@@ -329,7 +329,7 @@ def test_run_and_upload(self):
329329 random_state_value = rsv )
330330
331331 # obtain accuracy scores using get_metric_score:
332- accuracy_scores = run .get_metric_score (sklearn .metrics .accuracy_score )
332+ accuracy_scores = run .get_metric_fn (sklearn .metrics .accuracy_score )
333333 # compare with the scores in user defined measures
334334 accuracy_scores_provided = []
335335 for rep in run .fold_evaluations ['predictive_accuracy' ].keys ():
@@ -425,7 +425,7 @@ def _test_local_evaluations(self, run):
425425
426426 # also check if we can obtain some other scores: # TODO: how to do AUC?
427427 tests = [(sklearn .metrics .cohen_kappa_score , {'weights' : None }),
428- (sklearn .metrics .auc , {}),
428+ (sklearn .metrics .auc , {'reorder' : True }),
429429 (sklearn .metrics .average_precision_score , {}),
430430 (sklearn .metrics .jaccard_similarity_score , {}),
431431 (sklearn .metrics .precision_score , {'average' : 'macro' }),
@@ -452,7 +452,7 @@ def test_local_run_metric_score(self):
452452
453453 def test_online_run_metric_score (self ):
454454 openml .config .server = self .production_server
455- run = openml .runs .get_run (5572567 )
455+ run = openml .runs .get_run (5965513 ) # important to use binary classification task, due to assertions
456456 self ._test_local_evaluations (run )
457457
458458
0 commit comments