@@ -115,7 +115,7 @@ class Tests
115115 save_as_csv_file (" data/output.csv" , predictions);
116116
117117 std::cout << predictions.mean () << " \n\n " ;
118- tests.push_back (is_approximately_equal (predictions.mean (), 19.8552 , 0.00001 ));
118+ tests.push_back (is_approximately_equal (predictions.mean (), 20.0962 , 0.00001 ));
119119
120120 double feature_importance_mean{model.get_feature_importance ().mean ()};
121121 double term_importance_mean{model.get_term_importance ().mean ()};
@@ -191,7 +191,7 @@ class Tests
191191 save_as_csv_file (" data/output.csv" , predictions);
192192
193193 std::cout << predictions.mean () << " \n\n " ;
194- tests.push_back (is_approximately_equal (predictions.mean (), 19.2927 , 0.00001 ));
194+ tests.push_back (is_approximately_equal (predictions.mean (), 19.8044 , 0.00001 ));
195195 }
196196
197197 void test_aplrregressor_cauchy ()
@@ -245,7 +245,7 @@ class Tests
245245 save_as_csv_file (" data/output.csv" , predictions);
246246
247247 std::cout << predictions.mean () << " \n\n " ;
248- tests.push_back (is_approximately_equal (predictions.mean (), 20.8771 , 0.00001 ));
248+ tests.push_back (is_approximately_equal (predictions.mean (), 20.8736 , 0.00001 ));
249249 }
250250
251251 void test_aplrregressor_custom_loss_and_validation ()
@@ -305,7 +305,7 @@ class Tests
305305 save_as_csv_file (" data/output.csv" , predictions);
306306
307307 std::cout << predictions.mean () << " \n\n " ;
308- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
308+ tests.push_back (is_approximately_equal (predictions.mean (), 23.7554 , 0.00001 ));
309309 }
310310
311311 void test_aplrregressor_custom_loss ()
@@ -363,7 +363,7 @@ class Tests
363363 save_as_csv_file (" data/output.csv" , predictions);
364364
365365 std::cout << predictions.mean () << " \n\n " ;
366- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
366+ tests.push_back (is_approximately_equal (predictions.mean (), 23.7035 , 0.00001 ));
367367 }
368368
369369 void test_aplrregressor_gamma_custom_link ()
@@ -418,7 +418,7 @@ class Tests
418418 save_as_csv_file (" data/output.csv" , predictions);
419419
420420 std::cout << predictions.mean () << " \n\n " ;
421- tests.push_back (is_approximately_equal (predictions.mean (), 23.5068 , 0.00001 ));
421+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5266 , 0.00001 ));
422422 }
423423
424424 void test_aplrregressor_gamma_custom_validation ()
@@ -473,7 +473,7 @@ class Tests
473473 save_as_csv_file (" data/output.csv" , predictions);
474474
475475 std::cout << predictions.mean () << " \n\n " ;
476- tests.push_back (is_approximately_equal (predictions.mean (), 23.5324 , 0.00001 ));
476+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5512 , 0.00001 ));
477477 }
478478
479479 void test_aplrregressor_gamma_gini_weighted ()
@@ -527,7 +527,7 @@ class Tests
527527 save_as_csv_file (" data/output.csv" , predictions);
528528
529529 std::cout << predictions.mean () << " \n\n " ;
530- tests.push_back (is_approximately_equal (predictions.mean (), 23.1358 , 0.00001 ));
530+ tests.push_back (is_approximately_equal (predictions.mean (), 23.3198 , 0.00001 ));
531531 }
532532
533533 void test_aplrregressor_gamma_gini ()
@@ -581,7 +581,7 @@ class Tests
581581 save_as_csv_file (" data/output.csv" , predictions);
582582
583583 std::cout << predictions.mean () << " \n\n " ;
584- tests.push_back (is_approximately_equal (predictions.mean (), 23.1358 , 0.00001 ));
584+ tests.push_back (is_approximately_equal (predictions.mean (), 23.3198 , 0.00001 ));
585585 }
586586
587587 void test_aplrregressor_gamma ()
@@ -635,7 +635,7 @@ class Tests
635635 save_as_csv_file (" data/output.csv" , predictions);
636636
637637 std::cout << predictions.mean () << " \n\n " ;
638- tests.push_back (is_approximately_equal (predictions.mean (), 23.5324 , 0.00001 ));
638+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5512 , 0.00001 ));
639639 }
640640
641641 void test_aplrregressor_group_mse ()
@@ -691,7 +691,7 @@ class Tests
691691 save_as_csv_file (" data/output.csv" , predictions);
692692
693693 std::cout << predictions.mean () << " \n\n " ;
694- tests.push_back (is_approximately_equal (predictions.mean (), 20.8935 , 0.00001 ));
694+ tests.push_back (is_approximately_equal (predictions.mean (), 20.8243 , 0.00001 ));
695695 }
696696
697697 void test_aplrregressor_group_mse_cycle ()
@@ -735,7 +735,7 @@ class Tests
735735 save_as_csv_file (" data/output.csv" , predictions);
736736
737737 std::cout << predictions.mean () << " \n\n " ;
738- tests.push_back (is_approximately_equal (predictions.mean (), 23.5048 , 0.00001 ));
738+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5148 , 0.00001 ));
739739 }
740740
741741 void test_aplrregressor_int_constr ()
@@ -788,7 +788,7 @@ class Tests
788788 save_as_csv_file (" data/output.csv" , predictions);
789789
790790 std::cout << predictions.mean () << " \n\n " ;
791- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
791+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5768 , 0.00001 ));
792792 }
793793
794794 void test_aplrregressor_inversegaussian ()
@@ -843,7 +843,7 @@ class Tests
843843 save_as_csv_file (" data/output.csv" , predictions);
844844
845845 std::cout << predictions.mean () << " \n\n " ;
846- tests.push_back (is_approximately_equal (predictions.mean (), 23.3027 , 0.00001 ));
846+ tests.push_back (is_approximately_equal (predictions.mean (), 23.3198 , 0.00001 ));
847847 }
848848
849849 void test_aplrregressor_logit ()
@@ -896,7 +896,7 @@ class Tests
896896 save_as_csv_file (" data/output.csv" , predictions);
897897
898898 std::cout << predictions.mean () << " \n\n " ;
899- tests.push_back (is_approximately_equal (predictions.mean (), 0.0849744 , 0.00001 ));
899+ tests.push_back (is_approximately_equal (predictions.mean (), 0.0875969 , 0.00001 ));
900900 }
901901
902902 void test_aplrregressor_mae ()
@@ -949,7 +949,7 @@ class Tests
949949 save_as_csv_file (" data/output.csv" , predictions);
950950
951951 std::cout << predictions.mean () << " \n\n " ;
952- tests.push_back (is_approximately_equal (predictions.mean (), 23.5348 , 0.00001 ));
952+ tests.push_back (is_approximately_equal (predictions.mean (), 23.5419 , 0.00001 ));
953953 }
954954
955955 void test_aplrregressor_monotonic ()
@@ -1002,7 +1002,7 @@ class Tests
10021002 save_as_csv_file (" data/output.csv" , predictions);
10031003
10041004 std::cout << predictions.mean () << " \n\n " ;
1005- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
1005+ tests.push_back (is_approximately_equal (predictions.mean (), 23.476 , 0.00001 ));
10061006 }
10071007
10081008 void test_aplrregressor_monotonic_ignore_interactions ()
@@ -1056,7 +1056,7 @@ class Tests
10561056 save_as_csv_file (" data/output.csv" , predictions);
10571057
10581058 std::cout << predictions.mean () << " \n\n " ;
1059- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
1059+ tests.push_back (is_approximately_equal (predictions.mean (), 24.3013 , 0.00001 ));
10601060 }
10611061
10621062 void test_aplrregressor_negative_binomial ()
@@ -1110,7 +1110,7 @@ class Tests
11101110 save_as_csv_file (" data/output.csv" , predictions);
11111111
11121112 std::cout << predictions.mean () << " \n\n " ;
1113- tests.push_back (is_approximately_equal (predictions.mean (), 1.86873 , 0.00001 ));
1113+ tests.push_back (is_approximately_equal (predictions.mean (), 1.8694 , 0.00001 ));
11141114 }
11151115
11161116 void test_aplrregressor_poisson ()
@@ -1163,7 +1163,7 @@ class Tests
11631163 save_as_csv_file (" data/output.csv" , predictions);
11641164
11651165 std::cout << predictions.mean () << " \n\n " ;
1166- tests.push_back (is_approximately_equal (predictions.mean (), 1.89258 , 0.00001 ));
1166+ tests.push_back (is_approximately_equal (predictions.mean (), 1.88727 , 0.00001 ));
11671167 }
11681168
11691169 void test_aplrregressor_poissongamma ()
@@ -1217,7 +1217,7 @@ class Tests
12171217 save_as_csv_file (" data/output.csv" , predictions);
12181218
12191219 std::cout << predictions.mean () << " \n\n " ;
1220- tests.push_back (is_approximately_equal (predictions.mean (), 1.88972 , 0.00001 ));
1220+ tests.push_back (is_approximately_equal (predictions.mean (), 1.88553 , 0.00001 ));
12211221 }
12221222
12231223 void test_aplrregressor_quantile ()
@@ -1270,7 +1270,7 @@ class Tests
12701270 save_as_csv_file (" data/output.csv" , predictions);
12711271
12721272 std::cout << predictions.mean () << " \n\n " ;
1273- tests.push_back (is_approximately_equal (predictions.mean (), 23.6396 , 0.00001 ));
1273+ tests.push_back (is_approximately_equal (predictions.mean (), 23.649 , 0.00001 ));
12741274 }
12751275
12761276 void test_aplrregressor_weibull ()
@@ -1324,7 +1324,7 @@ class Tests
13241324 save_as_csv_file (" data/output.csv" , predictions);
13251325
13261326 std::cout << predictions.mean () << " \n\n " ;
1327- tests.push_back (is_approximately_equal (predictions.mean (), 23.6046 , 0.00001 ));
1327+ tests.push_back (is_approximately_equal (predictions.mean (), 23.6406 , 0.00001 ));
13281328 }
13291329
13301330 void test_aplrregressor ()
@@ -1380,7 +1380,7 @@ class Tests
13801380 save_as_csv_file (" data/output.csv" , predictions);
13811381
13821382 std::cout << predictions.mean () << " \n\n " ;
1383- tests.push_back (is_approximately_equal (predictions.mean (), 30.25 , 0.00001 ));
1383+ tests.push_back (is_approximately_equal (predictions.mean (), 23.7035 , 0.00001 ));
13841384
13851385 std::map<double , double > coefficient_shape_function = model.get_coefficient_shape_function (1 );
13861386 bool coefficient_shape_function_has_correct_length{coefficient_shape_function.size () == 27 };
@@ -1461,15 +1461,15 @@ class Tests
14611461
14621462 std::cout << " cv_error\n "
14631463 << model.get_cv_error () << " \n\n " ;
1464- tests.push_back (is_approximately_equal (model.get_cv_error (), 0.246476719 , 0.000001 ));
1464+ tests.push_back (is_approximately_equal (model.get_cv_error (), 0.246477 , 0.000001 ));
14651465
14661466 std::cout << " predicted_class_prob_mean\n "
14671467 << predicted_class_probabilities.mean () << " \n\n " ;
14681468 tests.push_back (is_approximately_equal (predicted_class_probabilities.mean (), 0.2 , 0.00001 ));
14691469
14701470 std::cout << " local_feature_importance_mean\n "
14711471 << local_feature_importance.mean () << " \n\n " ;
1472- tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.15805047 , 0.00001 ));
1472+ tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.15805 , 0.00001 ));
14731473 }
14741474
14751475 void test_aplrclassifier_multi_class ()
@@ -1544,15 +1544,15 @@ class Tests
15441544
15451545 std::cout << " validation_error\n "
15461546 << model.get_cv_error () << " \n\n " ;
1547- tests.push_back (is_approximately_equal (model.get_cv_error (), 0.22771659413507309 , 0.000001 ));
1547+ tests.push_back (is_approximately_equal (model.get_cv_error (), 0.227717 , 0.000001 ));
15481548
15491549 std::cout << " predicted_class_prob_mean\n "
15501550 << predicted_class_probabilities.mean () << " \n\n " ;
15511551 tests.push_back (is_approximately_equal (predicted_class_probabilities.mean (), 0.2 , 0.00001 ));
15521552
15531553 std::cout << " local_feature_importance_mean\n "
15541554 << local_feature_importance.mean () << " \n\n " ;
1555- tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.15462763289863407 , 0.00001 ));
1555+ tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.154628 , 0.00001 ));
15561556 }
15571557
15581558 void test_aplrclassifier_two_class_other_params ()
@@ -1614,15 +1614,15 @@ class Tests
16141614
16151615 std::cout << " cv_error\n "
16161616 << model.get_cv_error () << " \n\n " ;
1617- tests.push_back (is_approximately_equal (model.get_cv_error (), 0.29875044672505785 , 0.000001 ));
1617+ tests.push_back (is_approximately_equal (model.get_cv_error (), 0.29875 , 0.000001 ));
16181618
16191619 std::cout << " predicted_class_prob_mean\n "
16201620 << predicted_class_probabilities.mean () << " \n\n " ;
16211621 tests.push_back (is_approximately_equal (predicted_class_probabilities.mean (), 0.5 , 0.00001 ));
16221622
16231623 std::cout << " local_feature_importance_mean\n "
16241624 << local_feature_importance.mean () << " \n\n " ;
1625- tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.15288015457447063 , 0.00001 ));
1625+ tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.15288 , 0.00001 ));
16261626 }
16271627
16281628 void test_aplrclassifier_two_class_val_index ()
@@ -1683,15 +1683,15 @@ class Tests
16831683
16841684 std::cout << " cv_error\n "
16851685 << model.get_cv_error () << " \n\n " ;
1686- tests.push_back (is_approximately_equal (model.get_cv_error (), 0.27830802806385846 , 0.000001 ));
1686+ tests.push_back (is_approximately_equal (model.get_cv_error (), 0.278308 , 0.000001 ));
16871687
16881688 std::cout << " predicted_class_prob_mean\n "
16891689 << predicted_class_probabilities.mean () << " \n\n " ;
16901690 tests.push_back (is_approximately_equal (predicted_class_probabilities.mean (), 0.5 , 0.00001 ));
16911691
16921692 std::cout << " local_feature_importance_mean\n "
16931693 << local_feature_importance.mean () << " \n\n " ;
1694- tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.12155125799010527 , 0.00001 ));
1694+ tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.121551 , 0.00001 ));
16951695 }
16961696
16971697 void test_aplrclassifier_two_class ()
@@ -1751,15 +1751,15 @@ class Tests
17511751
17521752 std::cout << " cv_error\n "
17531753 << model.get_cv_error () << " \n\n " ;
1754- tests.push_back (is_approximately_equal (model.get_cv_error (), 0.16491496201017047 , 0.000001 ));
1754+ tests.push_back (is_approximately_equal (model.get_cv_error (), 0.164915 , 0.000001 ));
17551755
17561756 std::cout << " predicted_class_prob_mean\n "
17571757 << predicted_class_probabilities.mean () << " \n\n " ;
17581758 tests.push_back (is_approximately_equal (predicted_class_probabilities.mean (), 0.5 , 0.00001 ));
17591759
17601760 std::cout << " local_feature_importance_mean\n "
17611761 << local_feature_importance.mean () << " \n\n " ;
1762- tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.12567194593990993 , 0.00001 ));
1762+ tests.push_back (is_approximately_equal (local_feature_importance.mean (), 0.125672 , 0.00001 ));
17631763 }
17641764
17651765 void test_functions ()
0 commit comments