln9fILdDUQzd9/JdAgQIEGgr4CBeW3+zEyBAgEBMAXVdzLyIigABAgTuC6jr7rv4LgECBAhcI/DV19/ench5sbssvkmAAAECDQXceb0hvqm7FtAg2HX6BF9TwMmkmrrGJkCAAIGzBOyvzpI0DgECBAiMKGA/OWJWrYkAAQLjCdhfjZdTKyJAgEBvAkvNFr//9lNvyxEvAQIECAwqsLS/cuf1QZNuWacJaBA8jdJAIwq4cnfErFoTAQIExhHInUT628sXD+/fvR1noVZCgAABAgQOCLgTxgE8LyVAgACB6gLquurEJiBAgACBQgH7pEIoTyNAgACBZgL6N5rRm3gAAQ2CAyTREuoK5E4m6UCv6250AgQIEFgWcJXUso+fEiBAgACBm4B95k3CnwQIECAQTSC3j3LRV7RMiYcAAQLzCOSaBP2q4Xm2ASslQIBAVAHNgVEzI65eBDQI9pIpcTYTyB2oSwG5rXqztJiYAAECUwss7Zs0sE+9aVg8AQIECGQEcie50tPVdRk03yZAgACBqgLquqq8BidAgACBAwK5+kmT4AFULyVAgACBQwK5fZOLqw6xevFkAhoEJ0u45e4TsMPZ5+ZVBAgQIFBHwFVSdVyNSoAAAQJjC+TqOie5xs671REgQCCqgLouambERYAAAQJJwH7KdkCAAAECUQRyx/Q0B0bJkDh6EdAg2EumxNlcILfjcTKpeWoEQIAAgakE7I+mSrfFEiBAgMDJAvajJ4MajgABAgR2CWi62MXmRQQIECBwscBXX397d0a/weQui28SIECAQAUBd16vgGrIaQU0CE6begvfI+Bk0h41ryFAgACBswRy+yFXSZ0lbBwCBAgQmEFAU8YMWbZGAgQIxBXI1XUuQo6bM5ERIEBgVoHcPit5/P7bT7OyWDcBAgQIXCigWf1CbFMNL6BBcPgUW+DZAk4mnS1qPAIECBAoEcgdkNMcWKLnOQQIECBA4LlA7uCi5oznTr4iQIAAgXMF1HXnehqNAAECBOoL2HfVNzYDAQIECNwX0Jdx38V3CewV0CC4V87rphVwG9tpU2/hBAgQaCZg39OM3sQECBAgMKjA0r7VnTAGTbplESBAoLGAfU/jBJieAAECBHYL5JoEXWC1m9QLCRAgQGBFwL5nBciPCewQ0CC4A81LCOR2SEnGySTbBwECBAicLZC7y9GP794+PL58cfZ0xiNAgAABAlMI5Oo6d+edIv0WSYAAgUsFlpoD1XWXpsJkBAgQILBTIFc/aRLcCeplBAgQIJAVyO1zHLPLkvkBgSIBDYJFTJ5E4EsBO6YvTXyHAAECBM4XcAv1802NSIAAAQIEbgK5us5JrpuQPwkQIEDgDAF13RmKxiBAgACB1gL2Z60zYH4CBAiML5C7uEpz4Pi5t8L6AhoE6xubYWABJ5MGTq6lESBAIICA/UyAJAiBAAECBIYXsL8dPsUWSIAAgaYCmima8pucAAECBE4UyDVtpCncEfdEaEMRIEBgUgH7mUkTb9mXCWgQvIzaRKMKOMg3amatiwABAm0Fcs0KrpJqmxezEyBAgMCYAuq6MfNqVQQIEGgtoK5rnQHzEyBAgMDZArl9W5rn999+Ons64xEgQIDARAK543Oa0CfaCCy1qoAGwaq8Bp9F4Kuvv727VL+W6i6LbxIgQIDAikDuKinNgStwfkyAAAECBA4I5Oo6ByEPoHopAQIEJhbINVCo6ybeKCydAAECgwjk9nHOiQ2SYMsgQIBAA4Fcc6B9S4NkmHJYAQ2Cw6bWwq4UyDVypBicTLoyE+YiQIBA/wL2Kf3n0AoIECBAoE8B++A+8yZqAgQIRBSwT4mYFTERIECAwJkCmgTP1DQWAQIE5hawT5k7/1Z/nYAGweuszTS4QG7HlZatSXDw5FseAQIEThJwEukkSMMQIECAAIGdAuq6nXBeRoAAAQIfBdR1Hyn8hQABAgQGF3C3p8ETbHkECBC4QCB3LM6d1y/AN8V0AhoEp0u5BdcUyO3A0pyaBGvKG5sAAQL9CyydRHIL9f7zawUECBAg0I+Auq6fXImUAAEC0QTUddEyIh4CBAgQqC3w1dff3p3C8cy7LL5JgAABAp8ILB2D+/23nz55pr8SIHCGgAbBMxSNQeATgaUdmSbBT6D8lQABAgQ+CjiJ9JHCXwgQIECAQAgBdV2INAiCAAECXQmo67pKl2AJECBA4CQB+7+TIA1DgACByQQce5ss4ZYbQkCDYIg0CGI0ATu00TJqPQQIEKgn4CBaPVsjEyBAgACBIwLquiN6XkuAAIG5BNR1c+XbagkQIEDguYD94HMPXxEgQIDAsoBjbss+fkqgloAGwVqyxp1ewI5t+k0AAAECBFYFHDxbJfIEAgQIECDQVEBd15Tf5AQIEOhCQF3XRZoESYAAAQKVBewPKwMbngABAoMIONY2SCIto0sBDYJdpk3QvQjYwfWSKXESIEDgegEHza43NyMBAgQIENgjoK7bo+Y1BAgQmENAXTdHnq2SAAECBMoE7BfLnDyLAAECswo4xjZr5q07ioAGwSiZEMewAnZ0w6bWwggQILBbwMGy3XReSIAAAQIEmgio65qwm5QAAQKhBdR1odMjOAIECBBoJGD/2AjetAQIEAgu4Nha8AQJbwoBDYJTpNkiWwvY4bXOgPkJECAQR8BBsji5EAkBAgQIENgioK7bouW5BAgQGFtAXTd2fq2OAAECBI4J2E8e8/NqAgQIjCbgmNpoGbWeXgU0CPaaOXF3J2DH113KBEyAAIHTBRwcO53UgAQIECBA4FIBdd2l3CYjQIBASAF1Xci0CIoAAQIEggnYXwZLiHAIECDQSMCxtEbwpiVwR0CD4B0U3yJQS8AOsJascQkQIBBfwEGx+DkSIQECBAgQKBFQ15UoeQ4BAgTGFFDXjZlXqyJAgACBOgL2m3VcjUqAAIFeBBxD6yVT4pxFQIPgLJm2zjACdoRhUiEQAgQIXCbgYNhl1CYiQIAAAQKXCKjrLmE2CQECBEIJLL33f/f6nw//fv0qVLyCIUCAAAECEQQcF42QBTEQIEDgeoGl+unHd28fHl++uD4oMxKYXECD4OQbgOW3EbBDbONuVgIECLQQcBCshbo5CRAgQIBAfQF1XX1jMxAgQCCKwNJ7vubAKFkSBwECBAhEFXB8NGpmxEWAAIE6Akv1k+bAOuZGJVAioEGwRMlzCFQQsGOsgGpIAgQIBBNw8CtYQoRDgAABAgROFlDXnQxqOAIECAQUWHqv1xwYMGFCIkCAAIGQAo6ThkyLoAgQIHC6wFL9pDnwdG4DEtgkoEFwE5cnEzhXwA7yXE+jESBAIJKAg16RsiEWAgQIECBQT0BdV8/WyAQIEGgtsPQerzmwdXbMT4AAAQK9CThe2lvGxEuAAIFtAkv1k+bAbZaeTaCGgAbBGqrGJLBBwI5yA5anEiBAoBMBB7s6SZQwCRAgQIDASQLqupMgDUOAAIFAAkvv7ZoDAyVKKAQIECDQlYDjpl2lS7AECBAoFliqnzQHFjN6IoGqAhoEq/IanECZgB1mmZNnESBAoAcBB7l6yJIYCRAgQIDA+QLquvNNjUiAAIFWAkvv6ZoDW2XFvAQIECAwioDjp6Nk0joIECDwp8BS/aQ50FZCII6ABsE4uRDJ5AJ2nJNvAJZPgMAQAg5uDZFGiyBAgAABArsF1HW76byQAAECYQSW3ss1B4ZJk0AIECBAoHMBx1E7T6DwCRAg8JfAUv2kOdBmQiCWgAbBWPkQzeQCdqCTbwCWT4BA1wJL7+FOInWdWsETIECAAIFNAkufCRwY3UTpyQQIELhcYOk9XF13eTpMSIAAAQKDC2gSHDzBlkeAwPACS/WTY2DDp98COxTQINhh0oQ8tsDSjtSByLFzb3UECPQr4L2739yJnAABAgQI1BDw2aCGqjEJECBQV8B7d11foxMgQIAAgXsCS02Cf3v54uHN61cPj09/ehAgQIBALIG//+u7h18+/O9uUJoD77L4JoHmAhoEm6dAAAS+FHBA8ksT3yFAgEBUAe/ZUTMjLgIECBAg0FbAZ4S2/mYnQIDAFgHv2Vu0PJcAAQIECJwrsNQkmGbSaHKut9EIECBwRMB79hE9ryXQVkCDYFt/sxPICiwdmExXTb1/9zb7Wj8gQIAAgWsElt6r3fX1mhyYhQABAgQIRBZY+qygroucObERIDCTwNKdL9R1M20J1kqAAAECLQXWGk7sk1tmx9wECBD4U2DpOFd6hoZuWwqB2AIaBGPnR3STCyztZN1affKNw/IJEGgq4IBVU36TEyBAgACBrgTUdV2lS7AECEwkoK6bKNmWSoAAAQJdCKR98/c//Cf7Kys1CXaRRkESIDCogONbgybWsqYS0CA4VbottkeBpZ1tWo9O/B6zKmYCBHoWWHtfdqCq5+yKnQABAgQI1BFY+/ygrqvjblQCBAjkBNbel9V1OTnfJ0CAAAEC9QWW7u7rTuz1/c1AgACBzwWW6ie10+daviYQV0CDYNzciIzARwFXNH+k8BcCBAg0FVgqglJgTu43TY/JCRAgQIBAaAF1Xej0CI4AgYkEluo6v7Fjog3BUgkQIEAgtID9dej0CI4AgYkElpq2NQdOtCFY6hACGgSHSKNFzCJgBzxLpq2TAIGIAmsHpd6/exsxbDERIECAAAECgQT8yqxAyRAKAQJTCizVdU5uTblJWDQBAgQIBBZY2m+nsF2sHTh5QiNAoHsBF7p2n0ILIPCFgAbBL0h8g0BsgaWCyK3VY+dOdAQI9CugQbvf3ImcAAECBAhEFFj6bKGui5gxMREgMILA0nuv5sARMmwNBAgQIDCigAaVEbNqTQQIRBdY6kdIsaufomdQfATuC2gQvO/iuwRCC6ztlF01FTp9giNAoCMBB6A6SpZQCRAgQIBAZwJLdZ1fcdlZMoVLgEBogaX32xS4k1uh0yc4AgQIECDw4E7sNgICBAhcJ7BUP7mo9bo8mIlADQENgjVUjUngAgFNKxcgm4IAgakFloqgBOMk0tSbh8UTIECAAIFTBNY+b7j46xRmgxAgMLHA2vusum7ijcPSCRAgQKA7gaW7AWta6S6dAiZAIKDAUv2kdgqYMCER2CigQXAjmKcTiCTgqqlI2RALAQIjCSwVQWmdTtaPlG1rIUCAAAECbQVc/NXW3+wECIwrsFTXaSIYN+9WRoAAAQJjC6zt39+8fvXw+PLF2AhWR4AAgZMF9BycDGo4AkEFNAgGTYywCGwRWLpqSjf/FknPJUCAwMPD0kEm76m2EAIECBAgQKCWgLqulqxxCRCYUUBdN2PWrZkAAQIEZhFY2s8nAxd3z7IlWCcBAmcIrL2nOi92hrIxCMQQ0CAYIw+iIHBYYGnnna6KdtXUYWIDECAwgYAT8xMk2RIJECBAgEBggbW67v27t4GjFxoBAgTaC7jzRfsciIAAAQIECFwh4E7sVyibgwCB0QWWjkOltWu4Hn0LsL7ZBDQIzpZx6x1awE586PRaHAECFQXW3j9dIVUR39AECBAgQIDAM4GlzyUu/npG5QsCBAg8E1h6/0xPVNc94/IFAQIECBAYQsAF30Ok0SIIEGggsFQ/peNPLlJtkBRTEqgsoEGwMrDhCVwt4Kqpq8XNR4BA7wJLRVBam5NIvWdY/AQIECBAoD8BdV1/ORMxAQJtBdbqOne+aJsfsxMgQIAAgZoCS58DNLnUlDc2AQK9Cmiu7jVz4iZwTECD4DE/ryYQUsCvUwmZFkERIBBQwMGjgEkREgECBAgQIPCHgLrOhkCAAIEyAXVdmZNnESBAgACBkQXWPg+8ef3q4fHpjlgeBAgQmFnABakzZ9/aCTw8aBC0FRAYWGCp+9+vpho48ZZGgMCqgBPuq0SeQIAAAQIECAQRUNcFSYQwCBAIJ6CuC5cSAREgQIAAgaYCGl+a8pucAIHgAkuN1Cl0v00reAKFR+AEAQ2CJyAagkBkATv7yNkRGwECLQS8L7ZQNycBAgQIECBwRMDnlyN6XkuAwIgC3hdHzKo1ESBAgACB4wJrFxC4ecZxYyMQINCfwFr99OO7t+6y2l9aRUxgs4AGwc1kXkCgP4G1nb6CqL+cipgAgX0Ca++HrpDa5+pVBAgQIECAQH2Btc8x6rr6OTADAQLtBdZO+qcI1XXt8yQCAgQIECDQWmDpTuwpNp8XWmfI/AQIXCFQcizp/VNzoAcBAnMIaBCcI89WSeBh7dbqiUhBZEMhQGBUgbUiKK3bFVKjZt+6CBAgQIDAOALqunFyaSUECGwXUNdtN/MKAgQIECAws8DaZwcXWc28dVg7gfEF1t4D9QWMvw1YIYHPBTQIfi7iawKDC6xdNaUgGnwDsDwCEwoogiZMuiUTIECAAIHBBUrqOleAD74RWB6ByQTW3vec3Jpsg7BcAgQIECBQKOAiq0IoTyNAYBiBtXNiaaHqp2HSbSEENgloENzE5ckExhBQEI2RR6sgQGBZQBG07OOnBAgQIECAQN8CJZ913CG57xyLngCBh4eS9zont2wpBAgQIECAwJrA2sUGbp6xJujnBAj0ILBWP6mdesiiGAnUE9AgWM/WyATCCyiIwqdIgAQI7BRQBO2E8zICBAgQIECgK4F08df3P/zn4ZenP3OPdKLL3QRzOr5PgEBkAXVd5OyIjQABAgQI9Cfg5hn95UzEBAiUCazVTmkUzYFllp5FYGQBDYIjZ9faCBQIlBRE7jpRAOkpBAiEEFAEhUiDIAgQIECAAIGLBUo+A6nrLk6K6QgQ2C1Q8p7m5NZuXi8kQIAAAQLTC5TcPMNFVtNvJgAIdCOwVj+pnbpJpUAJVBfQIFid2AQE+hBQEPWRJ1ESIJAXUATlbfyEAAECBAgQGF/A3QTHz7EVEphBQF03Q5atkQABAgQItBdw84z2ORABAQLHBNZqpzS65sBjxl5NYDQBDYKjZdR6CBwQKPkg4a4TB4C9lACBKgIl712KoCr0BiVAgAABAgQCCpR8NlLXBUyckAhMLlDy3qWum3wjsXwCBAgQIFBBwM0zKqAakgCB6gJr9ZPaqXoKTECgSwENgl2mTdAE6gm460Q9WyMTIHC+gCLofFMjEiBAgAABAv0LlNR1Dhb3n2crIDCKgLpulExaBwECBAgQ6FNg7bNIWpWLrPrMragJjCZQ8n7leM9oWbceAucJaBA8z9JIBIYSKPmAoSAaKuUWQ6ArgZL3KEVQVykVLAECBAgQIFBBYO0z099evnh48/rVw+PTnx4ECBC4WmDtPSrFo667OivmI0CAAAECcwqUXGSV6qf3797OCWTVBAg0F1irn9ROzVMkAALhBTQIhk+RAAm0EygpiHzYaJcfMxOYVUARNGvmrZsAAQIECBDYI6Cu26PmNQQI1BZQ19UWNj4BAgQIECCwR2DtM0oa080z9sh6DQECewVK3pecr9+r63UE5hLQIDhXvq2WwC6BtQ8e7jqxi9WLCBDYKLD2XpSGUwRtRPV0AgQIECBAYBqBtc9S6rppNgULJdBUYO29KAWnrmuaIpMTIECAAIHpBVxkNf0mAIBAGIG1+kntFCZVAiHQhYAGwS7SJEgC7QVKCiInlNrnSQQERhVQBI2aWesiQIAAAQIErhQoqescXL4yI+YiMJeAum6ufFstAQIECBDoXWDts4tzYr1nWPwE4gqsvf+kyB2/iZs/kRGIKqBBMGpmxEUgqIAPJEETIywCgwp4zxk0sZZFgAABAgQINBXwGaspv8kJTCfgPWe6lFswAQIECBAYRqDkIiuNgsOk20IINBdItVN6vP3hv9lYvOdkafyAAIEVAQ2CK0B+TIDAlwIlBVF6lSsXvrTzHQIEygRKTiApgsosPYsAAQIECBAgcE+gpK7zeeuenO8RIFAqUFLXOXZUqul5BAgQIECAQEuBks816qeWGTI3gf4FSt5n1E/959kKCLQU0CDYUt/cBDoXKPmgoiDqPMnCJ3CxQMn7SgpJEXRxYkxHgAABAgQIDCtQ8vlLXTds+i2MQBWBkveVNLG6rgq/QQkQIECAAIFKAiUXWaWp1U+VEmBYAoMKlNRP3lcGTb5lEbhYQIPgxeCmIzCagIJotIxaD4E2AqkASo+l26ann6cTSI8vv3n670X60oMAAQIECBAgQOAEAXXdCYiGIEDgoeTEVmLSGGhjIUCAAAECBHoW8Jmn5+yJnUAcAe8lcXIhEgKzCGgQnCXT1kmgsoATSpWBDU9gYAFF0MDJtTQCBAgQIECgKwF1XVfpEiyBMAKppkuPtQu+0nM0ByYFDwIECBAgQGAEgb//67uHXz78b3UpPv+sEnkCgakEnBObKt0WSyCUgAbBUOkQDIH+BdIJpX88FUVrD7dCXhPycwLjCyiCxs+xFRIgQIAAAQJ9CpR+Tkt13ft3b/tcpKgJEDhFoPT9wonxU7gNQoAAAQIECAQTcJFVsIQIh0BgAbVT4OQIjcAkAhoEJ0m0ZRK4WsCHnKvFzUegHwHvD/3kSqQECBAgQIDA3AI+t82df6snsCTg/WFJx88IECBAgACB2QQ0Cs6WceslUC6Qaqf0WLvjerqoKj3+/frVH3/6HwECBM4W0CB4tqjxCBB4JuAW6884fEFgagEnkKZOv8UTIECAAAECnQqUnuhKy/vx6W6Cj093FfQgQGBcAXXduLm1MgIECBAgQOC4QGn95LdsHbc2AoHoAun94OcPv642BqZ1uON69GyKj8AYAhoEx8ijVRAILaAgCp0ewRGoLuAEUnViExAgQIAAAQIEqguo66oTm4BAaAF1Xej0CI4AAQIECBAIJpDqp3/867vVqDQKrhJ5AoEuBdRPXaZN0ASGF9AgOHyKLZBAHAEnlOLkQiQErhDYUgCleNw2/YqsmIMAAQIECBAgcExAXXfMz6sJ9Cawpa57fPmNu4j2lmDxEiBAgAABAlUFtnyWcny8aioMTuASAf/mL2E2CQECOwU0CO6E8zICBPYLOKG0384rCfQgkAqg9Hj7w39Xw3Xb9FUiTyBAgAABAgQIhBRQ14VMi6AInCZQWtelu96k/5zQPo3eQAQIECBAgMCAApqGBkyqJRH4RMC/8U8w/JUAgbACGgTDpkZgBMYXcEJp/Bxb4XwCiqD5cm7FBAgQIECAwNwCpZ///OqsubcTq+9LoPTftQu++sqraAkQIECAAIG2As6JtfU3O4EaAmqnGqrGJECgloAGwVqyxiVAoFig9MOTE0rFpJ5I4FKB9G84Pdwx8FJ2kxEgQIAAAQIEQgmo60KlQzAENguo6zaTeQEBAgQIECBAYJfAlkZBd2reRexFBKoLlB4DSRdVpYc7rldPiQkIECgQ0CBYgOQpBAhcI1D6YUqj4DX5MAuBNYHSf7NpHHeWWNP0cwIECBAgQIBA/wKlJ7rSStV1/efbCsYQUNeNkUerIECAAAECBPoTUD/1lzMRzy2Q/s3+/OHXoptlJCnnxebeXqyeQEQBDYIRsyImAhMLbCmIEpOTShNvLJbeTMAJpGb0JiZAgAABAgQIdCGwta5LB80fX37z9N+LLtYnSAIjCKjrRsiiNRAgQIAAAQIjCGypn5wTGyHj1tCbQKqd0qPkt2il52kMTAoeBAhEFNAgGDErYiJA4OkKjP89fP/0geuXpz9LHoqiEiXPIbBfYE8B5CTvfm+vJECAAAECBAiMIKCuGyGL1jCSwJ66zq/CGmkLsBYCBAgQIEAgssCWCzjSOlxoFTmbYhtBYM+/SfXTCJm3BgLjCmgQHDe3VkZgCAEnlIZIo0V0LLCnAErLVQR1nHShEyBAgAABAgROFlDXnQxqOAIbBdR1G8E8nQABAgQIECDQUCB9dks3z3ADjYZJMPW0AunfX3qU3i0wPdcdA5OCBwECPQhoEOwhS2IkQGDzHQUTmbsK2nAI7BNIJ3B//vCrAmgfn1cRIECAAAECBAhkBLY2CqZh1HUZTN8msCKgrlsB8mMCBAgQIECAQHCBrfWT2il4QoUXWmBrY25qCkwPN8sInVbBESDwmYAGwc9AfEmAQHwBRVH8HImwT4GtV0alAw7pPwVQn/kWNQECBAgQIECgpYC6rqW+uUcW2HpiS1038tZgbQQIECBAgMAIAltrp7RmzYIjZN4arhBI9dPWuwU+vvzm4fHp3JgHAQIEehPQINhbxsRLgMBHga1FkYPeH+n8hcAzgT0FUBpAY+AzRl8QIECAAAECBAjsENhT1715/crB+B3WXjK2wJ66zomtsbcJqyNAgAABAgTGE1A/jZdTK7peINVO6bG1MdA5setzZUYCBM4V0CB4rqfRCBBoIJAKoq2/DtXVUw0SZcpQAgqgUOkQDAECBAgQIEBgeoGtJ7oSmLpu+s1megB13fSbAAACBAgQIEBgUoGt9ZPaadINxbKfCey5qCoNoDHwGaMvCBDoWECDYMfJEzoBAl8KKIq+NPEdAp8KpALol6em2vRfyeO71//842kKoBItzyFAgAABAgQIEDhDQF13hqIxRhZwYmvk7FobAQIECBAgQKBcYGvtlEbWLFju65ljCOypn5wTGyP3VkGAwHMBDYLPPXxFgMAgAoqiQRJpGacIpOInPbbeLt2vmzqF3yAECBAgQIAAAQI7BbbWdelEV3r4FcQ7wb0stMDeus6JrdBpFRwBAgQIECBA4DSBPfVTqp3S4/GvWuq0YAxEoLFAqp+23CwjhZtumKF+apw40xMgUFVAg2BVXoMTIBBBYM+HQFdQRcicGI4I7Dl5lOZTAB1R91oCBAgQIECAAIEaAulE188fft18cF9dVyMbxrxSQF13pba5CBAgQIAAAQJjCGxtFEyrdrHVGLmfeRV7jxv4LVozbzXWTmA+AQ2C8+XciglMK7CnKEpYt5NK6e+uokoKHlEFjpw8SmtyZVTUzIqLAAECBAgQIEDgJqCuu0n4c1SBPRc5JgsntkbdIqyLAAECBAgQILBP4NYwteU3C6WZNAvu8/aq6wX2nhNLkbpZxvX5MiMBAu0FNAi2z4EICBC4WGDvCaUUpmbBi5NlukWBW4G/9Tbpt0EVQDcJfxIgQIAAAQIECPQmoK7rLWPizQmo63Iyvk+AAAECBAgQIHCWwBn1kxtonJUN4xwRONIUmM7xpv/cLONIBryWAIGeBTQI9pw9sRMgcFjgaFGUAnjz+pU7Cx7OhAFKBW4nj7Ze9XcbXwF0k/AnAQIECBAgQIDAKALqulEyOc86jpzUSkrqunm2FSslQIAAAQIECJwpcKR2SnGkz6HpnFh6aBj8g8H/LhA4Wj+52/oFSTIFAQJdCGgQ7CJNgiRAoLZAKorS4/sf/vOQ7sa253ErjBRFe/S8ZklA8bOk42cECBAgQIAAAQIE/hQ4Wtelmi49XAT2p6f/nyugrjvX02gECBAgQIAAAQLHBG7NgmmUPefFbufE0uudF0sKHmcKpPpp72/PSnFoCjwzG8YiQGAUAQ2Co2TSOggQOFXgVhjtKYpSILfCSFF0alqmGszJo6nSbbEECBAgQIAAAQIVBNR1FVANuUlAXbeJy5MJECBAgAABAgQaCdxqpzT9nvNiLrZqlLiBpk3b4M8ffn04+tuzHl9+o2F1oO3CUggQOFdAg+C5nkYjQGBAgVthtKcoShy3ZsH0dw2DScEjJ+CKqJyM7xMgQIAAAQIECBA4JqCuO+bn1WUCt5Na7nRR5uVZBAgQIECAAAEC8QTSZ9r02PsbtzQLxstp1IiOXlCVtrX037//+rXXUdcpLgIECEQR0CAYJRPiIECgC4HbSaUU7J6GwVthlP50FUsXKa8W5O3EUZpg7xVR6bXpNum2pSThQYAAAQIECBAgQKBMQF1X5uRZ6wJn1HW3k1rqunVvzyBAgAABAgQIELhe4FY/7TknlqK9nRd781cTlxtpXJ/DKDPeGgJdUBUlI+IgQGA2AQ2Cs2XcegkQOE0gFUXpsfcqqlsgiqObxLh/fnrS6Ejhk4RuJ49cETXu9mJlBAgQIECAAAEC1wncPquf8Tk9Re2k13W5u3qm27aS5j1ykVd6vbouKXgQIECAAAECBAj0JpA+Ex89J5bWfPs8nC6SSQ9Ng38wDPW/M5oBbyDpRhnp4bzYTcSfBAgQ2CfwfwAAAP//5X2VngAAQABJREFU7N0FmCTF2QDgSvAAgeRPsOAuQRNcgrvLHa6HuxPcXQ/XgwMOONxdgksgQHAJEkKwJBBICBb+qt700js7Ozu7PbM7e7zNw03PdHd19Vs9M91b33z1g39/+s9vg4kAAQIESgk8/MQz2fYnnHFReOR/82UKXHDeObPNd99uk+xxof89L1OmbftGIJ0LDz/xdLazdC404nzYbbuNs/L2+N/50DdHYi8ECBAgQIAAAQIEvl8C7uu+X+1d62jd19XSsYwAAQIECBAgQIBAiP0gz4TUJ5amRvSDpH6x9P9C886VlalfLGMYEP8cXzgPGnEupINO/WLpXHAeDIhTQCUJEBggAj8QIDhAWko1CRAYUAL5jVGjLoTTwQsabL1ToBmdRvlRCgrMJTwSIECAAAECBAgQ6B8B93X9497Xe3Vf19fi9keAAAECBAgQIDCqCeTX1KlPrFH9YnmfWB40KFCsNc6avK1TbU48Y3jDKpXaWVs3jFNBBAgQqCogQLAqixcJECDQOIG8UymV2Kgbo7x2+Q2STIO5SPMeizc9jbzJzWuc3/yk5zIF5ioeCRAgQIAAAQIECLSGQLPv6/KOkHS0Or6a1+Z9dV8n00Xz2lDJBAgQIECAAAECrS2QrrnT1KgRt4pHm/eJ5fdP7p2KOo2fL94/NTIYMK9p3i+mTywX8UiAAIHmCggQbK6v0gkQINBJoHhzlBY2I2gwv0nKU7Gn/bhRSgq1p7xt8iGC09rNCAZM5eYZAnUcJQ0TAQIECBAgQIAAgYElkHeU5Pdz+WOjjiLvKEnlua/rmWpf3ddVtpF77p61k7UJECBAgAABAgS+HwL59XkjhyMuyuX9Yfljfv/k+ryo1PV83j7FfrFmBgOmmggI7Lo9LCFAgEAzBQQINlNX2QQIEKhToNmdS8Vq5DdJ6bV8Pr9hSq+NqjdNuXE6xnzKO/Hyx/z1Rj8KBmy0qPIIECBAgAABAgQItJ5Afs+R31/kj82oaX4vl8rO50f1+7pqHVfp+HPn/DG91ozJfV0zVJVJgAABAgQIECDwfRTIr+2bFTRYaZrfM6XX0/yofu+UjjM3Lgb+5fdM+WNarxlTMs7Nk/Wo2u/YDDtlEiBAoJkCAgSbqatsAgQIlBAodi41+2K9WjXzi/e0LJ9vxZum/rzJqeam06iaitcIECBAgAABAgQIfP8Eivcq6Z7OfV31c6DoVFwj98ofi8uaPe++rtnCyidAgAABAgQIECDQUSC/L+iroMGOe/+uHyy9rk+sUqfr58mq6CUYsGsrSwgQINDfAgIE+7sF7J8AAQJ1CuQ3R+nXPv3VuVStqvmFf7Vl6bXulne1Xa1OoFrLuiqvGa8Xb3ykRG+GsDIJECBAgAABAgQIjFoC7uu+a89Wu6+T2eK7tjFHgAABAgQIECBAoBUE8vun/goarGZQT59XPetUll3r/qjWsspymvm82Cfm/qmZ0somQIBAcwQECDbHVakECBDoE4H85qjVggb75OD7eCfFGx/BgH2Mb3cECBAgQIAAAQIERmGB/L6ulTq9RlVu93Wjass6LgIECBAgQIAAge+LgPunvmnp4r2TYMC+MbcXAgQINFtAgGCzhZVPgACBPhbIb47SblPgYJqKvy4qzmcL/ZMJpJudNOWPaT4fUllK9KRhIkCAAAECBAgQIECgrwRq3de5p+u6FfL7ufwxrakzq2svSwgQIECAAAECBAiMCgL5/ZM+sfpbM79nyh/TlvrE6vezJgECBAaigADBgdhq6kyAAIEGCOQ3TKmoPANhXuyo1OGU39zkj+kY3eTkLe2RAAECBAgQIECAAIGBLOC+Lt3ftf3YayC3o7oTIECAAAECBAgQINBcgcp7p7S3Yl9Ycb65NWlu6XlfWP6Y702/WC7hkQABAt9fAQGC39+2d+QECBCoS6Dypql4k1Scr6uwBq6U39zkj6loNzgNBFYUAQIECBAgQIAAAQKjjEB+X9dqGTXy+7n8MYG7rxtlTjsHQoAAAQIECBAgQGDACeT3TqnirXj/VLx3SnV0/5QUTAQIECBQj4AAwXqUrEOAAAECPRIo3kD1aMMqK8sGUQXFSwQIECBAgAABAgQIEGiygPu6JgMrngABAgQIECBAgACBUUagUfdP+sRGmVPCgRAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck2iQgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLyAAMHyhkogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItJyBAsOWaRIUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB5AQGC5Q2VQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWk5AgGDLNYkKESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB8gICBMsbKoEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLScgADBlmsSFSJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUFBAiWN1QCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoOQEBgi3XJCpEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKCwgQLG+oBAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HICAgRbrklUiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIlBcQIFjeUAkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDlBAQItlyTqBABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgvIECwvKESCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAywkIEGy5JlEhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXkCAYHlDJRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYTECDYck3SmAp9/c034XcPPdmQwqafdoow1eSTNqSsZhfy3vsfhedf/lO2m9lmmjZMMvHPmr3LPi3/xVffCO/+9cNsnwvPP1cYe6wx+3T/dkaAQP8K+AzoX397bxN4/a13wptvvZs9mXfuWcOPxx8PDQECBAgQIECAAAECBAgQIECAAAECBPpMQD9oCKNKP+h/vvgyPPTY09m5M+kkPwuzzjhtn51HzdhRs47n4SeeCZ9//kUYZ5yxwkLzztmMqje0zE8/+1d48pkXwzff/Le93GmnmTxMM8Vk7c+LfV4LzTdnGGfssdqXjSozxWNsZN/+qB4TMaq0v+Mg0GoCAgRbrUUaVJ9/fvpZmHnB1RpS2r67DQk7bL5eQ8pqdiEjb7gj7LLvMdluTjpirzB4teWavcs+LX/XA44NV1x7e7bPx++4LEw+2UR9un87G1gC3377bVbhH/zgB02r+Ct/ejucO/yq8N///jdstfHaYabpp27avkbFgnvaRj4DRsWzYOAd05GnnBdOO/eyrOI3XXZ6mGf2mfvsIPL3TNphMz/b+uyA7IgAAQIECBAgQIAAAQIECBAgQIAAgR4L6AcNobf9oOlvrJdcdVO4/d5HwtKLzRc2HrRq+OEPf9jjNmjUBn/56wdh3mXa+qEHrb5cOPnwvUoX3Z/H2IzjSSDzL7dB+PNf3ot9wxOHx+8YUdqoWQX86/P/hJ32PTrcc/9j4YsY/Fmcdtt+47DHtpu0v7TbAceFy6+9LXv+WDymKeKxDaTp408+Deddek2WvGijtVcKSy46X6fqN6tfb1SPiegE6QUCBBoiIECwIYytV4gL495fGLdea35Xo2ZdRHy3B3OjisAbf343LLzCRtnhbBAvSo87eLemHNrKG+wYnnrmhazsOX85c7j18tObsp9RsdDetJHPgFHxTBh4x9SfAYJzLzU4vB+zBU8z1eThoZsvGnh4akyAAAECBAgQIECAAAECBAgQIECAQGkB/aC97we97+Enw/pbfReEd8mZR1UNbCrdSHUW0IyAuv48xmYcT6IcKAGCV910Z9hpn6Ortv6oFiBY7CsZK4769/S9V4YJftxxxKVm9esJEKx6inmRAIFuBAQIdgM0UBd/9fXX4eY77++y+i+/9lY45exLsuXzzDlrGLLhGl2uO+tM04cZp52yy+WttGBU/zJs1kVEK7WhujRGoDfBZz3d85dffRVmWWi1LKV52nbsmPr7pUeuD2OOMUZPi/pert+bNvIZ8L08VVruoIs3vX2dQVCAYMudDipEgAABAgQIECBAgAABAgQIECBAoM8F9IP2PkDw5HMuCccOHdbeZnvutGnYdau2hBPtL/bhTDMC6vrzGJtxPKk5BkqA4Ebb7Rfuvv/R7AwafsaRYd65Zms/m1IQ3djx/3wa6BkEBw3ZKzz46JP54YTrLj4lzDf3L9ufp5lm9euN6jERHRA9IUCgYQICBBtGObAKeujxp8M6m++eVXqV5ZcIZx+//8A6gC5qO6p/GTbrIqILTi8PYIHeBJ/15nD3PXJouHDE9dmmGw1aJRxz4C69KeZ7uU1v2shnwPfyVGm5gxYg2HJNokIECBAgQIAAAQIECBAgQIAAAQIECBQE9IMWMCpm//zu+2HJ1TYPaSjYH40zdrj72vPCVJNPWrFW3z1tRkBdfx5jM44ntcZACRBcYd3twzPPvZSdW689cXPNE2mgBwjecPt9Yfu9jgjffPPfMMN0U4V743upcrjuZvXrjeoxETVPHAsJEOi1gADBXtMN7A1dGA/M9mvWRcTA1FDrWgK9CT6rVV6tZc+9+Gr45r/fhjlnm7HWapZVCPSmjXwGVCB62i8CAgT7hd1OCRAgQIAAAQIECBAgQIAAAQIECBCoU0A/aG2oFBz4yBPPhAV+PUcY70fj1F65yUubFVDXX8fYrOMZaAGC48bg01dH8QDB9NZ47/2PwkuvvxUWnX/uMNpoP+z0bmlWv54AwU7UXiBAoA4BAYJ1II2Kq7gwHpit2qyLiIGpoda1BHoTfFarPMsaL9CbNvIZ0Ph2UGLPBQQI9tzMFgQIECBAgAABAgQIECBAgAABAgQI9J2AftC+sy67p2YF1JWtV2+3b9bxCBDsbYv073bN6tcTINi/7WrvBAaqgADBgdpyJetd9sL422+/Dc+/9FpIKZrf++CjMN5444bJJv55mG2m6cKEE4zf69r9/R8fh+df/lN49/0Pw+effx4mmXiiMOUvJgmzzjhtXWX29MvwHx9/El7509vxON4L//rXv8MvJp0kTBH3N1NMA9ys6Z13Pwh/fPGV8Ld4rFNNPlmYdqrJw2ST/Dz84Ac/6HaXzbqI6HbHPVihzPH1YDe9WrU/2juv6JdffZWlmB5zjDGq/oIkX+/rb74Jz77wangnnpMf/f3j8LOfThgmn2ySMOesM9bcLt8+f+xN8Fm+bbXHVK+vvvo6q0M6hrLTy6+9GVId33v/gzDuuOOGX0wyUZjzlzOF9Iui/pz6sl69aaNanwEphfnb8bx5L35+/vxnP82GBBhj9NF7xdmo87DenTf6vdmMz6GPP/k0/Pkv78dhF/4dP7MnCpNPOlGnVPHpeNP341/++mH8HvsgTPzz/ys1NENfno95W6Vfu6Xv4b+891748fjjhRmmmTJMM9UUcTiAsfJVQm8CBNP5+eobb2Wfb8louqmnCNNN9YvwkwknaC+3npm5lxoc3o91nCZ+dz5080X1bNJpnX98/M/wbMx8+ubb74TJJp04TDPlL0q9XzrtwAsECBAgQIAAAQIECBAgQIAAAQIECPSrgH7QxvGnv+e+FPt0Ul/qu399P4w/3nj/60udOkzw4/FK76i7gLp/fvpZ/Nvyn8NoP/xh7DOeOPz0JxOW3mdXBeR/H3/nr38NY401Vpg09n3PMcv0Pfo7drOOR4BgW6v1df9VV+dKva/X6tf78KO/Z+f262++HcYee+wsJmKu2Fc61phjdlt8T2Mi8gL7o98p37dHAgT6X0CAYP+3Qb/UoLcXxp//54tw1vCR4fKrb4uBEu91qvuY8QtrmcUXDDtusV6YY7YZOi3v6oUnnn4+nH7BFeHe+x8LX339dafVpo6d9xuss2LYcsO1Qq3gpHq/DN9656/hlLMvCdfcdHdIgVuV0ywx0HGnLdcLqy2/ROWiXj3/9LN/hX0OPyXc88Dj4ZMYZFI5zTX7zOGI/XYMc/9y5spFHZ7XuohIF8hzLr5Otv5vFp43XDj00A7b5k9OOffScPJZl+RPs8dhQw8Liy/86w6v5U9+tfR6IQVuTjXFZOG+687PX+7w2Ijju/XuB8N2ex2RlXvYb7cPG669cod9VHtyw+33hZ33PSZbdPSBO4fBqy1fbbXQV+2958EnhqtuvDOrw3MPXhv+GgO1kvUf/vhSDET5SxY4dOzBu1Y9tpTq/NTzRoTLrrktfPjh3zodxyTxJmT9tVfI3luVF4aP/+G5MHjInh22ifdr4csvv8xeSymtR68SKHb3teeFaeN7K5+uvumusMdBJ2RPzzvpkLDgvHOGI04+J/z+6RfCSzFgKL03V1txiXDmsfvnm4TiNscdsltYe+Vl2pdVzqSbyMuuvSWcd8l14aVX/lS5OAsOXHWFJcOe228Sg4N/1mn5mReODMeeOix7ff/dtwpbrL9Gp3UqX/jjC6+FVTfaMXt58UXmC8NOOaRylaxdytSrU4FVXmhUG1X7DHjy2RfDwceeGf74/CsdPs8miMHa66y2TNh35y3D2GN1fzORql3mPKxy2N2+1Mj3ZiM+h1KFK9/HX8fA2N3j++L2ex7Mgnzzg0oBagfE83D5JRfOXwrpc+yIk84Lf3rzz+2v/TwGCc4/z+zhsL23CxNP9H/tr3c1U/Z90lW53b3+7POvhuPPuCh+Tz0W/vvf/3ZYPX2GbDR4lbD3Dptnf/DpSYDgyzG1/m8POyU8/dxL4T/xGqJyWmPlpcIBu25V9T0/7a9XzN6fxW2++KLtcy0F1Y85Zudg5fRduv6aKxY3yebTMZ10ziXh8mtuDX+JgfqVU/qMTe25xopLVi7ynAABAgQIECBAgAABAgQIECBAgACBASbwfe8H7a65Fl1lsyxRRUpQ8cCNbf0uldukv1WPvOH2cNp5V4TX33i7cnEMoBszrLdWW79VCqTr7VQtoC71R58c/5572dW3ho/+9o8ORc879y/DnjtsGhaJQ7rWmuo5xnz7p597OZxwxvBw74OPd/r7eOr7XnOlJcMh+2wfxh/3R+Gci68OR518XrbpPbHfdJrYf1qcmnU83QUIHnjs6eHiK27KqnLHVWdnP/4v1qva/L5HDs2M07L7rr+gxwkPqv0N/8svv2r/u346Ryqn808+JCy56HzZy7sdcFy4/NrbsvnH7hgRpphs4srV25+X7b+6+Mobw4FHn5GVN/10U4Ybhg8N44z9XWKE9h0VZlK//pBdD86OJyU7uGXEaR36Mt5974Ow8EqbZFusvcoy4biDdyts3TZbrV8v9Rnud+Rp4fmYyKBy+ulPJoj9wSuGXbbaqEPihsr16o2JSNv1V79TZZ09J0Cg/wUECPZ/G/RLDXpzYfxqvPjbardDw8uvvtFtnVPWqt/uOiRss0lbwFpXG6QvpJPPvSScePrwDoEXXa0/+2wzhnNPPCiLoK+2Tj1fhimz1Errbx9SVH4+paDD8cb7UQyE+yR/KXvcaesNwj47bt7htZ4+ef7l18OQXQ4Ob8VsafmUfMYYY/Tw7xgUlk8p2OGoA3YKGw9aNX+p02O1i4jiSgssv2F4OwY/pkCHp+6+vLiofX5QDCR78NGn4kXF2DGA7KuQfmmx/ZD1wn67DGlfJ59JRnnQ4SoxWPLs478LDMvXadTx3Xzn/WHLXduCt5LDJoNXy3fR5eO1t9wTtv9fUOHxh+5eNSikL9u72D6P3n5pFrRXbPd0INUCBFMWyy12PqjTDVY6J9J7pDjNNuv0YdjJh8WsghO1v/zok8+GNTfZtf15vTMPxOxb08Ugp3wqvn8uOPWwcMV1t4fbY8BTcaoMECxuc9IRe8UgzeWKq7fPp+CtHfY5Ktx53yPtr6WZaseYLn7PPG7/sOgC83RYN91Uzbfs+pnJ3HPMEm6OF+LdTYeecHY4a9jIbLXTj92vU/BPI+rVXR3S8ka1UfEce/yOy8KNd9wXDj/hnE7nSbFOiyzwq3BhbM9iBrji8ny+7HmYl1PvYyPfm436HEp1Lxr/4Z6RYdOdDgzPxOC2alP6LB9xzjFh4fnmCg/Ez9UNtt4n+0yttm4KdL962AnZLw6rLU+v9dX5WLn/EdfcHPY9/LT2oOLK5fnzn/3fT8Itl50Rhl95Qzjt3Muyl2+67PQwTwxyrzZdf9u9YY8Djs8CT/Pl48RMhF9/FTOSFn4MkL6Prr3olDB7/HwrTr+Yfema53Zx3Xy+2mdsyhi43d5HhN899Pt8teyzZ9wfjRM+i9mDi1PlZ1xxmXkCBAgQIECAAAECBAgQIECAAAECBAaGwPe5H7SeFuou2CyVUfyheF5m+hvxx/HvralvMZ8mjgkfbrh4aM3grnzdao+VAXUHxh9yr7T+jh36VSu3S0F75558UFhmsQUqF7U/r+cY08oXXHZdOOSYMzv8zbq9kMLMfDERwGWxP+DCy68Phx1/drbkwVuGd0jEkV7sr+NJwX4Xjrg+q9d9NwwLM047ZTZf65+UMOHSq27OVnn41ovD1BXBjrW2Tct68zf84WccGZZebP6s6HoDBBvVf7X9PkeGa2PyoDStveoyYeiR+2Tz1f5J7bj02ltliX9SEoXLzjm2U1BqZVuffPhenYoq9jmlfr1b7n4gHHxMW6Bip5ULL8w0wzRhWEwG1FWb9GX/bKFaZgkQGOACAgQHeAP2tvo9vTBOGeSWXGur8MEHbZnN/i8Oe7pzDJ6bc7aZsuF4P4qBdSkj2JU33tUhoOjwmMln8/VW77Ka6dcfxw797pcpKQht9RUWD7PEIYV/MsGPw8uvv5llXzvlnEuzC85U0JSTTxrujL98GD8Oa1w51fNluPrGu4THn/pjtumm668WVl1u8TBXzNyXMmylIMiHHnsqnHvxteGNt97J1hl69D41s6JV1qH4/G9xiNgFltsgC474YUx9vd6aK4RtNhsUpo5DC6eLiQ9iprjLrrstDI3H9/nnX4QUOHH3Ned1+WVfeRFRDBJL+90yBnDefMfvsio8HzPY/WTCHxerk13czrzgqtm+dt56wyyjUwqYmGfOWcNNl57aYd305L64bP2t985e33+PrcJ2mw7usE4jj69ZAYJ92d7F9knnZwr2mSOmgv7VnLNkw0gnvMUXmjcbijuHTIZLrrlle8DqL2Pmzd222ThbZ9J4U5UuLp994ZVw3GkXhtdiIGGa0kXhrZef0Z4V7v34vrzprvvzIrPHv/39k5i98OJs/tfx11SrxfdV5bRO/DVLGkI0n4rvn7z+k8df66RAvSmnmDRmIRwtzDjd1B1uuIrbdBUgmDJ3rbvV3llgatpXyqi2x3YbhfnmmSMO7TlZdnGd0tOfPfzKcM/9j2fVSQFDt115Vpg+DkNanNaIgZCPxYDIFFj42O0jOgRKFtdL8ym4cr7l1s+yhaWhi5+5/5oOQXKNrFflviufN6qNiufYAXtsHY486dyYVn+0sNmGq4d555wtTD/tVOHjT/6ZDQGfsrK+G8+fNKVskBefcVSH4y/WsRHnYbG8euYb9d5s5OdQqnfROAWr/vOfn4Wt4+f2Mr9ZIEwWh71/6513w0VX3Bhuuv2+7DB/HIdQOCRmBzzw6NPD6KONFvaIGTDnnWu2GHQ+bjbswglnXhSej5ks0zRdHK63q19j9uX5mFXmf//cdu/DYfMdD2h/KWXQ3XHIumG2mafPvoveiefQizHQ/ayLrgq/j79qS59RU/1isvbvmq4CBO+O7+WNtvttVu548VeVO2+zQRi0yrLZ8NdpuOE3o2P67rvy+juyddLn2u0jz+yQJTj9YaYySDpdM6TP1nQdsss2G7bXO59ZZL65w0zTT50/zR5XWHf79iDPheOvSvfacbMw+ywzZJ+hKfvuvQ89EQ49/pzw1/hrvzSdcdx+8VpkyWzePwQIECBAgAABAgQIECBAgAABAgQIDDyB73M/aD2t1V3w3IOP/SEM2mKPrKgpfjFJ2HPHTeNIOXNkQYApk9tjv3823B7/tnzxyBuzddKIO/fHoLTU99nTqRhk9Zv/jXaW+i5T0pj111w+9hlPF0e2GT+8EUfquiUmG7k69kWnvxunH/CffeKBHUb5Ke67u2NM6xYTkaTnKUlHGiVv1vh38qlif3Sq20sxcc45w68Oj/7+mbBEzHw34/RThbOHXZlWD90FCPbl8fRHgGC1v+GfFUcDS6P4pCDOA2LfcuW07OILtQeT1hMg2Mj+q3/HvvhVNtwx6/NI9TrmoF3CRuusUlnFbLSu1Tbapb1fIfXHbbvpoE7rFc/dQasvF7oLENx7583D8bG/9wfxvyEbrxUDJRcIs8S+kdFjUqF0nj30+B/CqeeOyPrx087S6H53XXNuNgJb5c77un+2cv+eEyAwMAUECA7Mditd655eGG8YO/nzwJ0lY1T/qUfuHYPPJqhaj3zI0TQMYMrMd8sVZ4RZY8Bf5fT7Z14Ia2y8c5Y5MAXvnBizj62y7G8qV8uep/TRKar/gUeeyp6vusIS4ayYYaxy6u7LMKWknmn+VbJftiy+yLxhxFlHVxaRPX/v/Y/CUmttGVLWodliEMGdMVCpN9NBx50Rzr3o6mzTDdZeqWpq4bQwme0Ys6ulqasLiLSsGLiSfmVQGSB42gWXhSNPPC+tGkaef3ynXzKkoZxX23CnbPnl5x0bAwRfDkeffH52Ef3iIzd0Ch7qrrxGHl8zAgT7ur2L7ZMC2E6O75MUhFdrKr63tt18cJbJMQWTVk7p11jpQvmqG+7MFm292TrhoN23qVyt/fkbMWPlwitslD2vde61bxBniu+f9HoKoD1oj21C5ZDGXW3TVYDgGRdeEQ6PwTdpWihmWrvwtMPDeDFzV7XpkqtuCnsdfFK2KN383X7FmR1Wu/Tqm8KeB7Ut32/3LcP2m63bYXnxSfqMWXWDtuGF11pl6XDqUW3BSvk6jaxXXmZPHnvTRsVzLO0rBZyde9KBYebpp+m063T+rx8z2qWAyjQdGofuHrLBmp3WSy806zysurP4YiPfm438HEr1LRqn9+LVF56YDRFceSzFm+20bKI4fPBdV54d0i8oi1N676YAtTxVfGXmznzd/jgfU/D/witvmgXppnrssOV6cYjvTbPvhLxe+WMKYDx7+FXtv4zMX+8qQHCZQVu3B0ZWy96Zb7/7gSfEodVvyZ529RmSr5se515qcHg/fkenPzg9FLOgdjfdHrOWbrZD2/XCjDFw8K6rz8kCOSu3S+/HpdYYkg2DnAKjH4/DGZgIECBAgAABAgQIECBAgAABAgQIEBiYAt/XftB6W6u74Lmjhp4fTj2n7W+kXf0NOO3riDjU7unntY02k0amWn6JheqtQvt6xSCr/MXdtt84DrG6YdW/5d51/2Nh4+32zVZNPyR/6p4rqv5Nu7tj/Ov7H4bF4t/HU8BjmnbfYZOw85YbVN1nCkgcFjMH7n9Ex2Qr3QUIZgXHf/rieIp9Fn2VQTA/vuJj/oP91Pf/6hNt2QmLy4vz9QQINrr/6q04Et9yg7bJkkOkIMbrLz4lJkSasVitULTsaoS9tEHx3O2qf7/Y55S2SYmQzjvpoMBRjrIAAEAASURBVPDLGH9QbXoz9lUMiSPuvfDSa9ni9dZcMZwQR9GrnIp9ul31rfRHv1NlPT0nQKC1BAQItlZ79FltenJh/NJrb4QlV28bfjYFQDx400VdBvfkB3DCWcPDCae1ddwPXmO5cNJhnVPqbrHrweHWOx/INukq8j4vLz1+/MmnYaGVNs4yCabgqzSE6xSxE784dfdlWAzI6S7AKn35p1+hLPjrOWNg0T5VMxYW9105/58YILnwSptkGYlShqlHYprproIq07Zp6NR33n2/ZkBi8SKiWoBgGuJycBxCOE0H7rlNpyGeTz1/RDjqpO8CAl945fX2AKoUMLhYHIq0OG271+Hh+lvuzbK1vfjwdR2yzTX6+JoRINiX7Z3ciu2z/lorheMP2a3I2Wm++N5aJGbpuzymJq8WHJhvmH7Zsuw6W4c/vfnnMP7444Zn7ruqPYtgvk7+WDz23gQIpkCalKkz/QKr1tTdey4FR82z5OCQgnx//rOfhrtjcE5lAFVl+Wko4mti0GyaKm88P4nZ3Ob8zdrZr3fSL7nuHNmWxr2yjPT8gGNOC+fHbKBpGnH2MWHx//3yLD1vdL1SmT2detNGxXMsfQ7edNlpYe6YAbWr6fWYCXWJVTfPjrcrr2aeh13Vq3jsZT6LG/05lOpbNK713vnHx5+E2Rb5LuDy1KN/G9Zaeemqh3zLXQ9kQ82nhccfulv81eNKHdbrr/PxzPhLvnwohEUXnCdcce5xHepV7cnWexweboxDB+dT5Xs0vf7s86+G1TbeKaQfCsz/qzni8MFtQb35NsXHNNT0fMuul7205SZrhUP23K64uNN8TwME0410+lVpmqoFzhd3sMv+x4aRcWj1NL386A09/t4vlmWeAAECBAgQIECAAAECBAgQIECAAIH+E/i+9oPWK95d8FxxKNZXHr+py37h1PeT+oCmn26qsPUma4fBqy1XbxXa1ysGWaUXU6KaS+IwtLWmHX97VNaHm9a58PTDw7K/WbDT6t0d4/Fx9J8TTx+ebbfM4guGi2Jyi+6m4t+Q07r1BAj21fEUg9pGlQDBZvVf3fPA42Hj7fcLKTHCLyabKCYKOidMOMH4WfMXs0rOGJNz3BL74dKoZ9Wm4rlbT4Bg6te7atgJWexBtfLy115+/a2wbBzZ8auvv86SMf3h3pGdRg3s6/7ZvG4eCRAY2AICBAd2+/W69j25MD74+DPDORdele2rVgBEsTIpaGPRVTYpDO15dYcvz5SZb67F18m+2FIGrHuvO6/qLzKKZab54SNvCPscekr2cvq1xR7bbtJhle6+DNPK+QVhd1/q6Rcj48Rhh2sFbHXYeZUnaRjFR2LK6a+//qZDcFKVVWMGr31jlsbHwthjjxVeixfb1fZbDFypFiCYgqdmWWi1rPi1V10mDD1ynw67Wn+bfcJ9Dz4RfhWHv7zxkqGdhhzeOw67WJwWW3WzbFjblML4kVvbhqstLm/k8TUjQDDVtS/bu9g+w+PNy9LxJqbWdMgJZ7WnIa8WoFlt26HnjciyPqZl5518cFhx6UWrrRaKAVi1gpyKGxffP90FbeXbFbep9guVO+9/NGyy3X7Z6jvFYcn32XHzfNMuH4uZ/zbbYPVwxG/bsgDmG2y280HtQ5lXu/lK66WL+rmXWjd8GIfxToGJT919RYfU9s2oV16/eh9700bFc2yNlZcKpx/d9iu5WvtMgcppyPT02fKn37dlaiuu38zzsLifyvlGvTcb+TmU6lg0vmDooV0OT5DWnSMGq6Y/gKTpxYevj8McfDdkd/bi//55LQb1pl8ipqla8HB/nY+Lx+D/V+KPANL3zYMxG9/U8bO+u+mD+J6af/kNs+C/tG61AMH0evoOvet3j2TDP8w47ZTppS6nGeZdKVt/sYV+FQOlj+1yvbSgpwGCaZsXY2r+NFR7d3+cKgZM3nDpqeHXc86aNjcRIECAAAECBAgQIECAAAECBAgQIDDABL7P/aD1NFX+9/muRlO54vrbw677tf2tNo2WNWjVZbss9tPP/lXqx9bFIKsUQJVG4Zl2yl90ub+0oBjEte9uQ8IOm7f9CL24UXfHuED8O/fbMZvc6KONFh6749Iw6cQ/L25edT71b/96mXXbh4Ct1kfVX8czKgYINrP/6sSzh4fjT21LdpSGjk5Bqa++8eew4uBtw79j/0ZK1HLbyLPCNDX6TYptXU+AYL39eunkK46edcR+O4bN1lu9wznZH/2zHSrgCQECA1JAgOCAbLbyle7JhfEam+zaPkTl8w9eUzMLXrFmO+17dPtwqLfHLF+zx2xf+VTcfxrG9Mh924a9zZd39fj2X94LCyy3QbZ46fhrkOHxVyHFqbsvw7RuMeAxDVG41qpLxaGNFw8zxEDF/py22fPwcMOtbVmZuvo1TjFwpVqAYKp/fkE7cxzW+Z5rzm0/pBREM8uCq4bP/v15NozkvjsPyZYNGrJXePDRJztleUpDgM44/8rZENC10ie376Cbme6Or1kBgn3Z3sX2uf+mC8P0U09RUyV/b6Xhdv/wu6viTUjnoYUrC3j0yT+G9bZsy8i5zy5bhJ2GrF+5Sva8N8FnxffPMQftEjZaZ5WqZRdfLG5TLUDwuNMvDCed2RZceu3wk8Ncv5ypuHnV+S+/+jrMHjOzffnVV6FawFDxXNlzp03Drlu1DaVcLCwF5q61aVsGxyEbrxkO3Wv74uLQjHp12EEdT3rTRsVz7LhDdg0brLVyt3vKg4/TitWC2Jp5HtaqXF++N/N6dPc5lNYrGt973flhpphNs6tpwTiM91sx3fuEE/44vPDgtV2tFtKw9fPEoXHTVG246/44H9Mvz6aee/mQhkZIKe0fve2SLutfuWDptbduT2/fVYBg5Ta1ns8ZfzDw4Ud/D11luSxu25sAweL2teYvvvLGsPchJ2erdPWr01rbW0aAAAECBAgQIECAAAECBAgQIECAQGsIFPshu+vjyv9Gnmo+KvSD1tMC3QXPpVHd5lhsrWx0ojTS1PIxWcWqyy0Wllx0/jBOTEbQyKkYZJVGsnv6npHdFv/M86+EFWIgV5o233CNcPg+O3TaptYxfvHll2GaeVbItkl9xQ/FoMR6p+Xifv8Y95+m7gIE++p4Ul1GxQDB/L3ZjH7U1Dey6Y4HhDvveyTxhTSU7xNPP5clzklJFS467Yiw1GLzZcu6+qd47tYTIHjSEXvGRAbLd1Vch9eLQ2lXG2a4P/pnO1TQEwIEBqSAAMEB2WzlK92TC+M84Ky7AIjKWp1y7qXhmFMuyF6+4NTDwvJLLNS+ypU33hl2/u3R2fPDY9T75hVR7+0rVsykrGDTxUxDadjCWWeePtwVh0AtTt19GaZ10zCt+x15Srji2rZhBPPt07Cns808XVh4/rnCovP/Ksw+y/RVs/jl69f7mOp85Y13hD88+3J48ZU/xV8fvB3r/0Wnzb/88qssGC8tKBMguOVuh4ab7/hdNjTsq0/clKUeTmU+/dzLYcV1t0uzYUTM0LR4zNSUppPPuSQcO3RYGHPMMcNLj1zfPmRtcf3999gqbLdpW3BLtlHhn0YdXzHo66gDdgqbDG7LhFjYVafZ4i+Ejj909zhs54qd1unL9i4GFnUVwFmsYB5cVHytJ/O1gmt7E3xWz/unsn7dbbP7gceHy665tXKzup+noY7vi0FaxSnduKXMbZ9++q9QbXlad+9DTw4Xj7wx2+zWK84Mc842Y7GI0Ix6ddhBHU9600bFc+zKC04IC883V7d7Kg4F8HRMQz7Rz/+vwzbNPA877KjiSSPfm436HEpVLBp39z7O7VIK+ifuuKziCL972l2AYH+cj8Ub1yXjTe4lZxz1XYW7mSsOM1wrQPCfn34WLr36luy778VX3wxvxUyW33z7306l/+c/X2aBis0MEHzg0afCvQ89EV6K2QRTRsF//vPTTvX45uv/ZoHJaYEAwU48XiBAgAABAgQIECBAgAABAgQIECAwYAS+z/2g9TRSreC5fPsHH/tD2H7vI7Mfd+evjTnGGGGaqScP88aRyhZdcJ6wSOyj+MmEE+SLe/VY/Fv1/L+aI1x70UndllNP/0qtY3wrZg5cMGYQTNOysf/6wtiPXe+0wz5HhWtuuitbvbsAwb46nlSZUTFAMO+DqbdtKter1Y+a1k3ZL5cbtG148+2/dNh09x02Cbtvs3GH16o9KZ679QQI3jjitPCrOWapVlSn14rneMpweOmZHftw+qN/tlMlvUCAwIATECA44JqsMRXuyYXxjPOvEj7717/DbLPMEO688qy6K3DVTXeGnfZpCwKsDN46e/hV4ZBjz8zKGnba4WG5xResu9z8YmCSmOr5qbsv77Bdd1+GxZWvu/WecNHlN4Ynn34++wVMcVmaTwGDKWXvKsv+pnJR3c9TRqTt4sXzQ/EiuidTmQDB04ddHo44oS1z4J0xgHK2GEiZpnzoxJQq+8VHbwjjjjN29vrjf3gurL7Rztn81ReeGBb89ZzZ/Ihrbg57HHhiNj/y/OPDIvPPnc0X/2nk8fUmQLAYaFp5jhXrmeb7or17EliU6pS/t9J8b6ZqmcjycooXjr0ZYrhaNsC87OJjd++5TXbYv/3XN8Xt6p2fdJKJwpN3dQ682v3AE2LgYdtwuZVZ3r7+5ptsCPO//+OTMG3M4vhgzOZYOTWrXpX7qfW8N21UPMceiRnfpoqZ37qbugsQbOZ52F3d0vKy781Gfg6l+hSN+ypAsD/Ox+defDUsu8426ZDDRoNWCcccuEs2X88/xbT+XQUI/uG5l8LWMWD9nXffr6fIbJ1mBAimTKSHnXh2OP/ia+uuR1pRgGCPuKxMgAABAgQIECBAgAABAgQIECBAoKUE9IPWbo5awXPFLf/294/D0UMvCHfe/2j44IO/FRdl82lI4BWXWSwcExN//PQnE3ZaXs8LxSCrWv1exbLq6V+pdYzFv49vuM7K4diDdi0WX3O++Pfx7gIE++p4UoV7EyC42wHHhcuvvS073odvvThMXWM43ZoohYUrrLt9eCb2D6R+6FefuLmwpPNscf+P3TEiTDHZxB1W6ov+q4uuuD789rCh7fsdf7xxw1Mx2Ubej96+oMpM8dytJ0DwDzE75sQxS2Y9UzHL5RxxdLbbLj+jw2b91T/boRKeECAw4AQECA64JmtMhXtyYZxfQP30JxOE5x64pu4KnHr+iHDUSW2Zvy4YemhYfsmF27ctfmkduf+OYdN1V29fVmsmZYmafr6Vw3/i8LezzDRduPvqczqsXiy33gCnlOHod488GVI66ieffiH8PqYPTsPx5lNKPX7a0ftkGfny1+p5TOm3F1t1s/DR3/6RrZ5SVKfhUlPGrwnGH69TESfGYVgfe/LZ7PUyAYIpS9LgIXtm5RQNNtpuv3B3vICfa/aZwy2Xnd6+/xQ8MfOCq2WmxV9E5BeS6eI+ZRZMF0TFqdHH15sAwTz7YarX8YfuFjMIrlSsYtX5ZrV32llPAovS+vl7K6UYP/fEg9JLPZpSEOs0XVys13NzVLmz3rx/utumaHL+KYdkgbeV+631fKwxxgxzzDZDp1UefuKZsPZmbUMI77z1hmHvHTdrX+e+h58M62/VNgzzHjtuEnbbuvOvfJpVr/ZK1DHTmzYq1ru74LW8Ct0FCDbzPMzrUM9jb96bjf4cSvXsiXEesF42g2Bxn418n9Ryf+fdD8J8y66XrbLUYguEi884otbqHZZtu9fh4fpb7s1eqxYgmN6faSj0NIzxaHHo9NlnnTH7Nel8c80es9WO3qGs9GTILgdnv9RrRoDg4C33DA888lS2z//76YRhkQXmDosuME/8Q8Mknepx270PhWGXXpe9LkCwE48XCBAgQIAAAQIECBAgQIAAAQIECAwYAf2gtZsq7xeYPAZkPR4Ds+qZUlDdg48/nY0Yk/phPvzwu4DB1Id85nH7Z397raes4jr1BFkV10/z9fSv1DrG92Ow49xLDsqKXST+vXjkecdV7qLL55vudGC4456HsuXdBQh2FTRWWXjZ40nl5f26af6+G4aFGaedMs3WnAYN2Ss8+OiT2ToPxQDBrvocaxZSsbCRAYJ5GzajHzVVO7kvHxMppEyCxWnVFZYIZ8XzubupnnO32P9TrT+lq328Geu20AobZYsXX2TeMOKstqRM+fr91T+b798jAQIDU0CA4MBst9K17smF8eob7xIef+qP2T5feOi6MOEE49e1/533OyZcef0d2bqVQ3ymtNSDttgjW7bZBquHI367Y11l/jlmIpp/2fWzdZdcbP44JOKRHbbr7sswXzkFlXR1HGlZ+iXMiWcMD2/FL9801TvkbV5+eiwGr9VzjMsN3jb8MQYppqlMgOAn//wszLLQalk5QzZeMxy61/YhBVbOsvDq2ZCs222xbth/1y2z5fk/68S2SFkOF45ZAq+M2QLTtFrMKvhEzC44VQxAeyReFFZOjT6+O373SNh0+7aLrX13GxJ22LwtcKVyv8Xnu+x/bBh53e3ZS7UCBPuivVMlihd59QRv5e+tFIT58mM3hvF+NE7x8ErN13MzUbmDet8/xe262+bY0y4MJ5/Vdv4Mj+/XpeP7thHTt99+G3619Hrhvfc/DFNP+Yvw8C3D24st/uKoqyx7zapXeyXqmOlNG/X0HEvV6C5AsJnnYXcMZd+bjf4cSvXtiXGjAgT743xMwXtTz718NrRvV5/zXbXfMvGG+fn4x6A0VbuhLf5R4dyTDgorxV+QdjX96/P/hBnmbQvubnSAYDFDbgqOv3rYiWGcscfqqiqh+MtPAYJdMllAgAABAgQIECBAgAABAgQIECBAoOUFvu/9oN01UB54VStAMP3tdozRRwtpWOHKKfXRPP38y2Fk7Ae+6LLrs8VpRKhHbh1edf3K7YvP6wmyKq6f5uvpX6l1jKnfNP19PI1IlYLPno6Z3eqdFl1ls/D6G29nq7dSgODBx58Zzrnwqqxe1f5uX+345ot97vkoQK0YINjM/qt/x/N7xfV2CK+89kZGc/De24W7fvdoDJhsSzhw4J7bhG02WacaW/tr9Zy7xT6nYmKf9kK6mLn7/sfDRtv9Nlu63porhhMO3b3Dmv3VP9uhEp4QIDDgBAQIDrgma0yFe3JhvN9Rp7Zn1Dnz+P3DajGjXndTykq36Mqbhj//5b0wduyMf/b+qzsEP6WU1HMvMSi78Jpx+qljJsBzsyxD3ZVbHPa2MmtY2ra7L8MUtJi+3MeJaY0fv/3S8MMf/rDLXRYvLpddYqFw4amHdblutQWbx4xIt931QLaou5TB6UJ6hpgZMV2MpKlMgGDafoHlNwxvv/PXsFDMVnjVBSeE5196LSyz9tZpUbjkzKPCkovOl83n/5xw1vBwwmkXRZexYrbAG0IahnimNLT0vz8PKYPi2bHdK6dGH1/K4LhCDJJM07prLB9OPKwtC2LlfvPnKctjytD4xlvvZC9VCxDsy/ZOlShe5NUTIHjgsaeH84a3ZeUccc6xYfGYYbK76R8ffxIDPr8NKRNWral4/vbnEMO33ftw2HzHA7Kq7rDlemHfnYfUqna2LN2YvR7bdYZpav+66bATzwlnXnBFts3tI8+OWcqmD+mzZ/bF1sqCYeeZc9Zw06WnVt1fM+tVdYdVXuxNG/X0HEu77S5AsJnnYZXDzl5q1Huz0Z9DqXI9MW5UgGB/nY/pM/S1P72dff8+fOslndL3V2u/9P09b/yjQcrkm6Zqf2hIAemfxGD7yuDdauU9/dzLYcV1t8sWNTpA8PwR14YDjjwtK/u0Y/YNa660VLUqtL+2YbzZvifedKdJgGA7ixkCBAgQIECAAAECBAgQIECAAAECA07g+9oPWm9D1QqeSyPEHHjMGeHlV/8Ujjlol25H7yr2Qdx51dlhtpmnr7ca2Xr1BFlVFlhP/0qtY0zl5YlS0vxV8cflC807Z5qtOf3xhdfCCutumyVmSSu2UoDgmReODIcdf3ZW/1OO2iess8oyNY8ljTK0wPIbtB9LKwYINrP/aus9Dg833tY2UtLGg1cNRx+wc/j7Pz4OS8X+9Pff/yjrK788ZpasdV7Uc+4W+5zWWW3ZcMoRe9dsl3zhoSecHc4a1ha4eti+O4Qt1l8jX5Q9dhcT0V/9Th0q6QkBAi0nIECw5ZqkbyrUkwvjlDJ62ZgtKE3p1x8P3Dgs/CgG2NWahp43Ihx9ctvwwmuuvHQcorctwr24zSY77B/uvO+R7KVDf7t9GLLBmsXFnebT8JMLr7RJSMEJaap2odLdl+FO+x4drrrhzmz7aoFy2YL//ZOC9qaLWY1SEEQxs15xnVrz62+zT7jvwSeyVdIQvT+uMqxwvv2Ia24Jexx4Qv60dIDgVrsfFm66/b4wQcz2+GLM+njuJdeEg44+PQsCeTEGAFZmqns0Dm285ia7Zvu//pKhYaKf/TQsGIMM07T/HluF7TYdnM0X/2n08aXMh7MvumYWNJqyWf3uhgtq/sqoGPiR6lUtQLAv2zvVoXiRV0+AYDFwc8bppwm3jzwjjDXmmKmoqlMKnFt3q32yYbA3WGfFOKzuFp3aMt+wnpujfN38sbv3T75e8bG7bVKWshQM/Pd/fJIFoN5x1Tlhujjcdq0pBayeePrwsEwMzD1wj63DtDFDYLXphVf+FJZesy0b5rabDw4H7LZVlv1zkzicdppqDV/ezHpVq2u113rTRj09x9J+izfnT987Mkz08//rUJ1mnocddlR40qj3ZqM/h1IVe2LcqADB/jofi9/VSy42X8zKe1ShlarP7rDPUeGam+5qX1gtQHCaX60QvvjiyzDLTNPFHwCc075utZlieY0OEDztgsvCkSeel+32gqGHhuWXXLhaFbLXXn79rbBcvPFPQcZpEiCYMfiHAAECBAgQIECAAAECBAgQIECAwIAU+L72g9bbWLWC596OyV8WWG6DrKg5fzlzuPXy02sWW/w77LXDTw7zzzN7zfUrF9YTZFW5TT39K7WOMZV3+XW3hd32bxtaOP3Y/Z5rzwtjj9V1H11KXLLC+tuF555/tb06rRQgWBypba1Vlg6nHtW5b7694nGmmIAhvV6t3724fr3zjRxiuFn9V8Vgyjl+OVO44eJT2vukn3j6+bD2pruF1G+Ths6+48qzwmQxPqLaVM+5W+xzSiPKXRf3Ne9cs1Urrv21lERlqdWHZP0VY4w+enj6vpHhJxNO0L48zfRn/2yHinhCgMCAEhAgOKCaq3GV7cmFcdprPgRtml9uqUXCKYfv2WXA28133h9S8Mfnn3+RRdffNOL0MMdsM6RNO0yP/P6ZsM7me2S/TBhv3B+F047dNyz7mwU7rJM/+cfH/ww77ntUe2afVIdhpxySL25/7O7L8PYYkLhZDExM06/il28aoniCH4/Xvn1xJtVvrXgBkKatN1snHLR7W5BkcZ1a8/seOTRcOKItrXb6hc1G66xSdfX0Jb/i4O3Cp5/9q315V0M5Fy8iagWgnT7s8nDECedm5f3+rsvCfkedHm6/+8GQLnJuu/yM9v3kM198+WWYecHVsoCOfXbZIkw/9RRhSMyAmKYrYwbChWMmwsqpGcdXDBqtNhRyXod7Y+DlNnsc1sGsWoBgX7Z3qlu97ZMfR3ocvOWe4YFH2tJVD1p9uXDU/jt3OQTm8WdelAXOpe3S+Xt9vNHqKgtm8eYolXvy4XulzWpO3b1/qm1czzannHtpOOaUC7LNfxk/Cy4aeliYdOKfVysupOHH191yr+xz4cfxvfm76y4IE8f07l1NS6wxJP6K7Y2Qp8HPg+G6umAultPMehX309V8b9qoN+dYbpLqUS1AML3erPMwlV1tatR7sxmfQz0xblSAYDLqj/Pxgw//FhaJ2X4/+9e/s2bafYdNwi5bblg1o28Kmh92+fVh/yM6ZuWsFiC4+OpbxLT8b2bl3BUzBM8UMwVXm66Pv87bNv5KL59mmmGacG/8I0ytae6lBme/3svf87XWvSlej2y1a9u1wmorLhHOPLbt+79ym0/j8Q8esmd4+o8vtS867+SDw4pLL9r+3AwBAgQIECBAgAABAgQIECBAgAABAgNH4PvaD1pvC3UXPLdMTBzzfEwgk6Zao8ulvxsPin9bfSj27aT+qpce7ZykpLs61RNkVVlGsX+lq1G0ujvGz2OCmOUGbZONspPKny8GNp4Y+7+rJa14L2aU2+OQE9r7qfP6tFKAYPrxe0rYkfrU09RVopyUjOTMi0a29yPnx9KKAYKpbo3uv0qfDevGvtkU8JkS7dx55Tmxj7FjAOA5F18dDo5ZNNOU+tZTf2y1BC/1nLvFPqdUXgpGHRYTGnTVb5LK3GLXg8OzcfSlNA1eY7lw0mGd+3j7u382q5x/CBAYcAICBAdckzWmwj29ME5BBEuttVV79r6JJ/5Z2GO7jcIcs8wcZphuyizl7ouvvBmuvvnOcN3N97RX8oCY/WvbTQe1P6+cOebUYeGUsy9pfzml1l19hSXDLDFIIH0pv/r62+Hp518Mx8dsYh/97R/ZepNNOlG4K2YhmzAur5y6+zJM0f7rbbV3eDh++adpkhikdOxBu4YFfj1HloktXRS98PLr4aGYPnvoOZdmF1Epmv+KmEJ4kfnnrtxdzefPxl+QLD+4LahwzDHGCJtusFpYcpH5sl/OpOClP7/7frjmlrvC0LNHhG++/iYsHwMRUta/NG00aJWw2ILzhKljJr1iKu7iRUStAMEHHn0qC3ZIZQ077fD4C5hjs2OpFei4ZgyGfDQGRf5m4V+HeeaYJZx05sUhHXvKfjj+eOOmojpMzTi+l2NAydqb795+ni3w6znDFhusHqaPQ82ONvpo4cWYMS5lnUxZINMQu2usvGT7EL3VAgT7sr0TTr3tU4T88KO/hyVjFrw8M+YUv5gk7LnjpmHu2WcJU08+WUjBm6+/8U44e/iV4dqb7w7pZisN231nzMpVKxNf2m6OxdbOgijTL1x2227jGNT7XTv+es7ZsvOrWJfu3j/FdfP5erZJ76sUZPxIfF+ladyYgXSX+Pmx+P+zdxfwUlXrG8dfCyxUQkUaJEQJG/DaHYQiStiK1yBFEEWUUDqkbEwMQhQLbMUgbAEBAWkD7LjY/v/rWdc1d8+cmTPnDIea+e37uc7Mnl3ru9feczjznHc1Otj21rndZmtb7X7gfeypF+yu+yfZf/4ZarsgJdCjYdhH7hzkwkC9/dDYxx3Z0Mbd1i8cZtLHDXlcSXeYMDOTc5RJHytIQHBD9cOEJsdeFtW1uSHuQ4UxLsqA4Kbqj1OmvWJXdvvftaJ/7Ha+7Fzbz1X/q+A+b79c+7W79y4z/UWdfslzeMMDbZ+aVWL33mQBwTsemGR9h9zhz7c+Zy9o1cSO/VcDq1N7b/8Xb58uX223ueHBVYlQ71eusJfNdpVs9QukXtdcYeXczxgH1dvXvVcm1mfCk9aXdbfpb73rX3Zpd37cfayyu2dG//JOv+A51A2HHO6vp514lDU56Ug7yt179McB6vevu89LDVe+du03phDhk1P/O6RAIzecxAWtmrrlSrjlDwq75xEBBBBAAAEEEEAAAQQQQAABBBBAAAEEtgCBXP0etKCnJl147pU33rYLXcGVP//6y29SIbwOl7axiuX29N8dfv/DT6ZCK4+53/FOe/ENv4y+03v8/uEFPYTYcgUJWcUW/udJUQQEtamFS5bZaa3b+aI3eq3v35qdcrTVrrm3Va1c3la5aooL3e/Hn5z2qv++rXXzU61kyV3stnvGa/HNaohhHY9+39/BjQKk8Jt+397SFRBp7H4vrrb8+ON/bP7iT+2RydPs3Q/mWYOD6vmRv8JoeJtrQLAov7/6/Mu1ftREjXqm78DHuUJCxx5xqOjyTG1d8YGprgiBJp33YX2vzrNMQfpu9DsnBVA1ouC222xjKpRz/FENfVBwG3eulIl4650PXKGYB/z3nNpZJffdib4PLuEKLSVOm/r72cTj4TUCCGwZAgQEt4zzVORHWdgfjHUAC1yVrkvdh+HS5avSHo8CP1e3u8A6XXqO/4BNtYICEYPG3Gdj7n7UB59SLRfm71Ozmt19S6+UwaiCfBj+vO4XO/OiLjb340Vhs/5RwUNVUfrRDXUbna7peJF1/ve50VkFfv7w5Gfs+n632u8urBWmHXYo7tpqfujiME/D+F7QspkdcFSL2Ie+3rugdTMbcH3HsFiBA2garrf2Yc38egqH6QcdTQ+6H3SOP7KBf574n6G3uep0tz1oCi/qB2BVNNRQvzOnjUtcNPa6qNunDS9ettKFBLvaVy6Ummoq7kp83+eq0H33w4/W7pr/BluGuh/M2rgf0BKnjXm+oz/k5RfgTDxGXVuq2LjMVZOMTjoXClJFJ1XNunP4jXaAK+uebrr6xqH26OPTki6WzKsg10/ixgq6jv6x2P66/nn+uipUQNS9IEy6Rvr37Ggtm50cZqV81A/zh5zQJs/9I7+/aItubEMdV3Qf+T0v7DnKpI8VJCCoY9xQ/TBV+4vq2izq+1BhjIsyICinTdUf73zwMffXgnfFftkTzpn+kRp+AaR5B7jw+MR7htqDE56ym4be6RdLFhDUXyr27D/GHpr0TNiUfyzhQsrr3GewfjmhSeH5ifcO9RVDwzD3/g33H93nmrhfXCROjz3zonW8dmDibP+6eePjbczA+GET3v1ovrV1wWEFAMOkn1F23HEH++mn/4RZdqz7bBx3az8fZg5/RKA3a+xd2aY/+d8KqLGFeYIAAggggAACCCCAAAIIIIAAAggggAACm7VALn8PWpATky4gqG1MduG/jtcNjPv+Rd/f7FGmtK1c/UXc/L3cEKzTHh1je+yeekSoVMdVkJBV4rpFFRDUdue74iSXdOplK1Z9nribuNca3e6OIdfbsNsf9N9r683NqYJgOFiNrNPOFQVI/H4xvK9H/eH+1EfG+LY8/Niz/q0Z7vtgFa5Z36kohxgOx1IU31+paEez8zvHKvN1coUSune4KOwiz6O+wzrJVdIM390O7n2VnduicdxyBem70e+cFr39jI2b+LTd7L6PUUEYTQoqbr31VrHvTcIOVGDlvtF9/ah/YV70cVN/Pxs9Fp4jgMCWI0BAcMs5V0V6pJn8YKwDUGWvUW640AlTno/7sj0cnMIER7sqeR0ubR1XxSe8n+pRx3PrvePt9Rnv+aBA4nIK77U+8xRrd1Er296Fw1JNBf0wXOeGP5745DS784HJKX/g2692DevQtpU1PenoVLsr0PwP5i209t0HxH6AiK6kKniDbuwcG8ZQP7SNHfe4veP+ckM/GGQaENQ+QnAl7E9BrAUzpiStBqhlon0irNPk5GPszqHJh2QMyxRl+8I29YP9cBdYfPv9ef6vc8J8BeaOOOxAu/m6Dv6H1CemvpI2IKh1N9b5jv6QV5iAoI5RP2iOdFUrJ7prS38Nkzjp2jrlhCNtsOsvqYbFTlxnjQvEPOB+0FTlwcR/2GzsgKCOTX163KSn7d5HnnLDjy5LPFz/ur4LPo5wf0GTqrR2spUU+A3VCfX+zi7489Hrk1MO1Zy4jQ11XIn7Sfa6sOcokz5W0ICgjm9D9MNk7Q7ziuraLMr7UGGMw322vCs//84Lj4Zm5XnU8AMHuqFxNZ3Z5HgbPSA+xBZdYVP1x7fd546q9b41+/3YP0zDcenee+qJR9jAnv+9/6iaYH4BwbDe+CnPWe/Bt+cJ3ut9fcaO6t/dVwzW61vuGmeTn3o59kcIqQKCv/72uws+T3W/nHrZ3nfhv+iULCCo91WBWNfBW7M/zPMzhtrW6YpzrGPbc/xf7c2dv8QP9/zy67PsN7cvAoJRYZ4jgAACCCCAAAIIIIAAAggggAACCCCwZQhEv/MqyHddoVXZ8j1oaE+qx4IEBLXuPDfM8O1uxJinp70W98fkYbsKDLZqfoq1v7iV7eVCZ5lMBQlZJW63KAOC2rbO+0T3++yHHptqn7iiHqGohb7HrVGtsl1x8dl2ghu5SlP/kWM364CgjvE1NwrPfY9OsXc+/Ni+/2fIYc3XCF8t3fft3Ttc7KvSdes93LaEgKCOfX2/v4oW7Di84UE2/q6Bvsqitp1qilaYVMGDx91QwwfW/V8Bl4L03eh3TgoI6jvM5155ywaOutd9V7o8z65VaKFV85OtW7uL/LJ5FvhnRkEzEVp8U33vlOrYmY8AAptOgIDgprPfoves6j8KZKi0soYfLLHzjm5IwD2s3r41rEzpkhm3TWGZuQuX2Bdr1tp/1v3qfpgs48vn1t+3ZtoP6Ux2qh/wPvl0hRvu90vflq1dSr+8q9BWufxehQooFWTf3373vc1Z8Kkt+nS5ld2jtNV0VYmqVa7gKygVZP3NfZkN1T4FaxYtW2EV3TmpVK6sH442WBQ0IBiW35jnO+yzsI+q1vX+nAW22g1BvcZVUdzR/eNqz93LWENX6jvZsNqF3f7msrz+Ikt/dfPZl1/5v4wp4/6Rtb8LBxbFXyetTxs31+NanzZlsu7G7odFdW1uqPtQJoZFsc6m6I8r3ee6fumzyt2Dti++nekvP/d3n8GZ/OVnMAjb1FDi+tyrUa2SH4oiVBANy23ox3Xulzwff/KpfbxwsRs6YXt3HFX8Z7H+Qc6EAAIIIIAAAggggAACCCCAAAIIIIAAAggEgWz5HjS0Z30f9bv3xctWmX7Xqz/I3r1MSfc73rK2T/WqBS5qsb7HsLHWV+W9L9x3k7uW2Dlp29IFBDfWcRZkPwqGLVq60r759ns/Ot+e7vvp6LQhAoLR7W+I5xv7+6sN0YawzQ/nfWLLVn7msxa7lNjRKpTbyw49oE6BC6CE7RTmcVN871SY42NZBBDYsAIEBDesL1tHAIENKFDYgOAGPBQ2jQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACWSywJQUE052GLTEgmK5NvI8AAgggkFqAgGBqG95BAIHNXICA4GZ+gjg8BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJEgIBglpxImoEAAgjkoAABwRw86TQZgWwReHjyM9at1y2+OUP7Xm1tmp+aLU2jHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggsBkJXD9gtN338BR/RG9OfdCqVSq/GR1d4Q7lyu79bMqzr/iVZkwbZ1UqlivcBlgaAQQQQGCLEiAguEWdLg4WgewX+OXX3+z2Byakbeiff/xtTzz7sq1Y9blf9vmJd1rdfaunXY8FEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYVLltnUl98oEMTPP/9ijz4+zX744SfbZZedbc70x6zYdtsVaN2NtdDiZSvt6RdeS7u7H3/6jz0y8Vn7ed0vtttuu9hHr02y7bbdNu16LIAAAgggsOUKEBDccs8dR45AVgp8736o3vdfpxeqbdWrVbLXn7qvUOuwMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5K7A5Gdesg7XDig0QGs3qtkwN7rZ5jZNfekNa9u5d6EO6/yWTW3gDZ0KtQ4LI4AAAghseQIEBLe8c8YRI5DVAj/8+LMdemKbArWxVMldrfFJR1nL00+y6lUqFmgdFkIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSefmG6db1xWIEhKpQva2c2Oc5aNTvJSpXcrcDrbawFX5g+0zp0L1jgsUrl8tb8tOPs7KYnWklXRZAJAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsluAgGB2n19ahwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkKMCBARz9MTTbAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgewWICCY3eeX1iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOSoAAHBHD3xNBsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCC7BQgIZvf5pXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI5KkBAMEdPPM1GAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIbgECgtl9fmkdAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjgoQEMzRE0+zEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMh1gZUrV6YlKFa8uJXdc8+0y20uC6xZu9Y+//xzW7Nmje20005WtmxZq1SxkhUvXmxzOUSOIyKwctUqK1WypO28886RuUX/dO1XX9nWW29tZUqXLvqNs0UEEEAgiwR+/PFH+/Gnn6xC+fJZ1CqakusCBARzvQfQfgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRyUOD//u//rO1ll6dt+d7VqlmPa7unXW5TL/DDDz/Yw4+Ot/fef9+22morK1WqpP3n5//Yr7/95p6XsvPOOcfq1a2zqQ8z7f5/cqGMGTNn2WGNGlqJEiXSLr+lL3BF+w521pln2rHHHL1BmzJy9GjbbrtiduXll23Q/WwJG1+xYqUt+fRTO+7YY7aEw93sj3FDXbMLP/nEli9fbsccfcwWHXDeUD6bfcfYgg9w6rRp9uLLr9gtQ4dslFa8/MqrVn3vva1y5UobZX/sJDcFCAjm5nmn1QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjktEAICJ504gl25BFHpLQott12PmCXcoHN4A1VO+rZq7evENemVUurX69+LFCjioIPP/KIfTx/gXXq0N6FBOtuBkec+hAU3urbr5/1vqGnVaxYMfWCWfIOk4aGAABAAElEQVQOAcGNfyJfePEle/qZZ2z0yBEbf+dZuMcNdc12v66Hff3NN3bFZf+2gw86aIuV21A+WyzIFnDgGzsg2K5DRzu9WTM74fjjtgAdDnFLFSAguKWeOY4bAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyFggBwRbNz7BTTj454+1sDivefc899uGHH9nNfftYSTdcbeKktg4cPMRUZfCmPr1dJbntEhfZbF7nWpiGgODG73oEBIvWfENds6++9poPNp9/7jm2yy67FO1Bb8StbSifjdiEnNsVAcGcO+U50WACgjlxmmkkAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghEBbIlIPjNN9/aNdddZ2eecbqdesop0SbGPVcFweEjRlj3bl2tZo0ace9tTi9yLUxDQHDj9z4CgkVrnmvXbGH18Cms2KZfnoDgpj8HHEHRCxAQLHpTtogAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApu5wIYKCGpI34ULF5qCe6VKlbQD9t/fdt11V/vt999txYoVVq1qVdt2222LTGfuvI9txKhR1vvGG6xihQopt7tu3Trr0Pkqu+C8c+OGVF7y6ae2x+67+wpd3377rX3+xZdWYuedrXLlSnHbktdnn39uixYttj/++N2qV69ulStVyrctf/31l61YudKWL1/uqhf+aHvssbvtt+++tttuu8VtWwGa337/zc9bs2aN3f/gOLvogvPd8nvElqtapUqeyod//vmnLXPbXrx4se3sjlnHtFfZsrbVVlvF1kt8smyZW37JEtOwzKpKVr363v6cJC6X7nVB25ZuO/kFBD//4gv7+eeffZtKlCjhN6X27lJiFytdulTSTes8qX1yCOtowZGjRzu/Ynbl5ZeZllng+uhnn31uv/yyzmq4wGj1vffO45tsB99995198skiW/vVWqtatZr322H77ZMtaun6lrb1vatqqXOrSf1g1epVpvNatUpVN8R0BT9stn8zxX8K0gf+/vtvfyxhE++++569+dZb1rlTxzDLtz0cR2yme7Lul19sifNcvnyFlS27p9VwfSxZlc6wjmznzptnq1evdra/+vNUp04dK1O6dFikUI+//Pqr2/+ntmzZUret0latWjUru+ee+fZx7eDX335z18USv97uZXa3mjVrpuwzWnalu07DNaZ7l66pn//zH6tQobw/F8WLF4s77kyvWZ1z9eGVK1fZDjvs4LZfwd0TasdtO7zQst+6/+/t2hydov1Kx/7xxx/bd999b2XKlPbLRvt9dL3wvLD3suj+8rtHhu3rMVOfcF9ZtGiRFStW3F2b1a1C+fJpz3d033qe7pi/dPfZ391nUqV8hnFXnyjuru09I/fhTPpK4rGleq22L3efkep72267ne29dzV/fNtss02qVfz8TM10X9B5+mTRJ/6euNdee1nt2rWteLFili4gWNg+lNiAr77+2vXZ72Kz9Rl++GGH2cEHHxybp+s8WeXML7780n0OL7L/uOtTn3nhuo2tyBMEUggQEEwBw2wEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMheAX3B3/ayy62ohhj+/vvvXYW+kS5g94UPVCissnbtV/adm3/xhReYwge9+95kQwcNzDdgVFjxl15+xcZPnGi3uoBBYogncVsKPShgtE+tWrG3FFBr3fJse8eFpuYvWODn169b1zp2aB9bRqG60bfdZr+7ME55F1ZRYGP1Z5/Zn3/8YVdcfrnVrbNfbNnwROGHW2+/w4eBFJBUWFIhq2JueOM2rVvZ4f/6V1jU+tzczweUYjOSPBk8YEBcwGn666/bhEmTbPvtd7Dy5crZL7/+Yp+7AOOuu+xqV3e5Kk8gS2GQO+8ea+++957fTsXyFWzFqlU+pLF/vXp2+WX/LlBATodWmLYlaUrcrFQBwRdfetkmPvaYHXPUkdby7LO9uVZUtcjDGjay05s1jdtOePHbb7/blR062L/btrUGhx4SZscCgi3ObO4c7rY1X67x59IHXdy5/Mv5qB8cdeSRsXWiTxRGuWXkKBfgW+378i4ldjaFjL799jtr2vg0a9qkSXRx/zxd33ru+eftFTeM7KD+/WPnZvcyZXwY6utvvrGSLkiqc6kAa7KpoH1AIbv2HTsl20RsngJ8gwb0j72WywMuqDpj1izTMel6VghN4Zy6++3n+v1lefqLhvAeOvwWv4xCXSVL7ubDfQoHNzntVGvSuHFs++meaP8PP/KoTX/jDbefba1K5SrO+ltTsKiiC3Vd1bGDDx4nbicc91szZ/r3FRTVcelcKejVuWPHuOtI6yuwd3P/Ab79H3zwoU2aPNkHbhUU/urrr1x4yuwKd33Uc/eFMGVyzb7y6qvuXjXJh7GqVK5sClOrXyl02f7KK/w+w/b1qP4x9bnnbdQtw6OzTf3qvHPa2O6uX4wcPcb+z/VdhYm/cT7aXpPTTkt5fWRyL0vXj+MO7p8XmfiE/rz11tv4sPcf7v6qe9q27p6p67nOfvsm21XSeemO+d7777evvvraV5RNugE382Z3z61UoaKd70LlYcqkr4R183uc4frrQ4884sLnf/pw+p9//uUCzJ/5EGnH9u18gDnZ+pmaLXIhxDG33e5DkmXdNbLzTjv5ALyutYsvvNCWLl1qL7rP1luGDsmz20z6UOJG9NmlSqb5TZe44zjssEaxRWQ/+tbbTGH/cuX2sh3cZ59C+7+6+1vjU0+xxq7fMyGQnwABwfx0eA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLJSQEGaogoIKoAzeOgwH2a4+KILrZwLA4ZplQuhPfDQQ6YQ2hNPPlXkAcEnpjzpggwv2W2uQlwmk4Ik27rA3/7717fDGjXyww9vvfXWsYpVqiI1xIWejjj8X9asaVNfXUn7UdWmF196yZ58+hkXHrrMhYfqxHavqm7X33CjC+9tbxecf56vcKSqfgrWPfnU0zZz9my74foevjKWVtK5CJMqi/Xt189uvP56q1SpYpgdOx7NeGvGDB+eOteFhBo1bBh7T9X2Hhk/3lfPuqZr17iQoMJJDz863jq0u9L2r18/tt2ly5bZwMFD7Nijj7JWLVvG5qd6Uti2pdpOmC//s84804495mg/S64Khr3p2nhum9Zx1R61wPoEBFXR7jcX8jzwgP39cNShMpfa9MyzU10Y6zm78Lzz4kIp2qcCKeoDCgWef+55cQGzDz/6yO69/wHnd3SeUFa6vqUAmEI4Bx94gK9W18oFIUP1N11TCugtd/2vV8/r84ThCtsHon1MwZxnnn3WRo24Rc2LTaHypJa9/4EHTSGiSy6+KC6cpGDsPffd7y3aX3llXEjw9jvvsnmueuDNffvEQsAKpirEq0BQuysud/YHxPaX6on2r7bPevtta+v2r/4aqo7qGhpz++32808/W49ru8e5aL373LmYN3++DzlFA2UKMN/3wAO2Zs1aHwqLVkEMoS8NU/6+Cwjqmg3VSBVSU9+Y5s5VZxdK3NdVWNMU9SzINfu6Czo+MO4hH8g+8ogjbCcXyFJfX7DwE7vjrrv8/UMhuOiUX0DwGHe9fvzxfHdPauKrtIZzpwCwzs+pJ5+UJ5CZyb1Mx5OuH0ePOTwvrI8qWj7krvszmjWzE084PnZPk/8TTz5pr02f7u5d7az2PvuEXeT7mO6Y1zcgWJi+ku+Bujd1Ld/nrrfGp55qJ554gu3oKktqUrD2UXfPnv3OO9bJBdajwXa9n6mZ7vnD3P2snvtM1j1WfTFMs2e/7b2rVKniKgsuyhMQzLQPhe1HH6N9RAFmfb6ecPxxsUVCn9YMVTocMny4HegqErd2Afto1VaFK/WZcZoLCZ56yimx9XmCQKIAAcFEEV4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDWC+jLeQUEFZTZbbddU7a3gwsBqQJeftM9991nH89fYP1cMEjDZiZOGs62hwvM/eKGKy3qCoJFERDU8LJXX9U58bD96+uu7+mHkb3koouSvj9+wgT74MOP4qqvKQz04EMP27XXdIsLV2kDCip17X6tqzrX2FWdy1tRTUEIBQR739DTV0pL3KmGP+3eo4dd6EJM0SqEYTmFjvoPGmTl9ypnCmuGSYErBb763dQ3zIo9qg0fzZlr/W++KRbMib2Z8GR92pawKf8yGhBU9bPb7rjTV2dUmKymG/o3cVqfgOCcufPyra6mioWqXKiqWRqyOUwKy2nI0htcUE/DbyZOH3z4oa/GlVjlUW3Lr28pADZp8uN+iNkunfP2Pw3ve22P6621Cw42atQwtttM+0DYgAKCTz/zjI0eOSLMintUSOj+ceOsZ4/rfHXKuDfdC+2/V58+1qZVq7gwpa4VBbiiFde0ru41ffv1t4quqmC0TyZuN7zW/se6e4oCYdHgbXhfw7z26HmDHe2qPUavoZkzZ9k9rjLc9ddd60O5YfnwqGtDVUxVDbGTqzIZphAQVDhzgLsGkt3DVBmxdKlSdpGrhpo4pbtmtd/revb0QyMnO88PPfyIvf7mm3b7mNGxSpnaR34BQQXnunfr6qsPJh6Pwp9vvPlW3D1Jy2RyL9N66fqxlslvSuejapnq5y2aN7eTTzox6aYedOHKt11QbqSrphiCvUkX/GdmumNe34Bgpn0l8ZgVeO127XUu0HmyNXcB1WTTKFclUn3+mq5Xx95eHzPdQzXsdreru8S2F32i0LMq9Wl438QKgpn2oej2kz1v16GjC1g3iwsIRpfrfl0Pfy+KVvaNvq97xl333OPvWcmGSo8uy/PcFSAgmLvnnpYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkLMCISCo4S2rVq2S0kHDVe64444p39cbChwce/QxKcMdWkZBvmemTt0sA4KnnXJy0uEJFd5QmK9Prxtj1f7Uluikimq9+vSNa5eGuV392Wrb2w1nnGwaNGSoC2XuZpddGl8xTMumC9PMmjXbxrtqbApuRCssRffzyquv+eqGA/rdHJutalOqUqXQV2KAQgGmaNXE2EpJnqxP25JszoePVEGwdu19TEGYYi6A18ENqakhb5NN6xMQXLRosY0YPiyu6l10HwrhdOx8lV3phs+NVllUKOaE44+PVTmMrhOed+pytbVxFRgbNDg0zPJtS9W3tFAICCrQVq1q1dh60SfDbhnhh/iNhu4y7QNhu+kCggpEKpwoh1STgpw7ufuCqu2FSUHhea6qnfrd9sWLh9n+UX2sIMEuLawwmIZylkuqSWHOta4aYHtXETNMOu7/uGqPCpemmt55911fHVHhSPV5TSEgmN9w6wrdzXABRIVoE6d016yW19DMMolWLgzbWfjJJzZk2HBfeVFDIocpv4BgzRrV7apOncKicY+LlyzxVUGjYexM72XasMJ2+fXjuJ0neZHOR8HOCe58Dhs8KGUfUcj8qq7drKf7rKlatUqSvcTPSnfM6xsQzLSvxB+l2ey337Gx997rw7qJ10xYVgHkSY9N9vfu8FmcqZmG6VYgUdU3U30+ab8acltDVkcDguvTh0JbUj3mFxAMx9z7xhtilT2TbeeGXr1daP4wO+nE5CHTZOswL7cECAjm1vmmtQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4ARCQDC/oENBoMKX9wqrRIf0TFxXwZw77ro7LkiXuEwmr6e4YYuff/FFX30rk/UVJIkOcRvdhipWjb33Pjs5n8CBhlDV8KMK+x16yCGx1eWroRxXu6CTKq5FJw0DqmGYo+Gm8H66MM04V5lw/oIFdsjBB4dV8jx+/c3XPniicIeqQGlS+G3sPffanLlzXZW3Wq4yWz2rXLmSDwsWNLgVdpRp28L60Uf571Orpi1Z8qnVqlXL2l5ycZ5wWXT59QkI/vjTT3aDq76Y39Tzxl5W3w29eVaLM/1iGuq3S7dr7F9u+GmFOlNNM2bN8sNoa9jnMOXXt7RMCAjeOnpUyjYrdPf119/4anFhu5n2gbB+uoCghsdWW/MLEGn4UVV81HDCYVqzdq2NcZXHFCTSkN0ajrdy5cpJqxCGdZI9KuhTp85+1vKss5K9nXKejrtRwwZJw75hJR2jqg9GK3SGgKCGca1Xt25YNO5Rw8BqKOmxd96RJ5ib7poNG1Jf0j3h888/d0Nd/x5mm8Jvb7gAr4aSrlSpUmx+fgFBDTF8dosWsWWjT1RdThXXVCEuDEu7PveydP04uu9kz9P5KBC69quvrGuXq5KtHpt39TXd/b04Ogxt7M2EJ+mOeX0Dgpn2lYTDNFWPXLp8mR9SPvG9/F5naqZA4t2u0p7uOcmqoYZ9avsfuEqC0YDg+vShsN1Uj/kFBHXMOl+qsBlCvcm2o3b99utvST9Xky3PvNwTICCYe+ecFiOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQ8wJFFRDU0KsDBg32AQcFzlJNCrWpGlq0qlWqZQszf/rrr/vhfMe4imDJhgaNbksBoqOPOipuGMP8giSqGvbM1GlWt06d6GaSPlflIgXLNP3kgmgKds2d97Gv/lahQoW4UNGnS5datSpVkgYZ0oVpZKhqZIlVAJMd1NlntfD7j76nYXY/csEPBbwUliq23XZWv349a+2q32nYzHTT+rQt2bblr+pymhRoUkXL/KZ0AcF1roJcB1cF8N9t21qDQ/8X2Bw5erRt5f6XaojKsE9VclOVrlCFLlRj22/f2la8+PZhsaSPVatUtlNPOSX2Xn59SwspAPbstOds9IhbYuskPkkWZFrfPpBfQFD3hcuubGfl3XDAqao4hmMsVmw7u/SSS8JL//jb77/be+++Zx+5IKrCcAoQa4jyIw8/3AX3TrVtt902bvnEF9r/5e3au/54tr9WE99P9Toc97ltWtuRRxyRajEflFUYSdURDzrwQL9cCAjmV6FsxsyZ7pq+P+OAoIZAffChh+xv1z5ViwyV4HQA6rOqIliYgOCZZ5xhxx93bNJ2hoCgAnca8llTpvcyrZuuH2uZ/KaC3NN22aVEnr6UuE0NvV7dVWVt07p14lt5Xqc75mTXVeJGNBy1zlW0euf69pXEfQwfMcJ22mnnpNVkE5eNvtY9IBMz9YPnnn/BxowaGd1cnudPPvW0veY+W6MBwfXpQ3l2kDAjv4Cg9vvq9Nd9hcmE1eJeTnCVdefPX+Ar/sa9wQsE/hEgIEhXQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBMoqoDg7y4Q1L5TZ2t78UVxFfQSQV+bPt3GuWpJRR0QDMNzpht6MlSCa3vRRdaoUcPY4eUXJFGYbvStt9qtLkyhoW8LOj38yKP2pqs4dsP1PXylwMT1+g0YaLu6yn6ZVBB8bPLjtmjxYj9EZOJ283v9559/+upL0QpMqgA3z4UYpz73nP3gqpgNHtA/bTvXp23Jjk/+ZzRr5quqzXr7bbvwvPOsoasCl2rScL8HH3SQndn8jKSLhDBSsoCgKvHd1Kd30vXCTAUQj3IBs9NOPdXPUuXFDq5/d+rQId8KmWH96GN+fUvLpaoQF91GsiBTpn0gbDe/gKCW0fCiqv7X/IzTwyoFelRVvOLF468ThdXmzJnrhhifYjVr1PDDR6fbmK6PCi6gGB2+OHEd9V1NO+20U+ytmwcMsNq19knZN7TgylWrrM9NN9vA/v1i4dkQ+spvKPH1CQiqQqCqUKpftXLBx+1cKDc6KUg8YtSoQgUEU1U91XaTBQQzvZdpe+n6sZbJbwrXZLRqY3R5DZ+re1p+Q0preX3OtDr7LDeM7L+iqyd9nu6YH3hwnBsG/rN896nQWoNDD00aEMy0ryQe7OTHnzBVlI0OB5+4jO7dP/zwo5UuXSr2VqZm6gcKS4+6ZXjctRPb8D9PNOzxxy5sFw0Irk8fStx+4uv8AoLa76gxY+w2V/Uwv8/hMbfd7v5IYHu7xH3GMyGQTICAYDIV5iGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFYLFFVAUEgK9JQtu2e+X8xr6FENWVjUAUFVtNPQk0cfeaSrLNUq5TnT8Ih33j3Weva4Lq76Xn5BknW//GIdXTW6Lp07+cBUso3/4pb5xlVJU6ApTBres369ukkrXalaXucuV1utmjUzCghqiOA77rzLhrnhg3fYPnlFuy/XrLEdd9ghNrywhnzt3uN6u+TCC61Bg0PDYcYely1bbv0GDrT2V15h+9evH5uf7Mn6tC3Z9qL+z7/wgk1yAcjTXBW+05s1jau6GNbVMNVbbbVVyopbL7/yqj0yfnzSCoIKvAwZOMBXtAvbiz4qWHWtc7qm69U+zBbeU+WyenXq+mMK8xIfVUlTQ/Lq2MIUbVuYF33MNCCYSR+I7jddQHDiY4/Z0qXL7NprukVXi3uuPlOhQvlY2E1DiN819h4b5IJ3pUr9L8gUVnr+hRdt8hNP+MBRNNQX3o8+Kvz00Zw5ccMXR9/X81tvv8MP393/5pti5uMnTvTH3ePa7omLx16/9PIrPhA7fMjg2LwNHRCcMWOm3T9uXMq+p34/0bW5MBUECxsQzPReJqR0/TgGmeJJuoDgh+5z4W7Xdwa7azNV31jlhmpXRb9+N/W1snvumWJP/5ud7pgVWH/y6WfiAnD/W9t8eLBXn74+1JmsgmBRBQRDYE/9UZU2k026pz06YYK7tvrHQoKZmoV+oAqaBx5wQLLd+YquGmpd4ehoQDCsW9jPw6Q7SZiZX0BQFTY7XtXFOnfsmDKk/ccff9i1LjzerEnjfCuIJuyWlzkmQEAwx044zUUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAbNMA4IKe+zpwoDbFy8eY3zxpZdN4ZxOHdpbvbp1Y/PDk9lvv2MPuoCMAgeJAcG1X31l27lhR0uWLBkWN1VMUiCkSuXKsfBP7M0kTx5/YopNc8O1KtiVbIjaX3791fq6qmEaQve67tfEbTNdkERDOX7//fd2Y8/rY2Go6CEo+LhoyRIb5KrvhcCeApMabjbZUJhTp01zQakpdoAL4mVSQVCBRIX9Dtx/f7vwgvOjh+KfK0zR+6abfIimS+fOsfcVdtGwpjKKhti0QAh+XHrxxUkDhLGNuCfr07bodsLzRP/3P/jAVL2qrgvkXewCjYkV6RSWefLpp61f3z55hkRWWLS3O886X8kqCCogeIBzu+Kyf4fdxx51PYwec6stXb7cB7miVd40xKWGAu51Q8+k4SQF7jS8pfpW9b33jm0zsW2xN/55kmlAMNM+EPafLiCo4ac11LICpdFqm2F9DR08cPAQO71pk9iQyrK/qms3a+wqLyrcmTgp1Dhy9Jg813/icnod9t+0cWNr6gI/iVMInJ3dooWddOIJsbc1jPnwESNTHreO8XoXfDrEVaA879xzYutt6ICgKgSqatuIYUNt5513ju1XT3S96phUZXBDBgS1r0zuZVovXT/WMvlN4XylqiCoapAKdx3kAmvJ7ml///137NgVECzIlO6YVT1Q98Srr+qcJ/yt/d0ycpTvh4cfdtgGrSCoe69Cyfq8aH/llXk+Y1ShVzZVKlWKGx59fcwGDRlqCo336d3LiiepjKv70uNTnvRhzWhAUO6Z9qF05yy/gKDW1TGrzarKG703h+1OefIpe/7FF62va9PuZcqE2TwiECdAQDCOgxcImOkHp++/+94OPvggX6I18TVGmQvoB7yvv/7adtttt9hfbGW+tczW1A++773/vu3t/nFSsUKFzDaSo2vpH1tfuV9S6K83Uv0Fx+ZK8/kXX9if7i8nNO3h/qom+kubzfWY9YOp+uuWcrybq6OOa0Pex/WPpNXul3Tbu79E3WP33TdnBo4NAQQQQAABBBBAAAEEEEAAAQQQQAABBBIEQkCwwaGH5Fs1bntXpS6E/sIwwaqWpwpK0UnDnj7nKmGpkt/+LoRVpkxpW7v2K3vffS8xb/58a9Oqpa/6FQ0I6vfXN/bu44e+jVZ2u91VyNOwiyccd6wbkrNldDdJnytE0X/QYD9M7YnHH+/2X98P7fuzCxSsWLHCdGw//fyTXdutm1VyQYvolC5Iou93hgy/xf5yocWzzzrLqlff27Zy/1v4yUKb7YbEfefd9+zSSy6OG145VEtrfnozq++CgKp49e2339lLr7zsPD6waq7S3IKFC12I7RL/fY2Ci2FSuK1r92utkRtmNwylWbp0aSvj/h+mVW6Y1MEuwFWzenUfxtprr71M32PMnTfPXn1tuq1Zu9YPQRyttKVwnEJKtfepZa1btbI999jDBzFV+U6BkKWuItzNbvjddN+BrE/bwvFHH5P5K1A0yg3tvNtuu1oHF5rRd2th0ncHQ9352Grrre3MM87wwRoNbbvYDVH6+JNTfKhQ7196ySVueNBDwmq+7XIuXqy4qcKi1i1fvpx/X2EhVa3TY9cuV1mlihVj6+mJrhUNSfr+hx9aCze0sUKGCnp9unSpHz439PvECpbJ2hbdcKYBQW0jkz4Q9q1qmqr2pyp0VVwwSZO+N1SANExvuSGyH3zoYTv+2GPtmGOOttKuKqD61Zw5c+2Fl15y33W6sO0118SFdZ5ywc2nnnnWh/Z0HaovKdSjwN/ESY/5QGe6YWSj+7/vgQftOLfvQw45xJ3nKvaHuwYXuutm/ISJvmLpFZddnidA+vobb9hDbojvk0880Y444nB/3ega1lDkj4yf4M5tBWt3xRW2rQslh2l9A4LprllVN9M1Xc5dp6ecfJLVqlXL73rx4iWuLROsbt06puCr7p1HHP4vq/hP/0vVP9L1q2RDDGuHmdzLtF66/WmZ/KZ0Plp3+fIVLnx2i6+s2tQFT8uXK+cr2WlI6AkTJ/kAZfduXZNWp0y273THrGta14Duw7qmNaS2gmcrV632w2HvX7+ee+8Tf5/ckBUEdewrV660oS6IrpDgccceZzVr1rBtt9nGff/m7kuTJ9s3rrJpFxdkTPweLlMz3UMHDx3m7//6LKhRo7r/7ljX94su7Kz7Y906+7nA3UtxFQR1rJn2Ia2b33T9DTfadi6s2PKsFv7nAYXto5/Vuo8otKwKvK3dzxL6DC3mzpeO9fnnX7DZ7p7WoV0722/f2vnthvdyXICAYI53AJofL6APkZtcaVpNzZo08f/YC6/1FxrN3Ifxppz0oaQPyCruB8BMk98fuB/ct3b/YKhfr95Gb4r+Ou6usWPdPzhOj/01zcY+iFHuL3M+cn+ho4CYSs9vCUGxjWWUrm/oFxH6hYRKEzd118eWMOmvLoe5fwTrHwJh0l8GatiCTT2l837k0fH28quv+r9k3ByOd1N7Zbr/xPt6sr+0y3TbWu/nn3+2Tm4ojH3cP2a7Xd1lfTa1ydZN99mi62fcQw+5f3jtYee0ab3JjpMdI4AAAggggAACCCCAAAIIIIAAAgggUNQCISCYbrv6TmagGzZU06uvvebDNwpvqFJP4qQAoX7/q+DLby60p+EiNdSugkj6nfWAQYPjKoh99vnnPiC4jQtDRAOC993/gL3pAkoasjW/4UKj+1dwwAdqXKU3VSoMk6rl1d5nH18FKtn3S+mCJNqOwgkKHSlkpHCFvmvS/hTYuOD88/zvSMP+wqOCdE88+aQpHKQwkqoiVq1axQfY9MfXd7nhjtX+Ni6gcdyxx4TV/KNCIdNff8OH/jRDQ+42d98vRSf9/vfxKU/Yp58u9cEpbVNTzRo1/FDPpUvnHeZ13sfz/ToK4Kky399//58/vsqVK9k5rVt77+g+Uj1fn7YlbjOVvwoJjHQV/fR7aIUEdYxh0vm49777bYELaSocqEkhwlZnn2WHHHywtXXBsVQBwYsuuMCHsl5zvroG9H+dz2pVq7pwylmxwFzYV3jUcqpUqQqHCqWEc6pQ3elNm+Y5h1ovVdvCNlMFwML7erz3/vtdAYuvTeGoxCmTPqBt6Pq4yw3VrOCu+rEmVZtMDNfMnDnLf1ejkJauI/VhhagaNWjgQzrFklQf0xC+Ckzq/O3gigv86qp3atrffTerqn3pAqh+4X/+M3v22/b8Sy+6MORq0z1C15JCnoe6Qjctzz7bz4suH54r3PiKu1etXLkqtp6uBw0T3dL1kcQKZOsbENR+012z+q7h9jvv9EE4tUXXq/pQk9NOtdNc1UUFVHXMOrZRtwz3TUnVP9L1q1QBQW00k3tZuv35g03zn3Q+Wl2VKZ9wles+Xfqp62t/eSP1oVruntbKhcKiIek0u0t77Wl9XdMaTnuG6+e6z2jSffF4F9LT/VaBNAWpN3RAUPtVBkLDTC9dttS3Xcemyrq1atU03bN22WUXLZZnytTshx9+cN99PewDkrofqN/p+q5Xp45demlbe+utGa5q6rQ8AUEdQCZ9KM+BJ8zQtf74lCmx77RViVUVWaOTPnsfdt8f63NY50vXke5LCg/rGqqz377RxXmOQB4BAoJ5SJiRywL64a6PK7utqZ77S4UzTj899lopcY3rvikn/eXEI+PH2wXnnZvx2PEan14/bA0fMnijN2VzCAiOue12/w9zNb5nj+v8B+ZGh9hMd5iub2yJAcGnn3nGpjz1tA8E/uuwRl6+zn77FeofXxvqdKXzJiBYNPKJ9/VOHToUzYb/2Uo2BATTfbboH+CT3F8Xa9IvQZP9AvEfDh4QQAABBBBAAAEEEEAAAQQQQAABBBDICYFlrtJc2b3KxobTTdZohY4UDFJAMEyqVJcYENR7+iPebbfZ1qKBNoUjZs6aZa9Nf73AAcGwH62ran1ffPmllXBV3nSsyYZRDMsX9lHhMIWfVHEtcbjQxG3JQSHAn3762fbccw9fhU2BhqKctA8FoVzUzVXdKp+nolqyfSlApFGTZFXGBUATK1MlWydx3sZoW+I+E1/rGFSFUiGiki4gqMBIQSeFXLSutlG1StUCuYVtazjYVa66l85pYUJLYf2ifsykDxTmGBQgWu6GXlZ/36ts2bTOOh5d1998861tv31x378KEwxMPLaw/1KuimFh+mpYb/cyu8fdXxK3vzFfq++oUuWOO+zo702bsphLYe5lG9NI/WeFC8wptKZqtUV9z0zWFvVX7bd0qdKFuhck29b6zAttVwXBCu4zRuHlgkxhvcKahfVUhVfXlq6xwkybqg/p3q17eJXKlfMEfgtz/CybWwIEBHPrfNPaAgjoL4b010b6sFGQJLzWBy8BwQIA5rPI5hAQ1A/CH7jS9WPvu4+AYMK5ShdY2xIDgip3//qbb5rKtesv3zanKZ03AcGiO1vhPh7u60W35eyoIJguIKh/3Iy9517/ix79xSkTAggggAACCCCAAAIIIIAAAggggAACCGQmkCogmGxr+r3cw65in6o3nXtOm2SLMA8BBBBAAAEEEEAAgQIJEBAsEBML5ZKAyhnf7YIQGtdd5XITX29Ki3QhjoIcW7pQUkG2kekym0NAUMeuv1Tr1aevL9VfsmTJTJuTdeul6xsEBIv2lKfzJiBYdN4b8j6eCxUEi+5MsCUEEEAAAQQQQAABBBBAAAEEEEAAAQRyW2DuvI9txKhRcUMMpxLR0KaqAHjM0UcZ32WkUmI+AggggAACCCCAQEEECAgWRIll1ktA5Vj1F1GLFi3226lRo4ZVr753xqXMVfJ74cKFrozzCttxxx2tdu19rPY++/iSt3PnzfNDh2qc9UwmhUj+fcWVfgz7Ky+/zFcci77WWO/RSWXHV7lhiRcs/MTWurK7JUvuZgcddJAvLa1x65e5UtPlXdnfZMMxal+rVq32Y8R//8P3tne1albT2eyyyy7RXfhx739zVe80ffTRHF8N7ZijjrI6bsjjMO23774pS8d+//33tnzFirCo3T32HtvaleS95KILY/NUKrdSxYqx13ri27Z6tS1Z8qmtWfOlVa5U2arXqJ62bLXWW+3Wm79goSub/Y3t4f6ybT833r3KbacLCKoc/aLFS2zlqpU+mKm/ijvk4IPjyu+Hg/x06VJXjv4nS9V2lQNWf1Dp/hrVq4fV7Ek33OwzU6faoYccbImVsHTsWmfp0mWm8tY6F3u7c67hpQsyqYzv4iVLfHn8igmenyxaZL/88ovfjPpntIz4n3/+afM+/tj3Z/WBxEkBJK2vbZfcraTvJ5UqVcy3fHlBLAvbNxIDgurjixYvtq+//tpVFtvTO5coUSLx8ONeF+Z+EI6vXLlyvjy9gp1fuHLJu7kS+cmctKNgGXaqUO38BQvsrDObW1nXBzXpvpG4/h9//OGv18WuPevcedK1rn6TamiEBe4epHXq1a3ryzcvdcNJrHPnv169ur6Mf9h/9DG0J8xLdy0mBgRVKlrl69U3K7ty0dWqVktb4juTvhOOLzxmeq1p/UyvqcIc9yp3v9G9plbNmv6a0JDC33z9jVWuUtnKun6ZeF9PvI/rvLz9zruuH3/lS7Tvvvse1uDQQyxdXw4+BQkI6t6gz8HF7v5WvHgx0+dgQYZrUB9bumyZW++//VL3Dp336DAj4TjC4y9uyJJF7n6xwt33NWTH7q4cet26dfw9OCyjR/Xhgn62hOtK10OiX9hmYdoYtqd7rCp76r7w4Ucf+XuJ7o267+rcMSGAAAIIIIAAAggggAACCCCAAAIIILClCej3ea+9Nj3lYc913wVoCNghAwdslCEjUx4IbyCAAAIIIIAAAgjklAABwZw63Ru/se+8+66Nvfc+H9qJ7l1jv7e74ooCB6+0rkIe97hhYWfNfju6Kf/88MMOs1atWlr7jp3swAMOcNu+PM8yBZ2hEI7CbBpSWFPi67AdhdOGDr/FVn/2WZjlH7XeRRec74NFo8bcaq1btrTjjzs2bhltU+sqYJU4NWvSxJo2aRybfWPvPr7iXWxGkifDhwyOC5xFFwmhrui8xOdHHXGEr5YY5q9xYUcd37fffhtmxR4VDuncqaOvsBib+c8TBUSGDBtuCuxEJ/1jt2nj01xQZQ+7a+xYO/OM0+3UU06JLmKz3Xl94KFxLrDyu7dXsEiTAn5tL77YBbHqxC2vv7DTX9oNHTQw6V/OrVu3zjp0vsoHwbp36xpbV+dNU2L4R0MPD3XHrlCnpu2LFzfN05Rfm/0C//xHobyu3a91ocXa1qVz59hbaktHdyx/uCCgAj+J7dfwp3379bNGDRv4tsZWdE/GT5hgL7mQW/AI7ykg1L1rt6RBoYJaFrZvhOWbuf65e5nd7aFHHokZ6bjU91udfXae/h6OubD3g7A/hfsUZpr38Xy/qQP239/aX3lF2GzcYwhrxc1MeKFAkoYcDpOCSXfcdbc/N2FeeDzumKOtdatWsftBmK/rUqG0Du3b2fARI31AWe/1uqFnnrBtWCe0J7xO9hi9FkNAsNvVXez999+3V9wvlaL9QFVOdS2mCmxl0neSHVOm11qm11Rhjzs4derQ3sY9/EjsvhW996a6j+svcO8fN85/Rm277bbeV+HiYsWK2YXnnWcNGhyajCRuXuhz+9SqZTpXidNjkx+35154Ie7caRnt7+ILL/RhxMR19HrO3Ll2+513+fBc4vunN21iTRr/73MivL9y5Uq79fY7TEF6TRpSWZ+d4R7c+LTTwqJWmM+Wom5j2F59F7A9p00bGzB4sOn+GZ0OdmH7f7e9JN8gdHR5niOAAAIIIIAAAggggAACCCCAAAIIILA5CPiA4PTUAUH9EW7DQw+1SpUqbQ6HyzEggAACCCCAAAII5IgAAcEcOdGbopkffPihDzcobHdm8+a+aqAid6qENnHSY/atCwN0dOGafWvXTnt4CsUoHDhz1mxXOauStXDbUyUlBTlU3WrCxEmmim0K4KxvQDDtwbgFFG5QEE7hwEMPOcROOelE22uvvVxlr59cqGOOPfHkU76a1fsffJAnIKjw3aAhQ30gpUXzM6x+vXq+4piqoz0xZYp9PH+BndGsqYUgh6rG/fprqCD4kb3q/mF5ggsc7rff/wJz+9SqmbKCoKqNrVi5KtasO+6807ZxwZRo9bxSpUpaeVelTZOOT23Teo1PPdUOPvggU4XBNV+usVdefdXenDHDV3zqclXnuJCgqq4NHT7cVa1aaQp2nHryyc6krP3oAnlz5sy1yY8/7s+R2pMYkFPw65aRI32lxSYuSKiqbL+5ilLvufMpy+IurNevb5+4am6ZhpZiEAlPJkyaZC+8+JId1qihnd60mQ/efblmjb3wwos2/Y03fIjn323bJqyV9+VVLrSn/jpi2NDYmyEAqHZPe/4F51fFrurUKfb+m2+9Zfc98KAP151w/HGx+ZMmT7bn3PIH1K/vw0Dlyu3lq9W99/4Hvq8oPKnwo85PmApjWdi+EQJuqnapKpEnnXii7e+Obautt3IBtg9sxqyZLjT3rQ/IHv6vf4VD8o+Z3A/C/hQoVltV9VGV/3bbdTerWrWK327if3RPUPXKML308ks+WKjgYqgguNNOO/o+rGUUDrztjjt9VcGzzzzTarmQ1/bbF3dVLFfZ409M8dXbjjvmGBcSbBkXElS4SqEzHZsCeoe460TV0LS+gnvJpsJ6h+CbKuNpX7pfqLKaKt69++57Liw92+/m2u7XWMUKFeJ2mUnfidtA5EWm11om11Qmxx2cdC5UdU7V/3Q/TlW9NTRNgWZdrwrPdWh3pa8Y+be7dlXlT0HmX10lPgU+w70xrJf4GMJuyQKCCgdOe/55f+/T51YV9/mlkLDugxPc56D6hALQOubopH6pcGAx16bTmzWzffapZSXcLw71y8UprgqqKteeeMLx1vKss2Kr6Ti6X9fD/nKBQH2G1HfX5q6uT37wwYf29LPP2leu0mfXLleZjlNTYT5birqNYXvqt7pfqkqohklR9cB5Lvg9c9YsH9Zu6AKa0c+qWGN5ggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQYAECggWmYsHCCCgA0fGqLj7Ad7MLdu3hhjiMTqpM16vvTbaLG4603019o28lfR5CT/qLqp6u8pcCHdFJlap63tjLVyDaGAHByY8/YVOfe86OP1bBoVbRQ/HPFQi7ecAAX7kpWsVKbyp8t/CTT+ySCy+0ww5rFLeuwk0DBw/xIZBkVQE1XOoj48fbBeeda0e6qn+ZTDovqlyl7SebVDlQ1do0xPJBBx6YZxGFpp6dNs2FIk+yFq6yW5imuCCfQihHH3mknXfuOWF27FHBlv4DB/kwSGJAcPiIET4Y2cVV3VP1veh0591j3fCf79hll7b1YczwXqahpbB+4mM4L4MG9PfD2Yb3VdHwht69bKcdd7Ie13ZPGcQMy48cPdqFROd53zCM8IsvvWzjJ070VeumTp3mfUeNuCXWjx9151RVAhX2C0PfauheBUl17egaUSWw6KTqYiNHj8njnYll2G66vhECe1o+Wf9Y+9VXviqZwrvRqo2Z3g/C/nS9Dxs8KE/Vx3Dc+T0+8OA4Pyy3KgaqcmB0Cse1lZt5U58+eaoxqvKa+oXORacOHeKqWIbqawrrtnJVQjOZ0nmH4FtxV80u2fGpUuRd99xjTVxVuNNdICxMmfadsH7iY6bXWmGvqUyPOzgpbNb7xhsSDz/la4XVBw8d5kPBl1x0Udxyr7z6mg81t2p5th1x+OFx7yW+CGG3xIBgaE+qzy2FA693n1sa5nfkLcNjwVJ9DnRw98Kt3P+udoG+xH6rMHb/AQNN11v0upjq7suT3f35NFedtbkLI0en6a+/bg8+9HCe+0VYJt1nS1G3MWxP+1eVzjatW4dD8Y8y6O1+RlAbR7t7pSo6MiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZCZAQDAzN9ZKI6DKRAq6/atRI7v4oguTLn2/q5j2hqucNnL4sLjKcMkWDuGzq13VulQVB193Vd4eGPfQRqkgqLYtX7HCRrhj11C0yaa7XXBHwyFHA4IKPbTv1NlVQNs1aehL25nlqiTefe+9SQNY6UIcyY4jcV5+oaRwfJVcNcbrXFWyZNPvrrLf1dd095W6osO0Kgy05NNP7RZXOW/HHXZItqofxlXDzCYGBLVfeaoyXeKkKowaMlPD2jZ1wy+HKdPQUlg/8TGEPhV8POP0ZrHwnpZTkEzVyQoyhb7auWPH2BDaY2673ebPn2+jR44wnUNVVosG1hQE1DUzZtTIWH96xoUtVT0xWZA0HMd11/f0wZk+vW4Ms3wot7CWYeX8+oaWCYG9KlUq2w09eoTV4h4VjF29+jMb49qqIKqmTO8HYX8aXloBvUym/AKC6q8DBg32lTJ1zpNNCrb2c2EsVcQ801XwC1MICPbscZ0pEJnJlM47BN9OOvEEO7tFizy7UJXNK9t38BXhokPbZtp38uzgnxmZXmuFvaYyPe7gpKGoT3bXb0GnX1yFwM5drvYVSnv17BkXEFVVuzA0b7rthbBbYkDw2alT7fEpT1p+n1vTXND8MRc4V0XROvvt63elqrgKUx9z1FF27jltku5e1U41bPH5LoytKp5hUji9rKvcqlBpdFK1RPW3xGMMy6T7bCnqNobtKfyrnwF2SPKZMekxV0HVtTEanA7HyyMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQMEFCAgW3IolCyHwnBtScZIbWlGVj0IVtcTV17qhbDWsroZ2jAYcEpfT61CJSpWEdtxxx2SL+KFt+/brt8EDggqLdeh8lQ/I5Vet6nk3NO3Exx6LCwiGsJGqwmn4y2TTunXr/DDMGmpWw6JGp3QhjuiyqZ7nF0oKx5c4dGXithRoU4hFITBVdlLATxWvypQuY31dtb1UU+gXiQFBLa+haecvmG+fuWGbf3ZhljD98MOPbv6CPBULMw0the0mPmr/qv6nPqnhbOvW2c8NB1rFD+1ZwZ2rrbZSnbn0k4YGHX3rbX442FNcqExBo04uhFTVheoUAgrDDZ/d4kw/RK+22EGh0d12c1Xiesd2ENpX3w23vHVCxcywkM7BT24IZ10X0YBNYS3D9vLrG1omBPaOcMMHX3jB+WG1uEeFITWccP+bb7I999jDvxfOe2HvB2F/ieHQuB2meZFfQDCEs/K7B/355592hQvh6dijodkQELznrjvTHEHqt9N5h+DbpW4I2oYNGyTdkALHGoJbleTCtD59J2wj+hi2N3TQQCtZsmT0Lf9c9yzdE1X9Mlo5srDXVNhPYft8cLqm69V+aPc8B5jPDPVNBfQ06RzXqFHdDzVc0w3rnCronLi5EHZLDN9p2HRVv1UwONW2VK1VVVs1nHsIqYbrJb/zrvtKsnuSqunOmTPHh3S//e7b2KFqeQXW1cZosDsskO6zpajbGLanz8IB/W4OhxH3+NLLr9ijEyasV8XcuA3yAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhRAQKCOXriN3SzH3SV/Ka7in768l/hlfymU085OW7o2GTLavjgNS5QeMetY+Iqu0WX1VCEqqi2oYcY1rCQV3Xt5oMoCqSkmt501RHvc1USoxUEZ7/9jt01dqwPTWp45fymfd1Qu4lVw9KFOPLbXngvv1BSOL4WrlKawm2pptvuuNPee//9WAjshx9+sC7drklZnSpsZ8bMmXbPfffnqSCoIJgqSqqilyoyRkNIqpKmIakThzQOYaJUoaVwTImhpXAsyR41nPBr06e7IYLn+mqICodpKrvnnnbRhRdY9b33TrZa3LzvvvvOuna/1vdpDYu82gUee/XpG2uzgjodXZiqRvXq1rFDe/v6m2+s+3U9rJELgLV1QbAwXX/Djb7PK5yYbrryistjw3hnYhm2n1/f0DL/C+w1cdUcG4fV4h5V7VFVHzUsstw0ZXo/+N/+4qtHxu0wzYv8AoLhuKLVHJNtTi6qIBkN4W3MgKCqAyp8lmxKds4y7TvJtq9563OtFeaayvS41ycgqPYpaPvWWzNs7scf+3uN5mlI7+Pd8NFnNGuWdnjbEHZLDAiqPd+4e5c+t1JN4f7QsMGhdukll/jFxrmhgF9zQwIrkFqQe07YtrZ1u7s3f7lmjf+c3L1MmViIUPcdzS/qgGCmbQxmtVwQM9XnaFF83gUbHhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFcFiAgmMtnfwO2PQz3e8Vl/7aDDzpovfd07/3321szZsaFjhI3Onfexz7IsqEDgtrvNdddZ3/++ZcNHzI48TBirx9zFRSnuepU0YCgAhoKVBx3zDHWpnWr2LIFfVIUgYlkgaKwf4Uwe/S8wY48/HC74Pzzwuw8j71vutm+/vprX7kuVLFSQHDbbbexwW6I2VRTGH43WkFQ1QcVmPvDhfE6d+zgg5cadjJMGpL4jrvuzhMQHD3mVvvQVcoa2L+fKQiTOIVhOgsTEIwOJazjWrFypX344Uf24ssv+2GGFUZUpb90kwKkO7lKlzf37WOvvPqaPfzoo3Fhn1Gjx/hhd0e5yn+qOKiqe6oWqaqRYVKQVIHNggzBHdbJ1DKsn1/f0DIFCewlCwhmej8oyP7Csad6zC8gGI7r3y6Y1cAFtJJN6375xVd4PMAN49reVTsN08YMCOZXGS/ZOcuk74R2JXsc4ypifuD6aSbXWmGuqUyPe30CgtHjU9sVAJ/nPktef/NNf43mN8xvsApht8SAYBhmPlWIWeuHiqMtzzrLVLlVU7JwuX8j8h8FoBUu1nDwYfjzULFQ1UmPcsMTK2wdJlUa7Xx11yIPCGbaxlRm4Xj1WBSfd9Ht8RwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIVQECgrl65jdwuz//4gu7oVfvfINmCkaUK1cuVvksv0N6w4U17n9wnJ12yinW/IzTky4aggobIyAY9qUhY+vst2+e41HoRAEiVTWMBgS1oEIaO7shbPv0ujFpNUQNQfvb77/54ToTN1wUgYlkgaLofnR8xd2wwQq3heBJ9P2vXDBQFR33rb2PderQIfaWqgqqcpyGXU5W9U4VrPoNHGjLli2PVdPTyp8sWmSDhw6zwxo1tEsuuii2vfAkBC0TKwg+9fQz9uTTT1sXN7Txfq7aYuIU3i9IQPCLL7/0x6CAj6r+JU4h2Hhum9Z2zNFHJ76d5/VIN1Sxhha9ddRIXzFx7ry5Lkw5Ina+n3v+BTcE92S78frr7aM5H7l2PGPXXtPNVxUMG3v1tdfsoUcetVThNXmqIuMBBxwQG740U8uwz3R9oyCBvWQBwUzvBwXZXzj2VI/5BQTDcR16yCFJz7u2OdsNy3rXPfe4ap7/GxJa8zfngGAmfUdtSjU95a4z9dHCXGuZXFOZHnemAcGH3fWlSre6Z5Xba6+45v/HDXN+bY/rbVtXOVJB8BCEjlvonxepwm6qRjru4UfsvHPa2NEusJdsCv2zpwudV61axS8SgtqJoVT/5j//UcXVN1yV2nNc0PxYFzjXZ46Ged5llxI2qH//PMcbAvRFXUEw0zamMou2sSg+76Lb4zkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQqwIEBHP1zG/gdiu8FIYFbn/lFba/q74VnVTdbdCQoX6o3f5uKNIQRNNQspNc5b0dd9jBzjqrRawCkoZt7dX3JvvVDUGrEFmDQw+JbU77UpDg0QkT/LzEgKCqhGk43OOOPdbq1a0bW299nmgI2lGugl2pUiWt3eVXWOXKlWKb+/W33+yhhx+2mbNm+3mJAcEwrOnJJ51oLZo3jwtyKJTS5+ab3TCX3yUN2oXAROI2YzsvwBOFwBR2uWXoED+MZuIqIbByvCBxxwAAQABJREFUrAvCtW7VMm4ZDQF8mxtCdv6CBXb+uefYUUceGVs9hDirVq1iV3XsaDu5EGR0mjptmk1+YoqfFa0gqMChgjgajlahxGgQRxUX+7pqhRpmWNX1VGUvTDqGYbeM8OHADu3axfqQ3lcIcfCwYfa7W68gAUH1IVX9+8VVi1NwMwyNG/alINErLrB3wXnn2pFHHBFmp3wMgUINXat+UrFCBbv6qs6x5ZcvX2E3uRCPqoYtWrz4v1UEXZgwWvFL4VINTawhurWdxCqJIWR4yMEH2+X/vtRvO1PLcGDp+kZBAnvJAoKZ3g8Ksr9w7KkeQ39ONoywjisMa5ssiKmglu5Tui5vuL5HXPC1qAKC+V2LBQm+JQt1ZtJ3UvlpfibXWibXVKbHXRCnZO0L99PDDzvMLrzg/Lh7jz6Lerhqrzu6SqD5VYrVdlOF3dQe9ZNiLnCtKpCJwemPXAXU0a46o6qSDnKVUKOVU/X5qZBl9F4Z2qD5ujdou8NceFGBbk3drr3OVFmw/803WZnSpcPipmGeBw4ebCtXrbKKruJg7xt6xt4LT4JFqs+Wom5jqu2F49FjOKaC3nej6/IcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHCCCSOOFSYdVkWAQS2TIE/3QiH+n4umk/YMlvCUSNQMAECggVzYqkMBBSwULhGwyCqQtc+tWr6rXz00Rxb8MknpgBJuyuusLp19ottPVSL04y2LgjYyFWVC5Mq6w0ZPtyHuKpWqWL6v4ZUVdhQQTJVflM4KRoQVKCtc5er3XDAf/qAlYbILKpJw0CqquHWW2/tq+nt5SpQaXjKTxYttm3cvJNOPNEPLZsYuNCxKGT3kQsZqpqTAl67lCjhQzhz5s0zDQXZtHFja9a0SZ5DXejchgwb7gOUjRo28B9W1atX99vIs3CKGarWp0pzqrq3V9myfqkzzjgjFk7TD8C3u2qAOj4FHw8+8EAruVtJU1hqxqyZ9s0339qpJ59sZzY/I88exruQ5osvv+KqWO1iR7kgXblyMvnJVcmb48Muxx97jA+AJoZe+vbrZzq/OiaFSRWYUYjuJTe0b8MGDWzm7Nm+vxx95BEuKHiClS5dyp97HaeGPlWgdP/967sATgVbtXqVvf3Ou9b41FN9hcGCBATVkJkzZ9k9bihrhW1OOfkk1/YqLljzqy1c+IkfblRBvT6u0lipUqXytDtxRhg2VMGjN2fMsDOaNbXGp50WW+zvv//2wypXded/zdo1bp/F7aY+vWPvhycKZilgqB9KjnJtr1yxkn33/XcuUDjHli5b5gO2PV14sGTJkmEVy8QyrJyubxQksJcsIKjtZ3I/KMj+wrGneswvIKh11J+HuDCpwpUH7L+/u0/Vsu23L26rXJhKFdr++utv01DpiSHnoggIpvMuSPAtWUBQ7cqk72i9ZJPus7ffeZd98OGHea61d9973y6+8AK78+6xecK4mVxTmRx3QZyStUthbn1GrXRDie9bu7Yd1rChlXSh7+XLl9tsdw/RfAW5zzrzzGSrx+blF3b7eP4CN4T4bf7+pfuB7ql//PGnH7747Xfe8deuwoN77L57bHt6olC87vW679beZx/3/1r+Prz6889s+vTX7W/3+anPvGi/nDBpkr3w4ktW3lXmPfSQg30YcM2atS5o94q/b6kyre6zCtgf4YaR13bDlO6zpajbmN/2wjEREAwSPCKAAAIIIIAAAggggAACCCCAAAIIILDlCugPmNes+dL0HVooFrLltmbTHLm+r9D3QDvvvPOmOYAs3au+v57hvsPT782Xu+8D6rsiM+e7QiG5MKkwyxpXjIDrMhfONm1MFFBBjVL/3FP1veQYV8yjUqVKVsV9h1evXj3/nWHiOrxGIFsECAhmy5ncTNuh8M2j48fboiVLfBUuHabCTqqkdNEFF8RV3tN7CkwoaKLQ3Q09rvM3Y80Pk34IfuXV13z4RT+4qeJatWrVXICjuQ9Ldel2TVxAUCFEDXWsikvR4GDY3vo+akjdWW4IUoUrVGWshAv61atTx1q441nggmV3jR2bZ4hh7VMhvAkTJ9kcN/SsjMK06667WssWLaxBg0PDrLhHtWfcQw/bO+++a+tctTtNx7ihK891Q1gWdFqwcKGr5PeEr7IX1lE1QYX6wqQQ48RJj/lgn5w16bwpeKKhgBV+TDU9MeVJF+ibFWuX/sGnMOd5ruLgV66ilgJviQHBdevW2dh77nUe83yQJuzvpBNPcMueYc+/8IJNfe5503I9ru1ue7tzrknBpUfHT7B3XYVIBSs16Rw0P72ZHXzQQX7IzYIGBLWuAmlPPvW0aejZ6FS1ahVr06qVD3RG56d6rnBP1+7Xxt7u3q1rniGjNQzxnLnz/DIKe7a9+OLY8tEn+sHk6WeetWUutKR+o0l/yVB3v/9n7z7gJCnKPgAXehxBBBGQIx05SUZRogTJKCIgUeUAAznnIDnnrCAZFAwERQVFQFCiShTJwnGgHFlRQBC/elt6v9nZ2dm5vT7o2Xvan8xsh+rqp7p7gfvz1kJF1bO43sZlsJbRxkD3RieBvf4CgtH+uL4POjlftNtuGSggGMdGeDFCZo3vqbhv55h99rT2WmvlyqML9zlFFQHBgbw7Cb71FxCMDo/rvdPnIhtW9PesbZTDc/G++sa22/UJCMbhg3mmxrXfnTg1XEqvr/He+PEVV6bb77yz5/mKHSIovPLKKxXvn/h91G4ZKOwW4xxTnjc+w1PkUPN8Ody9Sa7S2hwOLM8V1QBjiuKoMhq/X2KJZ3/WWWdJX95ssz7vo/j9EO/fa/P7MsarXOL+3WrUqHz+p/J9/v0iDNv8Dh7od0vV1zhQe9F3AcFyBH0SIECAAAECBAgQIECAAAECBAgQ6F6B+Peihx95VDF7U/MsK917Ve9tz+Pfv2+W/13ySvnPA6tYIhD32OOP55nXVq6iufeljfh3+7fmwh/xZ5bNf07WSYei0Mc53z23ODZmoJtllpnTyDwDz8QSwozxP+qYY4uZ3cpiMp24jcs+UaThhlzAYN55503z5j8PqWoZCvdvVRZlO+P7PJTtTIjPKD4SSxRpqcuy7Q47FsVBVsl/Dhh/9j7mmWfSX3M24I9/vLsoTDSu2Yu6XJd+EOhEQECwEyX7jLdAhA+eefbZIuAVUxxOMfnk/bYZYb4I/jVWRWu1c0wHGyGLcokwRXNAMLbFiz2S4BFSGyjoUbY1rp9xfVGtMCrZlcsdd97Vb0Cw3Cc+IzQVVeRmzv/1VFTOq9sSYbcYkwhLxXSbnS4xveYrr7xSuHf6X4VF6HHMmDFFCCY8Gsd3oPPG+SLUEyHLWCIot+Muu7YMLbVrK8Yyqsm9kP8focjpp5++z/S+7Y6fUNviPn4q/xdMkw6btPgHlWHDhrU91fhYtm24go3j8j6o4HQdNxH9inBo3Dtxv3d633Z8gvdpx3G9dwbqZjxr8S6dNr+vGqfF7e+4wT5TVfe7v/7F+nh/j83V9l7NVWCnyWHpGUfM2FNVtd1x47ItgtdPPvVUMW14/IuweL90sjQ+L7OPnD0f/78phfs7NtyefTbfx6//q6gS+17+XhnsNfZ3LdYTIECAAAECBAgQIECAAAECBAgQINDdAgKC4z9+VQcEYyaan15zTTrtlJPHv3PvUwsREosZtQ4+8IBiNp1x6UbMSnfY4UekJZdcIhdg2bz4s8VxOX4o7PteBARjlqnvnn9+UXzm0IMPqoxtKNy/lWG829D4PA9V96W5vdPenSlvh+23a970vv3cGBBs7sQduTBU3Lcbf+lLadXPrtK82c8Eul5AQLDrh9AFlAL9BQTL7e/1Z6cBwfe6XxPL+QYbEJxYfFwnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBCCggIjr+ugGBfw/EJRJ1/wYXp3vvvT8ccdeREGQ4MzfciIBgFaC793vfTYostmlZYfvm+gzjINQKCfeHG53no21q1a7otIBhXf8GFF6U/5sqHMQNjJ4VSqhXTGoEJKyAgOGF9tf4eCsS0u98++5z0qaWWSt/8+tfewzO3PlX8Tc8NN92UvpKn/62q7HfrM1nbSuC+/Df3p5x2evr4ggum3XfdpdUu1hEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECEwgAQHB8YcVEOxrONhA1H/+85+08267p7XXXCOtvdZafRueSNa8FwHBCUUpINhXdrDPQ9+Wql/TjQHBmElt3/0PSDvvuGNadJGFq0fRIoH3UUBA8H3Ed+pxF4i/CX7nnXdaHhjTMMay1agt0nLLLttynypXPvrYY+mY447vt8myP/FfoEw/3XT97mfD4AXiHyyPOOrolg2U/httuGFaY/XVWu5jJQECBAgQIECAAAECBAgQIECAAAECBAgQIECg2wWeefbZ9NSTT6WYPnXaaT+S5p577jRyttlaXtaYZ55Jw4YNSyNmnDHFn6U8+OeH0tixz6XJJ5s8zT3P3OljM8zQ8rhy5b9efz395S9PptGjn0oRuJoxt7PYooum4cOHl7v0fPYXEIz1U3946jTddB/t2bfxS/Qr/hxuphEj0oc//OHGTUWf73/ggTRmzJj0+utvFG0svPDCA/5ZXPT7sdzmk9lpxIgZ07zzzJOtpu3Vdqc/RHW0uIbRo59OU0wxRZp11lnTQh9fsNPD++z3j3/8Iz308MP5mp5JM8wwfZpjjjnSrLPMUuzXLiDYyVjEn6tGIKxcfv/7P6Tf/u53aZeddypXpUknnTTNmc/ZuMTYPjV6dPZ6Mr366t/Txz42Q77Gj6ePfOQjjbv1+v7Gm2+mu/94d3r+hReKcYp7aYk8le/kk03Wa7/mH8Lz4YcfSWOfH5vmnHOuNE++D6eYfPJeu0UI6s1/v1msey7f5xdcdHHacouv5n59rGe/uIa4lv6WF198Ke21774dBX8Gc/39nbdc/+xf/5oeffTRFOM911xz5Wuds891lvs2fv71b39LjzzySPrnP/+ZbeYpxqrddZbHRtDpoYceSi+//Eq+50ek+eb93z3fSUCwkzEpz9PfZ5wn/oy88Z6Jdl959dWe+y3G9ekxT6e33347r5szTxk9a/rABz7Q0+Rg799oYFye+cZ+vfXWWynek//4x2vFvThlfsZjieuJe3rqqadO5b0expPne3XBBeYvprueZJJJin2b/9J47EsvvZSe/evf0oenmirNPvvIXrvGuy/e54888mh6661/F+M9+8iRxTu7ccfBPg/hHO+uuA+nyueP+ynes6363YlJY5/ie9yj0f9y+fEVVxZtr//F9cpVhV/8/mleYrbIh/N9/re/PVe4xDt6yimnbN6tz88xFo8++lj+vfREmmH6GdJ8883X7++WOLjdFMNl49vtsGNa9/OfT2uusXq5yieBISEgIDgkhnHiuYgo+/zf/L9Wywc/8MG00EIfT0ssvvh7Uu41/iHr57/4RauuFOvibxaWXHLJ/Ddb8/a7jw3jJxD/gPHTa65p2cgHJvlA/puxBfIYLNH2HwZaHmwlAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDmAhFkueTS76Xf3nprMV3qyBwkefKpp4qwzYorrJC+nGe5ag5+nHLaaUXo7ksbbJCOPf6EHMp6vggL/vNf/0qvvPJKWjj/Wdu239wmTTZZ38DfIzlUctZ3zk5///vf0ywzz5wDLG8Vx0fQb5tvfCPNlQNPjUt/AcEIaS279DJpvS+s27h7z/c33/x32i5Xb/rG176WPv2ppXrWR4Dk+BNPShGYigBdhCEfe+zxHBz7d/r8Omunz3/ucz37ll8icHNhDpPdevvtOTwyfZp++umKwFS0schCC6Vtt/nmOP050g033pgu+8EPiwDcHLPPnp4bO7YIxUSYZYftti1CN+W5B/qMENp3zzs/xSxpEToK07CNNpf+1KfSV768eRFm2WyTjfvMVtbpWLz+xhtph512btuVCHFFwZNyiWDQGWd9uwgSTTPNNOmjH522CFYOz+G7zTbdJC2/3HLlrj2fEXCMY+KeKMOGT/zlL4XtN762da7EtUjPvuWXCBOddMqpOSA2Js0000w5NDpVEXJ96aWX07qfW6cI6JT7HnL4ETmQObr8seXnsUcd1TYYVN6Phx1ycJo5n6+/ZTDX319bsT76fcrpZxTPVwTMwnT006Oz1dtp0403SqusvHLLw6O/p51xZvpXfjZnnnmmHCacoghfvZHH9HNrr5U+t846LY+L5+TEk08p9o3zxT0/duzzRTBxg/XXTyNHzpaOOubYdPihhxThsMZGxmVMGo9r9b1VEOva664rZuA75sgj03fO+W76/R/+UDyX8Z564cUX07Q5gLr7brv2BJUHc/8O5pkv+/WVzb+czc8ows9xTQfut1+aY47Zi8uL64mZA+Pdc/xJJxehvXhmI/AZ75MIs+2S31vNob84OI6Nsb4rB3Qf/POfi/YWy8/ETjvuUHyPv0Tw+rQzz0z/zoG3WfI5YnrbCCq+nZ+pbbfZJi2y8EI9+w7mefjNzTeny3/4wxxonKJ417z+xuvp2Rzmm2bqaQrz5oJHnZj0dOjdL/fce29xzzavb/x5uWWWSVttOapn1WuvvZZOPvW0IpAc92v8PnnuubHppfweivB5zBzZKhBbjvPvbruteKYi6Bj3fmQ4ZszB4V122qnl+6DVfdnTmXe/HHjQwWnRRRdJ8XvSQmAoCQgIDqXRdC0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECEwUAuece266+557iiBdVHeLEEVUU7o1BwYv/f5laYuvfDl9JgcFG5cICEbRjaiuFWHA1Vdbrac6VVSl+s455xSV9fbcfbfGw3LFq7+mgw89LH0iF8f44npf6AnwPP300+miSy5NEfI45KBv9aokWAayYn1ZES8aHWxAMMKJD+TqgRFsKqv/RYWx6399QxF82X7bbdKSSyzR0+8IkFxw4UUpwnRbb7VlmidXViyXCN6ce/4FRShth+22axlAKfctP2++5ZZ04cWXpA3X/2Lh+qEPfagIEv35oYfTt88+u5iOMkKNnSzR73POPS/9OVd4+2oOAjb2O0KCF+XzRIWvCL9snkN5K624Yk+z4zoW4VAuMUXrNT/7WTr15JPKVcVnGSSNCmP7H/itoiraFl/9ShH2i20Rmrv6Jz9Nt91xRzpw//16jWe0v+seexb3RNw3ZZgngp7nX3hhuu/++9IRhx7aM2Zxwgi9HZfDnhEK/OqXv9IryBMho/Ny0ZhVVlqpJ0TaeA1RufHQI45I39p//yLsVl5IeQ3lz82fEcw6IQe7Tj3pxBRj12oZzPW3aqdcF+HACJPNPdecOVy2eQ5b/q9qZoRDo5LjJd/7ftogV1dbc401ykOKz3gWjzvxxLRkLoyzaR7/xoqKt+Z74tJ83Do5JNg8VXKE1SL4Oyy/C7bOIazG5y7aPPf884vn4Df5Xm4OCI7rmPTqcIsfWgWxInT2q/y8fjIXeHktB0Q32WijniqhEe6KMO+T2eygA/YvQl/RbOPYD3T/xr6DeeajX1dcdXURLFvxM59JS33yE0Vot/GeiutZacXPpD/96cH0hXU/X7wLy8suntn8Hox3TTwDs+Wqoo1LHDssB/4WX3yxtGwOyEWBoaiUWLYf90k8Dyssv1xue90i8B3Hx33yq+uvT1f/9Joc3P5mz5S3jSadPA+/i98J+Z6J0PgySy/dc954b3/vssuK6oh77bFHr0qsnZg0XmP5vbFvp+eAa1zj9jk83biU1x333LEnnJgmzVVtv7b1VoV/uV8EjM/57rlFiDWOj8BkucQ5orDUAw8+mGeXHFX8Liu3RdA93jsRMtx7zz16vXdin1b3ZXls+Xlc7lOEDL+af4daCAwlAQHBoTSaroUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSEvEBWrosrR+jms1xwSios/4FsHFQGXvfbYvZdFBATvu/+BIpTU6rgIuBxz3PGpuRpbhBH/9OCf01GHH1ZMq9vY6J133VVUA4tgzALzz9+zqeqA4L77H1DMHtUc2oiwyKFHHJlmy1W3GitT3XHHnemCiy9OB+y3b1Exq6dj736JKWcPOuSQtNkmm6Rll12meXOvnyOos+8BBxTVFnfbZZde2+KHqOR4829/m846PQcwG4IsfXZ8d0WEvCKg2GxW7h/XdFiushahrqha1hgQHMxYlO1GwCpm5zrtlJPLVb0+IwQZgc999tqzV6AydorgzR5775Or+30uV/f7/2qNER6M9c0VH+OY2Bb3YlQeXG7ZZWNVsUSIK6ZdPTAHwSZrMT11BF9PP/OsPvdhHBwmERA8+MADimld/9fiwH/tJCA4mOtvd+b9DjiwCCjtstOOPcHJxv2v++Uv009y+OuE44/rNRXz3vvuV9yzjRXmGo+Le/vs/EzGvV1WbIzt511wQbrn3vvSkYcd2rKaZTkeESRuDgiOz5g09q383iqIFaGzH/74imJK7lbPUQSX99lv/7RpDg4us8zSZVM9nwPdv4N95st+7bv3Xn3u+/LkcT3/ztVKd991l/TxBftOKR7P7BFHH50ruP6nuDfL4+Izjo2Achzbaol3W0ytvfWWW7banC67/PIcBr+3V6XPcseBnod4z+29335pVA78tqr+Ge+2I485Js0y08y93p+dmJR96O/ztFw5M8KAO2y/XctdIuR3/5/+lI7Mv1daTUUeswnG77n1ciCzMUR72223p3Pzvb7/vvv0uv/Lk8Q1RaA9qmfunKs6Ni6t7svG7fE9KtVGNcPm3zXN+/mZQLcJCAh224jpLwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECE7VAVKCLCksxze2wXH2peYlqbzflKSVPysGjxiUCgo8++lg6+cRcZazFcRFy2Wb7HdJWW2yRPv3pT/UcGhWy/p6rkzVWJCs3xrSyO+y8SzGFZmOQreqAYFQ/eyBX7zrqiMP7hEkiENIczIvAUwSOtsvTCPe3nPnt76QP5alBo1reQEuEMiPEUlYvbNw/ptiNqlPNoavGfRq/R99efuXltOvO/U//G0HOGK/mgOBgxqI890ABq6j6N+aZMbni3VzlIb0+Izz6kTwNbEz72bhEVchZZ54l7bjD9j3VycrtrcYmAlGrrbpqnl53pXK3Pp8777Z72mzjjXvdh7HTQIGoPg29u6KTgOBgr7/VOaMi3m577lVMddo4PWzjvlHxL6aLjWp/Cy6wQLHppZdeSnvus286+FsH9qlE13hsBKeWX27ZtMbqq/esjnDdZ1ZYvmVouNzpRzmg94sc1Gu+V8dnTMq2Gz9bBbHK0FkEu5qnJC+PjSqPMR14q3DWQPfvYJ/56FdUEPz2GacXlf3KvjR+DhTyi33j/XTyqaem03KFzimmmKLn8Dh2nbXWbDktdBmwba602nNw/hIVTw865NB0/DFH93n/DPQ83H77HemyPLVw/C4oK/c1th3fb7jxpqJSYbxby6UTk3Lf/j4HCgjG/brqZz+b/79Kf00U4esXX3qxV9AvxvmfufpgVI3tb4mp22O/CENHtcZyaXVfltvKTwHBUsLnUBMQEBxqI+p6CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCYKAQitDY6V1T723PPFdNRlhcd4by/5ADh6aeeUq4qPiNw9moO+8X0rP0tEfZabplli2k0G/d5M1fPeuyxx9MzOawSU1M2Ltf96le5KuEX85TFq/asrjog+NzYsSmmrIxATUzVGVW8Zs8ByVlmnrnnnI1fYqrcCLP1F3aLfR9+5JH0zzzVaYSlOlki9BXBzGeffTZFmKxcIrR3S54yNqZGHTlyZLm638/o2xJ5+tgNN1i/332iYt/ue+3dJyAYB4zrWJQnGShgFftFSDSuccyYMSmqjzUuv//DH9LMM83UpyLYffffn87O04FGKOoTefrYqJYW7q3ClGVwbrk81WqMT3/LrbffnhZfdNFiWtTGfQYKRDXu2/i9k4Bg7D+Y6288T/k9AkrfOee7xXTOUzaExcrt/X3eceddRSXAqEbZGGxq3j8qSb75xps9Y1G6RsW0RRdZuHn3np/L6oONAcHy2MGOSU/jDV9aBbHKgOAZp53aJ+RbHhpB4BdeeLGYHrZcV34OdP8O9pmPfv382uuK6afLczV/xvVEoPVLG2zQvKnn53gPxHTbzWPQyqI8KCqwfve889OaDUHPclv5GYHwCHVGMPdTSy1Vri4+B3oeLs4VQePeX+qTn+x1XOMPL7z4Qor7LkKEU089dbGpE5PGNlp9bxcQLO+5mAY4plzub4mqnlF1MqYGLwOOMc7LLP3ploHLsp34fREVPJsrjbYbi/JYAcFSwudQExAQHGoj6noIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBjSAlGV7Yorr0oRzJsyV8Cbe645c0XASXuueWwOR7z44ostA4KxX7vKSxEQXHbpZdJ6X1i3p70IoXz77LNTTPk4cuRsabqPTtezLb7ce999acP1168kIPh6rvoXFQlbTVkbwbg//P4P6d4cSIsQW1Rbm2aaadJnll8+h0XW7qmKGCGvb263fZolTzs8/XS9+9qr4/mH4cMnTV/feuvm1X1+jmDVRZdckt7JbUf1s3Avl3/lalZRRbCTgGDZt2avsq3yM0JB39h2u/TlzTbtNcXwYMaibHOggFVUtIuA1v0P/Kmo4jbrrLP2hHKijcefeCLNNcccPaG0st34jODmXXls7n/ggfTkU0+lMJlpxIj0+Twl8ac/9f+hpkcfeywdfexxxTSzk002eWMTfb7POcfsfarhDRSI6tPIuys6CQiOz/U3n/dnP/95uv6GG/tU8Wzer/nna372s3Tjb25OJxx7TPOmXj9fnqvCPZin/Y7Kc7GUrgPdg39+6KFiCtXGgGB57EIfXzANZkx6dezdH1oFsSJ09rNfXFtU2Gt1TKyLaZKff/6FcQ4Ils/VYJ75TsJwcT3rrbturti4Wn9dL8KlX99m21xNdeP02VVW7tmvlUW5Mcb7mp//Ii2ycP+hznLfqBi5WA7NNi4DPQ9RkTGC5I1TUTce3/h9oy9tWDz3sa4Tk8ZjW31vFxAs77mYXnjGj32s1eHFuvjdcmqeqviUXPV2qqmmKozj3R7vxc+ssEK/x8U02tvvuFNRQfYTSy7Zs1+7sSh3EhAsJXwONQEBwaE2oq6HAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEhLRCV3M76ztnpa1tumZbOlZTKykrlRcc0ojf95jctA4KTTjq87bS7rQKCMZ3psEknTXvutmuvYFyc7985tLddDmJstOGGHQUEYyrTqGa1/hfXK7vb67MMvDQHBKNi32STDe+17ws5BHnfffenK6+6qqhCFVPclsvhRx5VVBns7zzlfp18RmWwmC52xRxI2WTjjdKk2aJxiUBdTC06UDirPCb6Ntecc6TNNt20XNXnc+zzz6ewap5ieDBjUTY+UEDw0u99P/321lvTgfvvV1QKLI8rP4846ug0Ta4wtsP225Wris/msYmwVoxj3KdR+WzjL32p596I4M6OOQAaVdYWXujjvdrp5Ify/miuDDbQsZ0EBAd7/a3OHdPNnnTKKS2nhW3cP0K30330oz3VAmNq6VNPPz2dmavsDR/e+35vPO70M8/KFRsnz9MTb1msLl23+cbXcxXH/w9ENR4T33+bK12en6debQwIlscOdkyazxE/twpidRI6G2xAMM452Ge+k37F9Sy/7LJp8xxM62+J99He++6X9tlrzzTvPPP07NbKotwY433aGWekM3K113bjXe7f/DnQ8xC/Cx559NG03z57Nx/a9udOTNo2kDe2CwjGPbfDTjsXU3C3ew9c/+sbiiD8cUcf1XO6w486Ki04/wJpg/W/2LOu+cvop59Ohxx2eDr6yCN6Qo+xT7uxKNsQECwlfA41AQHBoTairocAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSEtcN75F6SnRo9OB3/rwD7hwLjwmEr40UcfqyQgGNPMRmhwu22+2TJ49Je/PJkisNEYAos+9DfFcAQbY+rUmC6z1XLjTTelS3JQrTEgGNO1xhS2x+Swx0dzmKp5ue6Xv0o/vvLKolrbhz70oWLzD370o/TEE38pwjrN+5c/R99nnXWWPoG/cnv5eeutt6ULLr44RUglKhY2L9f98pfpBz/6cccBwaj+9ueH/ldxsDncWbb9uxzUO++CC3sFBAc7FmWbAwUEI9y02KKLtAwuRtXKXXbbPc0/33y9AoIRqovw3RGHHVqeptfnqaednl7OUzNHeLJcDj3iiLTowov0qlJZbis/H3v88WKa4mafgQJR5fHNn50EBAdz/c3nKX8uQ3df33qrPtPClvtEiOnQw49IW48alZZZZulidVRe3GnX3doGp9566620Tw6PfuHzn+tVRS1c58vBtE1yBbv+lqgQeettt/cKCMa+4zMmrc7VKojVSehsfAKCg33mO+lXXE9UujvowANavnPD4LbsemGuMnraySf1eqe0sijN/pUrpu60y65pt112LgLN5frGz6iq+mKuljprrojavAz0PMT039/O79wT8vTBU0zeumJnTFEf02CX0wvHOToxae5L88/tAoKx78E5wLfIQgu1Dfqdcda3s+Ww4vdB2f5lP/hB8W5vF3qMYOHPr702nXjcseVhxWe7sSh3FBAsJXwONQEBwaE2oq6HAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEhLRBVoWIq13J60caLjWBVTOE6+WSTVRIQjKBTBFgi0NeqMtmJJ5+c/pSnOu00IPjrPO3qT665Jh1x6CHFlJGNfX/ttdfSAblaYUz12hgQjJ933WPP9Lm1124ZKosQzCk5iHb8MUenaaedtmjy4UceScedcGKv8FXjuWKK4nBab93P95nGtnG/+B4VAiN0efIJx/fpcwS69v/WQSmqDHZaQTDCaieefEqf6YPL80abBx16WDFtb+MUw4Mdi7LdgQKCUSEwpvVtVdnw57/4RQ5hXpWWWGyxXgHBP959d4oQzx65uuSCCyxQnqrnM0Jbd999TzrqiMN71sW0qjHVbIStRsw4Y8/68kv0M0KU++69V5pn7rnL1cXnQIGoXjs3/NBJQHAw199wij5fI2g09vmxae987043Xd9g6+lnnJkezc9r3LeNVSmPOe749M9//rOo5Ni4vjzBVVf/pKiqdujBB/WqjhbrIxQVFSBny9NDNy8xRfSxx5+Q3n777T4BwfEZk+bzxM+tglidhM7GJyA42Ge+k37F9US11M033SStsvL/Tx9cXnuE+OLdNXK2WYvqmOX6/iwat8c0wK+88kr6Vg7RthrvuE8eyVNzH3PUkX1CfgM9D9GvvffbPy25+OJp1BZfbTxt8T3eNQcfdljxHO62yy492zsx6dm5ny8DBQSv/slPiwqj8Xus1TTD5TPb+LsgTlW+PxuDtY1diN8X8U5e6hOfSF/58uaNm1rel712yD8ICDaL+HmoCAgIDpWRdB0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECEwUAlGdL8JMKyy3XFpuuWXzdLVzpgh6RFjriquuTsvkaYd/df2v06ivfiXNlyu+fWyGGQqXCLkNZorhqAI3esyYtMF666WF8rSwUaXvmWefLab2jYZfeunlPP3vZGnTXLlslllmLqbK7K+CYIQ3Irg3LFeFWn+9L6Y5Zh+ZYorax3IA5odXXJFDgGuliy/9Xq+AYJzjJz/9aQ4W/iytsfpqafVVVy0q+UWIKkJBP/jhj9KHP/zhtP+++8SuPUtU4bvokkvTqqusklZeeaViKtfnxo4tpiX+5fXX54pZH0777rVXy1BOTyP5S1Rs22PvfYppd9dac400//zzF5ujSuNll1+eFllk4RTBx5U+85m0wvLLpdlmm63x8Jbfb7jxpvS9yy5Lq352lSJwNMP006c33ngjPfTww8X1bLrJxumcc89LG+SpmFdaccWeNgYzFuXBd951V1GJ8UsbbJDmyEHAWCJINuWUUxbfy0qM66/3hbRYDgJGeC/G9vobfp3++Me701xzzZUrHz6Ux2br4rgwj8qCcV89/vgTOVi4SVoyT28blcpiutX7c3Dz8jw2q332s72qhMUUxBdedHH64z33pA3zNKFL5PDSVFNNlSLAdt9996drc0XGsIz2mpcIUsVYxD2+fL7/Y5luuunS9Pn/7ZYIzh51zLFFULF8Hpr3H8z1N7fR+HM8k8efdFJ6/V+v5yDqummBBeYvqrRFNbhrr70u3Xr7bWmbb3wjLbrIIo2HFeHAeEbCNu6DcB+ep7WOSm/XXffLdEcexx233z4t9PEFex33zjvvFPdMuG+4wfqFa1S8fPnll/N0z39MN9x4Y9p4oy/lKW3P7BMQHJ8x6dWJd3+YEAHBge7fOPVgnvlOwnBxPWutsUa67fbbiyqbq+R3SvnMxjvo+5ddXjxHe+6+W8/zVLq0sii3xWfcJ8flMOl/cnBzozwd9zzzzJ0myf976OGH0h133pnu+v0fUn+VKDt5Hp7OlSqPzfdTVJdc7wvrpplmmilFcDBC5jfe9JsU78SoxtcY1u3EpPEaWn2/OL97417datQWxe+M2Ge+eeftqcAY91wEQu+59778u2OjtMjCCxfv8Zfy83HnXb9PV/3kJ8Xvg8+ts06f5m++5Zai0uyaq6+eVlhh+eL5D8d4f34vj0UENbffdts0bNiwXscONBaxc1Q2XGD++dImG23U61g/EOh2AQHBbh9B/SdAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYKITiCpKESCLynURgoiqYBEG2uIrXy6mqjz19DOKMFeEr7bfdpvCZ7ABwQjwXXTJxTmsclfRTkwRHOGlpT/9qbT5ZpulB3LQ5PuX/6DoS1SDiqkw+wsIRgMR7Dv3vPPTQ488XIQDY130faMcXFtiiSXSdjvu2CcgGPvEtJERHovA0xR5SswI1MWy+KKLFpWiWk3/G9N+/joHo2I615iuNpyiStcyn/50Eb4aPnx40cZAf4nA21nf+U568smn0gc/+MEUYaxw//w6a6d1cmXDH+Yphm/I0yNH26eedOJAzRXbb/rNb4pg4bN//WtxXAQRY5rPCMt8aqml0o65cmNzQHAwY1F2JioQnn32OemBBx8sxi/WR9WwxqBZhOSuvPrqIhRZ3ldzzjlHDvmMKq757HO+W4RDN9tkk/TZVf5XSS3avTJP8XzLb3+X3sxV1iJwGGGdySYbnlbMQb8IJMY907hEOOiKXJEwQq0RfCvPFcdGmK5su/GY8vsPf/zj9JubbylCTrFunbXWSuvnIGW7Zezzz6d987S8u++6S79Tucbxg7n+ducNhwi8RrAywrFxf8S9E1Nbb77ppsU0yq2Oj30v/f5lReApKmvGPRf375xzzFHcbwvnoG6rJZ7Ly/MUrH/IVRsjPBbni/sqnsmv52BnuB+cq1Menit4zjRiRK8mxmdMejWUf2gVxOokdNaugmAn92/0Y1yf+U76VV7PYvldc8n3Lk333f9Aj21Mz7tArp751VytLkKzzUt57Co5pNzfEu/EmFo9Am4x9uU7NsKsW+Sg9wLvhpJbHd/J8xDvrSuuurII8r6V34FxD8YSgb2tt9yyT4XLTkxa9aVx3ejRo9NFl16aYir3cjn7rDOLe7n8Ofrx4yuuLN4D8YzG/Rrv6Lhfl11mmbT6aquWu/b5jDBovHNHj366aDPu86jUGdOXRxA22mpeOhmLeO+unYPga625ZvPhfibQ1QICgl09fDpPgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDEKhCBnudfeCGNHft8+uhHpy2maYwg0YRaIqAzJlcSjFBHhItahWHG5dwRZvrr3/6Wps6hmgjGxRIBuP4CgrE9jomKVy+++FKafPLJiuqIrYKBsW/jEn1/MldejEp10ffBOkUgc8wzz6Qpp5gyjZhpRDGVc+N5BvP91VdfzQHGMYXDzDPP1DLY0txu1WPR2H4YR4XIf/zjtTTjjB8rKi9GOG2gJfo0Nof9Xnn178W1zDhixj5TorZqI0yfHvNMca6BKgG2Or6TdTE97E677panwt4wrbzSSm0PGez1t200b4wgaIT9Zp999jRZh8HUaDOOiwDZHPm4VqGn/s4bz1Y8J/FumDlXjRuX5b0Yk3Hpz2D2reqZj3M3B8tiPGJchn1wWB7PkX0CsIPpb3lMBGYjBB3VPeN9VeUS93YE6v6b/zfLzLMUId4q2x+ftuI9GKazjxzZpwpju3bLcZ5h+hn6BB3bHddqWzyfO++2e67s+fW01Cc/2WoX6wh0rYCAYNcOnY4TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgaAkMFBAcWlfrat5LgTPO+nZ6NgcfDzvk4EoDXe/lNTjX+yPQHBB8f3rhrBNa4Mqrrk4x/fxJJxxfSfh7QvdX+wTGRUBAcFy07EuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECE0wgptfcZfc90je//rVimt0JdiINT3QCjzz6aDr2+BPS+ut9Ia2dpyW2EOhUQECwU6nu3e/pXB336GOOTSssv1zaZOONu/dC9JxAPwICgv3AWE2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC1Qs8/fTT6VfX/7plw08+9VQxve0xRx2ZJtR0sy1PbOVEIfCLa69NP7riyrToIguntdZcM806yyzjNJ3pRIHkIvsICAj2IRkSK95+++0UUzrffffd6Zqf/6KYxnuP3XYdp6m8hwSEi5goBAQEJ4phdpEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoh0AREPx164Dg8EmHp0UXXbQIcNWjt3ox1AQe+NOD6YYbbkhPjh6dXn311bTaqp9Nm2y00VC7TNdTocBFF1+SPvnJT6SPL7hgha1q6v0UiIqix51wYpp02LA022yzpcUXWzStvtpq6YMf/OD72S3nJjDBBAQEJxithgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG6CkRA8PU33kgjZpyxrl3ULwIEJoDAa6+9lv6ep7SfacSINMkkk0yAM2iSQL0EBATrNR56Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKhEQEKyEUSMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBeAgKC9RoPvSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApUICAhWwqgRAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQLwEBwXqNh94QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFKBAQEK2HUCAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqJeAgGC9xkNvCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJQICgpUwaoQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNRLQECwXuOhNwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBIBAcFKGDVCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqJSAgWK/x0BsCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCJgIBgJYwaIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9RIQEKzXeOgNAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoREBAsBJGjRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXoJCAjWazz0hgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVCIgIFgJo0YIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC9BAQE6zUeekOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCoREBCshFEjBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgXgICgvUaD70hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVCAgIVsKoEQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUC8BAcF6jYfeECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBSgQEBCth1AgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiXgIBgvcZDbwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCUCAoKVMGqEAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUS0BAsF7joTcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKASAQHBShg1QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6iUgIFiv8dAbAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQiYCAYCWMGiFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUSEBCs13joDQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqERAQLASRo0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF6CQgI1ms89IYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFQiICBYCaNGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvQQEBOs1HnpDgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqERAQrIRRIwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoF4CAoL1Gg+9IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEClQgICFbCqBECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAvAQHBeo2H3hAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoEBAQrYdQIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCol4CAYL3GQ28IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAlAgKClTBqhAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1EtAQLBe46E3BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgEgEBwUoYNUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOolICBYr/HQGwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUImAgGAljBohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1EhAQrNd46A0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhEQECwEkaNECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBegkICNZrPPSGAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUIiAgWAmjRggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQL0EBATrNR56Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKhEQEKyEUSMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBeAgKC9RoPvSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApUICAhWwqgRAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQLwEBwXqNh94QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFKBAQEK2HUCAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqJeAgGC9xkNvCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJQICgpUwaoQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNRLQECwXuOhNwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBIBAcFKGDVCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqJSAgWK/x0BsCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCJgIBgJYwaIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9RIQEKzXeOgNAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoREBAsBJGjRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXoJCAjWazz0hgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVCIgIFgJo0YIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC9BAQE6zUeekOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCoREBCshFEjBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgXgICgvUaD70hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVCAgIVsKoEQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUC8BAcF6jYfeECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBSgQEBCth1AgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgOjQ0mgAAEAASURBVAABAgQIEKiXgIBgvcZDbwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCUCAoKVMGqEAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUS0BAsF7joTcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKASAQHBShg1QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6iUgIFiv8dAbAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQiYCAYCWMGiFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUSEBCs13joDQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqERAQLASRo0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF6CQgI1ms89IYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFQiICBYCaNGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvQQEBOs1HnpDgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqERAQrIRRIwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoF4CAoL1Gg+9IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEClQgICFbCqBECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAvAQHBeo2H3hAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoEBAQrYdQIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCol4CAYL3GQ28IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAlAgKClTBqhAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1EtAQLBe46E3BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgEgEBwUoYNUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOolICBYr/HQGwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUImAgGAljBohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1EhAQrNd46A0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhEQECwEkaNECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBegkICNZrPPSGAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUIiAgWAmjRggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQL0EBATrNR56Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKhEQEKyEUSMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBeAgKC9RoPvSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApUICAhWwqgRAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQLwEBwXqNh94QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFKBAQEK2HUCAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqJeAgGC9xkNvCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJQICgpUwaoQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNRLQECwXuOhNwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBIBAcFKGDVCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTqJSAgWK/x0BsCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCJgIBgJYwaIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9RIQEKzXeOgNAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoREBAsBJGjRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXoJCAjWazz0hgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVCIgIFgJo0YIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC9BAQE6zUeekOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCoREBCshFEjBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgXgICgvUaD70hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVCAgIVsKoEQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUC8BAcF6jYfeECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBSgQEBCth1AgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiXgIBgvcZDbwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCUCAoKVMGqEAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUS0BAsF7joTcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKASAQHBShg1QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6iUgIFiv8dAbAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQiYCAYCWMGiFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUSEBCs13joDQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqERAQLASRo0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF6CQgI1ms89IYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFQiICBYCaNGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvQQEBOs1HnpDgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqERAQrIRRIwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoF4CAoL1Gg+9IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEClQgICFbCqBECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAvAQHBeo2H3hAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoEBAQrYdQIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCol4CAYL3GQ28IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAlAgKClTDWp5HzL7ggLb744mmJ/H8LAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBhKIzNGWo0YNtJvtXSggINiFg9Zfl+NBPe+CC4vNp558kpBgf1DWEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQCJSZoyhIFpkjy9ASEBAcIuNZPqiNlyMk2KjhOwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECjQLNmSMhwUadofFdQHAIjGPzg9p4SbfcdGPjj74TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAg9Zc5EhIcWjeHgGCXj2d/D2pc1lajtjA3eJePr+4TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQmBACd99zT9ppl11bNi0k2JKlK1cKCHblsP2v08KBXTx4uk6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEDgfRYQEnyfB+A9OL2A4HuAPCFOIRw4IVS1SYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDiEhASHNrjLSDYheMrHNiFg6bLBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBGoqICRY04GpoFsCghUgvpdNCAe+l9rORYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDiEBASHJrjLCDYReMqHNhFg6WrBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLpMQEiwywasg+4KCHaAVIddhAPrMAr6QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBoCwgJDq3xFRDsgvFsFw7sgu7rIgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECQ0RgicUXT6eefNIQuZqhfxkCgjUfY+HAmg+Q7hEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCYyASEBLtnwAUEaz5WK6y0cs17qHsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECExsAlFFMIKClnoLCAjWe3xSuzm9a9513SNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYAgKbDVqi7TlqFFD8MqG3iUJCHbBmA4UEpTE7YJB1EUCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXSQQmaVWi3BgK5X6rhMQrO/Y9OpZu5Cgh64XlR8IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBikgJzSIOFqepiAYE0HplW3PHytVKwjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAKAfmkKhTr1YaAYL3GY8DeeAgHJLIDAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLjKCCXNI5gXbK7gGCXDFRjNz2MjRq+EyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwPgLySOOjV+9jBQTrPT799s5D2S+NDQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdCggh9QhVJfuJiDYpQMX3fZwdvHg6ToBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB91lA/uh9HoD34PQCgu8B8oQ8hYd0QupqmwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDQFJA7Gprj2nxVAoLNIl34c38P6xKLL55OPfmkLrwiXSZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYEIKnH/BBem8Cy7sc4qtRm2Rthw1qs96K7pTQECwO8etT6+bQ4LCgX2IrCBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEGgOSQoHNiAM0S+CggOkYGMyyhDgsKBQ2hQXQoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBCShQhgSFAycg8vvYtIDg+4g/IU4dIcEICFoIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQiYDMUSdK3bmPgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlsdGAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnQICgt05bnpNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaCggItuWxkQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdKeAgGB3jpteEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBtgICgm15bCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAt0pICDYneOm1wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK2AgGBbHhsJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB3CggIdue46TUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgrICDYlqf+G19//fX06GOPFx2dZuqp0+yzj6x/pyfiHv7nP/9Jjz3+eHrzzX/3KEw11YfSXHPO2fPzyy+/nJ4e80zx82yzzpKmnXbanm1D5cuEusa33nor/fmhhwumaaf9SJpt1lmHCpnrIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEOBBpzFI27D+bP31955ZU0+ukxjc0U3+eZe6405ZRT9llvRV+Bf+VcyxNP/CW98847PRtHjJgxfWyGGXp+HvPMM+mll14ufl5g/vnS8OHDe7YNlS+N17jgAvOnSSedtJJLm1D5i0o6p5HaCAgI1mYoBteRx594Ih159DHFwUsstljaYfvtBtfQRH7Uf//730JgkkkmmWASV151dbrp5pvTa6+91uscC8w/f9pz99161t122+3pu+efX/y89Zaj0rLLLNOzrRu+hOXNt9yS7r33vrTIIgunlVZcMf0fe3cBJ2W1xnH8ERQQUFIJiUVJARMlDQRpUEHsoEy6u7tBsBUwrgkGnWKQtqCUQShgUKKSXrznOdx37pme3Z1hd7m/cz/uzrxx3jPfd+6c/Xzmz3MCXf1eYwvzGqvF5zXu3btPevTubZmqG7dWxo+GAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIPD/I+DmKNxXXefG2nJ78+bupqiP35w5SxYuXhx0XM/u3aR0qVJB2zPShkTnJI4cPSrTps+QdevXixb7cdtNjRtJk8aNfZtmvPCifLRypX0+euQIyZ8vn29fRnjw119/ybL3lptiUD/JNTVqyCUmKxHYps94QVasWmU3jxk5UvLlyxt4SIqeJyp/kaLBcFK6FSAgmG5vTWwDcyc2AoKxmQUe9ezzz8uatR/bzRPGjpFcuXIFHpLq5xpc69mnj3gTrNvh6RYQ/PqbDTJx8mTfS+zYvn3Q5JeoCYqAoI+dBwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMD/pYCboyhUsKBohTUNq+njYUMGJ8tkwKDBsnPXLslqKtrlM6G1Xbt32/MzekDwoxUrZMaLL9nX8mCbNlL56quS5RLLwWvWrJVnp00LeejpFhB86+13ZN6CBfa1amVAzZ4EVpgkIBjyrcDGUyRAQPAUQSfqMu7ERkAwZcqnIiC4aPESeWPmTDvARg0ayI21a0mmTJns80yZM0u2rFl9g/cLz2XACoLz5s+Xt0y1RK/dclMTadSwoffU/vZ7jVQQ9LPhCQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAygXcHEVNs+LdwT/+kM8+/9x2mJzqdG6BGs1jaMW3paZKnDYCgpYh4o/HpkyVr0z1QG0d27eTkhdd5DteQ3TuErsZvYLg+ImTZMPGjb7X16tHdylVsqTvuT4gIOjHwZNTLEBA8BSDx/ty7sRGQDBluqciIDhz1luyYNEiO8D+ppJgUlLxsIP1C89lwIDgnr17ZaD5VxT6LzD0X1EMHjRQzsuf3+/1+r1GAoJ+NjxBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEi5gJuj0ICgfj8/3Sxhq+3uO++QG2rWjKnzDz78UF58+V/22PvvvUd27txJQDAmuZMHDRsxUrZu22ZzA09MnRLxzIweEPzk00/lmeeelxMnTkjhQoVkiMlJnHHGGX6vmYCgHwdPTrEAAcFTDB7vy7kTGwHBlOme6oDggL59pXjxYmEH6xeey4ABQX1hGg7csmWLlC5d2q86ovei/V4jAUGPhd8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqkUcHMUGhBs1LCBdO3R0/Z6acWK0sFUs4ulTX38Cfniq6/soWNHjZRFixcTEIwF7r/HeAFBXVHx8SmPRTwzowcE9cXpUtY7d+2Wi8uV9a0o6b5oAoKuBo9PtQABwVMtHufruRMbAcGU4RIQTJlbas4iIJgaPc5FAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgn4OYoNCB4z913yeChw2THjz9K1qxZZPKECX7L24bq5++//5aOnbvY4jhFLrhABg8cIK++9hoBwVBYYbb9vwUEwzD4NhMQ9FHwIA0ECAimAXo8L+lObIkICP773/+W7Tt2yF6zbOwff/wp55yTU/LlyydJxYuHTDzH8tr27t1n+twuf/75p+Q3S88WOL+A5M2bJ6i8arS+9Pxdu3fLPtPfkaNHTB95bX9arjU57XQJCO7ctUt+++03m0rPljWb5DGmSUlJISv4JccnEcdGCggeOnxYfvnlF/l5989y/O/j5v2W37zfikmOHDmiDkXfWz1697bHVa9aVVqZCoyxNC/Jv2/fXnt4njx5pVjRIpIrV65YTucYBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIF0IuDmKLyA4FtvvyPzFiywI+zcsaNUKH9xxNFu2LhRxk+cZI+pV6eONL+1WYoCgv/884/8aIKJe0zm4sCBA3J2trPtd/lFixSJ6TvwwEEeO3bMLHW8S/aa77YPHvzDfKd9ruQ336kXLlwoaujR7eujFStkxosv2U0Ptmkjla++yt0dl8eJDggmIs8SlxceppNIAcHff/9ddv/8s81KZDkri+TLn09KmLzHWWedFaa3/22OlL/431HBjzJSxiR49GxJrgABweSKpbPj3YktngFBXSJ2wYKF8tHKlaIfRIEtT548cm2N6lK/Xr2YPpA09PWvV16R9V9/I3/99Vdgd3JhiRJy15132A+4oJ0BG37bs0fmzZsvq9euFU3tB7ZiRYuacdWVq68KnsAmTp4sm7d863eK9qGTsrZQH65XVbpSWrds6XdOpCehrqETk641r+3MM88MCkPeWKuWNGt6i93v9+EdZYlhHfcKc4+WvbdcfvzpJ3u++0NL9apDk8aNRO9ZYPvgww/l1dffsJv1D4Ze3btLlixZAg/ze75u/dfy5NNPW7OcOXNK3149g/ruN2Cg/QMnvwmTDhsy2O98feL3Gv+7xLCG+96YOVM+/eyzoOP1vuh9uKlJE/PHTb6g/d6G5AYEN23eLAsXLZKvv9ngew94fWXKlEkqli8vjRo1tO9Pbzu/EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSr4Cbo/ACglu+/VZGjx1nB31jrRvkjttvj/gCXn/zTVm8ZKk9pnvXLlK2TJlkBQQ1yLd4yRL5aMVK+9154MX0O/BLL7lEGpjMRXFTMCdaO3zkiCwx/S012YBQmQstflOndi2peX1NWyXR7W++CUbOnjvP3WTzC5pj0JY5c+agAlG5zj1XRo8c4XdOpCePtGsf9J17tCzGow8/LJdUrGC7Tc4Sw6nNs2gRqc8+/8Jet1qVKnLfvfdEeml2nwZMFy89+X4oVbKkdOrQ3rp5J+7bt0/69B8Qsc9QAcHvvv9e/vXqa7LDFO4KbOecc47J5dSQhg0aBN1T99hQ+Qt3v/s4tRkTty8eZywBAoIZ634Fjdad2OIVENSqfE88+ZRNJ7sXPOOMM4I+0HWiavvwI6bKW173UL/HWqb3yaeell9NdTuv6QRzpvnvqJkUvab933PXnXK9KfEbrmkAbPioUX6hRQ3cnX322abC4R9+pzUyH5K33HyT37ax4yeIhsKS0zQpr4n5WFtKrlGvrvkXB82a2Uv4fXhHCAhq6HLatOnyxVdf+Q0t1H3SiePBNq3NWvfl/I7VJ24FxWpVq0QMQ6r/4GHD7B8cGqDr0qmjlCtbNqjPnr37+AKCof5o8HuNJiBYoGAB868vJsrRo/97PwR1ajZkz57d3ouKFcqH2m0qXcZWQVAnvdlz5sqcefOC3tOBHet79damTaXOjbUDd/EcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCdCbg5Ci8gqGG4jl26ymHzPXuB88+XEcOGRhy1FsXRim5nZ8smkydOsGGwWJcY1vOeevoZ+WnnzojX0J2xfB+tQbsJk7QY0hZff5oL0FCgViV0m2YCOrRr61ccac7cufLO7DnuYVEfa98Txo6Jepx3QJuHHo763bt3rPe7Y/t2JiBY0T6NNSAYjzyLBgyHDR/hy8S0anG/VK9WzRtW0O+v1q2TKY8/YV+fugzs1zdoNcJYsgqBAcHPv/hCXnvjZEGnoIs6G3SJ67aPPiLnn3ees/V/DwPzF9WqVf3fTudRvDImTpc8zEACBAQz0M0KNVR3YotHQFBDdgOHDPUF8DQA2KRRIyliytvmyZ1b9u3fL9u3b5d3zeShH7za9MOoX5/efhOMN1btr1efvmYJ4KO2ap6mm+vUudF+cGnATKsTrly1SubOn2/DYVmzZpFBAwaE/WDTRL8m+7XVqnm9VKpUyVYd1HS9TrKbNm2Spcvek5/NErXaHmjVSqpUqWwf6w/9gN2/33+CXLVmtWzbtt0e09QECrOZkr5uK1CgQNTywu7xoa7xpQnxaQlibVp+WJdDdps6l7zoIrvJ78M7TEBQA276B4DXp05CN5kqgaVKlbJ2+i8GtBzsEpNg14p/2rKayoAD+veTgub1uE1DeaPGjBENcmq775675bprr3UPsY/1j45RY8bK1m3b7HMNNGqwMVRLTkCw9g015bMvvrRLI19x+eVyjalMeUHhC+Tcc8+x91ST8rPNHyw6oWrTe93HVC3USpGBLZZJV89x/wDS/urUri167YKFCtp/KfGzeS99/Mkn8t7y98X7VxMPtm4tlStfHXhJniOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpCMBN0fhBQR1eE+a0J63ot3I4cPC5hJ0OWD9zlubfo/c9pGH7eNYAoKakRg0dJgvuKfFfLS4UVJScfM9eGE5aPbvNMHB1WvW2vyC7dj8uPvOO+UGk4EI1d55d7YtfqP7yl9cTmrdcIPNF+TIkcNmLjZt3mJyFyvlmw0nMwnXVK8uLe6/z9fV1q3b5IetW33P9cH3P3wvaz/+xG6rbgJlxYsV99uv2Y0app9Ym363rjkGty1asth+z6/fyXsFk9z9l156iW8FwVgCgvHMs2i+REOCmmXRVRb79OwhRUNkEPS9MNjcz0OHDtkwZ49uXX3ZDve1xJJVcAOCzW65Wd4291WDnrriZEVTSVGXnc5kChjp+2OzKXylS2J7RZY0HDhwQH/RVSQDm1/GpEULCRUQjGfGJPD6PM8YAgQEM8Z9CjtKd2KLR0Bw8pQpvkBZ/bp17bK3+oEU2DQ0NePFF2XV6jV2l1sBzz3WLbt73TXXhC3Nunbtx/KMKeOqrXrVqtLKBOMCm5bgbdexkw1saQW5Th06BB5in+83IUadcP/8808pVqyYTW+HPPC/G90KepqA17BdvNvMWW/JArOUrbYBfftGLBHs9+EdJiC4aPFisxzvLNufljJub/4FQKiJQA/48KOP5IWXXrbH6h8d/fuc/EPGbvjvD122eciw4XZS08lZlxrWY932iilru2z5crtJly1+6IHwVRWTExDUDvWamsoPtSy07tdJ+aWXX5Y15n2irVDBgjJ44AC/kr26PZZJV//wGTl6jA0CnmvKIvc2E324pL2GEzUUqZUu1Vf/FUki3h86dhoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQOoF3ByFGxDU4kXTZrxgL3DXHXeYoF3NkBdb/v778vIrr9p995vlZ681WQdtsQQE3czFpaY6nmYfcubMac8P/KE5iekmd3H8+HHRlRO1MJOGxAKbfr+tS9HqinuaadDv1wObZjjGTZhoCy5pX+NGjxINJ4ZrH61YYTIfL9nduqKirqwY7zZsxEhbgEi/a398ymMRu48lIOjaxiPPosWfHjera2rTzMAAUxlQV6/0mt6XkabY0vbtO+yme+++K+yKmLFkFdyAoHZ4Xv788ujDD9lci3dN97eu0vmEWa3zx/8We9KCXPffd697iH3slzEJExCMd8YkaBBsSPcCBATT/S2KPEB3YkttQFDL2w4cPMReUMvO6vKxocKB3og0qTzELDer1fr0Q3LiuLF+E5F+WOoa67rWuk5UI024KtzEp316obJwoT798Ovdt5+9fF1ThfC2W2/1hhL0W8Nsq9askbKlS0urVi0lu/MhHnhwRgsI6sTerWcvOXjwoA2rDTJVATXoFqk9N22a/RcIekzf3r3kwhIlgg7XSoOPTZ1qU/26ZPTAfv1E/8WBNv2XA88895x9rBUj+5g+tCJhuObdy/z58km0JYa1j5ubNJbGplJlpKbvpwGDBvuWqtayyJdeconfKbFMujqBfvb55/a93a1LZ9GAZaS2YuVKmf7Ci/aQ5s2amqqJdSMdzj4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTQUcHMUbkBQVzjs2qOn/U48UlGix6ZMla/Wr7evQIN2efLksY+jBQTdzEVus0Lj8KFDwhb68Xjc1e9qmGVuW5rCOoFN8wFaKElXJtSCROGaVkd89vlpNg+geYoSJZLCHSoZLSDo2sYjz+LBzHrrbZm/cKF9qpkbXcrXy8m8aAoxfWAKMmkLd2/sTvMjlqyCGxDUa3Tv2kXKmExLpKYrew4yq4BqTkSDnxoQ9XIc3nnRAoKJyph41+d3xhAgIJgx7lPYUboTW2oDgm/MnCmLFi+x1+rauZPoh2q0Nt+UNJ319jv2MC2rq+V13XbixAnZvGWL+bA6EXWZXm+S1fKtT5j0uPeh6/bnBc+ihdS04pwG2EL14fanjzNaQHCd+UNksvmDRJuWIr7FLIscrbnvE13S907zryFCtbnz5tkytrrvElPCtkO7dnaZXy2tq1X0NAiqqflwFfe8Pr37FEtAUFPxw4YMtpOZd36437pU85THn7C7K115pTzy0IN+h0abdHXp5S7de4gul6xLOmv1wGhNJ8v2nTrZ0r36vtPKhTQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfQp4H4/7gYEdbSDzcp6upKcVuF7bOIEu7ys+yq0cE3HLl1Cfj8cLSDorrD4YOvWUrny1W7XIR/r9foOGGADZlppb8L4cUHFeqZNnyErV6+2Yx5klpktWKBAyL70u239TzMX0VpGCwgmIs+iRrr07sTJk33LM9/a9BapX6+euKE7XX1RV2EMVbnRc46WVdDj3IBgFfPeeMC8R2Jp7vvq7jvvMEtR+1e+dMfaOkQFwURmTGIZP8ekDwECgunjPqR4FO7EltqA4Oix42y5WZ10xptqgJkzZYo6ri3fficTJk2yx+ka6Q3q1496TrgDnn72Ofn4k5Nr3Gt5WR1HYHM/+HTSq1qlslxpgmK65GxKW0YLCL47e47MnjvXvtye3btJiaSkqC/9b/NHQKcuXW0wrkL5i6Vzx44hz9HJ7/EnnpQvTBBPm5ao1VLFmkrXsKUGBjU4GK0lJyBYvZpZUtpMUrE0DX62bX9yaWkNKY4cPszvtGiT7qbNm2Xs+An2nFtuaiJ169TxOz/ckwmTJtv/b+iE/9TjJ8OZ4Y5lOwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2gm4OYrAgOBbpgDSPFMISVvH9u2Dvv/++psNNjCm+3UZ21vNKnNeixYQ9DIXevzkCeMjrrDo9am/n58+XVatXmM3aYVArRToNreQjlaPq2KWA65UqZKUKlkypqJJbl/e44wWEPRsE5Fn0UJDg83qmZo3yGRyMo0bNpCFixfbkKgu09y/Tx/RVRgjtWhZBT3XDQi2btlCqlWtGqlL3z434BdqmeFoAcFEZkx8g+RBuhcgIJjub1HkAboTW2oDgrp8ry7jm9JWy6SU7zJp5cCmobPVZrnfH37YKlr2VcNmf/99PPAwOX78b9GKg9rCBQR1WeNXXn1VVqxa5Xe+LrFbrGgRKVe2rFkytqydMGOpHqidZLSA4Ayz3O1HZtnblLYLCheWIYMGhj390OHDohUDf/n1V79jYlkG2DshOQFBL4HvnRvtt1c+Wf/Vw5NTp/gdHm3SXbNmrTxrlltOTUvOH3KpuQ7nIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkX8DNUQQGBLVAzsjRY2ynoTIOr73+uixZ9p7d36NbV78lYKMFBHv16Su/7dljl4DV6oSxNnflxvZtH5XLzFK3gW2pGdObs2bZokDePg3LXWBWwStdqpSUMytElip5UUzVA/X8jBYQTFSexbPcvn2HjBwzxuRW/pdl0bCgrr5ZtkwZ77Cwv6NlFfRENyDYt3cvuxR02A6dHZrj0devTQs6abDVbdECgonOmLhj4XH6FSAgmH7vTUwjcye21AYE23XoKIePHInpuqEOqla1irRu2dJv1++//27XuN+4aZPf9mhPwgUEvfO00uDy9z8Qff1aIjewaWBQS6vqMrTRWkYLCE41S+x6Ff6ivbZQ+/PmzStjR40Mtcu37f0PPpCX/vWK73l2s7Tw2DGjQ1Z19B3kPEhOQDDW0spe98NHjpIftm61T5+YMkWyZv1feeRok+7iJUtFq1Cmpo0aMVx0WWQaAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED6E3BzFIEBQS1a1NGsvnfo0CH7va9+/+u2Pv3622I6+h35JFMFMHPmzL7d0QKCXuaiWLFiMrBfX9950R64hW5a3n+f1KhePeQpGmKbM2+ebNy4UXT1vcCmK+I1MMvjNmxQ32/cgcfp84wWEPRsQ72WWLaFyrMEnvfUM8/KJ59+6tusBaq6densex7pQbSsgp7rBgTHm/xF7ty5I3Xp26ehxYfbtrPPS5RIkn69e/v26YNoAcFTkTHxGxBP0qUAAcF0eVtiH5Q7saU2IOiFuvRD6JGHHox9EP89UkN5uuyr17QMa7+Bg+TgwYN2ky4JfLFJrZcpU1qyZ8/uHeb7PWfuPLuMq26IFhD0Tjpsqt19s2GDbNu23YYFNe3vVSHUY66+6ipp06plxMkvowUE3Umj7SMPi7onp5115llBJYnd8zV9PnTYcNFKgm5Ty4ceaONuCvvYey/lz5dPRo8cEXScO0E1NyWZ65nSzLG21FQQdK/buGFDqVChfKyX9R1X3Pwxp39Y0RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0p+Am6MIDAjqaN0g2PChQ0SzDNrcSm1XXnGFPPrwQ3a79yNaQND7nlyXpZ00fpx3WtTfCxYulJlvvW2Pa/foI3L5ZZdFPOfvv/+22YofTEElzUpowSY3MKgBxXaPPBJxWdyMFhD0bOOVZwkE/vSzz+TJp58J3Cz33n2XXH/ddUHbAzckNyCY0gqCFU3GoVOHDn6Xd3MQrVuYpYur+S9dnOiMid9geJJuBQgIpttbE9vA3IkttQFBb812XZp36mOTY64WF26k8+bPl7feedfurn1DTbnzjuDlh91zh44YYScv3RYpIKjBwxw5crin+h7rvnXr1svsuXN9yyVH+8DOaAHBd96dbf9VgL7oju3bmRKyFX2vP7UPjh47JiNMhT5dClrbHbfdJrqe/QbzLxC03d68udS5sbZ9HOmHNznHEhCsXrWqtGrZIlJ3vn06vrbtO4guW61h1JHDh/n26YNok67+YTRuwkR7Tr26daR5s2Z+5/MEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBjC7g5ilABwVWrVsvzM2bYF6nfid9Yu5Z9vOy95fLKa6/Zx6Eq+UULCHqZC+1AlxgOl2uwF3B+TDNjWWnGpK1/nz6SlFTc2XvyYaSchFaY27hpsyxZutT33f5VlSrJww8+ENSPtyGjBQQ923jlWTwH/b1z1y6bk9CQpS7b3NoUoXr5lVdFV8w888wzpWf3blGXA46WVdDruEG9UEE+PSZUW7f+a5lsVlfUdm2NGnL/fff6HRYtIJjIjInfQHiSrgUICKbr2xN9cO7EltqA4GtvvGEmjGX2op07dpQK5S+OOoA///zThrU0AR/YHn/yKfn8iy/s5mjlUTXwpcEvDYBpCxUQ1EnxKxP+0yVlR5swoX7wh2tusj+aS0YLCH751VcyxSwzrK1h/frS9JabwzH4tqvvz7/8IoUKFvRtC/Xg6WefE12+WZv3h9Iff/whg01Fwf3799tKjF06dZSyZcqEOt23LTkBQQ36DRsyOGKVR69jd+K74vLLRSsoui3apKvv1y7de9hlqS+68ELp06une3rYx7t275bChQqF3c8OBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIH0IeDmKLzvvd2RafCra4+eNutQ/uJy0qVTJ7tbQ1j6nbS2UBmHaAFBd7+uzqer9EVrWg2wb/8BsmfvXsmSJYtMNJUHNaTmtaXL3pOly5bZ/VrtsMD553u7gn7/+9//Fl0iWfvSJZKnTJ4UdIy3IaMFBOOdZ/EcdGXFYcNH2GWFMY8QAABAAElEQVSldZuGKjVcueXbb23xITXVqoW6ZHSk1R2jZRW0bzcgWN1U+Wtlqv3F0t6cOUsWLl5sD73LFOaqZQp0uS1aQDCRGRN3HDxO3wIEBNP3/Yk6OndiixaEi9bZjz/+KIOGnqzIVuSCC6Rfn94Rl1LV0NmESZNFl/W97poacvPNN/tNVJMee0zWf/2NvexUM/GcbSagcG3FypUy/YUXfbtDBQSfnz5dVq1eY4/p2L69qZxXwXd84AMd26MmcHjMBA6jrQuf0QKCOgHpHysa3NOw5IB+/XwljwMdvOdzTEXFd+fMlcsuvVSa39os5B8NixYvkTdmzrSnlCiRJL26d7dpeN2g93jMuPE2WKdh0AF9+0jevHl1V8iWnICgdnBr01ukfr16IfvyNuofRgMHD7FBR93Wvu2j9vV4+/V3LJPuVBOu/MKELLU92Lq1VK58tX0c7semzZvtxF+sWFFpdktT0T8QaQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC6VPAzVGECgjqqIcMHy7bt++wmYjJptqflifq0LmLaDW+YkWLysD+/YJenBsA1KpypUuV8jtmx44dtviObtTv07VQTlYT+ovU5i9YILPefsceUrVKZWnTqpXf4StXrZJpM16w2+rXrSu3Nmvqtz/wiZfT0Mp3T06dIpkyZQo8xD7PaAHBeOdZFEFzJZof+HLdOmtyY60b5I7bb7eP9cciE8p7w4TztOm97talc9jCR7FkFdyAoBbE6tWju5S86CLbf7gfWghKcxKal8icObNMGDtGcubM6Xd4tIBgojImfoPgSboXICCY7m9R5AG6E1tqA4J6pQmTJsk3G04uJ6tLv95j1lPXlHqoNnvOHBs60336oaUfXm5Vv1defU2WLV9uT73vnrvlumuvDdWNDXwNHzFSNJnttVDldt1Us15Pl9fNnj27d4rf781btthAm26MtpSsGxAcM3Kk5MsXPvjmd5FkPJk56y1ZsGiRPWNA375SvHixsGf7fXibpXermfsQ2Nw/ErSv9o8+Knny5Ak8zD7XZXXHT5xkJzf1GjpooE24uwdrCE6POXHihC1zPNCEDgMdtLqkpvK1lSiRJD27dQsbIE1uQFDfY/ovKDTAGKodPXpMXnn1VVlh/vjRVrBAARliXodOgG6LZdL99rvvRMsP62SvodXOHTuIVhMM1Q4ePGhDs/ovSLRFC6aG6oNtCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKnTsDNUYQLCLrLrnZo19ZkHTL5lnFtYIrbNDNFbgJbtICgHj9uwkSz3O8me6quiteqxf1hiyl99vnnooWS9Ptw/e67b69eQVkCXVq4c7futpiPBsN6dOsqFxQuHDg0+1yP7W0qCOpvXaZYlysO19yAYHKWuw3XX6jtw0wOZOu2bbbQlBaJitRmmIJSH5nCUtpGjxwh+fPlCzo8nnkW7XzuvHny9ruz7XUuLFHCZl4CMwhTn3hSvvjyS3tMYIDQbvzvj1iyCm5AUE/TapBtH30k7P3UPp985mnZunWbvUqNatWkpXk/BTa/jImpSljNVCcMbPHOmAT2z/P0L0BAMP3fo4gjdCc2DYiVLVM64vHuzsyZMgd9eGgQauCQobY6nR6rH7q33HSTJJVIEl0K9rhJJf+8+2dZsmyprFn7sQ1ZabhL0/Ma2nKbpu01da9N0+k31LxeKlaoIKVKlrTPtazt2rVrZe78BTaYppPjJ59+ao/XSbpcubL2mkVNOl+bppq1YqGG2bTp69XgYenSpe2EooEvTY1v2rxF5pmUvS4nq4HFrp072SqC9qQQPxYsXCgz33rb7tESv5dWrOg7Koup0KfjSm2Ld0BQX6v+YeFZaInhxo0amup2F0tBs4yw/iuAvfv2iU4Ei5cskSNHj9qX0KZlS6latYrfy9lnjhtiSuZqRUL16tCuXdjqjE8+/Yx8+tln9vxQa9t7HScnINjc/AuHRUuWiobxKl99ldSoXl2KFilig4q6VLS+j955913Rx9r0vdSnZ8+gP4x0XyyTrh7n/rGnr/m6a66xLvqHVLZs2eTAgQOyYeNGE4CdY/vUc64x42px/336kIYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkE4F3BxFuICgrqI3cvQY+wr0mEyZzjAFkN63z0NVB9QdsQQEAzMXmmtoYr7LL16suBQuXMh+L//Tzl2y9uO1NnNhL2h+NG/WzBY/8p67v99+512Tq5hvN5111llmhb6m9rt1Xf1Pm2YvNpschRZw0u/Xtd3UuLE0adzIPg7144etW2X4yFF2l4YJb7j+etEMidcuu/wyvxUkve3J+R3vgGCgbWryLLqU9GNTp9rMiwYvB5nMS6iiTFroauiw4b68wgOmwmMVU+kxsMWSVXADghoc1VU2NZColSEvuaSieX8UNvcgk+zatVu0KNa7s2f7sh7n5c8vAwf0l7NNniGwxRIQjGfGJPD6PM8YAgQEM8Z9CjtKd2ILe1CYHRq0evqJx4P2/rRzpzz51NO+pVy9A/SDSUN6btMP3IcfelBKJCW5m32PP/zoI3nltddtGV5voy6La/Jtdvlfb9ttZtnb68yk29Uk370wm+7TSejuu+70DrP7xo4fL9u2bfdt0wda7e7w4SNy6NAhv+1Nb75JGjZo4Lct8Il+UPc0yXn9QAxsOgGMG31yUgzcl5zn8Q4I6rU19f/ctGmiE5fbNPCmzX09an7PXXcFVSPU8sijx43zJc4bN2woN9/UxO3O77HeG538tIyttvvvvUeuNeG6wJacgKD+a4ysJuA4Zerjfvc+1PtNJ7s2rVuFrTQYy6SrY1Ub/SNqvgmHuk66L9R19V8C3Gr+INP/z9AQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNKvgJujCBcQ1NX1OnXtZr9316JI+jW7VvLTVegmTxgftJqdvtpYAoJ6XLjMhe4LbFr85+YmjaVB/fq2oE/gfu/5Sy//S97/8EPvqf2dI0cO+127FgVyW8UK5W1hoHDLC3vH9u7bzxd887Z5v0cOH2YLOnnPU/I73gFBHUM421Df84fLs2hxoiEm93DYhP80X9G5Y0dTjKlc2Je4wxSq0jDpsWPH7AqcvXv2sMtQuyfEklVwA4JaUfGDDz6UN2fN8mUWdCz6n7433VbIFIlq1/bRoKJd3jGxBAT12HhkTLxr8jvjCRAQzHj3zG/E7sTmtyOGJ+ECgnqqBsHmzZsvK1evFm95VbdL/XC98oor5F6zBHG4ZX6947Vk7HPPT/OFyrzt+lsT7VoF0KvSp9Xplr23XHQZWA1uBQYE9RydlFetXmUq4y0NO1kVK1ZMGtSrK1dVqqSnRG1aEnblqtWy/uuv7drt3gnpOSCoY1SjD8wfAcvf/8BOhN643d8a3tQys6HKDLtlei8uV066dOoY8Y8O7Vcn3BGjRtn7oO8h/dcTWm7XbckNCF56ySW23zfefNNU7tvkmwC9PvX9dvlll0nTW262ZXa97YG/Y5l03XO0SuBCs/RzqGvqcXnz5pU7b7/N9/50z+UxAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED6E3BzFOECgjrqp599Tj7+5BO/F1DpyivlEVMkKVSLNSCo52rmYr5ZTVEzF7qCXWDT78Arli8v9evXk5IXXRS4O+i5ZgPWrV9vvt9eLFu+/TZov27InTu31KldS66/7noTHMwS8hh3o1Yb1LzBJyanEViMKb0GBHX8qcmzaN5E8w6ae9Cm4czGjcJXWrQHmR8rV62SaTNesE81eDigX1+7KqK3P5asQmBAUFeK1KyKFjfauWuX15Xvt4ZVr6lRXW5q0iRiNcdYA4LacWozJr7B8SDDCRAQzHC37NQOWCsGasBv7569st9MWtmyZZVcuXJJ6VKl/D7sYhmVLmG7fcePsnv3bjMx5ZJChQrZhHNKq7LpB5d+SO415XL3mPFpoj+f+SDOb0qrhgrDxTLGjHzMjz/9JL/++qvs27ffhvzOPfccSTLhQF0aOiM1Tev/ZF7L/v0n/0jKnz+faMjx3HPPTdjL0H9RoX8A6G/9g+BcE1wtWKigJBUvHjUwmbBB0TECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIYW0GpwmrnQTIMGBc8+O5vJS+Qx30UXS/F34Lqk8C+//GqyEnvkyJGjpvBNHsmXN58ULVrk/2pVvHjmWdL6TbZ16zZbIMt7j+TLl19KlbzIVixM1NhOl4xJonxOt34JCJ5ud5TXgwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIARICDI2wABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB01CAgOBpeFN5SQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQEOQ9gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBpKEBA8DS8qbwkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAgI8h5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4DQUICB4Gt5UXhICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACBAR5DyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwGgoQEDwNbyovCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAECgrwHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgNBQgInoY3lZeEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAFB3gMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIInIYCBARPw5vKS0IAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAgCDvAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROQwECgqfhTeUlIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEBAkPcAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqehAAHB0/Cm8pIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQICDIewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB01CAgOBpeFN5SQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQEOQ9gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBpKEBAMIPf1MOHD8u3330f9CqKFrlA8uTJE7Q90oYDBw7Ijh9/Cjqk5EUXSvbs2YO2syHtBTZt3izHjh2XLFnOkrJlyqT9gMwIEjWmn3bulH379tvXWK5sGTnrrLPSxetlEAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACp1bAzUrkOvdcKV682KkdAFdLtwLHjx+XjZs22/HlyZNbihYpkuZjTeSYEpXRSHM0BhBXAQKCceU89Z19/8MPMmLU6KAL17mxttzevHnQ9kgb3pw5SxYuXhx0SM/u3aR0qVJB2zPShn/++ccO94wzzshIw4461p69+8ievXslf758MnrkiKDjd+3eLUuXLpMTJ07IjeY9cUHhwkHHxHtDtDGl9HrTZ7wgK1atsqePGTlS8uXLm9KuOA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIAMLuFmJyy+9VNq1fTQDv5q0GbqXo9Crn05Zir1790mP3r0tavWqVaVVyxb2sfvj6282yAcffmgzFDfWriU5cuRwd8f9cSxjSulFE5XRSOl4OC99ChAQTJ/3JeZRuZNeoYIFZf/+/XLk6FHRx8OGDI65Hz1wwKDBsnPXLsmaJYsJX+UTDZdpy+gBwY9WrJAZL75kX8uDbdpI5auvso9Phx/RPug1PKrvEW0lkpKkX5+Tk2AiX3u0MaX02gQEUyrHeQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMDpJeBmJQgIpuzeduvZy2ZMChYoIMOHDklZJ+nwrGhhPK0+2aV7D7Na4zE7+vp168qtzZom9JVEG1NqLp6ojEZqxsS56U+AgGD6uyfJGpE76dW87jo5+Mcf8tnnn9s+tKKcVpaLpbkfRjp5anW2pe8tt6cSEIxFMG2OifRB//fff0uHzp3l6NGTk1oWE/ycMmminHnmmQkdbKQxpebCBARTo8e5CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwOkj4GYlCAim7L7+vwYEv/v+exk5eowP7eJy5aRr506+54l44GZywlU1TOl1E5XRSOl4OC99ChAQTJ/3JeZRuZOeBgSTkorL9BdetOfffecdckPNmjH1paVTX3z5X/bY+++9R3bu3ElAMCa5tD0o2gf9K6++KsuWv28Hqe+Pe+6+K+EDjjamlA6AgGBK5TgPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOL0E3KwEAcGU3dv/14CgLq08eOgw+fGnn+zSyg+0bp3wlSgJCKbsPcpZ8RMgIBg/yzTpyZ30NADWqGED6dqjpx3LpRUrSof27WIa19THn5AvvvrKHjt21EhZtHgxAcGY5NL2oFjCeDt27JATJ/6x4dFTMdpYxpSScRAQTIka5yCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKnn4CblSAgmLL7+/8aEFQtDQlu3LRJdHnlvHnzpgwwGWcREEwGFocmRICAYEJYT12n7qTnVYjTpPOOH3+UrFmzyOQJE+Sss86KOCBdirZj5y5y5OhRKXLBBTJ44AB59bXXCAhGVEsfOxMVxkvNq0vUmAgIpuaucC4CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBw+gi4WQkCgim7r//PAcGUiaX8LAKCKbfjzPgIEBCMj2Oa9eJOel5A8K2335F5CxbYMXXu2FEqlL844vg2bNwo4ydOssfUq1NHmt/aLEUBQU1Y/2iCiXv27pUDBw7I2dnOljx580jRIkUkR44cEccQauexY8fMUse7ZO++vXLw4B+SK9e5kj9ffilcuFDU0KPb30crVsiMF1+ymx5s0ybhpWH1Qjp2bRrOPOOMM+zjUD8OHzki27dvl/379puA5hHJkyePFDAJ9UIFC4Y6PGhbIsJ4J06ckF27d8uPO360qfkCBQtIgfPPl5w5cwZdP9SGcGPS94e+N3bv/ln27t0j55xzjpx/3nlSrFixUN0EbUtJQPDf//63bDcVFPea6/7xx5/mmjklX758klS8uGTKlCnoGmxAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEj/Am5WIhEBwdR+lx8omNrv4d3+/vzzT/ud/r69+2zOQCvg5c9vshSFCrmHRX18qgOCmhk4fvy4zVBEK3S1f/9+2blrt+wzeRFtefLklWJFi5jcSK6orytRYbyjR02GZddO+cksTZw9e3abozjf5DuyZsmSqjGpyS+//io///yzyTX8YSsaXmCKe+U32YZYWriMRqRz4/3+jnQt9qUPAQKC6eM+pHgU7qTnBQS3fPutjB47zvZ5Y60b5I7bb4/Y/+tvvimLlyy1x3Tv2kXKlimTrICghuEWL1kiH61YaQNggRfTD/ZLL7lEGtSrJ8WLRw+D6QfREtPf0veWy19//RXYnf3Ar1O7ltS8vqatkugeMN8EI2fPneduMsvrnhANimnLnDlzUDAs17nnyuiRI/zOieVJvwED7estVrSo9OnVU9at/1o+/PBD+WHbNvn9999tF8OHDrElaQP7+/W332TevPnyyWefik4igU2d6tSqLVWqVA7c5fc82gf92rUfy/QXX7TntLj33oj9aSjw5X+9IlvN+L2Ao3uxKpWvllubNrUhRnd74OPAMekkv3rNGnlz1lsm6Hkw8HD7R0qdG2vLNTVqBO1zNyQnIKjVMBcsWCgfrVzpuxduXxrEvLZGdalv3pPR/vBwz+MxAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDaC7hZiXgGBOP1Xb4nFK/v4bW/3/bssTmD1WvXiq4UGdg0u1C/Xl25+qqrAnfJI+3a2wJB7g4NpmnTokdnnnmmu8s+vueuO6VG9epB2yNt2Ldvn/TpP8AeUvuGG+TWZk1tHuWrdetkm8ki6Hf5GvKbMHZMyG42bd4sCxctkq+/2RA0Xi0CVLF8eWnUqKFcWKJEyPN1YywBwRdfellWmRyDtuFDhphCQ+GXGf7iyy/l7Xfeld0mwKf5E7dlMeHA+nXrSL26dUUfh2uhxnTUZG00N7J46VIbnHTP1XtSrmxZadigvs3wuPsCHwdmNAL3u8/j/f52++Zx+hYgIJi+70/U0bmTnhcQ1DBcxy5d5fDhwzaxPGLY0Ij9aNBNP8jOzpZNJk+cYEN0sS4xrOc99fQz8tPOnRGvoTs1nKcBMw2DhWs6iU2YNFk2b9niO0Q/+HSC0KqEbru4XDnp0K6tX8Brzty58s7sOe5hUR9Hmnwinex9yGqY75677pIx48YHfWiHCgjq5DFt+gw5ZO6P2/R1apjObRrKu98E+8JNJN4YNDkeKuS4evUaeW76dNtl6xYtpFq1qm73vscff/KJvGCqLOpk7DVdovrvv//tC1fqdk2+9+zePWLQ0x3TqBHD5YmnnpbPv/jC6zbs70pXXimtWrYIm66PNSCof2A98eRT9j3tXiyUr967tg8/EnGyd/vgMQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2gu4WYl4BQTj+V2+CsXze3gNmA0fNcqvQI6G+s4++2xbdc69I40aNJBbbr7J3SRtHno4KI/gd0CIJ/ffe49ce801IfaE3+QG4TQbktdU/nvtjTf8TgiV0dCsxOw5c2XOvHlRxxkte+KOoXrVqjaH4DcA8ySW/IGGAXUFzwUmsOg2zdZotsLNdxQ0lQT79+sr2bJmdQ/1PQ4c0+23NZdhI0aKBvYiNc05NDX3skH9+mEPczMaoXIj3onxfn97/fI7YwgQEMwY9ynsKN1JzwsI6sFPmtDep599Zs8bOXyYXco1VCe65Kt+WGi74vLLpe0jD9vHsQQEtbTpoKHDfME9XTJWJ5qkpOJyQeHCctDs32mCg6vXrPULiN19551yQ83r7XUCf7zz7mz7ga/by19cTmqZRHnJiy6ySxRrVb5Nm7fIylUr5ZsNG+2p15i0eov77/N1s3XrNvlh61bfc33w/Q/fy9qPP7HbqpuAXPFixf32axAuual37cD7kNXJR//TdH3FCuXNa7/ALMd7ckllnSy1tKzXNO0+bsJE30RxVaVKphLidbaKXjYziWjZ2E2bNpsqiHN91ROvNZX17r/vXq8Lv9/eGFITENTKh5OnTLH96kTWqGEDqVqlig1l6oSnE5JWZly5arU9pogpZdu/b5+Q/4JAD/DGdK6pzKgBR61OqUtM39S4sVx04YVSyJQ1PnLksAmV7pJPP/1UPjRLQHtN/yXDQw+08Z76/Y5lgtb35MAhQ31/FGkAsEmjRlLELHOdJ3du2WfKEOuSzu+aEKkGCbXp6+nXp7df0NTvwjxBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEhXAm5WIh4BwXh/lx/v7+F1FUldTVJbLZO3qGSyBiWSkuz33FrYadOmTbJ02Xvy8y+/2GMeaNXKb4XB95a/78sp2APMj3fefdcWNtKsR+OGDb3Nvt9ly5ax2Q/fhhgeuEE4DctplTwtRHTppZeY1RcLmuJIZ5mVIrOanMT1fr25xaB0FcA6tWvbDEvBQgVt1T5dflcDl/o6vBUkH2zdWiqbTEJgc8eQmoDgTLNKohcOPP+886RZ01vk4osvluwmlKn5kO07dsibM2fJd99/b4dw/bXXyr333B04HPvcHZMWw9K2YeNGm1fQ8F9Rs3yyXkMzDbqE8ZKly3z3W4+9z/R7nek/VPMyGuFyI3pOvN/focbBtvQtQEAwfd+fqKNzJz03ILhy1SqZNuMFe/5dd9xhgnY1Q/a1/P335eVXXrX73PR3LAFBDZXppKbt0ooVbeo6Z86c9nngD2+pW/2Q1BS7BrKKmtBWYBs5eoz98NRQnZaUDbX8q37Ya8hOJz/ta9zoUaITVrj2kQmgzTDV8bQ92KaNVL46uJxuuHMjbfc+ZPUYvX7nDh0iVtbTio79Bg6ygUpNebd79BG57NJLQ15Cl1bWioReZcaO7dvJJcY4sHljCPdBH0sFwSHDh5vQ3A7bdSQfrTDohfkiVSP0xuSNtUL5i6WN+eMj3D3SSU8DrYcOHTo5hjCTeCwBQfc9Wd+U8NUJWq0Dm76HZpill1eZCova6pmSv82bNQs8jOcIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAulQwM1KpDYgmIjv8uP5PfwxE7Jr17GTDcZp0aJOJpsQqu034TIt8vTnn39KsWLFZKCpaBepdevZS/QcrX6nqyPGo7lBOO1PC0I9+vBDtkBRuP61CJRmRbSAkRYi6t2zR9giWDtMKG/UmLE2eKgBRF1RUysSus0dQ0oDglrAqne/fnL06DGbWxk2ZLBoLiOw6SqZg425V6BIK/iFOs4dk9eHZhpuvqlJyOJMWp1QQ4Kvv/mmPVxXnRw0oL9dRdQ73/vtZTTC5UYS8f72rs3vjCNAQDDj3KuQI3UnPTcgqB9WXXv0tAnwSBPEY1Omylfr19u+NWiXJ08e+zhaQFCDawMHn5wgcpvKbDpZhCuV6g3cTXzXqFZNWra439vl++1NQFr5bUDf8JOVVkd89vlpdl352269VUqUSPL1EfjgVAQEwyXT3bFokv1fr54MY97cpLE0NpXtIrWdu3bJ0OEjfJUJQ03y0T7oowUENRg4cswYe43SpUqZ5YO7hR2SO2FpKeDbmzcPeaw3Jt2pocDhZqLUCoKRmnuPwt37aAFB9z2pifsunTqGDAd649CJfMiwYfZfUGjZ5YnjxoYMpHrH8xsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIH0IuFmJ1AYE4/1dfry/h9dV/3r37Wfh69a5UTQjEa698uprsmrNGilburS0atXSVrsLd6yXz0hUQFALQg0dPEjOy58/3BDs9ieeelo++/xz+/1+ty6dpWyZMhGPX7FypUx/4UV7TPNmTU1BoLp+x7vZhpQGBJe9t1xeff11m7nR6ooa5AvXVpnVGJ+fMcPubt/20ZCFotwx6YHlypYVfa3R2rPPPy9r1n5sDwuX0/AyGuECgvF+f0cbM/vTpwABwfR5X2IelTvpuQFB7WDwsOGi6Wn90H1s4gRTqjWLX79aza9jly428azLrA4eOMC3P1pAUFPKunSstljCcXqcXq/vgAGiH3waJpwwfpwtJav7vDZt+gxZuXq1HbOmn3UiCtW0Apz+F/iaQh3rhs8iVcgLdW6kbd6HrB7z+JTHogYkvX8hoPdj0oTxUY/XfidOnixff7PBToQaYAuswueNIdwHfbSAoF7jyNGjsm7dOrsMb2Gz/G+k1rZ9B3u8VgXs3LFjyEO9MenOFmZp5GvMEsnRmqbfh44Y4atkOGTQwKBSxdECgm/MnCmLFi+xl+rauZN4ZXkjXVuXTp719jv2EF1eW5fZpiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpG8BNyuR2oBgIr7LT9T38Jrt6NO7V1DWwrtbel1d0jfUSnveMd7vRAcEk5KKS/8+fbzLhfytqyt26d5DtBKfVhvU6oHRmmZF2nfqFDLroue6YbyUBgS1nwMHDsiXX30lVatUNcsi++dtdL/Xtm3bbvMO+rzZLTeLLhkc2Nwx6b3RIlwFzj8/8LCg5wcPHpSeffqKVpHU6oq6EmfgvfUyGuFyI4l4fwcNlA3pXoCAYLq/RZEH6E56gQHBt0zwaZ4JQGnr2L69WaK2gl9nGjzTAJo2LV16q0lWey1aQNBd336yCbuFW1rY68/7/fz06b5lXbVCoFaLc5t+uE55/Am7SavOVTHLAVeqVElKlSwZ9CHnnhfpcaIDglquVj+EIzWdoB56tK1Nl5e/uJy0b9s20uG+fXPnzZe58+fb53169ZSLLrzQt08fRPugjyUg6NdhlCc6MWt1ynBV/twx6eNw5XNDXebNWbNk4aLFdleo0Gm0gKD3ntTw6XgTpsycKVOoy/ht2/LtdzJh0iS7LdxE7XcCTxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0lzAzUqkJiCYqO/ykwMUy/fwbhEnLbRUtUplufLKK6VQwYLJuZTfsYkOCF591VXy0ANt/K4Z+GTT5s0ydvwEu/kWU6Wvbp06gYeEfD5h0mTZ8u23tvjUU49P9TvGDeOlJiDo12mEJz//8ov07X+yIFe4Kn/umPLlyytjRo6M0KP/Li22pCFEbe7KoN5RkXIj6eH97Y2T32krQEAwbf1TfXV30gsMCH73/fd2nXa9SK2aNeWuO+/wu95rphzqkmXv2W09unWVMqbErNeiBQR7mYTyb3v22KVjtTphrM2t2BautOpSMyYNi2lC3Gsa+rrAJOF1GdxyZvnYUiUviql6oJ6f6IBguBS2N3b9vX//ftHJNTXtkYcelEpmgndbpA96PS7WgKCuOf/hRyvkp50/mf92ya9mAvvH/C+wHTt23IYcYwkIanXHJ0xlxcD0emCf3nP3PoUqAxwtIKgllbW0ckpbqP+PpLQvzkMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSJyAm5VITUAwUd/l6yuP5/fwR48ek1defVVWrFrlh6pV5YoVLWKXrC1bpqwt9hPrd/SJDgiGC+e5L2DNmrXy7LRp7qZkPw4sauWG8cKNIVr+wBvE7p9/lk8++cTmKHbu3GmzH3KGt/fk7xMn/rErauqzWAKCkVZs9O/55DN3meF+fXpLiaQkv8Mi5UYS+f72GwRP0r0AAcF0f4siD9Cd9AIDgidOnDBLCHeVQ4cO2TXdR40Y7tdZn3795Zdff7VrzuuSt5kzZ/btjxYQbNehoxw+ckSKFSsmA/v19Z0X7YH74d7y/vukRvXqIU/Zvn2HzJk3TzZu3GiXtA08SJfpbVCvnjRsUN9v3IHH6XM3eJaIJYZjCQjqUs+65HNqWiivSB/0eq1YAoJbt22Tp55+Rvbs3Rvz8GIJCGo53BHDhsbcp1vRsp75VwHNb23md260Cdp7T/qdlIwn1apWkdYtWybjDA5FAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgLATcrkZqAYKK+y4/39/Ce8ccmrLb8/Q9EX79WhwtsGhi82xSPCiw+FHicPk8PAcHFS5aKVkdMTdMszHn58/u6iFdAcNXq1fLyK6/YpYx9nUd5EEtA8LprrpH77r0nSk//2z3rrbdl/sKFdkOo1UMj5UYS9f7+3+h4lFEECAhmlDsVZpzupBcYENRTnnrmWfnk00/t2bqGuZaa1aaV1rTimrYrr7hCHn34IfvY+xEtIOh9wJxzzjkyafw477SovxeYD62Z5sNLW7tHH5HLL7ss4jlaRVDLwv5gJjctmbpx0ya/wKAGFNs98ohoCdZwLT0EBN0J6NKKFaWBCTYmt2ngTr3d5t2HcCHFaAFBLderpXf1D4dMZknepOLF7b8sKGmWdD7zzP8FRr1rPvnU03LIVBuMJSCYNWsWefyx2CsIrli5Uqa/8KK9VEoqCHoWuXPnFq22mNymfyidf955yT2N4xFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETrGAm5VITUAwEd/lJ+J7+EBerU74zYYNNkehFrrCpBaR8pou79umVcuIBZfSQ0DQzTQ0bthQKlQo772EmH8XN7kRLTLlNfeeprSC4Lz58+Wtd961XWr2QVe71AqNxYoV9S7j+71v3z5f1iGWgGBF8xo7dejgOz/ag+dMhcXVptKitr69e8mFJUr4neJlJULlRlyLeGZV/AbAkwwhQEAwQ9ym8IN0J71QAcFVq1bL8zNm2A7uuO02ubF2Lft42XvL5ZXXXrOPQ1WmixYQHD12nA3uaQe6xHCOHDlsX9F+TDNjWWnGpK1/nz6SlFQ86JS//vorbH/Hjx83IcHNsmTpUtlgqgtqu6pSJXn4wQeC+vE2pIeAoLuuu75mfe3xaJE+6LV/dzJt3aKFVKtW1e+y4ydO8jlqSFTDouHakaNHpW37k5NULAFB7WfMyJERw5vutd6cOUsWLl5sNz3YurVUrny1u1uiVRD03pNaLnnqY5NFl6WmIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicfgJuViI1AcFEfJefiO/h9Q5GylLovnXr1svsuXNtwSg9/t6775Lrr7tOH4Zs6SEgqEWixk2YaMdXr65ZabCZ/0qDIQceZaMbiktJQPDYsWPSpVt3u6qmZmE0lKcFncK1devXy+QpU+3uWAKCoYJ84frW7cNM7mLr1m32kHGjR0mePHnsY+9HpNxIIt7f3nX5nbEECAhmrPsVNFp30gsVEPz999+la4+e8s8//0j5i8tJl06dbB+Tp0yRdeu/to/HjxktWnXNbdECgu7+hx5oI5o+j9a0GmDf/gPsUrZZsmSRiabyoBviWrrsPVm6bJndr9UOI33A6oeYLpGsy+JmP/tsmTJ5UtjLp4eAoA5u0NBh8uOPP5rKfGfKZBOqdF97uMH/tmeP5M6Vyy/t7h4b6YNej4sWEOzQuYv9IyKW5YB1wtGJR1usAcHWLU0osap/KNF2EOLHsBFmUtu2ze4ZPHCAFLngAr+jogUEX3vjDRMcXWbP6dyxo1Qof7Hf+aGe/Pnnn/b/G4GVGUMdyzYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgfQh4GYlUhMQ1FcT7+/y4/09vBZi+sqE/7SS3egRI0SL5oRr7mqS0VzSQ0BQv7Pv0r2HXfXwogsvlD69eoZ7aX7bd+3eLYULFfLb5j1JbUDwp507ZeDgIba7WJYDXmQKIb1hCiJpiyUgqPdv5PBhfssi25ND/Pjjjz+kpylAdfToMbvi5MRxY4Puf7TcSLzf3yGGyaYMIEBAMAPcpEhDdCe9UAFBPXfI8OGyffsOGzLTYJpOFTohaTW+YkWLysD+J5cadq/jBgB7du9my6W6+911yvPmzSvDhgyWrCb0F6nNX7BAZr39jj2kapXKppxtK7/DV65aJdNmvGC31a9bV25t1tRvf+CTSWb52vVff2MDd09OnWKXyA08Rp+nl4Cghtc0xKbt2ho15P777rWPw/04ePCg/UNEJ4cG9epJrRtqBh0a7YM+WkDw4bbtIr4P3Au6ZWtjDQjqsr0jTNjzbBPijNTcSpe6bPTAfn2DDo8WENTwpU5s2jRc2K9P77DBSj1GQ7O6vLKWWr7umhpy8803xxTa1HNpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpJ+BmJaIF4aKNMt7f5cf7e/jnp0+XVavX2JfRsX17uaRihbAvSb8Hf9SsDKhV8MqVLSvdunQOe2x6CAjq4KY+/oR88dVXdpyhVhsMfAG6hLNWHdTlfpvd0tQWy3KPSW1A8IetW2X4yFG2yxtr3SB33H67273fY3UeNGSo/PLrr3Z7LAFBPVALHmnho2ht2nSzSufqk6t0hus7Wm4k3u/vaGNmf/oUICCYPu9LzKNyJ71wAcF33p0tc+bNs312aNfWpIkzmfKmU+xzDZ41a3pL0PWiBQT1BP3A1XKv2q64/HJp1eL+sEGwzz7/XHTS0lRz5syZpW+vXrYKnT35vz+05G1nU6ZVqwPmzJlTenTrKhcULuwe4nusx/Y2FQT1d7Qle92AYKhldn2dJvNBtA/ZwO50rP0HDRat6qgtUjlfL7zmLaMcLjAZbQzRAoIDzHh27tplw5WDBvQP6/3xJ5/I088+53tJGsDTKn+hmjcmb5+uY9+6Vcuwy0Zv+fZbefzJp0T/ZYC2Ni1bStWqVbzTfb+jBQT1wAmTJsk3G04uPa2lgu8xJZO1WmWoNnvOHHl3zly7q+RFF0mvHt2DkvahzmMbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDaCrhZidQGBOP9XX68v4f/0oTnppgQnTb9brtj+3aSPXv2kDdg85YtMmbceLsv2pK9XkAwuUvehrzwfzfGEs4LPP/b776T0WPH2SI/Wnyoc8cOotUEQzWv0JKXuwgVmIxlDJHyB1q1T7MrmtvQ1RgHmKJboVaI1P2vvva6LFu+3DfU2qbw05133OF77j1wx+Rta9KokTRq2MBmaLxt7u/3P/hAXn7lVTuOs846SzTTUbBAAfcQ+9jLaIS7j/F+fwcNgA0ZQoCAYIa4TeEH6U564QKCWiFt5OgxthM9JlOmM8wH1Pv2eajqgLojloCgfuAONElo/XDUpuucN2nUUIoXKy6FCxey23/auUvWfrxW1qz92B6jP3TNeJ2IQrW333lX5s6fb3fpB9ytTZtK5auvsqVSdaMuKbzZpMH1A1arImq7qXFjadK4kX0c6oeb7tYw4Q3XXy+ZM2X2HXrZ5ZeF/DD3HRDmQbQP2VCnaeBPq9bpRKGtbJkyxqKuqXhX2PrpB/PWbdtlzty5trKdHqNlcQeYinrqEdiijSFaQHDxkqXy+ptv2m71/t1w/XUmXV/eJu11Seiff/lFtBzu6jVr7fjOy59fNNCnVQ3vuO02sy23XFiihN3njc0bk4770ksukQWLFolWErzlpiZyoZnECxUsaIKiR0XL8n766afy3vsf+DwqXXmlPPLQg15Xfr8jTdDegYHvSZ0Ab7npJkkqkSTnn3eeHNfXtPtnWbJsqX1P6n3QAKFW0Qw1kXr98hsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIP0IuFkJ/a67bJnSMQ9O8wItTQEkt8Xzu/x4fw+vRZY0Z6CV87Tp673vnruldOnSNuug33vrinubNm+ReWZlRy3Oo9/pd+3cyVYRdF+n+3ji5Mny9Tcb7KabTObi/PPO9+3Of15+G0b0bYjxgRuE06I+rVq2iOlMt/CVjl2X9tXCQlpUKlu2bHLgwAHRe/SuKQSk19B2TfXq0uL++4L6j2UM0fIHU6Y+Ll+uW2f7LpGUJDWqV5MKFSqIZhAOHzli8irbZeast0y+Y5tdkfO3PXtk//79ki9fXrm5cRPJmi2rqfRY0ZfzcMdUzbyuAwd+t69HV29s3LChFDWrf+Yzq3fq6/zxp52y1GQavOJIOoi777xDbqgZvOqk7vMyGuECgnpMPN/f2h8t4wkQEMx498xvxO6kFy4geOLECenUtZuttqdhKPNZaiv5afJ68oTxIdPIsQQEdSAa8nryqadtkMxvYCGeZMqUSW5u0lga1K8fsVLbSy//S97/8EO/HnLkyCFZs2aVfftOftB7OytWKC8d2rULu7ywd1zvvv3k199+8576/da13TU8ltwWy4dsqD4//ewz0cnmiAnJuU0rK+rE7jYt+ftA61aSK1cud7PvcbQxRAsIaghQE+2B3vre0BCfvne0nXnmmbb0sP5hocl9t2mgT4N9XvPGpBNZv9695Qnz/vjiyy+93fb9Fvg6daf+q442bVqHDWtGm6C9C4R7T4by1QnyYTN+ndBpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIZQ8DNSiR3xPr999NPPB50Wry+y0/E9/CaLxg7frxsMwWH3KaBtMOHj8ihQ4fczdL05pukYYMGftsCn6wxhYKenTYtcLN9XrVKZWnTqlXIfZE2ukG45AQENYugBaXmL1zoKzDkXSfUd/269O+tpjiV3svAFssYouUPtDiRZh20IJfbNLuihZ+8pv4D+vaV5e+/L+/MnuNttr8njR/nK4bljkmXCq57443mfk7wy9qEep0altRKg5GKZnkZjUgBQR1QvN7ffi+SJxlGgIBghrlVoQfqTnrhAoJ6pi4Pq8vEui1StbZYA4Lan05E8+cvsOuea5o5sOmHWMXy5aV+/XoxJcz1g3/d+vWycNFiW60usD99njt3bqlTu5Zcf931JjiYJdQhftu02uAHJnT4iQnnBU6MpzogqAPT9efnmmWfdellXXY5sGl52rp16khjU5FRP/DDtWgf9NECgl6/K1etktfeeDPIRvcXK1ZMWptUvy4rrE3HrRUFtbqgtkgBQZ0I9X4uMJP44qXLfNUm7Yn//aHhzBtr15aapnphpNcabYJ2+9T35Lx58+170ist7O7X9+SVV1xhl3kOV3rZPZ7HCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALpR8DNSiR3VOECgtpPvL7L177i+T289qfZglWrV4lWKAxXIEm/329Qr65cVamSnhKxHT9+XD5ascKuvqeebjvVAUHv2lrpbqFZpXDDxk1BQUE9Jq+psnfn7bfJFZdf7p0S9NsN44ULKcaSP9DCR2+YFRk/+GiFqFVgu/qqq+Seu+4UDQ3qypuz58y1mRRvFc5IAcHbmzc3wc7D8rrJaaz5+OOQ/ety0o1NOLBC+YsDL+33PFpuxD04nu9vt18ep38BAoLp/x5lmBFqtTktn7pnz15b9vTss7OZIF8eSTKV5HSJ2ZQ0XVL4l19+NSVi98iRI0fNh30eU1Y1nymvWiRkEjwl10jLcw6ZD/ytW7eZUrP7bJnfnDlzmnLAeU0J2pK+UrOncnzqvWPHDluSt0CB86WQWSZYU+aRgnuxjk8nzG+/+04O7D8gB83kmMu8JwoULGCr98Wj/1Dj0Alb35N7zXtyvwmvZjNlfLUaY+lSpewkHeoctiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII/H8LxPO7/Hh/D69Fenbu2mW+199r8xlacyif+V4/f/78dkne0+HO6eqSunqg/tZg5LnnnCMFCxU0+ZPicckvJMdIcwe7f/5ZdpjCVEePHbU5isImS5HSHEzgtXVJ6B+2brU5Gy8Xc4Ep4FSoYMHAQ+P2PJ7v77gNio4SKkBAMKG8dI4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2ggQEEwbd66KAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEIFCAgmlJfOEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgbAQKCaePOVRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIqAABwYTy0jkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACaSNAQDBt3LkqAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkVICCYUF46RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBtBAgIpo07V0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgoQIEBBPKS+cIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpI0AAcG0ceeqCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCRUgIBgQnnpHAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG0ESAgmDbuXBUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBhAoQEEwoL50jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkDYCBATTxp2rIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBQAQKCCeWlcwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSRoCAYNq4c1UEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEipAQDChvHSOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNoIEBBMG3euigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBCBQgIJpSXzhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIGwECgmnjzlURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSKgAAcGE8tI5AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkjQEAwbdy5KgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIJFSAgmFBeOkcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgbQQICKaNO1dFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIKECBAQTykvnCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSNAAHBtHHnqggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkVICAYEJ56RwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBtBEgIJg27lwVAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgYQKEBBMKC+dI4AAAggggAACCCCAAAIIIIAALVBJrAAAQABJREFUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJA2AgQE08adqyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQUAECggnlpXMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0kaAgGDauHNVBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBIqQEAwobx0jgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDaCBAQTBt3rooAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQgUICCaUl84RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSBsBAoJp485VEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEioAAHBhPLSOQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpI0BAMG3cuSoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCRUgIJhQXjpHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIG0ECAimjTtXRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCChAgQEE8pL5wgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikjQABwbRx56oIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJFSAgGBCeekcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbQRICCYNu5cFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGEChAQTCgvnSOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQNgIEBNPGnasigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFABAoIJ5aVzBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNJGgIBg2rhzVQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSKkBAMKG8dI4AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA2ggQEEwbd66KAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEIFCAgmlJfOEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgbAQKCaePOVRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIqAABwYTy0jkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACaSNAQDBt3LkqAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgkVICCYUF46RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBtBAgIpo07V0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgoQIEBBPKS+f/Ye++w+2c0v8BP0omJEII0ogeoos+apTRO1GGUaKHIFWLmqaPEkSf0UevM6OMzgzGqKONIEQJ0VJEi9+79vc6fiec3c45296He80119lnv++71tr32if++VzPQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGKCggIVpTX5AQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDoCAoLVcbcqAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoqICAYEV5TU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBKojICBYHXerEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigoICFaU1+QECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA6AgKC1XG3KgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqKiAgGBFeU1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqIyAgWB13qxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYoKCAhWlNfkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgOgICgtVxtyoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKiogIBgRXlNToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEqiMgIFgdd6sSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ+FULfP/99/HyK6/EAw88EA88+GC88MKL8f4HH8S33377q3ap5odvNeusMX/HjrHsMsvE+uutGxttuFEss8zS1dyStZsoICDYRECPEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQusD06dNj3LhxcfkVV8Tf7rknJkz4KKZMmRJfffVVLhyYgoNGdQRmmmmmmDULCbZu3TratGkT83boEBtttGHsv+++seCCC0arVq2qszGrNlpAQLDRdB4kQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAcgalTp8YT//xnnH3OufHc88/Hp59+qmJgOYA/872zzDJLtG/fPpZfdtk47LDDYo3VV4s555zzZ96F5ZoiICDYFD3PEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQksAXX3wRjz/xRJx62unx72eeiW+++aak59xUfYEUFOy50koxoP8Rse4662ahwbmqvyk7KElAQLAkJjcRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBYgWlZ++D//Oc/ccKJJ8Ujjz7a2Gk8V0WB1H54zTXWiKOPOjLW+u1vc22Iq7gdS5coICBYIpTbCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBonMDYN9+MM844M/505ZUxffr0xk3iqaoLzDrrrLFL794xeNCgWHzxxaq+HxsoLiAgWNzIHQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINFIgtRK+8cab4uihQ+PDDz9s5CweqxWBrl26RP8jDo99+/SJVq1a1cq27COPgIBgHhhvEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQdIF33303ho8cGX/685VNn8wMNSGw/XbbxfBhJ8dC3brVxH5sIr+AgGB+G1cIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiiwEMPPxxHHX1MPPvcc02cyeO1IrD8csvFUUceGdtsvVWtbMk+8ggICOaB8TYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAk0X+POVV8bxJ56kvXDTKWtmhs6dO8c+e+0Vxxx9VM3syUYaFhAQbNjFuwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINIPAmWedFScPHxFfffVVM8xmiloQaNeuXWy7zdYx5oILamE79lBAQECwAI5LBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0TWDkqFExbMTI+P7775s2kadrRqB169ax6SabxLVXX1Uze7KRhgUEBBt28S4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs0gMGLkyFxAsBmmMkWNCPzmN7+JjTfaKG64/roa2ZFt5BMQEMwn430CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJosICDYZMKam0BAsOaOJO+GBATz0rhAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBTBQQEmypYe88LCNbemeTbkYBgPhnvEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQZAEBwSYT1twEAoI1dyR5NyQgmJfGBQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmiogINhUwdp7XkCw9s4k344EBPPJeJ8AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYLCAg2mbDmJhAQrLkjybshAcG8NC4QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBUAQHBpgrW3vMCgrV3Jvl2JCCYT8b7BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0WUBAsMmENTeBgGDNHUneDQkI5qVxgQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBpgoICDZVsPaeFxCsvTPJtyMBwXwy3idAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoMkCAoJNJqy5CQQEa+5I8m5IQDAvjQsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRVQECwqYK197yAYO2dSb4dCQjmk/E+AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNFhAQbDJhzU0gIFhzR5J3QwKCeWlcIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgqQICgk0VrL3nBQRr70zy7UhAMJ+M9wkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaLKAgGCTCWtuAgHBmjuSvBsSEMxL4wIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAk0VEBBsqmDtPS8gWHtnkm9HAoL5ZLxPgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECTBQQEm0xYcxMICNbckeTdkIBgXhoXCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoqoCAYFMFa+95AcHaO5N8OxIQzCfjfQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmizQEgOCM888c7Rt2zY6dewYs8w6S8MG30dMnz49xr0zLqZN+6rhe36h7woItpyDFRBsOWdlpwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQpsDX33wTU6dOjSlTpuR+Tps2Lb77bnrMPPNM0apVq2jTpk0uANI2+znbbLPFTDPNVOYKbidAgACBYgItMSCY/hux6iqrxAH775/7b0XDn/H7+PLLL2PwkUfFBx980PAtv9B3BQRbzsEKCLacs7JTAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgi8PXXX8d7778fb7/9dvb/cdnr9+Kjjz6Kzz//4oeAYKr2lIKAdQHBdu3miA7zdIj5558/unXrlv1/wVh44YVjjqxyVKogZRD4JQqkv4uxY9+Mz7/4vOSP136u9rHYYotGhw4dSn6msTd++umn8fIrr8TkyZMLTjHLLLPE3HPPHT1XWqngfS5WV6AlBgRTaHyLzTeLc885J9rPNVdewEmTJsU66/eK1157Le89v8QLAoIt51QFBFvOWdkpAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQg8NVXX8WHEybEq6++Gi+//Eq89N//xhtvvBHvjh8fKWSUqjt999138f33WS/IBkYKAbZu3TrmmGOO6NSpUyy8ULfo0aNH9FhqqVh66aVjoW4LZdeEBRug81YLFUh/D3+/55646OJL4uOPPy75U6QQbd+DDopevXrlqnCW/GAjbnzxpZdi5KhTcmHfQo//pvVvYpWeK8epp4wqdJtrVRYQEKzyAVRgeQHBCqBWaEoBwQrBmpYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKiuQgn8pBPjcc8/F448/Ef988slcBafUUripI4UGF1hggVhxhRVinbXXip49e0b37t1j7vbtVRVsKq7nqy7wURYKPOPMM2PMRRdHCtiWOlKQtv/hh0ffvgfHPFnVvkqOf2V/zwf3PSRXRbDQOqnKW6/11oubbryh0G2uVVlAQLDKB1CB5QUEK4BaoSkFBCsEa1oCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqIzAN998E+9/8EE8++yzceddd8dDDz8c47OgYGodXInRrl27WGGF5WOrLbfMwoLrxKKLLhJzZu8ZBFqqwMOPPBLDho+IRx97rOyPsOEGG8Sxxxwdq6+2WtnPlvOAgGA5WrV/r4Bg7Z9RuTsUECxXrHr3CwhWz97KBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCmwBeTJmVVAl+PG7JqYXfccWe8PW5c3tbBZU5d9PbUgnjNNdaI3X//+1jrt2tGx44dY5ZZZin6nBsI1JLAV19/Heeee16cO3p0fPTRR2VvLbXhHjRgQPTZZ+9IAaFKDQHBSslWZ14Bweq4V3JVAcFK6jbv3AKCzetpNgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCogMD3338fEydOjH888ECMufiSeOaZZ8pqjdpcW5ppppmia9eusf1228Xee+0ZCy+0UKS2qwaBliLwxtixcdzxJ8Rtt9/eqKqbKRS7y847x9Bjjolu3Ras2McWEKwYbVUmFhCsCntFFxUQrChvs04uINisnCYjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeYWSK2DJ2SVzi644MK4+tpr47333mvuJcqeb/bZZ8+qCP42jhoyJFbquVLMJiRYtqEHfn6BFLS99rrr4tTTz8gqcb7W6A0st+yycdSRQ2KbrbeOFJqtxBAQrIRq9eYUEKyefaVWFhCslGzzzysg2PymZiRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBZhJIgab3P/gghh53fNx1993xxRdfNNPMTZ8mVVLr0aNHnHDc0PjdxhvHrLPO2vRJzUCgggJTpkyNQYMHx3V/+UtMmzat0SulgGyfvfeOk048IWabbbZGz1PoQQHBQjot75qAYMs7s2I7FhAsJlQ71wUEa+cs7IQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEfiTwcdZW+IADD4qHHnoopn755Y+uVv/XmWeeORZccIEYfvKwrO3wttXfkB0QKCDw2OOPx9HHHBtPPf10gbtKu7TeuuvGsJNPipV79iztgTLvEhAsE6zGbxcQrPEDasT2BAQbgValRwQEqwRvWQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIL5AqB372+eex/wEHxgMPPhhfZuHA9F4tjlRJsFu3bnHaKafEZptuUrGWq7X42e2p5Qikv58RI0fFxZdeGhMmTGjyxrt06RKH9u0b/Q49pCLfeQHBJh9RTU0gIFhTx9EsmxEQbBbGn2USAcGfhdkiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCqQAoyTZo8OWuFOiRuvuWWmDp1aqPDgTPNNFN06tQpC/AtGF27dI15O3SI2dvMHt9+8218+tmnWfviD2PcuHExfvz4JrVcTe2FF1lkkbjskotjheWX12641MN2388mMO6dd+LgvofEw488Et9++22T123VqlVsvtlmceYZp0fn7G+suYeAYHOLVnc+AcHq+ldidQHBSqhWZk4Bwcq4mpUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGikwadKkuOSyy2NUVpFvchYULLdyYGr7m0KBG/TqFb3WXy+6d+8e7du3j9atW0erLMiXrqc5v/3uu/j6669za7z77vh4/InH4/5/PBAvvvhifPPNN2XvPoUEV1999bjkojGxQNcFYpZZZi57Dg8QqJTAX264IU4aNjzGjh1bdIkUrC32d5fu6dGjR5xw3NDYcostis5Z7g0CguWK1fb9AoK1fT6N2Z2AYGPUqvOMgGB13K1KgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0ITM1aCT/22GPR7/Aj4u23327gjvxvpYBel86dY8cdd4jNN90sui7QNTrMM0/MPvvsWVhvlrwPTp8+PRcUTC2NP/zww3jmmWfiT1deFc8//3zZVQVTCHGfvfeOo44ckls7hagMAtUWmPbVV3HQwX3jrrvuislTpuTdTvq+pr+XNdZYIx566KH4LgvRFhpzzjln7LTjjrkqgil825xDQLA5Nas/1y85IJiq3PY77PAY/957jYZO3/dp06Y1+vlqPCggWA31xq0pINg4N08RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDMLpKDe2DffjAEDB8V9999ftIJZ/eXnmmuuWHvtteIPu+8RPXuulGt5mioFljvq2hu//PIrceddd8b11/8la0P8QdGgVP11Os4/f5x15hmx8UYbRdu2betf8ppAVQSeevrpXHvhl195JdLfWb6RAj8rrbRSHDVkSOyx555FK3imv7GVe/aM0eedF8sus3S+aRv1voBgo9hq9qFfckAwBWn/98YbjQv4fR8x/fvpsc1228fHH39cs+fX0MYEBBtSqc33BARr81zsigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAr86gYkTJ8bV11wbJw8fHlMKVDmrD5MqnnXO2glvt912sduuu8QySy8dKbTQ1JGCgqka1N//fk9cfOml8UoWrErtiEsdG26wQZx+2mmxxOKL5Voal/qc+wg0t0D6Lg8bMTIuvvji+Dj7Gys05p577hg0YED02Wfv2LH3zvHPf/2raLvtLl26xOH9+kXfgw+K5qyYKSBY6KRa3rVfckCwqaeRQrvdl+oR773/flOn+lmfFxD8WbmbtJiAYJP4PEyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECzSHw7bffxjP/+U8ckYWT/vOfZ0uaMoWRFlxwwdhl596xx+67x6KLLNKsAaW0iS+++CLuuffeOG/0+fFc1nL4q6xVaymjbZs2cdKJJ8bO2d7myUJXP9dIlaxSkDG1av76q6/j++x/qb1y6yw0OVvWOja1gS3Ubvnn2mfdOim8VrfnL7+clu39q6yaVrbnrDLdb7J2zbPNNlv8plWrSO2ja3Wkz5C+v9OmfRVfTvsyvv3m29z3MIVn2rZtE62y/VfT/IOsbfZuWWXN1Dq7UMg1VQNcfPHF47prro7uSywRF465KE4aNiz3N1DIPp3ReuuuG5dcfFGurXahe8u5JiBYjlbt3ysgmP+MBATz27jSPAICgs3jaBYCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaILAhxMmxOVXXBGnnHpaySG8Lp07Z+HAnWPfffvEwgst1ITVCz/6ZRa2u+32O+LcrI3qCy++mAuDFX7i/67+ds01syqCp8byyy3XYBXBFISbPGlSrjVlsflS2Cy1Lp5vvvlmuDWF0yZNnhzvvPNOjBv3TryfVaD66OOP4rPPPs+1u/w+q0yVwnVtssBi+/bts+fnjVTxbYEFFoiu2c855phjhvl+jl9SGOaTTz/N7Tnt+8MswDZx4ifx+efZnr+aFtO/mx6zZHtOwbO55pwz5pln7uiUVYnM7bvrAjFv9hlSgLApI+0htbOelPknw3wjhVBnz4KVKTBXv2V1eubT7DO8O358vP322zF+/Hs59y8+/yK+/ubr7N5ZcvtP4dD5558vF2RdJAuwduncJVfhMpv2Zxs333JLDBo8JNcqu9Ci6buwzdZbxfmjR8esWag0tUzdcafeOacU4sw3ktHCCy8cfzzzzKyt9ob5biv7fQHBsslq+gEBwfzHIyCY38aV5hEQEGweR7MQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCMFUlDuySefzIWY/p1VOStlzJkFx7bbdps4rN9hsdSS3Ut5pEn3fJEFya6++po4/8IL440sOFXKSMGy004ZFTtsv0PMNdecP3nkm2++iRdfeilOOPGkSEG+QqPDvB1i5969Y9NNNsndlirWpXaxL//35Vxlw6eefipefe31+OCDD3IV39L1+iOFuFLIMIUEU7ByySWXjJV79ozllls281syOnToUNEqdylQN23atFyg7uWXX4nns2qMz/znmXhj7Jvx0Ucf5YJ6DYXQUrgxBdfmz4KR3RbqFiuusEKssPwKsdRSS+ZCaW0y4/TZyh2pkl5qZf1S5p8q/uUbqfJfCvaNGjUyV8kwfY4J2X5Ty+mnnnoq/pX9//XX/5dzn5wFNVPQp/5I+09te1Mgc6UVV4zfrrlGrLRSzyzQ2i0XPKx/byVef5V9zv32PyDu/utfY+rUqXmXSIapGufIzCT9XaWRvkN9D+0Xt9x6a6TPVmikv8ede+8UZ55+erN9jwQEC4m3vGsCgvnPTEAwv40rzSMgINg8jmYhQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUYKpCpu111/fQw56uhciKzYNCm0tfZaa8WRgwfHuuuu06iAWLE1GrqeqsWdfc65ceVVVxVtu1r3/NZZRbbjjj02lu7Ro+6tH36mdsWPPvpYbLvDDrk2uz9caOBFCpgNHjgg+uyzT65iYAqopdbHt99xR7z66muRwobljBQIa5218E3hwC232CI22KBX7nUKetWvlFfOnPnuTZ/z/Sy4+Oyzz2ZBtb/Fgw8+GO9llQ5/HKbL93z999PZp6p8a6+9dm7fq6yyciyY2aRqg+WMFFbcMas+mfwLtd1NAb/ll18+7rvn77mqha++9loubHfLLbfGa6+/Hqm6ZKkjmc8zzzyx0YYbxo7Zma+66ioxbxbMbG7vuv2kMOMrr74a22y7XVHvFB5dY/XV4/LLLo3OWbXGunHHnXdF/6zt9/j33qt7q8Gf6VxSe+Jbb74pFurWrcF7yn1TQLBcsdq+X0Aw//kICOa3caV5BAQEm8fRLAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSIGXs7DbyFGnxI033VTSDKnd7JBBg2L33/8+2rZtU9IzzXVTCpSdPGJ4PPbY4yUF3Lp27ZprvbrJ7zbOtfqtv49yA4ID+x8R2223XTz88MNx4UUXxb/+9WTJ7Y7rr/vj1ym4tmJW3W6fvfaKDTfcIFdhMAXGmjpSQC2FP/+bVTm85rprI4XNUjvh5hpzzTVXbLbpprHnH/bIhfhSO+JSw3ZlBQSzFtF3ZUHMF158IU4/48x45NFHywoG/vjzJu8UptuvT5/Ydputo3NW0TEF7Jp7pAqAp595VpyRtf6dMmVKwennz9pX77/fvnHUkCEzBG4//eyz2GHHnSJV9iwWQk3BzeOGHhv77btfNkfB5Uq6KCBYElOLuUlAMP9RCQjmt3GleQQEBJvH0SwECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AiB6dO/j79n1dmOPPqYrFXr60VnSAGwHbbfPoYMHtRgVb6iEzTxhklZq9XLLrssTjnt9PgsC08VGyn4dezRR8e+ffbJtfGtf385AcEUNNx7zz1j7nnmjnPOPS/efvvt+lM1y+u2bdvGbrvsEvtkVQqX7N49q8rXutHzpsDLJ59+Gvfdd39cMGZM/Pvf/y4pUFnugils12OppeKQgw+OzTbbLObNWjGXErYrJyCYqiyOGjki+g8clGsv3VAr5HL3ne6fL2ubvG8WEtx7rz2ja5cuMwTzGjNf/WdSOPPTzH+LrbaOl/7734JB0mS4QlYl8Y9nnRmrrbpq/Wlyr4ePHBVjskDqxx9//JNr9d9IFSnXXHPNuPEv10dq/dzUISDYVMHael5AMP95CAjmt3GleQQEBJvH0SwECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AiBKVOnxBVX/CmGHn9CSe2F27dvH6OyCn479945a5Hb9Cp3jdhyPP7EE3HSsGFZJb9HSnp8m623jmOPOTqWWXrpGe4vJyA477zzRmoz/NFHH8X48eNnmKc5f0kBzE032SQGDugfPVdaKRpTSTCF01KY7KprrokxYy6Kce+805xbbHCujh07xsEHHhi77/776JhVwytWSbDUgGAKG6a2wGn+l156KdJna86R5j2k78G51tHts4qIzTVS2+R77r0v/pBVhUyftdBo06ZNbL3lljH6vHNj9gaCfal64AEHHhSp0mehz5+Chunv8+Ybb4hVVl65pKBmoX0JCBbSaXnXfskBwfR3kQLR35bZ6r3uFNPza2Zt0z/8cELdWy3iZ/rvw8YbbRQ3XH9di9jvr3mTAoK/5tP32QkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBlgbfHvR1nnnV2XHzJJSXtZP3114sTszDhqqusXNL9lbhp4sSJuYpqI7K2yKnyU7GxzDLLxIgsULjxRhvOcGs5AcH0YApgFQpozTB5E35J66TQx+BBA2O11VaLWctsf/v555/H+RdemBldHBMm/HyBl7mzFreH9u0b+2Wtcjtkob5Co9SAYKE5mutajx49YvDAAbHjDjs0OVRXt6fPv/gi+h12eNx8yy1RrOLh4ostFkcOGRy77bpr3eMz/Ezf0333PyD++re/xdSpU2e49uNfZsuqCO6z994xfNjJWYC38RUo07wCgj/Wbdm//5IDgunfk5GjRjU64Pd9fB833XxL0b+vWvsGCAjW2onk34+AYH4bVwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgwgJPPvlUjMiCFffce29JKw0eODAOPPCA6JRVXqvWSKHAO+68Mw7vPyALhHxYdBupAt0pWYvaXbP2vfUr25UbECy6UDPekCrnbbvNNrmQ4HLLLlvyzN9++21ccOGYOO/88+Odn6Fy4I831iVr1dv/8MOzinx7Fwyo1VJAMFlvlVXwO+nEEyKF9Zo6UiDwjbFvxjrrrReTJk0qOF36Pm604QZZe+GzYuGFFsp779VZNcgUiH3zzTfz3pMupHBpqor45D+fyIU00++NHQKCjZWrzed+yQHB9He2zvq94rXXXqtN/ArtSkCwQrAVmFZAsAKopiRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB0gRuv+OOGDZ8RLyYtW8tNtq2bRvnZ21Qt85a9rbOWhtWczz19NNxzNCh8eijjxXdRgphnXziiXHgAfvP0MK1lgOC6UMl71QNrv8Rh+fa9hb7oKn57u233x6jTj0tXnjhhZKqK9bN2apVq5gra7GbWimndVOA75OsUuOnn30WyanUyonJOrVGThXxNt9ss7rpf/KzlgKCaXOpffRhhx4SBx10UMzchFBdmitVD7zkkkvjuBNOKOrWoUOH2HeffXItsFNQMd9IbaL3P+DAePSxx4qe66yzzhqjzz03q4i4/Qzf93xz53tfQDCfTMt8X0CwZZ5boV0LCBbSqa1rAoK1dR52Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgV+VwJ/+/OcYNmJEjB//XtHPveiii+YCguusvXauUlnRByp4w9isktppp58ef/rzlSWtcli/Q+OIww6L+eef/4f7mzMgmIIaS2etalO72q5du2QBytbx9ddfx3vvvx+vvvpqvP6//0Vq/VvOSNXfFllkkRiQBQT32H2PmHXW/AGyNO8bY8fG4CFHxgMPPpgL+JWyVtes4t9mm20aG26wQXRfonu0azdHzJwF1VIgMLWzHTduXC6E+bd77onnn3++aOAtrTnbbLNl1Q+3jhOOPz66Lbhgg9toakAwhemWWnLJWHHFFbKqf4vnwo3pPFOQ7j/PPhvPPfdcfPnllw2u3dCbKVSXAo1nnH5aJJPGjuSW9rD7H/aMf//730WnWW3VVeP4LOjaq9f6Be9NlSFPPPnkuOJPf47UYrvQSN+b1KL64ovGxHxZ4LOxQ0CwsXK1+ZyAYG2eS1N2JSDYFL2f91kBwZ/X22oECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUE/gnKzS2LARI2Py5Mn13m345Zprrhmnn3pqrJSFsqo9Pvro47jkssuy6ofDSwqt/WGP3WPIoEG5wF3d3psaEEzV8tq3bx9bbL557LD99rHQQt1ijjnmiBTaSFXoUlgshQQnT5kSb731Vtz9179m//9bFsYcX9Ke0z5TZb8U9jr+uKFRqNVwCpCNOuXUuPTyy0tqu5z2uHPv3pFcFs1CiKl6YAr2pc9UN1Ir56+//ib7bkyK8e+9H3fdfXdcdPFFMWHCR3W35P258MILRb9DDo3999t3hjnrHmhKQDA57LXnnrHWWr+NVIFv9mzfKTA4PXlnIcFU9fCZZ/4TF196aTz55JMlWy+7zDJx3NBjY8sttqjbZtk/U6jy3vvuj3323bdoQLF169ax2667xklZpcEOHeYputY//vFADM1ClykAWWyk87z5xhti5Z49c9/HYvc3dF1AsCGVlvuegGDLPbt8OxcQzCdTe+8LCNbemdgRAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEfjUCKVQ2fOTI+O6774p+5lRhbdjJJ+UqtxW9ucI3fDFpUlx33XUxYNDgkva+4w47xFFHDokeSy31w86aEhBMYboUKEuVCVdZeeXo1KlzFsRq1WBlxRQUTGtN+OijrKrcM3H5FVfkqvyVYp4227lz5zjowANyFRDztaF9/oUXo++hh+Yq56WwYL6RqsvNOeec0S+7t/dOO8aCWYW/32QhxGIj7TWFMh986KE4PmvXnEKOKUCYb6TgykYbbhBnnnFGg1UEGxsQXG+9dWPwgIGxQhZSnSv7HA15pH2lwOuzWRXBU7J2y6miYiljvvnmiz777B1DjzmmwXMsZY53M5eThw2LK6+6uujtiyyycAwaMCD22GOPmKVeMDPfg8n/yKOPjptvuSX3fcp3X3o/nfOAI46Iww7rFx3mKR4+bGguAcGGVFruewKCLffs8u1cQDCfTO29LyBYe2diRwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEPjVCJQTGtll553jmKOPisWyVsPVHql9bApK9T20X65KX7H9bL/ddrmA4DJLL/3DrY0NCLZt2zZWX331LNzVP1ZdZZVo06bND3MWepGCglOyaoLPv/BCXHLpZXHjTTdFoTBf3Vyp/e0GG/SK07Mw5+KLL1b39g8/07wjTzklxlx0cRbiK1zdL1WWS1X9DjrwwOiYtVtOQbJSR1pnUhbMvO322+PIo46Oz7KWyem9fGPxxRePY446Mlep8Mf3lBsQTJUNu3fvHmdmLYCTfaoaWGyk78ijjz2eC06WUrUxhT5TNcgLzh8dc2RnXO5IZ/nMf56NPbLqhu9kbYYLjeS+xeabxdBjjy1YGbL+HCmkmSpE/vHss7OKlG/Xv9Tg66Wz7/rVV/45lsjOoX5lyAZvbuBNAcEGUFrwW+X8W18rH/P//iY3i3PPOSfaZ/925Rvp36V11u8Vr732Wr5bfpHvCwi2nGMVEGw5Z2WnBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ+MUJlBMa2f33u8VRQ4bM0Ka3WiApYHbrbbfFQX0PKVpNLe1xu+22jaOPPDKaGhBMbWFT29ahxx4Tv/3tb6NVFt4rd6Rg4gsvvpRrj3zvffcVDNnVzb34Yovl7HfddZe6t374mUKBu+6+ezz99L8LhiVnn332WGedteOPZ54ZCy+00A/Pl/MiFxLMqvMNzCo3poBmaqmbb7Rr1y6223bbOOfsP/6kSmG5AcEUFBo1YkTsvvvvo032OUoZKbv4+Ref51ovjx49Or4rUPEwzZdCdGuvtVZcfNGYWHCBBUpZYoZ7Pp44Ma688qo4LmsZXKw6ZApq9jv0kDi0b99cW+oZJirwy3PPPx/Hn3Bi1sa4+PcmhYfOy4JV22y9VaSzKHcICJYrVtv3l/Nvfa18EgHBwichIFjYp5auCgjW0mnYCwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBH5lAiNGjsq1GC5UCa6OZMr9UsEAAEAASURBVIftt4/jhh6bq0hW9161fqZKfKkCX7/Dj4hvvvmm6Da23z6rIDgkBQR7/HBvuRUEU9W3JZZYIvoffnjssnPvrKXwb36Yq9wXKSD3yKOPxcGHHBLvvfde0ZBgaguc2iSfcdqpkUKK9UcKix3Sr1+8++74vPOkvXfL2gmPGD4stt1mm7IqB9Zfq+71Y48/Hvv02TfGZ3vP12o4Be5ShcUrLr8sFurWre7R3M9yAoKpgmJq53zrzTfFvPPOW1Y1vG+yqn7PZ6G6LbbaOlf9sNj3PIU/R593biy/3HIz7LfYL2neFPocnAVoH37kkWK350Kmx2atjDf53cZF761/Q2qdfNrpZ8SYiy+OL774ov6lBl9vs83WMeLkkxsV6hUQbJC0xb4pINhijy7vxgUE89LU3AUBwZo7EhsiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAr0fgtDPOiOEjRhasPFensdGGG8bIEcNnqMJXd+3n/vnpZ5/FVVddFUcdc2zegFr9PaX2yEcOGRzds4Bf3Sg3IJiqsKVWxSccNzQ6duxYN02jf6aw10nDhuVaAxcLOc4yyyyx5hprxKWXXPyT6nYnnpzmuCg+y0zyjVSJa91114nLLrkk5pl77ny3lfz+1Kx9b++dd4kUFEyO+UZqb3t6FmrceKONZrilnIDgHHPMEQdnLZFTOLXcVrm5ioeTJsemW2wRL2atnb/N2vQWGsstu2yckbUxTpUEyxlTpkyNO++6K/oPGBDpu1lopMBjn733jv5HHB4LZqHNcscdd96ZhXpH5YKPxZ7t3LlzXDzmwtznKTfQKiBYTLdlXRcQbFnnVcpuBQRLUaqNewQEa+Mc7IIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK/SoELx4yJYVlA8JNPPin6+VdccYVce9rVVl216L2VvuG999+P0edfEGf98Y8lLbVfnz4xcED/GQJZ5QYEe/ToEUcOHpxV8tu+yRX40qa/zarbvfjSf2PbrDLjxx9/XDTouHS2/llnnhHrrL32D585tbLdYafeuap1KXSXb8zdvn307t07Dul7cETWerc5xqhTT43bbr89UtAx30gBtYH9+8dBBx4wwy3lBAQ7dOgQl196SWy4wQaNck/n3PfQfnHTzTcXDDOmDSbjU08ZFRv06jXDfov9Mnbs2DjtjDPjz1dembeKY90cyeSE446LnXvv1KgqlG+99XYk+2uuvTb3Haqbt6GfKVA5aOCAOGC//aNTp/JCrQKCDYm23PcEBFvu2eXbuYBgPpnae19AsPbOxI4IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDwqxG47vrrY9jwETH2zTeLfuZOnTrFBaPPi1RJMFW0q+Z4+ZVX4uRhw+PW224ruo3UXnfIoEFxaNbOd+652/9wfzkBwTTHVltuGcOzdq2LLbboD3M09UUKyvXeddd4+OFHilZx7Ja16T0qq4K45x/+8MOykydPiTWzwOCb2fnla/Wbbk5V+FJ1vMUWW+yHZ5v64sUXX4xXXn01igUTd9tttzgtC93VH6UGBJN7165d456//TUWXmih+lOU/PrrrAX1iCwEe+7o0fFlVvmw0GhMQDCFNP/xwAMxcPCQeP311wtNnws4bvK730VqL9xzpRUL3pvv4tdffx1/+vOfY8SoU+LDDz/Md9sP76+StXk+M6uKmNonJ89Sh4BgqVIt4z4BwZZxTuXsUkCwHK3q3isgWF1/qxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQOBXLXDvffdn7UpHxpNPPlnUIYURTj/1lNg5a9fbLgucVWuktrEPP/JIDD7yqHghaxtbbLRu3TpGjRgR++y9V7Rq1eqH28sJCKbPvv9++8XJJ54Qab7mGilclto8n3nWHwtW4kvrzT/ffNke9o2jjzoqt3xyeHvcuFh/gw1jwoQJzbWlZp2nbdu2scXmm+VaG9dvD1xqQDAFUbt3XyLuu+eeSFUQGzNS++azzzknq7p3WkydOrXgFI0JCKbqm5dedlmcnAVtU1XIQiN9d4456sgs5LlnzDNP41s9/+tfT2brDY+HHn640HK5a23atImzzjg91x47nUepQ0CwVKmWcZ+AYMs4p3J2KSBYjlZ17xUQrK6/1QkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIPCrFnjhxZfilCz0d/Mtt5bksOcee2Stegc0axW9khaud9O0aV/F9X+5PhcQnDRpUr0rDb9cYIEFcgHB7bbdZoYKauUEBOedd97of/jhcfhh/RpepJHvpqp/t99xZxycVTf87LPPCs7SPgvI7bJz76wa3Om5+1JA8Kmnn44dsxbDH0+cWPDZal2cbbbZcq2Br736qph11ll/2EapAcH0TKp8eN+998Ts2VyNGZUMCKYzePKpp+OkrLLkAw8+WHR782Uhz8EDB8Yaa6w+w3ex6IM/umHixE8iVf+89rrrfnSl4V9777RTHHXkkFiye/eGb2jgXQHBBlBa8FsCgi348PJsXUAwD0wNvi0gWIOHYksECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBD4tQikynOjz78gzjjrrIItaus8ll566SxsNzw26NUr6leEq7v+c/xM7ZBTxb3LLr+8pOXWXGONOPmkE+O3a645w/3lBAQXWqhbrk3xXnvuOcMcTf0lBcwefeyx2PX3u0eqRFdopDbBW2+1ZVxy0UW529Kz991/f+zdZ9+izxaat5LXUoBl7bXWiptu+MsMlRfLCQguv/zycf89f5/h+XL2XMmAYGr3e9XV18TxJ54YE0sIaabA4+yzz94sLbrT97dYy+Q6p4UXXjjX5nnTTTYpeW0BwTq9X8ZPAcFfxjnW/xQCgvU1avu1gGBtn4/dESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA4BctkMJT113/lxiSta0tVsEuQaQWvUdnLVJTu93GtnxtCmgKxd1x551x3AknxmuvvVbSVPv26RP9jzg8Fl5ooRnuLycguNiii8aRQwbH73fbbYY5mvpL+jzPPvd8bLPddvHxxx8XnO7/2vVuHldcdmnuvvTs3X/9W+x/4IHx6aefFny2Whd/6QHBFFY9NWtdfOXVV0c6j1odKcw7KKv8efBBB0aqYljKEBAsRanl3CMg2HLOqtSdCgiWKlX9+wQEq38GdkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFftUCqYHfMsUNz7WpLgVhj9dXj+KFDY7311i3l9ma95/33389VO7zo4kvi22+/LTp369at4/RTT41dd9k52rRpM8P95QQEu3XrlmsNu8/ee80wR1N/SaGyRx55NHbbPasgWCTk165du9h2m21izAXn55ZNz953/z+yCoJ9VBAscBCVrCB42+13xEnDhsXLL79cYAe1cWmdddaJ4489Nn772xkraebbnYBgPpmW+b6AYMs8t0K7FhAspFNb1wQEa+s87IYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK/OoF33303zj1vdJw7enRJnz2F7g7Yf784vF+/6NSpU0nPNMdN3333XVx73fUxKgv8jR07tqQpU3vaM047NddeeKaZZprhmXICgu3bt48jDusXgwYOnGGOpv4yffr0uPGmm+OwI46Izz//vOB0c889d+y26665VrHpxhQQfOrpp2PH3r2z6oMTCz5brYu/5AqCkyZPjtNOOz3OOe+8SK2Ga33MOeeccVwWEOzTZ59onbV+LjYEBIsJtazrAoIt67xK2a2AYClKtXGPgGBtnINdECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA4FcrkCqs3f3Xv8Yh/Q6LiRNLC5otusgiMXBA/1xgLYUUfo6RwnCjTjk17r3vvpKqB6Y9Hdq3bxx6SN9YYIEFfrLFcgKCs846a/TZe+84+eSTYo62bX8yV2PfSKHHE048KS4cMyamTJ1acJqOHTvGwVk74UEDB/xw35tvvRW9NtwoJkyY8MN7Db1I4bAVV1wxunbp3NDlir2X3Lov0T36HXpIrj113ULTpk2LHXfeOR599LGC4br0fAp53n/P3yMFUxszKlVB8F9PPhUnDx8e//jHPxqzrZ/9mdRmeKcdd8haZQ+JJbt3L7q+gGBRohZ1g4BgizqukjYrIFgSU03cJCBYE8dgEwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEPh1C7zyyqtx4sknx223314SRKtWrWLllXtmbXcHxe823ihS+KiSY+ybb8bpZ5wZt9x6a9FKe3X76Ny5c1ww+rxYf731oqEQYzkBwVR98Hcbbxwnn3RiLLvMMnVLNOlnqgA49csvY6utt4l/P/NMpCBbobHwwgtnFeCOiV2yYF3dmDxlSqzx27XirSwomKoR5hup0uNBBxwQu+66S75bKvJ+cmv9m9bRocM8Ub+CY0sPCKb21hdceGGcdfY58cEHH1TErhKTLrHEEnHMUUdmQcEdZziPhtYSEGxIpeW+JyDYcs8u384FBPPJ1N77AoK1dyZ2RIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgV+dwOSsXepdd98dR/QfEJ8VaXVbh9M2q6S35hprZK13D4v11lu3YiHBd955N9fG9cabbspVykvBumIjhdFSO96jszDUIlmwrqFRTkAwPb9IVjWx/xGHx9577tksnzUFAp986qnovfMuOfNin2vZZZeJ8845J1ZbddUfPk6qQLjN9jvEY489Funz5BupguB2224T52bPzzrLLPlu+9neb+kBwbfefjur/HhiFli9rWiw82dDLWGh2WabLfbt0yeGDB4UHeaZp+ATAoIFeVrcxZYaENx8s82yf/fOjtTmPd9I//1aZ73149XXXst3yy/yfQHBlnOsAoIt56zslAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAr9YgRRO+98bb8RJJw+Lm26+ueTP2a5du1xgre/BB8UGvXo1WKmv5MkauDEFPi66+JJcZcNUqa1Qlbz6j6eWwqPPPSfWXmutmH322etf+uF1uQHBFK7abNNNsiqCJ0VqsdyUkbxTEHNAVoExBR9TRbpCI7XaXXeddeLSSy6OjvPP/8OtaZ5jhh4Xl19xRcHKirNkocBll102LrloTCyz9NI/PF+tFy09IHjTzbdk7a5PiZf++99qETZ63XXWXjuGZpUo099GoSEgWEin5V1rmQHB1rHhBhvGxWMuLBgQTKexymqrx39ffrnlHUwTdiwg2AS8n/lRAcGfGdxyBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCwwNSpU+PhRx6JQw87PMaPH9/wTQ28myoJLrfccrH7brvFFptvHh07/v8AWwO3l/RWCu89/vgTceXVV8f9//hHTJw4seRwYArDHXpI3zjs0ENj/o4dY6Y8K5YbEEzTpODh/vvtm7XrPTDatm2TZ+bib0/JWgPfdvsdMWjIkPjss8+iWPXAeeaeO36f+Q47+aRI7Z3rj9vvuDP6DxgQ773/fv23f/K6Q4cOccB++8VRRw6JZNSU8e674+Opp58qWLUwzd+u3Zyx0korRpes3XP90ZIDglOyv5Njjx0a11x3XUyaNKn+x/rJ61TJMlU++/GZ/eTGJr6RgrPp7zf9v9jomP1NpEBv+vsotC8BwWKSLet6SwwIpmD04ostFvf87a8x77zzFgTfsffO8eBDD5X0N1BwohZ0UUCw5RyWgGDLOSs7JUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwC9eYMKECXHu6NFx3ujzi4a/6mOkoMKCCy4Qm26yaWy2ySZZKGylLBg1V6SAVKkjheRSaO+NN8ZmocD7444774pnn3suF/goFqCrv8bqq60WfzzrrFi6x1IFA1CNCQimwMpSSy0VgwcOyIUh81UnrL+fH7+enIUDH8mCmMNHjoxnnvnPjy83+PvSPXrE8ccNja223PIn19/Nwpy77vb7eO755wtWIkx7X2KJJeKMU0/NtYQu52zqL5paI5+R+d56223x5ZfT6l+a4XWaf8klu8fIYcNj0UVnrLjYkgOC/87ObMiRR8YT//xn0WBnmzZtYlAW3kzhppnL+FuYAbKEX6Z9NS1rV/10XP+XvxS9O30Pttxiixg+7OTI1347TSIgWJSyRd3QEgOC6d+Q1q1bx4vPPRuds5BxoX+zHnzwoVzgOlURLOe/Fy3qEH+0WQHBH4HU8K8CgjV8OLZGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBX5tAanX7xtixMeSoo+Oee+4p6+On8EZqw7t8Vk2wV6/1o+dKPXPBsC5dusQcWZXBVLWufsDj+2z26d9Nz0KB0+Kjjz+OcW+PixdeejEee+zxePjhh+PTrLJeqS2F00bT3J2y6mgjR4zIAlCbRwpnFRqNCQim+VJgZemsTe8hBx8cv9t4o0iV+UoZ6bN8+umnuSqNF465KB597LGSgixpvc023TROz4J9XbrMWIkvrfvdd99lbYaHxpVXXZ2bv9Be0vmkVsXHH3dcLLfsMpHCYqWOFLqZNu2ruO/++7Pvx1Hxzjvv5NbO93yqLLn5ZpvGeeeeG+3mmGOG21pqQDBZn33OuXH+hRfGe++9N8Nn+vEvM888c6y++upx7dVXxXxZQLD+d//H9zb19/RdfvKpp2KnnXeJL774ouh0KeR6VFa9cscdts+7LwHBoowt6oaWGBBMwOnv5m933xWrrrJK7r8v+dC/yKp53nvvvXHJpZfFCy++WFJl1vpztcRQoYBg/ROs7dcCgrV9PnZHgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBX51AChs98cQ/o//AgfH6//5XMASWDye1Ll1kkUViheWXj+WXXy4W6No112o1VdxLobQUlkvrpBatH344IV559ZV47rnnI1V/KiXg9ON1U4hkzjnnzLXQ7X/EEVlr2znyBp/qnm1sQDA9nz7fQt26xZ5/+EOsv/56WRBy0dz6s2ShsB+PFCpL4ZW33no7Vznw2uuvj+ezan+lBlIWWWThOLxfv9i3T5+8nymFDY/IKtW9/PIrRUOVdYHDgw48IHc+c2ThvRRmKzRScDSFOB/L1knVA1988aWC34t0HotlJkdmIbTddt3lJ1O31IDg+x98EIcc2i/X9vrrr7/+yeeq/0b6jowYNiz23nuvaJN97ys9Psj21mf/A+KBBx4oulS7du1i5969Y3jWsjq9bmgICDak0nLfa6kBwSQ+IPs3vd+hh8R8881X8ADSfztefuWVrDLrM/H551+U9G/s9OnfRfq7vu76v7S49sQCggW/DjV1UUCwpo7DZggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgCaTw019uuDFGjhoV44pUiismlsJiqZrc3HPPnQsjtc7aEX+bheamZK12P8uqBH7++ecFw2alzJ9CTqn97qiRI2KebJ20ZrHRlIBgmjutkSryrbbqqrl2w8tmFflSNcFcCHKWWbPP+G1WcW9afDLxk3jxpZfi3vvui3/+61+5z1tsb3XX01zbbL11HHv00T9p01t3T/qZ1jkyu+eGG28qWkWw7rnUinnPP+wRK6+8cnTq1CnmzAxTqC37YJEla3JBwy+zeT/95JOsWuC78Y8HH8yqFF4V7777bt0UeX+m6o2p6uHIEcNz4dAf39hSA4J33HlnHJtVX3z99f/9+CPN8HsKXHbq1DH+etddsWgWlE3VMys9Jk+eHNdce10MGDSo6N9T+u6m7+3pp50WK/dcqcGtCQg2yNJi32zJAcEVV1ghLrnoolzL8ub+W0ot01Mr+x126h0fZyHoljQEBFvOaQkItpyzslMCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj8qgRS1bjzL7gwLhgzJsaPHx/p91obKeg055ztsra568YZp58WXbN2xqWEA9PnaGpAsL5FCq3MP//8scjCC0fnzp2y9sZtc9WoPvzwwxg3blx8OGFCbr36zxR7nUJmyy27bAwZPCi23mqrolX+UovZY44dGk89/VQW8Pym2PS56ym4udpqq+baDqcQTgpx1lV4nDp1am7vKSiW2j7/7403SvoOJItlllkma2E7OLfvhs6jJQYEU2i23+GHx6233V60ymWq0rjdttvGBaPPy7WkLukwmnhTqlQ59s03Y7Mttoz333+/aPW0zp07x0EHHBBHHH5YgwFGAcEmHkiNPd6SA4KJ8o9nnpG1xN4h5plnnmaVFRBsVk6T5REQEMwD420CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqL5ACgWOvuCCuPjiS7Iqcu/ENzUUEkwBurnmmis26NUrTsiqui222KJlgTVnQLCshUu4OYXq5pt33jikb9/Yf7/9ciHIYo+lgNgll14W544enbUzfqtoq+Efz5eqB6Z2w6kqVZorVXj88ssvf3xbwd9z+87agO67zz5xeBY8myMLIDY0WmJAMLUu3WPPPXNtnIu1h05ByzHZ302qojjLLIXbNzfk09j30pmlCoKpkmCxQG8673XWWTsuu+SSmL+B1q0Cgo09hdp8rqUHBHsstVScfuqpsfbaa/1fpdNmYhYQbCZI0xQUEBAsyOMiAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFRbIIUCr7766ix4dn68kVWRS5XUqj1SlbpUSWqLzTfPtd/t0qVz2Vuq5YBgCur9Yffdo2/fg3NVCUv9cKll82mnn5FrBTwxaw1cLMhW6ryl3pf2vdOOO8bA/v1jkUUWzvtYSwsIJsc/nn1OnH3uuTEhqwZZaKQKjD16LBX/uPfeXGvtQvc297UUdnr44Udil9//PhfwLDb/oosuGsNOOim23Wbrn9wqIPgTkhb9RksPCCb8PbLv9YAB/WOJxRcvuVJssUMTECwm5HpzCAgINoeiOQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgogIpIPXgQw/FKaeeFqmVbQrX/dzhs7oPmCoHduvWLfbOqrkdeMD+0a5du7pLZf0sNyCYquP9HJ85VXbbdZdd4vDD+sVSSy5Z1mdKN7+XtZc948yz4uprrinaCrfsyQs8kCoPbrfdtrlw4DJLL13gzoiWFhCcNHlybL/Djln75qeLBmRTVcv0vTx+6NCCBpW6mL7X66zfK17JKh4WqyLYLgt0bpW1r77w/NG51tL19yQgWF+j5b/+JQQEZ5999tht112if9bqe5FFFmmWQxEQbBZGkxQREBAsAuQyAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSGwPTp0+PtceNizJiL4vobbogPP/zwZ99Y69atcy0mD81a766/3nq5driN3UQ5AcE2bdpE+v+kSZNy4cjGrlnsuRSy2/MPe0Tfgw+OxRdbLFIYstyRQozj33svLrhwTFx+xRWRqgpWeqRz2XWXnePQQw7JhRpTmLLQaGkBwb/fc08cfMih8X4Wviw2ui24YFx37TWx4gorFLu1ItfT3+mpp50eZ519du77WmiRdE7du3ePa666MlIL1/pDQLC+Rst//UsICKZTaN++fWzyu41j4IABUSyIXMqpCQiWouSepgoICDZV0PMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg8LMJfPfddzF58pR44p9PZOGzP8UDDz6Y/T654uunoNzSPXrE7lmLyW2ydqidO3VqUjgwbbicgGCXLl1ixx12yFVk+9Of/1xS+9ZyUTp27Bj9Dj00a9G7Q+7zpTbKjR0pJPbxxxPjlttujQuzQOerr77a2KmKPpfO4oD994+dd+4dXTOn1GK32KjVgGCP7Dt22imjYoNevWb4CPsecEDcdtvtRc+9TVbhbMMNN4w/X3F5pNBkNUYKiL6Snfe22+8Q7777btGql/POO2/0y4KdA7PWrfWHgGB9jZb/+pcSEEwnMffcc0fPlVaK3bJKq5tuukkuNFgslJzvBAUE88l4vzkFBASbU9NcBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBxgSx/FNO+mhYfTZiQBQX/FTfceGM89vjjuXa2zd2CN7XbTZXNtt12m9h0k01jkYUXjjnmaBtNCc/VAZUTEFxggQXiiMMOiy222Dxuu/32uOjiS2Ls2LFFw1d1axX6maoG/i6riHXAfvvFSlnoZa4552yWz5dCgqni4QsvvhhXXnV13HX33fHJJ58U2kpZ11K7z4032ij67LNP9Oy5UrTPWuuWei4tJSCYvs/vvPNubLLZZvFOFrZLpoVGCkgeN/TY2GP33QvdVvFrX3/9TeyVncs9994bU6dOLbhe+v6t3LNn3HrLzZFaDtcNAcE6iV/Gz19SQDCdyGxZADf9u7zuOuvEeuutG0tnbc3T319qOV/qv0NpHgHBpGBUWkBAsNLC5idAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBigiksFQKH32YBQVff/31uPe+++Lxx5/IVS9L4bvGjlQJqmvXrrkKUZv87ndZ+Kxn9nuXXHAuBQaba5QbEBw8cEDsvdde8fnnn8crr7waN996a9yTtZ4d++abRYNjP95zqoiYWmWusfrq0XunHWOVVVaJLp0756rONbYS1o/XqPt9WnYWH034KF7673/j1qyi4EMPPxLjslbRjQlzpr116NAh1l5rrdguC22ms0n7nm222aKcfbeUgOC3334b519wYQwbMaJopcwUSkptha+5+qpYMAsuVXtcd/1f4uhjj40PPvig4FbSuaXqlReMPi9r3fq7H+4VEPyB4hfx4pcWEKw7lPRv6aKLLhpLdl8i+/tbMfsuzx9zzjlX7t+kunsK/UxVcd96680YdeppRVtyF5qnGtdSuDeFtG+4/rpqLG/NMgQEBMvAcisBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1J5ACpqlsN3HEyfmwkhvv/12vPDCi1lQ8JV4OwuiffDBh7lwVQpbpTBGuj+FklKwI4WqUrhs3ix09v/au7vYvKs6DuCn3drRdqxr146ARCIbmYwIU7wXEQWSmYDBgJE7TDQgN6AQYFHHlml8id7Li4kK4cJwIRiZkQT0kpdI4kaWLTFBiWzd1mzdFvrq/zxYwtbx79b27Dzn38+TLGt7nuf3O+fz63b1zfnH26A2btgQrr32M2Hjxo3h0ip4FoNLq/uW5sbAM+UWEhD81j33tMqMj4+Hg4cOVcGSf7WCd6+99nrrMb7/effdcPzYsTA+MdEKDcazzp6zt7c3rF+/PmyowixbtlxXBSA/VwVbPhUur8KQce18AnZnnmW+72dn9N/33qtuxHsn7NmzN7zx5pth3759Ie45hh7jmc6cT3xccLxVLs5iQzWbz27Z0prPFZ+8Ilx22aWhp6e3Ol/HfO3nrMdbu556+jetWxinpibnrM/+oLNzRdXnsnDfffeGrnN4dPHs5z76dzzTK6+82gqwTkyMf3Rpztfx9+32225r/f7FxcnJqfDMs8+0ZjxV/f7Wvbq6usM112wOd9155zk9Zrmu1lKsxX93Tz79VDh6DrdGXnRRT7jhhi+Em6rHI8++4r/d56qQ4cGD783+6Kx/r1zZFa66amPrJsmzvsEP20KgqQHBM3Hj/1nxltne3r5wLv8zVRfitm4RjLerxv8rSnoJCJYzLQHBcmZlpwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwj0AMosWg2dGjR8PhKnAxOjraCp8dO3a8FRI8depkK4TR0dHZui2vrwr/rVlzcVhz8ZrQX92oNzg40AoLxsBcDNalfC0mIDi7r3iL4tjYWBWiOhRGRkbC0dZ5R1s3UZ06daoVEoy3Hq6uQnb9/WvDQDxjFYa8ZP1wGBgcXHDobbb/Qv7+YM8nwqEq4DhyeKQ1ozifY1WwMd4IGQN70T4GNz/Yd3/rtsN4c+Dw8PB5PUr44/YXf0+iV5xB/PpjX1WQtLvyi8HKhQYoY/34qOVj1Z+ZeR4R3FXdyNVfPSq5pzp7fMXPHqxuyIyBz+qbj91mXIhmMZQ0MLC29n0XajHOOe49hjHne3W09t4bBgcGPnxrnM3Ro6PV5+tDlXEuq1ZdVP1uDH34WV+0n8ByCQi2n3y6HQkIprNd6soCgkstqh4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItJ1AvD1wYmKyupGtulmvClrFUNGK6na4rq6V1Z+uBYe/FnPQpQgInq1/PGsMlMUb5+JZV1Thqxg866puWlvIbXtn67HUP4s3Z8UgWfwzO5+V1e2OcTbxRq6FhvOWep/qESCwMAEBwYW5tfOnBATbeTqn701A8HQP3xEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQsikCogeEE2rwkBAgTOQ0BA8DywCnmrgGAhg6q2KSBYzqzslAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaJCAg2KBhOgoBArUCAoK1PEUuCgiWMzYBwXJmZacECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0CABAcEGDdNRCBCoFRAQrOUpclFAsJyxCQiWMys7JUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEGCQgINmiYjkKAQK2AgGAtT5GLAoLljE1AsJxZ2SkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINEhAQLBBw3QUAgRqBQQEa3mKXBQQLGdsAoLlzMpOCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBBAgKCDRqmoxAgUCsgIFjLU+SigGA5YxMQLGdWdkqAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDRIQEGzQMB2FAIFaAQHBWp4iFwUEyxmbgGA5s7JTAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiQgIBgg4bpKAQI1AoICNbyFLkoIFjO2AQEy5mVnRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAgwQEBBs0TEchQKBWQECwlqfIRQHBcsYmIFjOrOyUAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBokICDYoGE6CgECtQICgrU8RS4KCJYzNgHBcmZlpwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQIAEBwQYN01EIEKgVEBCs5SlyUUCwnLEJCJYzKzslQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgQYJCAg2aJiOQoBArYCAYC1PkYsCguWMTUCwnFnZKQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0SEBAsEHDdBQCBGoFBARreYpcFBAsZ2wCguXMyk4JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEECExMT4Z979obHd+4IM9MztSdbt25d+Podd4Sbv/Ll2vdZJECAQDsKCAi241QWtycBwcX5XchPCwheSG29CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA/wWmZ2bC2NhY2L//QPWT+oBgd/eqcMkl68Pw0BA/AgQIFCcgIFjcyObdsIDgvERt8wYBwbYZhY0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaJ7Arh//JOzctat5B1vGJ4oBwXir7XPPPruMFco4uoBgGXOySwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJFCvz0Zz9vBQQnJyeL3L9NzxXo6+0NW7duDU8/+cTcRT9pKwEBwbYah80QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaJbAr594MmzfsSMcOXKkWQdbxqdZPzwc7r77m2Hn448vY4Uyji4gWMac7JIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAkQIv7X4pPLbtB2HP3r1F7t+m5wp8etOm8P3vPRi+cdddcxf9pK0EBATbahw2Q4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBZAvv3Hwjbq5vm/vD888062DI+za233Bx2VDPdfPXVy1ihjKMLCJYxJ7skQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKTAiRMnwm9/9/uwc9cujxkucoKnb3poaCjc+51vh/vv/27o6+07fdF3bScgINh2I7EhAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs0S+Mdbb4UdO3aGP+/eHaanp5t1uGV0mpUrV4abbrwxPProI+Hz11+/jE5e7lEFBMudnZ0TIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKELg5MmT4dW//T089PDDYf+BA0Xs2SZPF+jo6AgbrrwybHvs0fDVrVtDT0/P6W/wXVsKCAi25VhsigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECzBI4cORL++MIL4Yfbt4fDhw+HqSk3CZYy4c7OzjA8PBweefih8LXbbw/xMcNeZQgICJYxJ7skQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgULzA2NhYePHFP4VHtm0LIyMjVUhwKszMzBR/riYfYMWKFWFwcDDs2P6j1s2BAwMDTT5u484mINi4kToQAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfYUiGHA999/P7z99tvhF7/8Vfjryy+H0dHR9tysXYW+vr7wpRu/GB584IGwefPm0Fs9Vjg+atirHAEBwXJmZacECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGiEwPj4eDlePHN63b1/Yvfsv4fU33gjv/PudVlgwrnnlEeju6g5r164Nl1/+iXDdtdeFW2+9JWzatCkMrVsXurq6hAPzjGVRXQUEF8XnwwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQILFQghgGPHz/eCgYerx4/HG8XnJ6eXmg5n1ukQGdnZ1i1alVYvXp1WNvfH9asWRO6u7sXWdXHcwoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwCAoI59fUmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKJBAQEE8EqS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEcgoICObU15sAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQSEBBMBKssAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKSAgmFNfbwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJxjeVcAAAAqUlEQVQECBAgQIAAAQIECBAgkEhAQDARrLIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCngIBgTn29CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAIgEBwUSwyhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwC/wOSA/7sLWJCmAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "#### Fixed Tools\n", + "\n", + "In this context, 'fixed' tools refer to those with a rigid, well-defined functionality. Typically, these tools accept a limited number of specific arguments and perform clearly outlined tasks. For instance, a fixed tool might execute a simple query such as \"Get today's weather for the user's location.\" Due to their structured nature, these tools excel at performing consistent lookups or monitoring values within structured environments like ERP systems, regulatory frameworks, or dashboards. However, their rigidity limits flexibility, prompting users to often replace them with more dynamic, traditional data pipelines, particularly for continuous data streaming.\n", + "\n", + "Examples of fixed tools in various industries include:\n", + "\n", + "* **Finance**: *\"What's the current exchange rate from USD to EUR?\"*\n", + "* **Pharmaceuticals**: *\"Retrieve the known adverse effects for Drug ABC.\"*\n", + "* **Manufacturing**: *\"What was the defect rate for batch #42?\"*\n", + "\n", + "#### Free-form\n", + "\n", + "Free-form tools represent the most flexible end of the tool spectrum. These tools are capable of executing complex, open-ended tasks with minimal constraints on input structure. A common example is a code interpreter, capable of handling diverse analytical tasks. Although their flexibility offers substantial advantages, they can also introduce unpredictability and can be more challenging to optimize for consistent reliability.\n", + "\n", + "In industry applications, free-form tools can look like:\n", + "\n", + "* **Finance**: *\"Backtest this momentum trading strategy using ETF price data over the past 10 years, and plot the Sharpe ratio distribution.\"*\n", + "* **Automotive**: *\"Given this raw telemetry log, identify patterns that indicate early brake failure and simulate outcomes under various terrain conditions.\"*\n", + "* **Pharmaceuticals**: *\"Create a pipeline that filters for statistically significant gene upregulation from this dataset, then run gene set enrichment analysis and generate a publication-ready figure.\"*\n", + "\n", + "\n", + "#### Semi-structured Tools (used in this cookbook)\n", + "\n", + "Modern agentic workflows frequently require tools that effectively balance structure and flexibility. Semi-structured tools are designed specifically to manage this middle ground. They accept inputs in moderately complex formats—such as text fragments, JSON-like arguments, or small code snippets—and often embed basic reasoning, retrieval, or decision-making capabilities. These tools are ideal when tasks are well-defined but not entirely uniform, such as when the required dataset or service is known, but the query or expected output varies.\n", + "\n", + "Two common paradigms of semi-structured tools are:\n", + "\n", + "* **Extended Capabilities**: Tools that function as specialized agents themselves, incorporating internal logic and analysis routines\n", + "* **Flexible Argument Interfaces**: Tools permitting the LLM to pass expressive yet structured arguments, such as detailed queries, filters, or embedded functions\n", + "\n", + "Semi-structured tools are particularly valuable when:\n", + "\n", + "* Delegating specific yet non-trivial tasks (like searches, transformations, or summarizations) to specialized tools\n", + "* The source data or APIs are known, but the results returned can be unpredictable\n", + "\n", + "In production environments, these tools are often preferable to free-form tools, like code interpreters, due to their enhanced reliability and performance. For instance, executing complex, multi-step queries against large Neo4j knowledge graphs is more reliable and efficient using optimized Cypher queries templated within semi-structured tools rather than generating each query from scratch.\n", + "\n", + "Industry applications of semi-structured tools include:\n", + "\n", + "* **Finance**: *\"Extract all forward-looking risk factors from company filings for Q2 2023.\"*\n", + "* **Automotive**: *\"Identify recurring electrical faults from maintenance logs across EV models launched after 2020.\"*\n", + "* **Pharmaceuticals**: *\"Locate omics data supporting the hypothesis that a specific mRNA treatment effectively upregulates the IRS1 gene.\"*\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Creating tools for our retriever to use" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Factual Q&A\n", + "The `factual_qa` tool provides an efficient way for our agent to retrieve information from our temporal knowledge graph pertaining to a particular company, topic, and date range. This will help the agent answer questions about the data such as \"What were AMD's earnings in Q3 2017?\"\n", + "\n", + "This tool sits somewhere in the middle of the fixed and semi-structured tools we introduced earlier. This is generally quite a rigid tool in that it restricts the agent to a small number of parameters. However, the degrees of freedom in the input are large and the tool is still flexible in what information it can retrieve from the knowledge graph. This helps avoid the need for the core agent to write new queries for networkx from scratch on each query, improving accuracy and latency.\n", + "\n", + "The tool has the following arguments:\n", + "- `entity`: This is the entity (or object with respect to triplet ontology) that the tool should retrieve information for\n", + "- `start_date_range`: This is the lower bound of the date range that the tool should retrieve over\n", + "- `end_date_range`: This is the upper bound of the date range that the tool should retrieve over\n", + "- `predicate`: This is the name of the predicate that the tool will connect the `entity` to perform a retrieval\n", + "\n", + "We begin by loading the predicate definitions. We will use these to improve error tolerance in the tool, using a GPT-4.1-nano to normalize the predicate passed in the argument to a valid predicate name. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Redefine the predicate definitions as we will need them here\n", + "PREDICATE_DEFINITIONS = {\n", + " \"IS_A\": \"Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A electric-SUV'). Includes 'is' and 'was'.\",\n", + " \"HAS_A\": \"Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A electric-engine'). Includes 'has' and 'had'.\",\n", + " \"LOCATED_IN\": \"Specifies geographic or organisational containment or proximity (e.g., headquarters LOCATED_IN Berlin).\",\n", + " \"HOLDS_ROLE\": \"Connects a person to a formal office or title within an organisation (CEO, Chair, Director, etc.).\",\n", + " \"PRODUCES\": \"Indicates that an entity manufactures, builds, or creates a product, service, or infrastructure (includes scale-ups and component inclusion).\",\n", + " \"SELLS\": \"Marks a commercial seller-to-customer relationship for a product or service (markets, distributes, sells).\",\n", + " \"LAUNCHED\": \"Captures the official first release, shipment, or public start of a product, service, or initiative.\",\n", + " \"DEVELOPED\": \"Shows design, R&D, or innovation origin of a technology, product, or capability. Includes 'researched' or 'created'.\",\n", + " \"ADOPTED_BY\": \"Indicates that a technology or product has been taken up, deployed, or implemented by another entity.\",\n", + " \"INVESTS_IN\": \"Represents the flow of capital or resources from one entity into another (equity, funding rounds, strategic investment).\",\n", + " \"COLLABORATES_WITH\": \"Generic partnership, alliance, joint venture, or licensing relationship between entities.\",\n", + " \"SUPPLIES\": \"Captures vendor–client supply-chain links or dependencies (provides to, sources from).\",\n", + " \"HAS_REVENUE\": \"Associates an entity with a revenue amount or metric—actual, reported, or projected.\",\n", + " \"INCREASED\": \"Expresses an upward change in a metric (revenue, market share, output) relative to a prior period or baseline.\",\n", + " \"DECREASED\": \"Expresses a downward change in a metric relative to a prior period or baseline.\",\n", + " \"RESULTED_IN\": \"Captures a causal relationship where one event or factor leads to a specific outcome (positive or negative).\",\n", + " \"TARGETS\": \"Denotes a strategic objective, market segment, or customer group that an entity seeks to reach.\",\n", + " \"PART_OF\": \"Expresses hierarchical membership or subset relationships (division, subsidiary, managed by, belongs to).\",\n", + " \"DISCONTINUED\": \"Indicates official end-of-life, shutdown, or termination of a product, service, or relationship.\",\n", + " \"SECURED\": \"Marks the successful acquisition of funding, contracts, assets, or rights by an entity.\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define several helper functions for the factual QA tool.\n", + "\n", + "First is `_as_datetime`. This tool is used to coerce the arguments that define the date range to the correct datetime format.\n", + "\n", + "Next, we introduce two new data models: `PredicateMatching` and `PredicateMatchValidation`. `PredicateMatching` defines the output format for the GPT-4.1-nano call that matches the predicate in the function arguments to valid predicate names. `PredicateMatchValidation` then performs a secondary validation step to assert that this output from GPT-4.1-nano is a valid predicate name, leveraging a Pydantic field validator. This process helps to ensure that the tool runs smoothly and helps to eliminate some of the rare edge cases which would lead to an unsuccessful graph query." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Helper functions and models\n", + "from datetime import datetime\n", + "\n", + "from pydantic import BaseModel, Field, ValidationError, field_validator\n", + "\n", + "\n", + "def _as_datetime(ts) -> datetime | None:\n", + " \"\"\"Helper function to coerce possible timestamp formats to `datetime`.\"\"\" # noqa: D401\n", + " if ts is None:\n", + " return None\n", + " if isinstance(ts, datetime):\n", + " return ts\n", + " for fmt in (\"%Y-%m-%d\", \"%Y/%m/%d\", \"%Y-%m-%dT%H:%M:%S\"):\n", + " try:\n", + " return datetime.strptime(ts, fmt)\n", + " except ValueError:\n", + " continue\n", + " return None\n", + "\n", + "class PredicateMatching(BaseModel):\n", + " \"\"\"Class for structured outputs from model to coerce input to correct predicate format.\"\"\"\n", + " reasoning: str = Field(description=\"Use this space to reason about the correct predicate to match.\")\n", + " predicate_match: str = Field(description=\"The predicate that aligns with the dictionary.\")\n", + "\n", + "\n", + "class PredicateMatchValidation(BaseModel):\n", + " \"\"\"Class for validating the outputs from the model that tries to coerce predicate argument to a real predicate.\"\"\"\n", + " predicate: str\n", + "\n", + " @field_validator(\"predicate\")\n", + " @classmethod\n", + " def predicate_in_definitions(cls, v):\n", + " \"\"\"Return an error string if the predicate is not in PREDICATE_DEFINITIONS.\"\"\"\n", + " if v not in PREDICATE_DEFINITIONS:\n", + " return f\"Error: '{v}' is not a valid predicate. Must be one of: {list(PREDICATE_DEFINITIONS.keys())}\"\n", + " return v" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our factual QA tool can be decomposed into four steps.\n", + "
    \n", + "
  1. \n", + " Predicate coercion
    \n", + "

    \n", + " If the provided predicate is not found in the PREDICATE_DEFINITIONS dictionary, this step uses GPT-4.1-nano to coerce it into a valid predicate\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Entity location
    \n", + "

    \n", + " Performs fuzzy matching to identify the corresponding entity nodes within the networkx graph\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Edge collection
    \n", + "

    \n", + " Retrieves both inbound and outbound edges associated with the identified entity nodes\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Response formatting
    \n", + "

    \n", + " Structures the collected information into a well-formatted response that is easy for the orchestrator to consume\n", + "

    \n", + "
  8. \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async def factual_qa(\n", + " entity: str,\n", + " start_date_range: datetime,\n", + " end_date_range: datetime,\n", + " predicate: str\n", + ") -> str:\n", + " \"\"\"\n", + " Query the knowledge-graph for relationships attached to *entity* that match\n", + " *predicate* and fall within the requested time-window.\n", + "\n", + " The response is rendered as:\n", + "\n", + " Subject – PREDICATE – Object [Valid-From]\n", + " Statement: \"...\"\n", + " Type: FACT • Value: 42\n", + "\n", + " If no matches are found (or on error) a human-readable explanation is returned.\n", + " \"\"\"\n", + " # Checks that the date range passed is logical\n", + " if start_date_range > end_date_range:\n", + " return (\n", + " \"You used the `factual_qa` tool incorrectly last time. You provided a \"\n", + " \"`start_date_range` that was more recent than the `end_date_range`. \"\n", + " \"`end_date_range` must be ≥ `start_date_range`.\"\n", + " )\n", + "\n", + " # ---- (1) predicate coercion / validation -----------------------\n", + " if predicate not in PREDICATE_DEFINITIONS:\n", + " try:\n", + " predicate_definitions_str = \"\\n\".join(\n", + " f\"- {k}: {v}\" for k, v in PREDICATE_DEFINITIONS.items()\n", + " )\n", + " coercion_prompt = (\n", + " \"You are a helpful assistant that matches predicates to a dictionary of \"\n", + " \"predicate definitions. Return the best-matching predicate **and** your reasoning.\\n\\n\"\n", + " f\"Dictionary:\\n{predicate_definitions_str}\\n\\n\"\n", + " f\"Predicate to match: {predicate}\"\n", + " )\n", + "\n", + " completion = await client.beta.chat.completions.parse(\n", + " model=\"gpt-4.1-nano\",\n", + " messages=[{\"role\": \"user\", \"content\": coercion_prompt}],\n", + " response_format=PredicateMatching,\n", + " )\n", + " coerced_predicate = completion.choices[0].message.parsed.predicate_match\n", + "\n", + " # Validate against the enum / model we expect\n", + " _ = PredicateMatchValidation(predicate=coerced_predicate)\n", + " predicate = coerced_predicate\n", + " except ValidationError:\n", + " return (\n", + " \"You provided an invalid predicate. \"\n", + " f\"Valid predicates are: {list(PREDICATE_DEFINITIONS.keys())}\"\n", + " )\n", + " except Exception:\n", + " # Coercion failed – fall back to original predicate\n", + " pass\n", + "\n", + " predicate_upper = predicate.upper()\n", + " entity_lower = entity.lower()\n", + "\n", + " # ---- (2) locate the entity node by fuzzy match -----------------\n", + " try:\n", + " target_node = None\n", + " for node, data in G.nodes(data=True):\n", + " node_name = data.get(\"name\", str(node))\n", + " if entity_lower in node_name.lower() or node_name.lower() in entity_lower:\n", + " target_node = node\n", + " break\n", + " if target_node is None:\n", + " return f\"Entity '{entity}' not found in the knowledge graph.\"\n", + " except Exception as e:\n", + " return f\"Error locating entity '{entity}': {str(e)}\"\n", + "\n", + " # ---- (3) collect matching edges (outgoing + incoming) ----------\n", + " matching_edges = []\n", + "\n", + " def _edge_ok(edge_data):\n", + " \"\"\"Return True if edge is temporally valid in the requested window.\"\"\"\n", + " valid_at = _as_datetime(edge_data.get(\"valid_at\"))\n", + " invalid_at = _as_datetime(edge_data.get(\"invalid_at\"))\n", + " if valid_at and end_date_range < valid_at:\n", + " return False\n", + " if invalid_at and start_date_range >= invalid_at:\n", + " return False\n", + " return True\n", + "\n", + " # Outgoing\n", + " try:\n", + " for _, tgt, _, ed in G.out_edges(target_node, data=True, keys=True):\n", + " pred = ed.get(\"predicate\", \"\").upper()\n", + " if predicate_upper in pred and _edge_ok(ed):\n", + " matching_edges.append(\n", + " {\n", + " \"subject\": G.nodes[target_node].get(\"name\", str(target_node)),\n", + " \"predicate\": pred,\n", + " \"object\": G.nodes[tgt].get(\"name\", str(tgt)),\n", + " **ed,\n", + " }\n", + " )\n", + " except Exception:\n", + " pass\n", + "\n", + " # Incoming\n", + " try:\n", + " for src, _, _, ed in G.in_edges(target_node, data=True, keys=True):\n", + " pred = ed.get(\"predicate\", \"\").upper()\n", + " if predicate_upper in pred and _edge_ok(ed):\n", + " matching_edges.append(\n", + " {\n", + " \"subject\": G.nodes[src].get(\"name\", str(src)),\n", + " \"predicate\": pred,\n", + " \"object\": G.nodes[target_node].get(\"name\", str(target_node)),\n", + " **ed,\n", + " }\n", + " )\n", + " except Exception:\n", + " pass\n", + "\n", + " # ---- (4) format the response -----------------------------------\n", + " if not matching_edges:\n", + " s = start_date_range.strftime(\"%Y-%m-%d\")\n", + " e = end_date_range.strftime(\"%Y-%m-%d\")\n", + " return (\n", + " f\"No data found for '{entity}' with predicate '{predicate}' \"\n", + " f\"in the specified date range ({s} to {e}).\"\n", + " )\n", + "\n", + " lines = [\n", + " f\"Found {len(matching_edges)} relationship\"\n", + " f\"{'s' if len(matching_edges) != 1 else ''} for \"\n", + " f\"'{entity}' with predicate '{predicate}':\",\n", + " \"\"\n", + " ]\n", + "\n", + " for idx, edge in enumerate(matching_edges, 1):\n", + " value = edge.get(\"value\")\n", + " statement = edge.get(\"statement\")\n", + " statement_tp = edge.get(\"statement_type\")\n", + " valid_from = edge.get(\"valid_at\")\n", + "\n", + " # First line: Subject – PREDICATE – Object\n", + " triplet = f\"{edge['subject']} – {edge['predicate']} – {edge['object']}\"\n", + " if valid_from:\n", + " triplet += f\" [Valid-from: {valid_from}]\"\n", + " if value is not None:\n", + " triplet += f\" (Value: {value})\"\n", + " lines.append(f\"{idx}. {triplet}\")\n", + "\n", + " # Second line: Statement (truncated to 200 chars) + Type\n", + " if statement:\n", + " snippet = statement if len(statement) <= 200 else statement[:197] + \"…\"\n", + " lines.append(f' Statement: \"{snippet}\"')\n", + " if statement_tp:\n", + " lines.append(f\" Type: {statement_tp}\")\n", + "\n", + " lines.append(\"\") # spacer\n", + "\n", + " return \"\\n\".join(lines)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "result = await factual_qa(\n", + " entity=\"Amd\",\n", + " start_date_range=datetime(2016, 1, 1),\n", + " end_date_range=datetime(2020, 1, 1),\n", + " predicate=\"launched\"\n", + ")\n", + "print(result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "factual_qa_schema = {\n", + " \"type\": \"function\",\n", + " \"name\": \"factual_qa\",\n", + " \"description\": \"Queries the knowledge graph for time-bounded factual relationships involving a given entity and predicate.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"entity\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The name of the entity (e.g., company or organization) whose relationships should be retrieved.\"\n", + " },\n", + " \"start_date_range\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"date\",\n", + " \"description\": \"The start (inclusive) of the date range to filter factual relationships.\"\n", + " },\n", + " \"end_date_range\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"date\",\n", + " \"description\": \"The end (inclusive) of the date range to filter factual relationships.\"\n", + " },\n", + " \"predicate\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The type of relationship or topic to match against the knowledge graph (e.g., 'invested_in', 'founded').\"\n", + " }\n", + " },\n", + " \"required\": [\n", + " \"entity\",\n", + " \"start_date_range\",\n", + " \"end_date_range\",\n", + " \"predicate\"\n", + " ],\n", + " \"additionalProperties\": False\n", + " }\n", + "}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Trend analysis\n", + "The `trend_analysis` tool is designed to compare how specific metrics or signals evolve over time—often across multiple companies and/or topics. It exposes a structured interface that lets the agent specify the time window, subject set, and target metric, then delegates the comparison logic to a specialised agent for handling this analysis. In this case we utilised o4-mini with high reasoning effort as this is a 'harder' anaysis task.\n", + "\n", + "This allows us to build a highly focused and optimised pipeline for dealing with comparison-style tasks. Whilst this could be built into the core orchestrator itself, it's often more manageable to split this into specialised tools so they can be more easily swapped out or updated later without much concern for impact on the wider system." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import asyncio\n", + "from datetime import datetime\n", + "\n", + "\n", + "async def trend_analysis(\n", + " question: str,\n", + " companies: list[str],\n", + " start_date_range: datetime,\n", + " end_date_range: datetime,\n", + " topic_filter: list[str],\n", + ") -> str:\n", + " \"\"\"\n", + " Aggregate knowledge-graph facts for multiple companies and topics.\n", + "\n", + " For every (company, topic) pair, this calls `factual_qa` with the same\n", + " date window and returns one concatenated, human-readable string.\n", + "\n", + " Sections are separated by blank lines and prefixed with:\n", + " === · ===\n", + "\n", + " If `factual_qa` raises an exception, an ⚠️ line with the error message\n", + " is included in place of that section.\n", + " \"\"\"\n", + "\n", + " # -------- helper ------------------------------------------------------\n", + " async def _fetch(company: str, predicate: str) -> str:\n", + " return await factual_qa(\n", + " entity=company,\n", + " start_date_range=start_date_range,\n", + " end_date_range=end_date_range,\n", + " predicate=predicate,\n", + " )\n", + "\n", + " # -------- schedule every call (concurrently) --------------------------\n", + " pairs = [(c, p) for c in companies for p in topic_filter]\n", + " tasks = [asyncio.create_task(_fetch(c, p)) for c, p in pairs]\n", + "\n", + " # -------- gather results ---------------------------------------------\n", + " results = await asyncio.gather(*tasks, return_exceptions=True)\n", + "\n", + " # -------- assemble final string --------------------------------------\n", + " sections: list[str] = []\n", + " for (company, predicate), res in zip(pairs, results, strict=True):\n", + " header = f\"=== {company} · {predicate} ===\"\n", + " if isinstance(res, Exception):\n", + " sections.append(f\"{header}\\n⚠️ {type(res).__name__}: {res}\")\n", + " else:\n", + " sections.append(f\"{header}\\n{res}\")\n", + "\n", + " joined = \"\\n\\n\".join(sections)\n", + "\n", + " analysis_user_prompt = (\n", + " \"You are a helpful assistant\"\n", + " \"You specialise in providing in-depth analyses of financial data. \"\n", + " \"You are provided with a detailed dump of data from a knowledge graph that contains data that has been \"\n", + " \"extracted from companies' earnings call transcripts. \\n\"\n", + " \"Please summarise the trends from this, comparing how data has evolved over time in as much detail as possible. \"\n", + " \"Your answer should only contain information that is derived from the data provided, do not lean on your internal \"\n", + " \"knowledge. The knowledge graph contains data in the range 2016-2020. \"\n", + " \"The data provided is: \\n\"\n", + " f\"{joined}\\n\\n\"\n", + " f\"The user question you are summarizing for is: {question}\"\n", + " )\n", + "\n", + " analysis = await client.responses.create(\n", + " model=\"o4-mini\",\n", + " input=analysis_user_prompt,\n", + " reasoning={\n", + " \"effort\": \"high\",\n", + " \"summary\": \"auto\"\n", + " }\n", + " )\n", + "\n", + " return analysis.output_text\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "result = await trend_analysis(\n", + " question=\"How have AMD's research priorties changed over time?\",\n", + " companies=[\"AMD\"],\n", + " start_date_range=datetime(2016, 1, 1),\n", + " end_date_range=datetime(2020, 1, 1),\n", + " topic_filter=[\"launched\", \"researched\", \"developed\"]\n", + ")\n", + "print(result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "trend_analysis_schema = {\n", + " \"type\": \"function\",\n", + " \"name\": \"trend_analysis\",\n", + " \"description\": \"Aggregates and compares knowledge-graph facts for multiple companies and topics over a time range, returning a trend summary.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"question\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"A free-text question that guides the trend analysis (e.g., 'How did hiring trends differ between companies?').\"\n", + " },\n", + " \"companies\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\n", + " \"type\": \"string\"\n", + " },\n", + " \"description\": \"List of companies to compare (e.g., ['Apple', 'Microsoft']).\"\n", + " },\n", + " \"start_date_range\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"date\",\n", + " \"description\": \"The start (inclusive) of the date range to filter knowledge-graph facts.\"\n", + " },\n", + " \"end_date_range\": {\n", + " \"type\": \"string\",\n", + " \"format\": \"date\",\n", + " \"description\": \"The end (inclusive) of the date range to filter knowledge-graph facts.\"\n", + " },\n", + " \"topic_filter\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\n", + " \"type\": \"string\"\n", + " },\n", + " \"description\": \"List of predicates (topics) to query for each company (e.g., ['hired_executive', 'launched_product']).\"\n", + " }\n", + " },\n", + " \"required\": [\n", + " \"question\",\n", + " \"companies\",\n", + " \"start_date_range\",\n", + " \"end_date_range\",\n", + " \"topic_filter\"\n", + " ],\n", + " \"additionalProperties\": False\n", + " }\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tools = [\n", + " factual_qa_schema,\n", + " trend_analysis_schema\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.6. Retriever" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We design a simple retriever containing only a run method which encompasses the planning step and a while loop to execute each tool call that the orchestrator makes before returning a final answer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "\n", + "\n", + "class MultiStepRetriever:\n", + " \"\"\"Retrieve information in multiple steps using an OpenAI client.\"\"\"\n", + " def __init__(self, client: AsyncOpenAI):\n", + " self.client = client\n", + " # This helps us simplify our tool calling functionality in run()\n", + " self.function_map = {\n", + " \"factual_qa\": factual_qa,\n", + " \"trend_analysis\": trend_analysis\n", + " }\n", + "\n", + " async def run(self, user_question: str) -> tuple[str, dict]:\n", + " \"\"\"Run the multi-step retrieval process for a user question.\"\"\"\n", + " # -------------------------------------------------------\n", + " # Step 1: Generate initial plan\n", + " # -------------------------------------------------------\n", + "\n", + " initial_plan = await initial_planner(user_question=user_question)\n", + "\n", + " # -------------------------------------------------------\n", + " # Step 2: Make initial model call\n", + " # -------------------------------------------------------\n", + "\n", + " retriever_user_prompt = (\n", + " \"You are a helpful assistant. \"\n", + " \"You are provided with a user question: \\n\\n\"\n", + " f\"{user_question} \\n\\n\"\n", + " \"You have access to a set of tools. You may choose to use these tools to retrieve information to \"\n", + " \"help you answer the user's question. These tools allow you to query a knowledge graph that contains \"\n", + " \"information that has been extracted from companies' earnings call transcripts. \"\n", + " \"You should not use your own memory of these companies to answer questions. \"\n", + " \"When returning an answer to the user, all of your content must be derived from the content \"\n", + " \"you have retrieved from the tools used. This is to ensure that is is accurate, as the data in \"\n", + " \"this knowledge graph has been carefully check to ensure its accuracy. The knowledge graph contains \"\n", + " \"data spanning from 2016-2020. \\n\\n\"\n", + " \"You are provided with a plan of action as follows: \\n\"\n", + " f\"{initial_plan} \\n\\n\"\n", + " \"You should generally stick to this plan to help you answer the question, though you may deviate \"\n", + " \"from it should you deem it suitable. You may make more than one tool call.\"\n", + " )\n", + "\n", + " input_messages = [\n", + " {\"role\":\"user\", \"content\":retriever_user_prompt}\n", + " ]\n", + "\n", + " response = await self.client.responses.create(\n", + " model=\"gpt-4.1\",\n", + " input=input_messages,\n", + " tools=tools,\n", + " parallel_tool_calls=False,\n", + " )\n", + "\n", + " # -------------------------------------------------------\n", + " # Step 3: While loop until no more tool calls are made\n", + " # -------------------------------------------------------\n", + "\n", + " tools_used = {}\n", + "\n", + " while response.output[0].type == \"function_call\":\n", + " tool_call = response.output[0]\n", + " args = json.loads(tool_call.arguments)\n", + " name = tool_call.name\n", + "\n", + " if name in self.function_map:\n", + " tool_func = self.function_map[name]\n", + " tool_response_text = await tool_func(**args)\n", + "\n", + " input_messages.append(tool_call)\n", + " input_messages.append({\n", + " \"type\": \"function_call_output\",\n", + " \"call_id\": tool_call.call_id,\n", + " \"output\": tool_response_text\n", + " })\n", + "\n", + " tools_used[name] = [args, tool_response_text]\n", + "\n", + " response = await self.client.responses.create(\n", + " model=\"gpt-4.1\",\n", + " input=input_messages,\n", + " tools=tools,\n", + " parallel_tool_calls=False\n", + " )\n", + "\n", + " return response.output_text, tools_used" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now run our MultiStepRetriever. \n", + "\n", + "We observe that the answer returned is detailed, and includes a detailed walkthrough of how AMD's research priorities evolved from 2016 to 2020, with references to the underlying quotes that were used to derive these answers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "retriever = MultiStepRetriever(client=client)\n", + "\n", + "answer, tools_used = await retriever.run(user_question=\"How have AMD's research & development priorities changed over time?\")\n", + "\n", + "print(answer)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also inspect the tools used by our MultiStepRetriever to answer this query." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for key, value in tools_used.items():\n", + " if value:\n", + " print(f\"{key}: {value[0]}\")\n", + " else:\n", + " print(f\"{key}: [empty list]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[Appendix section A.5. \"Scaling and Productionizing our Retrieval Agent\"](./Appendix.ipynb) outlines some guidelines for how one could take the Retrieval Agent we've built up to production." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1.7. Selecting the right model for Multi-Step Knowledge-Graph Retrieval\n", + "\n", + "Multi-step retrieval agents need strong reasoning to hop through entities and relations, verify answers, and decide what to do next. Latency still matters to users, but usually *less* than raw accuracy. Hence, this is one of the domains where OpenAI's o3 and o4-mini reasoning models shine.\n", + "\n", + "Once again, for development we recommend a “start big, then specialise” ladder:\n", + "\n", + "1. **Start with o3** – ensure your retrieval logic (chaining, re-ranking, fallback prompts) is sound. o3 may also be the best choice for production if your retrieval system is working with particularly complex data such as pharmaceutical or legal data. You can test this by looking at the severity of performance degradation with smaller models. If the drop off in performance is large, consider sticking with o3\n", + "2. **Move to o4-mini**\n", + " * **Prompt enhancement** - optimise your prompts to push the performance of the o4-mini system as close to that of the full o3 model\n", + " * **Reinforcement fine-tuning (RFT)** - [OpenAI's Reinforcement Fine-Tuning](https://platform.openai.com/docs/guides/reinforcement-fine-tuning) offering enables you to fine-tune OpenAI's o-series models to improve their performance on hard reasoning tasks. With as little as ~50 golden answers you can leverage the power of reinforcement learning to fine-tune o4-mini which can help it come close or even exceed the base o3's performance on the same task\n", + "4. **Fallback to GPT 4.1 when latency dominates** – for cases when latency is particularly important or you've tuned your prompts well enough that performance drop-off is minimal, consider moving to the GPT 4.1 series\n", + "\n", + "| Model | Relative cost | Relative latency | Intelligence | Ideal role in workflow |\n", + "| ----------- | ------------- | ---------------- | - | ---------------------------------------------------- |\n", + "| *o3* | ★★★ | ★★ | ★★★ *(highest)* | Initial prototyping, working with complex data, golden dataset generation |\n", + "| *o4-mini* | ★★ | ★ | ★★ | Main production engine, can push performance with RFT |\n", + "| *GPT 4.1 series* | ★ *(lowest)* | ★ *(fastest)* | ★ | Latency-critical or large-scale background scoring |\n", + "\n", + "#### Why is Reinforcement Fine-Tuning powerful for long horizon, multi-step retrieval tasks?\n", + "RFT has a number of benefits over [Supervised Fine-Tuning](https://platform.openai.com/docs/guides/supervised-fine-tuning) or [Direct Preference Optimization](https://platform.openai.com/docs/guides/direct-preference-optimization) for this use case. \n", + "\n", + "Firstly, reinforcement fine-tuning can be performed with a far small number of examples, sometimes requiring as little as 50 training examples.\n", + "\n", + "Additionally, RFT eliminates the necessity of providing labeled step-by-step trajectories. By supplying only the final correct answer, the system learns implicitly how to navigate the knowledge graph effectively. This feature is particularly valuable in real-world contexts where end users typically face time constraints and may struggle to curate the extensive sets of labeled examples (often numbering in the hundreds or thousands) required by traditional SFT methods." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Evaluating your Retrieval System" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
    \n", + "\n", + " \n", + "
  1. \n", + " Human-annotated “Golden Answers”
    \n", + "

    \n", + " The traditional baseline for retrieval evaluation: a curated set of query → gold answer pairs,\n", + " vetted by domain experts. \n", + " Metrics such as precision@k or recall@k are computed by matching retrieved passages\n", + " against these gold spans.\n", + "

    \n", + "

    \n", + " Pros: Highest reliability, clear pass/fail thresholds, excellent for regression testing
    \n", + " Cons: Expensive to create, slow to update, narrow coverage (quickly becomes stale\n", + " when the knowledge base evolves)\n", + "

    \n", + "
  2. \n", + "\n", + " \n", + "
  3. \n", + " Synthetically generated answers
    \n", + "

    \n", + " Use an LLM to generate reference answers or judgments, enabling rapid, low-cost expansion\n", + " of the evaluation set. Three common pathways:\n", + "

    \n", + "
      \n", + "
    • LLM-as-judge: Feed the query, retrieved passages, and candidate answer to a\n", + " judge model that outputs a graded score or e.g., “yes / partial / no”
    • \n", + "
    • Tool-use pathway: For different question types you can either manually or synthetically generate the 'correct' tool-use pathways and score responses against this
    • \n", + "
    \n", + "

    \n", + " Pros: Fast, infinitely scalable, easier to keep pace with a dynamic application specification
    \n", + " Cons: Judgement quality is typically of lower quality than expert human-annotated solutions\n", + "

    \n", + "
  4. \n", + "\n", + " \n", + "
  5. \n", + " Human feedback
    \n", + "

    \n", + " Collect ratings directly from end-users or domain reviewers (thumbs-up/down, five-star scores, pairwise\n", + " comparisons). Can be in-the-loop (model trains continuously on live feedback) or\n", + " offline (periodic eval rounds).\n", + "

    \n", + "

    \n", + " Pros: Captures real-world utility, surfaces edge-cases synthetic tests miss
    \n", + " Cons: Noisy and subjective; requires thoughtful aggregation (e.g., ELO\n", + " scoring), risk of user biases becoming incorporated in the model\n", + "

    \n", + "
  6. \n", + "\n", + "
\n", + "\n", + "### Which is the best evaluation method?\n", + "There is no single best method. However, a workflow that we have found that works well on projects is:\n", + "1. Start building and iterate synthetic evaluations\n", + "2. Test with your golden human set of evaluations before deployment\n", + "3. Make it easy for end-users to annotate good and bad answers, and use this feedback to continue to develop your application over time\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5. Prototype to Production\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Transitioning your knowledge graph system from a proof-of-concept to a robust, production-grade pipeline requires you to address several key points:\n", + "- **Storing and retrieving high-volume graph data**\n", + "- **Mananging and pruning datasets**\n", + "- **Implementing concurrency in the ingestion pipeline**\n", + "- **Minimizing token cost**\n", + "- **Scaling retrieval agents**\n", + "- **Safeguards**\n", + "\n", + "This section serves as a walkthrough of key considerations and best practices to ensure your temporally-aware knowledge graph can operate reliably in a real-world environment. A more detailed [Prototype to Production Appendix section](./Appendix.ipynb) can be found in the repository for this cookbook.\n", + "\n", + "
    \n", + "\n", + "
  1. \n", + " Storing and Retrieving High-Volume Graph Data
    \n", + "

    \n", + " Appendix section A.1. \"Storing and Retrieving High-Volume Graph Data\"\n", + "

    \n", + "

    \n", + " Manage scalability through thoughtful schema design, sharding, and partitioning. Clearly define entities, relationships, and ensure schema flexibility for future evolution. Use high-cardinality fields like timestamps for efficient data partitioning.\n", + "

    \n", + "
  2. \n", + "\n", + "
  3. \n", + " Temporal Validity & Versioning
    \n", + "

    \n", + " Appendix section A.1.2. \"Temporal Validity & Versioning\"\n", + "

    \n", + "

    \n", + " Include temporal markers (valid_from, valid_to) for each statement. Maintain historical records non-destructively by marking outdated facts as inactive and indexing temporal fields for efficient queries.\n", + "

    \n", + "
  4. \n", + "\n", + "
  5. \n", + " Indexing & Semantic Search
    \n", + "

    \n", + " Appendix section A.1.3. \"Indexing & Semantic Search\"\n", + "

    \n", + "

    \n", + " Utilize B-tree indexes for efficient temporal querying. Leverage PostgreSQL’s pgvector extension for semantic search with approximate nearest-neighbor algorithms like ivfflat, ivfpq, and hnsw to optimize query speed and memory usage.\n", + "

    \n", + "
  6. \n", + "\n", + "
  7. \n", + " Managing and Pruning Datasets
    \n", + "

    \n", + " Appendix section A.2. \"Managing and Pruning Datasets\"\n", + "

    \n", + "

    \n", + " Establish TTL and archival policies for data retention based on source reliability and relevance. Implement automated archival tasks and intelligent pruning with relevance scoring to optimize graph size.\n", + "

    \n", + "
  8. \n", + "\n", + "
  9. \n", + " Concurrent Ingestion Pipeline
    \n", + "

    \n", + " Appendix section A.3. \"Implementing Concurrency in the Ingestion Pipeline\"\n", + "

    \n", + "

    \n", + " Implement batch processing with separate, scalable pipeline stages for chunking, extraction, invalidation, and entity resolution. Optimize throughput and parallelism to manage ingestion bottlenecks.\n", + "

    \n", + "
  10. \n", + "\n", + "
  11. \n", + " Minimizing Token Costs
    \n", + "

    \n", + " Appendix section A.4. \"Minimizing Token Cost\"\n", + "

    \n", + "

    \n", + " Use caching strategies to avoid redundant API calls. Adopt service tiers like OpenAI's flex option to reduce costs and replace expensive model queries with efficient embedding and nearest-neighbor search.\n", + "

    \n", + "
  12. \n", + "\n", + "
  13. \n", + " Scaling Retrieval Agents
    \n", + "

    \n", + " Appendix section A.5. \"Scaling and Productionizing our Retrieval Agent\"\n", + "

    \n", + "

    \n", + " Use a controller and traversal workers architecture to handle multi-hop queries. Implement parallel subgraph extraction, dynamic traversal with chained reasoning, caching, and autoscaling for high performance.\n", + "

    \n", + "
  14. \n", + "\n", + "
  15. \n", + " Safeguards & Verification
    \n", + "

    \n", + " Appendix section A.6. \"Safeguards\"\n", + "

    \n", + "

    \n", + " Deploy multi-layered output verification, structured logging, and monitoring to ensure data integrity and operational reliability. Track critical metrics and perform regular audits.\n", + "

    \n", + "
  16. \n", + "\n", + "
  17. \n", + " Prompt Optimization
    \n", + "

    \n", + " Appendix section A.7. \"Prompt Optimization\"\n", + "

    \n", + "

    \n", + " Optimize LLM interactions with personas, few-shot prompts, chain-of-thought methods, dynamic context management, and automated A/B testing of prompt variations for continuous performance improvement.\n", + "

    \n", + "
  18. \n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Closing thoughts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This cookbook equips you with foundational techniques and concrete workflows to effectively build and deploy temporally-aware knowledge graphs coupled with powerful multi-hop retrieval capabilities. \n", + "\n", + "Whether you're starting from a prototype or refining a production system, leveraging structured graph data with OpenAI models can unlock richer, more nuanced interactions with your data. As these technologies evolve rapidly, look out for updates in OpenAI's model lineup and keep experimenting with indexing methods and retrieval strategies to continuously enhance your knowledge-centric AI solutions.\n", + "\n", + "You can easily adapt the frameworks presented in this cookbook to your respective domain by customizing the provided ontologies and refining the extraction prompts. Swapping in Neo4j as the graph database takes you well on the way to an MVP level application, providing data persistence out of the box. It also opens the door to levelling up your retriever's tools with Cypher queries. \n", + "\n", + "Iterively develop your solution by making use of synthetic evals, and then test your solution against \"golden\" expert-human annotated solutions. Once in production, you can quickly iterate from human feedback to push your application to new heights. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contributors\n", + "This cookbook serves as a joint collaboration between OpenAI and [Tomoro](https://tomoro.ai/).\n", + "\n", + "- [Alex Heald](https://www.linkedin.com/in/alexandra-heald/)\n", + "- [Douglas Adams](https://www.linkedin.com/in/douglas-adams99/)\n", + "- [Rishabh Sagar](https://www.linkedin.com/in/rish-sagar/)\n", + "- [Danny Wigg](https://www.linkedin.com/in/dannywigg/)\n", + "- [Shikhar Kwatra](https://www.linkedin.com/in/shikharkwatra/)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_0.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_0.pkl new file mode 100644 index 0000000000..ec45c96265 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_0.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_1.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_1.pkl new file mode 100644 index 0000000000..81ae4965d4 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_1.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_10.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_10.pkl new file mode 100644 index 0000000000..db914779ed Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_10.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_11.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_11.pkl new file mode 100644 index 0000000000..653e08879f Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_11.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_12.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_12.pkl new file mode 100644 index 0000000000..04a4edad06 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_12.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_13.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_13.pkl new file mode 100644 index 0000000000..cb3cd27f44 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_13.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_14.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_14.pkl new file mode 100644 index 0000000000..92d5e2d38b Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_14.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_15.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_15.pkl new file mode 100644 index 0000000000..0a6785e86b Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_15.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_16.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_16.pkl new file mode 100644 index 0000000000..2deddeb338 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_16.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_17.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_17.pkl new file mode 100644 index 0000000000..27cd23117a Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_17.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_18.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_18.pkl new file mode 100644 index 0000000000..07238dbac9 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_18.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_19.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_19.pkl new file mode 100644 index 0000000000..d0bdb14241 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_19.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_2.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_2.pkl new file mode 100644 index 0000000000..d1419389a0 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_2.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_20.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_20.pkl new file mode 100644 index 0000000000..75b227b5c9 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_20.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_21.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_21.pkl new file mode 100644 index 0000000000..e5343f80f2 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_21.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_22.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_22.pkl new file mode 100644 index 0000000000..0b11f748cd Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_22.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_23.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_23.pkl new file mode 100644 index 0000000000..06655de06d Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_23.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_24.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_24.pkl new file mode 100644 index 0000000000..3da6afaded Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_24.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_25.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_25.pkl new file mode 100644 index 0000000000..3eda605459 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_25.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_26.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_26.pkl new file mode 100644 index 0000000000..969afc54b6 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_26.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_27.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_27.pkl new file mode 100644 index 0000000000..49f09c1bf1 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_27.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_28.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_28.pkl new file mode 100644 index 0000000000..d9a025531a Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_28.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_29.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_29.pkl new file mode 100644 index 0000000000..52c1a35438 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_29.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_3.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_3.pkl new file mode 100644 index 0000000000..f003305eb1 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_3.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_30.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_30.pkl new file mode 100644 index 0000000000..7306a6fdee Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_30.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_31.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_31.pkl new file mode 100644 index 0000000000..0ec0e243a9 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_31.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_32.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_32.pkl new file mode 100644 index 0000000000..d003a45c86 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_32.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_4.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_4.pkl new file mode 100644 index 0000000000..7b842afb64 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_4.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_5.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_5.pkl new file mode 100644 index 0000000000..7d4ae96b34 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_5.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_6.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_6.pkl new file mode 100644 index 0000000000..65e9bb6c67 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_6.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_7.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_7.pkl new file mode 100644 index 0000000000..73601b0b2e Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_7.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_8.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_8.pkl new file mode 100644 index 0000000000..e53a277da5 Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_8.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_9.pkl b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_9.pkl new file mode 100644 index 0000000000..b66c40e3da Binary files /dev/null and b/examples/partners/temporal_agents_with_knowledge_graphs/transcripts/transcript_9.pkl differ diff --git a/examples/partners/temporal_agents_with_knowledge_graphs/utils.py b/examples/partners/temporal_agents_with_knowledge_graphs/utils.py new file mode 100644 index 0000000000..fa879da301 --- /dev/null +++ b/examples/partners/temporal_agents_with_knowledge_graphs/utils.py @@ -0,0 +1,47 @@ +import re +from datetime import UTC, datetime + +from dateutil.parser import parse + + +def parse_date_str(value: str | datetime | None) -> datetime | None: + """Parse a date string into a datetime object. + + If the value is a 4-digit year, it returns January 1 of that year in UTC. + Otherwise, it attempts to parse the date string using dateutil.parser.parse. + If the resulting datetime has no timezone, it defaults to UTC. + """ + if not value: + return None + + if isinstance(value, datetime): + return value + + try: + # Year Handling + if re.fullmatch(r"\d{4}", value.strip()): + year = int(value.strip()) + return datetime(year, 1, 1, tzinfo=UTC) + + # General Handing + dt: datetime = parse(value) + if dt.tzinfo is None: + dt = dt.replace(tzinfo=UTC) + return dt + + except Exception: + return None + + +def safe_iso(dt: datetime | None) -> str | None: + """Return the ISO format of a datetime object. + + If the datetime is None, it returns None. + """ + if isinstance(dt, str): + dt = parse_date_str(dt) + + if isinstance(dt, datetime): + return dt.isoformat() + + return None diff --git a/images/01_benefit_of_temporal_kb.jpg b/images/01_benefit_of_temporal_kb.jpg new file mode 100644 index 0000000000..aeb10bb27e Binary files /dev/null and b/images/01_benefit_of_temporal_kb.jpg differ diff --git a/images/02_question_types_for_temporal_kbs.jpg b/images/02_question_types_for_temporal_kbs.jpg new file mode 100644 index 0000000000..9f1c4b1e6d Binary files /dev/null and b/images/02_question_types_for_temporal_kbs.jpg differ diff --git a/images/03_statement_invalidation.png b/images/03_statement_invalidation.png new file mode 100644 index 0000000000..a4b76cebc1 Binary files /dev/null and b/images/03_statement_invalidation.png differ diff --git a/images/04_temporal_agent.png b/images/04_temporal_agent.png new file mode 100644 index 0000000000..8f8c68a3a0 Binary files /dev/null and b/images/04_temporal_agent.png differ diff --git a/images/05_temporal_agent_arch.png b/images/05_temporal_agent_arch.png new file mode 100644 index 0000000000..a8840ea538 Binary files /dev/null and b/images/05_temporal_agent_arch.png differ diff --git a/images/06_temporal_agent_chunker.png b/images/06_temporal_agent_chunker.png new file mode 100644 index 0000000000..f1322e61f0 Binary files /dev/null and b/images/06_temporal_agent_chunker.png differ diff --git a/images/07_temporal_agent_class.png b/images/07_temporal_agent_class.png new file mode 100644 index 0000000000..07edbcdfe6 Binary files /dev/null and b/images/07_temporal_agent_class.png differ diff --git a/images/08_invalidation_agent.png b/images/08_invalidation_agent.png new file mode 100644 index 0000000000..fed7b299b5 Binary files /dev/null and b/images/08_invalidation_agent.png differ diff --git a/images/09_full_pipeline.png b/images/09_full_pipeline.png new file mode 100644 index 0000000000..6eff3ef2e9 Binary files /dev/null and b/images/09_full_pipeline.png differ diff --git a/images/10_multi_step_retrieval.png b/images/10_multi_step_retrieval.png new file mode 100644 index 0000000000..5ac38e332e Binary files /dev/null and b/images/10_multi_step_retrieval.png differ diff --git a/images/11_retrieval_agent.png b/images/11_retrieval_agent.png new file mode 100644 index 0000000000..99126f6255 Binary files /dev/null and b/images/11_retrieval_agent.png differ diff --git a/images/12_spectrum_of_tools.png b/images/12_spectrum_of_tools.png new file mode 100644 index 0000000000..af73cb5c73 Binary files /dev/null and b/images/12_spectrum_of_tools.png differ diff --git a/registry.yaml b/registry.yaml index 862aa2a9de..45cca01721 100644 --- a/registry.yaml +++ b/registry.yaml @@ -4,6 +4,21 @@ # should build pages for, and indicates metadata such as tags, creation date and # authors for each page. +- title: Temporal Agents with Knowledge Graphs + path: examples/partners/temporal_agents_with_knowledge_graphs/temporal_agents_with_knowledge_graphs.ipynb + date: 2025-07-22 + authors: + - shikhar-cyber + - dwigg-openai + - Alex Heald + - Douglas Adams + - Rishabh Sagar + tags: + - knowledge-graphs + - temporal-agents + - RAG + + - title: Using Evals API on Image Inputs path: examples/evaluation/use-cases/EvalsAPI_Image_Inputs.ipynb date: 2025-07-15