|
| 1 | +from tqdm import tqdm |
| 2 | +import sys |
| 3 | +import numpy as np |
| 4 | +import anndata as ad |
| 5 | +import pegasus as pg |
| 6 | +import pegasusio |
| 7 | +from scipy.sparse import csr_matrix |
| 8 | +from joblib import Parallel, delayed |
| 9 | + |
| 10 | + |
| 11 | +def compute_kbet(mmdata, *args, **kwargs): |
| 12 | + stat_mean, pvalue_mean, accept_rate = pg.calc_kBET(mmdata, *args, **kwargs) |
| 13 | + return accept_rate |
| 14 | + |
| 15 | + |
| 16 | +## VIASH START |
| 17 | +par = { |
| 18 | + 'input_integrated': 'resources_test/task_batch_integration/cxg_immune_cell_atlas/integrated_full.h5ad', |
| 19 | + 'output': 'output.h5ad', |
| 20 | +} |
| 21 | + |
| 22 | +meta = { |
| 23 | + 'name': 'foo', |
| 24 | +} |
| 25 | +## VIASH END |
| 26 | + |
| 27 | +sys.path.append(meta["resources_dir"]) |
| 28 | +from read_anndata_partial import read_anndata |
| 29 | + |
| 30 | +n_threads = meta["cpus"] or -1 |
| 31 | + |
| 32 | +print('Read input...', flush=True) |
| 33 | +adata = read_anndata(par['input_integrated'], obs='obs', obsm='obsm', uns='uns') |
| 34 | +adata.obs = read_anndata(par['input_solution'], obs='obs').obs |
| 35 | +adata.uns |= read_anndata(par['input_solution'], uns='uns').uns |
| 36 | +adata.X = csr_matrix(adata.shape) |
| 37 | +print(adata, flush=True) |
| 38 | + |
| 39 | +print('Compute cell type averaged kBET...', flush=True) |
| 40 | +cell_types = adata.obs['cell_type'].unique() |
| 41 | +scores = [] |
| 42 | +mmdata_per_cell_type = [] |
| 43 | + |
| 44 | +# collect all adata subsets |
| 45 | +for cell_type in cell_types: |
| 46 | + ad_sub = adata[adata.obs['cell_type'] == cell_type] |
| 47 | + if ad_sub.obs['batch'].nunique() <= 1: |
| 48 | + print(f'Skipping cell type {cell_type} because it\'s present in only one batch', flush=True) |
| 49 | + continue |
| 50 | + _mmdata = pegasusio.MultimodalData(ad_sub.copy()) |
| 51 | + mmdata_per_cell_type.append(_mmdata) |
| 52 | + |
| 53 | +# compute kBET scores |
| 54 | +scores = Parallel(n_jobs=n_threads)( |
| 55 | + delayed(compute_kbet)( |
| 56 | + _mmdata, |
| 57 | + attr="batch", |
| 58 | + rep="emb", |
| 59 | + K=50, |
| 60 | + use_cache=False, |
| 61 | + n_jobs=1, |
| 62 | + ) for _mmdata in tqdm( |
| 63 | + mmdata_per_cell_type, |
| 64 | + desc=f'Compute per cell type with {n_threads} threads', |
| 65 | + miniters=1, |
| 66 | + ) |
| 67 | +) |
| 68 | +score = np.nanmean(scores) |
| 69 | +print('Cell type averaged kBET score:', score, flush=True) |
| 70 | + |
| 71 | +print('Create output AnnData object', flush=True) |
| 72 | +metric_name = meta['name'] |
| 73 | +output = ad.AnnData( |
| 74 | + uns={ |
| 75 | + 'dataset_id': adata.uns['dataset_id'], |
| 76 | + 'normalization_id': adata.uns['normalization_id'], |
| 77 | + 'method_id': adata.uns['method_id'], |
| 78 | + 'metric_ids': [ metric_name ], |
| 79 | + 'metric_values': [ score ] |
| 80 | + } |
| 81 | +) |
| 82 | + |
| 83 | +print('Write data to file', flush=True) |
| 84 | +output.write_h5ad(par['output'], compression='gzip') |
0 commit comments