@@ -90,7 +90,7 @@ understood as the simplification of an equation. The computation of
9090Convolution is expressed as Equation
9191:eqref:` ch-deploy/conv-equation ` .
9292
93- $$ \bm {Y_{\rm conv}}=\bm {W_{\rm conv}}\cdot\bm {X_{\rm conv}}+\bm {B_{\rm conv}} $$
93+ $$ \bf {Y_{\rm conv}}=\bf {W_{\rm conv}}\cdot\bf {X_{\rm conv}}+\bf {B_{\rm conv}} $$
9494:eqlabel:` equ:ch-deploy/conv-equation `
9595
9696Here, we do not need to understand what each variable means. Instead, we
@@ -103,7 +103,7 @@ Equation
103103:eqref:` ch-deploy/bn-equation ` is about the computation of
104104Batchnorm:
105105
106- $$ \bm {Y_{\rm bn}}=\gamma\frac{\bm {X_{\rm bn}}-\mu_{\mathcal{B}}}{\sqrt{{\sigma_{\mathcal{B}}}^{2}+\epsilon}}+\beta $$
106+ $$ \bf {Y_{\rm bn}}=\gamma\frac{\bf {X_{\rm bn}}-\mu_{\mathcal{B}}}{\sqrt{{\sigma_{\mathcal{B}}}^{2}+\epsilon}}+\beta $$
107107:eqlabel:` equ:ch-deploy/bn-equation `
108108
109109Similarly, it is an equation for $\bm{Y_ {\rm bn}}$ with respect to
@@ -117,7 +117,7 @@ After substituting $\bm{Y_{\rm conv}}$ into $\bm{X_{\rm bn}}$ and
117117uniting and extracting the constants, we obtain Equation
118118:eqref:` ch-deploy/conv-bn-equation-3 ` .
119119
120- $$ \bm {Y_{\rm bn}}=\bm {A}\cdot\bm {X_{\rm conv}}+\bm {B} $$
120+ $$ \bf {Y_{\rm bn}}=\bf {A}\cdot\bf {X_{\rm conv}}+\bf {B} $$
121121:eqlabel:` equ:ch-deploy/conv-bn-equation-3 `
122122
123123Here, $\bm{A}$ and $\bm{B}$ are two matrices. It can be noticed that
@@ -183,7 +183,7 @@ principle of operator replacement. After decomposing Equation
183183folding the constants, Batchnorm is defined as Equation
184184:eqref:` ch-deploy/replace-scale `
185185
186- $$ \bm {Y_{bn}}=scale\cdot\bm {X_{bn}}+offset $$
186+ $$ \bf {Y_{bn}}=scale\cdot\bf {X_{bn}}+offset $$
187187:eqlabel:` equ:ch-deploy/replace-scale `
188188
189189where ** scale** and ** offsets** are scalars. This simplified formula can
0 commit comments