You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -14,7 +14,7 @@ The learning rate. Must be greater than zero and not more than one. The higher t
14
14
Used to randomly split training observations into training and validation if ***validation_set_indexes*** is not specified when fitting.
15
15
16
16
#### loss_function (default = "mse")
17
-
Determines the loss function used. Allowed values are "mse", "binomial", "poisson", "gamma", "tweedie", "group_mse", "mae", "quantile", "negative_binomial", "cauchy"and "weibull". This is used together with ***link_function***. When ***loss_function*** is "group_mse" then the "group" argument in the ***fit*** method must be provided. In the latter case APLR will try to minimize group MSE when training the model. The ***loss_function*** "quantile" is used together with the ***quantile*** constructor parameter.
17
+
Determines the loss function used. Allowed values are "mse", "binomial", "poisson", "gamma", "tweedie", "group_mse", "mae", "quantile", "negative_binomial", "cauchy", "weibull" and "custom_function". This is used together with ***link_function***. When ***loss_function*** is "group_mse" then the "group" argument in the ***fit*** method must be provided. In the latter case APLR will try to minimize group MSE when training the model. The ***loss_function*** "quantile" is used together with the ***quantile*** constructor parameter. When ***loss_function*** is "custom_function" then the constructor parameters ***calculate_custom_loss_function*** and ***calculate_custom_negative_gradient_function***, both described below, must be provided.
18
18
19
19
#### link_function (default = "identity")
20
20
Determines how the linear predictor is transformed to predictions. Allowed values are "identity", "logit" and "log". For an ordinary regression model use ***loss_function*** "mse" and ***link_function*** "identity". For logistic regression use ***loss_function*** "binomial" and ***link_function*** "logit". For a multiplicative model use the "log" ***link_function***. The "log" ***link_function*** often works best with a "poisson", "gamma", "tweedie", "negative_binomial" or "weibull" ***loss_function***, depending on the data. The ***loss_function*** "poisson", "gamma", "tweedie", "negative_binomial" or "weibull" should only be used with the "log" ***link_function***. Inappropriate combinations of ***loss_function*** and ***link_function*** may result in a warning message when fitting the model and/or a poor model fit. Please note that values other than "identity" typically require a significantly higher ***m*** (or ***v***) in order to converge.
@@ -56,14 +56,32 @@ Specifies which metric to use for validating the model and tuning ***m***. Avail
56
56
Specifies the quantile to use when ***loss_function*** is "quantile".
A Python function that calculates the negative gradient if ***loss_function*** is "custom_function". The negative gradient should be proportional to the negative of the first order differentiation of the custom loss function (***calculate_custom_loss_function***) with respect to the predictions. Example:
0 commit comments