Skip to content

Commit 1112cb7

Browse files
committed
DOC: v0.13.1 doc updates
1 parent 8f30f65 commit 1112cb7

File tree

2 files changed

+68
-65
lines changed

2 files changed

+68
-65
lines changed

doc/source/tutorials.rst

Lines changed: 35 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -25,16 +25,16 @@ Here are links to the v0.1 release. For an up-to-date table of contents, see the
2525
repository <http://github.com/jvns/pandas-cookbook>`_.
2626

2727
* | `A quick tour of the IPython
28-
Notebook <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
29-
| Shows off IPython's awesome tab completion and magic functions.
28+
Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
29+
Shows off IPython's awesome tab completion and magic functions.
3030
* | `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
31-
Reading your data into pandas is pretty much the easiest thing. Even
31+
Reading your data into pandas is pretty much the easiest thing. Even
3232
when the encoding is wrong!
3333
* | `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
3434
It's not totally obvious how to select data from a pandas dataframe.
3535
Here we explain the basics (how to take slices and get columns)
3636
* | `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
37-
Here we get into serious slicing and dicing and learn how to filter
37+
Here we get into serious slicing and dicing and learn how to filter
3838
dataframes in complicated ways, really fast.
3939
* | `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
4040
Groupby/aggregate is seriously my favorite thing about pandas
@@ -43,14 +43,14 @@ repository <http://github.com/jvns/pandas-cookbook>`_.
4343
Here you get to find out if it's cold in Montreal in the winter
4444
(spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
4545
* | `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
46-
Strings with pandas are great. It has all these vectorized string
46+
Strings with pandas are great. It has all these vectorized string
4747
operations and they're the best. We will turn a bunch of strings
4848
containing "Snow" into vectors of numbers in a trice.
4949
* | `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
50-
Cleaning up messy data is never a joy, but with pandas it's easier.
50+
Cleaning up messy data is never a joy, but with pandas it's easier.
5151
* | `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
52-
Parsing Unix timestamps is confusing at first but it turns out
53-
to be really easy.
52+
Parsing Unix timestamps is confusing at first but it turns out
53+
to be really easy.
5454

5555

5656

@@ -60,54 +60,43 @@ Lessons for New Pandas Users
6060
For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`_.
6161

6262
* | `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
63-
64-
* Importing libraries
65-
* Creating data sets
66-
* Creating data frames
67-
* Reading from CSV
68-
* Exporting to CSV
69-
* Finding maximums
70-
* Plotting data
63+
* Importing libraries
64+
* Creating data sets
65+
* Creating data frames
66+
* Reading from CSV
67+
* Exporting to CSV
68+
* Finding maximums
69+
* Plotting data
7170
* | `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
72-
73-
* Reading from TXT
74-
* Exporting to TXT
75-
* Selecting top/bottom records
76-
* Descriptive statistics
77-
* Grouping/sorting data
71+
* Reading from TXT
72+
* Exporting to TXT
73+
* Selecting top/bottom records
74+
* Descriptive statistics
75+
* Grouping/sorting data
7876
* | `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
79-
80-
* Creating functions
81-
* Reading from EXCEL
82-
* Exporting to EXCEL
83-
* Outliers
84-
* Lambda functions
85-
* Slice and dice data
77+
* Creating functions
78+
* Reading from EXCEL
79+
* Exporting to EXCEL
80+
* Outliers
81+
* Lambda functions
82+
* Slice and dice data
8683
* | `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
87-
88-
* Adding/deleting columns
89-
* Index operations
84+
* Adding/deleting columns
85+
* Index operations
9086
* | `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
91-
92-
* Stack/Unstack/Transpose functions
87+
* Stack/Unstack/Transpose functions
9388
* | `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
94-
95-
* GroupBy function
89+
* GroupBy function
9690
* | `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
97-
98-
* Ways to calculate outliers
91+
* Ways to calculate outliers
9992
* | `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
100-
101-
* Read from Microsoft SQL databases
93+
* Read from Microsoft SQL databases
10294
* | `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
103-
104-
* Export to CSV/EXCEL/TXT
95+
* Export to CSV/EXCEL/TXT
10596
* | `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
106-
107-
* Converting between different kinds of formats
97+
* Converting between different kinds of formats
10898
* | `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
109-
110-
* Combining data from various sources
99+
* Combining data from various sources
111100

112101

113102
Excel charts with pandas, vincent and xlsxwriter

doc/source/v0.13.1.txt

Lines changed: 33 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,15 @@
33
v0.13.1 (February ???)
44
----------------------
55

6-
This is a minor release from 0.13.0 and includes a number of API changes, several new features and
7-
enhancements along with a large number of bug fixes.
6+
This is a minor release from 0.13.0 and includes a small number of API changes, several new features,
7+
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
8+
users upgrade to this version.
89

910
Highlights include:
1011

11-
Several experimental features are added, including:
12-
13-
There are several new or updated docs sections including:
14-
12+
- ``infer_datetime_format`` keyword to ``read_csv/to_datetime`` to allow speedups for homogeneously formatted datetimes
13+
- intelligently limited display precision for datetime/timedelta formats
14+
- enhanced Panel :meth:`~pandas.Panel.apply` method
1515
- :ref:`Tutorials<tutorials>`, a guide to community developed pandas tutorials.
1616
- :ref:`Pandas Ecosystem<ecosystem>`, a guide to complementary projects built on top of pandas.
1717

@@ -96,13 +96,26 @@ These were announced changes in 0.13 or prior that are taking effect as of 0.13.
9696
Deprecations
9797
~~~~~~~~~~~~
9898

99+
There are no deprecations of prior behavior in 0.13.1
100+
99101
Enhancements
100102
~~~~~~~~~~~~
101103

102104
- pd.to_csv and pd.to_datetime learned a new ``infer_datetime_format`` keyword which greatly
103105
improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken
104106
for rapidly implementing. (:issue:`5490`, :issue:`6021`)
105107

108+
If ``parse_dates`` is enabled and this flag is set, pandas will attempt to
109+
infer the format of the datetime strings in the columns, and if it can
110+
be inferred, switch to a faster method of parsing them. In some cases
111+
this can increase the parsing speed by ~5-10x.
112+
113+
.. code-block:: python
114+
115+
# Try to infer the format for the index column
116+
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
117+
infer_datetime_format=True)
118+
106119
- ``date_format`` and ``datetime_format`` keywords can now be specified when writing to ``excel``
107120
files (:issue:`4133`)
108121

@@ -147,7 +160,7 @@ Enhancements
147160

148161
pd.set_option('show_dimensions', True)
149162

150-
- ``Panel.apply`` will work on non-ufuncs. See :ref:`the docs<basics.apply_panel>`.
163+
- Panel :meth:`~pandas.Panel.apply` will work on non-ufuncs. See :ref:`the docs<basics.apply_panel>`.
151164

152165
.. ipython:: python
153166

@@ -183,7 +196,7 @@ Enhancements
183196
result
184197
result['ItemA']
185198

186-
- ``Panel.apply`` operating on cross-sectional slabs. (:issue:`1148`)
199+
- Panel :meth:`~pandas.Panel.apply` operating on cross-sectional slabs. (:issue:`1148`)
187200

188201
.. ipython:: python
189202

@@ -201,23 +214,24 @@ Enhancements
201214
result
202215
result.loc[:,:,'ItemA']
203216

204-
- Added optional ``infer_datetime_format`` to ``read_csv``, ``Series.from_csv``
205-
and ``DataFrame.read_csv`` (:issue:`5490`)
206-
207-
If ``parse_dates`` is enabled and this flag is set, pandas will attempt to
208-
infer the format of the datetime strings in the columns, and if it can
209-
be inferred, switch to a faster method of parsing them. In some cases
210-
this can increase the parsing speed by ~5-10x.
217+
Performance
218+
~~~~~~~~~~~
211219

212-
.. code-block:: python
220+
Performance improvements for 0.13.1
213221

214-
# Try to infer the format for the index column
215-
df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
216-
infer_datetime_format=True)
222+
- Series datetime/timedelta binary operations (:issue:`5801`)
223+
- DataFrame ``count/dropna`` for ``axis=1``
224+
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (:issue:`5879`)
225+
- Series.str.extract (:issue:`5944`)
226+
- ``dtypes/ftypes`` methods (:issue:`5968`)
227+
- indexing with object dtypes (:issue:`5968`)
228+
- ``DataFrame.apply`` (:issue:`6013`)
217229

218230
Experimental
219231
~~~~~~~~~~~~
220232

233+
There are no experimental changes in 0.13.1
234+
221235
Bug Fixes
222236
~~~~~~~~~
223237

0 commit comments

Comments
 (0)