You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: API_REFERENCE.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,10 +14,10 @@ The learning rate. Must be greater than zero and not more than one. The higher t
14
14
Used to randomly split training observations into training and validation if ***validation_set_indexes*** is not specified when fitting.
15
15
16
16
#### loss_function (default = "mse")
17
-
Determines the loss function used. Allowed values are "mse", "binomial", "poisson", "gamma", "tweedie", "group_mse", "mae", "quantile", "negative_binomial"and "cauchy". This is used together with ***link_function***. When ***loss_function*** is "group_mse" then the "group" argument in the ***fit*** method must be provided. In the latter case APLR will try to minimize group MSE when training the model. The ***loss_function*** "quantile" is used together with the ***quantile*** constructor parameter.
17
+
Determines the loss function used. Allowed values are "mse", "binomial", "poisson", "gamma", "tweedie", "group_mse", "mae", "quantile", "negative_binomial", "cauchy" and "weibull". This is used together with ***link_function***. When ***loss_function*** is "group_mse" then the "group" argument in the ***fit*** method must be provided. In the latter case APLR will try to minimize group MSE when training the model. The ***loss_function*** "quantile" is used together with the ***quantile*** constructor parameter.
18
18
19
19
#### link_function (default = "identity")
20
-
Determines how the linear predictor is transformed to predictions. Allowed values are "identity", "logit" and "log". For an ordinary regression model use ***loss_function*** "mse" and ***link_function*** "identity". For logistic regression use ***loss_function*** "binomial" and ***link_function*** "logit". For a multiplicative model use the "log" ***link_function***. The "log" ***link_function*** often works best with a "poisson", "gamma", "tweedie"or "negative_binomial" ***loss_function***, depending on the data. The ***loss_function*** "poisson", "gamma", "tweedie"or "negative_binomial" should only be used with the "log" ***link_function***. Inappropriate combinations of ***loss_function*** and ***link_function*** may result in a warning message when fitting the model and/or a poor model fit. Please note that values other than "identity" typically require a significantly higher ***m*** (or ***v***) in order to converge.
20
+
Determines how the linear predictor is transformed to predictions. Allowed values are "identity", "logit" and "log". For an ordinary regression model use ***loss_function*** "mse" and ***link_function*** "identity". For logistic regression use ***loss_function*** "binomial" and ***link_function*** "logit". For a multiplicative model use the "log" ***link_function***. The "log" ***link_function*** often works best with a "poisson", "gamma", "tweedie", "negative_binomial" or "weibull" ***loss_function***, depending on the data. The ***loss_function*** "poisson", "gamma", "tweedie", "negative_binomial" or "weibull" should only be used with the "log" ***link_function***. Inappropriate combinations of ***loss_function*** and ***link_function*** may result in a warning message when fitting the model and/or a poor model fit. Please note that values other than "identity" typically require a significantly higher ***m*** (or ***v***) in order to converge.
21
21
22
22
#### n_jobs (default = 0)
23
23
Multi-threading parameter. If ***0*** then uses all available cores for multi-threading. Any other positive integer specifies the number of cores to use (***1*** means single-threading).
@@ -50,7 +50,7 @@ Limits 1) the number of terms already in the model that can be considered as int
50
50
***0*** does not print progress reports during fitting. ***1*** prints a summary after running the ***fit*** method. ***2*** prints a summary after each boosting step.
51
51
52
52
#### dispersion_parameter (default = 1.5)
53
-
Specifies the variance power when ***loss_function*** is "tweedie". Specifies a dispersion parameter when ***loss_function*** is "negative_binomial"or "cauchy".
53
+
Specifies the variance power when ***loss_function*** is "tweedie". Specifies a dispersion parameter when ***loss_function*** is "negative_binomial", "cauchy" or "weibull".
Specifies which metric to use for validating the model and tuning ***m***. Available options are "default" (using the same methodology as when calculating the training error), "mse", "mae", "negative_gini", "rankability" and "group_mse". The default is often a choice that fits well with respect to the ***loss_function*** chosen. However, if you want to use ***loss_function*** or ***dispersion_parameter*** as tuning parameters then the default is not suitable. "rankability" uses a methodology similar to the one described in https://towardsdatascience.com/how-to-calculate-roc-auc-score-for-regression-models-c0be4fdf76bb except that the metric is inverted and can be weighted by sample weights. "group_mse" requires that the "group" argument in the ***fit*** method is provided.
std::string error_message{"Response values for the log link function or poisson loss_function or negative binomial loss function or tweedie loss_function when dispersion_parameter<2 cannot be less than zero."};
390
+
std::string error_message{"Response values for the log link function or poisson loss_function or negative binomial loss function or weibull loss function or tweedie loss_function when dispersion_parameter<2 cannot be less than zero."};
0 commit comments