|
| 1 | +# 🚀 Kubeflow Training V2: Advanced ML Training with Distributed Computing |
| 2 | + |
| 3 | +This directory contains comprehensive examples demonstrating **Kubeflow Training V2** capabilities for distributed training using the Kubeflow Trainer SDK. |
| 4 | + |
| 5 | +## 🎯 **What This Directory Demonstrates** |
| 6 | + |
| 7 | +- **Kubeflow Trainer SDK**: Programmatic TrainJob creation and management |
| 8 | +- **Checkpointing**: Controller-managed resume/suspended compatibility for model checkpoints |
| 9 | +- **Distributed Training**: Multi-node Multi-CPU/GPU coordination with NCCL/GLOO backends |
| 10 | + |
| 11 | +--- |
| 12 | +### **TRL (Transformer Reinforcement Learning) Integration** |
| 13 | +- **SFTTrainer**: Supervised fine-tuning with instruction following |
| 14 | +- **PEFT-LoRA**: Parameter-efficient fine-tuning with Low-Rank Adaptation |
| 15 | +- **Model Support**: GPT-2, Llama, and other transformer models |
| 16 | +- **Dataset Integration**: Alpaca dataset for instruction-following tasks |
| 17 | + |
| 18 | +### **Distributed Training Capabilities** |
| 19 | +- **Multi-Node Support**: Scale training across multiple nodes |
| 20 | +- **Multi-GPU Coordination**: NCCL backend CUDA for NVIDIA GPUs, ROCm for AMD GPUs |
| 21 | +- **CPU Training**: GLOO backend for CPU-based training |
| 22 | +- **Resource Flexibility**: Configurable compute resources per node |
| 23 | + |
| 24 | +--- |
| 25 | + |
| 26 | +## 📋 **Prerequisites** |
| 27 | + |
| 28 | +### **Cluster Requirements** |
| 29 | +- **OpenShift Cluster**: With OpenShift AI (RHOAI) 2.17+ installed |
| 30 | +- **Required Components**: `dashboard`, `trainingoperator`, and `workbenches` enabled |
| 31 | +- **Storage**: Persistent volume claim named `workspace` of minimum 50GB with RWX (ReadWriteMany) access mode |
| 32 | + |
| 33 | +--- |
| 34 | + |
| 35 | +## 🛠️ **Setup Instructions** |
| 36 | + |
| 37 | +### **1. Repository Setup** |
| 38 | + |
| 39 | +Clone the repository and navigate to the kft-v2 directory: |
| 40 | + |
| 41 | +```bash |
| 42 | +git clone https://github.com/opendatahub-io/distributed-workloads.git |
| 43 | +cd distributed-workloads/examples/kft-v2 |
| 44 | +``` |
| 45 | + |
| 46 | +### **2. Persistent Volume Setup** |
| 47 | + |
| 48 | +Create a shared persistent volume for checkpoint storage: |
| 49 | + |
| 50 | +```bash |
| 51 | +oc apply -f manifests/shared_pvc.yaml |
| 52 | +``` |
| 53 | + |
| 54 | +### **3. Cluster Training Runtime Setup** |
| 55 | + |
| 56 | +Apply the cluster training runtime configuration: |
| 57 | + |
| 58 | +```bash |
| 59 | +oc apply -f manifests/cluster_training_runtime.yaml |
| 60 | +``` |
| 61 | + |
| 62 | +This creates the necessary ClusterTrainingRuntime resources for PyTorch training. |
| 63 | + |
| 64 | + |
| 65 | +## Setup |
| 66 | + |
| 67 | +* Access the OpenShift AI dashboard, for example from the top navigation bar menu: |
| 68 | + |
| 69 | + |
| 70 | + |
| 71 | +* Log in, then go to _Data Science Projects_ and create a project: |
| 72 | + |
| 73 | + |
| 74 | + |
| 75 | +* Once the project is created, click on _Create a workbench_: |
| 76 | + |
| 77 | + |
| 78 | + |
| 79 | +* Then create a workbench with the following settings: |
| 80 | + |
| 81 | + * Select the `PyTorch` (or the `ROCm-PyTorch`) notebook image: |
| 82 | + |
| 83 | + * Select the _Medium_ container size and a sufficient persistent storage volume. |
| 84 | + |
| 85 | +  |
| 86 | + |
| 87 | +  |
| 88 | + |
| 89 | + > [!NOTE] |
| 90 | + > |
| 91 | + > * Adding an accelerator is only needed to test the fine-tuned model from within the workbench so you can spare an accelerator if needed. |
| 92 | + > * Keep the default 20GB workbench storage, it is enough to run the inference from within the workbench. |
| 93 | +
|
| 94 | + |
| 95 | + * Review the configuration and click _Create workbench_ |
| 96 | + |
| 97 | +* From "Workbenches" page, click on _Open_ when the workbench you've just created becomes ready: |
| 98 | + |
| 99 | + |
| 100 | + |
| 101 | +--- |
| 102 | + |
| 103 | +## 🚀 **Quick Start Examples** |
| 104 | + |
| 105 | +### **Example 1: Fashion-MNIST Training** |
| 106 | + |
| 107 | +Run the Fashion-MNIST training example: |
| 108 | + |
| 109 | +```python |
| 110 | +from scripts.mnist import train_fashion_mnist |
| 111 | + |
| 112 | +# Configure training parameters |
| 113 | +config = { |
| 114 | + "epochs": 10, |
| 115 | + "batch_size": 64, |
| 116 | + "learning_rate": 0.001, |
| 117 | + "checkpoint_dir": "/mnt/shared/checkpoints" |
| 118 | +} |
| 119 | + |
| 120 | +# Start training |
| 121 | +train_fashion_mnist(config) |
| 122 | +``` |
| 123 | + |
| 124 | +### **Example 2: TRL GPT-2 Fine-tuning** |
| 125 | + |
| 126 | +Run the TRL training example: |
| 127 | + |
| 128 | +```python |
| 129 | +from scripts.trl_training import trl_train |
| 130 | + |
| 131 | +# Configure TRL parameters |
| 132 | +config = { |
| 133 | + "model_name": "gpt2", |
| 134 | + "dataset_name": "alpaca", |
| 135 | + "lora_r": 16, |
| 136 | + "lora_alpha": 32, |
| 137 | + "max_seq_length": 512 |
| 138 | +} |
| 139 | + |
| 140 | +# Start TRL training |
| 141 | +trl_train(config) |
| 142 | +``` |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | +--- |
| 147 | + |
| 148 | +## 📊 **Training Examples** |
| 149 | + |
| 150 | +### **Fashion-MNIST Classification** |
| 151 | + |
| 152 | +The `mnist.py` script demonstrates: |
| 153 | + |
| 154 | +- **Distributed Training**: Multi-GPU Fashion-MNIST classification |
| 155 | +- **Checkpointing**: Automatic checkpoint creation and resumption |
| 156 | +- **Progress Tracking**: Real-time training progress monitoring |
| 157 | +- **Error Handling**: Robust error handling and recovery |
| 158 | + |
| 159 | +**Key Features:** |
| 160 | +- CNN architecture for image classification |
| 161 | +- Distributed data loading with DistributedSampler |
| 162 | +- Automatic mixed precision (AMP) training |
| 163 | +- Comprehensive logging and metrics |
| 164 | + |
| 165 | +### **TRL GPT-2 Fine-tuning** |
| 166 | + |
| 167 | +The `trl_training.py` script demonstrates: |
| 168 | + |
| 169 | +- **Instruction Following**: Fine-tuning GPT-2 on Alpaca dataset |
| 170 | +- **PEFT-LoRA**: Parameter-efficient fine-tuning |
| 171 | +- **Checkpoint Management**: TRL-compatible checkpointing |
| 172 | +- **Distributed Coordination**: Multi-node training coordination |
| 173 | + |
| 174 | +**Key Features:** |
| 175 | +- SFTTrainer for supervised fine-tuning |
| 176 | +- LoRA adapters for efficient parameter updates |
| 177 | +- Instruction-following dataset processing |
| 178 | +- Hugging Face model integration |
| 179 | + |
| 180 | +--- |
| 181 | + |
| 182 | +## 📚 **References and Documentation** |
| 183 | + |
| 184 | +- **[Kubeflow Trainer SDK](https://github.com/kubeflow/sdk)**: Official SDK documentation |
| 185 | +- **[TRL Documentation](https://huggingface.co/docs/trl/)**: Transformer Reinforcement Learning |
| 186 | +- **[PEFT Documentation](https://huggingface.co/docs/peft/)**: Parameter-Efficient Fine-Tuning |
| 187 | +- **[PyTorch Distributed Training](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html)**: Distributed training guide |
| 188 | +- **[OpenShift AI Documentation](https://access.redhat.com/documentation/en-us/red_hat_openshift_ai)**: RHOAI documentation |
| 189 | + |
| 190 | +--- |
0 commit comments