Skip to content

Commit 8dcc2fa

Browse files
committed
doc: 📝 remove one-for-all image
1 parent da90d58 commit 8dcc2fa

File tree

7 files changed

+56
-14
lines changed

7 files changed

+56
-14
lines changed

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-asia.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-au.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-ca.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-gb.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-ie.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-sg.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

pages/platform/ai/deploy_tuto_03_streamlit_sounds_classification/guide.en-us.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -208,16 +208,22 @@ The `requirements.txt` file will allow us to write all the modules needed to mak
208208

209209
```console
210210
streamlit
211+
tensorflow
212+
numpy==1.22.4
213+
pandas
214+
scikit-learn
215+
keras
216+
librosa
211217
```
212218

213219
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/streamlit/audio-classification-app).
214220

215221
### Write the Dockerfile for the application
216222

217-
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `one-for-all` OVHcloud image:
223+
Your Dockerfile should start with the the `FROM` instruction indicating the parent image to use. In our case we choose to start from the `python:3.8` image:
218224

219225
```console
220-
ovhcom/ai-training-one-for-all
226+
python:3.8
221227
```
222228

223229
Create the home directory and add your files to it:

0 commit comments

Comments
 (0)