@@ -16,12 +16,33 @@ This demo showcases an AI-powered solution for analyzing batches of customer mes
1616* Customer messages should be stored in a CSV file(s) within a folder named ` data ` .
1717* Each CSV file should contain a column with the message text.
1818
19+ ## Python Version
20+ This project requires ** Python 3.13** or later. You can check your current Python version by running:
21+ ```
22+ python --version
23+ ```
24+ or
25+ ```
26+ python3 --version
27+ ```
28+
1929## Getting Started
2030To run the demo, follow these steps:
21311 . Clone the repository using ` git clone ` .
22- 2 . Place your CSV files containing customer messages in the ` data ` folder.
23- 3 . Install dependencies using ` pip install -r requirements.txt ` .
24- 4 . Run the application using ` streamlit run app.py ` .
32+ 2 . * (Optional but recommended)* Create and activate a Python virtual environment:
33+ - On Windows:
34+ ```
35+ python -m venv venv
36+ venv\Scripts\activate
37+ ```
38+ - On macOS/Linux:
39+ ```
40+ python3 -m venv venv
41+ source venv/bin/activate
42+ ```
43+ 3. Place your CSV files containing customer messages in the `data` folder. Ensure each includes a column with the message text.
44+ 4. Install dependencies using `pip install -r requirements.txt`.
45+ 5. Run the application using `streamlit run app.py`.
2546
2647## Example Use Cases
2748* Analyze customer feedback from surveys, reviews, or social media platforms to identify trends and patterns.
@@ -34,9 +55,34 @@ To run the demo, follow these steps:
3455* All aspects of the demo, including:
3556 + Hierarchical categorization
3657 + Sentiment analysis
37- + Structured report generation
38- are powered by GenAI, ensuring accurate and efficient analysis of customer messages.
58+ + Structured report generation are powered by GenAI, ensuring accurate and efficient analysis of customer messages.
59+
60+
61+ ## Project Structure
62+
63+ The repository is organized as follows:
3964
65+ ```plaintext
66+ │ app.py # Main Streamlit application entry point
67+ │ README.md # Project documentation
68+ │ requirements.txt # Python dependencies
69+ │
70+ ├───backend
71+ │ │ feedback_agent.py # Logic for feedback processing agents
72+ │ │ feedback_wrapper.py # Wrappers and interfaces for feedback functionalities
73+ │ │ message_handler.py # Utilities for handling and preprocessing messages
74+ │ │
75+ │ ├───data
76+ │ │ complaints_messages.csv # Example dataset of customer messages
77+ │ │
78+ │ └───utils
79+ │ config.py # Configuration and setup for the project
80+ │ llm_config.py # Model- and LLM-related configuration
81+ │ prompts.py # Prompt templates for language models
82+ │
83+ └───pages
84+ SentimentByCat.py # Additional Streamlit page for sentiment by category
85+ ```
4086## Output
4187The demo will display an interactive dashboard with the generated report, providing valuable insights into customer messages, including:
4288* Category distribution across all three levels
0 commit comments