Skip to content

Special Cases of AlphaStable #19

@azev77

Description

@azev77

According to Wiki:
For α = 2 the distribution reduces to a Gaussian distribution with variance σ2 = 2c2 and mean μ; the skewness parameter β has no effect.
For α = 1 and β = 0 the distribution reduces to a Cauchy distribution with scale parameter c and shift parameter μ.
For α = 1/2 and β = 1 the distribution reduces to a Lévy distribution with scale parameter c and shift parameter μ.

I get:

julia> using Distributions, AlphaStableDistributions
julia> d_train = rand(Normal(3,4), 100_000);
julia> fit(AlphaStable, d_train)
AlphaStable{Float64}=1.9914574535808538, β=0.0, scale=2.8151451718957867, location=2.9906397632987503)
julia> d_train = rand(Cauchy(3,4), 100_000);
julia> fit(AlphaStable, d_train)
AlphaStable{Float64}=0.9998014163853479, β=0.0, scale=4.0005882600294305, location=2.9901037116713165)
julia> d_train = rand(Levy(3,4), 100_000);
julia> fit(AlphaStable, d_train)
AlphaStable{Float64}=0.5845238495639795, β=0.0, scale=16.770767994549328, location=15.212645543834048)

There are some discrepancies. Not sure if this is due to a different parametrization or something else.

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions