Skip to content

Commit 0be7041

Browse files
committed
chore: enable balance challenge
1 parent 8ab60fa commit 0be7041

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

neurons/validators/genie_validator.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -93,9 +93,9 @@ async def query_miners(self):
9393

9494
available_challenges_classes = [
9595
AccuracyChallenge,
96+
BalancedChallenge,
9697
AccuracyChallenge,
97-
AccuracyChallenge,
98-
SeoChallenge,
98+
BalancedChallenge,
9999
]
100100

101101
with self.lock:

webgenie/challenges/challenge.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
4343
scores = await self.task.generator.calculate_scores(self.task, self.solutions)
4444
accuracy_scores = scores[ACCURACY_METRIC_NAME]
4545
seo_scores = scores[SEO_METRIC_NAME]
46-
aggregated_scores = np.where(accuracy_scores > 0.90, seo_scores, 0)
46+
aggregated_scores = np.where(accuracy_scores > 0.85, seo_scores, 0)
4747
return aggregated_scores, scores
4848

4949

@@ -54,7 +54,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
5454
scores = await self.task.generator.calculate_scores(self.task, self.solutions)
5555
accuracy_scores = scores[ACCURACY_METRIC_NAME]
5656
quality_scores = scores[QUALITY_METRIC_NAME]
57-
aggregated_scores = np.where(accuracy_scores > 0.90, quality_scores, 0)
57+
aggregated_scores = np.where(accuracy_scores > 0.85, quality_scores, 0)
5858
return aggregated_scores, scores
5959

6060

@@ -66,7 +66,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
6666
accuracy_scores = scores[ACCURACY_METRIC_NAME]
6767
quality_scores = scores[QUALITY_METRIC_NAME]
6868
seo_scores = scores[SEO_METRIC_NAME]
69-
aggregated_scores = accuracy_scores * 0.6 + quality_scores * 0.2 + seo_scores * 0.2
69+
aggregated_scores = accuracy_scores * 0.8 + quality_scores * 0.1 + seo_scores * 0.1
7070
return aggregated_scores, scores
7171

7272

0 commit comments

Comments
 (0)