|
| 1 | +import os |
| 2 | +import json |
| 3 | +import numpy as np |
| 4 | +import cv2 as cv |
| 5 | +from colorama import Style, Fore |
| 6 | +from tqdm import tqdm |
| 7 | +from multiprocessing import Pool |
| 8 | + |
| 9 | +def overlap_ratio(rect1, rect2): |
| 10 | + '''Compute overlap ratio between two rects |
| 11 | + Args |
| 12 | + rect:2d array of N x [x,y,w,h] |
| 13 | + Return: |
| 14 | + iou |
| 15 | + ''' |
| 16 | + left = np.maximum(rect1[:,0], rect2[:,0]) |
| 17 | + right = np.minimum(rect1[:,0]+rect1[:,2], rect2[:,0]+rect2[:,2]) |
| 18 | + top = np.maximum(rect1[:,1], rect2[:,1]) |
| 19 | + bottom = np.minimum(rect1[:,1]+rect1[:,3], rect2[:,1]+rect2[:,3]) |
| 20 | + |
| 21 | + intersect = np.maximum(0,right - left) * np.maximum(0,bottom - top) |
| 22 | + union = rect1[:,2]*rect1[:,3] + rect2[:,2]*rect2[:,3] - intersect |
| 23 | + iou = intersect / union |
| 24 | + iou = np.maximum(np.minimum(1, iou), 0) |
| 25 | + return iou |
| 26 | +def success_overlap(gt_bb, result_bb, n_frame): |
| 27 | + thresholds_overlap = np.arange(0, 1.05, 0.05) |
| 28 | + success = np.zeros(len(thresholds_overlap)) |
| 29 | + iou = np.ones(len(gt_bb)) * (-1) |
| 30 | + # mask = np.sum(gt_bb > 0, axis=1) == 4 #TODO check all dataset |
| 31 | + mask = np.sum(gt_bb[:, 2:] > 0, axis=1) == 2 |
| 32 | + # print(len(gt_bb)) |
| 33 | + # print(len(result_bb)) |
| 34 | + iou[mask] = overlap_ratio(gt_bb[mask], result_bb[mask]) |
| 35 | + for i in range(len(thresholds_overlap)): |
| 36 | + success[i] = np.sum(iou > thresholds_overlap[i]) / float(n_frame) |
| 37 | + return success |
| 38 | + |
| 39 | +def success_error(gt_center, result_center, thresholds, n_frame): |
| 40 | + # n_frame = len(gt_center) |
| 41 | + success = np.zeros(len(thresholds)) |
| 42 | + dist = np.ones(len(gt_center)) * (-1) |
| 43 | + mask = np.sum(gt_center > 0, axis=1) == 2 |
| 44 | + dist[mask] = np.sqrt(np.sum( |
| 45 | + np.power(gt_center[mask] - result_center[mask], 2), axis=1)) |
| 46 | + for i in range(len(thresholds)): |
| 47 | + success[i] = np.sum(dist <= thresholds[i]) / float(n_frame) |
| 48 | + return success |
| 49 | + |
| 50 | +class OPEBenchmark: |
| 51 | + def __init__(self, dataset): |
| 52 | + self.dataset = dataset |
| 53 | + |
| 54 | + def convert_bb_to_center(self, bboxes): |
| 55 | + return np.array([(bboxes[:, 0] + (bboxes[:, 2] - 1) / 2), |
| 56 | + (bboxes[:, 1] + (bboxes[:, 3] - 1) / 2)]).T |
| 57 | + |
| 58 | + def convert_bb_to_norm_center(self, bboxes, gt_wh): |
| 59 | + return self.convert_bb_to_center(bboxes) / (gt_wh+1e-16) |
| 60 | + |
| 61 | + def eval_success(self,tracker): |
| 62 | + success_ret = {} |
| 63 | + success_ret_ = {} |
| 64 | + for video in self.dataset: |
| 65 | + gt_traj = np.array(video.gt_traj) |
| 66 | + tracker_traj = video.load_tracker() |
| 67 | + tracker_traj = np.array(tracker_traj) |
| 68 | + n_frame = len(gt_traj) |
| 69 | + if hasattr(video, 'absent'): |
| 70 | + gt_traj = gt_traj[video.absent == 1] |
| 71 | + tracker_traj = tracker_traj[video.absent == 1] |
| 72 | + success_ret_[video.name] = success_overlap(gt_traj, tracker_traj, n_frame) |
| 73 | + success_ret["tracker"] = success_ret_ |
| 74 | + return success_ret |
| 75 | + |
| 76 | + def eval_precision(self,tracker): |
| 77 | + precision_ret = {} |
| 78 | + precision_ret_ = {} |
| 79 | + for video in self.dataset: |
| 80 | + gt_traj = np.array(video.gt_traj) |
| 81 | + tracker_traj = video.load_tracker() |
| 82 | + tracker_traj = np.array(tracker_traj) |
| 83 | + n_frame = len(gt_traj) |
| 84 | + if hasattr(video, 'absent'): |
| 85 | + gt_traj = gt_traj[video.absent == 1] |
| 86 | + tracker_traj = tracker_traj[video.absent == 1] |
| 87 | + gt_center = self.convert_bb_to_center(gt_traj) |
| 88 | + tracker_center = self.convert_bb_to_center(tracker_traj) |
| 89 | + thresholds = np.arange(0, 51, 1) |
| 90 | + precision_ret_[video.name] = success_error(gt_center, tracker_center, |
| 91 | + thresholds, n_frame) |
| 92 | + precision_ret["tracker"] = precision_ret_ |
| 93 | + return precision_ret |
| 94 | + |
| 95 | + def eval_norm_precision(self,tracker): |
| 96 | + norm_precision_ret = {} |
| 97 | + norm_precision_ret_ = {} |
| 98 | + for video in self.dataset: |
| 99 | + gt_traj = np.array(video.gt_traj) |
| 100 | + tracker_traj = video.load_tracker() |
| 101 | + tracker_traj = np.array(tracker_traj) |
| 102 | + n_frame = len(gt_traj) |
| 103 | + if hasattr(video, 'absent'): |
| 104 | + gt_traj = gt_traj[video.absent == 1] |
| 105 | + tracker_traj = tracker_traj[video.absent == 1] |
| 106 | + gt_center_norm = self.convert_bb_to_norm_center(gt_traj, gt_traj[:, 2:4]) |
| 107 | + tracker_center_norm = self.convert_bb_to_norm_center(tracker_traj, gt_traj[:, 2:4]) |
| 108 | + thresholds = np.arange(0, 51, 1) / 100 |
| 109 | + norm_precision_ret_[video.name] = success_error(gt_center_norm, |
| 110 | + tracker_center_norm, thresholds, n_frame) |
| 111 | + norm_precision_ret["tracker"] = norm_precision_ret_ |
| 112 | + return norm_precision_ret |
| 113 | + |
| 114 | + def show_result(self, success_ret, precision_ret=None, |
| 115 | + norm_precision_ret=None, show_video_level=False, helight_threshold=0.6): |
| 116 | + """pretty print result |
| 117 | + Args: |
| 118 | + result: returned dict from function eval |
| 119 | + """ |
| 120 | + # sort tracker |
| 121 | + tracker_auc = {} |
| 122 | + for tracker_name in success_ret.keys(): |
| 123 | + auc = np.mean(list(success_ret[tracker_name].values())) |
| 124 | + tracker_auc[tracker_name] = auc |
| 125 | + tracker_auc_ = sorted(tracker_auc.items(), |
| 126 | + key=lambda x:x[1], |
| 127 | + reverse=True)[:20] |
| 128 | + tracker_names = [x[0] for x in tracker_auc_] |
| 129 | + |
| 130 | + |
| 131 | + tracker_name_len = max((max([len(x) for x in success_ret.keys()])+2), 12) |
| 132 | + header = ("|{:^"+str(tracker_name_len)+"}|{:^9}|{:^16}|{:^11}|").format( |
| 133 | + "Tracker name", "Success", "Norm Precision", "Precision") |
| 134 | + formatter = "|{:^"+str(tracker_name_len)+"}|{:^9.3f}|{:^16.3f}|{:^11.3f}|" |
| 135 | + print('-'*len(header)) |
| 136 | + print(header) |
| 137 | + print('-'*len(header)) |
| 138 | + for tracker_name in tracker_names: |
| 139 | + # success = np.mean(list(success_ret[tracker_name].values())) |
| 140 | + success = tracker_auc[tracker_name] |
| 141 | + if precision_ret is not None: |
| 142 | + precision = np.mean(list(precision_ret[tracker_name].values()), axis=0)[20] |
| 143 | + else: |
| 144 | + precision = 0 |
| 145 | + if norm_precision_ret is not None: |
| 146 | + norm_precision = np.mean(list(norm_precision_ret[tracker_name].values()), |
| 147 | + axis=0)[20] |
| 148 | + else: |
| 149 | + norm_precision = 0 |
| 150 | + print(formatter.format(tracker_name, success, norm_precision, precision)) |
| 151 | + print('-'*len(header)) |
| 152 | + |
| 153 | + if show_video_level and len(success_ret) < 10 \ |
| 154 | + and precision_ret is not None \ |
| 155 | + and len(precision_ret) < 10: |
| 156 | + print("\n\n") |
| 157 | + header1 = "|{:^21}|".format("Tracker name") |
| 158 | + header2 = "|{:^21}|".format("Video name") |
| 159 | + for tracker_name in success_ret.keys(): |
| 160 | + # col_len = max(20, len(tracker_name)) |
| 161 | + header1 += ("{:^21}|").format(tracker_name) |
| 162 | + header2 += "{:^9}|{:^11}|".format("success", "precision") |
| 163 | + print('-'*len(header1)) |
| 164 | + print(header1) |
| 165 | + print('-'*len(header1)) |
| 166 | + print(header2) |
| 167 | + print('-'*len(header1)) |
| 168 | + videos = list(success_ret[tracker_name].keys()) |
| 169 | + for video in videos: |
| 170 | + row = "|{:^21}|".format(video) |
| 171 | + for tracker_name in success_ret.keys(): |
| 172 | + success = np.mean(success_ret[tracker_name][video]) |
| 173 | + precision = np.mean(precision_ret[tracker_name][video]) |
| 174 | + success_str = "{:^9.3f}".format(success) |
| 175 | + if success < helight_threshold: |
| 176 | + row += f'{Fore.RED}{success_str}{Style.RESET_ALL}|' |
| 177 | + else: |
| 178 | + row += success_str+'|' |
| 179 | + precision_str = "{:^11.3f}".format(precision) |
| 180 | + if precision < helight_threshold: |
| 181 | + row += f'{Fore.RED}{precision_str}{Style.RESET_ALL}|' |
| 182 | + else: |
| 183 | + row += precision_str+'|' |
| 184 | + print(row) |
| 185 | + print('-'*len(header1)) |
| 186 | + |
| 187 | +class Video(object): |
| 188 | + def __init__(self, name, root, video_dir, init_rect, img_names, |
| 189 | + gt_rect, attr): |
| 190 | + self.name = name |
| 191 | + self.video_dir = video_dir |
| 192 | + self.init_rect = init_rect |
| 193 | + self.gt_traj = gt_rect |
| 194 | + self.attr = attr |
| 195 | + self.pred_trajs = {} |
| 196 | + self.img_names = [os.path.join(root, x) for x in img_names] |
| 197 | + self.imgs = None |
| 198 | + img = cv.imread(self.img_names[0]) |
| 199 | + assert img is not None, self.img_names[0] |
| 200 | + self.width = img.shape[1] |
| 201 | + self.height = img.shape[0] |
| 202 | + |
| 203 | + def __len__(self): |
| 204 | + return len(self.img_names) |
| 205 | + |
| 206 | + def __getitem__(self, idx): |
| 207 | + if self.imgs is None: |
| 208 | + return cv.imread(self.img_names[idx]), self.gt_traj[idx] |
| 209 | + else: |
| 210 | + return self.imgs[idx], self.gt_traj[idx] |
| 211 | + |
| 212 | + def __iter__(self): |
| 213 | + for i in range(len(self.img_names)): |
| 214 | + if self.imgs is not None: |
| 215 | + yield self.imgs[i], self.gt_traj[i] |
| 216 | + else: |
| 217 | + yield cv.imread(self.img_names[i]), self.gt_traj[i] |
| 218 | + def load_tracker(self): |
| 219 | + traj_file = os.path.join("OTB_results", self.name+'.txt') |
| 220 | + if not os.path.exists(traj_file): |
| 221 | + if self.name == 'FleetFace': |
| 222 | + txt_name = 'fleetface.txt' |
| 223 | + elif self.name == 'Jogging-1': |
| 224 | + txt_name = 'jogging_1.txt' |
| 225 | + elif self.name == 'Jogging-2': |
| 226 | + txt_name = 'jogging_2.txt' |
| 227 | + elif self.name == 'Skating2-1': |
| 228 | + txt_name = 'skating2_1.txt' |
| 229 | + elif self.name == 'Skating2-2': |
| 230 | + txt_name = 'skating2_2.txt' |
| 231 | + elif self.name == 'FaceOcc1': |
| 232 | + txt_name = 'faceocc1.txt' |
| 233 | + elif self.name == 'FaceOcc2': |
| 234 | + txt_name = 'faceocc2.txt' |
| 235 | + elif self.name == 'Human4-2': |
| 236 | + txt_name = 'human4_2.txt' |
| 237 | + else: |
| 238 | + txt_name = self.name[0].lower()+self.name[1:]+'.txt' |
| 239 | + traj_file = os.path.join("OTB_results", txt_name) |
| 240 | + if os.path.exists(traj_file): |
| 241 | + with open(traj_file, 'r') as f : |
| 242 | + pred_traj = [list(map(float, x.strip().split(','))) |
| 243 | + for x in f.readlines()] |
| 244 | + if len(pred_traj) != len(self.gt_traj): |
| 245 | + print("tracker", len(pred_traj), len(self.gt_traj), self.name) |
| 246 | + else: |
| 247 | + return pred_traj |
| 248 | + else: |
| 249 | + print(traj_file) |
| 250 | + |
| 251 | + |
| 252 | +class OTBDATASET: |
| 253 | + def __init__(self, root): |
| 254 | + with open(os.path.join(root, 'OTB.json'), 'r') as f: |
| 255 | + meta_data = json.load(f) |
| 256 | + self.root = root |
| 257 | + # load videos |
| 258 | + pbar = tqdm(meta_data.keys(), desc='loading OTB', ncols=100) |
| 259 | + self.videos = {} |
| 260 | + for video in pbar: |
| 261 | + pbar.set_postfix_str(video) |
| 262 | + self.videos[video] = Video(video, |
| 263 | + self.root, |
| 264 | + meta_data[video]['video_dir'], |
| 265 | + meta_data[video]['init_rect'], |
| 266 | + meta_data[video]['img_names'], |
| 267 | + meta_data[video]['gt_rect'], |
| 268 | + meta_data[video]['attr']) |
| 269 | + # set attr |
| 270 | + attr = [] |
| 271 | + for x in self.videos.values(): |
| 272 | + attr += x.attr |
| 273 | + attr = set(attr) |
| 274 | + self.attr = {} |
| 275 | + self.attr['ALL'] = list(self.videos.keys()) |
| 276 | + for x in attr: |
| 277 | + self.attr[x] = [] |
| 278 | + for k, v in self.videos.items(): |
| 279 | + for attr_ in v.attr: |
| 280 | + self.attr[attr_].append(k) |
| 281 | + |
| 282 | + def __getitem__(self, idx): |
| 283 | + if isinstance(idx, str): |
| 284 | + return self.videos[idx] |
| 285 | + elif isinstance(idx, int): |
| 286 | + return self.videos[sorted(list(self.videos.keys()))[idx]] |
| 287 | + |
| 288 | + def __len__(self): |
| 289 | + return len(self.videos) |
| 290 | + |
| 291 | + def __iter__(self): |
| 292 | + keys = sorted(list(self.videos.keys())) |
| 293 | + for key in keys: |
| 294 | + yield self.videos[key] |
| 295 | + |
| 296 | + |
| 297 | +def get_axis_aligned_bbox(region): |
| 298 | + """ convert region to (cx, cy, w, h) that represent by axis aligned box |
| 299 | + """ |
| 300 | + nv = region.size |
| 301 | + if nv == 8: |
| 302 | + cx = np.mean(region[0::2]) |
| 303 | + cy = np.mean(region[1::2]) |
| 304 | + x1 = min(region[0::2]) |
| 305 | + x2 = max(region[0::2]) |
| 306 | + y1 = min(region[1::2]) |
| 307 | + y2 = max(region[1::2]) |
| 308 | + A1 = np.linalg.norm(region[0:2] - region[2:4]) * \ |
| 309 | + np.linalg.norm(region[2:4] - region[4:6]) |
| 310 | + A2 = (x2 - x1) * (y2 - y1) |
| 311 | + s = np.sqrt(A1 / A2) |
| 312 | + w = s * (x2 - x1) + 1 |
| 313 | + h = s * (y2 - y1) + 1 |
| 314 | + else: |
| 315 | + x = region[0] |
| 316 | + y = region[1] |
| 317 | + w = region[2] |
| 318 | + h = region[3] |
| 319 | + cx = x+w/2 |
| 320 | + cy = y+h/2 |
| 321 | + return cx, cy, w, h |
| 322 | + |
| 323 | +class OTB: |
| 324 | + |
| 325 | + def __init__(self, root): |
| 326 | + self.root = root |
| 327 | + self.dataset = OTBDATASET(root) |
| 328 | + @property |
| 329 | + def name(self): |
| 330 | + return self.__class__.__name__ |
| 331 | + |
| 332 | + def eval(self, model): |
| 333 | + for v_idx, video in enumerate(self.dataset): |
| 334 | + toc = 0 |
| 335 | + pred_bboxes = [] |
| 336 | + scores = [] |
| 337 | + track_times = [] |
| 338 | + for idx, (img, gt_bbox) in enumerate(video): |
| 339 | + # convert bgr to rgb |
| 340 | + img = cv.cvtColor(img, cv.COLOR_BGR2RGB) |
| 341 | + tic = cv.getTickCount() |
| 342 | + if idx == 0: |
| 343 | + cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox)) |
| 344 | + gt_bbox_ = (int(cx - w / 2), int(cy - h / 2), int(w), int(h)) |
| 345 | + model.init(img, gt_bbox_) |
| 346 | + pred_bbox = gt_bbox_ |
| 347 | + pred_bboxes.append(pred_bbox) |
| 348 | + scores.append(None) |
| 349 | + else: |
| 350 | + isLocated, bbox, score = model.infer(img) |
| 351 | + pred_bbox = bbox |
| 352 | + pred_bboxes.append(pred_bbox) |
| 353 | + scores.append(score) |
| 354 | + toc += cv.getTickCount() - tic |
| 355 | + track_times.append((cv.getTickCount() - tic) / cv.getTickFrequency()) |
| 356 | + if idx == 0: |
| 357 | + cv.destroyAllWindows() |
| 358 | + toc /= cv.getTickFrequency() |
| 359 | + model_path = os.path.join('OTB_results') |
| 360 | + if not os.path.isdir(model_path): |
| 361 | + os.makedirs(model_path) |
| 362 | + result_path = os.path.join(model_path,'{}.txt'.format(video.name)) |
| 363 | + with open(result_path, 'w') as f: |
| 364 | + for x in pred_bboxes: |
| 365 | + f.write(','.join([str(i) for i in x]) + '\n') |
| 366 | + print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format( |
| 367 | + v_idx + 1, video.name, toc, idx / toc)) |
| 368 | + |
| 369 | + |
| 370 | + def get_result(self): |
| 371 | + return self.top1_acc, self.top5_acc |
| 372 | + |
| 373 | + def print_result(self): |
| 374 | + benchmark = OPEBenchmark(self.dataset) |
| 375 | + success_ret = {} |
| 376 | + with Pool(processes=1) as pool: |
| 377 | + for ret in tqdm(pool.imap_unordered(benchmark.eval_success,"tracker"), desc='eval success', total=1, ncols=100): |
| 378 | + success_ret.update(ret) |
| 379 | + precision_ret = {} |
| 380 | + with Pool(processes=1) as pool: |
| 381 | + for ret in tqdm(pool.imap_unordered(benchmark.eval_precision,"tracker"), desc='eval precision', total=1, ncols=100): |
| 382 | + precision_ret.update(ret) |
| 383 | + benchmark.show_result(success_ret, precision_ret, |
| 384 | + show_video_level=False) |
0 commit comments