|
| 1 | +""" |
| 2 | +Oracle Database Local Embeddings Component |
| 3 | +
|
| 4 | +This component provides local SentenceTransformer embeddings optimized for Oracle Database |
| 5 | +vector storage, ensuring consistent embedding dimensions and models. |
| 6 | +
|
| 7 | +Author: Paul Parkinson |
| 8 | +""" |
| 9 | + |
| 10 | +from langchain_huggingface import HuggingFaceEmbeddings |
| 11 | +from langflow.base.models.model import LCModelComponent |
| 12 | +from langflow.io import DropdownInput, IntInput, BoolInput, Output |
| 13 | +from langflow.field_typing import Embeddings |
| 14 | + |
| 15 | + |
| 16 | +class OracleDatabaseEmbeddingsComponent(LCModelComponent): |
| 17 | + """ |
| 18 | + Local SentenceTransformer embeddings optimized for Oracle Database vector storage |
| 19 | + """ |
| 20 | + |
| 21 | + display_name = "Oracle Database Local Embeddings" |
| 22 | + description = "Local SentenceTransformer embeddings for Oracle 23ai (384 dimensions, no cloud dependencies)" |
| 23 | + |
| 24 | + inputs = [ |
| 25 | + DropdownInput( |
| 26 | + name="model_name", |
| 27 | + display_name="Embedding Model", |
| 28 | + info="Choose the SentenceTransformer model for embeddings", |
| 29 | + options=[ |
| 30 | + "sentence-transformers/all-MiniLM-L12-v2", |
| 31 | + "sentence-transformers/all-MiniLM-L6-v2", |
| 32 | + "sentence-transformers/all-mpnet-base-v2", |
| 33 | + "sentence-transformers/paraphrase-MiniLM-L6-v2", |
| 34 | + "sentence-transformers/distiluse-base-multilingual-cased", |
| 35 | + ], |
| 36 | + value="sentence-transformers/all-MiniLM-L12-v2", |
| 37 | + ), |
| 38 | + IntInput( |
| 39 | + name="max_length", |
| 40 | + display_name="Max Sequence Length", |
| 41 | + info="Maximum length of input sequences", |
| 42 | + value=512, |
| 43 | + advanced=True, |
| 44 | + ), |
| 45 | + BoolInput( |
| 46 | + name="normalize_embeddings", |
| 47 | + display_name="Normalize Embeddings", |
| 48 | + info="Whether to normalize embeddings to unit length", |
| 49 | + value=True, |
| 50 | + advanced=True, |
| 51 | + ), |
| 52 | + BoolInput( |
| 53 | + name="show_progress", |
| 54 | + display_name="Show Progress", |
| 55 | + info="Whether to show download progress for models", |
| 56 | + value=False, |
| 57 | + advanced=True, |
| 58 | + ), |
| 59 | + ] |
| 60 | + |
| 61 | + outputs = [ |
| 62 | + Output(display_name="Embeddings", name="embeddings", method="build_embeddings"), |
| 63 | + ] |
| 64 | + |
| 65 | + def build_embeddings(self) -> Embeddings: |
| 66 | + """ |
| 67 | + Build the HuggingFace embeddings model |
| 68 | + """ |
| 69 | + try: |
| 70 | + # Configure model kwargs |
| 71 | + model_kwargs = { |
| 72 | + 'device': 'cpu', # Use CPU for local deployment |
| 73 | + } |
| 74 | + |
| 75 | + # Configure encode kwargs - remove show_progress_bar to avoid conflicts |
| 76 | + encode_kwargs = { |
| 77 | + 'normalize_embeddings': self.normalize_embeddings, |
| 78 | + } |
| 79 | + |
| 80 | + embeddings = HuggingFaceEmbeddings( |
| 81 | + model_name=self.model_name, |
| 82 | + model_kwargs=model_kwargs, |
| 83 | + encode_kwargs=encode_kwargs, |
| 84 | + show_progress=self.show_progress, # Use show_progress instead |
| 85 | + ) |
| 86 | + |
| 87 | + self.status = f"✅ Local embeddings loaded: {self.model_name}" |
| 88 | + return embeddings |
| 89 | + |
| 90 | + except Exception as e: |
| 91 | + error_msg = f"Failed to load embeddings model: {str(e)}" |
| 92 | + self.status = f"❌ {error_msg}" |
| 93 | + raise RuntimeError(error_msg) |
| 94 | + |
| 95 | + def get_model_info(self) -> dict: |
| 96 | + """ |
| 97 | + Get information about the selected model |
| 98 | + """ |
| 99 | + model_info = { |
| 100 | + "sentence-transformers/all-MiniLM-L12-v2": { |
| 101 | + "dimensions": 384, |
| 102 | + "description": "Fast and efficient, great for general purpose (recommended for Oracle DB)", |
| 103 | + "size": "133MB" |
| 104 | + }, |
| 105 | + "sentence-transformers/all-MiniLM-L6-v2": { |
| 106 | + "dimensions": 384, |
| 107 | + "description": "Smaller and faster version", |
| 108 | + "size": "91MB" |
| 109 | + }, |
| 110 | + "sentence-transformers/all-mpnet-base-v2": { |
| 111 | + "dimensions": 768, |
| 112 | + "description": "Higher quality but larger", |
| 113 | + "size": "438MB" |
| 114 | + }, |
| 115 | + "sentence-transformers/paraphrase-MiniLM-L6-v2": { |
| 116 | + "dimensions": 384, |
| 117 | + "description": "Optimized for paraphrase detection", |
| 118 | + "size": "91MB" |
| 119 | + }, |
| 120 | + "sentence-transformers/distiluse-base-multilingual-cased": { |
| 121 | + "dimensions": 512, |
| 122 | + "description": "Multilingual support", |
| 123 | + "size": "540MB" |
| 124 | + } |
| 125 | + } |
| 126 | + return model_info.get(self.model_name, {"dimensions": "Unknown"}) |
| 127 | + |
| 128 | + def validate_for_oracle_db(self) -> bool: |
| 129 | + """ |
| 130 | + Validate that the model is suitable for Oracle Database vector storage |
| 131 | + """ |
| 132 | + model_info = self.get_model_info() |
| 133 | + |
| 134 | + # Oracle 23ai works best with these dimensions |
| 135 | + recommended_dims = [384, 512, 768] |
| 136 | + model_dims = model_info.get("dimensions", 0) |
| 137 | + |
| 138 | + if model_dims not in recommended_dims: |
| 139 | + self.status = f"⚠️ Warning: {model_dims} dimensions may not be optimal for Oracle DB" |
| 140 | + return False |
| 141 | + |
| 142 | + self.status = f"✅ Model validated: {model_dims} dimensions, Oracle DB compatible" |
| 143 | + return True |
0 commit comments