@@ -12,7 +12,6 @@ using namespace Eigen;
1212class APLRClassifier
1313{
1414private:
15- size_t reserved_terms_times_num_x;
1615 std::map<std::string, VectorXd> response_values; // Key is category and value is response vector
1716
1817 void initialize ();
@@ -55,7 +54,7 @@ class APLRClassifier
5554 std::vector<std::vector<size_t >> base_predictors_in_each_unique_term_affiliation;
5655
5756 APLRClassifier (size_t m = 20000 , double v = 0.5 , uint_fast32_t random_state = std::numeric_limits<uint_fast32_t >::lowest(), size_t n_jobs = 0 ,
58- size_t cv_folds = 5 , size_t reserved_terms_times_num_x = 100 , size_t bins = 300 , size_t verbosity = 0 , size_t max_interaction_level = 1 ,
57+ size_t cv_folds = 5 , size_t bins = 300 , size_t verbosity = 0 , size_t max_interaction_level = 1 ,
5958 size_t max_interactions = 100000 , size_t min_observations_in_split = 4 , size_t ineligible_boosting_steps_added = 15 , size_t max_eligible_terms = 7 ,
6059 size_t boosting_steps_before_interactions_are_allowed = 0 , bool monotonic_constraints_ignore_interactions = false ,
6160 size_t early_stopping_rounds = 500 , size_t num_first_steps_with_linear_effects_only = 0 ,
@@ -81,13 +80,13 @@ class APLRClassifier
8180};
8281
8382APLRClassifier::APLRClassifier (size_t m, double v, uint_fast32_t random_state, size_t n_jobs, size_t cv_folds,
84- size_t reserved_terms_times_num_x, size_t bins, size_t verbosity, size_t max_interaction_level, size_t max_interactions,
83+ size_t bins, size_t verbosity, size_t max_interaction_level, size_t max_interactions,
8584 size_t min_observations_in_split, size_t ineligible_boosting_steps_added, size_t max_eligible_terms,
8685 size_t boosting_steps_before_interactions_are_allowed, bool monotonic_constraints_ignore_interactions,
8786 size_t early_stopping_rounds, size_t num_first_steps_with_linear_effects_only,
8887 double penalty_for_non_linearity, double penalty_for_interactions, size_t max_terms)
8988 : m{m}, v{v}, random_state{random_state}, n_jobs{n_jobs}, cv_folds{cv_folds},
90- reserved_terms_times_num_x{reserved_terms_times_num_x}, bins{bins}, verbosity{verbosity}, max_interaction_level{max_interaction_level},
89+ bins{bins}, verbosity{verbosity}, max_interaction_level{max_interaction_level},
9190 max_interactions{max_interactions}, min_observations_in_split{min_observations_in_split},
9291 ineligible_boosting_steps_added{ineligible_boosting_steps_added}, max_eligible_terms{max_eligible_terms},
9392 boosting_steps_before_interactions_are_allowed{boosting_steps_before_interactions_are_allowed},
@@ -99,7 +98,7 @@ APLRClassifier::APLRClassifier(size_t m, double v, uint_fast32_t random_state, s
9998
10099APLRClassifier::APLRClassifier (const APLRClassifier &other)
101100 : m{other.m }, v{other.v }, random_state{other.random_state }, n_jobs{other.n_jobs }, cv_folds{other.cv_folds },
102- reserved_terms_times_num_x{other. reserved_terms_times_num_x }, bins{other.bins }, verbosity{other.verbosity },
101+ bins{other.bins }, verbosity{other.verbosity },
103102 max_interaction_level{other.max_interaction_level }, max_interactions{other.max_interactions },
104103 min_observations_in_split{other.min_observations_in_split }, ineligible_boosting_steps_added{other.ineligible_boosting_steps_added },
105104 max_eligible_terms{other.max_eligible_terms }, logit_models{other.logit_models }, categories{other.categories },
@@ -134,7 +133,7 @@ void APLRClassifier::fit(const MatrixXd &X, const std::vector<std::string> &y, c
134133 bool two_class_case{categories.size () == 2 };
135134 if (two_class_case)
136135 {
137- logit_models[categories[0 ]] = APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds, reserved_terms_times_num_x,
136+ logit_models[categories[0 ]] = APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds,
138137 bins, verbosity, max_interaction_level, max_interactions, min_observations_in_split, ineligible_boosting_steps_added,
139138 max_eligible_terms, 1.5 , " default" , 0.5 );
140139 logit_models[categories[0 ]].boosting_steps_before_interactions_are_allowed = boosting_steps_before_interactions_are_allowed;
@@ -155,7 +154,7 @@ void APLRClassifier::fit(const MatrixXd &X, const std::vector<std::string> &y, c
155154 {
156155 for (auto &category : categories)
157156 {
158- logit_models[category] = APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds, reserved_terms_times_num_x,
157+ logit_models[category] = APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds,
159158 bins, verbosity, max_interaction_level, max_interactions, min_observations_in_split, ineligible_boosting_steps_added,
160159 max_eligible_terms, 1.5 , " default" , 0.5 );
161160 logit_models[category].boosting_steps_before_interactions_are_allowed = boosting_steps_before_interactions_are_allowed;
@@ -212,7 +211,7 @@ void APLRClassifier::create_response_for_each_category(const std::vector<std::st
212211
213212void APLRClassifier::define_cv_observations (const std::vector<std::string> &y, const MatrixXi &cv_observations_)
214213{
215- APLRRegressor aplr_regressor{APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds, reserved_terms_times_num_x,
214+ APLRRegressor aplr_regressor{APLRRegressor (m, v, random_state, " binomial" , " logit" , n_jobs, cv_folds,
216215 bins, verbosity, max_interaction_level, max_interactions, min_observations_in_split, ineligible_boosting_steps_added,
217216 max_eligible_terms, 1.5 , " default" , 0.5 )};
218217 VectorXd y_dummy_vector{VectorXd (y.size ())};
0 commit comments