@@ -34,9 +34,6 @@ def trial_filter(task):
3434                "poker" ,
3535                "mnist" ,
3636                "parity5" ,
37-                 "564_fried" ,
38-                 "1191_BNG_pbc" ,
39-                 "1196_BNG_pharynx" ,
4037                "1595_poker" ,
4138            ]
4239        )
@@ -50,8 +47,8 @@ def trial_filter(task):
5047        return  []
5148
5249    return  [
53-         #  "xgboost-base",
54-         #  "ebm-base",
50+         "xgboost-base" ,
51+         "ebm-base" ,
5552        "aplr-base" ,
5653    ]
5754
@@ -209,9 +206,23 @@ def trial_runner(trial):
209206        raise  Exception (f"Unrecognized task problem { trial .task .problem }  " )
210207
211208    if  trial .method .name  ==  "aplr-base" :
209+         if  trial .task .problem  ==  "regression" :
210+             aplr_estimator : APLRRegressor  =  est .steps [1 ][1 ]
211+             optimal_m  =  aplr_estimator .get_optimal_m ()
212+             terms  =  len (aplr_estimator .get_term_names ())
213+         else :
214+             aplr_estimator : APLRClassifier  =  est .steps [1 ][1 ]
215+             optimal_m  =  0 
216+             terms  =  0 
217+             for  category  in  aplr_estimator .get_categories ():
218+                 model  =  aplr_estimator .get_logit_model (category )
219+                 optimal_m  =  max (model .get_optimal_m (), optimal_m )
220+                 terms  =  max (len (model .get_term_names ()), terms )
212221        trial .log ("rows" , X_train .shape [0 ])
213222        trial .log ("columns" , X_train .shape [1 ])
214223        trial .log ("columns_transformed" , ct .transform (X_train ).shape [1 ])
224+         trial .log ("optimal_m" , optimal_m )
225+         trial .log ("terms" , terms )
215226        completed_so_far .add (trial ._task .name )
216227        joblib .dump (completed_so_far , "completed_so_far.zip" , 9 )
217228        try :
0 commit comments