|
| 1 | +import json |
| 2 | +import time |
| 3 | +from tabulate import tabulate |
| 4 | + |
| 5 | +from optimizely import optimizely |
| 6 | + |
| 7 | +import data |
| 8 | + |
| 9 | + |
| 10 | +ITERATIONS = 10 |
| 11 | + |
| 12 | + |
| 13 | +class BenchmarkingTests(object): |
| 14 | + |
| 15 | + def create_object(self, datafile): |
| 16 | + start_time = time.clock() |
| 17 | + optimizely.Optimizely(json.dumps(datafile)) |
| 18 | + end_time = time.clock() |
| 19 | + return (end_time - start_time) |
| 20 | + |
| 21 | + def create_object_schema_validation_off(self, datafile): |
| 22 | + start_time = time.clock() |
| 23 | + optimizely.Optimizely(json.dumps(datafile), skip_json_validation=True) |
| 24 | + end_time = time.clock() |
| 25 | + return (end_time - start_time) |
| 26 | + |
| 27 | + def activate_with_no_attributes(self, optimizely_obj, user_id): |
| 28 | + start_time = time.clock() |
| 29 | + variation_key = optimizely_obj.activate('testExperiment2', user_id) |
| 30 | + end_time = time.clock() |
| 31 | + assert variation_key == 'control' |
| 32 | + return (end_time - start_time) |
| 33 | + |
| 34 | + def activate_with_attributes(self, optimizely_obj, user_id): |
| 35 | + start_time = time.clock() |
| 36 | + variation_key = optimizely_obj.activate('testExperimentWithFirefoxAudience', |
| 37 | + user_id, attributes={'browser_type': 'firefox'}) |
| 38 | + end_time = time.clock() |
| 39 | + assert variation_key == 'variation' |
| 40 | + return (end_time - start_time) |
| 41 | + |
| 42 | + def activate_with_forced_variation(self, optimizely_obj, user_id): |
| 43 | + start_time = time.clock() |
| 44 | + variation_key = optimizely_obj.activate('testExperiment2', user_id) |
| 45 | + end_time = time.clock() |
| 46 | + assert variation_key == 'variation' |
| 47 | + return (end_time - start_time) |
| 48 | + |
| 49 | + def activate_grouped_experiment_no_attributes(self, optimizely_obj, user_id): |
| 50 | + start_time = time.clock() |
| 51 | + variation_key = optimizely_obj.activate('mutex_exp2', user_id) |
| 52 | + end_time = time.clock() |
| 53 | + assert variation_key == 'b' |
| 54 | + return (end_time - start_time) |
| 55 | + |
| 56 | + def activate_grouped_experiment_with_attributes(self, optimizely_obj, user_id): |
| 57 | + start_time = time.clock() |
| 58 | + variation_key = optimizely_obj.activate('mutex_exp1', user_id, attributes={'browser_type': 'chrome'}) |
| 59 | + end_time = time.clock() |
| 60 | + assert variation_key == 'a' |
| 61 | + return (end_time - start_time) |
| 62 | + |
| 63 | + def get_variation_with_no_attributes(self, optimizely_obj, user_id): |
| 64 | + start_time = time.clock() |
| 65 | + variation_key = optimizely_obj.get_variation('testExperiment2', user_id) |
| 66 | + end_time = time.clock() |
| 67 | + assert variation_key == 'control' |
| 68 | + return (end_time - start_time) |
| 69 | + |
| 70 | + def get_variation_with_attributes(self, optimizely_obj, user_id): |
| 71 | + start_time = time.clock() |
| 72 | + variation_key = optimizely_obj.get_variation('testExperimentWithFirefoxAudience', |
| 73 | + user_id, attributes={'browser_type': 'firefox'}) |
| 74 | + end_time = time.clock() |
| 75 | + assert variation_key == 'variation' |
| 76 | + return (end_time - start_time) |
| 77 | + |
| 78 | + def get_variation_with_forced_variation(self, optimizely_obj, user_id): |
| 79 | + start_time = time.clock() |
| 80 | + variation_key = optimizely_obj.get_variation('testExperiment2', user_id) |
| 81 | + end_time = time.clock() |
| 82 | + assert variation_key == 'variation' |
| 83 | + return (end_time - start_time) |
| 84 | + |
| 85 | + def get_variation_grouped_experiment_no_attributes(self, optimizely_obj, user_id): |
| 86 | + start_time = time.clock() |
| 87 | + variation_key = optimizely_obj.get_variation('mutex_exp2', user_id) |
| 88 | + end_time = time.clock() |
| 89 | + assert variation_key == 'b' |
| 90 | + return (end_time - start_time) |
| 91 | + |
| 92 | + def get_variation_grouped_experiment_with_attributes(self, optimizely_obj, user_id): |
| 93 | + start_time = time.clock() |
| 94 | + variation_key = optimizely_obj.get_variation('mutex_exp1', user_id, attributes={'browser_type': 'chrome'}) |
| 95 | + end_time = time.clock() |
| 96 | + assert variation_key == 'a' |
| 97 | + return (end_time - start_time) |
| 98 | + |
| 99 | + def track_with_attributes(self, optimizely_obj, user_id): |
| 100 | + start_time = time.clock() |
| 101 | + optimizely_obj.track('testEventWithAudiences', user_id, attributes={'browser_type': 'firefox'}) |
| 102 | + end_time = time.clock() |
| 103 | + return (end_time - start_time) |
| 104 | + |
| 105 | + def track_with_revenue(self, optimizely_obj, user_id): |
| 106 | + start_time = time.clock() |
| 107 | + optimizely_obj.track('testEvent', user_id, event_value=666) |
| 108 | + end_time = time.clock() |
| 109 | + return (end_time - start_time) |
| 110 | + |
| 111 | + def track_with_attributes_and_revenue(self, optimizely_obj, user_id): |
| 112 | + start_time = time.clock() |
| 113 | + optimizely_obj.track('testEventWithAudiences', user_id, |
| 114 | + attributes={'browser_type': 'firefox'}, event_value=666) |
| 115 | + end_time = time.clock() |
| 116 | + return (end_time - start_time) |
| 117 | + |
| 118 | + def track_no_attributes_no_revenue(self, optimizely_obj, user_id): |
| 119 | + start_time = time.clock() |
| 120 | + optimizely_obj.track('testEvent', user_id) |
| 121 | + end_time = time.clock() |
| 122 | + return (end_time - start_time) |
| 123 | + |
| 124 | + def track_grouped_experiment(self, optimizely_obj, user_id): |
| 125 | + start_time = time.clock() |
| 126 | + optimizely_obj.track('testEventWithMultipleGroupedExperiments', user_id) |
| 127 | + end_time = time.clock() |
| 128 | + return (end_time - start_time) |
| 129 | + |
| 130 | + def track_grouped_experiment_with_attributes(self, optimizely_obj, user_id): |
| 131 | + start_time = time.clock() |
| 132 | + optimizely_obj.track('testEventWithMultipleExperiments', user_id, attributes={'browser_type': 'chrome'}) |
| 133 | + end_time = time.clock() |
| 134 | + return (end_time - start_time) |
| 135 | + |
| 136 | + def track_grouped_experiment_with_revenue(self, optimizely_obj, user_id): |
| 137 | + start_time = time.clock() |
| 138 | + optimizely_obj.track('testEventWithMultipleGroupedExperiments', user_id, event_value=666) |
| 139 | + end_time = time.clock() |
| 140 | + return (end_time - start_time) |
| 141 | + |
| 142 | + def track_grouped_experiment_with_attributes_and_revenue(self, optimizely_obj, user_id): |
| 143 | + start_time = time.clock() |
| 144 | + optimizely_obj.track('testEventWithMultipleExperiments', user_id, |
| 145 | + attributes={'browser_type': 'chrome'}, event_value=666) |
| 146 | + end_time = time.clock() |
| 147 | + return (end_time - start_time) |
| 148 | + |
| 149 | + |
| 150 | +def compute_average(values): |
| 151 | + """ Given a set of values compute the average. |
| 152 | +
|
| 153 | + Args: |
| 154 | + values: Set of values for which average is to be computed. |
| 155 | +
|
| 156 | + Returns: |
| 157 | + Average of all values. |
| 158 | + """ |
| 159 | + return float(sum(values))/len(values) |
| 160 | + |
| 161 | + |
| 162 | +def compute_median(values): |
| 163 | + """ Given a set of values compute the median. |
| 164 | +
|
| 165 | + Args: |
| 166 | + values: Set of values for which median is to be computed. |
| 167 | +
|
| 168 | + Returns: |
| 169 | + Median of all values. |
| 170 | + """ |
| 171 | + |
| 172 | + sorted_values = sorted(values) |
| 173 | + num1 = (len(values) - 1) / 2 |
| 174 | + num2 = len(values) / 2 |
| 175 | + return float(sorted_values[num1] + sorted_values[num2])/2 |
| 176 | + |
| 177 | + |
| 178 | +def display_results(results_average, results_median): |
| 179 | + """ Format and print results on screen. |
| 180 | +
|
| 181 | + Args: |
| 182 | + results_average: Dict holding averages. |
| 183 | + results_median: Dict holding medians. |
| 184 | + """ |
| 185 | + |
| 186 | + table_data = [] |
| 187 | + table_headers = ['Test Name', |
| 188 | + '10 Experiment Average', '10 Experiment Median', |
| 189 | + '25 Experiment Average', '25 Experiment Median', |
| 190 | + '50 Experiment Average', '50 Experiment Median'] |
| 191 | + for test_name, test_method in BenchmarkingTests.__dict__.iteritems(): |
| 192 | + if callable(test_method): |
| 193 | + row_data = [test_name] |
| 194 | + for experiment_count in sorted(data.datafiles.keys()): |
| 195 | + row_data.append(results_average.get(experiment_count).get(test_name)) |
| 196 | + row_data.append(results_median.get(experiment_count).get(test_name)) |
| 197 | + table_data.append(row_data) |
| 198 | + |
| 199 | + print tabulate(table_data, headers=table_headers) |
| 200 | + |
| 201 | + |
| 202 | +def run_benchmarking_tests(): |
| 203 | + all_test_results_average = {} |
| 204 | + all_test_results_median = {} |
| 205 | + test_data = data.test_data |
| 206 | + for experiment_count in data.datafiles: |
| 207 | + all_test_results_average[experiment_count] = {} |
| 208 | + all_test_results_median[experiment_count] = {} |
| 209 | + for test_name, test_method in BenchmarkingTests.__dict__.iteritems(): |
| 210 | + if callable(test_method): |
| 211 | + values = [] |
| 212 | + for i in xrange(ITERATIONS): |
| 213 | + values.append(1000 * test_method(BenchmarkingTests(), *test_data.get(test_name).get(experiment_count))) |
| 214 | + time_in_milliseconds_avg = compute_average(values) |
| 215 | + time_in_milliseconds_median = compute_median(values) |
| 216 | + all_test_results_average[experiment_count][test_name] = time_in_milliseconds_avg |
| 217 | + all_test_results_median[experiment_count][test_name] = time_in_milliseconds_median |
| 218 | + |
| 219 | + display_results(all_test_results_average, all_test_results_median) |
| 220 | + |
| 221 | +if __name__ == '__main__': |
| 222 | + run_benchmarking_tests() |
0 commit comments