@@ -42,14 +42,16 @@ class DictNetCaffeImpl: public DictNet{
42
42
}else {// Assuming values are at the desired [0,1] range
43
43
tmpInput.convertTo (output, CV_32FC1);
44
44
}
45
- }else if (input.channels ()==1 ){
46
- if (input.depth ()==CV_8U){
47
- input.convertTo (output, CV_32FC1,1 /255.0 );
48
- }else {// Assuming values are at the desired [0,1] range
49
- input.convertTo (output, CV_32FC1);
50
- }
51
45
}else {
52
- CV_Error (Error::StsError," Expecting images with either 1 or 3 channels" );
46
+ if (input.channels ()==1 ){
47
+ if (input.depth ()==CV_8U){
48
+ input.convertTo (output, CV_32FC1,1 /255.0 );
49
+ }else {// Assuming values are at the desired [0,1] range
50
+ input.convertTo (output, CV_32FC1);
51
+ }
52
+ }else {
53
+ CV_Error (Error::StsError," Expecting images with either 1 or 3 channels" );
54
+ }
53
55
}
54
56
resize (output,output,this ->inputGeometry_ );
55
57
Scalar dev,mean;
@@ -150,8 +152,8 @@ class DictNetCaffeImpl: public DictNet{
150
152
Mat outputMat = classProbabilities.getMat ();
151
153
for (size_t imgNum=0 ;imgNum<allImageVector.size ();imgNum+=minibatchSize){
152
154
size_t rangeEnd=imgNum+std::min<size_t >(allImageVector.size ()-imgNum,minibatchSize);
153
- std::vector<Mat>::const_iterator from=allImageVector.begin ()+imgNum;
154
- std::vector<Mat>::const_iterator to=allImageVector.begin ()+rangeEnd;
155
+ std::vector<Mat>::const_iterator from=std::vector<Mat>:: const_iterator ( allImageVector.begin ()+imgNum) ;
156
+ std::vector<Mat>::const_iterator to=std::vector<Mat>:: const_iterator ( allImageVector.begin ()+rangeEnd) ;
155
157
std::vector<Mat> minibatchInput (from,to);
156
158
classifyMiniBatch (minibatchInput,outputMat.rowRange (imgNum,rangeEnd));
157
159
}
0 commit comments