|
| 1 | +# Copyright (c) 2020, 2021, Oracle and/or its affiliates. All rights reserved. |
| 2 | +# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | +# |
| 4 | +# The Universal Permissive License (UPL), Version 1.0 |
| 5 | +# |
| 6 | +# Subject to the condition set forth below, permission is hereby granted to any |
| 7 | +# person obtaining a copy of this software, associated documentation and/or |
| 8 | +# data (collectively the "Software"), free of charge and under any and all |
| 9 | +# copyright rights in the Software, and any and all patent rights owned or |
| 10 | +# freely licensable by each licensor hereunder covering either (i) the |
| 11 | +# unmodified Software as contributed to or provided by such licensor, or (ii) |
| 12 | +# the Larger Works (as defined below), to deal in both |
| 13 | +# |
| 14 | +# (a) the Software, and |
| 15 | +# |
| 16 | +# (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if |
| 17 | +# one is included with the Software each a "Larger Work" to which the Software |
| 18 | +# is contributed by such licensors), |
| 19 | +# |
| 20 | +# without restriction, including without limitation the rights to copy, create |
| 21 | +# derivative works of, display, perform, and distribute the Software and make, |
| 22 | +# use, sell, offer for sale, import, export, have made, and have sold the |
| 23 | +# Software and the Larger Work(s), and to sublicense the foregoing rights on |
| 24 | +# either these or other terms. |
| 25 | +# |
| 26 | +# This license is subject to the following condition: |
| 27 | +# |
| 28 | +# The above copyright notice and either this complete permission notice or at a |
| 29 | +# minimum a reference to the UPL must be included in all copies or substantial |
| 30 | +# portions of the Software. |
| 31 | +# |
| 32 | +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 33 | +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 34 | +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 35 | +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 36 | +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 37 | +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 38 | +# SOFTWARE. |
| 39 | + |
| 40 | +""" |
| 41 | + ****************************************************************** |
| 42 | + * HISTORY |
| 43 | + * 15-Oct-94 Jeff Shufelt (js), Carnegie Mellon University |
| 44 | + * Prepared for 15-681, Fall 1994. |
| 45 | + * Modified by Shuai Che |
| 46 | + ****************************************************************** |
| 47 | +""" |
| 48 | + |
| 49 | +import random |
| 50 | +import math |
| 51 | + |
| 52 | +# eta value |
| 53 | +ETA = 0.3 |
| 54 | + |
| 55 | +# momentum value |
| 56 | +MOMENTUM = 0.3 |
| 57 | + |
| 58 | +# (16, 1 can not be changed) |
| 59 | +n_hidden = 16 |
| 60 | +n_out = 1 |
| 61 | + |
| 62 | + |
| 63 | +def bpnn_layerforward(l1, l2, conn, n1, n2): |
| 64 | + ## Set up thresholding unit ## |
| 65 | + l1[0] = 1.0 |
| 66 | + ## For each unit in second layer ## |
| 67 | + r1 = 1 + n2 |
| 68 | + r2 = 1 + n1 |
| 69 | + for j in range(1, r1): |
| 70 | + ## Compute weighted Sum of its inputs ## |
| 71 | + Sum = 0.0 |
| 72 | + for k in range(r2): |
| 73 | + Sum += conn[k*r1 + j] * l1[k] |
| 74 | + |
| 75 | + l2[j] = (1.0 / (1.0 + math.exp(-Sum))) |
| 76 | + |
| 77 | + |
| 78 | +def bpnn_output_error(delta, target, output, nj): |
| 79 | + errSum = 0.0 |
| 80 | + for j in range(1, 1 + nj): |
| 81 | + o = output[j] |
| 82 | + t = target[j] |
| 83 | + v = o * (1.0 - o) * (t - o) |
| 84 | + delta[j] = v |
| 85 | + errSum += abs(v) |
| 86 | + |
| 87 | + return errSum |
| 88 | + |
| 89 | + |
| 90 | +def bpnn_hidden_error(delta_h, nh, delta_o, no, who, hidden): |
| 91 | + errSum = 0.0 |
| 92 | + for j in range(1, 1 + nh): |
| 93 | + Sum = 0.0 |
| 94 | + for k in range(1, 1 + no): |
| 95 | + Sum += delta_o[k] * who[j * (1 + no) + k] |
| 96 | + h = hidden[j] |
| 97 | + delta_h[j] = h * (1.0 - h) * Sum |
| 98 | + errSum += abs(delta_h[j]) |
| 99 | + |
| 100 | + return errSum |
| 101 | + |
| 102 | + |
| 103 | +def bpnn_adjust_weights(delta, ndelta, ly, nly, w, oldw): |
| 104 | + ly[0] = 1.0 |
| 105 | + for j in range(1, (1 + ndelta)): |
| 106 | + for k in range(nly + 1): |
| 107 | + val = ETA * delta[j] * ly[k] |
| 108 | + val += MOMENTUM * oldw[k*(1 + ndelta) + j] |
| 109 | + oldw[k*(1 + ndelta) + j] = val |
| 110 | + w[k*(1 + ndelta) + j] += val |
| 111 | + |
| 112 | + |
| 113 | +def bpnn_train_kernel(_iu_list, _hu_list, _iw_list, _ou_list, _hw_list, _od_list, _t_list, _hd_list, _hw_prev_list, _iw_prev_list, layer_size): |
| 114 | + bpnn_layerforward(_iu_list, _hu_list, _iw_list, layer_size, n_hidden) |
| 115 | + bpnn_layerforward(_hu_list, _ou_list, _hw_list, n_hidden, n_out) |
| 116 | + out_err = bpnn_output_error(_od_list, _t_list, _ou_list, n_out) |
| 117 | + hid_err = bpnn_hidden_error( |
| 118 | + _hd_list, n_hidden, _od_list, n_out, _hw_list, _hu_list) |
| 119 | + bpnn_adjust_weights(_od_list, n_out, _hu_list, |
| 120 | + n_hidden, _hw_list, _hw_prev_list) |
| 121 | + bpnn_adjust_weights(_hd_list, n_hidden, _iu_list, |
| 122 | + layer_size, _iw_list, _iw_prev_list) |
| 123 | + |
| 124 | + return (out_err, hid_err) |
| 125 | + |
| 126 | + |
| 127 | +class Data: |
| 128 | + def __init__(self): |
| 129 | + self._iu_list = None |
| 130 | + self._hw_list = None |
| 131 | + self._hu_list = None |
| 132 | + self._ou_list = None |
| 133 | + self._hd_list = None |
| 134 | + self._od_list = None |
| 135 | + self._iw_list = None |
| 136 | + self._iw_prev_list = None |
| 137 | + self._hw_prev_list = None |
| 138 | + self._t_list = None |
| 139 | + |
| 140 | + self.zeros_list = None |
| 141 | + self.random_list = None |
| 142 | + |
| 143 | + |
| 144 | +data = Data() |
| 145 | + |
| 146 | +default_size = 2 ** 16 |
| 147 | + |
| 148 | + |
| 149 | +def measure(layer_size=default_size): |
| 150 | + print("Starting training kernel") |
| 151 | + bpnn_train_kernel(data._iu_list, data._hu_list, data._iw_list, data._ou_list, data._hw_list, |
| 152 | + data._od_list, data._t_list, data._hd_list, data._hw_prev_list, data._iw_prev_list, layer_size) |
| 153 | + |
| 154 | + |
| 155 | +def __benchmark__(layer_size=default_size): |
| 156 | + measure(layer_size) |
| 157 | + |
| 158 | + |
| 159 | +def __setup__(layer_size=default_size): |
| 160 | + random.seed(7) |
| 161 | + print("Input layer size : %d" % layer_size) |
| 162 | + # Creates a new fully-connected network from scratch, |
| 163 | + # with the given numbers of input, hidden, and output units. |
| 164 | + # Threshold units are automatically included. All weights are |
| 165 | + # randomly initialized. |
| 166 | + |
| 167 | + # Space is also allocated for temporary storage (momentum weights, |
| 168 | + # error computations, etc). |
| 169 | + |
| 170 | + ## the input units ## |
| 171 | + data._iu_list = [random.random() for i in range(layer_size + 1)] |
| 172 | + |
| 173 | + ## weights from hidden to output layer ## |
| 174 | + data._hw_list = [random.random() |
| 175 | + for i in range((n_out + 1) * (n_hidden + 1))] |
| 176 | + |
| 177 | + ## the hidden units ## |
| 178 | + data._hu_list = [0. for i in range(n_hidden + 1)] |
| 179 | + ## the output units ## |
| 180 | + data._ou_list = [0. for i in range(n_out + 1)] |
| 181 | + |
| 182 | + ## storage for hidden unit error ## |
| 183 | + data._hd_list = [0. for i in range(n_hidden + 1)] |
| 184 | + ## storage for output unit error ## |
| 185 | + data._od_list = [0. for i in range(n_out + 1)] |
| 186 | + |
| 187 | + ## weights from input to hidden layer ## |
| 188 | + data._iw_list = [0. for i in range((n_hidden + 1) * (layer_size + 1))] |
| 189 | + |
| 190 | + ## The next two are for momentum ## |
| 191 | + ## previous change on input to hidden wgt ## |
| 192 | + data._iw_prev_list = [0. for i in range((n_hidden + 1) * (layer_size + 1))] |
| 193 | + ## previous change on hidden to output wgt ## |
| 194 | + data._hw_prev_list = [0. for i in range((n_out + 1) * (n_hidden + 1))] |
| 195 | + |
| 196 | + ## storage for target vector ## |
| 197 | + data._t_list = [0.1 for i in range(n_out + 1)] |
| 198 | + |
| 199 | + data.zeros_list = [data._hu_list, data._ou_list, data._hd_list, |
| 200 | + data._od_list, data._iw_list, data._iw_prev_list, data._hw_prev_list] |
| 201 | + data.random_list = [data._iu_list, data._hw_list] |
| 202 | + |
| 203 | + |
| 204 | +def __cleanup__(layer_size=default_size): |
| 205 | + # clean up written data |
| 206 | + for l in data.zeros_list: |
| 207 | + for i in range(len(l)): |
| 208 | + l[i] = 0. |
| 209 | + for l in data.random_list: |
| 210 | + for i in range(len(l)): |
| 211 | + l[i] = random.random() |
| 212 | + for i in range(len(data._t_list)): |
| 213 | + data._t_list[i] = 0.1 |
0 commit comments