|
| 1 | +// Copyright Contributors to the OpenVDB Project |
| 2 | +// SPDX-License-Identifier: Apache-2.0 |
| 3 | + |
| 4 | +#include "utils/Tensor.h" |
| 5 | + |
| 6 | +#include <fvdb/detail/ops/gsplat/GaussianMCMCAddNoise.h> |
| 7 | + |
| 8 | +#include <ATen/cuda/CUDAGeneratorImpl.h> |
| 9 | +#include <torch/torch.h> |
| 10 | + |
| 11 | +#include <gtest/gtest.h> |
| 12 | + |
| 13 | +#include <cmath> |
| 14 | + |
| 15 | +namespace { |
| 16 | + |
| 17 | +// Match kernel logistic parameters (k = 100, x0 = 0.995). |
| 18 | +torch::Tensor |
| 19 | +logisticTensor(const torch::Tensor &x) { |
| 20 | + return 1.0f / (1.0f + torch::exp(-100.0f * (x - 0.995f))); |
| 21 | +} |
| 22 | + |
| 23 | +class GaussianMCMCAddNoiseTest : public ::testing::Test { |
| 24 | + protected: |
| 25 | + void |
| 26 | + SetUp() override { |
| 27 | + if (!torch::cuda::is_available()) { |
| 28 | + GTEST_SKIP() << "CUDA is required for GaussianMCMCAddNoise tests"; |
| 29 | + } |
| 30 | + torch::manual_seed(0); |
| 31 | + } |
| 32 | + |
| 33 | + torch::TensorOptions |
| 34 | + floatOpts() const { |
| 35 | + return fvdb::test::tensorOpts<float>(torch::kCUDA); |
| 36 | + } |
| 37 | + |
| 38 | + // Save the current CUDA RNG state so we can reproduce the baseNoise that |
| 39 | + // dispatchGaussianMCMCAddNoise draws internally. |
| 40 | + torch::Tensor |
| 41 | + saveCudaGeneratorState() { |
| 42 | + auto gen = at::cuda::detail::getDefaultCUDAGenerator(); |
| 43 | + return gen.get_state(); |
| 44 | + } |
| 45 | + |
| 46 | + void |
| 47 | + restoreCudaGeneratorState(const torch::Tensor &state) { |
| 48 | + auto gen = at::cuda::detail::getDefaultCUDAGenerator(); |
| 49 | + gen.set_state(state); |
| 50 | + } |
| 51 | +}; |
| 52 | + |
| 53 | +TEST_F(GaussianMCMCAddNoiseTest, AppliesNoiseWithDeterministicBaseNoise) { |
| 54 | + auto means = torch::tensor({{0.0f, 0.0f, 0.0f}, {1.0f, 2.0f, 3.0f}}, floatOpts()).contiguous(); |
| 55 | + const auto logScales = torch::zeros({2, 3}, floatOpts()).contiguous(); // unit covariance |
| 56 | + const auto opacities = torch::tensor({0.25f, 0.6f}, floatOpts()); |
| 57 | + const auto logitOpacities = torch::log(opacities) - torch::log1p(-opacities); |
| 58 | + const auto quats = |
| 59 | + torch::tensor({{1.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f, 0.0f}}, floatOpts()) |
| 60 | + .contiguous(); |
| 61 | + constexpr float noiseScale = 0.4f; |
| 62 | + |
| 63 | + const auto rngState = saveCudaGeneratorState(); |
| 64 | + auto meansBaseline = means.clone(); |
| 65 | + |
| 66 | + fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kCUDA>( |
| 67 | + means, logScales, logitOpacities, quats, noiseScale); |
| 68 | + |
| 69 | + restoreCudaGeneratorState(rngState); |
| 70 | + const auto baseNoise = torch::randn_like(meansBaseline); |
| 71 | + |
| 72 | + // Expected delta on CPU: gate * noiseScale * baseNoise, then scaled by covariance diag. |
| 73 | + auto opacityCpu = opacities.cpu(); |
| 74 | + auto gate = logisticTensor(torch::ones_like(opacityCpu) - opacityCpu); // [N] |
| 75 | + auto delta = baseNoise.cpu() * gate.unsqueeze(1) * noiseScale; // [N,3] |
| 76 | + const auto expected = meansBaseline.cpu() + delta; |
| 77 | + |
| 78 | + EXPECT_TRUE(torch::allclose(means.cpu(), expected, 1e-5, 1e-6)); |
| 79 | +} |
| 80 | + |
| 81 | +TEST_F(GaussianMCMCAddNoiseTest, RespectsAnisotropicScales) { |
| 82 | + auto means = torch::zeros({1, 3}, floatOpts()).contiguous(); |
| 83 | + const auto scales = |
| 84 | + torch::tensor({std::log(2.0f), std::log(1.0f), std::log(0.5f)}, floatOpts()); |
| 85 | + const auto logScales = scales.view({1, 3}).contiguous(); |
| 86 | + const auto opacities = torch::tensor({0.3f}, floatOpts()); |
| 87 | + const auto logitOpacities = torch::log(opacities) - torch::log1p(-opacities); |
| 88 | + const auto quats = torch::tensor({{1.0f, 0.0f, 0.0f, 0.0f}}, floatOpts()).contiguous(); |
| 89 | + constexpr float noiseScale = 1.0f; |
| 90 | + |
| 91 | + const auto rngState = saveCudaGeneratorState(); |
| 92 | + |
| 93 | + fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kCUDA>( |
| 94 | + means, logScales, logitOpacities, quats, noiseScale); |
| 95 | + |
| 96 | + restoreCudaGeneratorState(rngState); |
| 97 | + const auto baseNoise = torch::randn_like(means); |
| 98 | + |
| 99 | + auto gate = logisticTensor(torch::ones({1}, torch::kFloat32) - opacities.cpu()); // scalar |
| 100 | + const auto covarDiag = torch::pow(torch::exp(logScales.cpu()), 2); // [1,3] |
| 101 | + const auto expected = (baseNoise.cpu() * gate.unsqueeze(1) * noiseScale) * covarDiag + |
| 102 | + torch::zeros_like(baseNoise.cpu()); |
| 103 | + |
| 104 | + // With identity rotation, covariance is diagonal; check elementwise scaling. |
| 105 | + EXPECT_TRUE(torch::allclose(means.cpu(), expected, 1e-5, 1e-6)); |
| 106 | +} |
| 107 | + |
| 108 | +TEST_F(GaussianMCMCAddNoiseTest, HighOpacitySuppressesNoise) { |
| 109 | + auto means = torch::zeros({2, 3}, floatOpts()).contiguous(); |
| 110 | + const auto logScales = torch::zeros({2, 3}, floatOpts()).contiguous(); |
| 111 | + const auto logitOpacities = torch::full({2}, 10.0f, floatOpts()); // opacity ~ 1 |
| 112 | + const auto quats = |
| 113 | + torch::tensor({{1.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f, 0.0f}}, floatOpts()) |
| 114 | + .contiguous(); |
| 115 | + constexpr float noiseScale = 1.0f; |
| 116 | + |
| 117 | + fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kCUDA>( |
| 118 | + means, logScales, logitOpacities, quats, noiseScale); |
| 119 | + |
| 120 | + // Gate approaches zero when opacity ~1; expect negligible movement. |
| 121 | + const auto maxAbs = torch::abs(means).max().item<float>(); |
| 122 | + EXPECT_LT(maxAbs, 1e-5f); |
| 123 | +} |
| 124 | + |
| 125 | +TEST_F(GaussianMCMCAddNoiseTest, ZeroNoiseScaleNoOp) { |
| 126 | + auto means = torch::rand({3, 3}, floatOpts()).contiguous(); |
| 127 | + const auto origMeans = means.clone(); |
| 128 | + const auto logScales = torch::zeros({3, 3}, floatOpts()).contiguous(); |
| 129 | + const auto opacities = torch::tensor({0.2f, 0.5f, 0.8f}, floatOpts()); |
| 130 | + const auto logitOpacities = torch::log(opacities) - torch::log1p(-opacities); |
| 131 | + const auto quats = torch::tensor( |
| 132 | + {{1.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f, 0.0f}}, |
| 133 | + floatOpts()); |
| 134 | + |
| 135 | + fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kCUDA>( |
| 136 | + means, logScales, logitOpacities, quats, /*noiseScale=*/0.0f); |
| 137 | + |
| 138 | + EXPECT_TRUE(torch::allclose(means, origMeans)); |
| 139 | +} |
| 140 | + |
| 141 | +TEST_F(GaussianMCMCAddNoiseTest, CpuAndPrivateUseNotImplemented) { |
| 142 | + auto means = torch::zeros({1, 3}, fvdb::test::tensorOpts<float>(torch::kCPU)); |
| 143 | + const auto logScales = torch::zeros({1, 3}, fvdb::test::tensorOpts<float>(torch::kCPU)); |
| 144 | + const auto logitOpacities = torch::zeros({1}, fvdb::test::tensorOpts<float>(torch::kCPU)); |
| 145 | + const auto quats = |
| 146 | + torch::tensor({{1.0f, 0.0f, 0.0f, 0.0f}}, fvdb::test::tensorOpts<float>(torch::kCPU)); |
| 147 | + |
| 148 | + EXPECT_THROW((fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kCPU>( |
| 149 | + means, logScales, logitOpacities, quats, 1.0f)), |
| 150 | + c10::Error); |
| 151 | + |
| 152 | + auto meansCuda = means.cuda(); |
| 153 | + auto logScalesCuda = logScales.cuda(); |
| 154 | + auto logitOpacitiesCuda = logitOpacities.cuda(); |
| 155 | + auto quatsCuda = quats.cuda(); |
| 156 | + EXPECT_THROW((fvdb::detail::ops::dispatchGaussianMCMCAddNoise<torch::kPrivateUse1>( |
| 157 | + meansCuda, logScalesCuda, logitOpacitiesCuda, quatsCuda, 1.0f)), |
| 158 | + c10::Error); |
| 159 | +} |
| 160 | + |
| 161 | +} // namespace |
0 commit comments