@@ -54,7 +54,7 @@ reference="equ:ch-deploy/quantization-q"}, assume that $r$ represents
5454the floating-point number before quantization. We are then able to
5555obtain the integer $q$ after quantization.
5656
57- $$ \label{ equ:ch-deploy/quantization-q} q=clip(round(\frac{r}{s}+z),q_{min},q_{max})$$
57+ $$ [ equ:ch-deploy/quantization-q] q=clip(round(\frac{r}{s}+z),q_{min},q_{max})$$
5858
5959$clip(\cdot)$ and $round(\cdot)$ indicate the truncation and rounding
6060operations, and $q_ {min}$ and $q_ {max}$ indicate the minimum and maximum
@@ -174,7 +174,7 @@ $||\hat{w_c}-E(\hat{w_c})||$, respectively. Equation
174174reference="equ: ch-deploy /post-quantization"} is the calibration of the
175175weight:
176176
177- $$ \label{ equ:ch-deploy/post-quantization}
177+ $$ [ equ:ch-deploy/post-quantization]
178178\begin{aligned}
179179\hat{w_c}\leftarrow\zeta_c(\hat{w_c}+u_c) \\
180180u_c=E(w_c)-E(\hat{w_c}) \\
@@ -327,7 +327,7 @@ classification result of the teacher network, that is, Equation
327327reference="c2Fcn: distill "}.
328328
329329$$ \mathcal{L}_{KD}(\theta_S) = \mathcal{H}(o_S,\mathbf{y}) +\lambda\mathcal{H}(\tau(o_S),\tau(o_T)),
330- \label{ c2Fcn:distill} $$
330+ [ c2Fcn:distill] $$
331331
332332where $\mathcal{H}(\cdot,\cdot)$ is the cross-entropy function, $o_S$
333333and $o_T$ are outputs of the student network and the teacher network,
0 commit comments