|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "d1c9049a-7daa-43aa-9e50-5f9f951a8324", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "## Phase 2: Distributed Training using Kubeflow Training Operator and SDK\n", |
| 9 | + "\n", |
| 10 | + "- **kubeflow-training SDK**: PyTorchJob creation and management\n", |
| 11 | + "- **TRL + PEFT**: Modern fine-tuning with LoRA adapters\n", |
| 12 | + "- **Distributed Training**: Multi-node GPU coordination " |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "id": "035727e0", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "### Training Configuration using kubeflow-training SDK" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "id": "92017175-8d63-4dbe-ac8d-f2724b57f9a8", |
| 27 | + "metadata": { |
| 28 | + "scrolled": true |
| 29 | + }, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "%pip install kubernetes yamlmagic" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 1, |
| 38 | + "id": "c82140d0", |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "%load_ext yamlmagic" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "code", |
| 47 | + "execution_count": null, |
| 48 | + "id": "7be28c8f", |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "%%yaml training_parameters\n", |
| 53 | + "\n", |
| 54 | + "# Model configuration\n", |
| 55 | + "model_name_or_path: ibm-granite/granite-3.1-2b-instruct\n", |
| 56 | + "model_revision: main\n", |
| 57 | + "torch_dtype: bfloat16\n", |
| 58 | + "attn_implementation: flash_attention_2\n", |
| 59 | + "use_liger: false\n", |
| 60 | + "\n", |
| 61 | + "# PEFT / LoRA configuration\n", |
| 62 | + "use_peft: true\n", |
| 63 | + "lora_r: 16\n", |
| 64 | + "lora_alpha: 16 # Changed from 8 to 16 for better scaling\n", |
| 65 | + "lora_dropout: 0.05\n", |
| 66 | + "lora_target_modules: [\"q_proj\", \"v_proj\", \"k_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]\n", |
| 67 | + "lora_modules_to_save: []\n", |
| 68 | + "\n", |
| 69 | + "# QLoRA (BitsAndBytes)\n", |
| 70 | + "load_in_4bit: false\n", |
| 71 | + "load_in_8bit: false\n", |
| 72 | + "\n", |
| 73 | + "# Dataset configuration (synthetic data from Ray preprocessing)\n", |
| 74 | + "dataset_path: synthetic_gsm8k\n", |
| 75 | + "dataset_config: main\n", |
| 76 | + "dataset_train_split: train\n", |
| 77 | + "dataset_test_split: test\n", |
| 78 | + "dataset_text_field: text\n", |
| 79 | + "dataset_kwargs:\n", |
| 80 | + " add_special_tokens: false\n", |
| 81 | + " append_concat_token: false\n", |
| 82 | + "\n", |
| 83 | + "# SFT configuration # Fixed typo\n", |
| 84 | + "max_seq_length: 1024\n", |
| 85 | + "dataset_batch_size: 1000\n", |
| 86 | + "packing: false\n", |
| 87 | + "\n", |
| 88 | + "# Training hyperparameters\n", |
| 89 | + "num_train_epochs: 3\n", |
| 90 | + "per_device_train_batch_size: 8\n", |
| 91 | + "per_device_eval_batch_size: 8\n", |
| 92 | + "auto_find_batch_size: false\n", |
| 93 | + "eval_strategy: epoch\n", |
| 94 | + "\n", |
| 95 | + "# Precision and optimization\n", |
| 96 | + "bf16: true\n", |
| 97 | + "tf32: false\n", |
| 98 | + "learning_rate: 1.0e-4 # Reduced from 2.0e-4 for more stable LoRA training\n", |
| 99 | + "warmup_steps: 100 # Increased from 10 for better stability\n", |
| 100 | + "lr_scheduler_type: inverse_sqrt\n", |
| 101 | + "optim: adamw_torch_fused\n", |
| 102 | + "max_grad_norm: 1.0\n", |
| 103 | + "seed: 42\n", |
| 104 | + "\n", |
| 105 | + "# Gradient settings\n", |
| 106 | + "gradient_accumulation_steps: 1\n", |
| 107 | + "gradient_checkpointing: false\n", |
| 108 | + "gradient_checkpointing_kwargs:\n", |
| 109 | + " use_reentrant: false\n", |
| 110 | + "\n", |
| 111 | + "# FSDP for distributed training\n", |
| 112 | + "fsdp: \"full_shard auto_wrap\"\n", |
| 113 | + "fsdp_config:\n", |
| 114 | + " activation_checkpointing: true\n", |
| 115 | + " cpu_ram_efficient_loading: false\n", |
| 116 | + " sync_module_states: true\n", |
| 117 | + " use_orig_params: true\n", |
| 118 | + " limit_all_gathers: false\n", |
| 119 | + "\n", |
| 120 | + "# Checkpointing and logging\n", |
| 121 | + "save_strategy: epoch\n", |
| 122 | + "save_total_limit: 1\n", |
| 123 | + "resume_from_checkpoint: false\n", |
| 124 | + "log_level: warning\n", |
| 125 | + "logging_strategy: steps\n", |
| 126 | + "logging_steps: 10 # Reduced frequency from 1 to 10\n", |
| 127 | + "report_to:\n", |
| 128 | + "- tensorboard\n", |
| 129 | + "\n", |
| 130 | + "output_dir: /shared/models/granite-3.1-2b-instruct-synthetic2" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "id": "20521af6", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "### Configure kubeflow-training Client\n", |
| 139 | + "\n", |
| 140 | + "Set up the kubeflow-training SDK client following the sft.ipynb pattern:\n" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 3, |
| 146 | + "id": "deb20fde", |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "name": "stdout", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + "kubeflow-training client configured\n" |
| 154 | + ] |
| 155 | + } |
| 156 | + ], |
| 157 | + "source": [ |
| 158 | + "# Configure kubeflow-training client (following sft.ipynb pattern)\n", |
| 159 | + "from kubernetes import client\n", |
| 160 | + "from kubeflow.training import TrainingClient\n", |
| 161 | + "from kubeflow.training.models import V1Volume, V1VolumeMount, V1PersistentVolumeClaimVolumeSource\n", |
| 162 | + "\n", |
| 163 | + "token=\"<auth_token>\"\n", |
| 164 | + "api_server=\"<api_server_url>\"\n", |
| 165 | + "\n", |
| 166 | + "configuration = client.Configuration()\n", |
| 167 | + "configuration.host = api_server\n", |
| 168 | + "configuration.api_key = {\"authorization\": f\"Bearer {token}\"}\n", |
| 169 | + "# Un-comment if your cluster API server uses a self-signed certificate or an un-trusted CA\n", |
| 170 | + "configuration.verify_ssl = False\n", |
| 171 | + "\n", |
| 172 | + "api_client = client.ApiClient(configuration)\n", |
| 173 | + "training_client = TrainingClient(client_configuration=api_client.configuration)\n", |
| 174 | + "\n", |
| 175 | + "print(\"kubeflow-training client configured\")" |
| 176 | + ] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": 4, |
| 181 | + "id": "91d0b76b", |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [ |
| 184 | + { |
| 185 | + "name": "stdout", |
| 186 | + "output_type": "stream", |
| 187 | + "text": [ |
| 188 | + "PyTorchJob submitted successfully\n" |
| 189 | + ] |
| 190 | + } |
| 191 | + ], |
| 192 | + "source": [ |
| 193 | + "from scripts.kft_granite_training import training_func\n", |
| 194 | + "\n", |
| 195 | + "job = training_client.create_job(\n", |
| 196 | + " job_kind=\"PyTorchJob\",\n", |
| 197 | + " name=\"test1-training\",\n", |
| 198 | + " # Use script file instead of function import\n", |
| 199 | + " train_func=training_func,\n", |
| 200 | + " # Pass YAML parameters as config\n", |
| 201 | + " parameters=training_parameters,\n", |
| 202 | + " # Distributed training configuration\n", |
| 203 | + " num_workers=2,\n", |
| 204 | + " num_procs_per_worker=2,\n", |
| 205 | + " resources_per_worker={\n", |
| 206 | + " \"nvidia.com/gpu\": 2, # Uncomment for GPU training\n", |
| 207 | + " \"memory\": \"24Gi\",\n", |
| 208 | + " \"cpu\": 4,\n", |
| 209 | + " },\n", |
| 210 | + " base_image=\"quay.io/modh/training:py311-cuda124-torch251\",\n", |
| 211 | + " # Environment variables for training\n", |
| 212 | + " env_vars={\n", |
| 213 | + " # HuggingFace configuration - use shared storage\n", |
| 214 | + " \"HF_HOME\": \"/shared/huggingface_cache\",\n", |
| 215 | + " \"HF_DATASETS_CACHE\": \"/shared/huggingface_cache/datasets\",\n", |
| 216 | + " \"TOKENIZERS_PARALLELISM\": \"false\",\n", |
| 217 | + " # Training configuration\n", |
| 218 | + " \"PYTHONUNBUFFERED\": \"1\",\n", |
| 219 | + " \"NCCL_DEBUG\": \"INFO\",\n", |
| 220 | + " },\n", |
| 221 | + " # Package dependencies\n", |
| 222 | + " packages_to_install=[\n", |
| 223 | + " \"transformers>=4.36.0\",\n", |
| 224 | + " \"trl>=0.7.0\",\n", |
| 225 | + " \"datasets>=2.14.0\",\n", |
| 226 | + " \"peft>=0.6.0\",\n", |
| 227 | + " \"accelerate>=0.24.0\",\n", |
| 228 | + " \"torch>=2.0.0\",\n", |
| 229 | + " ],\n", |
| 230 | + " volumes=[\n", |
| 231 | + " V1Volume(\n", |
| 232 | + " name=\"shared\",\n", |
| 233 | + " persistent_volume_claim=V1PersistentVolumeClaimVolumeSource(claim_name=\"shared\")\n", |
| 234 | + " ),\n", |
| 235 | + " ],\n", |
| 236 | + " volume_mounts=[\n", |
| 237 | + " V1VolumeMount(name=\"shared\", mount_path=\"/shared\"),\n", |
| 238 | + " ],\n", |
| 239 | + ")\n", |
| 240 | + "\n", |
| 241 | + "print(f\"PyTorchJob submitted successfully\")\n" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "markdown", |
| 246 | + "id": "08beef7d", |
| 247 | + "metadata": {}, |
| 248 | + "source": [ |
| 249 | + "### Create Training Job using kubeflow-training SDK\n", |
| 250 | + "\n", |
| 251 | + "Create and submit the distributed training job following the sft.ipynb pattern:\n" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "markdown", |
| 256 | + "id": "cac9307d", |
| 257 | + "metadata": {}, |
| 258 | + "source": [ |
| 259 | + "### Monitor Training Job\n", |
| 260 | + "\n", |
| 261 | + "Follow the training progress and logs:\n" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": null, |
| 267 | + "id": "a7f61439", |
| 268 | + "metadata": { |
| 269 | + "scrolled": true |
| 270 | + }, |
| 271 | + "outputs": [], |
| 272 | + "source": [ |
| 273 | + "# Monitor training job logs (following sft.ipynb pattern)\n", |
| 274 | + "training_client.get_job_logs(\n", |
| 275 | + " name=\"test1-training\",\n", |
| 276 | + " job_kind=\"PyTorchJob\",\n", |
| 277 | + " follow=True,\n", |
| 278 | + ")\n" |
| 279 | + ] |
| 280 | + }, |
| 281 | + { |
| 282 | + "cell_type": "code", |
| 283 | + "execution_count": 6, |
| 284 | + "id": "8571ae47", |
| 285 | + "metadata": {}, |
| 286 | + "outputs": [ |
| 287 | + { |
| 288 | + "name": "stdout", |
| 289 | + "output_type": "stream", |
| 290 | + "text": [ |
| 291 | + "PytorchJob deleted!\n" |
| 292 | + ] |
| 293 | + } |
| 294 | + ], |
| 295 | + "source": [ |
| 296 | + "# Delete the Training Job\n", |
| 297 | + "training_client.delete_job(\"test1-training\")\n", |
| 298 | + "print(\"PytorchJob deleted!\")" |
| 299 | + ] |
| 300 | + } |
| 301 | + ], |
| 302 | + "metadata": { |
| 303 | + "kernelspec": { |
| 304 | + "display_name": "Python 3.12", |
| 305 | + "language": "python", |
| 306 | + "name": "python3" |
| 307 | + }, |
| 308 | + "language_info": { |
| 309 | + "codemirror_mode": { |
| 310 | + "name": "ipython", |
| 311 | + "version": 3 |
| 312 | + }, |
| 313 | + "file_extension": ".py", |
| 314 | + "mimetype": "text/x-python", |
| 315 | + "name": "python", |
| 316 | + "nbconvert_exporter": "python", |
| 317 | + "pygments_lexer": "ipython3", |
| 318 | + "version": "3.12.9" |
| 319 | + } |
| 320 | + }, |
| 321 | + "nbformat": 4, |
| 322 | + "nbformat_minor": 5 |
| 323 | +} |
0 commit comments