Skip to content

Commit 0493d06

Browse files
authored
AC docs: remove wrong parameters discription from yolo v3 adapter (#2528)
1 parent 0a7d66c commit 0493d06

File tree

1 file changed

+14
-15
lines changed
  • tools/accuracy_checker/accuracy_checker/adapters

1 file changed

+14
-15
lines changed

tools/accuracy_checker/accuracy_checker/adapters/README.md

Lines changed: 14 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ AccuracyChecker supports following set of adapters:
2929
* `block` - process whole batch as a single data block.
3030
* `classification_output` - target output layer name.
3131
* `segmentation` - converting output of semantic segmentation model to `SeegmentationPrediction` representation.
32-
* `make_argmax` - allows to apply argmax operation to output values.
32+
* `make_argmax` - allows applying argmax operation to output values.
3333
* `segmentation_one_class` - converting output of semantic segmentation to `SeegmentationPrediction` representation. It is suitable for situation when model's output is probability of belong each pixel to foreground class.
3434
* `threshold` - minimum probability threshold for valid class belonging.
3535
* `tiny_yolo_v1` - converting output of Tiny YOLO v1 model to `DetectionPrediction` representation.
@@ -51,14 +51,13 @@ AccuracyChecker supports following set of adapters:
5151
Applicable only if network output not 3D (4D with batch) tensor.
5252
* `yolo_v3` - converting output of YOLO v3 family models to `DetectionPrediction` representation.
5353
* `classes` - number of detection classes (default 80).
54-
* `anchors` - anchor values provided as comma-separited list or precomputed:
54+
* `anchors` - anchor values provided as comma-separated list or precomputed:
5555
- `yolo_v3` - `[10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0, 198.0, 373.0, 326.0]`
5656
- `tiny_yolo_v3` - `[10.0, 14.0, 23.0, 27.0, 37.0, 58.0, 81.0, 82.0, 135.0, 169.0, 344.0, 319.0]`
5757
* `coords` - number of bbox coordinates (default 4).
5858
* `num` - num parameter from DarkNet configuration file (default 3).
5959
* `anchor_mask` - mask for used anchors for each output layer (Optional, if not provided default way for selecting anchors will be used.)
6060
* `threshold` - minimal objectness score value for valid detections (default 0.001).
61-
* `input_width` and `input_height` - network input width and height correspondingly (default 416).
6261
* `outputs` - the list of output layers names.
6362
* `raw_output` - enabling additional preprocessing for raw YOLO output format (default `False`).
6463
* `output_format` - setting output layer format - boxes first (`BHW`)(default, also default for generated IRs), boxes last (`HWB`). Applicable only if network output not 3D (4D with batch) tensor.
@@ -80,8 +79,8 @@ AccuracyChecker supports following set of adapters:
8079
* `eos_index` - index of end of string token in labels. (Optional, default 2, ignored if you have decoding part in the model).
8180
* `to_lower_case` - allow converting decoded characters to lower case (Optional, default is `True`).
8281
* `ppocr` - converting PaddlePaddle CRNN-like model output to `CharacterRecognitionPrediction`.
83-
* `vocabulary_file` - file with recogniton symbols for decoding.
84-
* `remove_duplicates` - allow removement of duplicated symbols (Optional, default value - `True`).
82+
* `vocabulary_file` - file with recognition symbols for decoding.
83+
* `remove_duplicates` - allow removing of duplicated symbols (Optional, default value - `True`).
8584
* `ssd` - converting output of SSD model to `DetectionPrediction` representation.
8685
* `ssd_mxnet` - converting output of SSD-based models from MXNet framework to `DetectionPrediction` representation.
8786
* `pytorch_ssd_decoder` - converts output of SSD model from PyTorch without embedded decoder.
@@ -192,7 +191,7 @@ AccuracyChecker supports following set of adapters:
192191
1. Multiply on `std`
193192
2. Add `mean`
194193
3. Reverse channels if this option enabled.
195-
* `target_mapping` - dictionary where keys are meaningful name for solved task which will be used as keys inside `ConverterPrediction`, values - output layer names.
194+
* `target_mapping` - dictionary where keys are a meaningful name for solved task which will be used as keys inside `ConverterPrediction`, values - output layer names.
196195
* `super_resolution_yuv` - converts output of super resolution model, which return output in YUV format, to `SuperResolutionPrediction`. Each output layer contains only 1 channel.
197196
* `y_output` - Y channel output layer.
198197
* `u_output` - U channel output layer.
@@ -248,7 +247,7 @@ AccuracyChecker supports following set of adapters:
248247
* `custom_label_map` - Alphabet as a dict of strings. Must include blank symbol for CTC algorithm.
249248
* `ctc_greedy_search_decoder` - realization CTC Greedy Search decoder for symbol sequence recognition, converting model output to `CharacterRecognitionPrediction`.
250249
* `blank_label` - index of the CTC blank label (default 0).
251-
* `simple_decoder` - easiest decoder for text recognition models, convers indices of classes to given letters, slices output on the first entry of `eos_label`
250+
* `simple_decoder` - the easiest decoder for text recognition models, converts indices of classes to given letters, slices output on the first entry of `eos_label`
252251
* `eos_label` - label which should finish decoding
253252
* `custom_label_map` - label map (if not provided by the dataset meta)
254253
* `ctc_beam_search_decoder` - Python implementation of CTC beam search decoder without LM for speech recognition.
@@ -257,7 +256,7 @@ AccuracyChecker supports following set of adapters:
257256
* `beam_size` - Size of the beam to use during decoding (default 10).
258257
* `logarithmic_prob` - Set to "True" to indicate that network gives natural-logarithmic probabilities. Default is False for plain probabilities (after softmax).
259258
* `probability_out` - Name of the network's output with character probabilities (required)
260-
* `alphabet` - Alphabet as list of strings. Include an empty string for the CTC blank sybmol. Default is space + 26 English letters + apostrophe + blank.
259+
* `alphabet` - Alphabet as list of strings. Include an empty string for the CTC blank symbol. Default is space + 26 English letters + apostrophe + blank.
261260
* `sep` - Word separator character. Use an empty string for character-based LM. Default is space.
262261
* `lm_file` - Path to LM in binary kenlm format, relative to --model_attributes or --models. Default is beam search without LM.
263262
* `lm_alpha` - LM alpha: weight factor for LM score (required when using LM)
@@ -278,7 +277,7 @@ AccuracyChecker supports following set of adapters:
278277
* `hit_ratio_adapter` - converting output NCF model to `HitRatioPrediction`.
279278
* `brain_tumor_segmentation` - converting output of brain tumor segmentation model to `BrainTumorSegmentationPrediction`.
280279
* `segmentation_out` - segmentation output layer name. (Optional, if not provided default first output blob will be used).
281-
* `make_argmax` - allows to apply argmax operation to output values. (default - `False`)
280+
* `make_argmax` - allows applying argmax operation to output values. (default - `False`)
282281
* `label_order` - sets mapping from output classes to dataset classes. For example: `label_order: [3,1,2]` means that class with id 3 from model's output matches with class with id 1 from dataset, class with id 1 from model's output matches with class with id 2 from dataset, class with id 2 from model's output matches with class with id 3 from dataset.
283282
* `nmt` - converting output of neural machine translation model to `MachineTranslationPrediction`.
284283
* `vocabulary_file` - file which contains vocabulary for encoding model predicted indexes to words (e. g. vocab.bpe.32000.de). Path can be prefixed with `--models` arguments.
@@ -323,7 +322,7 @@ AccuracyChecker supports following set of adapters:
323322
* `raw_masks_out` - name of output layer with raw instances masks.
324323
* `texts_out` - name of output layer with texts.
325324
* `confidence_threshold` - confidence threshold that is used to filter out detected instances.
326-
* `yolact` - converting raw outputs of Yolact model to to combination of `DetectionPrediction` and `CoCoInstanceSegmentationPrediction`.
325+
* `yolact` - converting raw outputs of Yolact model to combination of `DetectionPrediction` and `CoCoInstanceSegmentationPrediction`.
327326
* `loc_out` - name of output layer which contains box locations, optional if boxes decoding embedded into model.
328327
* `prior_out` - name of output layer which contains prior boxes, optional if boxes decoding embedded into model.
329328
* `boxes_out` - name of output layer which contains decoded output boxes, optional if model has `prior` a `loc` outputs for boxes decoding.
@@ -345,14 +344,14 @@ AccuracyChecker supports following set of adapters:
345344
* `type_scores_outputs` - the list of names for output layers with attributes detection score in order belonging to 32-, 16-, 8-strides (optional, if not provided, only `DetectionPrediction` will be generated).
346345
* `nms_threshold` - overlap threshold for NMS (optional, default 0.5).
347346
* `keep_top_k ` - maximal number of boxes which should be kept (optional).
348-
* `include_boundaries` - allows include boundaries for NMS (optional, default False).
347+
* `include_boundaries` - allows including boundaries for NMS (optional, default False).
349348
* `retinaface-pytorch` - converting output of RetinaFace PyTorch model to `DetectionPrediction` or representation container with `DetectionPrediction`, `FacialLandmarksPrediction` (depends on provided set of outputs)
350349
* `scores_output` - name for output layer with face detection score.
351350
* `bboxes_output` - name for output layer with face detection boxes.
352351
* `landmarks_output` - name for output layer with predicted facial landmarks (optional, if not provided, only `DetectionPrediction` will be generated).
353352
* `nms_threshold` - overlap threshold for NMS (optional, default 0.4).
354353
* `keep_top_k ` - maximal number of boxes which should be kept (optional, default 750).
355-
* `include_boundaries` - allows include boundaries for NMS (optional, default False).
354+
* `include_boundaries` - allows including boundaries for NMS (optional, default False).
356355
* `confidence_threshold` - confidence threshold that is used to filter out detected instances (optional, default 0.02).
357356
* `faceboxes` - converting output of FaceBoxes model to `DetectionPrediction` representation.
358357
* `scores_out` - name of output layer with bounding boxes scores.
@@ -376,7 +375,7 @@ AccuracyChecker supports following set of adapters:
376375
* `multi_output_regression` - converting raw output features to `RegressionPrediction` for regression with gt data.
377376
* `output` - list of target output names.
378377
* `mixed` - converts outputs of any model to `ContainerPrediction` which contains multiple types of predictions.
379-
* `adapters` - Dict where key is output name and value is adapter config map including `output_blob` key to associate the output of model and this adapter.
378+
* `adapters` - Dict where key is an output name and value is adapter config map including `output_blob` key to associate the output of model and this adapter.
380379
* `person_vehilce_detection_refinement` - converts output of person vehicle detection refinement model to `DetectionPrediction` representation. Adapter refines proposals generated in previous stage model.
381380
* `head_detection` - converts output of head detection model to `DetectionPrediction ` representation. Operation is performed by mapping model output to the defined anchors, window scales, window translates, and window lengths to generate a list of head candidates.
382381
* `score_threshold` - Score threshold value used to discern whether a face is valid.
@@ -399,7 +398,7 @@ AccuracyChecker supports following set of adapters:
399398
* `salient_object_detection` - converts output of salient object detection model to `SalientRegionPrediction`
400399
* `salient_map_output` - target output layer for getting salience map (Optional, if not provided default output blob will be used).
401400
* `two_stage_detection` - converts output of 2-stage detector to `DetectionPrediction`.
402-
* `boxes_out` - output with bounding boxes in format BxNx[x_min, y_min, width, height], where B - network batch size, N - number of detected boxes.
401+
* `boxes_out` - output with bounding boxes in the format BxNx[x_min, y_min, width, height], where B - network batch size, N - number of detected boxes.
403402
* `cls_out` - output with classification probabilities in format [BxNxC], where B - network batch size, N - number of detected boxes, C - number of classed.
404403
* `dumb_decoder` - converts audio recognition model output to `CharacterRecognitionPrediction`.
405404
* `alphabet` - model alphabet.
@@ -431,5 +430,5 @@ AccuracyChecker supports following set of adapters:
431430
* `inverse_acoustic_scale` - inverse acoustic scale for lattice scaling (Optional, default `0`).
432431
* `word_insertion_penalty` - add word insertion penalty to the lattice. Penalties are negative log-probs, base e, and are added to the language model' part of the cost (Optional, `0`).
433432
* `quantiles_predictor` - converts output of Time Series Forecasting models to `TimeSeriesForecastingQuantilesPrediction`.
434-
* `quantiles` - preds[i]->quantile[i] mapping.
433+
* `quantiles` - predictions[i]->quantile[i] mapping.
435434
* `output_name` - name of output node to convert.

0 commit comments

Comments
 (0)