Skip to content

Commit de21064

Browse files
authored
Merge pull request #4005 from vrabaud:nanoflann
Bump nanoflann from 1.3.2 to 1.7.1
2 parents a7631fc + af714b9 commit de21064

File tree

4 files changed

+2486
-1769
lines changed

4 files changed

+2486
-1769
lines changed

modules/alphamat/src/3rdparty/KDTreeVectorOfVectorsAdaptor.h

Lines changed: 98 additions & 81 deletions
Original file line numberDiff line numberDiff line change
@@ -29,89 +29,106 @@
2929
#pragma once
3030

3131
#include "nanoflann.hpp"
32-
3332
#include <vector>
3433

35-
// ===== This example shows how to use nanoflann with these types of containers: =======
36-
//typedef std::vector<std::vector<double> > my_vector_of_vectors_t;
37-
//typedef std::vector<Eigen::VectorXd> my_vector_of_vectors_t; // This requires #include <Eigen/Dense>
38-
// =====================================================================================
39-
40-
41-
/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage.
42-
* The i'th vector represents a point in the state space.
43-
*
44-
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations.
45-
* \tparam num_t The type of the point coordinates (typically, double or float).
46-
* \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
47-
* \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int)
48-
*/
49-
template <class VectorOfVectorsType, typename num_t = double, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = size_t>
34+
// ===== This example shows how to use nanoflann with these types of containers:
35+
// using my_vector_of_vectors_t = std::vector<std::vector<double> > ;
36+
//
37+
// The next one requires #include <Eigen/Dense>
38+
// using my_vector_of_vectors_t = std::vector<Eigen::VectorXd> ;
39+
// =============================================================================
40+
41+
/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the
42+
* storage. The i'th vector represents a point in the state space.
43+
*
44+
* \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality
45+
* for the points in the data set, allowing more compiler optimizations.
46+
* \tparam num_t The type of the point coordinates (typ. double or float).
47+
* \tparam Distance The distance metric to use: nanoflann::metric_L1,
48+
* nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
49+
* \tparam IndexType The type for indices in the KD-tree index
50+
* (typically, size_t of int)
51+
*/
52+
template <
53+
class VectorOfVectorsType, typename num_t = double, int DIM = -1,
54+
class Distance = nanoflann::metric_L2, typename IndexType = size_t>
5055
struct KDTreeVectorOfVectorsAdaptor
5156
{
52-
typedef KDTreeVectorOfVectorsAdaptor<VectorOfVectorsType, num_t, DIM,Distance> self_t;
53-
typedef typename Distance::template traits<num_t, self_t>::distance_t metric_t;
54-
typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, IndexType> index_t;
55-
56-
index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index.
57-
58-
/// Constructor: takes a const ref to the vector of vectors object with the data points
59-
KDTreeVectorOfVectorsAdaptor(const size_t /* dimensionality */, const VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat)
60-
{
61-
assert(mat.size() != 0 && mat[0].size() != 0);
62-
const size_t dims = mat[0].size();
63-
if (DIM>0 && static_cast<int>(dims) != DIM)
64-
throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument");
65-
index = new index_t( static_cast<int>(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) );
66-
index->buildIndex();
67-
}
68-
69-
~KDTreeVectorOfVectorsAdaptor() {
70-
delete index;
71-
}
72-
73-
const VectorOfVectorsType &m_data;
74-
75-
/** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]).
76-
* Note that this is a short-cut method for index->findNeighbors().
77-
* The user can also call index->... methods as desired.
78-
* \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.
79-
*/
80-
//inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const
81-
inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const
82-
{
83-
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
84-
resultSet.init(out_indices, out_distances_sq);
85-
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
86-
}
87-
88-
/** @name Interface expected by KDTreeSingleIndexAdaptor
89-
* @{ */
90-
91-
const self_t & derived() const {
92-
return *this;
93-
}
94-
self_t & derived() {
95-
return *this;
96-
}
97-
98-
// Must return the number of data points
99-
inline size_t kdtree_get_point_count() const {
100-
return m_data.size();
101-
}
102-
103-
// Returns the dim'th component of the idx'th point in the class:
104-
inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const {
105-
return m_data[idx][dim];
106-
}
107-
108-
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
109-
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
110-
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
111-
template <class BBOX>
112-
bool kdtree_get_bbox(BBOX & /*bb*/) const {
113-
return false;
114-
}
115-
116-
/** @} */
57+
using self_t = KDTreeVectorOfVectorsAdaptor<
58+
VectorOfVectorsType, num_t, DIM, Distance, IndexType>;
59+
using metric_t =
60+
typename Distance::template traits<num_t, self_t>::distance_t;
61+
using index_t =
62+
nanoflann::KDTreeSingleIndexAdaptor<metric_t, self_t, DIM, IndexType>;
63+
64+
/** The kd-tree index for the user to call its methods as usual with any
65+
* other FLANN index */
66+
index_t* index = nullptr;
67+
68+
/// Constructor: takes a const ref to the vector of vectors object with the
69+
/// data points
70+
KDTreeVectorOfVectorsAdaptor(
71+
const size_t /* dimensionality */, const VectorOfVectorsType& mat,
72+
const int leaf_max_size = 10, const unsigned int n_thread_build = 1)
73+
: m_data(mat)
74+
{
75+
assert(mat.size() != 0 && mat[0].size() != 0);
76+
const size_t dims = mat[0].size();
77+
if (DIM > 0 && static_cast<int>(dims) != DIM)
78+
throw std::runtime_error(
79+
"Data set dimensionality does not match the 'DIM' template "
80+
"argument");
81+
index = new index_t(
82+
static_cast<int>(dims), *this /* adaptor */,
83+
nanoflann::KDTreeSingleIndexAdaptorParams(
84+
leaf_max_size, nanoflann::KDTreeSingleIndexAdaptorFlags::None,
85+
n_thread_build));
86+
}
87+
88+
~KDTreeVectorOfVectorsAdaptor() { delete index; }
89+
90+
const VectorOfVectorsType& m_data;
91+
92+
/** Query for the \a num_closest closest points to a given point
93+
* (entered as query_point[0:dim-1]).
94+
* Note that this is a short-cut method for index->findNeighbors().
95+
* The user can also call index->... methods as desired.
96+
*/
97+
inline void query(
98+
const num_t* query_point, const size_t num_closest,
99+
IndexType* out_indices, num_t* out_distances_sq) const
100+
{
101+
nanoflann::KNNResultSet<num_t, IndexType> resultSet(num_closest);
102+
resultSet.init(out_indices, out_distances_sq);
103+
index->findNeighbors(resultSet, query_point);
104+
}
105+
106+
/** @name Interface expected by KDTreeSingleIndexAdaptor
107+
* @{ */
108+
109+
const self_t& derived() const { return *this; }
110+
self_t& derived() { return *this; }
111+
112+
// Must return the number of data points
113+
inline size_t kdtree_get_point_count() const { return m_data.size(); }
114+
115+
// Returns the dim'th component of the idx'th point in the class:
116+
inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const
117+
{
118+
return m_data[idx][dim];
119+
}
120+
121+
// Optional bounding-box computation: return false to default to a standard
122+
// bbox computation loop.
123+
// Return true if the BBOX was already computed by the class and returned
124+
// in "bb" so it can be avoided to redo it again. Look at bb.size() to
125+
// find out the expected dimensionality (e.g. 2 or 3 for point clouds)
126+
template <class BBOX>
127+
bool kdtree_get_bbox(BBOX& /*bb*/) const
128+
{
129+
return false;
130+
}
131+
132+
/** @} */
133+
117134
}; // end of KDTreeVectorOfVectorsAdaptor

0 commit comments

Comments
 (0)