|
63 | 63 | import static com.oracle.graal.python.nodes.SpecialMethodNames.__STR__;
|
64 | 64 | import static com.oracle.graal.python.nodes.SpecialMethodNames.__SUB__;
|
65 | 65 | import static com.oracle.graal.python.nodes.SpecialMethodNames.__TRUEDIV__;
|
66 |
| -import static com.oracle.graal.python.runtime.exception.PythonErrorType.OverflowError; |
67 | 66 |
|
68 | 67 | import java.util.List;
|
69 | 68 |
|
@@ -104,27 +103,143 @@ public abstract static class AbsNode extends PythonUnaryBuiltinNode {
|
104 | 103 |
|
105 | 104 | public abstract double executeDouble(Object arg);
|
106 | 105 |
|
107 |
| - public static AbsNode create() { |
108 |
| - return ComplexBuiltinsFactory.AbsNodeFactory.create(); |
109 |
| - } |
110 |
| - |
111 | 106 | @Specialization
|
112 | 107 | double abs(PComplex c) {
|
113 |
| - if (!Double.isFinite(c.getReal()) || !Double.isFinite(c.getImag())) { |
114 |
| - if (Double.isInfinite(c.getReal())) { |
115 |
| - return Math.abs(c.getReal()); |
116 |
| - } else if (Double.isInfinite(c.getImag())) { |
117 |
| - return Math.abs(c.getImag()); |
| 108 | + double x = c.getReal(); |
| 109 | + double y = c.getImag(); |
| 110 | + if (Double.isInfinite(x) || Double.isInfinite(y)) { |
| 111 | + return Double.POSITIVE_INFINITY; |
| 112 | + } else if (Double.isNaN(x) || Double.isNaN(y)) { |
| 113 | + return Double.NaN; |
| 114 | + } else { |
| 115 | + |
| 116 | + final int expX = getExponent(x); |
| 117 | + final int expY = getExponent(y); |
| 118 | + if (expX > expY + 27) { |
| 119 | + // y is neglectible with respect to x |
| 120 | + return abs(x); |
| 121 | + } else if (expY > expX + 27) { |
| 122 | + // x is neglectible with respect to y |
| 123 | + return abs(y); |
118 | 124 | } else {
|
119 |
| - return Double.NaN; |
| 125 | + |
| 126 | + // find an intermediate scale to avoid both overflow and |
| 127 | + // underflow |
| 128 | + final int middleExp = (expX + expY) / 2; |
| 129 | + |
| 130 | + // scale parameters without losing precision |
| 131 | + final double scaledX = scalb(x, -middleExp); |
| 132 | + final double scaledY = scalb(y, -middleExp); |
| 133 | + |
| 134 | + // compute scaled hypotenuse |
| 135 | + final double scaledH = Math.sqrt(scaledX * scaledX + scaledY * scaledY); |
| 136 | + |
| 137 | + // remove scaling |
| 138 | + double r = scalb(scaledH, middleExp); |
| 139 | + if (Double.isInfinite(r)) { |
| 140 | + throw raise(PythonErrorType.OverflowError, ErrorMessages.ABSOLUTE_VALUE_TOO_LARGE); |
| 141 | + } |
| 142 | + return r; |
120 | 143 | }
|
121 | 144 | }
|
122 |
| - double r = Math.hypot(c.getReal(), c.getImag()); |
123 |
| - if (Double.isInfinite(r)) { |
124 |
| - throw raise(OverflowError, ErrorMessages.ABSOLUTE_VALUE_TOO_LARGE); |
| 145 | + } |
| 146 | + |
| 147 | + private static final long MASK_NON_SIGN_LONG = 0x7fffffffffffffffL; |
| 148 | + |
| 149 | + static double abs(double x) { |
| 150 | + return Double.longBitsToDouble(MASK_NON_SIGN_LONG & Double.doubleToRawLongBits(x)); |
| 151 | + } |
| 152 | + |
| 153 | + static double scalb(final double d, final int n) { |
| 154 | + |
| 155 | + // first simple and fast handling when 2^n can be represented using |
| 156 | + // normal numbers |
| 157 | + if ((n > -1023) && (n < 1024)) { |
| 158 | + return d * Double.longBitsToDouble(((long) (n + 1023)) << 52); |
| 159 | + } |
| 160 | + |
| 161 | + // handle special cases |
| 162 | + if (Double.isNaN(d) || Double.isInfinite(d) || (d == 0)) { |
| 163 | + return d; |
125 | 164 | }
|
126 |
| - return r; |
| 165 | + if (n < -2098) { |
| 166 | + return (d > 0) ? 0.0 : -0.0; |
| 167 | + } |
| 168 | + if (n > 2097) { |
| 169 | + return (d > 0) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; |
| 170 | + } |
| 171 | + |
| 172 | + // decompose d |
| 173 | + final long bits = Double.doubleToRawLongBits(d); |
| 174 | + final long sign = bits & 0x8000000000000000L; |
| 175 | + int exponent = ((int) (bits >>> 52)) & 0x7ff; |
| 176 | + long mantissa = bits & 0x000fffffffffffffL; |
| 177 | + |
| 178 | + // compute scaled exponent |
| 179 | + int scaledExponent = exponent + n; |
| 180 | + |
| 181 | + if (n < 0) { |
| 182 | + // we are really in the case n <= -1023 |
| 183 | + if (scaledExponent > 0) { |
| 184 | + // both the input and the result are normal numbers, we only |
| 185 | + // adjust the exponent |
| 186 | + return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa); |
| 187 | + } else if (scaledExponent > -53) { |
| 188 | + // the input is a normal number and the result is a subnormal |
| 189 | + // number |
| 190 | + |
| 191 | + // recover the hidden mantissa bit |
| 192 | + mantissa = mantissa | (1L << 52); |
| 193 | + |
| 194 | + // scales down complete mantissa, hence losing least significant |
| 195 | + // bits |
| 196 | + final long mostSignificantLostBit = mantissa & (1L << (-scaledExponent)); |
| 197 | + mantissa = mantissa >>> (1 - scaledExponent); |
| 198 | + if (mostSignificantLostBit != 0) { |
| 199 | + // we need to add 1 bit to round up the result |
| 200 | + mantissa++; |
| 201 | + } |
| 202 | + return Double.longBitsToDouble(sign | mantissa); |
| 203 | + |
| 204 | + } else { |
| 205 | + // no need to compute the mantissa, the number scales down to 0 |
| 206 | + return (sign == 0L) ? 0.0 : -0.0; |
| 207 | + } |
| 208 | + } else { |
| 209 | + // we are really in the case n >= 1024 |
| 210 | + if (exponent == 0) { |
| 211 | + |
| 212 | + // the input number is subnormal, normalize it |
| 213 | + while ((mantissa >>> 52) != 1) { |
| 214 | + mantissa = mantissa << 1; |
| 215 | + --scaledExponent; |
| 216 | + } |
| 217 | + ++scaledExponent; |
| 218 | + mantissa = mantissa & 0x000fffffffffffffL; |
| 219 | + |
| 220 | + if (scaledExponent < 2047) { |
| 221 | + return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa); |
| 222 | + } else { |
| 223 | + return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; |
| 224 | + } |
| 225 | + |
| 226 | + } else if (scaledExponent < 2047) { |
| 227 | + return Double.longBitsToDouble(sign | (((long) scaledExponent) << 52) | mantissa); |
| 228 | + } else { |
| 229 | + return (sign == 0L) ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; |
| 230 | + } |
| 231 | + } |
| 232 | + } |
| 233 | + |
| 234 | + static int getExponent(final double d) { |
| 235 | + // NaN and Infinite will return 1024 anywho so can use raw bits |
| 236 | + return (int) ((Double.doubleToRawLongBits(d) >>> 52) & 0x7ff) - 1023; |
| 237 | + } |
| 238 | + |
| 239 | + public static AbsNode create() { |
| 240 | + return ComplexBuiltinsFactory.AbsNodeFactory.create(); |
127 | 241 | }
|
| 242 | + |
128 | 243 | }
|
129 | 244 |
|
130 | 245 | @Builtin(name = __ADD__, minNumOfPositionalArgs = 2)
|
|
0 commit comments