Skip to content

Commit 6ccd50f

Browse files
author
Aleksei Korobeinikov
authored
rename threshold parameter (#2964)
1 parent e1069f3 commit 6ccd50f

File tree

10 files changed

+25
-25
lines changed

10 files changed

+25
-25
lines changed

demos/common/python/openvino/model_zoo/model_api/models/centernet.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def postprocess(self, outputs, meta):
6161
xs + wh[..., 0:1] / 2,
6262
ys + wh[..., 1:2] / 2), axis=1)
6363
detections = np.concatenate((bboxes, scores, clses), axis=1)
64-
mask = detections[..., 4] >= self.threshold
64+
mask = detections[..., 4] >= self.confidence_threshold
6565
filtered_detections = detections[mask]
6666
scale = max(meta['original_shape'])
6767
center = np.array(meta['original_shape'][:2])/2.0

demos/common/python/openvino/model_zoo/model_api/models/ctpn.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ def parameters(cls):
7979
'iou_threshold': NumericalValue(default_value=0.5, description="Threshold for NMS filtering"),
8080
'input_size': ListValue()
8181
})
82-
parameters['threshold'].update_default_value(0.9)
82+
parameters['confidence_threshold'].update_default_value(0.9)
8383
parameters['labels'].update_default_value(['Text'])
8484
return parameters
8585

@@ -207,7 +207,7 @@ def get_detections(self, text_proposals, scores, size):
207207
heights = (abs(text_recs[:, 5] - text_recs[:, 1]) + abs(text_recs[:, 7] - text_recs[:, 3])) / 2.0 + 1
208208
widths = (abs(text_recs[:, 2] - text_recs[:, 0]) + abs(text_recs[:, 6] - text_recs[:, 4])) / 2.0 + 1
209209
scores = text_recs[:, 8]
210-
keep_inds = np.where((widths / heights > self.min_ratio) & (scores > self.threshold) &
210+
keep_inds = np.where((widths / heights > self.min_ratio) & (scores > self.confidence_threshold) &
211211
(widths > self.min_width))[0]
212212

213213
return text_recs[keep_inds]

demos/common/python/openvino/model_zoo/model_api/models/detection_model.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ def __init__(self, model_adapter, configuration=None, preload=False):
5757
def parameters(cls):
5858
parameters = super().parameters()
5959
parameters.update({
60-
'threshold': NumericalValue(default_value=0.5, description="Threshold value for detection box confidence"),
60+
'confidence_threshold': NumericalValue(default_value=0.5, description="Threshold value for detection box confidence"),
6161
'labels': ListValue(description="List of class labels"),
6262
'path_to_labels': StringValue(
6363
description="Path to file with labels. Overrides the labels, if they sets via 'labels' parameter"

demos/common/python/openvino/model_zoo/model_api/models/detr.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ def _get_outputs(self):
4747
def parameters(cls):
4848
parameters = super().parameters()
4949
parameters['resize_type'].update_default_value('standard')
50-
parameters['threshold'].update_default_value(0.5)
50+
parameters['confidence_threshold'].update_default_value(0.5)
5151
return parameters
5252

5353
def postprocess(self, outputs, meta):
@@ -65,7 +65,7 @@ def _parse_outputs(self, outputs):
6565
labels = np.argmax(scores[:, :-1], axis=-1)
6666
det_scores = np.max(scores[:, :-1], axis=-1)
6767

68-
keep = det_scores > self.threshold
68+
keep = det_scores > self.confidence_threshold
6969

7070
detections = [Detection(*det) for det in zip(x_mins[keep], y_mins[keep], x_maxs[keep], y_maxs[keep],
7171
det_scores[keep], labels[keep])]

demos/common/python/openvino/model_zoo/model_api/models/faceboxes.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ def _parse_outputs(self, outputs, meta):
7575

7676
score = np.transpose(scores)[1]
7777

78-
mask = score > self.threshold
78+
mask = score > self.confidence_threshold
7979
filtered_boxes, filtered_score = boxes[mask, :], score[mask]
8080
if filtered_score.size != 0:
8181
x_mins = (filtered_boxes[:, 0] - 0.5 * filtered_boxes[:, 2])

demos/common/python/openvino/model_zoo/model_api/models/retinaface.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -43,14 +43,14 @@ def __init__(self, model_adapter, configuration=None, preload=False):
4343
def parameters(cls):
4444
parameters = super().parameters()
4545
parameters['resize_type'].update_default_value('standard')
46-
parameters['threshold'].update_default_value(0.5)
46+
parameters['confidence_threshold'].update_default_value(0.5)
4747
return parameters
4848

4949
def postprocess(self, outputs, meta):
5050
scale_x = meta['resized_shape'][1] / meta['original_shape'][1]
5151
scale_y = meta['resized_shape'][0] / meta['original_shape'][0]
5252

53-
outputs = self.postprocessor.process_output(outputs, scale_x, scale_y, self.threshold, self.mask_threshold)
53+
outputs = self.postprocessor.process_output(outputs, scale_x, scale_y, self.confidence_threshold, self.mask_threshold)
5454
return clip_detections(outputs, meta['original_shape'])
5555

5656

@@ -69,15 +69,15 @@ def __init__(self, model_adapter, configuration=None, preload=False):
6969
def parameters(cls):
7070
parameters = super().parameters()
7171
parameters['resize_type'].update_default_value('standard')
72-
parameters['threshold'].update_default_value(0.5)
72+
parameters['confidence_threshold'].update_default_value(0.5)
7373
parameters['labels'].update_default_value(['Face'])
7474
return parameters
7575

7676
def postprocess(self, outputs, meta):
7777
scale_x = meta['resized_shape'][1] / meta['original_shape'][1]
7878
scale_y = meta['resized_shape'][0] / meta['original_shape'][0]
7979

80-
outputs = self.postprocessor.process_output(outputs, scale_x, scale_y, self.threshold,
80+
outputs = self.postprocessor.process_output(outputs, scale_x, scale_y, self.confidence_threshold,
8181
meta['resized_shape'][:2])
8282
return clip_detections(outputs, meta['original_shape'])
8383

demos/common/python/openvino/model_zoo/model_api/models/ssd.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ def __init__(self, model_adapter, configuration=None, preload=False):
3232
def parameters(cls):
3333
parameters = super().parameters()
3434
parameters['resize_type'].update_default_value('standard')
35-
parameters['threshold'].update_default_value(0.5)
35+
parameters['confidence_threshold'].update_default_value(0.5)
3636
return parameters
3737

3838
def preprocess(self, inputs):
@@ -72,7 +72,7 @@ def _get_output_parser(self, image_blob_name, bboxes='bboxes', labels='labels',
7272
def _parse_outputs(self, outputs, meta):
7373
detections = self.output_parser(outputs)
7474

75-
detections = [d for d in detections if d.score > self.threshold]
75+
detections = [d for d in detections if d.score > self.confidence_threshold]
7676

7777
return detections
7878

demos/common/python/openvino/model_zoo/model_api/models/ultra_lightweight_face_detection.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ def parameters(cls):
5454
'iou_threshold': NumericalValue(default_value=0.5, description="Threshold for NMS filtering"),
5555
})
5656
parameters['resize_type'].update_default_value('standard')
57-
parameters['threshold'].update_default_value(0.5)
57+
parameters['confidence_threshold'].update_default_value(0.5)
5858
parameters['labels'].update_default_value(['Face'])
5959
return parameters
6060

@@ -69,7 +69,7 @@ def _parse_outputs(self, outputs, meta):
6969

7070
score = np.transpose(scores)[1]
7171

72-
mask = score > self.threshold
72+
mask = score > self.confidence_threshold
7373
filtered_boxes, filtered_score = boxes[mask, :], score[mask]
7474

7575
x_mins, y_mins, x_maxs, y_maxs = filtered_boxes.T

demos/common/python/openvino/model_zoo/model_api/models/yolo.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ def parameters(cls):
115115
'iou_threshold': NumericalValue(default_value=0.5, description="Threshold for NMS filtering"),
116116
})
117117
parameters['resize_type'].update_default_value('fit_to_window_letterbox')
118-
parameters['threshold'].update_default_value(0.5)
118+
parameters['confidence_threshold'].update_default_value(0.5)
119119
return parameters
120120

121121
def postprocess(self, outputs, meta):
@@ -124,7 +124,7 @@ def postprocess(self, outputs, meta):
124124
return detections
125125

126126
@staticmethod
127-
def _parse_yolo_region(cls, predictions, input_size, params, threshold):
127+
def _parse_yolo_region(cls, predictions, input_size, params, confidence_threshold):
128128
# ------------------------------------------ Extracting layer parameters ---------------------------------------
129129
objects = []
130130
size_normalizer = input_size if params.use_input_size else params.sides
@@ -135,7 +135,7 @@ def _parse_yolo_region(cls, predictions, input_size, params, threshold):
135135
class_probabilities = cls._get_probabilities(prediction, params.classes)
136136

137137
# filter out the proposals with low confidence score
138-
keep_idxs = np.nonzero(class_probabilities > threshold)[0]
138+
keep_idxs = np.nonzero(class_probabilities > confidence_threshold)[0]
139139
class_probabilities = class_probabilities[keep_idxs]
140140
obj_indx = keep_idxs // params.classes
141141
class_idx = keep_idxs % params.classes
@@ -222,7 +222,7 @@ def _parse_outputs(self, outputs, meta):
222222
out_blob = outputs[layer_name]
223223
layer_params = self.yolo_layer_params[layer_name]
224224
out_blob.shape = layer_params[0]
225-
detections += self._parse_yolo_region(self, out_blob, meta['resized_shape'], layer_params[1], self.threshold)
225+
detections += self._parse_yolo_region(self, out_blob, meta['resized_shape'], layer_params[1], self.confidence_threshold)
226226

227227
detections = self._filter(detections, self.iou_threshold)
228228
return detections
@@ -358,7 +358,7 @@ def parameters(cls):
358358
parameters.update({
359359
'iou_threshold': NumericalValue(default_value=0.65, description="Threshold for NMS filtering"),
360360
})
361-
parameters['threshold'].update_default_value(0.5)
361+
parameters['confidence_threshold'].update_default_value(0.5)
362362
return parameters
363363

364364
def preprocess(self, inputs):
@@ -385,11 +385,11 @@ def postprocess(self, outputs, meta):
385385
output[..., :2] = (output[..., :2] + self.grids) * self.expanded_strides
386386
output[..., 2:4] = np.exp(output[..., 2:4]) * self.expanded_strides
387387

388-
valid_predictions = output[output[..., 4] > self.threshold]
388+
valid_predictions = output[output[..., 4] > self.confidence_threshold]
389389
valid_predictions[:, 5:] *= valid_predictions[:, 4:5]
390390

391391
boxes = self.xywh2xyxy(valid_predictions[:, :4]) / meta['scale']
392-
i, j = (valid_predictions[:, 5:] > self.threshold).nonzero()
392+
i, j = (valid_predictions[:, 5:] > self.confidence_threshold).nonzero()
393393
x_mins, y_mins, x_maxs, y_maxs = boxes[i].T
394394
scores = valid_predictions[i, j + 5]
395395

@@ -463,7 +463,7 @@ def _get_outputs(self):
463463
def parameters(cls):
464464
parameters = super().parameters()
465465
parameters['resize_type'].update_default_value('fit_to_window_letterbox')
466-
parameters['threshold'].update_default_value(0.5)
466+
parameters['confidence_threshold'].update_default_value(0.5)
467467
return parameters
468468

469469
def preprocess(self, inputs):
@@ -497,7 +497,7 @@ def _parse_outputs(self, outputs):
497497
out_scores.append(scores[tuple(idx_[1:])])
498498
out_boxes.append(boxes[idx_[2]])
499499
transposed_boxes = np.array(out_boxes).T if out_boxes else ([], [], [], [])
500-
mask = np.array(out_scores) > self.threshold
500+
mask = np.array(out_scores) > self.confidence_threshold
501501

502502
if mask.size == 0:
503503
return []

demos/object_detection_demo/python/object_detection_demo.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,7 @@ def main():
217217
'scale_values': args.scale_values,
218218
'reverse_input_channels': args.reverse_input_channels,
219219
'path_to_labels': args.labels,
220-
'threshold': args.prob_threshold,
220+
'confidence_threshold': args.prob_threshold,
221221
'input_size': args.input_size, # The CTPN specific
222222
}
223223
model = DetectionModel.create_model(args.architecture_type, model_adapter, configuration)

0 commit comments

Comments
 (0)