@@ -188,7 +188,7 @@ skewness parameter, scale parameter (dispersion^1/α) and location parameter res
188188
189189α, β, c and δ are computed based on McCulloch (1986) fractile.
190190"""
191- function Distributions. fit (:: Type{<:AlphaStable} , x:: AbstractArray{T} , alg= QuickSort) where {T}
191+ function Distributions. fit (:: Type{<:AlphaStable} , x:: AbstractArray{T} , alg= QuickSort) where {T<: AbstractFloat }
192192 sx = sort (x, alg= alg)
193193 p = quantile .(Ref (sx), (0.05 , 0.25 , 0.28 , 0.5 , 0.72 , 0.75 , 0.95 ), sorted= true )
194194 να = (p[7 ]- p[1 ]) / (p[6 ]- p[2 ])
@@ -235,7 +235,7 @@ returns `SymmetricAlphaStable`
235235scale is computed based on Fama & Roll (1971) fractile.
236236location is the 50% trimmed mean of the sample.
237237"""
238- function Distributions. fit (:: Type{<:SymmetricAlphaStable} , x:: AbstractArray{T} , alg= QuickSort) where {T}
238+ function Distributions. fit (:: Type{<:SymmetricAlphaStable} , x:: AbstractArray{T} , alg= QuickSort) where {T<: AbstractFloat }
239239 sx = sort (x, alg= alg)
240240 δ = mean (@view (sx[end ÷ 4 : (3 * end )÷ 4 ]))
241241 p = quantile .(Ref (sx), (0.05 , 0.25 , 0.28 , 0.72 , 0.75 , 0.95 ), sorted= true )
@@ -269,7 +269,7 @@ This implementation is based on the method in J.M. Chambers, C.L. Mallows
269269and B.W. Stuck, "A Method for Simulating Stable Random Variables," JASA 71 (1976): 340-4.
270270McCulloch's MATLAB implementation (1996) served as a reference in developing this code.
271271"""
272- function Base. rand (rng:: AbstractRNG , d:: AlphaStable{T} ) where {T<: Real }
272+ function Base. rand (rng:: AbstractRNG , d:: AlphaStable{T} ) where {T<: AbstractFloat }
273273 α= d. α; β= d. β; scale= d. scale; loc= d. location
274274 (α < 0.1 || α > 2 ) && throw (DomainError (α, " α must be in the range 0.1 to 2" ))
275275 abs (β) > 1 && throw (DomainError (β, " β must be in the range -1 to 1" ))
@@ -370,7 +370,7 @@ function subgausscondprobtabulate(α, x1, x2_ind, invRx1, invR, vjoint, nmin, nm
370370end
371371
372372
373- function Random. rand! (rng:: AbstractRNG , d:: AlphaSubGaussian{T} , x:: AbstractArray{T} ) where {T<: Real }
373+ function Random. rand! (rng:: AbstractRNG , d:: AlphaSubGaussian{T} , x:: AbstractArray{T} ) where {T<: AbstractFloat }
374374 α= d. α; R= d. R; n= d. n
375375 length (x) >= n || throw (ArgumentError (" length of x must be at least n" ))
376376 α ∈ 1.10 : 0.01 : 1.98 || throw (DomainError (α, " α must lie within `1.10:0.01:1.98`" ))
0 commit comments