|
| 1 | +from glob import glob |
| 2 | +import sys |
| 3 | +import numpy as np |
| 4 | +from scipy.sparse import csc_matrix |
| 5 | +import anndata as ad |
| 6 | +import torch |
| 7 | +from torch.utils.data import TensorDataset,DataLoader |
| 8 | + |
| 9 | +## VIASH START |
| 10 | +par = { |
| 11 | + 'input_train_mod1': 'resources_test/task_predict_modality/openproblems_neurips2021/bmmc_multiome/swap/train_mod1.h5ad', |
| 12 | + 'input_train_mod2': 'resources_test/task_predict_modality/openproblems_neurips2021/bmmc_multiome/swap/train_mod2.h5ad', |
| 13 | + 'input_test_mod1': 'resources_test/task_predict_modality/openproblems_neurips2021/bmmc_multiome/swap/test_mod1.h5ad', |
| 14 | + 'input_model': 'output/model', |
| 15 | + 'output': 'output/prediction' |
| 16 | +} |
| 17 | +meta = { |
| 18 | + 'config': 'target/executable/methods/simplemlp_predict/.config.vsh.yaml', |
| 19 | + 'resources_dir': 'target/executable/methods/simplemlp_predict', |
| 20 | + 'cpus': 10 |
| 21 | +} |
| 22 | +## VIASH END |
| 23 | + |
| 24 | +resources_dir = f"{meta['resources_dir']}/resources" |
| 25 | +sys.path.append(resources_dir) |
| 26 | +from models import MLP |
| 27 | +import utils |
| 28 | + |
| 29 | +def _predict(model,dl): |
| 30 | + if torch.cuda.is_available(): |
| 31 | + model = model.cuda() |
| 32 | + else: |
| 33 | + model = model.cpu() |
| 34 | + model.eval() |
| 35 | + yps = [] |
| 36 | + for x in dl: |
| 37 | + with torch.no_grad(): |
| 38 | + if torch.cuda.is_available(): |
| 39 | + x0 = x[0].cuda() |
| 40 | + else: |
| 41 | + x0 = x[0].cpu() |
| 42 | + yp = model(x0) |
| 43 | + yps.append(yp.detach().cpu().numpy()) |
| 44 | + yp = np.vstack(yps) |
| 45 | + return yp |
| 46 | + |
| 47 | + |
| 48 | +print('Load data', flush=True) |
| 49 | +input_train_mod2 = ad.read_h5ad(par['input_train_mod2']) |
| 50 | +input_test_mod1 = ad.read_h5ad(par['input_test_mod1']) |
| 51 | + |
| 52 | +# determine variables |
| 53 | +mod_1 = input_test_mod1.uns['modality'] |
| 54 | +mod_2 = input_train_mod2.uns['modality'] |
| 55 | + |
| 56 | +task = f'{mod_1}2{mod_2}' |
| 57 | + |
| 58 | +print('Load ymean', flush=True) |
| 59 | +ymean_path = f"{par['input_model']}/{task}_ymean.npy" |
| 60 | +ymean = np.load(ymean_path) |
| 61 | + |
| 62 | +print('Start predict', flush=True) |
| 63 | +if task == 'GEX2ATAC': |
| 64 | + y_pred = ymean*np.ones([input_test_mod1.n_obs, input_test_mod1.n_vars]) |
| 65 | +else: |
| 66 | + folds = [0, 1, 2] |
| 67 | + |
| 68 | + ymean = torch.from_numpy(ymean).float() |
| 69 | + yaml_path=f"{resources_dir}/yaml/mlp_{task}.yaml" |
| 70 | + config = utils.load_yaml(yaml_path) |
| 71 | + X = input_test_mod1.layers["normalized"].toarray() |
| 72 | + X = torch.from_numpy(X).float() |
| 73 | + |
| 74 | + te_ds = TensorDataset(X) |
| 75 | + |
| 76 | + yp = 0 |
| 77 | + for fold in folds: |
| 78 | + # load_path = f"{par['input_model']}/{task}_fold_{fold}/version_0/checkpoints/*" |
| 79 | + load_path = f"{par['input_model']}/{task}_fold_{fold}/**.ckpt" |
| 80 | + print(load_path) |
| 81 | + ckpt = glob(load_path)[0] |
| 82 | + model_inf = MLP.load_from_checkpoint( |
| 83 | + ckpt, |
| 84 | + in_dim=X.shape[1], |
| 85 | + out_dim=input_test_mod1.n_vars, |
| 86 | + ymean=ymean, |
| 87 | + config=config |
| 88 | + ) |
| 89 | + te_loader = DataLoader( |
| 90 | + te_ds, |
| 91 | + batch_size=config.batch_size, |
| 92 | + num_workers=0, |
| 93 | + shuffle=False, |
| 94 | + drop_last=False |
| 95 | + ) |
| 96 | + yp = yp + _predict(model_inf, te_loader) |
| 97 | + |
| 98 | + y_pred = yp/len(folds) |
| 99 | + |
| 100 | +y_pred = csc_matrix(y_pred) |
| 101 | + |
| 102 | +adata = ad.AnnData( |
| 103 | + layers={"normalized": y_pred}, |
| 104 | + shape=y_pred.shape, |
| 105 | + uns={ |
| 106 | + 'dataset_id': input_test_mod1.uns['dataset_id'], |
| 107 | + 'method_id': meta['functionality_name'], |
| 108 | + }, |
| 109 | +) |
| 110 | + |
| 111 | +print('Write data', flush=True) |
| 112 | +adata.write_h5ad(par['output'], compression = "gzip") |
0 commit comments