Skip to content

Commit b921d02

Browse files
authored
Merge branch 'main' into open_source_bp_2
2 parents bceb2e3 + 33c9437 commit b921d02

File tree

123 files changed

+530
-43
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

123 files changed

+530
-43
lines changed

data-platform/analytical-data-platform-lakehouse/README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,8 @@ Reviewed: 18.01.2024
5555
- Blog post describing and comparing the different insert methods in Autonomous Database to support low latency data ingestion for IoT workloads.
5656
- [Managing Active Metadata with Oracle Data Platform](https://gianlucarossi06.github.io/data-organon/2024/05/31/Active-Metadata-4-OCI-Data-Platform.html)
5757
- Blog post describing how to define and store active metadata using OCI Data Platform, using a practical example. Active Metadata can be anything stored as custom properties in a data catalog allowing users to understand, for instance, data freshness.
58+
- [Streaming IoT Data into Object Storage with Streaming service](https://jakubillner.github.io/2024/06/28/streaming-ingest.html)
59+
- Blog post describing how to ingest and store IoT data for an analytical workload using OCI Streaming, Connector Hub, and Object Storage.
5860

5961

6062
## YouTube

data-platform/analytics/oracle-analytics-cloud/README.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ Reviewed: 31.10.2023
1313
## Specialists Blogs for various features & functionality
1414
|Content Link |Functionality|Descripton|
1515
| ------------ |------------|----------|
16+
|[Unleash the Power of Template Viewer: Streamlined Testing for Flawless Oracle Analytics Publisher Reports](https://www.linkedin.com/pulse/unleash-power-template-viewer-streamlined-testing-flawless-kasetty-bxiqc/)|Oracle Analytics Publisher Template Viewer|How to leverage Template Viewer to test Oracle Analytics Publisher templates.
1617
|[Leverage the OCI Modern Data Platform to implement an Enterprise Analytics Solution](https://blogs.oracle.com/coretec/post/leverage-oci-modern-data-platform-to-implement-enterprise-analytics-solution)|OAC-Enterprise Analytics Solution |How to leverage the OCI modern data platform to implement an enterprise analytics solution.
1718
|[Top 5 reasons Oracle Analytics Cloud stands apart in the ML/AI Analytics landscape](https://blogs.oracle.com/analytics/post/top-5-reasons-oracle-analytics-cloud-stands-apart-in-the-mlai-analytics-landscape)|OAC Machine Learning|What are primary reasons to choose Oracle Analytics Cloud (OAC) from an ML/AI perspective.
1819
|[Oracle Analytics Cloud: Set up and configure Oracle Analytics Cloud environments using Terraform](https://blogs.oracle.com/analytics/post/oracle-analytics-cloud-set-up-and-configure-oracle-analytics-cloud-environments-using-terraform)|OAC Setup & Configure|How to provision and configure Oracle analytics cloud on OCI using Terraform.
@@ -61,6 +62,8 @@ Reviewed: 31.10.2023
6162
## OAC Latest Release and Announcements
6263
|Content Link |Descripton|
6364
| ------------ |------------|
65+
|[Oracle Analytics Cloud new features - Jul 2024](https://www.youtube.com/watch?v=0BVxTCvDmaQ&list=PL6gBNP-Fr8KXAOF9RgJIU5ykJvD8fHoxj)|Oracle Analytics Cloud Jul-2024 new features videos|
66+
|[Oracle Analytics Cloud new features - May 2024](https://www.youtube.com/watch?v=eoNmcRZ5wYI&list=PL6gBNP-Fr8KU55dSbzkEKySjSDWlL3BWm)|Oracle Analytics Cloud May-2024 new features videos|
6467
|[Oracle Analytics Cloud new features - March 2024](https://www.youtube.com/playlist?list=PL6gBNP-Fr8KWlnpaELiCxQJii-F4c7Ehz)|Oracle Analytics Cloud March-2024 new features videos|
6568
|[Oracle Analytics Cloud new features - January 2024](https://www.youtube.com/playlist?list=PL6gBNP-Fr8KUGvVDRGC8IyXo8yQzUtMiD)|Oracle Analytics Cloud January-2024 new features videos|
6669
|[Oracle Analytics New Capabilities - November 2023](https://www.youtube.com/playlist?list=PL6gBNP-Fr8KXVh3PVwWfl1nC_TyHi_yl8)|Oracle Analytics Cloud November-2023 release|
@@ -113,7 +116,7 @@ Reviewed: 31.10.2023
113116
|Content Link |Descripton|
114117
| ------------ |------------|
115118
|[OAC vs PowerBI vs Tableau](https://www.oracle.com/business-analytics/comparison-chart.html)|Comparison of Oracle Analytics Cloud with other leading business analytics products|
116-
|[Gartner Analytics Review 2023](https://www.youtube.com/watch?v=nYNbpGeu_nw)|Oracle Analytics as visionary in the 2023 Gartner’s Magic Quadrant|
119+
|[Gartner Analytics Review 2024](https://www.oracle.com/news/announcement/oracle-named-leader-in-2024-gartner-magic-quadrant-for-analytics-and-business-intelligence-platforms-2024-06-24/)|Oracle Named a Leader in the 2024 Gartner® Magic Quadrant™ for Analytics and Business Intelligence Platforms|
117120

118121

119122
## Blogs for AI/ML with Oracle Analytics Platform
Binary file not shown.
Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,42 @@
1+
# AI Vector Search
2+
3+
Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads and allows you to query data based on semantics, rather than keywords. The VECTOR data type is introduced with the release of Oracle Database 23ai, providing the foundation to store vector embeddings alongside business data in the database. Using embedding models, you can transform unstructured data into vector embeddings that can then be used for semantic queries on business data.
4+
5+
Reviewed Date: 17.07.2024
6+
7+
# Useful Links
8+
9+
## Documentation
10+
11+
- [Oracle.com](https://www.oracle.com/database/ai-vector-search/)
12+
- [Oracle AI Vector Search User's Guide](https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/overview-ai-vector-search.html)
13+
- [PL/SQL Packages and Types Reference: DBMS_VECTOR](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector1.html#GUID-F9FCB225-821A-4CCA-92B5-58B9927234FA)
14+
- [PL/SQL Packages and Types Reference: DBMS_VECTOR_CHAIN](https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_vector_chain1.html#GUID-D80DDBEF-F1A9-4267-9D3C-A54D237D95C1)
15+
- [Oracle AI Vector Search FAQ](https://www.oracle.com/database/ai-vector-search/faq/)
16+
17+
## Blogs & Videos
18+
19+
- [Oracle Announces General Availability of AI Vector Search in Oracle Database 23ai](https://blogs.oracle.com/database/post/oracle-announces-general-availability-of-ai-vector-search-in-oracle-database-23ai)
20+
- [OML4Py: Leveraging ONNX and Hugging Face for AI Vector Search](https://blogs.oracle.com/machinelearning/post/oml4py-leveraging-onnx-and-hugging-face-for-advanced-ai-vector-search)
21+
- [Use AI Vector Search to Build GenAI Apps with Enterprise Data| Oracle DatabaseWorld AI Edition](https://www.youtube.com/watch?v=5o5Ds8KLqVw&list=PLcFwxJMrxygALJRhZCbnjtDBYWCpWXPGz&index=3)
22+
23+
24+
## LiveLabs Workshops
25+
26+
- [Oracle AI Vector Search - 15 Minute Basics](https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=3975&clear=RR,180&session=3449305441143)
27+
- [Oracle AI Vector Search - Basics](https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=1070&clear=RR,180)
28+
- [AI Vector Search - Complete RAG Application using PL/SQL in Oracle Database 23ai](https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=3934&clear=RR,180&session=11020955624236)
29+
- [AI Vector Search - 7 Easy Steps to Building a RAG Application using LangChain](https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=3927&clear=RR,180&session=11020955624236)
30+
31+
32+
# Team Publications
33+
34+
- [Getting started with vectors in 23ai](https://blogs.oracle.com/coretec/post/getting-started-with-vectors-in-23ai)
35+
36+
# License
37+
38+
Copyright (c) 2024 Oracle and/or its affiliates.
39+
40+
Licensed under the Universal Permissive License (UPL), Version 1.0.
41+
42+
See [LICENSE](https://github.com/oracle-devrel/technology-engineering/blob/main/LICENSE) for more details.
Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
REM Creation of tablespace, user and directory
2+
3+
-- connect as user sys to FREEPDB1
4+
5+
-- create tablespace
6+
7+
create bigfile tablespace TBS_VECTOR datafile size 256M autoextend on maxsize 2G;
8+
9+
-- create user with the new role DB_DEVELOPER_ROLE
10+
DROP USER vector_user cascade;
11+
12+
create user vector_user identified by "Oracle_4U"
13+
default tablespace TBS_VECTOR temporary tablespace TEMP
14+
quota unlimited on TBS_VECTOR;
15+
16+
grant create mining model to vector_user;
17+
grant DB_DEVELOPER_ROLE to vector_user;
18+
19+
-- create directory
20+
21+
CREATE OR REPLACE DIRECTORY dm_dump as '&directorypath';
22+
GRANT all ON DIRECTORY dm_dump TO vector_user;
Lines changed: 27 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,27 @@
1+
REM Create an external table and check the data set
2+
3+
-- copy the data set in the directory DM_DUMP
4+
-- dataset_200K.txt is located in: https://objectstorage.eu-frankfurt-1.oraclecloud.com/n/fro8fl9kuqli/b/AIVECTORS/o/dataset_200K.txt
5+
6+
-- connect as user VECTOR_USER and create an external table
7+
8+
connect vector_user/Oracle_4U@FREEPDB1
9+
10+
CREATE TABLE if not exists CCNEWS_TMP (sentence VARCHAR2(4000))
11+
ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY dm_dump
12+
ACCESS PARAMETERS
13+
(RECORDS DELIMITED BY 0x'0A'
14+
READSIZE 100000000
15+
FIELDS (sentence CHAR(4000)))
16+
LOCATION (sys.dm_dump:'dataset_200K.txt'))
17+
PARALLEL
18+
REJECT LIMIT UNLIMITED;
19+
20+
-- Check that the external table is correct
21+
22+
select count(*) from CCNEWS_TMP;
23+
24+
-- Check the 4 first rows
25+
26+
select * from CCNEWS_TMP where rownum < 4;
27+
Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
REM load a vector embedding model into the database: we can load a ONNX model inside the database using DBMS_VECTOR package
2+
3+
/*
4+
The ONNX file in this example was generated by Oracle OML4Py utility from the all-MiniLM-L6-v2 sentence transformer model.
5+
It can be downloaded from https://objectstorage.eu-frankfurt-1.oraclecloud.com/n/fro8fl9kuqli/b/AIVECTORS/o/all-MiniLM-L6-v2.onnx
6+
Copy the all-MiniLM-L6-v2.onnx file to the path corresponding to the DM_DUMP directory.
7+
*/ 
8+
9+
-- connect to the VECTOR_USER
10+
11+
connect vector_user/Oracle_4U@FREEPDB1
12+
13+
14+
-- load the ONNX model in the database
15+
16+
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL('DM_DUMP','all-MiniLM-L6-v2.onnx','doc_model');
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
REM Load the ONNX model into the database with DBMS_VECTOR
2+
3+
connect vector_user/Oracle_4U@FREEPDB1
4+
5+
col model_name format a12
6+
col mining_function format a12
7+
col algorithm format a12
8+
col attribute_name format a20
9+
col data_type format a30
10+
col vector_info format a30
11+
set lines 120
12+
13+
SELECT model_name, mining_function, algorithm,
14+
algorithm_type, model_size
15+
FROM user_mining_models
16+
WHERE model_name = 'DOC_MODEL'
17+
ORDER BY model_name;
18+
19+
20+
SELECT model_name, attribute_name, attribute_type, data_type, vector_info
21+
FROM user_mining_model_attributes
22+
WHERE model_name = 'DOC_MODEL'
23+
ORDER BY attribute_name;
Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
REM Calculate embeddings directly in the database
2+
3+
-- connect to the VECTOR_USER
4+
5+
connect vector_user/Oracle_4U@FREEPDB1
6+
7+
-- create table CCNEWS
8+
create table if not exists CCNEWS (
9+
id number(10) not null,
10+
info VARCHAR2(4000),
11+
vec VECTOR
12+
);
13+
14+
15+
-- Use the doc_model previously loaded to calculate the vector embeddings
16+
-- Please plan additional time to complete this statement
17+
18+
insert into CCNEWS (id, info, vec)
19+
select rownum,
20+
sentence,
21+
TO_VECTOR(VECTOR_EMBEDDING(doc_model USING sentence as data))
22+
from CCNEWS_TMP;
23+
24+
25+
commit;

0 commit comments

Comments
 (0)