@@ -43,7 +43,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
43
43
scores = await self .task .generator .calculate_scores (self .task , self .solutions )
44
44
accuracy_scores = scores [ACCURACY_METRIC_NAME ]
45
45
seo_scores = scores [SEO_METRIC_NAME ]
46
- aggregated_scores = np .where (accuracy_scores > 0.90 , seo_scores , 0 )
46
+ aggregated_scores = np .where (accuracy_scores > 0.85 , seo_scores , 0 )
47
47
return aggregated_scores , scores
48
48
49
49
@@ -54,7 +54,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
54
54
scores = await self .task .generator .calculate_scores (self .task , self .solutions )
55
55
accuracy_scores = scores [ACCURACY_METRIC_NAME ]
56
56
quality_scores = scores [QUALITY_METRIC_NAME ]
57
- aggregated_scores = np .where (accuracy_scores > 0.90 , quality_scores , 0 )
57
+ aggregated_scores = np .where (accuracy_scores > 0.85 , quality_scores , 0 )
58
58
return aggregated_scores , scores
59
59
60
60
@@ -66,7 +66,7 @@ async def calculate_scores(self) -> dict[str, np.ndarray]:
66
66
accuracy_scores = scores [ACCURACY_METRIC_NAME ]
67
67
quality_scores = scores [QUALITY_METRIC_NAME ]
68
68
seo_scores = scores [SEO_METRIC_NAME ]
69
- aggregated_scores = accuracy_scores * 0.6 + quality_scores * 0.2 + seo_scores * 0.2
69
+ aggregated_scores = accuracy_scores * 0.8 + quality_scores * 0.1 + seo_scores * 0.1
70
70
return aggregated_scores , scores
71
71
72
72
0 commit comments