Skip to content

Commit 8a995fd

Browse files
Merge pull request #4477 from ovh/spt-update-ai-app-audio-classification-tuto
doc: 📝 remove one-for-all image
2 parents f143c37 + e42bf0c commit 8a995fd

File tree

15 files changed

+150
-75
lines changed

15 files changed

+150
-75
lines changed

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.de-de.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,10 @@ section: AI Deploy - Tutorials
66
order: 03
77
routes:
88
canonical: 'https://docs.ovh.com/gb/en/publiccloud/ai/deploy/tuto-streamlit-sounds-classification/'
9-
updated: 2023-04-04
9+
updated: 2023-04-06
1010
---
1111

12-
**Last updated 4th April, 2023.**
12+
**Last updated 6th April, 2023.**
1313

1414
> [!primary]
1515
>
@@ -209,17 +209,22 @@ if __name__ == '__main__':
209209
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
210210

211211
```console
212-
streamlit
212+
streamlit==1.20.*
213+
tensorflow==2.12.0
214+
numpy==1.22.4
215+
pandas==1.5.3
216+
scikit-learn==1.2.*
217+
librosa==0.10.*
213218
```
214219

215220
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
216221

217222
### Write the Dockerfile for the application
218223

219-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
224+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
220225

221226
```console
222-
ovhcom/ai-training-one-for-all
227+
python:3.8
223228
```
224229

225230
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-asia.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-au.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-ca.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-gb.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-ie.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-sg.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-us.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@ slug: deploy/tuto-streamlit-sounds-classification
44
excerpt: How to deploy a Streamlit app to classify marine mammal sounds
55
section: AI Deploy - Tutorials
66
order: 03
7-
updated: 2023-04-04
7+
updated: 2023-04-06
88
---
99

10-
**Last updated 4th April, 2023.**
10+
**Last updated 6th April, 2023.**
1111

1212
> [!primary]
1313
>
@@ -207,17 +207,22 @@ if __name__ == '__main__':
207207
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
208208

209209
```console
210-
streamlit
210+
streamlit==1.20.*
211+
tensorflow==2.12.0
212+
numpy==1.22.4
213+
pandas==1.5.3
214+
scikit-learn==1.2.*
215+
librosa==0.10.*
211216
```
212217

213218
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214219

215220
### Write the Dockerfile for the application
216221

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
222+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218223

219224
```console
220-
ovhcom/ai-training-one-for-all
225+
python:3.8
221226
```
222227

223228
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.es-es.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,10 @@ section: AI Deploy - Tutorials
66
order: 03
77
routes:
88
canonical: 'https://docs.ovh.com/gb/en/publiccloud/ai/deploy/tuto-streamlit-sounds-classification/'
9-
updated: 2023-04-04
9+
updated: 2023-04-06
1010
---
1111

12-
**Last updated 4th April, 2023.**
12+
**Last updated 6th April, 2023.**
1313

1414
> [!primary]
1515
>
@@ -209,17 +209,22 @@ if __name__ == '__main__':
209209
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
210210

211211
```console
212-
streamlit
212+
streamlit==1.20.*
213+
tensorflow==2.12.0
214+
numpy==1.22.4
215+
pandas==1.5.3
216+
scikit-learn==1.2.*
217+
librosa==0.10.*
213218
```
214219

215220
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
216221

217222
### Write the Dockerfile for the application
218223

219-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
224+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
220225

221226
```console
222-
ovhcom/ai-training-one-for-all
227+
python:3.8
223228
```
224229

225230
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.es-us.md

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -6,10 +6,10 @@ section: AI Deploy - Tutorials
66
order: 03
77
routes:
88
canonical: 'https://docs.ovh.com/gb/en/publiccloud/ai/deploy/tuto-streamlit-sounds-classification/'
9-
updated: 2023-04-04
9+
updated: 2023-04-06
1010
---
1111

12-
**Last updated 4th April, 2023.**
12+
**Last updated 6th April, 2023.**
1313

1414
> [!primary]
1515
>
@@ -209,17 +209,22 @@ if __name__ == '__main__':
209209
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
210210

211211
```console
212-
streamlit
212+
streamlit==1.20.*
213+
tensorflow==2.12.0
214+
numpy==1.22.4
215+
pandas==1.5.3
216+
scikit-learn==1.2.*
217+
librosa==0.10.*
213218
```
214219

215220
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
216221

217222
### Write the Dockerfile for the application
218223

219-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
224+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
220225

221226
```console
222-
ovhcom/ai-training-one-for-all
227+
python:3.8
223228
```
224229

225230
Create the home directory and add your files to it:

0 commit comments

Comments
 (0)