@@ -412,15 +412,15 @@ def test_initialize_cv_from_run(self):
412412
413413 self .assertEquals (modelS .cv .random_state , 62501 )
414414 self .assertEqual (modelR .cv .random_state , 62501 )
415-
415+
416416 def _test_local_evaluations (self , run ):
417417
418418 # compare with the scores in user defined measures
419419 accuracy_scores_provided = []
420420 for rep in run .fold_evaluations ['predictive_accuracy' ].keys ():
421421 for fold in run .fold_evaluations ['predictive_accuracy' ][rep ].keys ():
422422 accuracy_scores_provided .append (run .fold_evaluations ['predictive_accuracy' ][rep ][fold ])
423- accuracy_scores = run .get_metric_score (sklearn .metrics .accuracy_score )
423+ accuracy_scores = run .get_metric_fn (sklearn .metrics .accuracy_score )
424424 np .testing .assert_array_almost_equal (accuracy_scores_provided , accuracy_scores )
425425
426426 # also check if we can obtain some other scores: # TODO: how to do AUC?
@@ -431,7 +431,7 @@ def _test_local_evaluations(self, run):
431431 (sklearn .metrics .precision_score , {'average' : 'macro' }),
432432 (sklearn .metrics .brier_score_loss , {})]
433433 for test_idx , test in enumerate (tests ):
434- alt_scores = run .get_metric_score (test [0 ], test [1 ])
434+ alt_scores = run .get_metric_fn (test [0 ], test [1 ])
435435 self .assertEquals (len (alt_scores ), 10 )
436436 for idx in range (len (alt_scores )):
437437 self .assertGreaterEqual (alt_scores [idx ], 0 )
0 commit comments