@@ -45,6 +45,11 @@ class NullFrequencyError(ValueError):
45
45
Particularly ``DatetimeIndex.shift``, ``TimedeltaIndex.shift``,
46
46
``PeriodIndex.shift``.
47
47
48
+ See Also
49
+ --------
50
+ Index.shift : Shift values of Index.
51
+ Series.shift : Shift values of Series.
52
+
48
53
Examples
49
54
--------
50
55
>>> df = pd.DatetimeIndex(["2011-01-01 10:00", "2011-01-01"], freq=None)
@@ -58,6 +63,12 @@ class PerformanceWarning(Warning):
58
63
"""
59
64
Warning raised when there is a possible performance impact.
60
65
66
+ See Also
67
+ --------
68
+ DataFrame.set_index : Set the DataFrame index using existing columns.
69
+ DataFrame.loc : Access a group of rows and columns by label(s) \
70
+ or a boolean array.
71
+
61
72
Examples
62
73
--------
63
74
>>> df = pd.DataFrame(
@@ -385,17 +396,24 @@ class NumbaUtilError(Exception):
385
396
"""
386
397
Error raised for unsupported Numba engine routines.
387
398
399
+ See Also
400
+ --------
401
+ DataFrame.groupby : Group DataFrame using a mapper or by a Series of columns.
402
+ Series.groupby : Group Series using a mapper or by a Series of columns.
403
+ DataFrame.agg : Aggregate using one or more operations over the specified axis.
404
+ Series.agg : Aggregate using one or more operations over the specified axis.
405
+
388
406
Examples
389
407
--------
390
408
>>> df = pd.DataFrame(
391
409
... {"key": ["a", "a", "b", "b"], "data": [1, 2, 3, 4]}, columns=["key", "data"]
392
410
... )
393
411
>>> def incorrect_function(x):
394
412
... return sum(x) * 2.7
395
- >>> df.groupby ("key").agg(incorrect_function, engine="numba")
413
+ >>> df.("key").agg(incorrect_function, engine="numba")
396
414
Traceback (most recent call last):
397
415
NumbaUtilError: The first 2 arguments to incorrect_function
398
- must be ['values', 'index']
416
+ must be ['values', 'index']groupby
399
417
"""
400
418
401
419
0 commit comments