You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* `segmentation` - converting output of semantic segmentation model to `SeegmentationPrediction` representation.
32
-
* `make_argmax` - allows to apply argmax operation to output values.
32
+
* `make_argmax` - allows applying argmax operation to output values.
33
33
* `segmentation_one_class` - converting output of semantic segmentation to `SeegmentationPrediction` representation. It is suitable for situation when model's output is probability of belong each pixel to foreground class.
34
34
* `threshold` - minimum probability threshold for valid class belonging.
35
35
* `tiny_yolo_v1` - converting output of Tiny YOLO v1 model to `DetectionPrediction` representation.
@@ -51,14 +51,13 @@ AccuracyChecker supports following set of adapters:
51
51
Applicable only if network output not 3D (4D with batch) tensor.
52
52
* `yolo_v3` - converting output of YOLO v3 family models to `DetectionPrediction` representation.
53
53
* `classes` - number of detection classes (default 80).
54
-
* `anchors` - anchor values provided as comma-separited list or precomputed:
54
+
* `anchors` - anchor values provided as comma-separated list or precomputed:
* `coords` - number of bbox coordinates (default 4).
58
58
* `num` - num parameter from DarkNet configuration file (default 3).
59
59
* `anchor_mask` - mask for used anchors for each output layer (Optional, if not provided default way for selecting anchors will be used.)
60
60
* `threshold` - minimal objectness score value for valid detections (default 0.001).
61
-
* `input_width` and `input_height` - network input width and height correspondingly (default 416).
62
61
* `outputs` - the list of output layers names.
63
62
* `raw_output` - enabling additional preprocessing for raw YOLO output format (default `False`).
64
63
* `output_format` - setting output layer format - boxes first (`BHW`)(default, also default for generated IRs), boxes last (`HWB`). Applicable only if network output not 3D (4D with batch) tensor.
@@ -80,8 +79,8 @@ AccuracyChecker supports following set of adapters:
80
79
* `eos_index` - index of end of string token in labels. (Optional, default 2, ignored if you have decoding part in the model).
81
80
* `to_lower_case` - allow converting decoded characters to lower case (Optional, default is `True`).
82
81
* `ppocr` - converting PaddlePaddle CRNN-like model output to `CharacterRecognitionPrediction`.
83
-
* `vocabulary_file` - file with recogniton symbols for decoding.
84
-
* `remove_duplicates` - allow removement of duplicated symbols (Optional, default value - `True`).
82
+
* `vocabulary_file` - file with recognition symbols for decoding.
83
+
* `remove_duplicates` - allow removing of duplicated symbols (Optional, default value - `True`).
85
84
* `ssd` - converting output of SSD model to `DetectionPrediction` representation.
86
85
* `ssd_mxnet` - converting output of SSD-based models from MXNet framework to `DetectionPrediction` representation.
87
86
* `pytorch_ssd_decoder` - converts output of SSD model from PyTorch without embedded decoder.
@@ -192,7 +191,7 @@ AccuracyChecker supports following set of adapters:
192
191
1. Multiply on `std`
193
192
2. Add `mean`
194
193
3. Reverse channels if this option enabled.
195
-
* `target_mapping` - dictionary where keys are meaningful name for solved task which will be used as keys inside `ConverterPrediction`, values - output layer names.
194
+
* `target_mapping` - dictionary where keys are a meaningful name for solved task which will be used as keys inside `ConverterPrediction`, values - output layer names.
196
195
* `super_resolution_yuv` - converts output of super resolution model, which return output in YUV format, to `SuperResolutionPrediction`. Each output layer contains only 1 channel.
197
196
* `y_output` - Y channel output layer.
198
197
* `u_output` - U channel output layer.
@@ -248,7 +247,7 @@ AccuracyChecker supports following set of adapters:
248
247
* `custom_label_map` - Alphabet as a dict of strings. Must include blank symbol for CTC algorithm.
249
248
* `ctc_greedy_search_decoder` - realization CTC Greedy Search decoder for symbol sequence recognition, converting model output to `CharacterRecognitionPrediction`.
250
249
* `blank_label` - index of the CTC blank label (default 0).
251
-
* `simple_decoder` - easiest decoder for text recognition models, convers indices of classes to given letters, slices output on the first entry of `eos_label`
250
+
* `simple_decoder` - the easiest decoder for text recognition models, converts indices of classes to given letters, slices output on the first entry of `eos_label`
252
251
* `eos_label` - label which should finish decoding
253
252
* `custom_label_map` - label map (if not provided by the dataset meta)
254
253
* `ctc_beam_search_decoder` - Python implementation of CTC beam search decoder without LM for speech recognition.
@@ -257,7 +256,7 @@ AccuracyChecker supports following set of adapters:
257
256
* `beam_size` - Size of the beam to use during decoding (default 10).
258
257
* `logarithmic_prob` - Set to "True" to indicate that network gives natural-logarithmic probabilities. Default is False for plain probabilities (after softmax).
259
258
* `probability_out` - Name of the network's output with character probabilities (required)
260
-
* `alphabet` - Alphabet as list of strings. Include an empty string for the CTC blank sybmol. Default is space + 26 English letters + apostrophe + blank.
259
+
* `alphabet` - Alphabet as list of strings. Include an empty string for the CTC blank symbol. Default is space + 26 English letters + apostrophe + blank.
261
260
* `sep` - Word separator character. Use an empty string for character-based LM. Default is space.
262
261
* `lm_file` - Path to LM in binary kenlm format, relative to --model_attributes or --models. Default is beam search without LM.
263
262
* `lm_alpha` - LM alpha: weight factor for LM score (required when using LM)
@@ -278,7 +277,7 @@ AccuracyChecker supports following set of adapters:
278
277
* `hit_ratio_adapter` - converting output NCF model to `HitRatioPrediction`.
279
278
* `brain_tumor_segmentation` - converting output of brain tumor segmentation model to `BrainTumorSegmentationPrediction`.
280
279
* `segmentation_out` - segmentation output layer name. (Optional, if not provided default first output blob will be used).
281
-
* `make_argmax` - allows to apply argmax operation to output values. (default - `False`)
* `label_order` - sets mapping from output classes to dataset classes. For example: `label_order: [3,1,2]` means that class with id 3 from model's output matches with class with id 1 from dataset, class with id 1 from model's output matches with class with id 2 from dataset, class with id 2 from model's output matches with class with id 3 from dataset.
283
282
* `nmt` - converting output of neural machine translation model to `MachineTranslationPrediction`.
284
283
* `vocabulary_file` - file which contains vocabulary for encoding model predicted indexes to words (e. g. vocab.bpe.32000.de). Path can be prefixed with `--models` arguments.
@@ -323,7 +322,7 @@ AccuracyChecker supports following set of adapters:
323
322
* `raw_masks_out` - name of output layer with raw instances masks.
324
323
* `texts_out` - name of output layer with texts.
325
324
* `confidence_threshold` - confidence threshold that is used to filter out detected instances.
326
-
* `yolact` - converting raw outputs of Yolact model to to combination of `DetectionPrediction` and `CoCoInstanceSegmentationPrediction`.
325
+
* `yolact` - converting raw outputs of Yolact model to combination of `DetectionPrediction` and `CoCoInstanceSegmentationPrediction`.
327
326
* `loc_out` - name of output layer which contains box locations, optional if boxes decoding embedded into model.
328
327
* `prior_out` - name of output layer which contains prior boxes, optional if boxes decoding embedded into model.
329
328
* `boxes_out` - name of output layer which contains decoded output boxes, optional if model has `prior` a `loc` outputs for boxes decoding.
@@ -345,14 +344,14 @@ AccuracyChecker supports following set of adapters:
345
344
* `type_scores_outputs` - the list of names for output layers with attributes detection score in order belonging to 32-, 16-, 8-strides (optional, if not provided, only `DetectionPrediction` will be generated).
346
345
* `nms_threshold` - overlap threshold for NMS (optional, default 0.5).
347
346
* `keep_top_k ` - maximal number of boxes which should be kept (optional).
348
-
* `include_boundaries` - allows include boundaries for NMS (optional, default False).
347
+
* `include_boundaries` - allows including boundaries for NMS (optional, default False).
349
348
* `retinaface-pytorch` - converting output of RetinaFace PyTorch model to `DetectionPrediction` or representation container with `DetectionPrediction`, `FacialLandmarksPrediction` (depends on provided set of outputs)
350
349
* `scores_output` - name for output layer with face detection score.
351
350
* `bboxes_output` - name for output layer with face detection boxes.
352
351
* `landmarks_output` - name for output layer with predicted facial landmarks (optional, if not provided, only `DetectionPrediction` will be generated).
353
352
* `nms_threshold` - overlap threshold for NMS (optional, default 0.4).
354
353
* `keep_top_k ` - maximal number of boxes which should be kept (optional, default 750).
355
-
* `include_boundaries` - allows include boundaries for NMS (optional, default False).
354
+
* `include_boundaries` - allows including boundaries for NMS (optional, default False).
356
355
* `confidence_threshold` - confidence threshold that is used to filter out detected instances (optional, default 0.02).
357
356
* `faceboxes` - converting output of FaceBoxes model to `DetectionPrediction` representation.
358
357
* `scores_out` - name of output layer with bounding boxes scores.
@@ -376,7 +375,7 @@ AccuracyChecker supports following set of adapters:
376
375
* `multi_output_regression` - converting raw output features to `RegressionPrediction` for regression with gt data.
377
376
* `output` - list of target output names.
378
377
* `mixed` - converts outputs of any model to `ContainerPrediction` which contains multiple types of predictions.
379
-
* `adapters` - Dict where key is output name and value is adapter config map including `output_blob` key to associate the output of model and this adapter.
378
+
* `adapters` - Dict where key is an output name and value is adapter config map including `output_blob` key to associate the output of model and this adapter.
380
379
* `person_vehilce_detection_refinement` - converts output of person vehicle detection refinement model to `DetectionPrediction` representation. Adapter refines proposals generated in previous stage model.
381
380
* `head_detection` - converts output of head detection model to `DetectionPrediction ` representation. Operation is performed by mapping model output to the defined anchors, window scales, window translates, and window lengths to generate a list of head candidates.
382
381
* `score_threshold` - Score threshold value used to discern whether a face is valid.
@@ -399,7 +398,7 @@ AccuracyChecker supports following set of adapters:
399
398
* `salient_object_detection` - converts output of salient object detection model to `SalientRegionPrediction`
400
399
* `salient_map_output` - target output layer for getting salience map (Optional, if not provided default output blob will be used).
401
400
* `two_stage_detection` - converts output of 2-stage detector to `DetectionPrediction`.
402
-
* `boxes_out` - output with bounding boxes in format BxNx[x_min, y_min, width, height], where B - network batch size, N - number of detected boxes.
401
+
* `boxes_out` - output with bounding boxes in the format BxNx[x_min, y_min, width, height], where B - network batch size, N - number of detected boxes.
403
402
* `cls_out` - output with classification probabilities in format [BxNxC], where B - network batch size, N - number of detected boxes, C - number of classed.
404
403
* `dumb_decoder` - converts audio recognition model output to `CharacterRecognitionPrediction`.
405
404
* `alphabet` - model alphabet.
@@ -431,5 +430,5 @@ AccuracyChecker supports following set of adapters:
* `word_insertion_penalty` - add word insertion penalty to the lattice. Penalties are negative log-probs, base e, and are added to the language model' part of the cost (Optional, `0`).
433
432
* `quantiles_predictor` - converts output of Time Series Forecasting models to `TimeSeriesForecastingQuantilesPrediction`.
0 commit comments