Skip to content

Commit 21b59e6

Browse files
authored
Update README.md
Made the readme beginner friendly
1 parent 188b2da commit 21b59e6

File tree

1 file changed

+152
-149
lines changed

1 file changed

+152
-149
lines changed

README.md

Lines changed: 152 additions & 149 deletions
Original file line numberDiff line numberDiff line change
@@ -1,190 +1,193 @@
1-
<picture align="center">
2-
<source media="(prefers-color-scheme: dark)" srcset="https://pandas.pydata.org/static/img/pandas_white.svg">
3-
<img alt="Pandas Logo" src="https://pandas.pydata.org/static/img/pandas.svg">
4-
</picture>
5-
6-
-----------------
7-
8-
# pandas: A Powerful Python Data Analysis Toolkit
9-
10-
| | |
11-
| --- | --- |
12-
| Testing | [![CI - Test](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml/badge.svg)](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml) [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas) |
13-
| Package | [![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/) [![PyPI Downloads](https://img.shields.io/pypi/dm/pandas.svg?label=PyPI%20downloads)](https://pypi.org/project/pandas/) [![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/conda-forge/pandas) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandas.svg?label=Conda%20downloads)](https://anaconda.org/conda-forge/pandas) |
14-
| Meta | [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134) [![License - BSD 3-Clause](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE) [![Slack](https://img.shields.io/badge/join_Slack-information-brightgreen.svg?logo=slack)](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) |
15-
16-
17-
## What is it?
18-
19-
**pandas** is a Python package that provides fast, flexible, and expressive data
20-
structures designed to make working with "relational" or "labeled" data both
21-
easy and intuitive. It aims to be the fundamental high-level building block for
22-
doing practical, **real-world** data analysis in Python. Additionally, it has
23-
the broader goal of becoming **the most powerful and flexible open-source data
24-
analysis/manipulation tool available in any language**. It is already well on
25-
its way towards this goal.
26-
27-
## Table of Contents
28-
29-
- [Main Features](#main-features)
30-
- [Where to get it](#where-to-get-it)
31-
- [Dependencies](#dependencies)
32-
- [Installation from sources](#installation-from-sources)
33-
- [License](#license)
34-
- [Documentation](#documentation)
35-
- [Background](#background)
36-
- [Getting Help](#getting-help)
37-
- [Discussion and Development](#discussion-and-development)
38-
- [Contributing to pandas](#contributing-to-pandas)
39-
40-
## Main Features
41-
Here are just a few of the things that pandas does well:
42-
43-
- Easy handling of [**missing data**][missing-data] (represented as
44-
`NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data
45-
- Size mutability: columns can be [**inserted and
46-
deleted**][insertion-deletion] from DataFrame and higher dimensional
47-
objects
48-
- Automatic and explicit [**data alignment**][alignment]: objects can
49-
be explicitly aligned to a set of labels, or the user can simply
50-
ignore the labels and let `Series`, `DataFrame`, etc. automatically
51-
align the data for you in computations
52-
- Powerful, flexible [**group by**][groupby] functionality to perform
53-
split-apply-combine operations on data sets, for both aggregating
54-
and transforming data
55-
- Make it [**easy to convert**][conversion] ragged,
56-
differently-indexed data in other Python and NumPy data structures
57-
into DataFrame objects
58-
- Intelligent label-based [**slicing**][slicing], [**fancy
59-
indexing**][fancy-indexing], and [**subsetting**][subsetting] of
60-
large data sets
61-
- Intuitive [**merging**][merging] and [**joining**][joining] data
62-
sets
63-
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
64-
data sets
65-
- [**Hierarchical**][mi] labeling of axes (possible to have multiple
66-
labels per tick)
67-
- Robust I/O tools for loading data from [**flat files**][flat-files]
68-
(CSV and delimited), [**Excel files**][excel], [**databases**][db],
69-
and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
70-
- [**Time series**][timeseries]-specific functionality: date range
71-
generation and frequency conversion, moving window statistics,
72-
date shifting and lagging
73-
74-
75-
[missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
76-
[insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
77-
[alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures
78-
[groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
79-
[conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
80-
[slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges
81-
[fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced
82-
[subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
83-
[merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
84-
[joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index
85-
[reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
86-
[pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
87-
[mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex
88-
[flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files
89-
[excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files
90-
[db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
91-
[hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables
92-
[timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality
93-
94-
## Where to get it
95-
The source code is currently hosted on GitHub at:
96-
https://github.com/pandas-dev/pandas
97-
98-
Binary installers for the latest released version are available at the [Python
99-
Package Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://anaconda.org/conda-forge/pandas).
100-
101-
```sh
102-
# conda
1+
<p align="center">
2+
<picture>
3+
<source media="(prefers-color-scheme: dark)" srcset="https://pandas.pydata.org/static/img/pandas_white.svg">
4+
<img alt="Pandas Logo" src="https://pandas.pydata.org/static/img/pandas.svg" width="300">
5+
</picture>
6+
</p>
7+
8+
---
9+
10+
# 🐼 pandas: Python Data Analysis Made Easy
11+
12+
| Category | Badges |
13+
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
14+
| **Testing** | [![CI - Test](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml/badge.svg)](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml) [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas) |
15+
| **Package** | [![PyPI Version](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/) [![PyPI Downloads](https://img.shields.io/pypi/dm/pandas.svg?label=PyPI%20downloads)](https://pypi.org/project/pandas/) [![Conda Version](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/conda-forge/pandas) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandas.svg?label=Conda%20downloads)](https://anaconda.org/conda-forge/pandas) |
16+
| **Meta** | [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg)](https://numfocus.org) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134) [![License](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE) [![Slack](https://img.shields.io/badge/join_Slack-information-brightgreen.svg?logo=slack)](https://pandas.pydata.org/docs/dev/development/community.html#community-slack) |
17+
18+
---
19+
20+
## 🧐 What is pandas?
21+
22+
**pandas** is a popular Python library for working with **structured data** (like tables or spreadsheets). It's built to make **data cleaning**, **analysis**, and **manipulation** easy and powerful.
23+
24+
If you’ve used Excel or SQL, pandas gives you similar tools — right inside Python.
25+
26+
It helps you:
27+
28+
* Load data from CSV, Excel, or databases
29+
* Clean up messy data
30+
* Analyze it with stats and math
31+
* Visualize trends and patterns (when used with other libraries like Matplotlib)
32+
33+
> pandas is widely used in data science, machine learning, finance, and research.
34+
35+
---
36+
37+
## 📚 Table of Contents
38+
39+
* [Main Features](#main-features)
40+
* [Installation](#installation)
41+
* [Dependencies](#dependencies)
42+
* [Installing from Source](#installing-from-source)
43+
* [Documentation](#documentation)
44+
* [Getting Help](#getting-help)
45+
* [Contributing](#contributing)
46+
47+
---
48+
49+
## 🚀 Main Features
50+
51+
Here’s what you can do with pandas:
52+
53+
* Handle **missing data** easily
54+
* Add or remove columns in a table (called a *DataFrame*)
55+
* Automatically align data by labels
56+
* Group and summarize data with `groupby`
57+
* Convert lists or dictionaries into a table format
58+
* Select data by row, column, condition, or labels
59+
* Merge or join datasets together
60+
* Reshape data (pivot, stack, unstack)
61+
* Work with **multi-level indexes** (called *MultiIndex*)
62+
* Load data from CSV, Excel, SQL, HDF5, and more
63+
* Work with **date/time data** like a pro
64+
65+
[📖 Learn more about each feature](https://pandas.pydata.org/docs/user_guide/index.html)
66+
67+
---
68+
69+
## 💻 Installation
70+
71+
### 📦 Using conda (recommended for beginners):
72+
73+
```bash
10374
conda install -c conda-forge pandas
10475
```
10576

106-
```sh
107-
# or PyPI
77+
### 📦 Or using pip:
78+
79+
```bash
10880
pip install pandas
10981
```
11082

111-
The list of changes to pandas between each release can be found
112-
[here](https://pandas.pydata.org/pandas-docs/stable/whatsnew/index.html). For full
113-
details, see the commit logs at https://github.com/pandas-dev/pandas.
83+
[Release Notes & Updates](https://pandas.pydata.org/pandas-docs/stable/whatsnew/index.html)
84+
85+
---
86+
87+
## 🔗 Where to Find pandas
88+
89+
* **Source Code**: [GitHub - pandas-dev/pandas](https://github.com/pandas-dev/pandas)
90+
* **PyPI Package**: [pandas on PyPI](https://pypi.org/project/pandas/)
91+
* **Conda Package**: [pandas on conda-forge](https://anaconda.org/conda-forge/pandas)
92+
93+
---
94+
95+
## ⚙️ Dependencies
96+
97+
To use pandas, you’ll need:
98+
99+
* [NumPy](https://www.numpy.org): For fast numerical operations
100+
* [python-dateutil](https://dateutil.readthedocs.io): For working with dates
101+
* [tzdata](https://tzdata.readthedocs.io): Timezone support
114102

115-
## Dependencies
116-
- [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)
117-
- [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)
118-
- [tzdata - Provides an IANA time zone database](https://tzdata.readthedocs.io/en/latest/)
103+
📄 [See full dependency info here](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies)
119104

120-
See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.
105+
---
121106

122-
## Installation from sources
123-
To install pandas from source you need [Cython](https://cython.org/) in addition to the normal
124-
dependencies above. Cython can be installed from PyPI:
107+
## 🛠️ Installing from Source
125108

126-
```sh
109+
If you want to install the latest development version:
110+
111+
### 1. Clone the repo:
112+
113+
```bash
114+
git clone https://github.com/pandas-dev/pandas.git
115+
cd pandas
116+
```
117+
118+
### 2. Install Cython (required):
119+
120+
```bash
127121
pip install cython
128122
```
129123

130-
In the `pandas` directory (same one where you found this file after
131-
cloning the git repo), execute:
124+
### 3. Install pandas from source:
132125

133-
```sh
126+
```bash
134127
pip install .
135128
```
136129

137-
or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):
130+
### Or, for development mode:
138131

139-
140-
```sh
132+
```bash
141133
python -m pip install -ve . --no-build-isolation --config-settings editable-verbose=true
142134
```
143135

144-
See the full instructions for [installing from source](https://pandas.pydata.org/docs/dev/development/contributing_environment.html).
136+
📄 [Full developer setup instructions](https://pandas.pydata.org/docs/dev/development/contributing_environment.html)
137+
138+
---
139+
140+
## 📖 Documentation
141+
142+
* Official docs: [pandas.pydata.org/docs](https://pandas.pydata.org/pandas-docs/stable/)
143+
* Tutorials: [User Guide](https://pandas.pydata.org/docs/user_guide/index.html)
144+
145+
---
145146

146-
## License
147-
[BSD 3](LICENSE)
147+
## ❓ Getting Help
148148

149-
## Documentation
150-
The official documentation is hosted on [PyData.org](https://pandas.pydata.org/pandas-docs/stable/).
149+
If you’re stuck, here are good places to ask questions:
151150

152-
## Background
153-
Work on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 and
154-
has been under active development since then.
151+
* [Stack Overflow](https://stackoverflow.com/questions/tagged/pandas)
152+
* [pandas Slack](https://pandas.pydata.org/docs/dev/development/community.html#community-slack)
153+
* [PyData mailing list](https://groups.google.com/forum/#!forum/pydata)
155154

156-
## Getting Help
155+
---
157156

158-
For usage questions, the best place to go to is [Stack Overflow](https://stackoverflow.com/questions/tagged/pandas).
159-
Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).
157+
## 🤝 Contributing to pandas
160158

161-
## Discussion and Development
162-
Most development discussions take place on GitHub in this repo, via the [GitHub issue tracker](https://github.com/pandas-dev/pandas/issues).
159+
We welcome **everyone** to help make pandas better!
163160

164-
Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Slack channel](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) is available for quick development related questions.
161+
### Ways you can contribute:
165162

166-
There are also frequent [community meetings](https://pandas.pydata.org/docs/dev/development/community.html#community-meeting) for project maintainers open to the community as well as monthly [new contributor meetings](https://pandas.pydata.org/docs/dev/development/community.html#new-contributor-meeting) to help support new contributors.
163+
* Fix bugs
164+
* Improve documentation
165+
* Add new features
166+
* Review pull requests
167+
* Help answer questions
167168

168-
Additional information on the communication channels can be found on the [contributor community](https://pandas.pydata.org/docs/development/community.html) page.
169+
🧭 Start by checking out:
169170

170-
## Contributing to pandas
171+
* [Good First Issues](https://github.com/pandas-dev/pandas/issues?q=is%3Aissue+label%3A%22good+first+issue%22)
172+
* [Contribution Guide](https://pandas.pydata.org/docs/dev/development/contributing.html)
171173

172-
[![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas)
174+
You can also [subscribe on CodeTriage](https://www.codetriage.com/pandas-dev/pandas) to help triage issues.
173175

174-
All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
176+
📜 [Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)
175177

176-
A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.
178+
---
177179

178-
If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?q=is%3Aissue%20state%3Aopen%20label%3ADocs%20sort%3Aupdated-desc) and [good first issue](https://github.com/pandas-dev/pandas/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22%20sort%3Aupdated-desc) where you could start out.
180+
## 🏁 Background
179181

180-
You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).
182+
pandas was created in 2008 by Wes McKinney while working at [AQR Capital](https://www.aqr.com/) and has grown into one of the most widely-used tools in data science and analytics.
181183

182-
Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!
184+
---
183185

184-
Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Slack](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack).
186+
## 🧭 Want to Learn More?
185187

186-
As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)
188+
* [pandas Docs](https://pandas.pydata.org/pandas-docs/stable/)
189+
* [pandas YouTube Tutorials](https://www.youtube.com/results?search_query=pandas+python+tutorial)
187190

188-
<hr>
191+
---
189192

190-
[Go to Top](#table-of-contents)
193+
🔝 [Back to Top](#-pandas-python-data-analysis-made-easy)

0 commit comments

Comments
 (0)