Skip to content
This repository was archived by the owner on Sep 4, 2025. It is now read-only.

Commit 8850323

Browse files
committed
Merge remote-tracking branch 'origin/main' into upstream_merge_24_09_27_0.6.2
2 parents aac2e0b + a87da2b commit 8850323

File tree

8 files changed

+1101
-3
lines changed

8 files changed

+1101
-3
lines changed

Dockerfile.rocm

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -243,6 +243,12 @@ RUN --mount=type=bind,from=export_pytorch,src=/,target=/install \
243243

244244
RUN python3 -m pip install --upgrade numba scipy huggingface-hub[cli]
245245

246+
RUN git clone -b nvtx_enabled https://github.com/ROCm/rocmProfileData.git \
247+
&& cd rocmProfileData/rpd_tracer
248+
&& pip install -r requirements.txt && cd ../ \
249+
&& make && make install \
250+
cd hipMarker && python setup.py install
251+
246252
# Install vLLM (and gradlib)
247253
# Make sure punica kernels are built (for LoRA)
248254
ENV VLLM_INSTALL_PUNICA_KERNELS=1
Lines changed: 330 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,330 @@
1+
"""Benchmark the latency of processing a single batch of requests."""
2+
import argparse
3+
import json
4+
import os
5+
import time
6+
from contextlib import contextmanager, nullcontext
7+
from pathlib import Path
8+
from typing import List, Optional
9+
10+
import numpy as np
11+
import torch
12+
from rpdTracerControl import rpdTracerControl as rpd
13+
from tqdm import tqdm
14+
15+
from vllm import LLM, SamplingParams
16+
from vllm.engine.arg_utils import DEVICE_OPTIONS, EngineArgs
17+
from vllm.inputs import PromptType
18+
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
19+
from vllm.utils import FlexibleArgumentParser
20+
21+
22+
def main(args: argparse.Namespace):
23+
print(args)
24+
25+
@contextmanager
26+
def rpd_profiler_context():
27+
llm.start_profile()
28+
yield
29+
llm.stop_profile()
30+
rpd.top_totals()
31+
32+
@contextmanager
33+
def torch_profiler_context(profile_dir: Optional[str] = None,
34+
trace_file_name=None):
35+
p = torch.profiler.profile(
36+
activities=[
37+
torch.profiler.ProfilerActivity.CPU,
38+
torch.profiler.ProfilerActivity.CUDA,
39+
],
40+
on_trace_ready=torch.profiler.tensorboard_trace_handler(
41+
str(profile_dir)))
42+
p.start()
43+
try:
44+
with torch.no_grad():
45+
yield p
46+
finally:
47+
p.stop()
48+
print(p.key_averages().table(sort_by="self_cuda_time_total",
49+
row_limit=-1))
50+
51+
def get_profiling_context(profile_dir: Optional[str] = None,
52+
trace_file_name=None):
53+
if args.profile_torch:
54+
return torch_profiler_context(profile_dir, trace_file_name)
55+
elif args.profile_rpd:
56+
return rpd_profiler_context()
57+
else:
58+
return nullcontext()
59+
60+
# NOTE(woosuk): If the request cannot be processed in a single batch,
61+
# the engine will automatically process the request in multiple batches.
62+
llm = LLM(
63+
model=args.model,
64+
speculative_model=args.speculative_model,
65+
num_speculative_tokens=args.num_speculative_tokens,
66+
speculative_draft_tensor_parallel_size=\
67+
args.speculative_draft_tensor_parallel_size,
68+
tokenizer=args.tokenizer,
69+
quantization=args.quantization,
70+
tensor_parallel_size=args.tensor_parallel_size,
71+
trust_remote_code=args.trust_remote_code,
72+
dtype=args.dtype,
73+
max_model_len=args.max_model_len,
74+
enforce_eager=args.enforce_eager,
75+
kv_cache_dtype=args.kv_cache_dtype,
76+
quantization_param_path=args.quantization_param_path,
77+
device=args.device,
78+
ray_workers_use_nsight=args.ray_workers_use_nsight,
79+
use_v2_block_manager=args.use_v2_block_manager,
80+
enable_chunked_prefill=args.enable_chunked_prefill,
81+
download_dir=args.download_dir,
82+
block_size=args.block_size,
83+
gpu_memory_utilization=args.gpu_memory_utilization,
84+
load_format=args.load_format,
85+
distributed_executor_backend=args.distributed_executor_backend,
86+
otlp_traces_endpoint=args.otlp_traces_endpoint,
87+
enable_prefix_caching=args.enable_prefix_caching,
88+
num_scheduler_steps=args.num_scheduler_steps,
89+
)
90+
91+
sampling_params = SamplingParams(
92+
n=args.n,
93+
temperature=0.0 if args.use_beam_search else 1.0,
94+
top_p=1.0,
95+
use_beam_search=args.use_beam_search,
96+
ignore_eos=True,
97+
max_tokens=args.output_len,
98+
)
99+
print(sampling_params)
100+
dummy_prompt_token_ids = np.random.randint(10000,
101+
size=(args.batch_size,
102+
args.input_len))
103+
dummy_prompts: List[PromptType] = [{
104+
"prompt_token_ids": batch
105+
} for batch in dummy_prompt_token_ids.tolist()]
106+
107+
def run_to_completion(profile_dir: Optional[str] = None):
108+
if profile_dir:
109+
with get_profiling_context():
110+
llm.generate(dummy_prompts,
111+
sampling_params=sampling_params,
112+
use_tqdm=False)
113+
else:
114+
start_time = time.perf_counter()
115+
llm.generate(dummy_prompts,
116+
sampling_params=sampling_params,
117+
use_tqdm=False)
118+
end_time = time.perf_counter()
119+
latency = end_time - start_time
120+
return latency
121+
122+
print("Warming up...")
123+
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
124+
run_to_completion(profile_dir=None)
125+
126+
if args.profile_torch or args.profile_rpd:
127+
profile_dir = args.profile_dir
128+
if not profile_dir:
129+
profile_dir = Path(".") / "vllm_benchmark_latency_result"
130+
os.makedirs(profile_dir, exist_ok=True)
131+
print(f"Profiling (results will be saved to '{profile_dir}')...")
132+
run_to_completion(profile_dir=profile_dir)
133+
return
134+
135+
# Benchmark.
136+
latencies = []
137+
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
138+
latencies.append(run_to_completion(profile_dir=None))
139+
latencies = np.array(latencies)
140+
percentages = [10, 25, 50, 75, 90, 99]
141+
percentiles = np.percentile(latencies, percentages)
142+
print(f'Avg latency: {np.mean(latencies)} seconds')
143+
for percentage, percentile in zip(percentages, percentiles):
144+
print(f'{percentage}% percentile latency: {percentile} seconds')
145+
146+
# Output JSON results if specified
147+
if args.output_json:
148+
results = {
149+
"avg_latency": np.mean(latencies),
150+
"latencies": latencies.tolist(),
151+
"percentiles": dict(zip(percentages, percentiles.tolist())),
152+
}
153+
with open(args.output_json, "w") as f:
154+
json.dump(results, f, indent=4)
155+
156+
157+
if __name__ == '__main__':
158+
parser = FlexibleArgumentParser(
159+
description='Benchmark the latency of processing a single batch of '
160+
'requests till completion.')
161+
parser.add_argument('--model', type=str, default='facebook/opt-125m')
162+
parser.add_argument('--speculative-model', type=str, default=None)
163+
parser.add_argument('--num-speculative-tokens', type=int, default=None)
164+
parser.add_argument('--speculative-draft-tensor-parallel-size',
165+
'-spec-draft-tp',
166+
type=int,
167+
default=None)
168+
parser.add_argument('--tokenizer', type=str, default=None)
169+
parser.add_argument('--quantization',
170+
'-q',
171+
choices=[*QUANTIZATION_METHODS, None],
172+
default=None)
173+
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
174+
parser.add_argument('--input-len', type=int, default=32)
175+
parser.add_argument('--output-len', type=int, default=128)
176+
parser.add_argument('--batch-size', type=int, default=8)
177+
parser.add_argument('--n',
178+
type=int,
179+
default=1,
180+
help='Number of generated sequences per prompt.')
181+
parser.add_argument('--use-beam-search', action='store_true')
182+
parser.add_argument('--num-iters-warmup',
183+
type=int,
184+
default=10,
185+
help='Number of iterations to run for warmup.')
186+
parser.add_argument('--num-iters',
187+
type=int,
188+
default=30,
189+
help='Number of iterations to run.')
190+
parser.add_argument('--trust-remote-code',
191+
action='store_true',
192+
help='trust remote code from huggingface')
193+
parser.add_argument(
194+
'--max-model-len',
195+
type=int,
196+
default=None,
197+
help='Maximum length of a sequence (including prompt and output). '
198+
'If None, will be derived from the model.')
199+
parser.add_argument(
200+
'--dtype',
201+
type=str,
202+
default='auto',
203+
choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
204+
help='data type for model weights and activations. '
205+
'The "auto" option will use FP16 precision '
206+
'for FP32 and FP16 models, and BF16 precision '
207+
'for BF16 models.')
208+
parser.add_argument('--enforce-eager',
209+
action='store_true',
210+
help='enforce eager mode and disable CUDA graph')
211+
parser.add_argument(
212+
'--kv-cache-dtype',
213+
type=str,
214+
choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
215+
default="auto",
216+
help='Data type for kv cache storage. If "auto", will use model '
217+
'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
218+
'ROCm (AMD GPU) supports fp8 (=fp8_e4m3)')
219+
parser.add_argument(
220+
'--quantization-param-path',
221+
type=str,
222+
default=None,
223+
help='Path to the JSON file containing the KV cache scaling factors. '
224+
'This should generally be supplied, when KV cache dtype is FP8. '
225+
'Otherwise, KV cache scaling factors default to 1.0, which may cause '
226+
'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
227+
'cuda version greater than 11.8. On ROCm (AMD GPU), FP8_E4M3 is '
228+
'instead supported for common inference criteria.')
229+
parser.add_argument(
230+
'--quantized-weights-path',
231+
type=str,
232+
default=None,
233+
help='Path to the safetensor file containing the quantized weights '
234+
'and scaling factors. This should generally be supplied, when '
235+
'quantization is FP8.')
236+
parser.add_argument(
237+
'--profile-torch',
238+
action='store_true',
239+
help='profile the generation process of a single batch')
240+
parser.add_argument(
241+
'--profile-rpd',
242+
action='store_true',
243+
help='profile the generation process of a single batch')
244+
parser.add_argument(
245+
'--profile-dir',
246+
type=str,
247+
default=os.getenv('VLLM_RPD_PROFILER_DIR', default=None),
248+
help=('path to save the profiler output. Can be visualized '
249+
'with ui.perfetto.dev or Tensorboard.'))
250+
parser.add_argument("--device",
251+
type=str,
252+
default="auto",
253+
choices=DEVICE_OPTIONS,
254+
help='device type for vLLM execution')
255+
parser.add_argument('--block-size',
256+
type=int,
257+
default=16,
258+
help='block size of key/value cache')
259+
parser.add_argument(
260+
'--enable-chunked-prefill',
261+
action='store_true',
262+
help='If True, the prefill requests can be chunked based on the '
263+
'max_num_batched_tokens')
264+
parser.add_argument("--enable-prefix-caching",
265+
action='store_true',
266+
help="Enable automatic prefix caching")
267+
parser.add_argument('--use-v2-block-manager', action='store_true')
268+
parser.add_argument(
269+
"--ray-workers-use-nsight",
270+
action='store_true',
271+
help="If specified, use nsight to profile ray workers",
272+
)
273+
parser.add_argument('--download-dir',
274+
type=str,
275+
default=None,
276+
help='directory to download and load the weights, '
277+
'default to the default cache dir of huggingface')
278+
parser.add_argument(
279+
'--output-json',
280+
type=str,
281+
default=None,
282+
help='Path to save the latency results in JSON format.')
283+
parser.add_argument('--gpu-memory-utilization',
284+
type=float,
285+
default=0.9,
286+
help='the fraction of GPU memory to be used for '
287+
'the model executor, which can range from 0 to 1.'
288+
'If unspecified, will use the default value of 0.9.')
289+
parser.add_argument(
290+
'--load-format',
291+
type=str,
292+
default=EngineArgs.load_format,
293+
choices=[
294+
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
295+
'bitsandbytes'
296+
],
297+
help='The format of the model weights to load.\n\n'
298+
'* "auto" will try to load the weights in the safetensors format '
299+
'and fall back to the pytorch bin format if safetensors format '
300+
'is not available.\n'
301+
'* "pt" will load the weights in the pytorch bin format.\n'
302+
'* "safetensors" will load the weights in the safetensors format.\n'
303+
'* "npcache" will load the weights in pytorch format and store '
304+
'a numpy cache to speed up the loading.\n'
305+
'* "dummy" will initialize the weights with random values, '
306+
'which is mainly for profiling.\n'
307+
'* "tensorizer" will load the weights using tensorizer from '
308+
'CoreWeave. See the Tensorize vLLM Model script in the Examples'
309+
'section for more information.\n'
310+
'* "bitsandbytes" will load the weights using bitsandbytes '
311+
'quantization.\n')
312+
parser.add_argument(
313+
'--distributed-executor-backend',
314+
choices=['ray', 'mp'],
315+
default=None,
316+
help='Backend to use for distributed serving. When more than 1 GPU '
317+
'is used, will be automatically set to "ray" if installed '
318+
'or "mp" (multiprocessing) otherwise.')
319+
parser.add_argument(
320+
'--otlp-traces-endpoint',
321+
type=str,
322+
default=None,
323+
help='Target URL to which OpenTelemetry traces will be sent.')
324+
parser.add_argument(
325+
"--num-scheduler-steps",
326+
type=int,
327+
default=1,
328+
help="Maximum number of forward steps per scheduler call.")
329+
args = parser.parse_args()
330+
main(args)

0 commit comments

Comments
 (0)