@@ -10,48 +10,48 @@ using namespace Eigen;
1010
1111int main ()
1212{
13- // Model
13+ // Model
1414 APLRRegressor model{APLRRegressor ()};
15- model.m = 100 ;
16- model.v = 0.5 ;
17- model.bins = 300 ;
18- model.n_jobs = 0 ;
19- model.loss_function = " mse" ;
20- model.verbosity = 3 ;
21- model.min_observations_in_split = 10 ;
22- // model.max_interaction_level=0;
23- model.max_interaction_level = 100 ;
24- model.max_interactions = 30 ;
25- model.ineligible_boosting_steps_added = 10 ;
26- model.max_eligible_terms = 5 ;
27-
28- // Data
15+ model.m = 100 ;
16+ model.v = 0.5 ;
17+ model.bins = 300 ;
18+ model.n_jobs = 0 ;
19+ model.loss_function = " mse" ;
20+ model.verbosity = 3 ;
21+ model.min_observations_in_split = 10 ;
22+ // model.max_interaction_level=0;
23+ model.max_interaction_level = 100 ;
24+ model.max_interactions = 30 ;
25+ model.ineligible_boosting_steps_added = 10 ;
26+ model.max_eligible_terms = 5 ;
27+
28+ // Data
2929 MatrixXd X_train{load_csv_into_eigen_matrix<MatrixXd>(" X_train.csv" )};
30- MatrixXd X_test{load_csv_into_eigen_matrix<MatrixXd>(" X_test.csv" )};
31- VectorXd y_train{load_csv_into_eigen_matrix<MatrixXd>(" y_train.csv" )};
32- VectorXd y_test{load_csv_into_eigen_matrix<MatrixXd>(" y_test.csv" )};
30+ MatrixXd X_test{load_csv_into_eigen_matrix<MatrixXd>(" X_test.csv" )};
31+ VectorXd y_train{load_csv_into_eigen_matrix<MatrixXd>(" y_train.csv" )};
32+ VectorXd y_test{load_csv_into_eigen_matrix<MatrixXd>(" y_test.csv" )};
3333
34- VectorXd sample_weight{VectorXd::Constant (y_train.size (),1.0 )};
35- // VectorXd sample_weight{VectorXd::Random(y_train.size()).cwiseAbs()};
34+ VectorXd sample_weight{VectorXd::Constant (y_train.size (), 1.0 )};
35+ // VectorXd sample_weight{VectorXd::Random(y_train.size()).cwiseAbs()};
3636
37- // Fitting
37+ // Fitting
3838 clock_t time_req{clock ()};
39- // model.fit(X_train,y_train);
40- model.fit (X_train,y_train,sample_weight);
41- time_req= clock ()- time_req;
42- std::cout<< " time elapsed: " << std::to_string (time_req)<< " \n\n " ;
43-
39+ // model.fit(X_train,y_train);
40+ model.fit (X_train, y_train, sample_weight);
41+ time_req = clock () - time_req;
42+ std::cout << " time elapsed: " << std::to_string (time_req) << " \n\n " ;
43+
4444 VectorXd predictions{model.predict (X_test)};
4545
46- // Saving results
47- save_as_csv_file (" output.csv" ,predictions);
48- std::cout<< " min validation_error " << model.validation_error_steps .minCoeff ()<< " \n\n " ;
49- std::cout<< is_approximately_equal (model.validation_error_steps .minCoeff (),6.32895 ,0.00001 )<< " \n " ;
46+ // Saving results
47+ save_as_csv_file (" output.csv" , predictions);
48+ std::cout << " min validation_error " << model.validation_error_steps .minCoeff () << " \n\n " ;
49+ std::cout << is_approximately_equal (model.validation_error_steps .minCoeff (), 6.32895 , 0.00001 ) << " \n " ;
5050
51- std::cout<< " mean prediction " << predictions.mean ()<< " \n\n " ;
52- std::cout<< is_approximately_equal (predictions.mean (),23.587 ,0.0001 )<< " \n " ;
51+ std::cout << " mean prediction " << predictions.mean () << " \n\n " ;
52+ std::cout << is_approximately_equal (predictions.mean (), 23.587 , 0.0001 ) << " \n " ;
5353
54- std::cout<< " best_m: " << model.m << " \n " ;
54+ std::cout << " best_m: " << model.m << " \n " ;
5555
56- std::cout<< " test" ;
56+ std::cout << " test" ;
5757}
0 commit comments