@@ -753,16 +753,68 @@ mean median min input size model
753
753
1169.59 1415.29 774.09 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2022oct_int8.onnx']
754
754
```
755
755
756
- <!--
757
-
758
756
### Khadas VIM4
759
757
760
- CPU:
758
+ Board specs: https://www.khadas.com/vim4, https://dl.khadas.com/products/vim4/specs/vim4-specs.pdf
759
+
760
+ SoC specs:
761
+ - CPU: Amlogic A311D2, 2.2GHz Quad core ARM Cortex-A73 and 2.0GHz Quad core Cortex-A53 CPU, with 32-bit STM32G031K6 microprocessor.
762
+ - GPU: Mali G52MP8(8EE) 800Mhz GPU.
763
+ - NPU: 3.2 TOPS Build-in NPU (Not supported by dnn yet)
761
764
765
+ CPU:
766
+ <!-- config wechat is excluded due to it needs building with opencv_contrib -->
762
767
```
763
- 67.65 67.84 66.39 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
768
+ $ python3 benchmark.py --all --cfg_exclude wechat
769
+ Benchmarking ...
770
+ backend=cv.dnn.DNN_BACKEND_OPENCV
771
+ target=cv.dnn.DNN_TARGET_CPU
772
+ mean median min input size model
773
+ 4.27 4.33 4.17 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar.onnx']
774
+ 4.58 4.58 4.17 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar_int8.onnx']
775
+ 39.94 39.98 39.42 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec.onnx']
776
+ 49.33 50.59 39.42 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec_int8.onnx']
777
+ 17.28 17.63 16.93 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july.onnx']
778
+ 22.78 23.27 16.93 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
779
+ 25.83 25.46 25.30 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb.onnx']
780
+ 28.23 28.87 25.30 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb_int8.onnx']
781
+ 47.68 47.72 45.65 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar.onnx']
782
+ 49.25 49.45 45.65 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar_int8.onnx']
783
+ 38.73 38.18 37.89 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr.onnx']
784
+ 33.68 33.99 29.16 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr.onnx']
785
+ 36.22 29.50 29.16 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr_int8.onnx']
786
+ 36.12 35.69 29.16 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr_int8.onnx']
787
+ 219.81 220.21 215.97 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan.onnx']
788
+ 224.03 222.27 215.97 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan_int8.onnx']
789
+ 81.46 84.07 77.95 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar.onnx']
790
+ 81.46 83.07 77.95 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar_int8.onnx']
791
+ 136.14 136.12 128.61 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov.onnx']
792
+ 136.57 136.30 128.61 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov_int8.onnx']
793
+ 805.54 805.23 795.82 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov.onnx']
794
+ 768.87 766.00 727.12 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov_int8.onnx']
795
+ 29.47 29.39 28.49 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
796
+ 54.45 54.76 53.45 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb.onnx']
797
+ 60.84 61.07 53.45 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb_int8.onnx']
798
+ 57.22 57.22 56.14 [ 224, 224] MPPersonDet with [ 'person_detection_mediapipe_2023mar.onnx']
799
+ 218.22 224.50 215.54 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov.onnx']
800
+ 199.53 203.24 179.85 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov_int8.onnx']
801
+ 53.06 54.61 51.82 [ 256, 256] MPPose with [ 'pose_estimation_mediapipe_2023mar.onnx']
802
+ 148.82 149.62 146.73 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may.onnx']
803
+ 148.91 148.99 146.59 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may.onnx']
804
+ 175.33 150.60 146.59 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may_int8.onnx']
805
+ 194.12 201.48 146.59 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may_int8.onnx']
806
+ 133.27 132.90 132.54 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2021sep.onnx']
807
+ 135.27 135.12 132.54 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov.onnx']
808
+ 127.49 137.43 113.82 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2021sep.onnx']
809
+ 129.18 125.95 113.82 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2023feb_fp16.onnx']
810
+ 125.82 114.44 113.82 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2023feb_fp16.onnx']
811
+ 127.63 124.81 113.82 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2022oct_int8.onnx']
812
+ 129.24 134.50 113.82 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov_int8.onnx']
813
+ 126.64 125.09 110.45 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2022oct_int8.onnx']
764
814
```
765
815
816
+ <!--
817
+
766
818
### NVIDIA Jetson Orin Nano
767
819
768
820
CPU:
0 commit comments