|
30 | 30 | from pandas._config import ( |
31 | 31 | config, |
32 | 32 | get_option, |
33 | | - using_pyarrow_string_dtype, |
| 33 | + using_string_dtype, |
34 | 34 | ) |
35 | 35 |
|
36 | 36 | from pandas._libs import ( |
@@ -3294,7 +3294,7 @@ def read( |
3294 | 3294 | index = self.read_index("index", start=start, stop=stop) |
3295 | 3295 | values = self.read_array("values", start=start, stop=stop) |
3296 | 3296 | result = Series(values, index=index, name=self.name, copy=False) |
3297 | | - if using_pyarrow_string_dtype() and is_string_array(values, skipna=True): |
| 3297 | + if using_string_dtype() and is_string_array(values, skipna=True): |
3298 | 3298 | result = result.astype("string[pyarrow_numpy]") |
3299 | 3299 | return result |
3300 | 3300 |
|
@@ -3363,7 +3363,7 @@ def read( |
3363 | 3363 |
|
3364 | 3364 | columns = items[items.get_indexer(blk_items)] |
3365 | 3365 | df = DataFrame(values.T, columns=columns, index=axes[1], copy=False) |
3366 | | - if using_pyarrow_string_dtype() and is_string_array(values, skipna=True): |
| 3366 | + if using_string_dtype() and is_string_array(values, skipna=True): |
3367 | 3367 | df = df.astype("string[pyarrow_numpy]") |
3368 | 3368 | dfs.append(df) |
3369 | 3369 |
|
@@ -4735,9 +4735,9 @@ def read( |
4735 | 4735 | else: |
4736 | 4736 | # Categorical |
4737 | 4737 | df = DataFrame._from_arrays([values], columns=cols_, index=index_) |
4738 | | - if not (using_pyarrow_string_dtype() and values.dtype.kind == "O"): |
| 4738 | + if not (using_string_dtype() and values.dtype.kind == "O"): |
4739 | 4739 | assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype) |
4740 | | - if using_pyarrow_string_dtype() and is_string_array( |
| 4740 | + if using_string_dtype() and is_string_array( |
4741 | 4741 | values, # type: ignore[arg-type] |
4742 | 4742 | skipna=True, |
4743 | 4743 | ): |
|
0 commit comments