You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: API_REFERENCE_FOR_CLASSIFICATION.md
+4-1Lines changed: 4 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,6 +1,6 @@
1
1
# APLRClassifier
2
2
3
-
## class aplr.APLRClassifier(m:int=3000, v:float=0.1, random_state:int=0, n_jobs:int=0, cv_folds:int=5, bins:int=300, verbosity:int=0, max_interaction_level:int=1, max_interactions:int=100000, min_observations_in_split:int=20, ineligible_boosting_steps_added:int=10, max_eligible_terms:int=5, boosting_steps_before_interactions_are_allowed: int = 0, monotonic_constraints_ignore_interactions: bool = False, early_stopping_rounds: int = 500)
3
+
## class aplr.APLRClassifier(m:int=3000, v:float=0.1, random_state:int=0, n_jobs:int=0, cv_folds:int=5, bins:int=300, verbosity:int=0, max_interaction_level:int=1, max_interactions:int=100000, min_observations_in_split:int=20, ineligible_boosting_steps_added:int=10, max_eligible_terms:int=5, boosting_steps_before_interactions_are_allowed: int = 0, monotonic_constraints_ignore_interactions: bool = False, early_stopping_rounds: int = 500, num_first_steps_with_linear_effects_only: int = 0)
4
4
5
5
### Constructor parameters
6
6
@@ -49,6 +49,9 @@ See ***monotonic_constraints*** in the ***fit*** method.
49
49
#### early_stopping_rounds (default = 500)
50
50
If validation loss does not improve during the last ***early_stopping_rounds*** boosting steps then boosting is aborted. The point with this constructor parameter is to speed up the training and make it easier to select a high ***m***.
Specifies the number of initial boosting steps that are reserved only for linear effects. 0 means that non-linear effects are allowed from the first boosting step. Reasons for setting this parameter to a higher value than 0 could be to 1) build a more interpretable model with more emphasis on linear effects or 2) build a linear only model by setting ***num_first_steps_with_linear_effects_only*** to no less than ***m***.
@@ -117,6 +117,9 @@ When ***loss_function*** equals ***group_mse_cycle*** then ***group_mse_cycle_mi
117
117
#### early_stopping_rounds (default = 500)
118
118
If validation loss does not improve during the last ***early_stopping_rounds*** boosting steps then boosting is aborted. The point with this constructor parameter is to speed up the training and make it easier to select a high ***m***.
Specifies the number of initial boosting steps that are reserved only for linear effects. 0 means that non-linear effects are allowed from the first boosting step. Reasons for setting this parameter to a higher value than 0 could be to 1) build a more interpretable model with more emphasis on linear effects or 2) build a linear only model by setting ***num_first_steps_with_linear_effects_only*** to no less than ***m***.
0 commit comments