|
8 | 8 | "outputs": [],
|
9 | 9 | "source": [
|
10 | 10 | "import unittest\n",
|
| 11 | + "from unittest import mock\n", |
11 | 12 | "import pandas as pd\n",
|
12 | 13 | "import trustyai as trustyai\n",
|
13 | 14 | "from platform import python_version\n",
|
14 | 15 | "from trustyai.metrics.fairness.group import statistical_parity_difference\n",
|
15 | 16 | "from trustyai.model import output\n",
|
| 17 | + "from pandas.testing import assert_frame_equal\n", |
| 18 | + "import numpy as np\n", |
| 19 | + "import scipy\n", |
| 20 | + "import sklearn\n", |
| 21 | + "from scipy import special\n", |
| 22 | + "from scipy import integrate\n", |
| 23 | + "from sklearn import datasets\n", |
| 24 | + "from sklearn.model_selection import train_test_split\n", |
| 25 | + "import matplotlib\n", |
| 26 | + "import matplotlib.pyplot as plt\n", |
| 27 | + "import kafka\n", |
| 28 | + "from kafka import KafkaConsumer, KafkaProducer, TopicPartition\n", |
| 29 | + "from kafka.producer.buffer import SimpleBufferPool\n", |
| 30 | + "from kafka import KafkaConsumer\n", |
| 31 | + "from kafka.errors import KafkaConfigurationError\n", |
| 32 | + "import boto3\n", |
| 33 | + "import jupyterlab as jp\n", |
| 34 | + "import nbdime\n", |
| 35 | + "import nbgitpuller\n", |
16 | 36 | "\n",
|
17 |
| - "class TestTrustyaiNotebook(unittest.TestCase):\n", |
18 | 37 | "\n",
|
19 |
| - " def test_python_version(self):\n", |
20 |
| - " expected_major_minor = '3.8' # Set the expected version (x.y) \n", |
21 |
| - " actual_major_minor = '.'.join(python_version().split('.')[:2])\n", |
| 38 | + "def get_major_minor(s):\n", |
| 39 | + " return '.'.join(s.split('.')[:2])\n", |
| 40 | + "\n", |
| 41 | + "class TestPythonVersion(unittest.TestCase):\n", |
| 42 | + " def test_version(self):\n", |
| 43 | + " expected_major_minor = '3.8'\n", |
| 44 | + " actual_major_minor = get_major_minor(python_version())\n", |
| 45 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 46 | + "\n", |
| 47 | + "class TestDependenciesVersions(unittest.TestCase):\n", |
| 48 | + " def test_jupyter_version(self):\n", |
| 49 | + " expected_major_minor = '3.6'\n", |
| 50 | + " actual_major_minor = get_major_minor(jp.__version__)\n", |
| 51 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 52 | + "\n", |
| 53 | + " def test_nbgitpuller_version(self):\n", |
| 54 | + " expected_major_minor = '1.2'\n", |
| 55 | + " actual_major_minor = get_major_minor(nbgitpuller.__version__)\n", |
| 56 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 57 | + "\n", |
| 58 | + " def test_nbdime_version(self):\n", |
| 59 | + " expected_major_minor = '3.2'\n", |
| 60 | + " actual_major_minor = get_major_minor(nbdime.__version__)\n", |
| 61 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 62 | + "\n", |
| 63 | + "class TestPandas(unittest.TestCase):\n", |
| 64 | + " def test_version(self):\n", |
| 65 | + " expected_major_minor = '1.5'\n", |
| 66 | + " actual_major_minor = get_major_minor(pd.__version__)\n", |
| 67 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 68 | + "\n", |
| 69 | + " def test_dataframe_creation(self):\n", |
| 70 | + " sample_df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})\n", |
| 71 | + " self.assertIsInstance(sample_df, pd.core.frame.DataFrame)\n", |
| 72 | + "\n", |
| 73 | + " def test_equal_dataframes(self):\n", |
| 74 | + " df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})\n", |
| 75 | + " df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]})\n", |
| 76 | + " self.assertIsNone(assert_frame_equal(df1, df2, check_dtype=False), \"Dataframes provided are unequal\")\n", |
| 77 | + "\n", |
| 78 | + " def test_unequal_dataframes(self):\n", |
| 79 | + " df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})\n", |
| 80 | + " df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 5.0]})\n", |
| 81 | + " with self.assertRaises(AssertionError):\n", |
| 82 | + " assert_frame_equal(df1, df2, check_dtype=False)\n", |
| 83 | + "\n", |
| 84 | + " def test_dataframe_shape(self):\n", |
| 85 | + " random_data = {\n", |
| 86 | + " 'apples': [3, 2, 0, 1], \n", |
| 87 | + " 'oranges': [0, 3, 7, 2]\n", |
| 88 | + " }\n", |
| 89 | + " sample_df = pd.DataFrame(random_data)\n", |
| 90 | + " self.assertEqual(sample_df.shape, (4,2))\n", |
| 91 | + "\n", |
| 92 | + " def test_index_out_of_bounds(self):\n", |
| 93 | + " random_data = {\n", |
| 94 | + " 'apples': [3, 2, 0, 1], \n", |
| 95 | + " 'oranges': [0, 3, 7, 2]\n", |
| 96 | + " }\n", |
| 97 | + " sample_df = pd.DataFrame(random_data)\n", |
| 98 | + " with self.assertRaises(IndexError):\n", |
| 99 | + " print(sample_df.iat[0,3])\n", |
| 100 | + "\n", |
| 101 | + " def test_sampling(self):\n", |
| 102 | + " random_data = {\n", |
| 103 | + " 'apples': [3, 2, 0, 1], \n", |
| 104 | + " 'oranges': [0, 3, 7, 2]\n", |
| 105 | + " }\n", |
| 106 | + " sample_df = pd.DataFrame(random_data)\n", |
| 107 | + " half_sampled_df = sample_df.sample(frac = 0.5)\n", |
| 108 | + " self.assertEqual(len(half_sampled_df), 2)\n", |
| 109 | + "\n", |
| 110 | + " def test_drop(self):\n", |
| 111 | + " random_data = {\n", |
| 112 | + " 'apples': [3, 2, 0, 1], \n", |
| 113 | + " 'oranges': [0, 3, 7, 2]\n", |
| 114 | + " }\n", |
| 115 | + " sample_df = pd.DataFrame(random_data)\n", |
| 116 | + " self.assertEqual(sample_df.drop(columns=['apples']).shape, (4, 1))\n", |
| 117 | + "\n", |
| 118 | + "class TestNumpy(unittest.TestCase):\n", |
| 119 | + " def test_version(self):\n", |
| 120 | + " expected_major_minor = '1.24'\n", |
| 121 | + " actual_major_minor = get_major_minor(np.__version__)\n", |
| 122 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 123 | + "\n", |
| 124 | + " def test_array_creation(self):\n", |
| 125 | + " arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n", |
| 126 | + " self.assertIsInstance(arr, np.ndarray)\n", |
| 127 | + " \n", |
| 128 | + " def test_array_opeartions(self):\n", |
| 129 | + " arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n", |
| 130 | + "\n", |
| 131 | + " self.assertEqual(arr.sum(), 45)\n", |
| 132 | + " self.assertEqual(len(arr), 9)\n", |
| 133 | + " self.assertEqual(arr.max(), 9)\n", |
| 134 | + " self.assertEqual(arr.min(), 1)\n", |
| 135 | + "\n", |
| 136 | + " def test_array_statistical_functions(self):\n", |
| 137 | + " arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n", |
| 138 | + "\n", |
| 139 | + " self.assertEqual(np.median(arr), 5)\n", |
| 140 | + " self.assertEqual(np.mean(arr), 5)\n", |
| 141 | + " self.assertEqual(np.std(arr), 2.581988897471611)\n", |
| 142 | + "\n", |
| 143 | + "class TestScipy(unittest.TestCase):\n", |
| 144 | + " def test_version(self):\n", |
| 145 | + " expected_major_minor = '1.10'\n", |
| 146 | + " actual_major_minor = get_major_minor(scipy.__version__)\n", |
| 147 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 148 | + "\n", |
| 149 | + " def test_scipy_special(self):\n", |
| 150 | + " self.assertEqual(special.exp10(3), 1000.0)\n", |
| 151 | + " self.assertEqual(special.exp2(10), 1024.0)\n", |
| 152 | + " self.assertEqual(special.sindg(90), 1)\n", |
| 153 | + " self.assertEqual(special.cosdg(0), 1)\n", |
| 154 | + "\n", |
| 155 | + " def test_scipy_integrate(self):\n", |
| 156 | + " a= lambda x:special.exp10(x)\n", |
| 157 | + " b = integrate.quad(a, 0, 1)\n", |
| 158 | + " self.assertEqual(b, (3.9086503371292665, 4.3394735994897923e-14))\n", |
| 159 | + "\n", |
| 160 | + "class TestSKLearn(unittest.TestCase):\n", |
| 161 | + " def test_version(self):\n", |
| 162 | + " expected_major_minor = '1.3'\n", |
| 163 | + " actual_major_minor = get_major_minor(sklearn.__version__)\n", |
| 164 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 165 | + " \n", |
| 166 | + " def test_sklearn_dataset(self):\n", |
| 167 | + " data_set = datasets.load_iris()\n", |
| 168 | + " self.assertIsInstance(data_set, sklearn.utils._bunch.Bunch)\n", |
| 169 | + "\n", |
| 170 | + " def test_sklearn_train_test_split(self):\n", |
| 171 | + " my_iris = datasets.load_iris()\n", |
| 172 | + " X = my_iris.data\n", |
| 173 | + " Y = my_iris.target\n", |
| 174 | + "\n", |
| 175 | + " X_traindata, X_testdata, Y_traindata, Y_testdata = train_test_split(\n", |
| 176 | + " X, Y, test_size = 0.3, random_state = 1)\n", |
| 177 | + " \n", |
| 178 | + " self.assertEqual(X_traindata.shape, (105, 4))\n", |
| 179 | + " self.assertEqual(X_testdata.shape, (45, 4))\n", |
| 180 | + " self.assertEqual(Y_traindata.shape, (105,))\n", |
| 181 | + " self.assertEqual(Y_testdata.shape, (45,))\n", |
| 182 | + "\n", |
| 183 | + "class TestMatplotlib(unittest.TestCase):\n", |
| 184 | + "\n", |
| 185 | + " def test_version(self):\n", |
| 186 | + " expected_major_minor = '3.6'\n", |
| 187 | + " actual_major_minor = get_major_minor(matplotlib.__version__)\n", |
22 | 188 | " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n",
|
23 | 189 | "\n",
|
24 |
| - " def test_trustyai_version(self):\n", |
25 |
| - " expected_major_minor = '0.6' # Set the expected version (x.y) \\n\n", |
26 |
| - " actual_major_minor = '.'.join(trustyai.__version__.split('.')[:2]) \n", |
| 190 | + " def test_matplotlib_figure_creation(self):\n", |
| 191 | + " self.assertIsInstance(plt.figure(figsize=(8,5)), matplotlib.figure.Figure)\n", |
| 192 | + "\n", |
| 193 | + "class TestKafkaPython(unittest.TestCase):\n", |
| 194 | + "\n", |
| 195 | + " def test_version(self):\n", |
| 196 | + " expected_major_minor = '2.0'\n", |
| 197 | + " actual_major_minor = get_major_minor(kafka.__version__)\n", |
27 | 198 | " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n",
|
| 199 | + "\n", |
| 200 | + " def test_buffer_pool(self):\n", |
| 201 | + " pool = SimpleBufferPool(1000, 1000)\n", |
| 202 | + " \n", |
| 203 | + " buf1 = pool.allocate(1000, 1000)\n", |
| 204 | + " message = ''.join(map(str, range(100)))\n", |
| 205 | + " buf1.write(message.encode('utf-8'))\n", |
| 206 | + " pool.deallocate(buf1)\n", |
28 | 207 | " \n",
|
| 208 | + " buf2 = pool.allocate(1000, 1000)\n", |
| 209 | + " self.assertEqual(buf2.read(), b'')\n", |
| 210 | + "\n", |
| 211 | + " def test_session_timeout_larger_than_request_timeout_raises(self):\n", |
| 212 | + " with self.assertRaises(KafkaConfigurationError):\n", |
| 213 | + " KafkaConsumer(bootstrap_servers='localhost:9092', api_version=(0, 9), group_id='foo', session_timeout_ms=50000, request_timeout_ms=40000)\n", |
| 214 | + "\n", |
| 215 | + "class TestBoto3(unittest.TestCase):\n", |
| 216 | + "\n", |
| 217 | + " def test_version(self):\n", |
| 218 | + " expected_major_minor = '1.34'\n", |
| 219 | + " actual_major_minor = get_major_minor(boto3.__version__)\n", |
| 220 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 221 | + "\n", |
| 222 | + " def setUp(self):\n", |
| 223 | + " self.session_patch = mock.patch('boto3.Session', autospec=True)\n", |
| 224 | + " self.Session = self.session_patch.start()\n", |
| 225 | + "\n", |
| 226 | + " def tearDown(self):\n", |
| 227 | + " boto3.DEFAULT_SESSION = None\n", |
| 228 | + " self.session_patch.stop()\n", |
| 229 | + "\n", |
| 230 | + " def test_create_default_session(self):\n", |
| 231 | + " session = self.Session.return_value\n", |
| 232 | + "\n", |
| 233 | + " boto3.setup_default_session()\n", |
| 234 | + "\n", |
| 235 | + " self.assertEqual(boto3.DEFAULT_SESSION, session)\n", |
| 236 | + "\n", |
| 237 | + "class TestTrustyaiNotebook(unittest.TestCase):\n", |
| 238 | + "\n", |
| 239 | + " def test_trustyai_version(self): \n", |
| 240 | + " expected_major_minor = '0.6' # Set the expected version (x.y) \n", |
| 241 | + " actual_major_minor = get_major_minor(trustyai.__version__)\n", |
| 242 | + " self.assertEqual(actual_major_minor, expected_major_minor, \"incorrect version\")\n", |
| 243 | + "\n", |
29 | 244 | " def test_fairnessmetrics(self):\n",
|
30 | 245 | " url_unbiased = \"https://raw.githubusercontent.com/opendatahub-io/notebooks/main/jupyter/trustyai/ubi8-python-3.8/test/income-unbiased.csv\"\n",
|
31 | 246 | " nobias = pd.read_csv(url_unbiased, index_col=False)\n",
|
|
61 | 276 | " self.assertTrue(score <= -0.15670061634672994)\n",
|
62 | 277 | " print(\"On the test_bias_metrics test case the statistical_parity_difference score for this dataset, as expected, is outside the threshold [-0.1,0.1], which classifies the model as unfair.\")\n",
|
63 | 278 | " \n",
|
64 |
| - "\n", |
65 |
| - "suite = unittest.TestLoader().loadTestsFromTestCase(TestTrustyaiNotebook)\n", |
66 |
| - "unittest.TextTestRunner().run(suite)" |
| 279 | + "unittest.main(argv=[''], verbosity=2, exit=False)" |
67 | 280 | ]
|
68 | 281 | }
|
69 | 282 | ],
|
|
0 commit comments