|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "33545924-d88b-4b8b-9a71-a0f229b58759", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import numpy as np\n", |
| 11 | + "import pandas as pd" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 3, |
| 17 | + "id": "c76dba70-77fb-4ea8-a82f-ef7f44b23400", |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "def simulate_training_data(size):\n", |
| 22 | + " age = np.random.uniform(20, 70, size)\n", |
| 23 | + " risk = np.random.uniform(0, 1, size)\n", |
| 24 | + " price = np.random.uniform(2, 4,size)\n", |
| 25 | + "\n", |
| 26 | + " beta_0 = 3.0\n", |
| 27 | + " beta_price = -1.5\n", |
| 28 | + " beta_age = 0.05\n", |
| 29 | + " beta_risk = -1.0\n", |
| 30 | + " \n", |
| 31 | + " logit = (\n", |
| 32 | + " beta_0\n", |
| 33 | + " + beta_price * price\n", |
| 34 | + " + beta_age * age\n", |
| 35 | + " + beta_risk * risk\n", |
| 36 | + " )\n", |
| 37 | + "\n", |
| 38 | + " prob = 1 / (1 + np.exp(-logit))\n", |
| 39 | + " purchase = np.random.binomial(1, prob)\n", |
| 40 | + "\n", |
| 41 | + "\n", |
| 42 | + " df = pd.DataFrame({\n", |
| 43 | + " \"price\": price,\n", |
| 44 | + " \"age\": age,\n", |
| 45 | + " \"risk\": risk,\n", |
| 46 | + " \"purchase\": purchase\n", |
| 47 | + " })\n", |
| 48 | + " return df" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "id": "5da7f09a-04ad-4ac6-b648-2109bf476285", |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "df=new_customer_data=simulate_training_data(200)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 4, |
| 64 | + "id": "036a12b9-256f-46ca-8909-f886f95349b2", |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "df.to_csv(\"./data/price_opt_data_1000.csv\", index=False)" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 2, |
| 74 | + "id": "806cb91d-d16d-44fb-80f0-b77c647ff0a3", |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "def simulate_new_cases(size):\n", |
| 79 | + " age = np.random.uniform(20, 70, size)\n", |
| 80 | + " risk = np.random.uniform(0, 1, size)\n", |
| 81 | + "\n", |
| 82 | + " df = pd.DataFrame({\n", |
| 83 | + " \"age\": age,\n", |
| 84 | + " \"risk\": risk,\n", |
| 85 | + " })\n", |
| 86 | + " return df" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": 6, |
| 92 | + "id": "4fdf26b0-edc0-404d-a3cb-027eeb615d19", |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "new_customer_data=simulate_new_cases(50)" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 7, |
| 102 | + "id": "5b2851e2-87cc-4e5f-9a79-76d73e31051f", |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "new_customer_data.to_csv(\"./data/new_customers_50.csv\")" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 8, |
| 112 | + "id": "0a0579ff-02a4-40c4-b1e3-649eeb39da3e", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "text/plain": [ |
| 118 | + "<oci.response.Response at 0x7f4665b62d50>" |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 8, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
| 126 | + "source": [ |
| 127 | + "import oci\n", |
| 128 | + "from oci.object_storage import UploadManager\n", |
| 129 | + "\n", |
| 130 | + "signer = oci.auth.signers.get_resource_principals_signer()\n", |
| 131 | + "object_storage = oci.object_storage.ObjectStorageClient({}, signer=signer)\n", |
| 132 | + "namespace = object_storage.get_namespace().data\n", |
| 133 | + "\n", |
| 134 | + "bucket_name = \"filesdemo\"\n", |
| 135 | + "file_name = \"operational_research/new_cases.csv\"\n", |
| 136 | + "\n", |
| 137 | + "local_path='./data/new_customers_50.csv'\n", |
| 138 | + "\n", |
| 139 | + "upload_manager = UploadManager(object_storage, allow_parallel_uploads=True)\n", |
| 140 | + "upload_manager.upload_file(\n", |
| 141 | + " namespace_name=namespace,\n", |
| 142 | + " bucket_name=bucket_name,\n", |
| 143 | + " object_name=file_name,\n", |
| 144 | + " file_path=local_path\n", |
| 145 | + ")" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "id": "923a05a3-88b3-4568-b7c2-508160b08189", |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [] |
| 155 | + } |
| 156 | + ], |
| 157 | + "metadata": { |
| 158 | + "kernelspec": { |
| 159 | + "display_name": "Python [conda env:generalml_p311_cpu_x86_64_v1]", |
| 160 | + "language": "python", |
| 161 | + "name": "conda-env-generalml_p311_cpu_x86_64_v1-py" |
| 162 | + }, |
| 163 | + "language_info": { |
| 164 | + "codemirror_mode": { |
| 165 | + "name": "ipython", |
| 166 | + "version": 3 |
| 167 | + }, |
| 168 | + "file_extension": ".py", |
| 169 | + "mimetype": "text/x-python", |
| 170 | + "name": "python", |
| 171 | + "nbconvert_exporter": "python", |
| 172 | + "pygments_lexer": "ipython3", |
| 173 | + "version": "3.11.9" |
| 174 | + } |
| 175 | + }, |
| 176 | + "nbformat": 4, |
| 177 | + "nbformat_minor": 5 |
| 178 | +} |
0 commit comments