|
| 1 | +# Overview |
| 2 | + |
| 3 | +This repository provides a step-by-step tutorial for deploying and using [Mistral 7B Instruct](https://mistral.ai/technology/#models) Large Language Model using the [vLLM](https://github.com/vllm-project/vllm?tab=readme-ov-file) library. |
| 4 | + |
| 5 | +# Requirements |
| 6 | + |
| 7 | +* An OCI tenancy with A10 GPU quota. |
| 8 | +* A [Huggingface](https://huggingface.co/) account with a valid Auth Token. |
| 9 | + |
| 10 | +# Model Deployment |
| 11 | + |
| 12 | +## Mistral models |
| 13 | + |
| 14 | +[Mistral.ai](https://mistral.ai/) is a French AI startup that develop Large Language Models (LLMs). Mistral 7B is the small yet powerful open model that supports English and code. The Mistral 7B Instruct is a chat optimized version of Mistral 7B. Mixtral 8x7B is a 7B sparse Mixture-of-Experts that supports French, Italian, German and Spanish on top of English and code (stronger than Mistral 7B). It uses 12B parameters out of 45B total. |
| 15 | + |
| 16 | +## vLLM Library |
| 17 | + |
| 18 | +vLLM is an alternative model serving solution to NVIDIA Triton. It is easy to use as it comes as a preconfigured container. |
| 19 | + |
| 20 | +## Instance Configuration |
| 21 | + |
| 22 | +In this example a single A10 GPU VM shape, codename VM.GPU.A10.1, is used. The image is the NVIDIA GPU Cloud Machine image from the OCI marketplace. A boot volume of 200 GB is also recommended. |
| 23 | + |
| 24 | +## Image Update |
| 25 | + |
| 26 | +Since the latest NVIDIA GPU Cloud Machine image is almost 1 year old, it is recommended to update NVIDIA drivers and CUDA by running: |
| 27 | + |
| 28 | +``` |
| 29 | +sudo apt purge nvidia* libnvidia* |
| 30 | +sudo apt-get install -y cuda-drivers-545 |
| 31 | +sudo apt-get install -y nvidia-kernel-open-545 |
| 32 | +sudo apt-get install -y cuda-toolkit-12-3 |
| 33 | +sudo reboot |
| 34 | +``` |
| 35 | + |
| 36 | +## System configuration |
| 37 | + |
| 38 | +Once the NVIDIA packages are updated, it is necessary to reconfigure docker in order to make it GPU aware: |
| 39 | + |
| 40 | +``` |
| 41 | +sudo apt-get install -y nvidia-container-toolkit |
| 42 | +sudo nvidia-ctk runtime configure --runtime=docker |
| 43 | +sudo systemctl restart docker |
| 44 | +``` |
| 45 | + |
| 46 | +## Container Deployment |
| 47 | + |
| 48 | +To deploy the model, simply run the vLLM container: |
| 49 | + |
| 50 | +``` |
| 51 | +docker run --gpus all \ |
| 52 | + -e HF_TOKEN=$HF_TOKEN -p 8000:8000 \ |
| 53 | + ghcr.io/mistralai/mistral-src/vllm:latest \ |
| 54 | + --host 0.0.0.0 \ |
| 55 | + --model mistralai/Mistral-7B-Instruct-v0.2 |
| 56 | +``` |
| 57 | +where `$HF_TOKEN` is the HuggingFace Auth Token set as an environment variable. Pulling the image for the container may take up to 20 minutes. |
| 58 | + |
| 59 | +Once the deployment is finished, the model is available by default at http://0.0.0.0:8000. |
| 60 | + |
| 61 | +# Model Calling |
| 62 | + |
| 63 | +The Mistral model is available through a OpenAI compatible API. As a prerequisite you must have the curl package installed. |
| 64 | + |
| 65 | +``` |
| 66 | +sudo apt-get install curl |
| 67 | +``` |
| 68 | + |
| 69 | +Below are 3 examples of curl requests. The `json_pp` utility (JSON Pretty Printer) eases the model output reading by printing the JSON data in a legible, indented format. |
| 70 | + |
| 71 | +* Check the model version available in the container: |
| 72 | + |
| 73 | +``` |
| 74 | +curl http://localhost:8000/v1/models | json_pp |
| 75 | +``` |
| 76 | + |
| 77 | +* Complete a sentence: |
| 78 | + |
| 79 | +``` |
| 80 | +curl http://localhost:8000/v1/completions \ |
| 81 | + -H "Content-Type: application/json" \ |
| 82 | + -d '{ |
| 83 | + "model": "mistralai/Mistral-7B-Instruct-v0.2", |
| 84 | + "prompt": "A GPU is a", |
| 85 | + "max_tokens": 128, |
| 86 | + "temperature": 0.7 |
| 87 | + }' | json_pp |
| 88 | +``` |
| 89 | + |
| 90 | +* Chat |
| 91 | + |
| 92 | +``` |
| 93 | +curl http://localhost:8000/v1/chat/completions \ |
| 94 | + -H "Content-Type: application/json" \ |
| 95 | + -d '{ |
| 96 | + "model": "mistralai/Mistral-7B-Instruct-v0.2", |
| 97 | + "messages": [ |
| 98 | + {"role": "user", "content": "Which GPU models are available on Oracle Cloud Infrastructure?"} |
| 99 | + ] |
| 100 | + }' | json_pp |
| 101 | +``` |
| 102 | + |
| 103 | +# Notes |
| 104 | + |
| 105 | +Mixtral8x7B is much more greedy that Mistral 7B and it will not fit in a single A10 GPU VM, nor a quad A10 GPU BM. Therefore it is necessary to either: |
| 106 | +* Increase the size of the shape to a BM.GPU4.8 (8 x A100 40 GB GPUs). |
| 107 | +* Use a quantized version such as [TheBloke/mixtral-8x7b-v0.1-AWQ](https://huggingface.co/TheBloke/mixtral-8x7b-v0.1-AWQ). However, AWQ quantization on vLLM is not fully optimized yet so speed might be lower than the original model. |
| 108 | + |
| 109 | +``` |
| 110 | +docker run --gpus all \ |
| 111 | + -e HF_TOKEN=$HF_TOKEN -p 8000:8000 \ |
| 112 | + vllm/vllm-openai:latest \ |
| 113 | + --host 0.0.0.0 \ |
| 114 | + --port 8000 \ |
| 115 | + --model TheBloke/mixtral-8x7b-v0.1-AWQ \ |
| 116 | + --quantization awq \ |
| 117 | + --tensor-parallel-size 4 \ |
| 118 | + --gpu-memory-utilization 0.95 \ |
| 119 | + --enforce-eager |
| 120 | +``` |
| 121 | + |
| 122 | +# Resources |
| 123 | + |
| 124 | +* [vLLM Documentation](https://docs.vllm.ai/en/latest/) |
| 125 | +* [Mistral Documentation](https://docs.mistral.ai/) |
0 commit comments